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Ṗ /P and Ṗb/Pb for one pulsar in each cluster. . . . . . . . . . . . . . . . . . 89

5.4 Best-fitting model for the 47Tuc-NoKin fit compared to the data . . . . . . . 90

5.5 Posterior probability distribution of the mass in BHs in 47 Tuc for each of the

fits summarized in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Best-fitting model for the Ter5-AllData fit compared to the data. . . . . . . 92

5.7 Continuation of Figure 5.6 showing the best-fitting model for the Ter5-AllData

fit compared to the stellar mass function data. . . . . . . . . . . . . . . . . . . 94

5.8 Posterior probability distribution of the mass in BHs in Terzan 5 for each of the

fits summarized in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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ABSTRACT

Peter J. Smith

Dynamical Inference of Black Hole Populations in Globular Clusters

August 14, 2024

The present-day black hole (BH) populations of globular clusters (GCs) have far-reaching

implications for the evolution of these systems and the production of gravitational wave

sources. Despite this, our ability to constrain these populations remains unclear. Using

synthetic observations from CMC models, we test one dynamical method, finding it to be

effective but likely underestimating uncertainties. Additionally, we introduce a new technique

for combining dynamical models with pulsar timing, and apply it to two Milky Way GCs. This

reveals a modest BH population in 47 Tuc (with a total mass of 446+75
−72 M⊙), suggesting no

need for a large central BH, and sets a significant upper limit for the mass in BHs in Terzan 5 of

∼ 4000 M⊙. This technique, not reliant on stellar kinematics, offers insights into the dynamics

of even heavily obscured GCs and will benefit from future radio telescope observations.
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Chapter 1

Introduction

1.1 Black Holes in Globular Clusters

Globular Clusters (GCs) are old, dense, spherical collections of stars that are found in most

galaxies. These clusters typically contain 104−106 stars, all of which formed from the same ini-

tial cloud of gas (e.g. Carroll & Ostlie 2014). These systems are of great interest to astronomers

for a number of reasons, including as pristine examples of stellar evolution, as relics of the ear-

liest epochs of galaxy formation, and as ideal systems in which to study stellar interactions (e.g.

Binney & Merrifield 1998; Heggie & Hut 2003; Forbes et al. 2018).

GCs are some of the oldest objects in the Universe with ages typically in the range of 10−13

Gyr, meaning that they formed during the earliest epochs of galaxy formation (Forbes et al.

2018). The old ages of GCs also means that all stars more massive than ∼ 1 M⊙ have evolved

off the main sequence, leaving behind a population of white dwarfs, neutron stars, and stellar-

mass BHs (e.g. Dickson et al. 2023). The dense environments of GCs mean that rare stellar

interactions are much more common than in the field, allowing us to study exotic stellar systems

like blue stragglers, X-ray binaries, and millisecond pulsars (e.g. Ye et al. 2022).

The present-day stellar-mass black hole (BH) populations of globular clusters are of great
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interest to astronomers for a number of reasons. As the most massive objects in GCs, BHs are

expected to have a significant effect on the dynamical evolution of their host cluster, and as such

their present-day populations are important to constrain if we wish to understand the evolution

of these systems (e.g MacKey et al. 2008). The dense environments of GCs also make them

ideal sites for the formation of BH-BH binaries (Portegies Zwart & McMillan 1999), which are

expected to be the progenitors of a large portion of the gravitational wave sources that have been

detected by the LIGO/Virgo/KAGRA collaboration (The LIGO Scientific Collaboration et al.

2023). Despite the great interest in these systems, the present-day populations of BHs in GCs

are still poorly constrained. This stems from the inherent difficulty in observing BHs combined

with the difficulty of modelling these dense stellar systems. In this chapter, we will discuss the

current state of knowledge of the present-day BH populations of GCs, and the methods that have

been used to constrain these populations. We will examine some of the theoretical and numerical

predictions that have been made regarding these populations before discussing the observational

methods that can be used to detect these objects. Finally, we will look at the dynamical effects

of BHs in GCs and the implications of these effects for our ability to infer the presence of BHs

in these systems through dynamical modelling.

1.1.1 Numerical and theoretical predictions

The presence of BHs is expected to have a significant impact on the dynamics of GCs, especially

in the central regions where the BHs are expected to be concentrated due to mass segregation

(e.g. Kremer et al. 2019). These centrally concentrated black hole systems (BHS) have been the

subject of a number of theoretical and numerical studies.

One of the first papers to look at the retention and dynamical ejection of BHs in GCs was

Spitzer (1969). In this work, the author performs an analytic exploration of the effects of two-

2
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body encounters and the tendency for a cluster to move towards kinetic energy equipartition,

specifically in the case where there is a population of much more massive objects. The key

finding of this study was the prediction of the so-called “Spitzer stability criterion” that governs

the long-term evolution of the BHS within a cluster:

M2/M1 < β (m1/m2)
3/2 , (1.1)

where M1 and M2 are the total masses of the two populations (M1 being the population with

the larger total mass and lower mean stellar mass, representing the typical star in a GC, while

M2 is the population with the smaller total mass and higher mean stellar mass, representing

the BHs), m1 and m2 are the mean stellar masses of the two populations, and β is a numerical

constant that depends on the densities and half-mass radii of the two populations. For systems

that satisfy this criterion the BHS will be dynamically stable and will trend towards kinetic

energy equipartition with the rest of the cluster. For systems that do not satisfy this criterion, the

BHS will not be able to reach energy equipartition with the rest of the cluster and will instead

form a dynamically decoupled subsystem in the core of the cluster which will rapidly evaporate

via strong dynamical interactions within the BHS and ejections. By inspecting Equation 1.1 we

can see that systems where the BHs make up a large fraction of the total mass of the cluster, or

where the BHs are much more massive than the typical star in the cluster, will be Spitzer unstable.

This work further predicted that most open clusters, globular clusters and nuclear star clusters

would be unstable and thus would not be expected to ultimately retain a significant population

of BHs (though with different timescales of BH depletion for each type of system).

The consequences of this result were explored by Sigurdsson & Hernquist (1993) who high-

lighted the role of BH-BH binaries which tend to form in the cores of clusters on short timescales

due to the large gravitational cross-sections of BHs. These binaries are firmly in the “hard binary”

3
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regime, meaning that they will tend to get tighter over time through three-body interactions with

other objects in the cluster (Heggie 1975). The binding energy of these binaries is the primary

energy source by which other BHs are ejected. Overall, Sigurdsson & Hernquist (1993) predict

just a few (0-4) BHs to be retained in the core of a typical cluster, along with a few in the outer

regions of the cluster due to incomplete ejections where the ejection velocity is insufficient to

fully eject the BH from the cluster.

These early theoretical studies are in stark contrast to more recent theoretical and numerical

works that generally predict much larger populations of BHs to be retained in GCs by the present

day. A more recent study by Breen & Heggie (2013) used idealized two-component clusters to

study the evolution of systems with two mass components. They make assumptions about the

two components that are expected to be reasonable for GCs, namely that the ratio of the mean

mass of the two components is larger than 10 and the more massive component (the BHs) is

about 1% of the total cluster mass. They first find that the ratio of the half-mas radii of the two

components approximately scales with the ratio of the mean masses for both Spitzer stable and

unstable clusters (though with a different dependence in each case). Breen & Heggie (2013) then

go on to examine the evaporation and ejection rates of the BHS, first finding that evaporation

from two-body encounters within the BHS is a fairly insignificant source of mass loss for the

BHS. Ejections on the other hand, which are typically driven by three-body interactions between

BH-BH binaries and single BHs are found to be largely independent of the properties of the BHS

(M2/M1 and m2/m1), instead depending on the half-mass relaxation time of the whole cluster.

This dependence on the half-mass relaxation time of the whole cluster is due to the dependence

of the half-mass relaxation time on the central density of the cluster, which sets the interaction

rate between BHs in the core of the cluster.

Due to the negligible contribution of evaporation, this implies that the evolution of the BHS

4
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as a whole is independent of the BHS properties and is instead coupled to the properties of the

cluster as a whole. By comparing their theoretical results to numerical N -body models of these

idealized systems, the mass loss rate of the BHS (primarily due to ejections) is found to occur

on much slower timescales than previously predicted, with the BHS taking between 2 and 10

initial half-mass relaxation times (trh ≈ 1 Gyr) to lose 90% of its mass. Overall, this study lays

the theoretical groundwork for the idea that the BHS in GCs are not as short-lived as previously

thought, and that the BHS can be expected to survive for a significant fraction of the cluster’s

lifetime.

On the numerical side, Morscher et al. (2013) and Morscher et al. (2015) performed Monte

Carlo simulations (we discuss the use of Monte Carlo models in greater depth in Chapter 3) of

GCs, this time with a full mass spectrum instead of only two mass components. Their simulations

adopt a reasonable range of initial conditions and despite not being tuned to any particular Milky

Way cluster are still able to qualitatively reproduce the observed properties of real GCs (e.g. mass

and half-light radius). These numerical studies confirm a number of the results of the theoretical

results of Breen & Heggie (2013), namely that the evolution of the BHS is indeed coupled to

the evolution of the whole cluster, and that the BHS can be expected to survive for a significant

portion of the cluster’s lifetime and up to the present day in many cases. A particularly interesting

result of these simulations is the behaviour of the BHS and whether it ever reaches the “Spitzer

unstable” regime. The authors find in their simulations that the BHS does form very rapidly

in the core of the cluster (within the first Gyr) but that three-body interactions in the BHS are a

critical driver of the overall evolution of the BHS. Through these interactions, BHs are frequently

ejected from the BHS (though retained in the cluster) meaning that the BHs are able to mix with

the rest of the cluster and exchange energy. This means that the BHS as a whole is able to reach

energy equipartition with the rest of the cluster. In their simulations they find that less than half

of the BHs are ejected from the clusters within 12 Gyr, leaving anywhere from a few hundred to
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thousands of BHs per cluster by the present day.

The results of both Breen & Heggie (2013) and Morscher et al. (2013, 2015) are in stark

contrast to the earlier theoretical results of Spitzer (1969) and Sigurdsson & Hernquist (1993)

which predicted very few remaining BHs left by the present day. These studies highlight the

importance of three-body interactions in the evolution of the BH populations in GCs, and the

importance of numerical simulations in understanding the behaviour of these complex systems.

1.1.2 Gravitational waves

An additional motivation for studying the present-day BH populations of GCs is the possibility

that dense clusters may be the source of a significant fraction of the gravitational wave (GW)

events that have started to be detected over the past decade. Some of the early predictions of

GW sources in GCs came from Portegies Zwart & McMillan (1999) who looked at dynamically

formed BH-BH binaries in GCs. Through the dynamical processes we discussed in the previous

section, BHs rapidly sink to cores of clusters due to mass segregation. In the cores of clusters

these BHs frequently form binaries through two-body interactions (e.g. Sigurdsson & Hernquist

1993). These binaries are hardened through three-body interactions, and in the N -body simula-

tions of Portegies Zwart & McMillan (1999) about 30% of the BHs are ejected as intact binaries.

These ejected binaries have relatively short orbital periods, and are predicted to undergo mergers

within a few Gyr, which we can detect as gravitational waves.

Since the first detection of a GW event by LIGO in 2015 (Abbott et al. 2016), we have slowly

built up a picture of the population of GW sources in the Universe. Of particular interest to

studies of GCs are the sources whose progenitor BHs seem to fall within the mass gap in the

40 − 60 M⊙ range predicted by stellar evolution models (e.g. Spera & Mapelli 2017). These

sources can be explained by hierarchical mergers of BHs in dense stellar environments like GCs
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(e.g. Rodriguez et al. 2016; Antonini et al. 2023). These hierarchical mergers are cases where

a BH-BH binary merges within the dense core of a GC, and the resulting BH is then retained

in the cluster where it undergoes yet another merger, filling in the predicted mass gap. Another

property of some GW signals that is of interest to studies of GCs is the misalignment of the spins

of the BHs in the binary. Misaligned spins are expected to be common in GCs due to the chaotic

nature of the BH dynamics in these systems and are expected to be much harder to produce with

isolated binary evolution (e.g. Fishbach & Fragione 2023).

Simulations of the GW sources in GCs performed by Antonini et al. (2023) show that GCs

are able to account for the mass-gap sources detected by LIGO, only in the case where hier-

archical mergers are considered. These simulations use semi-analytic models of GCs, tuned to

N -body models to follow the evolution of GCs along with their BH populations without having

to perform computationally expensive N -body simulations. Figure 1.1 shows the distribution

of BH-BH binary primary masses detected by LIGO (green) compared to the distribution of

primary masses in GCs with hierarchical mergers (blue) and without (black). The hierarchical

merger model is able to reproduce the observed distribution of primary masses in the mass gap,

while the model without hierarchical mergers clearly displays the upper limit in BH mass pre-

dicted by stellar evolution models.

Studying the present-day populations of BHs in GCs provides a unique opportunity to study

the progenitors of these GW sources. In particular, models of cluster evolution that purport to

explain the observed population of GW signals must also predict present-day populations of BHs

that are consistent with the populations that we can infer from observations and modelling. This

means that the present-day populations of BHs in GCs can act as boundary conditions for models

of GC evolution, and that the inferred populations of BHs in GCs can be used to constrain the

contribution of GCs to the overall population of GW signals (e.g. Fishbach & Fragione 2023).
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Figure 1.1: Panel 1 of Figure 1 of Antonini et al. (2023). The primary mass distribution of BH-

BH mergers detected by LIGO (green) compared to the distribution of primary masses in GCs

with hierarchical mergers (blue) and without (black). The mass gap is clearly visible in the model

without hierarchical mergers around 50 M⊙.

As we have discussed throughout this introduction, the present-day populations of BHs in GCs

are relevant to many areas of astrophysics. The dynamical evolution of GCs is intimately tied to

the presence of BHs, and the present-day populations of BHs in GCs can be used to constrain

models of GC evolution. The detection of GW signals from BH-BH mergers, particularly those

with massive progenitors or misaligned spins have provided further motivation for studying the

present-day populations of BHs in GCs. In the following sections we will discuss the observa-

tional methods that have been used to directly detect BHs in GCs and the dynamical signatures

of BH populations that have been used to indirectly detect the presence of these populations.

1.2 Direct Detections

The conceptually simplest way for astronomers to constrain the BH population in a GC would

be to simply individually detect each BH and count them. This is of course impossible in practice
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as isolated BHs emit no light of their own and can only be detected through their gravitational

influence on other objects. This means that the only way to directly detect BHs with electromag-

netic radiation is through their interactions with other matter, typically in the form of accretion

disks. This section will discuss the various methods for detecting BHs in GCs, paying particular

attention to the handful of confirmed detections and how they exemplify the difficulties of this

approach.

1.2.1 Radio and X-ray detections

Among the various methods for detecting BHs in GCs, direct detections of accreting BHs

in the radio and X-ray bands are perhaps the most obvious method, though as we will see, the

confident identification of a source as a BH is by no means straightforward. These detections rely

on the emission from the super-heated accretion disks that surround accreting compact objects.

Stellar-mass BHs are observed to emit in the radio and X-ray bands due to synchrotron and

blackbody processes in the jet and corona (e.g. Gallo & Fender 2005). These emission processes

are however present for most other accreting compact objects, including cataclysmic variables

(CVs), neutron stars (NSs), white dwarfs (WDs), and various types of pulsars (e.g Chomiuk et al.

2013). Observers must also consider the possibility that the emission is not associated with the

GC at all and is instead from a background active galaxy, meaning the confident identification

of a BH is challenging. In the absence of spectroscopic observations, the main diagnostic for

identifying the nature of a source is by examining the relation between the radio and X-ray

luminosities (e.g. Gallo et al. 2006, 2012). Figure 1.2 shows the relation between the radio

and X-ray luminosities for a variety of accreting compact objects that have been confidently

classified with observed relations for BHs and NSs plotted as dashed lines. The use of this

relation to identify objects is further complicated by the nature of the objects themselves. The

luminosities of accreting objects are often inherently variable (e.g. Longair 2011) meaning that
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Figure 1.2: Figure 11 from Bahramian et al. (2017). The radio/X-ray ratios for X-ray binaries

and stellar mass BHs (black points) are plotted along with the observed relation for BHs (black

dashed line). Various other types of accreting compact objects are in blue (NSs), pink (accret-

ing X-ray millisecond pulsars), green (transitional millisecond pulsars) and purple (cataclysmic

variables.). The two dashed blue lines are two different observed relations for NSs. The can-

didate BHs are the yellow points and mostly fall into the region where this relation is poorly

constrained. The black squares circled in red show the track of one individual BH candidate,

XTE J1118+480.

not only are simultaneous radio and X-ray observations required to confidently place an object

on the relation, there remains the possibility that the object is undergoing a transient flaring phase

that is not representative of its typical state. Finally, due to the small number of stellar-mass BHs

known in the Milky Way, the fainter end of the radio to X-ray relation is poorly constrained

and appears to have multiple classes of objects overlapping with the observed relation for BHs,

making the confident classification of sources even more difficult.
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Among the first reported detections of a BH candidate in a GC was the detection of a radio

source in M22 by Strader et al. (2012). This work reported the detection of two potential BHs

in M22 using radio observations made with the Very Large Array (VLA). The authors classified

these objects as actively accreting based on their radio emission, noting that the flat nature of

their spectra indicated relatively low accretion rates, about 2 − 3% of the Eddington rate. The

authors make an argument based on mass segregation and energy equipartition to estimate the

masses of the BHs based on their projected radial distances. In brief, the authors apply a rela-

tion between the mean mass ratio of BHs to stars and core-radius to BH half-mass radius from

Kulkarni et al. (1993):

mBH/m⋆ = (rc/rBH)
2

where mBH and m⋆ are the masses of the BH and typical star in the cluster, and rc and rBH

are the core radius and half-mass radius of the BH population. By assuming that the cluster is

in energy equipartition and that the BHs and located at roughly the half-mass radius of the BH

population, the authors estimate the masses of the BHs, finding masses of roughly 15 M⊙ which

are indeed consistent with the systems being binary systems hosting a BH. The circumstantial

nature of this argument, combined with the lack of X-ray data to place the objects on the radio

to X-ray luminosity relation, means that the identification of these objects as BHs needs further

confirmation.

The first candidate BH in a Milky Way GC to be identified using both radio and X-ray data

was reported by Chomiuk et al. (2013). The authors again used radio data from the VLA to

identify a source as a potential BH candidate, this time in M62. What makes this candidate

more compelling than the previous candidates is the existence of archival X-ray data of the

same region from Chandra. While the X-ray data and radio data are separated by more than

a decade, the X-ray data nonetheless allows the authors to place the source on the radio to
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X-ray luminosity relation, where it falls squarely on the expected relation for BHs (with the

caveat that there is possibly variability in the X-ray and radio luminosity of the source that

they are not accounting for). The authors further analyze the X-ray spectrum of the source,

finding that it is also consistent with the spectrum expected for an accreting NS, meaning that

the radio to X-ray ratio remains the key diagnostic tool for discerning the nature of the object.

The authors enumerate the various alternative explanations for the source, and conclude that the

next most likely explanation is that the source is a flaring NS. This would imply that the NS was

in a quiescent state during the X-ray observations but was flaring during the radio observations,

causing the radio to X-ray ratio to be roughly two orders of magnitude higher than expected for

a NS, again highlighting the importance of simultaneous radio and X-ray observations.

Perhaps the most promising X-ray/radio detection of a BH in a GC to date is the detection

of a BH in 47 Tuc first reported by Miller-Jones et al. (2015) and later followed-up upon by

Bahramian et al. (2017). While this source has been known to astronomers since the launch of

the Einstein observatory in the 1980s (Hertz & Grindlay 1983), it was not until more recent

radio observations were obtained that the source was identified as a potential BH using the same

radio to X-ray luminosity relation as the previous studies. UV spectra of the source were also

obtained, showing a double-peaked C IV emission line interpreted as a clear sign of accretion,

further adding to the novelty of this source. What makes this source particularly interesting is

the follow-up observations made by Bahramian et al. (2017) who obtained simultaneous radio

and X-ray observations, finally allowing for the confident placement of the source on the radio

to X-ray luminosity relation. While the authors note that the X-ray spectrum of the source is

unusual for a BH, they also note that the spectrum is not indicative of any other class of objects,

and that we simply do not have a large enough sample of these objects to make any definitive

statements about specific spectral features.
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The current state-of-the-art search for BHs in GCs is represented by the MAVERIC survey

(Shishkovsky et al. 2020; Tudor et al. 2022), designed to obtain deep radio observations of

Milky Way GCs in order to identify actively accreting BHs and other exotic binary systems.

The MAVERIC survey has already identified a new candidate BH in NGC 6539 (Bahramian

et al. 2020), though this source is subject to the same caveats as previous candidates, with a

transitional MSP being a possible alternative explanation. The MAVERIC survey has also looked

at NGC 3201 (Paduano et al. 2022), a GC with known BHs confirmed through radial velocity

measurements (Giesers et al. 2018, 2019) which we will discuss in the next section. These BHs

in NGC 3201 were undetected in the radio and X-ray bands due to the detached nature of the

BH-hosting binaries, again demonstrating the limitations of radio and X-ray searches for BHs in

GCs.

While these detections are very exciting, it is worth noting that detections of individual

systems do not necessarily tell us about the size of the whole BH population. In the next section

we discuss radial velocity detections of BHs in GCs and, crucially, how the number of BHs

detected in binaries is not necessarily correlated with the total number of BHs in a cluster.

1.2.2 Radial velocity detections

With the installation of multi-object spectrograph instruments like MUSE (Bacon et al. 2010)

on major observatories, large radial velocity surveys have become much more feasible. One of

the few methods for detecting non-accreting BHs is through analyzing the radial velocity curves

of binary systems. With well-sampled data it is possible to constrain the minimum mass of an

unresolved or dark binary companion, making it possible to detect BHs in binary systems (e.g.

Giesers et al. 2018, 2019).
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Figure 1.3: Figure 5 from Giesers et al. (2018). The fitted radial velocity curve of the companion

of the candidate BH in NGC 3201. The middle and lower panels show the residuals of the fit and

the radial velocity curve of a reference star respectively.

The first detection of a BH in a GC with radial velocity measurements was presented by

Giesers et al. (2018) who reported a stellar-mass BH found in NGC 3201. This candidate was

found in a survey of 25 Milky Way clusters with MUSE (Kamann et al. 2018) which obtained

spectra for hundreds to tens of thousands of stars per cluster. After the spectra are processed

to obtain radial velocities at multiple epochs, the orbital parameters of systems identified as

binaries can be fit to obtain a lower limit on the mass of any unseen companion. The particular

candidate reported by Giesers et al. (2018) is a main-sequence turn-off (MSTO) star that shows

radial velocity variations on the scale of 100 km s−1 (see Figure 1.3 for the phase-folded radial

velocity curve). No other components were detected in the spectrum, making a dark companion

highly likely. The authors found a minimum companion mass of 4.36 M⊙ which allowed them

to confidently identify it as a BH. The authors do note this could in theory be a triple system with

a compact NS binary instead of a BH, but this would require two, very massive NSs just to reach

the minimum companion mass, and such a system has not been observed (Giesers et al. 2018).

In the same NGC 3201 dataset, Giesers et al. (2019) reported two additional BH candidates, one
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of which requires more data to confirm due the current RV curve being well-fit by systems with a

minimum companion mass of either 4.40 M⊙ or 1.10 M⊙. The other candidate is only explained

by a companion with a minimum mass of 7.68 M⊙ and is therefore highly likely to be a BH.

While only these three BH candidates were detected in the NGC 3201 dataset, it is important

to note that these easily detected binaries are expected to be fairly rare relative to the total number

of BHs in a cluster. Kremer et al. (2018b) did a modelling-based analysis of the BH population

in NGC 3201, partly motived by the results of Giesers et al. (2018), and found that the models

that best replicate the observables of NGC 3201 (see Section 3.1.1 for more details) are those

with a significant retained BH population (∼ 200 − 420 BHs at the present day). Within these

models they found only a handful of BHs in detached binaries like those reported in Giesers

et al. (2018) and Giesers et al. (2019), highlighting the rarity of these kinds of systems.

1.2.2.1 The uncertain extrapolation from direct detections

Given the relatively rare nature of BHs in either a mass-transferring binary or a detached binary

with a detectable companion, it is tempting to assume that by observing just a few of these

systems in a given cluster, we could infer the presence of a much larger, unseen population of

BHs in the cluster. The results of both Kremer et al. (2018a) and Kremer et al. (2018b) however

would caution against applying this line of reasoning in general. They find that the number of

BH-non-BH binaries is largely independent of the total number of BHs in the cluster. The BH-

non-BH binaries that exist at the present day in their models are all formed dynamically; no

primordial binaries survive as an intact pair within the cluster. The dynamical interactions that

form these systems are predominately three-body interactions between BHs and stellar binaries,

meaning the number of BH-non-BH binaries depends strongly on the number density of stellar

binaries near the core of the cluster. Adding more BHs to a cluster heats the core and pushes
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these stellar binaries further out, reducing the chances of an exchange interaction between the

BH and the binary. Similarly, reducing the number of BHs in a cluster, while increasing the

number of stellar binaries available in the core, reduces the number of BHs available to form

these systems.

In addition to the effect mentioned above, Kremer et al. (2018b) reports that the median

lifetimes of BH-non-BH binaries in their models are only about 400 Myr, even in a relatively

low-density cluster like NGC 3201. This short lifetime is due to the frequent dynamical inter-

actions that these systems are subject to in the core of the cluster. Even if several BH-non-BH

binaries are formed in a cluster, these systems will quickly sink to the core of the cluster where

they will inevitably be disrupted by dynamical interactions with other objects in the core. In-

creasing the number of these binaries only makes the disruption of these systems more likely,

providing another channel through which the number of BH-non-BH binaries is self-regulating.

While we should not extrapolate the number of BHs in a cluster from the number of BH-

non-BH binaries, the detection of a few of these systems can still be useful for indicating the

presence of BHs in a cluster. The targeted modelling of NGC 3201 by Kremer et al. (2018b)

indicates that the small number of detached BH binaries detected in NGC 3201 is still consistent

with a much larger population of BHs in the cluster, showing the power of the modelling based

approaches we will examine in Chapters 2 and 3 which rely on the dynamical signatures we

discuss in Section 1.3.1.

1.2.3 Microlensing

The final method we will discuss for directly detecting BHs in GCs is microlensing. Microlens-

ing occurs when the light from a background source is gravitationally lensed by a foreground

object. In the case of microlensing, the lensing object is much smaller than a galaxy cluster and

typically only distorts the light from the background source by a small amount (e.g. Paczynski
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1986). These distortions manifest as both astrometric and photometric effects, where the lensed

object is either projected onto a new position, magnified such that it appears brighter, or some

combination of the two.

The idea of detecting BHs in GCs through microlensing has been known for some time (e.g.

Paczynski 1994), but has not yet been fruitful due to the difficulties in detecting small astrometric

or photometric perturbations that may only last for a few days (Kains et al. 2018; Zaris et al.

2020). In globular clusters the lensing objects that we would be most interested in would be

the stellar-mass BHs near the centre of the cluster (lensing by e.g. WDs would be much more

common, but harder to detect, and we are mainly interested in lensing by BHs) and the lensed

objects would be either background stars or stars within the cluster itself. Numerical simulations

indicate that for clusters with large background populations like 47 Tuc (the SMC) and M22 (the

galactic bulge) lensing of background sources occurs at much higher rates, making these clusters

and others like them the most promising targets for microlensing searches (Kıroğlu et al. 2022).

Predicted rates of microlensing events from BHs in these clusters are on the order of 0.003 -

0.02 events per year within the half-light radii of the clusters (Kıroğlu et al. 2022), meaning

that even for the most promising targets, the detection of significant populations of BHs through

microlensing is unlikely.

1.3 Dynamical Modelling of Globular Clusters

Having now discussed the various methods for directly detecting BHs in globular clusters, we

now turn to the modelling-based approaches for constraining the BH populations that will be

the focus of this thesis. These methods make use of dynamical models of globular clusters to

infer the BH population from observables. The methods can be broadly split into two categories:

targeted modelling of individual clusters (e.g. Kremer et al. 2018b; Hénault-Brunet et al. 2020)
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and studies that use populations of models to derive scaling relations between observables and

the BH populations that hold for a wide range of clusters (e.g. Askar et al. 2018; Weatherford

et al. 2020). Within these two categories, there is an assortment of models that can be used,

including both evolutionary and equilibrium dynamical models.

1.3.1 Dynamical signatures of BH populations

Before we discuss the methods for indirectly detecting populations of BHs in GCs (Chapters 2,

3, 4 and 5), it is worth discussing the dynamical signatures of BHs in GCs that underpin these

methods. As mentioned in Section 1.1.1, BHs will rapidly sink to the centre of GCs, forming a

BHS in the core of the cluster. Critically, this BHS will not become fully dynamically decoupled

from the rest of the cluster (e.g. Breen & Heggie 2013), meaning that the BHS will influence the

evolution of the cluster as a whole. The key concept to understanding the dynamical signatures

of a BH population is the idea of the BHS as an energy source in the core of the cluster. As stars

in the core of the cluster interact with BHs, and BH-BH binaries in particular, they gain kinetic

energy. This process has come to be known as “binary burning” and is the principal mechanism

responsible for halting core collapse in GCs (Chatterjee et al. 2013; Kremer et al. 2018b). It is

because of this process that we can be fairly certain that core-collapsed clusters do not contain

BHs, as the presence of BHs in the core would prevent the runaway contraction of the cluster.

Aside from direct interactions with stars, the BHS can also influence the evolution of the

cluster through internal interactions that kick BHs out of the core of the cluster. This process

was explored in detail by MacKey et al. (2008) who analyzed N -body simulations designed to

match the massive clusters found in the Small and Large Magellanic Clouds. Of particular note

is their comparison of the evolution of two models that were identical in all aspects except for

their BH content. These two simulations evolve very similarly until about 650 Myr where the

model with BHs begin to show significant expansion of its core radius. Before this point, the
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clusters undergo the expected process of core contraction both in visible stars and in the BH

subsystem. After this point, the density of the BHS is approximately 80 times higher than the

central stellar density, reaching the point when stable BH-BH binaries can form through three-

body interactions. After the formation of these binaries begins, core-collapse is halted and the

core radius of the cluster instead begins to expand. As mentioned earlier, this expansion is driven

by the energy transfer from the BHS to the rest of the cluster which, in these simulations, occurs

through two main channels. The first channel is the kick-out of single BHs into the cluster halo

through three-body interactions with binary BHs. One of the three BHs in the interaction is

kicked out of the core of the cluster into halo of the cluster, where it will rapidly sink back to the

core of the cluster through two-body relaxation. This process of two-body relaxation deposits

the kinetic energy of the BH into the stars in the halo of the cluster, heating the halo and causing

it to expand. The second channel is the full ejection of BHs and BH-BH binaries from the cluster.

This occurs when a three-body interaction occurs between a BH and a very tight binary BH. In

this case, the recoil velocity of the BH or BH-BH binary is high enough that it can be fully

ejected from the cluster, again depositing its kinetic energy into the halo of the cluster as it

escapes the gravitational potential.

These processes of energy transfer from the BHS to the rest of the cluster are responsible

for two of the most commonly discussed signatures of a BHS in GCs: a heightened central

velocity dispersion and a shallower surface brightness profile. The physical intuition for both of

these effects is the same, namely that the presence of BHs in the core of the cluster prevents the

visible stars from becoming highly concentrated in the core by kicking them out or by heating

halo stars before they would have entered the core. This means that the stars in and around the

core would have higher than expected velocity dispersions and would be less concentrated than

expected, leading to the observable heightened central velocity dispersion and shallower surface

brightness profiles (e.g. Askar et al. 2018). This effect also manifests itself as a reduced degree
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of mass segregation (MacKey et al. 2008; Weatherford et al. 2018), as the most massive stars

are the most likely to interact with BHs and thus are the most likely to be either kicked out of

the core or to gain kinetic energy from interactions with BHs, effectively stopping their inward

migration.

It is this dynamical coupling between the BHS and the rest of the cluster that we can use

in dynamical models to constrain the BH population in a given cluster. The presence of a BHS

in a cluster has a significant impact on the phase-space distribution of the stars and thus with a

sufficiently accurate dynamical model and sufficient observational data, we can in theory infer

the presence of and the properties of a BHS in a cluster.

One illustrative example of a study that uses evolutionary models to constrain the BH popu-

lation in a globular cluster that we have already discussed is Kremer et al. (2018b). In this study,

the authors use the CMC code (Rodriguez et al. 2022) to simulate the evolution of the cluster

NGC 3201 from a grid of models with different initial conditions specifically chosen to repro-

duce the observed properties of NGC 3201. The key parameter varied in this grid is the scaling

factor applied to the natal kicks of the BHs, effectively setting the BH retention for each model.

By comparing the evolution of just the core radius and half-light radius the authors are already

able to show that the models with more BHs retained by the present day are better able to match

the observed properties of the real cluster. Kremer et al. (2018b) then compare the surface bright-

ness profiles of the model snapshots from each model in the grid to the observed profile to show

that only the models with more than 200 BHs retained by the present day are able to match the

data. We show this result in Figure 1.4 to illustrate the power of this technique. This is a result of

the dynamical effects we have discussed above, namely that the presence of BHs in the core of

the cluster prevents the visible stars from concentrating in the core, leading to a shallower SBP.
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Figure 1.4: Figure 2 of Kremer et al. (2018b). Plotted in yellow is the surface brightness profile

of NGC 3201 as measured by Trager et al. (1995). The coloured lines show the surface brightness

profiles of the models from the grid of Kremer et al. (2018b). The models with more than 200

BHs are plotted in black while the models with fewer than 10 BHs are plotted in blue.

1.4 Summary and Goals of this Thesis

In this chapter we have examined the various methods for searching for and modelling BHs

in GCs. We have seen how the theoretical predictions have evolved such that we now expect

many GCs to harbour non-zero populations of BHs. On the observational side, we have looked

at the challenges of confidently identifying BHs through their X-ray and radio emission and

the challenges of finding binary systems containing BHs though radial velocity measurements.

Critically, we have emphasized the fact that the number of observable BHs in a cluster is not

necessarily representative of the total number of BHs in a cluster, making inference about the

total number of BHs in a cluster very challenging. On the modelling side, we have looked at

how the presence of BHs affects the overall dynamics of a cluster and how we can use these

dynamical signatures to infer the presence of BHs and the size of the BH population in a cluster,

and we will examine many of these methods in Chapter 3.

The goals of this thesis lie in improving the state of the modelling side of the field. In Chapter
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2, we will test the ability of multimass distribution function models to infer the BH content of

clusters using mock data and identify areas where these models might struggle. We will discuss

the other methods used to dynamically infer the BH content of clusters in Chapter 3, focusing on

their strengths and weaknesses. In Chapters 4 and 5 we will present a new method to incorporate

pulsar-timing based constraints for these models and apply it to two Milky Way clusters with

large pulsar populations. Through the work presented in this thesis we will show that the BH

population of Milky Way GCs can be constrained through careful dynamical modelling when

combined with a variety of observational constraints. We summarize our findings and briefly

discuss the future directions of these methods in Chapter 6.
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Chapter 2

Multimass modelling of globular

clusters and their black hole

populations: method validation with

mock data

Section 2.2 below is reproduced from Section 3 of the following paper:

Multimass modelling of Milky Way globular clusters – II. present-day black hole

populations

N. Dickson, P. J. Smith, V. Hénault-Brunet, M. Gieles, H. Baumgardt

Originally published in Monthly Notices of the Royal Astronomical Society, Volume 529,

Issue 1, Pages 331-347.

I led and performed the analysis and wrote the entirety of the text for this section of the original

publication. In this version we additionally include Figures 2.1, 2.2 and 2.3 which were not

included in the original publication for brevity. Section 2.1 is a supplementary background

discussion to provide context for the rest of the chapter.
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2.1 Background

As part of the work presented in Dickson et al. (2024), I led the validation of the methodology

used to infer the BH populations of Milky Way GCs. This involved applying the method to

synthetic observations extracted from Monte Carlo models of GCs with known BH populations.

The results of this validation are contained in Section 3 of Dickson et al. (2024) and reproduced

in this chapter as Section 2.2.

In this study, multimass LIMEPY models are fit to a variety of datasets (number density pro-

files, line-of-sight velocity dispersion profiles, radial and tangential proper motion dispersion

profiles as well as stellar mass function data) from a collection of Milky Way GCs. Most studies

that fit evolutionary models to data (e.g. Rui et al. 2021b) typically only look at a few datasets,

usually the surface brightness profile (SBP) and a combined (both line-of-sight and proper mo-

tions) velocity dispersion profile (VDP). Because the LIMEPY models are fast to compute, we

are able to vary the (initial) mass function of the models, meaning they not only fit to the SBPs

and VDPs, but also the radially varying stellar mass functions (Baumgardt et al. 2023) of the

clusters. This allows us to constrain the present-day stellar mass function for each cluster indi-

vidually, rather than assuming a canonical universal IMF, evolved to the present day. We then

use these models to infer posterior probability distributions for all model parameters as well as

derived quantities like the BH (and other stellar remnant) content for the clusters in the sample.

The fact that this method is able to recover posterior probability distributions for the BH popu-

lations is an advantage over most studies that use evolutionary models (discussed in more detail

in Section 3.1.1) which typically only produce point estimates for the BH population or a rough

estimate of the uncertainty using the handful of closest matching models.

The LIMEPY models used in this work are a set of distribution function-based equilibrium

models that are isothermal near the cluster centre and described by polytropes in the outer re-
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gions near the escape energy . The models have been extensively tested against N -body models

(Zocchi et al. 2016; Peuten et al. 2017) and their multimass version is able to effectively repro-

duce the effects of mass segregation. We further describe the models and their parameters in

Section 4.3. These models work by solving the Poisson equation for a given distribution func-

tion, effectively giving the mass profiles and velocity dispersion profiles of each mass component.

This allows for straightforward comparisons to a variety of observables, including observables

that trace different mass components. The typical process of inferring the BH population of a

cluster using these models relies on the fact that the total mass of a cluster is well constrained by

the kinematics of the cluster and the visible mass in turn can be constrained by observations of

the stellar mass function and surface brightness profile. This means that with sufficient kinematic

and stellar mass function data it is possible to accurately constrain the amount of dark mass in a

cluster. The inference of the composition of the dark mass relies on the ability of these models

to freely vary the BH retention, varying it such that it best reproduces the observed properties

of the cluster. Because of the dynamical coupling of the BHs in the core of the cluster with the

rest of the cluster, there is limited freedom to arrange the dark mass within the cluster while still

reproducing properties like the degree of mass segregation among visible stars, allowing us to

infer how much of the dark mass is in the form of BHs.

These models have typically been coupled with the SSPTools package (first presented by

Balbinot & Gieles 2018, updated in Dickson et al. 2023) in order to produce realistic present-

day mass functions, populated with an accurate mix of WDs, NSs and BHs (see Dickson et al.

2023). The evolve_mf algorithm of SSPTools approximates the evolution of a stellar popu-

lation using analytic fits to full stellar evolution models, allowing for the fast computation of the

present-day mass function from a given initial mass function. This present-day mass function is

used as the input mass spectrum for the LIMEPY models, allowing for the models to match the

present-day mass function of individual clusters rather than adopting a single canonical IMF.
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2.2 Validation of BH population inference.

In order to test the reliability of our method in inferring BH populations, we first apply it to

simulated observations from Monte Carlo models with known BH populations.

In order to explore a number of models with similar properties as real Milky Way clusters,

we select snapshots from the existing grid of Cluster Monte Carlo (CMC; Rodriguez et al. 2022)

models presented in Kremer et al. (2020)1. We select the snapshots using the same methodology

as Rui et al. (2021b) which we briefly summarize here.

The selections are based on the SBPs of Trager et al. (1995) and the velocity dispersion

profiles (VDP) compiled by Baumgardt & Sollima (2017) and Baumgardt & Hilker (2018)2. We

search for snapshots that are a good match to any clusters from the Harris (1996, 2010 edition)

catalogue present in both the VDP and SBP compilations, leaving us with about 100 clusters

to match to snapshots. We first use the metallicities from Harris (1996, 2010 edition) and the

present-day galactocentric radii from Baumgardt et al. (2019a) to select the subset of models

which are closest to the true values for each cluster.

From this subset, we then search every model for snapshots that match suitably well to

a given cluster’s observed SBP and VDP simultaneously 3. In order to select a snapshot, we

adopt a threshold of s ≡ max
(

χ̃2
SBP, χ̃

2
VDP

)

< 10 for the “fitting heuristic” s of Rui et al.

(2021b), which describes the goodness-of-fit of a snapshot based on the χ̃2 statistic between

the observations and the interpolated model profiles. We have found that a threshold of s < 10

provides an acceptable balance between the number and fit quality of the retained snapshots.

While a number of snapshots passing this filter have an apparently poor overall fit to one or both

of the observational profiles, we opt to still include these snapshots in the sample, as our goal

1Available at https://cmc.ciera.northwestern.edu/home
2Available at https://people.smp.uq.edu.au/HolgerBaumgardt/globular
3See Rui et al. (2021b) for details on how the model profiles are extracted from the CMC snapshots for comparison

with the observations.
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is not to select only snapshots which are perfect matches to specific real clusters but instead to

build a sample of snapshots that are qualitatively similar to the Milky Way clusters examined in

this work. For each cluster covered by the observational datasets we select the single best-fitting

snapshot, where one exists.

2.2.1 Mock observations

The search described above results in a sample of 53 CMC model snapshots, representative of

Milky Way GCs. From these we next extract synthetic observations designed to emulate the real

observational data used to constrain the models examined in this work.

We place each cluster at its respective heliocentric distance as reported by Baumgardt &

Vasiliev (2021) and then use the CMCTOOLKIT library (Rui et al. 2021b) to calculate projected

positions and velocities as well as simulated photometry for objects in each snapshot.

2.2.1.1 Number density profiles

We extract projected number density profiles from the models, designed to emulate those of de

Boer et al. (2019). We select all stars brighter than Gaia G = 20, sort them into 50 radial bins,

with equal numbers of stars, and calculate the number density in each radial bin. All densities

are assigned a Poisson counting error. The de Boer et al. (2019) profiles are combinations of

Gaia star counts in the outer regions and HST and archival SBPs in the inner regions, where

crowding becomes an issue, however we find that using the same G < 20 cut over the entire

radial extent of the cluster results in well-sampled profiles which cover a similar radial extent

and have similar uncertainties to the de Boer et al. (2019) profiles.
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2.2.1.2 Proper motion dispersion profiles

We extract two sets of PM dispersion profiles for each snapshot, in order to represent the perfor-

mance of the two different sources of PM observations used.

In the inner regions, we seek to emulate the performance of the HST based PM dispersion

profiles of Libralato et al. (2022). We select stars within the central 100 ′′ of the cluster to mimic

the footprint of an HST ACS image, and limit our selection to stars within 15 < V < 18.

We split the stars into radial bins containing at least 120 stars each, up to a maximum of five

bins. This provides sufficient radial coverage of the cluster while still allowing us to construct

profiles for distant clusters, where limited numbers of stars pass the magnitude cut. We assume a

typical uncertainty of 0.1 mas yr−1 on all stars. Within each bin we compute the mean velocity

and velocity dispersion along with their associated uncertainties, assuming the velocities are

drawn from a Gaussian error distribution, using MCMC. This is repeated for both the radial and

tangential components of PM. The median and 1σ values of the dispersion in each bin are used

going forward.

In the outer regions, we seek to emulate the Gaia DR3 based profiles of Vasiliev & Baum-

gardt (2021). We base our magnitude cuts on their profiles, selecting all stars in the 13 < G < 19

range outside of the innermost 100 ′′, to avoid overlapping with the HST profiles. We assign each

star an uncertainty in proper motion based on its G band magnitude using the calibrations pro-

vided in Table 4 of Lindegren et al. (2021), allowing us to replicate the performance of the Gaia

DR3 catalogue. We again bin the stars using the same conditions as in the inner HST profiles,

and calculate the velocity dispersion in each bin using the same method, again for both radial

and tangential components.
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2.2.1.3 Line-of-sight velocity dispersion profiles

In addition to the PM dispersion profiles, we also extract LOS velocity dispersion profiles, de-

signed to emulate those presented by Baumgardt & Sollima (2017) and Baumgardt & Hilker

(2018). As the compilation of velocity dispersions that make up these profiles consist of several

different inhomogeneous datasets, with varying precisions, we adopt the simplifying assumption

of a typical uncertainty of 1 km s−1 on all observed stars. We limit this dataset to only giants

brighter than V = 17, which is typical of the datasets used in the observed compilations. We

again sort the stars into several radial bins, requiring at least 70 stars per bin, up to a maximum

of 10 bins, and compute the velocity dispersion for each in the same way as for the PM profiles.

2.2.1.4 Stellar mass functions

We extract stellar mass function data for each of our snapshots, designed to emulate the datasets

presented in Baumgardt et al. (2023). These datasets consist of star counts, binned by stellar

mass, extracted from archival HST observations. While the real HST fields are distributed some-

what randomly around each GC according to the various goals of each proposal for which they

were originally observed, in general there is typically at least one exposure centred on the cluster

centre and a number of fields placed outside of the central region. For simplicity, we opt to place

one field over the centre of the cluster, covering a range of 0 ′ - 1.6 ′ in projected angular sepa-

ration from the centre, and two outer annuli at radial distances of 2.5 ′ and 5 ′, each sized such

that they cover the same area as the central field. The central field is split into 4 annuli, giving

us a total of 6 annular fields covering the central, intermediate and outer regions of the cluster.

In many of the more well-studied clusters in our sample, such as NGC 104 and ω Cen, the large

number of observed HST fields actually provides much better coverage of the clusters than our

fields simulated here, and thus the results of this section may actually be conservative. In each

of these fields we extract stellar counts separately, in bins of stellar mass with widths of 0.1M⊙.
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In the real datasets, the faintest stars (lowest stellar masses) for which stellar counts can be

extracted with reasonable completeness (> 90 per cent) is a function of crowding. To replicate

this effect in our synthetic mass functions we construct an empirical relation between the surface

number density and the lowest observable mass within a field. We use NGC 104 as the basis for

this calibration because it covers a wide range of number densities from its core to the outskirts

and has a large number of HST fields for which the mass function was extracted. We extract star

counts in each field, down to a lower mass limit calculated by the above relation and up to the

main sequence turn-off, replicating the performance of the observed HST stellar counts.

We assign Poisson counting errors to our stellar counts, though to reflect the scatter we

typically see in the real data we also inflate these errors by a factor of F = 3 and re-sample each

point within the errors, resulting in mass functions that are very similar to those of Baumgardt

et al. (2023) (see Section 4.1.1.3 of Dickson et al. (2023) for a description of this F parameter

and its motivation).

2.2.2 Validation results

After extracting the synthetic datasets, we then directly apply our model fitting method (as de-

scribed in Section 2 of Dickson et al. (2024) and Dickson et al. (2023)) and compare the result-

ing inferred BH mass fractions to the known BH population in the CMC models from which the

mock data was extracted. We show an example fit to the mock data in Figures 2.1 and 2.2.

As in Dickson et al. (2023), we discard any obviously poor fits. We also discard any snap-

shots which have much smaller datasets (mostly consisting of snapshots matched to very distant

clusters). This leaves us with 44 final snapshots with datasets of similar quality to the Milky

Way clusters we study in this work, and with model fits which satisfyingly reproduce the mock

observations and recover the various cluster parameters well, such as the total mass, which we

generally recover within ∼ 10 per cent and the half-mass radius, which we generally recover
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Figure 2.1: Example fit to mock observations of a CMC snapshot matched to NGC 6256. Top

Left: The number density profile of the snapshot (blue points) and the best-fitting model (orange

line). Top Right: The line-of-sight velocity dispersion profile of the snapshot (blue points) and

the best-fitting model (orange line). Bottom Left: The radial proper motion dispersion profile of

the snapshot (blue points) and the best-fitting model (orange line). Bottom Right: The tangential

proper motion dispersion profile of the snapshot (blue points) and the best-fitting model (orange

line). The shaded regions represent the 1σ uncertainties on the model profiles. This figure was

not included in the original publication.

within uncertainties (we show the mass and radius recovery in Figure 2.3).

Our inferred values of fBH, compared to the true values for our collection of snapshots, are

shown in Figures 2.4 (right panel), 2.5, and Table 2.1.

While in general our fits satisfyingly recover the mass fraction in BHs, we find a number of

snapshots for which we underpredict the black hole mass fraction. A common feature of these

problematic snapshots is their dynamical age. All of the mock clusters for which we significantly

underpredict fBH have an age that is less than 3 times their present-day half-mass relaxation time.

In other words, they are dynamically very young. There are also, however, many dynamically

young clusters for which we correctly recover fBH.

To understand this behaviour, we plot in the left panel of Figure 2.4 all of the mock clusters

used in the validation of our models on the δ −Nrelax plane (where Nrelax is the ratio of cluster

age to present-day half-mass relaxation time), coloured by the distance of their median inferred
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Figure 2.2: Example fit to mock mass function data of a CMC snapshot matched to NGC 6256.

Each panel is a different radial annulus of the cluster. The blue points are the simulated obser-

vations and the orange line is the best-fitting model. The shaded regions represent the 1σ and

2σ uncertainties on the model mass functions, respectively. This figure was not included in the

original publication.

32



Peter J. Smith Dynamical Inference of BH Populations in GCs

0.0 0.1 0.2 0.3 0.4 0.5

True mass [106 M�]

0.0

0.1

0.2

0.3

0.4

0.5

In
fe

rr
ed

m
as

s
[1

06
M

�
]

2 4 6 8 10 12

True half-mass radius [pc]

2

4

6

8

10

12

In
fe

rr
ed

h
al

f-
m

as
s

ra
d
iu

s
[p

c]

Figure 2.3: Left: The true vs inferred mass for each snapshot in our sample. Right: The true

vs inferred half-mass radius for each snapshot in our sample. In both figures, the dashed line

represents the one-to-one relation. The error bars represent the 1σ statistical uncertainties on the

inferred values. This figure was not included in the original publication.
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Figure 2.4: Left panel: Validation snapshots plotted in the δ − Nrelax plane. A selection of dy-

namically young clusters with high inferred values of δ is shown by the grey shaded region

(Nrelax < 3, δ > 0.4). The points are coloured based on the number of σfBH
the median in-

ferred fBH is away from the true value (where σfBH
is the width of the posterior for fBH). Under

this colour scheme, snapshots for which we underpredict (overpredict) fBH are increasingly or-

ange (blue). Right panel: The fBH values inferred based on the multimass model fits to mock

observations extracted from CMC models, against the true values in those validation snapshots

(fBH,true). Snapshots which fall within the shaded region in the left panel are plotted with un-

filled markers in the right panel, demonstrating that they also largely represent the snapshots for

which we significantly underpredict fBH.
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fBH value from the true value. As δ is a measure of the degree of energy equipartition in our

multimass models (with typical values of δ ≈ 0.5 for mass-segregated, dynamically evolved

clusters), we should normally expect dynamically young clusters (≲ 3Nrelax) to have lower val-

ues of δ. The mock clusters for which we significantly underpredict fBH are clearly concentrated

in the upper-left corner of the δ−Nrelax plane, highlighted with the grey-shaded rectangle in the

left panel of Figure 2.4. Their value of δ is inconsistent with our expectations for these systems.

Previous comparisons of the multimass LIMEPY models used here with N -body models

(Peuten et al. 2017) have confirmed this intuition that dynamically young clusters should have

lower values of δ (with δ ∼ 0.35) and have also shown that models with any significant black

hole population should have similarly low values of δ until they eject most of their black holes

(after several relaxation times). Therefore, we should not expect to find any clusters in the upper-

left or lower-right sections of the δ−Nrelax plane and any model fits which fall into these regions

are worthy of some suspicion, even though it is not immediately clear why the data for some of

these dynamically young clusters would prefer models with values of δ close to 0.5. Simple test

fits with δ forced to a lower value (δ ≤ 0.35) have shown that a lower value of δ can result in an

increase in the inferred fBH for these snapshots, as generally expected.

Within our validation sample there are a handful of problematic clusters in the upper-left,

suspect region of the δ − Nrelax plane. In the right panel of Figure 2.4, we show our inferred

values of fBH compared to the true values for our collection of snapshots, with the snapshots

that fall into this problematic region plotted with unfilled markers. It can be clearly seen that, if

these clusters are ignored, the correlation between the inferred and true black hole mass fraction

is even stronger. In Figure 2.5, we plot the inferred values of fBH compared to the true values

but now ignoring these problematic snapshots and showing the 1σ statistical error bars (in blue)

for the retained mock clusters.

With these caveats in mind we can turn to the sample of real clusters we investigate in this
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work to look for clusters that fall into this suspect region. In the real sample only three clusters

out of the 34 fall into this region of relatively high δ and low Nrelax (compared to 9 of the 44

validation snapshots). The relative lack of problematic fits in the real sample compared to the

mock sample highlights the fact that our mock sample is not a perfect imitation of the population

of MW clusters we investigate in this work and is limited by the constraints of the CMC grid.

One of these problematic clusters is NGC 3201, which is discussed further below (Section 5.3.4

of Dickson et al. 2024). The other two are NGC 104 (47 Tuc) and NGC 5139 (ω Cen), two of the

most massive clusters in our sample, which still possess notable BH populations despite their

high δ. Our results for these two well-studied clusters concurs well with other literature values

(see the discussion of each in Section 5.3 of Dickson et al. 2024). One real cluster in our sample

falls into the lower-right portion of δ−Nrelax. This is NGC 6624, a core-collapsed cluster which

is discussed further in Section 4.1 of Dickson et al. (2024), and for which we argue that we

incorrectly infer a non-zero number of black holes.

As may be expected, the statistical uncertainties derived solely from the fitting procedure

seem to underestimate the real uncertainties slightly. Our fitting procedure operates under the

assumption that our models are a perfect representation of the data, and as such, in reality, may

underestimate the true errors. It has been shown that multimass DF models, such as those used

here, may underestimate the uncertainties when compared to more flexible models, such as Jeans

models (Hénault-Brunet et al. 2019), which could be indicative of systematic errors not captured

in the statistical uncertainties and limitations in the ability of these models to perfectly reproduce

the data.

In an attempt to quantify this underestimation, we search for the factor by which the statisti-

cal uncertainties on our inferred values of fBH need to be inflated to make them fully consistent

with a one-to-one relation with the true model values. We define a nuisance parameter ϵ by

which we multiply the statistical errors σfBH
to determine the total, inflated error ∆ on each

35



Peter J. Smith Dynamical Inference of BH Populations in GCs

0.0 0.2 0.4 0.6 0.8
fBH, true [%]

0.0

0.5

1.0

1.5

2.0

2.5

f B
H

[%
]

Statistical errors
Inflated errors

Figure 2.5: The fBH values inferred based on the mock observations extracted from CMC mod-

els, against the true values in those models (fBH,true). The one-to-one line is shown in grey,

representing perfect agreement. The median and 1σ values, based solely on the statistical uncer-

tainties from the fit, are shown in blue. The inflated errors, based on the nuisance parameter ϵ
(∆ = ϵ σfBH

), are shown in orange.

inferred fBH. We then fit a fixed, one-to-one (i.e. slope of 1, intercept of 0) line through the

points in Figure 2.5, assuming a Gaussian likelihood and allowing ϵ to vary freely and inflate

the uncertainties on the inferred fBH. This fit results in a value of ϵ = 2.5+0.3
−0.3. We also show the

inflated 1σ error bars on the inferred fBH in Figure 2.5 (orange), demonstrating the additional

uncertainty needed to make our inferred values consistent with the true values and illustrating

the typical uncertainties expected when applying our method to real data.

Overall, this comparison with mock observations extracted from dynamical simulations

lends confidence in the ability of our methods to correctly recover the mass fraction in BHs

in GCs, with the important note that the statistical uncertainties on these inferred values may

underestimate the true uncertainties by up to a factor of ∼ 2.5, and with a reminder that dynam-

ically young clusters with inferred values of δ ∼ 0.5 should be treated with caution.
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2.2.3 Appendix: Validation results
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CMC Model Snapshot
Closest Milky

Way Analogue
fBH,true [%] fBH [%]

N4e5-rv1-rg2-Z0.0002 248 NGC 6558 0.0 0.000+0.003
−0.000

N4e5-rv1-rg8-Z0.0002 217 NGC 5946 0.008 0+0
−0

N4e5-rv1-rg8-Z0.0002 217 NGC 5986 0.008 0.03+0.02
−0.02

N4e5-rv1-rg8-Z0.0002 252 NGC 6544 0.015 0.004+0.007
−0.004

N4e5-rv2-rg2-Z0.002 165 NGC 6352 0.152 0.15+0.08
−0.07

N4e5-rv2-rg8-Z0.0002∗ 160 NGC 6584 0.222 0.13+0.06
−0.05

N4e5-rv2-rg8-Z0.0002 165 NGC 6981 0.147 0.13+0.08
−0.07

N4e5-rv4-rg8-Z0.0002∗ 128 NGC 5897 0.786 0.3+0.2
−0.2

N4e5-rv4-rg8-Z0.0002 134 NGC 288 0.624 0.6+0.3
−0.3

N8e5-rv0.5-rg2-Z0.0002 608 NGC 6355 0.0 0.019+0.011
−0.008

N8e5-rv0.5-rg2-Z0.0002 608 NGC 6681 0.0 0.02+0.01
−0.01

N8e5-rv0.5-rg2-Z0.002 516 NGC 6624 0.0 0+0
−0

N8e5-rv1-rg2-Z0.0002 375 NGC 6293 0.064 0.10+0.05
−0.03

N8e5-rv1-rg2-Z0.0002 375 NGC 6453 0.064 0.07+0.01
−0.02

N8e5-rv1-rg2-Z0.0002 375 NGC 6522 0.064 0.24+0.06
−0.06

N8e5-rv1-rg2-Z0.002 340 NGC 6316 0.229 0.09+0.02
−0.03

N8e5-rv1-rg2-Z0.002 340 NGC 6539 0.229 0.13+0.03
−0.03

N8e5-rv1-rg2-Z0.002 345 NGC 6569 0.18 0.09+0.03
−0.04

N8e5-rv1-rg2-Z0.002 345 NGC 6637 0.18 0.10+0.03
−0.03

N8e5-rv1-rg2-Z0.002 345 NGC 6642 0.18 0.25+0.10
−0.09

N8e5-rv1-rg2-Z0.002 354 NGC 6638 0.179 0.09+0.02
−0.03

N8e5-rv1-rg2-Z0.002 358 NGC 6401 0.175 0.09+0.02
−0.02

N8e5-rv1-rg2-Z0.002 362 NGC 6256 0.155 0.09+0.03
−0.02

N8e5-rv1-rg2-Z0.002 362 NGC 6304 0.155 0.09+0.02
−0.02

N8e5-rv1-rg20-Z0.0002 394 NGC 1904 0.154 0.08+0.02
−0.04

N8e5-rv1-rg8-Z0.0002 379 NGC 6284 0.188 0.09+0.03
−0.04

N8e5-rv1-rg8-Z0.0002 386 NGC 6779 0.153 0.08+0.03
−0.04

N8e5-rv1-rg8-Z0.0002 386 NGC 6934 0.153 0.09+0.03
−0.04

N8e5-rv1-rg8-Z0.002∗ 366 NGC 6760 0.234 0.18+0.05
−0.04

N8e5-rv2-rg2-Z0.0002 315 NGC 6218 0.456 0.3+0.1
−0.1

N8e5-rv2-rg2-Z0.002∗ 273 NGC 6723 0.977 0.3+0.1
−0.1

N8e5-rv2-rg2-Z0.002∗ 286 NGC 6712 0.798 0.17+0.08
−0.10

N8e5-rv2-rg20-Z0.0002∗ 296 NGC 1261 0.735 0.09+0.07
−0.07

N8e5-rv2-rg8-Z0.0002 299 NGC 3201 0.694 0.5+0.1
−0.1

N8e5-rv4-rg8-Z0.0002∗ 194 NGC 4372 2.218 0.3+0.2
−0.2

N8e5-rv4-rg8-Z0.0002∗ 194 NGC 6101 2.218 0.4+0.3
−0.3

N1.6e6-rv0.5-rg2-Z0.002 875 NGC 6440 0.133 0.32+0.04
−0.05

N1.6e6-rv1-rg2-Z0.0002 694 NGC 6402 0.898 0.8+0.2
−0.2

N1.6e6-rv1-rg2-Z0.0002 727 NGC 6656 0.734 1.3+0.2
−0.2

N1.6e6-rv1-rg2-Z0.0002 737 NGC 6541 0.679 0.8+0.1
−0.1

N1.6e6-rv1-rg2-Z0.0002 755 NGC 6333 0.584 0.9+0.1
−0.1

N1.6e6-rv1-rg2-Z0.0002 755 NGC 6342 0.584 1.7+0.4
−0.3

N1.6e6-rv1-rg8-Z0.002∗ 698 NGC 6356 0.715 0.10+0.06
−0.08

Table 2.1: Results of the validation fits. The “True” model values (fBH,true) and median and 1σ
credibility intervals inferred by the fits to mock observations (fBH,infer) are shown. The model

names (as given in the CMC cluster catalogue) indicate the initial number of particles, virial

radii, galactocentric radii and metallicity of each CMC model. The Milky Way cluster to which

each snapshot was matched is also given. All dynamically young snapshots which fall into the

suspect region are denoted by an asterisk.
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Chapter 3

Discussion of other methods for BH

population inference

Having now discussed in detail the use of multimass distribution function models to infer the

presence of BHs in clusters, it is worth discussing the wide array of other methods that have

been used to study the BH populations of GCs. This is a discussion chapter in which we will

not present any new results, but rather place the results of studies that use other methods in

the context of the results presented in Chapter 2 and focus on their respective strengths and

weaknesses.

3.1 Modelling of individual clusters

The most straightforward way to use dynamical models to constrain the BH population in a

given GC (and indeed the method used in Chapter 2) is to construct an accurate model of the

cluster using the available data (e.g. kinematics, mass functions, and number/surface brightness

profiles) and then use the model to infer the BH population. This can be accomplished by either

directly fitting an equilibrium model to data or by computing a grid of evolutionary models and
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then selecting the model from the grid that best matches the data. While the former approach

allows for the use of Bayesian inference schemes, it is only feasible for models that are fast to

compute, meaning that the grid-based approach is often the only feasible option for evolutionary

models.

3.1.1 Evolutionary models

Evolutionary models are models that can simulate the dynamical evolution of a GC from

initial conditions to the present day. These models typically incorporate stellar evolution codes

such that each object in the cluster is evolved according to its mass, eventually forming a stellar

remnant (for more massive stars). We have already discussed the work of Kremer et al. (2018b)

which employs this methodology to study the BH population of NGC 3201.

Similar work was done by Giersz & Heggie (2011), where the authors use a Monte Carlo

code to simulate the evolution of the cluster 47 Tuc from a grid of models with varying initial

conditions. The authors vary several parameters in their grid, including the initial mass function

and binary content of the cluster, attempting to match the observed properties of 47 Tuc. Unlike

Kremer et al. (2018b), where the models were only compared to the SBP and VDP of the cluster,

Giersz & Heggie (2011) also compare to measurements of the stellar luminosity function (a

proxy for the stellar mass function) as well as confirming that accelerations of pulsars derived

from pulsar timing are consistent with the maximum allowed acceleration in their models. The

authors found that simultaneously fitting the surface brightness profile, and pulsar accelerations

was the most important constraint on the models, with the final best-fitting model having just

19 BHs retained by the present day. We will further investigate the potential that pulsar timing

measurements have for dynamical modelling of GCs in Chapters 4 and 5.
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The primary limitation of this approach is the computational cost of running the models. The

days-long runtimes of these models mean that it is not feasible to run a grid with more than a

few parameters varied and even then the grid must be relatively sparse. This typically means

that the stellar initial mass function (IMF) of the cluster is held constant, greatly reducing the

freedom of the models to vary the population of heavy remnants (WDs, NSs, BHs). Recent

results (Baumgardt et al. 2023; Dickson et al. 2023) have shown that the IMF of GCs is likely to

be more bottom-light (i.e. deficient in low-mass stars) than the canonical Kroupa (2001) IMF that

is typically assumed in these models. For a cluster of a given total mass, a Kroupa IMF would

produce fewer high-mass stars and thus fewer BHs than a bottom-light IMF. This illustrates

the importance of the choices made in the initial conditions of these models and highlights the

utility of fast-to-compute equilibrium models we tested in Chapter 2 where the remnant content

(including BHs) can be varied with more flexibility.

A more recent example of a study that used a very similar methodology is Ye et al. (2022).

In this study, the authors again use the CMC code to simulate the evolution of an individual

cluster (47 Tuc) from a grid of initial conditions, though they also present a new binary formation

mechanism that they implement in the code. This binary formation mechanism implements a

more realistic treatment of tidal forces during close encounters and allows for more realistic

simulations of dynamical binary formation. The authors use the surface brightness profile and

the velocity dispersion profile to match the grid of models to the data much like Kremer et al.

(2018b) did, however they also use the large population of exotic objects (millisecond pulsars,

cataclysmic variables, low-mass X-ray binaries) in 47 Tuc as a further constraint on the models

showing that the new binary formation mechanism is critical for reproducing the neutron star

binaries that are responsible for most of the exotic objects in 47 Tuc. Like the work of Kremer

et al. (2018b), this method is still limited by the fact that it only produces a single point-estimate

for the BH population of the cluster.
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A related work that we discussed in Chapter 2 is that of Rui et al. (2021b), who provided

a formal description for the snapshot fitting method used by Kremer et al. (2018b) and also

formed the basis for the fitting performed by Ye et al. (2022). The authors use this method

in combination with a large grid of pre-computed CMC models (Kremer et al. 2020) to take a

slightly different approach to the problem of fitting models to data. Rather than focusing on a

single cluster, the authors instead took the grid of ∼ 150 models and search for any cluster for

which the SBP and VDP match well with an existing snapshot. This method makes use of the

existing grid of models computed for other work (we will examine the method of Weatherford

et al. 2018, 2020, another work which uses this pre-computed grid of CMC models in Section

3.2) to greatly reduce the computational cost, however it is reliant on the grid of models being

sufficiently dense in parameter space to contain good representations of individual Milky Way

clusters. Once the best-fitting snapshots for a given Milky Way cluster are identified, the authors

then calculate the median BH number from all snapshots that pass their goodness-of-fit criterion.

This does allow the authors to report a range of possible values for the BH population, however

the method is still limited by the low number of well-fitting snapshots that exist for any given

cluster. Unlike the method we described and tested in Chapter 2, this method does not attempt

to match the stellar mass function of individual clusters, meaning that a snapshot identified as a

good fit may not actually be a good fit to all available data.

3.1.2 Equilibrium models

In contrast to evolutionary models, equilibrium dynamical models are models that capture

the phase-space distribution of stars and stellar remnants in a GC at a single point in time (e.g.

Gieles & Zocchi 2015). We introduced and applied these models in Chapter 2 and discuss them

in the context of other modelling techniques here. Equilibrium models are typically much faster

to compute than evolutionary models meaning that it is possible to directly fit the model to
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the data using Bayesian inference techniques (techniques like MCMC and Nested Sampling re-

quire anywhere from a few thousands of model evaluations to a few million). The drawback

of these models in comparison to evolutionary models is that they do not model star-by-star

dynamics, and they do not model the evolution of the cluster over time. This means that they

often neglect the effects of more complicated objects like binary systems and can encounter is-

sues at very small scales in the cores of clusters where continuous mass profiles are no longer a

good approximation of the discrete mass distribution of centrally concentrated heavy remnants

(Hénault-Brunet et al. 2019). State-of-the-art equilibrium models incorporate a full mass spec-

trum and some, like multimass distribution function based models, are able to fully reproduce

the effects of mass segregation. Many of the recent studies (including the work presented in this

thesis) that have used equilibrium models to constrain the BH population in clusters have used

the (multimass) LIMEPY models (Gieles & Zocchi 2015).

Multimass LIMEPY models have also been used in several studies that sought to investigate

the presence of an intermediate-mass BH (IMBH) in several clusters, a slightly different but

related problem to the one we are focusing on in this thesis (discussed in more detail in Section

5.2). The first of the studies we will discuss is the work of Zocchi et al. (2019) which used

multimass LIMEPY models to investigate a reported IMBH in a Milky Way GC. This particular

study focuses on ω Cen, the most massive GC in the Milky Way and a cluster that is still too

large to be properly modelled with star-by-star N -body simulations. Zocchi et al. (2019) use a

simplified two-component mass spectrum, with one component representing the stars and low-

mass remnants and the other representing the BHs. Even with this simplified mass spectrum

the authors find that their models are able to reproduce the observed kinematics of the cluster

without the need for an IMBH. The authors additionally show that velocity anisotropy is a key

ingredient when modelling GCs, with anisotropic models being able to better reproduce the
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observed kinematics than isotropic models. This echos the results of Zocchi et al. (2017) which

found that radial anisotropy can produce some of the same kinematic signatures that are often

associated with the presence of an IMBH like a higher velocity dispersion near the centre of the

cluster.

The work of Gieles et al. (2018) was also motivated by a reported IMBH in a Milky Way

GC, this time NGC 6624. In this study the authors use a full mass spectrum in their modelling.

Because NGC 6624 is a core-collapsed cluster, the authors fix the BH content of their models

to zero. They show that the observed kinematics of the cluster can be fully explained with their

models, with no need for an IMBH or any significant population of stellar-mass BHs. The collec-

tion of datasets used in this work goes beyond the usual surface brightness profiles and velocity

dispersion profiles and includes stellar mass function data and pulsar timing measurements.

The methodology of Dickson et al. (2023, 2024) is essentially a refinement of the methodol-

ogy presented in Hénault-Brunet et al. (2020), applied to a large sample of clusters. To summa-

rize the methodology (see Chapter 2 for more details), these studies fit multimass LIMEPY mod-

els to the VDPs, number density profiles and stellar mass functions of 34 Milky Way clusters.

These models, populated with stellar mass functions computed with the evolve_mf algorithm

of SSPTools, allow for the inference of not just the BH population, but also the present-day

mass function of each cluster. This ability to vary and infer the present-day mass function of

each cluster individually is one of the biggest advantages of this method over the evolutionary

models discussed in the previous section.

Another flavour of equilibrium models that we should mention are the “Jeans Models”, which

are based on the Jeans equations that describe the motion of a collection of stars in a gravitational

field (e.g. Watkins et al. 2013; Sollima et al. 2016; Kamann et al. 2016; Vitral & Mamon 2021;

Vitral et al. 2023). These models are typically fit to the density and velocity dispersion profiles of
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a tracer population and vary the mass profile of the model to the match the observed kinematics.

They make no assumptions about the shape of the underlying mass profile, allowing for very

flexible though sometimes unphysical solutions for the mass and mass-to-light ratio profiles (e.g.

Hénault-Brunet et al. 2019).

A recent example of a study that uses these models to investigate the dark remnant population

of a GC is Vitral & Mamon (2021), who use the MAMPOSST-PM Jeans model to investigate the

dark remnant population of NGC 6397. They fit a few variations of their models to the observed

surface brightness profile and velocity dispersion profile: one with no dark central component,

one with a so-called “cluster of unseen objects” (CUO), one with a central IMBH and one with

both an IMBH and a CUO. They find that the models with either an IMBH or a CUO are best

able to match the data, with the model with no dark central component clearly underpredicting

the central velocity dispersion. These authors report that the models with a diffuse CUO produce

fits with higher likelihoods and Bayesian evidence than the models with an IMBH, concluding

that the data is most consistent with a CUO of 1000 − 2000 M⊙. The authors initially interpret

this as evidence for a large population of stellar-mass BHs in the cluster, making up the majority

of the CUO. As was pointed out by Rui et al. (2021a), this interpretation is extremely unlikely

due to the core-collapsed nature of NGC 6397 (see also discussion in Section 1.3.1), arguing

instead that the CUO is likely made up of primarily WDs.

The ambiguity surrounding the nature of the CUO in NGC 6397 is a good example of the

limitations of Jeans models. These models are very flexible and can fit a wide range of mass pro-

files to the data, however distinguishing between different types of dark objects is challenging. In

follow-up work, Vitral et al. (2022) and Vitral et al. (2023) use their Jeans models in combination

with CMC models to first detect and then characterize the dark mass in NGC 3201, NGC 6397

and M 4. In these studies, the data are first fit with the Jeans models to detect the presence of a

dark component before the best-matching CMC snapshots are examined to identify the make-up
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of the dark component. For NGC 3201 and NGC 6397, they are able to show that the dark mass

is likely made up of a population of BHs for NGC 3201 and a population of WDs for NGC 6397.

For M 4, the authors find that CUO inferred from the Jeans models is more massive than the

small population of BHs that are present in the best-matching CMC models but more compact

than a cluster of WDs, leading them to speculate that this cluster may host an unusually compact

sub-cluster of BHs or even an IMBH. These studies highlight the fact that while Jeans models

are excellent tools for detecting the presence of dark mass in a cluster, they are less well-suited

to characterizing the nature of the dark mass. Indeed, the final results of these works could be

in part reproduced without the use of Jeans models, by simply analyzing the properties of the

best-matching CMC snapshots directly.

3.2 Scaling relations

The other main way that dynamical models are used to constrain BH populations in GCs

is by using large populations of models to find scaling relations between observable quantities

like the central velocity dispersion or degree of mass segregation of a cluster and its BH con-

tent. This method is typically applied to evolutionary models, for which individual modelling

of many clusters would be too expensive. In this section we will look at two sets of studies that

each use large grids of Monte Carlo models to derive relations between observables and the BH

population of a cluster. The first set of studies is that of Arca Sedda et al. (2018) and Askar et al.

(2018), which use the MOnte Carlo Cluster simulAtor (MOCCA) code (e.g. Hypki & Giersz

2013; Giersz et al. 2013) and associated MOCCA database (Askar et al. 2017) to identify and

then apply relations between observables and the BH content of a cluster. The second set of

studies is that of Weatherford et al. (2018) and Weatherford et al. (2020). These studies use the

grid of CMC models presented in Kremer et al. (2020) and follow the same pattern of first iden-
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tifying relations between observables and the BH population and then applying these relations

to a large sample of clusters. We will examine both of these sets of studies in detail focusing on

their respective strengths and areas for improvement.

3.2.1 MOCCA

It is useful to first give a brief overview of the MOCCA database and the models it contains.

The entire MOCCA database contains more than 2000 models, in which the metallicity, number

of stars, central concentration, tidal radius, half-mass radius, binary fraction and galactocentric

radius are all varied across the initial conditions. Of all the models in the database, almost 1300

survive to 12 Gyr and of these models, 172 have at least 10 BHs remaining at 12 Gyr. It is these

172 models that the authors use to derive their scaling relations.

This particular method focuses specifically on the BH subsystem (BHS), the centrally concen-

trated grouping of BHs that forms in the core of a cluster due to mass segregation (e.g. Breen

& Heggie 2013). There are essentially two parts to the correlations that they observe in their

models. The first is that the various properties of the BHS are correlated with each other, with

relations between the mass of the BHS and the radius of the BHS, the number of BHs and the

mass of the BHS, the mean mass of the BHs and the radius of the BHS and finally the density of

the BHS and its radius all showing relatively tight groupings. What these relations mean is that

if we can find a relation between just one property of the BHS and an observable quantity, we

should in theory be able to infer the rest of the properties of the BHS, allowing us to constrain

the BH content of a given cluster.

The second part of the correlations that they observe allows them to do exactly this. They find

correlations of varying strength between the density of the BHS and the following observational

properties: observational half-mass radius (r2h,obs), average surface luminosity, central velocity
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Figure 3.1: Bottom panel of figure 10 of Arca Sedda et al. (2018). The density of the BHS as

a function of the average surface luminosity. The points are coloured by the mean mass of the

BHs in the BHS.

dispersion and total luminosity (L). While individually each of these relations is not particularly

strong, the authors are able to combine the various observational quantities into a tighter relation

by defining the “average surface luminosity” as L/r2h,obs which is tightly correlated with the

density of the BHS. We show this final relation in Figure 3.1. It is this relation that the authors

ultimately apply in Askar et al. (2018) to infer the BH content of 29 MW GCs.

Askar et al. (2018) begin their study by selecting 29 Milky Way clusters that match the proper-

ties of the MOCCA models the relations were derived from. They have four criteria: they require

the galactocentric radius to be less than 17 kpc, the V-band absolute magnitude to be brighter

than MV = −6.5, the average surface luminosity must be less than 104 L⊙/pc
2 and finally the

half-mass relaxation time must be longer than 0.9 Gyr. These criteria ensure that they do not

extrapolate their relations beyond what the underlying models cover.
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After selecting appropriate clusters, they then straightforwardly apply their scaling relations

to first infer the density of the BHS from the average surface luminosity and then the size and

mass of the BHS by applying the further relations. This method ultimately allows the authors

to infer the density, size, total mass and number of BHs in the BHS for each cluster from easily

observables quantities, namely the total luminosity and the half-light radius.

Having outlined the methodology, we now turn to the shortcomings of this study. The first

is simply an artifact of the fact that the relations were derived from models that all contained

at least some BHs. The authors themselves point out in Askar et al. (2018) that models with

very few or no BHs occupy the same region of the average surface luminosity - total luminosity

plane as models with many BHs. These models are not included in the relations, and are largely

resultant from models where there is no fallback during BH formation, resulting in very high

natal kicks and very low BH retention. This means that if a Milky Way cluster has a very small

BH population, it very well might be placed in the same region of the average surface luminosity

- total luminosity plane as a model with a much higher BH population. While the current state

of SNe modelling suggests that BHs do in fact experience fallback and thus lowered natal kicks

(e.g Fryer et al. 2012), this does still add uncertainty for models with very low BH populations

which likely are very similar to models that lost all of their BHs to natal kicks. This is especially

concerning given that Askar et al. (2018) state that roughly 20% of the low-BH models that they

exclude are models with the normal fallback and natal kick prescriptions, highlighting the fact

that this relation is not as robust as it may seem.

The other issue with this particular methodology was pointed out in Weatherford et al. (2020)

and concerns the formulation of the scaling relations themselves. Arca Sedda et al. (2018) use

linear relations in log-log space to describe their various observed correlations. Weatherford et al.

(2020) point out that the assumption of linear relations will inherently lead to biases, and this
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Figure 3.2: Panel e of Figure 8 of Weatherford et al. (2020). The density of the BHS as a function

of the number of BHs in the BHS. The points are coloured by the initial virial radius of the CMC

models. The light grey line and wide grey band are the linear fit and 1σ scatter of the chained

relations from Arca Sedda et al. (2018). The dark grey line and narrow grey band are the resulting

fit when bypassing the intermediate steps and directly fitting the number of BHs to the density

of the BHS.

problem is only compounded when multiple linear relations are combined. They illustrate this

issue by showing that while each of the individual relations are recovered with similar values in

their grid of CMC models, skipping the intermediate steps and directly plotting the density of the

BHS against the number of BHs in the BHS shows that even in the MOCCA grid, the correlation

is quite weak. The range in the number of BHs in the BHS for a given density spans two orders

of magnitude while in the CMC grid there appears to be no real relation of any significance. We

show this in Figure 3.2.

This lack of a significant correlation between the density of the BHS and the number of

BHs in the BHS draws into question the accuracy of the inferred BH populations derived in

Askar et al. (2018) but also serves as motivation for the works of Weatherford et al. (2018) and

Weatherford et al. (2020) which we discuss next.
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3.2.2 CMC

The works of Weatherford et al. (2018) and Weatherford et al. (2020) are conceptually very

similar to the works of Arca Sedda et al. (2018) and Askar et al. (2018). The main differences

between the two sets of studies are the models used and the ways in which the relations are

formulated. Firstly, the works of Weatherford et al. (2018) and Weatherford et al. (2020) use the

CMC code and its associated grid of models instead of the MOCCA database. We have already

discussed the CMC grid briefly in our discussion of targeted modelling of individual clusters

however it is worth going over some parameters of the grid. While the MOCCA grid varies

seven parameters when generating initial conditions, the CMC grid varies only four: the number

of stars, the metallicity, and the virial and galactocentric radii. This means that, in theory, the

CMC grid covers less of the possible parameter space than the MOCCA grid, however the CMC

grid has still been shown to be able to reproduce the properties of a wide range of Milky Way

clusters (Kremer et al. 2020).

Weatherford et al. (2018) and Weatherford et al. (2020) use the degree of mass segregation

as their observable, building on the theoretical work that suggests that mass segregation is sup-

pressed by the formation of a BH subsystem in the core of a cluster (e.g. MacKey et al. 2008).

This is a similar process to the one we discussed when examining the effect of a BHS on the SBP

of a cluster. The BHS causes the centrally concentrated stars to be ejected back out into the outer

regions of the cluster, effectively suppressing the process of mass segregation. This means that

a suitably designed measure of mass segregation should in theory correlate with the number of

BHs in a cluster. Weatherford et al. (2018) formulate an observable that is specifically designed

to be easy to extract from observations and to tightly correlate with the number of BHs in a

cluster. They define two quantities, ∆A and ∆r50, which are two different ways to quantify the

differences between the cumulative radial distribution functions (CDFs) of two populations of
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stars in a cluster. The first, ∆A, is the area between the two CDFs while the second, ∆r50, is the

difference between the projected distances of the medians of the two CDFs. The two populations

of stars are chosen such that they are both easy to distinguish and different in mass.

Weatherford et al. (2020) tweak the method for better performance before applying it to 50

Milky Way GCs. The primary change they make is to switch from using two populations to

using three populations made up solely of main sequence stars. This change was motivated by

the fact that post main sequence stars are comparatively much rarer than main sequence stars

and thus have noisier CDFs. The three main sequence populations are then used in pairings to

calculate both ∆A and ∆r50, resulting in 6 measurements of the degree of mass segregation (3

sets of pairing for each of the two measures). The key statistical improvement the authors make

is to use a non-parametric kernel density estimator (KDE) to map the degree of mass segregation

to the number of BHs in the cluster. This avoids the need to make any assumptions about the

functional form of the relation between the degree of mass segregation and the number of BHs,

avoiding any potential biases. When constructing the KDE, the authors restrict themselves to

the models that are closest in metallicity to the cluster of interest (the CMC grid has 3 different

values of metallicity). They then construct a multidimensional KDE relating the ∆ parameters

to the number of BHs in a cluster. In order to calculate the probability density function (PDF) of

the number of BHs in a cluster, they then simply slice the KDE along the value of the degree of

mass segregation for the cluster of interest. We show the relation between the two measures of

mass segregation and the number of BHs in Figure 3.3.

Weatherford et al. (2020) apply this method to 50 Milky Way GCs, deriving PDFs for the num-

ber of BHs in each cluster. They compare their results to the results of Askar et al. (2018) and

find that they systematically predict smaller BH populations than Askar et al. (2018). Weather-

ford et al. (2020) attribute this to the bias towards larger BH populations in the MOCCA relations

52



Peter J. Smith Dynamical Inference of BH Populations in GCs

0.0 0.5 1.0 1.5 2.0 2.5
∆r50

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

lo
g

(

N
B
H

N
c
lu
s
t
e
r

)

rv/pc Z/Z�

0.5

1.0

2.0

4.0

0.01

0.10

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0
∆A

−6.5

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

lo
g

(

N
B
H

N
c
lu
s
t
e
r

)

Figure 3.3: Figure 2 of Weatherford et al. (2020). The number of BHs in various CMC snapshots

as a function of the two mass segregation parameters. The top panel shows the number of BHs

as a function of ∆r50 while the bottom panel shows the number of BHs as a function of ∆A. The

points are coloured by the metallicity of the snapshots and the markers show the initial virial

radii of the snapshots.
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that we discussed earlier. They find that 35 of their 50 clusters likely contain more than 20 BHs,

with 8 of these clusters likely containing more than 80 BHs at the present day, adding further

support to the idea that many Milky Way GCs have retained a large population of BHs by the

present day.

The primary limitation of this method is the fact that it is still reliant on a grid of models

that is relatively sparse. The limitation of only having three different metallicities is particularly

apparent when examining Figure 3.3, where gaps between the metallicity tracks are clearly vis-

ible. The other major limitation is the fact that this method is not particularly precise, with the

PDFs for the number of BHs in a cluster typically spanning a very large range of possible values.

Finally, the fact that this method relies on a single observable, and does not take into account the

kinematics, density profile or stellar mass function of the cluster means that it is not making full

use of the available data, potentially leading to lower precision or accuracy in the inferred BH

populations. Overall, the work of Weatherford et al. (2020) represents a meaningful improve-

ment over the work of Askar et al. (2018) while still being conceptually quite similar. The study

presented the largest sample of BHS estimates to date and also provided a robust methodology

for deriving these BHS estimates.

3.3 Comparison of inferred black hole populations

Having demonstrated in Chapter 2 that multimass LIMEPY models are able to successfully infer

the BH populations of Milky Way GCs (with some caveats), and having discussed the strengths

and weaknesses of the other methods used to infer BH populations, it is worth discussing the

discrepancies between these methods. In Figure 3.4 we show the inferred BH populations for a

selection of Milky Way GCs from Dickson et al. (2024) as well as the results of Weatherford

et al. (2020), Askar et al. (2018), and Rui et al. (2021b). Comparing the results of these studies,
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we see that there is good agreement about the BH content of Milky Way GCs on a population

level, with all studies in agreement that most clusters seem to have between 0 and 1% of their

mass in the form of BHs by the present day. Comparing individual clusters however, we see

that there is often a significant discrepancy between the inferred BH populations of the different

studies. We show these discrepancies in a different form in Figure 3.5, which shows the error-

weighted residuals between the inferred values of fBH from Dickson et al. (2024) and the values

from Askar et al. (2018) and Weatherford et al. (2020). In this representation, points falling

within the ±1 range indicate that the two studies are in agreement within their 1σ uncertainties.

Examining this plot in detail, not only do we see that the various studies disagree by more than

1σ for many clusters, we also see a trend where the inferred values from Dickson et al. (2024)

are lower than the values from the literature for clusters where they infer a low value of fBH and

higher for clusters where they infer a high value of fBH. This suggests that the disagreement

between the studies is not simply due to random errors but rather due to systematic differences

in the methodologies used to infer the BH populations of the clusters.

Given that we have shown in Chapter 2 that the inferred BH populations from multimass

LIMEPY models do not seem to be systematically biased as a function of fBH, these differences

suggest that the other methods may be underpredicting the variance in fBH across the Milky

Way GC population.

As we discussed previously, a test of the methodology used by Askar et al. (2018) was pre-

sented by Weatherford et al. (2020) where they applied the methodology of Askar et al. (2018)

to a grid of CMC models. The testing of both the methodology used in Askar et al. (2018) by

Weatherford et al. (2018) and the methodology we use in Dickson et al. (2024) presented in

Chapter 2 has in both cases revealed important caveats and sources of error that were not im-

mediately apparent from simply examining the results of each study. In particular, the exclusion

of models with very low BH populations in Askar et al. (2018) when deriving their scaling rela-
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Figure 3.4: Figure 3 of Dickson et al. (2024). Comparison of the inferred BH populations for

a selection of Milky Way GCs from three modelling studies discussed in this chapter. The red

points are the results of Weatherford et al. (2020), the green points are the results of Askar et al.

(2018), the light blue points are the results of Rui et al. (2021b) while the violin plots are the

results from Dickson et al. (2024). The top panel is BH mass fraction, the middle is total mass

in BHs and the bottom panel is the total number of BHs.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
fBH [%]

2

1

0

1

2

f B
H

f B
H

,li
t

2 f B
H
+

2 f B
H

,li
t

Weatherford et al., 2020
Askar et al., 2018

Figure 3.5: Figure 8 from Dickson et al. (2024). Error-weighted residuals between the inferred

value of fBH from Dickson et al. (2024) and the values from two literature sources, Askar et al.

(2018) and Weatherford et al. (2020). In general, we see a trend where the inferred values from

Dickson et al. (2024) are lower than the values from the literature for clusters where they infer a

low value of fBH and higher for clusters where they infer a high value of fBH.
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tions would bias their predictions towards higher BH populations, which is one way to explain

the systematic differences seen in Figure 3.5. Looking specifically at the results of Weatherford

et al. (2020), we see that they generally report larger uncertainties on their inferred BH popula-

tions than the other studies. When considering the likely underestimation of the uncertainties on

the results of Dickson et al. (2024) (see discussion in Section 2.2), it is possible that these two

studies are actually in agreement for most clusters and the discrepancies we see are simply due

to the poorly understood systematic sources of error in both studies. Given the results of these

tests, it is critical that future studies that seek to infer the BH populations of Milky Way GCs do

similar testing to ensure that their results are robust and reliable, ideally validating their methods

using mock data generated from models unrelated to those that they are testing.
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Chapter 4

Probing populations of dark stellar

remnants in the globular clusters 47

Tuc and Terzan 5 using pulsar timing:

Introduction, Data and Methods

This chapter contains the Introduction, Data and Methods sections (sections 1, 2 and 3) of the

following manuscript submitted to the Astrophysical Journal for publication:

Probing populations of dark stellar remnants in the globular clusters 47 Tuc and Terzan 5

using pulsar timing

P. J. Smith, V. Hénault-Brunet, N. Dickson, M. Gieles, H. Baumgardt

I am the lead author of this manuscript and led the analysis and writing of the paper. I produced

all figures and tables and wrote the text.
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Abstract

We present a new method to combine multimass equilibrium dynamical models and pulsar tim-

ing data to constrain the mass distribution and remnant populations of Milky Way globular clus-

ters (GCs). We first apply this method to 47 Tuc, a cluster for which there exists an abundance

of stellar kinematic data and which is also host to a large population of millisecond pulsars. We

demonstrate that the pulsar timing data allow us to place strong constraints on the overall mass

distribution and remnant populations even without fitting on stellar kinematics. Our models fa-

vor a small population of stellar-mass BHs in this cluster (with a total mass of 446+75
−72 M⊙),

arguing against the need for a large (> 2000 M⊙) central intermediate-mass black hole. We then

apply the method to Terzan 5, a heavily obscured bulge cluster which hosts the largest popula-

tion of millisecond pulsars of any Milky Way GC and for which the collection of conventional

stellar kinematic data is very limited. We improve existing constraints on the mass distribution

and structural parameters of this cluster and place stringent constraints on its black hole content,

finding an upper limit on the mass in BHs of ∼ 4000 M⊙. This method allows us to probe the

central dynamics of GCs even in the absence of stellar kinematic data and can be easily applied

to other GCs with pulsar timing data, for which datasets will continue to grow with the next

generation of radio telescopes.

4.1 Introduction

Pulsars have a long history of being used to investigate the mass distribution of globular clusters

(GCs). Early work from Phinney (1992, 1993) examined the effect of a pulsar’s surroundings on

its measured spin (Ṗ ) and orbital period derivatives (Ṗb; for pulsars in binary systems), includ-

ing quantifying the effects of the cluster potential, Galactic potential, proper motion and intrinsic

effects like magnetic breaking. Recently, several works have presented detailed analyses of pul-
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sar data for probing the gravitational potential of GCs (see e.g., Prager et al. 2017 for Terzan 5,

Freire et al. 2017 and Abbate et al. 2018, 2019a for 47 Tuc, Gieles et al. 2018 for NGC 6624,

Abbate et al. 2019b for M62, Corongiu et al. (2024) for NGC 6752, and Bañares-Hernández

et al. 2024 for NGC 5139).

Pulsars indeed present a unique opportunity to probe the central dynamics of these systems,

especially when crowding and extinction make it challenging to obtain detailed stellar kine-

matic data in their central regions. Because of their extremely stable periods (spin and orbital),

measured changes in the periods of pulsars beyond their (unknown) intrinsic spin down due to

magnetic breaking can be almost entirely attributed to external factors. By performing timing

measurements over long time scales and precisely measuring the changes in their periods, we

can learn about the host potential of the pulsars. In particular, the observed period derivatives due

to the changing ‘Doppler shift’ from the line-of-sight gravitational acceleration felt by pulsars

in GCs allow us to constrain the gravitational potential and mass distribution of GCs hosting

pulsars.

Most of the studies mentioned above used single-mass dynamical models, without a mass

spectrum1. Therefore, they cannot capture the effect of mass segregation, which is affected by

the presence/absence of central black holes (e.g. Merritt et al. 2004; MacKey et al. 2008; Gill

et al. 2008; Peuten et al. 2016, 2017; Weatherford et al. 2018). These studies also usually focus

on fitting models to the pulsar data, ignoring the velocity dispersion profiles, surface density

profiles and stellar mass functions which are typically used to constrain mass models of GCs2.

As an example, Freire et al. (2017) presented a single-mass King model of 47 Tuc which was

compared to the pulsar acceleration data as well as the measured “jerk” (the time derivative of

1With the exception of Gieles et al. (2018), who compared the observed period derivatives of pulsars in NGC

6624 to predictions from multimass models but did not directly fit these models to the pulsar data.
2Although see Bañares-Hernández et al. (2024) for an application of joint modeling of pulsar timing data and

stellar kinematics in a Jeans analysis of NGC 5139. Their work, submitted shortly after ours, is based on a similar

methodology in many aspects, but also adopts different models and assumptions while targeting a different cluster,

and is therefore complementary.
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the acceleration) of the pulsars. Their model does not contain an intermediate-mass black hole

(IMBH) but is still able to account for all of the pulsars’ period derivatives as well as the inferred

jerks for all the pulsars within the cluster core. Corongiu et al. (2024) presented similar work for

NGC 6752, using the first and second period derivatives of five pulsars in this cluster to infer the

presence of non-luminous matter in its core and investigate the possibility of that mass residing

in an IMBH.

In this work, we present new self-consistent multimass models of 47 Tuc and Terzan 5 that

are fitted both to traditional observables (velocity dispersion profiles, number density profile,

local stellar mass function observations) and to the variety of pulsar timing data available for

these clusters. The direct inclusion of the pulsar data in the likelihood function allows us to

revisit and address the previous claim from Kızıltan et al. (2017a) that the pulsar accelerations

favor a large central mass in 47 Tuc in the form of an IMBH. We use updated stellar mass

function data where available, and adopt the latest constraints on the distance to our clusters

from Gaia (Baumgardt & Vasiliev 2021) as a prior on the distance parameter in our models.

To properly model the effect and constrain the size of a possible population of stellar-mass

BHs, our multimass models use stellar evolution recipes based on recent prescriptions for the

masses and natal kicks of BHs, and can therefore include realistic BH populations. While our

models do not explicitly allow for an IMBH, given that the effects of a central IMBH and a

large population of centrally concentrated stellar-mass BHs are expected to be similar beyond

the sphere of influence of the IMBH, especially when the mass fraction of the cluster in BHs

is small (e.g. Aros & Vesperini 2023), a best-fitting model without a large population of BHs

would provide evidence that an IMBH is not required to explain the dynamics of the cluster.

Since we are interested in accurately modeling the present-day mass distribution within

these clusters, equilibrium distribution function-based models are a good choice. Compared to

the more computationally expensive evolutionary models like Monte-Carlo or N -body models
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(which are limited to relatively small grids), our multimass models offer much-increased flex-

ibility to vary the cluster’s structural properties, stellar mass function, and population of dark

remnants (including BHs) at a small fraction of the computational cost.

Both 47 Tuc and Terzan 5 are host to large populations of pulsars. 47 Tuc is a well-studied

cluster with a great deal of stellar kinematic data, making it an ideal candidate to test our method.

Terzan 5 is a heavily obscured bulge cluster which is host to the largest population of millisec-

ond pulsars of any Milky Way GC and which is located in the bulge, making the collection of

conventional stellar kinematic data extremely challenging. The combination of the large pulsar

population and the lack of traditional stellar kinematic data means that our method is particularly

well-suited to studying the central dynamics of this cluster. This large population of pulsars may

be partially explained by the cluster’s collision rate, which is the highest of any Milky Way GC

(e.g. Lanzoni et al. 2010). The central dynamics of this cluster are therefore of great interest.

The remainder of this paper is structured as follows. In Section 4.2 we describe the data

to which we fit our models. Section 4.3 describes the models, fitting procedure and individual

likelihoods. In Section 5.1 we present our fits and discuss our results. In Section 5.2 we discuss

the implications of our results and compare them to other studies. We finally summarize our

findings in Section 5.3.

4.2 Data

For this study, we use the same data that was used by Dickson et al. (2023, 2024), with the addi-

tion of the pulsar data described below and some additional datasets for Terzan 5. We summarize

the data below.
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4.2.1 Kinematics and density profiles

4.2.1.1 Proper motion dispersion profiles

We use both Hubble Space Telescope (HST) proper motion data and Gaia DR3 proper motions

to constrain the kinematics of the clusters. For 47 Tuc, there are proper motion measurements

from HST that cover the inner regions of the cluster. These data were presented in Libralato et al.

(2022) and are split into radial and tangential dispersion profiles, allowing some leverage on the

velocity anisotropy of the cluster.

For both clusters, we also use Gaia DR3 proper motion dispersion profiles which are based

on the membership catalogs presented in Vasiliev & Baumgardt (2021). These profiles are split

into radial and tangential components for 47 Tuc where there is an abundance of high-probability

members (the radial and tangential profiles were derived in Dickson et al. 2023), but left as total

proper motion (µ2
tot = µ2

α∗ +µ2
δ) for Terzan 5 where isolating high-probability members is more

difficult due to bulge contamination.

4.2.1.2 Line-of-sight velocity dispersion profiles

We use the line-of-sight velocity dispersion profiles from Baumgardt & Hilker (2018) to further

constrain the kinematics of the clusters. These dispersion profiles are based on archival spectra

obtained at the European Southern Observatory’s (ESO) Very Large Telescope (VLT) and the

Keck observatory, supplemented with published radial velocity data from the literature from

Baumgardt (2017).

For 47 Tuc, we additionally use the line-of-sight dispersion profile presented by Kamann

et al. (2018), who used the MUSE spectrograph (Bacon et al. 2010) to collect data for 22 GCs.

As these radial velocity samples are dominated by bright stars, we assume that these velocity

dispersion profiles trace the kinematics of upper main-sequence and evolved stars (which we
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assume trace the kinematics of giants) in our models.

4.2.1.3 Number density profiles

We use the number density profiles from de Boer et al. (2019) and Lanzoni et al. (2010) to

constrain the size and structural parameters of the clusters. The de Boer et al. (2019) profile

is made up of a combination of the number density profile of cluster members based on Gaia

DR2 data in the outer regions and a surface brightness profile from Trager et al. (1995) in the

central regions, which is matched to the Gaia number density profile in the region where the two

profiles overlap.

Terzan 5 is not included in the compilation of de Boer et al. (2019) due its position in the

bulge, where crowding and extinction are significant issues. Because of these challenges, we use

the number density profile from Lanzoni et al. (2010) which is based on a combination of data

from the HST , the Multi-conjugate Adaptive optics Demonstrator (MAD) on VLT and the Two

Micron All Sky Survey (2MASS) which combine to cover the entire radial extent of the cluster.

The Gaia data only includes bright stars (m > 0.6 M⊙) and the HST and ground-based data

are likewise dominated by bright stars, so we assume that these number density profiles trace the

distribution of upper main-sequence and evolved stars in our models.

Note that there are two density profiles we could have chosen from for Terzan 5: the surface

brightness profile of Trager et al. (1995) or the number density profile of Lanzoni et al. (2010). In

their region of overlap, these profiles do not match very well with each other, even when scaled

vertically. The Lanzoni et al. (2010) profile decreases faster in the outer regions compared to

the Trager et al. (1995) profile. We opted to use the Lanzoni et al. (2010) profile because it is

based on HST data and modern ground-based data which should help to more reliably subtract

bulge contamination, and also because it has well-defined uncertainties. We also found that tests

with the surface brightness profile of Trager et al. (1995) resulted in best-fitting models where
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the surface brightness profile and the other datasets and profiles could not be simultaneously

reproduced as well as when using the Lanzoni et al. (2010) number density profile.

4.2.2 Stellar mass functions

As a constraint on the global present-day stellar mass function of 47 Tuc, we use the completeness-

corrected stellar mass function data that was derived from archival HST photometry by Baum-

gardt et al. (2023). These are based on various archival HST images (20 different pointings for

47 Tuc, proposal IDs shown in Figure 5.2) from which stellar number counts were derived as a

function of magnitude and projected distance from the cluster center and were then converted

into stellar mass functions through isochrone fits. For 47 Tuc, there are extensive observations

which cover stars within a mass range of ∼ 0.1−0.8M⊙ as well as a radial range of 0-40 arcmin-

utes from the cluster center. The large span of radii and stellar masses allows us to constrain the

varying local stellar mass function as a function of distance from the cluster center, and therefore

the degree of mass segregation in the cluster.

The stellar mass function for Terzan 5 was derived in the same way as for 47 Tuc, but was not

included in the compilation of Baumgardt et al. (2023) due to limitations with the data resulting

from the cluster’s position in the bulge. For this cluster, we have a single mass function field,

in the infrared (filters F110W and F160W of HST proposal 12933, PI: Ferraro) which covers

a region from 0.6-1.6 arcminutes from the cluster center and a mass range of ∼ 0.6−0.9M⊙.

While this dataset provides weaker constraints on the model than the mass function data for 47

Tuc, it is still useful for constraining the amount of visible mass in the cluster around its half-

mass radius and verifying that the assumed global stellar mass function in our model of Terzan

5 is reasonable.
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4.2.3 Pulsar data

For 47 Tuc, we use timing solutions from Freire et al. (2017), Ridolfi et al. (2016) and Freire &

Ridolfi (2018) which include both the spin and orbital periods (the latter when applicable, for

pulsars in binaries) and their time derivatives. For Terzan 5, we use the timing solutions presented

in Lyne et al. (2000), Ransom et al. (2005), Prager et al. (2017), Cadelano et al. (2018), Andersen

& Ransom (2018), Ridolfi et al. (2021) and Padmanabh et al. (2024), again including both the

spin and orbital periods and their derivatives, where available.

Pulsars with non-degenerate companions are classified as either ‘black-widow’ or ‘redback’

systems, where black widows have companions with masses less than ∼ 0.1 M⊙ and redbacks

have more massive companions (Roberts 2012). All redbacks and some black widows (e.g. Shai-

fullah et al. 2016) display changes in their observed orbital periods that are likely due to Roche

lobe overflow of the companion or interactions between the companion and the pulsar wind (e.g.

Thongmeearkom et al. 2024). This orbital variability can also affect the measured spin period

derivatives, and is harder to correct for in redbacks where the orbital variability is ubiquitous and

complex. The observed changes in the spin periods of redbacks could therefore be incorrectly

interpreted as effects from the cluster potential, so we follow Prager et al. (2017) and exclude

redback systems from our analysis. Among the well-timed pulsars, this means we exclude pulsar

W from 47 Tuc and pulsars A, P, ad and ar from Terzan 5. The pulsar data is summarized in

Tables 5.4 and 5.5 in the Appendix.

Finally, we make use of the Australia Telescope National Facility’s pulsar database3 pre-

sented by Manchester et al. (2005) in order to build a representative population of Galactic

MSPs which we use to estimate the probability distribution for the intrinsic spin-down of the

pulsars as a function of their spin period (see Section 4.3.3.1).

3http://www.atnf.csiro.au/research/pulsar/psrcat
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4.3 Methods

4.3.1 Models

To model the dynamics and mass distribution of 47 Tuc and Terzan 5, we use the GCFIT
4 package,

recently presented by Dickson et al. (2023, 2024). This package couples a fast mass evolution

algorithm with the LIMEPY
5 family of models presented by Gieles & Zocchi (2015). We refer

readers to these papers for a detailed description of the models, and provide a brief summary

here. The LIMEPY models are a set of distribution function-based equilibrium models that are

isothermal for the most bound stars near the cluster center and described by polytropes in the

outer regions near the escape energy. The models have been extensively tested against N -body

models (Zocchi et al. 2016; Peuten et al. 2017) and their multimass version is able to effectively

reproduce the effects of mass segregation. Their suitability for mass modeling of GCs has been

tested on mock data (Hénault-Brunet et al. 2019), and they have recently been applied to real

datasets as well (for example, Gieles et al. 2018; Hénault-Brunet et al. 2020; Dickson et al. 2023,

2024).

The input parameters needed to compute our models include the dimensionless central po-

tential ϕ0, the truncation parameter g6, the anisotropy radius ra which determines the degree of

radial anisotropy in the models, δ which sets the mass dependence of the velocity scale and thus

governs the degree of mass segregation, and finally the specific mass bins to use as defined by

the mean stellar mass (mj) and total mass (Mj) of each bin, which together specify the stellar

mass function. In order to scale the model units to physical units, the total mass of the cluster M

and a size scale (the half-mass radius of the cluster rh) are provided as well. Finally, we provide

the distance to the cluster (D) which is used in converting between angular and linear quantities.

4https://github.com/nmdickson/GCfit/
5https://github.com/mgieles/limepy/
6Several well-known classes of models are reproduced by specific values of g: Woolley models (Woolley 1954)

have g = 0, King models (King 1966) g = 1, and (non-rotating) Wilson models (Wilson 1975) g = 2.
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In order to generate the input mass bins (the mj and Mj sets of input values) for the multi-

mass LIMEPY models, the GCFIT models use the evolve_mf algorithm, originally presented

by Balbinot & Gieles (2018) and updated in Dickson et al. (2023). This algorithm combines pre-

computed grids of stellar evolution models, isochrones and initial-final mass relations to model

the evolution of a given initial mass function (IMF), including the effects of stellar evolution

as well as (optionally) mass loss due to escaping stars and dynamical ejections. The algorithm

returns a binned mass function at a requested evolutionary time, for specified metallicity, ideal

for use as an input in the LIMEPY models.

We parameterize the mass function as a three-segment broken power law with break points

at 0.5 M⊙ and 1.0 M⊙. We provide to evolve_mf the IMF slopes7 (α1, α2 and α3) and break

points, the cluster age, metallicity and initial escape velocity. We adopt the same methodology

as Dickson et al. (2023) to determine the initial escape velocities of our clusters. Briefly, we run

an initial fit with an initial guess of the escape velocity and use the present-day escape velocity

of this preliminary fit to set the initial escape velocity of the cluster. We use double the present-

day value as our estimate for the initial escape velocity, which accounts for adiabatic expansion

of the cluster after mass-loss due to stellar evolution. We note that after the initial fit, changing

the initial escape velocity by 20 km s−1 in either direction has no discernible effect on the final

model. We additionally specify parameters which control the mass loss (if any) due to escaping

stars and the specific binning to be used when returning the final discrete mass-function bins.

We finally provide the black hole retention fraction (BHret) which controls the percentage of the

mass in black holes initially created from the initial mass function that is retained to the present

day after natal kicks and dynamical ejections. We first eject primarily low-mass BHs through

natal kicks and then eject the rest of the required mass by ejecting the most massive BHs first,

capturing the effect of dynamical ejections (see Dickson et al. 2023 for details). For this study

7Throughout this work we adopt the convention that ξ(m)≡ dN/dm ∝ m−α such that a positive value of α
gives a decreasing power-law slope.
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Table 4.1: Model parameters and their priors. Most priors are uniform and are chosen to bound

the parameters around a reasonable range of values for both clusters. For the mass function

slopes, we add the additional constraint that α2 must be steeper than α1 and α3 steeper than α2.

For the distance, we use a Gaussian prior with the distance measurement from Baumgardt &

Vasiliev (2021) and its uncertainty providing the mean µ and standard deviation σ of the prior.

These distances are D = 4.521± 0.031 kpc and D = 6.62± 0.15 kpc for 47 Tuc and Terzan 5

respectively.

Parameter Prior Form Value

ϕ0 Uniform [0.1, 15]

M [106 M⊙] Uniform [0.01, 3]

rh [pc] Uniform [0.5, 15]

log10 (ra/pc) Uniform [0, 8]

g Uniform [0, 3.5]

δ Uniform [0.3, 0.5]

s2 Uniform [0, 20]

F Uniform [1, 7.5]

α1 Uniform [-1, 2.35]

α2 Uniform [-1, 2.35] and ≥ α1

α3 Uniform [1.6, 4] and ≥ α2

BHret[%] Uniform [0, 100]

D[kpc] Gaussian BV21

we do not model the mass loss due to escaping stars, so we set this mass loss due to escaping

stars to be zero, and we are effectively specifying the present-day mass function for low-mass

stars, not their IMF.

4.3.2 Fitting

The GCFIT package provides a uniform interface for fitting the coupled LIMEPY and evolve_mf

models to a variety of observables using either a Markov Chain Monte Carlo (MCMC) or nested

sampling algorithm. For this work, we use the nested sampling algorithm, which is implemented

using the dynesty package (Speagle 2020; Koposov et al. 2023). For the majority of our pa-

rameters we adopt wide, uniform priors, with the exception of the distance where we adopt the

measurements of Baumgardt & Vasiliev (2021) as Gaussian priors and the mass function power-

law slopes where we adopt the physically motivated priors described in Dickson et al. (2023).

We list the priors in Table 4.1.
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4.3.3 Likelihoods

The majority of the likelihood functions we use for different datasets are Gaussian likelihoods.

Provided below is the log-likelihood for velocity dispersion profile data as an example, but all

other likelihoods are of a similar form8:

ln (L) = −1

2

Np
∑

i=1

{

[σobs(ri)− σmodel(ri)]
2

δσ2
obs(ri)

− ln
[

δσ2
obs(ri)

]

}

, (4.1)

where L is the likelihood, Np is the number of data points, σobs is the measured velocity dis-

persion, σmodel is the model velocity dispersion at the corresponding radius, r is the projected

distance from the cluster center, and δσobs is the uncertainty in the velocity dispersion. The like-

lihoods for other observables are formulated in the same way, and the specifics are discussed

in Dickson et al. (2023) as well as in the GCFIT documentation9. The total log-likelihood is the

sum of all the log-likelihoods for each set of observations.

For the mass function and number density profile likelihoods, we include additional nuisance

parameters and scaling terms. For the number density data, we introduce a parameter s2 which

is added in quadrature to the existing measurement uncertainties. This parameter allows us to

add a constant contribution to all values in the dataset, effectively lowering the weight of the

data located farthest from the cluster center where the number density is lowest. This allows

us to account for limitations in the models such as the effects of potential escapers near the

cluster tidal boundary that the LIMEPY models do not account for (see Claydon et al. 2019 for a

discussion of potential escapers in equilibrium models).

Finally, for the number density profile data, we make an additional modification to equa-

tion (4.1) and introduce a scaling factor K which allows us to fit only on the shape of the

8We note that in Dickson et al. (2023) the leading minus sign in the log-likelihood functions was missing from

the text.
9gcfit.readthedocs.io
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number density profile instead of the absolute values. K is defined as follows (see section 3.3 of

Hénault-Brunet et al. 2020 for a complete explanation) and the model data points (Σmodel,i) are

multiplied by this value before they are compared to the data:

K =

∑Np

i=1Σ(r)obs,iΣ(r)model,i/δΣ(r)
2
model,i

∑Np

i=1 (Σ(r)model,i)
2 /δΣ(r)2obs,i

, (4.2)

where Np is the number of data points, Σ(r)obs,i are the number density measurements, Σ(r)model,i

are the model number densities at the corresponding radii and δΣ(r)obs,i are the uncertainties

on the number density measurements where r is the projected radius of a given measurement of

Σ(r)obs,i.

We discuss the likelihoods for the pulsar timing data and the stellar mass function data

separately in the subsections below.

4.3.3.1 Pulsars

Pulsar period derivatives, as measured by an observer, are made up of several distinct compo-

nents, with contributions from the cluster’s gravitational potential, the gravitational potential

of the Milky Way, the pulsar’s proper motion, intrinsic effects like magnetic breaking, and the

changing dispersion measure between the pulsar and the observer. The effects of the cluster’s

proper motion and the Galactic potential are fairly well constrained based on the pulsar’s posi-

tion and motion in the Galaxy but, the effects of processes like magnetic breaking which are

intrinsic to the pulsar itself require more careful consideration. The breakdown of the measured

period derivative (Ṗ /P )obs into separate components is:

(

Ṗ

P

)

obs

=

(

Ṗ

P

)

int

+
acl,z
c

+
aG
c

+
aS
c

+
aDM

c
, (4.3)
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where (Ṗ /P )int is any change in period due to the effects intrinsic to the pulsar like magnetic

breaking, c is the speed of light, acl,z the line-of-sight acceleration of the pulsar due to the

cluster’s gravitational potential and is the quantity we are most interested in, aG is the acceler-

ation of the pulsar along the line of sight due to the Galaxy’s gravitational potential, aS is the

‘Shklovskii’ effect (Shklovskii 1970), an apparent acceleration due to the proper motion of the

pulsar and aDM is the effect of the changing dispersion measure between the pulsar and the

observer.

For each of the components in equation (4.3), we explain below how we calculate either a

point estimate or a probability distribution for the quantities of interest, and how we combine

these to obtain a probability distribution for the measured period derivative of a pulsar, given a

model (i.e. the likelihood).

All pulsars have some intrinsic spin-up or spin-down caused by processes like magnetic

breaking or active accretion. We exclude any redback pulsars (pulsars with massive, non-degenerate

companions) from this work and therefore assume that none of the pulsars are actively accreting

and that any intrinsic effects are purely in the spin-down direction (positive (Ṗ /P )int term in

Equation 4.3). To estimate the probability distribution for the intrinsic spin-down distribution,

we assume that the intrinsic spin-down of cluster pulsars follows the same distribution as the

Galactic field pulsars, and that it is dependent only on their period. We use the ATNF pulsar cat-

alog10 (Manchester et al. 2005) to build a distribution of possible Ṗ values for a given value of

P using the Galactic field pulsars as a reference (for which the period derivative can be directly

linked to the intrinsic spin-down after correcting for Galactic and proper motion contributions

due to there being no cluster acceleration for these pulsars). We compute a Gaussian kernel den-

sity estimator (KDE) in the field P -Ṗ space, which is sliced along each cluster pulsar’s period

to extract a distribution of intrinsic values. We show the field pulsars in the P -Ṗ plane, the KDE

10https://www.atnf.csiro.au/research/pulsar/psrcat/
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Figure 4.1: Top: The P -Ṗ plane for the field pulsars with the Gaussian KDE of the P -Ṗ dis-

tribution shown in blue. Bottom: an example of a slice from this KDE. The slice is taken at

logP = −2.5 s and shows the distribution of log Ṗ values for pulsars with this period.
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and an example of a slice from this KDE in Figure 4.1.

The next two components, acl,z/c and aG/c, are fundamentally similar in that they are both

manifestations of the Doppler effect. In the typical case, we infer a star’s radial velocity by

measuring the frequency shift of some known spectral feature, but in the case of pulsars, we

instead measure the acceleration of the pulsar along the line of sight by measuring the rate of

change of the pulsar’s period.

We will first look at aG/c, the effect of the Galaxy’s gravitational potential on the pulsar’s

period derivative. The acceleration due to the Galaxy’s potential is a function of the pulsar’s

position in the Galaxy and the Galaxy’s mass distribution. We use the GALA package (Price-

Whelan 2017) to calculate the acceleration due to the Galactic potential at each cluster’s position.

We adopt the MILKYWAYPOTENTIAL2022 potential from GALA as well as the cluster positions

measured by Vasiliev & Baumgardt (2021) who used Gaia EDR3 data to measure the positions

(including distances) and kinematics of Milky Way GCs. After projecting this acceleration along

the line of sight, the effect on the period derivative is the following:

ṖG =
aGP

c
, (4.4)

where ṖG is the contribution to the period derivative due to the Galactic potential.

The effect of the cluster’s gravitational potential on the pulsar’s period derivative (the acl,z/c

term in equation 4.3) is the effect we are most interested in as it helps us to constrain the internal

mass distribution of the cluster. For a pulsar with a known 3-D position within the cluster, the

period derivative due to the cluster’s gravitational potential (Ṗcl) will simply be:

Ṗcl =
acl,zP

c
. (4.5)

Because the pulsar position along the line of sight is unknown, we need to generate a probabil-
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ity distribution over possible line-of-sight accelerations for a given pulsar at a given projected

radius for a given model, based on the enclosed mass over the full range of possible line-of-sight

positions. We can then weight this distribution by the probability of a pulsar being at a given

position z along the line of sight to generate a probability distribution for Ṗcl given a projected

radius for a given model.

In order to generate the probability distribution of a pulsar being at a given position along

the line of sight we insert a tracer mass bin into the LIMEPY models. This tracer mass bin is

a single mass bin with a mean mass of 1.6 M⊙
11 and a negligible total mass. This allows us

to calculate the (line-of-sight) density profile of pulsar-mass objects in our model at a given

projected radius. This profile is proportional to the probability that a pulsar has a given line-

of-sight acceleration, given the model parameters, which indirectly provides constraints on the

position of the pulsar along the line-of-sight. Combining the line-of-sight density profile with

the line-of-sight acceleration profile we then obtain a probability distribution over the range of

period derivatives for a given projected radius for a given model.

We show the expression from which we can calculate this probability distribution in equa-

tion (4.6):

P (acl,z | Ri) ∝
dm

dacl,z
=

dm

dz

∣

∣

∣

∣

dz

dacl,z

∣

∣

∣

∣

=
ρ(z)

|dacl,z/dz|
, (4.6)

where P (acl,z | Ri) is the probability of a given line-of-sight acceleration measurement

(acl,z) for a projected radius Ri, m is mass column density of pulsar-mass objects along the

line of sight at projected radius Ri, acl,z is the line-of-sight acceleration for a given line-of-sight

position and ρ(z) is the mass density of pulsar-mass objects at a given line-of-sight position. We

note that, as stated on the right-hand side of Equation 4.6, this probability distribution is not

11We use 1.6 M⊙ as the tracer mass because most of the pulsars (which we assume to have masses of 1.4 M⊙)

have binary companions with typical masses of 0.2 M⊙ (see e.g. Freire et al. 2017).
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Figure 4.2: An example of the combination of the line-of-sight density and acceleration profiles

leading to the probability distribution of line-of-sight accelerations. Left panel: The normalized

line-of-sight density profile for pulsar-mass objects for a model fit to Terzan 5 at the projected

radius of pulsar aa. Middle panel: The line-of-sight acceleration profile for the same model and

projected radius. The derivative of this profile, used in the calculation of the probability distribu-

tion of line-of-sight accelerations is shown with a red, dashed line. Right panel: The probability

distribution for the line-of-sight acceleration for the same model, at the same projected radius.

This distribution is a result of combining the density profile with the derivative of the accelera-

tion profile.

normalized. After constructing this distribution, we explicitly normalize it such that it behaves

like a probability density function. Each of the quantities on the right-hand side of Equation (4.6)

(ρ(z), dacl,z/dz) are calculated for each LIMEPY model. We show the combination of these

distributions in Figure 4.2.

The Shklovskii effect (aS/c) is the effect of the pulsar’s proper motion on its observed period

derivative. Any transverse motion of a pulsar acts to increase the distance to the pulsar, regardless

of the direction of motion. A constant transverse motion results in a non-linear increase in the

distance, manifesting as an apparent line-of-sight acceleration (e.g. Verbiest et al. 2008). This

effect is calculated as:

ṖS =
aSP

c
=

µ2DP

c
, (4.7)

where ṖS is the rate of change of the period due to the Shklovskii effect and µ is the proper

motion. We use the cluster’s bulk proper motion to calculate this effect and again adopt the

measurements of Vasiliev & Baumgardt (2021)12. Finally, D is the distance to the cluster, one

12µα∗ = 5.253 ± 0.008 mas yr−1 and µδ = −2.557 ± 0.008 mas yr−1 for 47 Tuc and µα∗ = −1.864 ±
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of the parameters which we allow to vary in our fitting. This effect is of order aS ∼ 10−11 −

10−10 m s−2 which is negligible compared the acceleration due to the cluster potential which is

of order 10−9 − 10−8 m s−2 (e.g. Figure 4.2).

The final component, aDM/c, is the effect of the changing dispersion measure between a pul-

sar and the observer. The total amount and distribution of the ionized gas along our line of sight

is not necessarily constant over the full time-span over which these observations were performed

and small changes in the total dispersion measure between us and the cluster can cause small

variations in the observed period derivatives (see, for example, Prager et al. 2017). This effect

is stochastic, meaning it is unlikely to bias the timing solution in one direction or the other. Fur-

thermore, the magnitude of this effect is expected to be very small, on the order of 10−13 m s−2

(Prager et al. 2017), several orders of magnitude smaller than the typical acceleration from the

cluster potential, therefore we do not consider it in our analysis.

One potential contribution to the observed values of Ṗ /P that we do not model is the accel-

eration and its higher-order derivatives caused by nearby stars in the dense core of the cluster.

For the acceleration of the pulsars in particular, this effect has been shown to be typically ∼ 2 or-

ders of magnitude smaller than the mean-field acceleration from the cluster potential as a whole

(Phinney 1993; Prager et al. 2017). This effect is however relevant for the higher order deriva-

tives, where nearby stars contribute at a similar level to the bulk cluster potential (Blandford et al.

1987; Gieles et al. 2018). It is for this reason that while higher-order period derivatives are mea-

sured for many of the pulsars we use in this work, we chose not to consider these measurements

in our determination of the mass distributions of our clusters.

To combine these various effects into a likelihood function for (Ṗ /P )meas given a model, we

start with the distribution of Ṗcl/P from the cluster’s gravitational potential and convolve with

it the intrinsic distribution of (Ṗ /P )int values for the period of a given pulsar. We additionally

0.030 mas yr−1 and µδ = −5.108± 0.027 mas yr−1 for Terzan 5.
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Figure 4.3: Left panel: The probability distribution of Ṗint (intrinsic spin-down) for pulsar aa in

Terzan 5. Note that this distribution is of the same form as the one shown in the bottom panel

of Figure 4.1 but here shown on a linear scale. Middle panel: The probability distribution of Ṗcl

(due to the cluster’s potential at the projected radius of pulsar aa in a model fit to Terzan 5. Right

panel: The convolution of the intrinsic and cluster Ṗ distributions, then convolved with a Gaus-

sian distribution representing the uncertainty on the measured period derivative, transformed to

Ṗ /P , with the observed value for pulsar aa shown as a vertical dashed line.

convolve the distribution with a Gaussian distribution, centered at zero with a width equal to the

uncertainty of (Ṗ /P )meas in order to fully incorporate the uncertainty of the period derivative

measurement. We then shift this distribution by the point estimates for the contributions of the

Galactic potential and the Shklovskii effect. This results in a probability distribution for a mea-

sured period derivative which fully incorporates the physical effects within the cluster, which

depend on our model parameters as well as the effects of the Galactic gravitational potential and

the effects of the pulsars’ proper motions. We use this probability distribution to compute the

likelihood of each measured period derivative. We show an example of the combination of these

various distributions into the final likelihood in Figure 4.3.

Many pulsars in GCs are in binary systems, and for systems with well-determined timing

solutions, the orbital period derivatives of these systems can be measured. The orbital period

solutions are useful because the orbital periods of these systems are of the order of days, while

the intrinsic orbital decay of these systems acts over millions of years (e.g. Binney & Tremaine

2008). This means that, in the cases where the orbital period derivative can be measured, the

changes in the orbital period can be entirely attributed to the acceleration from the cluster and
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the well-constrained effects of the Galactic potential and pulsar’s proper motion. We note that

some black widow pulsars, like pulsars J and O in 47 Tuc, show orbital variability that is likely

due to interactions with their companion (e.g. Shaifullah et al. 2016; Freire et al. 2017) which

could be incorrectly interpreted as changes in the period derivative due to the cluster potential.

The orbital period derivatives of these systems cannot be measured, so the these problematic

systems are already excluded from our sample.

Due to the longer timescales and the difficulties associated with determining the orbital

periods of these systems (see Ridolfi et al. 2016 for details), the relative uncertainties on the

orbital period derivatives are much larger than those of the spin-period derivatives. These larger

uncertainties mean that the likelihood functions for the observed orbital period derivatives are

wider and provide weaker constraints on the mass distribution of the cluster, but we nonetheless

use the orbital period derivatives of these systems (pulsars E, H, I Q, R, S, T, U, X and Y in

47 Tuc and pulsars ao, ap, au, av, aw and ax in Terzan 513) as an additional constraint on the

cluster potential, independent of any intrinsic effects on the period derivatives. We construct

these likelihood functions in an identical way to the spin period likelihoods but we neglect any

effects intrinsic to the binary systems.

One avenue for future improvement of this methodology lies in including the dispersion

measures of the pulsars in the analysis. The dispersion measure of a pulsar provides a measure

of the amount of ionized gas between the pulsar and an observer, with a higher column density of

free electrons producing a larger dispersion measure. Given an estimate of the average dispersion

measure between an observer and a cluster and a model for the internal gas distribution within a

cluster, the dispersion measures provide an estimate of the line-of-sight position of each pulsar

13There are many additional pulsars in binary systems in Terzan 5 (e.g. Ransom et al. 2005) however the timing

solutions for these systems lack reported uncertainties which are required for our method. The spin-period timing

solutions from Ransom et al. (2005) are similarly lacking reported uncertainties however, in practice, uncertainties

on spin-period solutions are so small that our method is insensitive to their value. In these cases we adopt a single

value for the uncertainty on the spin period derivatives, taking 5 × 10−21 s/s as a conservative estimate for these

pulsars though we stress that our results are not sensitive to the adopted value.
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within the cluster.

For 47 Tuc, Abbate et al. (2018) used the pulsars within the cluster to infer the internal

gas distribution. These authors found that the pulsar data preferred a uniform gas distribution

within the cluster rather than a distribution that follows the stellar density (see also Pancino et al.

2024), finding a gas density ng of 0.23 ± 0.05 cm−3. This measurement, combined with the

average cluster dispersion measure DMcl of 24.38 ± 0.02 pc cm−3 allows us to infer the 3-D

position of each pulsar within 47 Tuc, independent of our modeling. We describe the necessary

modifications to equation 4.6 in Appendix 5.4.1.

We implemented this alternative formulation and applied it to 47 Tuc to test if the dispersion

measures would enable the pulsar timing data to place stronger constraints on the mass distribu-

tion within our models. We found that while the dispersion measures did in some cases provide

stronger constraints from individual pulsars, the uncertainties on the dispersion-measure-based

line-of-sight positions are such that the overall constraints are ultimately very similar to those

provided by the density-based calculation described in equation (4.6). Because the required in-

ternal gas models do not yet exist for Terzan 5 and because the dispersion measures provided

little to no improvement for 47 Tuc, we opt to simply use the density-based calculation for both

clusters for the remainder of this paper.

4.3.4 Stellar mass functions

The stellar mass function likelihoods are also Gaussian likelihoods, however, care must be taken

when extracting model values due to the non-trivial footprint of the observed HST fields from

which the mass functions were extracted. To ensure that we are extracting mass functions from

the same corresponding regions in the models, we employ a Monte Carlo integration method

which allows us to handle the irregular overlapping HST fields. This process is described in

detail by Dickson et al. (2023) and is implemented in the GCFIT package.
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The only uncertainty formally included with the stellar mass function data is the Poisson

counting error. We introduce a nuisance parameter F which scales up the uncertainties on the

absolute counts by a constant factor, leading to larger relative errors in regions with lower counts.

This error encapsulates additional sources of error that may not have been accounted for such as

the error associated with the conversion from luminosity to mass with an isochrone and the fact

that the mass function is being approximated as a broken power law, a functional form which

may not be a perfectly accurate representation of the true mass function of the cluster.

4.3.5 Stellar populations and mass bins

To generate the input mass bins for the LIMEPY models the evolve_mf algorithm requires

as inputs the mass function power-law slopes, as well as the age and metallicity of the stellar

population. For 47 Tuc we adopt an age of 11.75 Gyr (VandenBerg et al. 2013) and a metallicity

of [Fe/H] = −0.72 (Harris 1996,2010 edition). Depending on the fit, as detailed below, we

either allow the mass function power-law slopes to vary or fix the mass function.

Terzan 5 has been found to have at least three distinct stellar populations (Ferraro et al.

2009; Origlia et al. 2013; Ferraro et al. 2016). One of these populations, the most metal-poor

population ([Fe/H] = −0.8), only makes up a small fraction of the cluster and can be neglected

in our analysis. The other two population are a young (4.5 Gyr) super-solar ([Fe/H] = 0.2)

population, making up about 40% of the cluster (by mass) and an old (12 Gyr) population with

[Fe/H] = −0.2 making up the other 60% of the cluster. With the young population making up

a significant fraction of the cluster, we cannot simply assume a single, old stellar population for

Terzan 5 as we do for 47 Tuc as we want our remnant populations to be as realistic as possible.

Tests with our stellar evolution algorithm show that this 40/60 mixture of the young and old

stellar populations results in a remnant mass fraction around 35% at the present day, made up of

mostly white dwarfs. We can achieve a similar remnant fraction (∼ 34%) with a single metal-
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poor ([Fe/H] = −0.2), intermediate-age population of about 8 Gyr. Using this intermediate-age

stellar population also makes the main-sequence turnoff mass consistent with the maximum

mass of main-sequence stars of ∼ 0.9 M⊙ in our stellar mass function data, avoiding possible

issues when comparing the observed mass function and model predictions.

While populations of different metallicities are expected to produce different remnants from

similarly massive progenitors, this is a minor effect for our modeling. Our primary goal is to

produce a realistic mix of remnants that together make up the correct fraction of the total mass

of the cluster, a goal for which an intermediate-age population is a useful simplification.

Finally, the stellar mass function data available for Terzan 5 does not cover a wide enough

range of masses or distances from the cluster center to leave the mass function power-law slopes

free while fitting as they are derived from a single field and only extend down to ∼ 0.6 M⊙.

As such, we chose to fix the mass function slopes for Terzan 5 while still including the mass

function data as a constraint on the visible stellar mass in three radial bins between 0.67 and

1.67 arcminutes from the center.

We chose to adopt for the present-day mass function of Terzan 5 the bottom-light IMF of

Baumgardt et al. (2023), which was measured from star clusters in the Milky Way and Magel-

lanic Clouds and represents the best estimate for the IMF of massive star clusters. We show in

Section 5.1 that this mass function provides a satisfactory match to the available stellar mass

function data. This mass function has slopes of α1 = 0.3, α2 = 1.65, α3 = 2.3 and we again

place our breakpoints at 0.5 and 1 M⊙.
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Chapter 5

Probing populations of dark stellar

remnants in the globular clusters 47

Tuc and Terzan 5 using pulsar timing:

Results, Discussion and Conclusions

This chapter contains the Results, Discussion and Conclusions sections (sections 4, 5 and 6) of

the following manuscript submitted to the Astrophysical Journal for publication:

Probing populations of dark stellar remnants in the globular clusters 47 Tuc and Terzan 5

using pulsar timing

P. J. Smith, V. Hénault-Brunet, N. Dickson, M. Gieles, H. Baumgardt

I am the lead author of this manuscript and led the analysis and writing of the paper. I produced

all figures and tables and wrote the text.
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Table 5.1: Summary of the different model fits for 47 Tuc and Terzan 5, showing which datasets

are included or held out in each case. The columns indicate if the models are fit to the number

density profile (NDP), line-of-sight velocity dispersion profile (LOS), proper motion dispersion

profile (PM), stellar mass function data (MF) and the pulsar timing data.

Fit NDP LOS PM MF Pulsars

47Tuc-AllData 3 3 3 3 3

47Tuc-NoPulsars 3 3 3 3

47Tuc-NoKin 3 3(one field) 3

Ter5-AllData 3 3 3 3 3

Ter5-NoPulsars 3 3 3 3

Ter5-NoKinNoMF 3 3

5.1 Results

To test the performance of our method, we run several fits for each cluster with different subsets

of the data introduced in Section 4.2.

For 47 Tuc, we perform three fits: (1) a fit to all available data for this cluster (47Tuc-AllData),

(2) a fit with the pulsar timing data held out (47Tuc-NoPulsars), and (3) a fit to the number

density profile, pulsar timing data and a single field of mass function data1 (47Tuc-NoKin),

designed to emulate the data available for Terzan 5.

For Terzan 5 we also run three fits: (1) a fit with all of the available data for this cluster

(Ter5-AllData), (2) a fit with the pulsar data held out (Ter5-NoPulsars), and finally (3)

a fit on just the number density profile and pulsar data, with the kinematic data and mass function

data held out (Ter5-NoKinNoMF), to test the reliability of the limited stellar kinematic data

available for Terzan 5.

These fits are summarized in Table 5.1. We present the median of the posterior probability

distribution and 1σ credibility intervals for the parameters of each of these fits in Table 5.22.

1The field from 5.0 − 8.33 arcmin, HST proposal ID 11677. This field was chosen to roughly probe a similar

radial region as the single field available for Terzan 5.
2We have made the plots and sampler outputs for all six of our fits available in an online repository: 10.5281/zen-

odo.12004419

84

https://zenodo.org/doi/10.5281/zenodo.12004419
https://zenodo.org/doi/10.5281/zenodo.12004419


P
eter

J.
S

m
ith

D
y
n
am

ical
In

feren
ce

o
f

B
H

P
o
p
u
latio

n
s

in
G

C
s

Table 5.2: Medians and 1σ uncertainties of each model parameter for each of our fits. Entries without uncertainties indicate parameters that have been held

fixed during fitting. We note that as discussed in Dickson et al. (2023), the statistical uncertainties listed here likely underestimate the true uncertainties on

each parameter and, in particular, our uncertainties on the cluster mass are likely closer to 10% (Dickson et al. 2024).

Cluster 47Tuc-AllData 47Tuc-NoPulsars 47Tuc-NoKin Ter5-AllData Ter5-NoPulsars Ter5-NoKinNoMF

ϕ̂0 6.08+0.08
−0.08 6.05+0.07

−0.06 6.00+0.10
−0.06 5.9+0.3

−0.3 6.0+1.3
−0.3 5.9+0.4

−0.3

M
[

106 M⊙

]

0.899+0.006
−0.006 0.907+0.006

−0.005 0.96+0.02
−0.01 0.67+0.06

−0.04 0.79+0.06
−0.07 0.70+0.06

−0.07

rh [pc] 6.68+0.04
−0.04 6.70+0.04

−0.04 7.03+0.06
−0.06 2.1+0.3

−0.2 2.0+0.4
−0.3 2.3+0.4

−0.3

log10 (r̂a) 1.73+0.05
−0.03 1.78+0.05

−0.04 4.88+2.01
−1.88 4.75+2.07

−2.27 5.39+1.77
−2.50 4.49+2.10

−2.18

g 1.50+0.03
−0.03 1.54+0.02

−0.02 1.50+0.02
−0.03 1.3+0.5

−0.6 2.0+0.2
−0.5 1.6+0.4

−0.6

δ 0.47+0.01
−0.01 0.48+0.01

−0.01 0.489+0.008
−0.013 0.38+0.06

−0.05 0.34+0.06
−0.03 0.41+0.06

−0.06

s2
[

arcmin−4
]

0.0006+0.0003
−0.0002 0.0011+0.0028

−0.0006 0.0005+0.0002
−0.0002 7.84+4.87

−5.18 6.37+5.47
−4.33 7.33+5.13

−4.80

F 2.6+0.1
−0.1 2.59+0.09

−0.10 5.8+0.8
−0.7 1.9+0.3

−0.2 1.7+0.3
−0.2 1.9+0.3

−0.2

α1 0.38+0.03
−0.02 0.38+0.02

−0.02 0.3 0.3 0.3 0.3

α2 1.31+0.04
−0.04 1.31+0.04

−0.04 1.65 1.65 1.65 1.65

α3 2.23+0.03
−0.03 2.24+0.02

−0.02 2.3 2.3 2.3 2.3

BHret [%] 0.28+0.05
−0.04 0.31+0.06

−0.05 0.31+0.21
−0.10 1.77+2.07

−1.24 5.35+2.90
−2.96 1.84+1.60

−1.19

d [kpc] 4.41+0.02
−0.01 4.43+0.01

−0.01 4.45+0.03
−0.03 6.7+0.1

−0.1 6.7+0.1
−0.1 6.7+0.1

−0.1

8
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5.1.1 47 Tuc

The 47Tuc-NoPulsars fit is very similar to the fit presented in Dickson et al. (2024), and

we use this fit as a baseline to evaluate the additional leverage provided by the pulsar data. The

47Tuc-AllData fit to all of the available data is shown in Figure 5.1 and Figure 5.2, along

with examples of the likelihood functions for the measured pulsar period derivatives for the

best-fitting models shown in Figure 5.3 (top panels) and all pulsars in Figures 5.11, 5.12 and

5.13.

As an additional check on our fits, we compare the velocity dispersion of the pulsars to the

prediction from our models. For 47 Tuc, we limit this comparison to pulsars within 1′ from the

center, which corresponds to the isothermal (for pulsars) portion of our model. This leaves us

with 22 pulsars for which we calculate a total proper motion dispersion of 0.37±0.10 mas yr−1.

The prediction from our 47Tuc-AllData model is 0.430 ± 0.004 mas yr−1, in good agree-

ment with the measured value.

An initial comparison of the 47Tuc-AllData and 47Tuc-NoPulsars fits reveals no

significant differences, either in model parameters, fit quality or derived quantities like the black

hole mass fraction. We take this agreement as an indication that the 47Tuc-NoPulsars fit

already provides a very good description of the underlying mass distribution and dynamics of

the cluster, as probed by and fully consistent with the pulsar data.

Given the agreement between the 47Tuc-AllData and 47Tuc-NoPulsars fits, we

turn to the third case in order to evaluate the leverage provided by the pulsar data. In the

47Tuc-NoKin fit we seek to emulate the data that we have for Terzan 5. For this fit, we fix

the mass function to the bottom-light IMF of Baumgardt et al. (2023) discussed in Section 4.3.5.

This mass function is a reasonable approximation for 47 Tuc and is similar to the best-fitting

mass function we infer when the mass function is allowed to vary (see Table 5.2). We show part
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Figure 5.1: Best-fitting model (in orange) for the 47Tuc-AllData fit compared to different

datasets (in blue). Top left: Model fit to the projected number density profile. Top right: Model

fit to the projected line-of-sight velocity dispersion profile. Bottom panels: Model fit to the pro-

jected proper motion dispersion profile, separated into radial (left panel) and tangential (right

panel) components. The shaded regions represent the 1σ and 2σ credible intervals.

of the results for this third fit in Figure 5.4, where the best-fitting model is plotted along with the

stellar kinematic data even though this data is excluded from the fit. This model is in excellent

agreement with the data, similar to the models that are directly fit on the stellar kinematics and

the best fit parameters for this fit are similar to the previous two fits (see Table 5.2). A compari-

son of the enclosed mass profiles of the 47Tuc-AllData and 47Tuc-NoKin fits reveal that

the mass profiles vary by less than ∼ 5% within the innermost 1 pc (where the 47Tuc-NoKin

fit contains less mass) and the total mass varies only by ∼ 5% with the 47Tuc-NoKin fit

favoring a slightly higher mass.

We show our inferred posterior probability distribution for the cluster mass in BHs for

each of our three fits of 47 Tuc in Figure 5.5. While the results for the 47Tuc-AllData

and 47Tuc-NoPulsars fits are quite similar and both resemble the results of Dickson et al.

(2024), the 47Tuc-NoKin fit is worth discussing in more detail. The most obvious feature of

87



Peter J. Smith Dynamical Inference of BH Populations in GCs

5.0

7.5

×104

r = 0.00’-0.40’

 (12950)

7

8

9

×104

r = 0.40’-0.80’

0.8

1.0
×105

r = 0.80’-1.20’

4

6

×104

r = 1.20’-1.50’

1.0

1.5

×104

r = 1.20’-1.50’

 (11664)

1

2
×104

r = 1.50’-2.00’

0.5

1.0

1.5
×104

r = 2.00’-2.50’

2

4
×104

r = 2.50’-3.33’

 (12971)

2.5

5.0

7.5

×104

r = 3.33’-4.17’

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mass [M ¯ ]

0.5

1.0
×105

r = 4.17’-5.00’

d
N
/d
m

 [
M
−1 ¯

]

2.5

5.0

7.5

×104

r = 5.00’-5.83’

2

4
×104

r = 5.83’-6.67’

0.5

1.0

×104

r = 5.00’-5.83’

 (11677)

0.5

1.0

×104

r = 5.83’-6.67’

1

2
×104

r = 6.67’-8.33’

0

1

×103

r = 5.83’-6.67’

 (11677)

0.5

1.0

×104

r = 6.67’-8.33’

2.5

5.0

×103

r = 8.33’-9.17’

0.5

1.0

×104

r = 10.83’-14.17’

 (11677)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Mass [M ¯ ]

0

5

×102

r = 28.33’-40.00’

 (13435)

Figure 5.2: Continuation of Figure 5.1 showing the best-fitting model for the 47Tuc-AllData

fit compared to the stellar mass function data of 47 Tuc. Each colour corresponds to a different

HST field and each panel to a different radial region within a field. We display the HST proposal

ID for in the first panel of each field.
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Figure 5.3: Likelihood functions corresponding to the best-fitting model for the observed Ṗ /P
and Ṗb/Pb (recall that P and Pb are the spin and orbital periods of the pulsars) for one pulsar in

each cluster. Top left: The Ṗ /P likelihood for pulsar S in 47 Tuc from the 47Tuc-AllData fit.

Top right: The Ṗb/Pb likelihood for pulsar S in 47 Tuc from the 47Tuc-AllData fit. Bottom

left: The Ṗ /P likelihood for pulsar ap in Terzan 5 from the Ter5-AllData fit. Bottom right:

The Ṗb/Pb likelihood for pulsar ap in Terzan 5 from the Ter5-AllData fit. In each panel, we

show the observed period derivative as a vertical orange line. We show similar plots for all of

the pulsars in Figures 5.11 through 5.16.
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Figure 5.4: Same as Figure 5.1 but for the 47Tuc-NoKin fit. The best-fitting model is plotted

along with the stellar kinematic data even though this data is excluded from the fit.

this fit is that the posterior distribution of the mass in BHs is much broader than the cases with

abundant stellar kinematic and mass function data, and this posterior is also not uni-modal. De-

spite this, we can still place a very stringent upper limit (99th percentile) on the mass in BHs,

limiting this mass to less than ∼ 0.1% of the total cluster mass, even in the 47Tuc-NoKin fit.

We further note that even though we have adopted a fixed IMF for the 47Tuc-NoKin fit, the

inferred BH content is consistent with the fits where we allow the IMF to vary.

These tests demonstrate that the pulsar timing data can provide constraints on the central

dynamics, BH content, and mass distribution of the cluster very similar to the stellar kinematics,

and in cases like Terzan 5 where the stellar kinematic data are lacking, pulsar timing data may

provide an excellent substitute. With this in mind, we discuss the case of Terzan 5 next.

5.1.2 Terzan 5

We show the Ter5-AllData fit in Figures 5.6 and 5.7, along with examples of the likelihood

functions for the measured period derivatives for the best-fitting models shown in Figure 5.3
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Figure 5.5: Posterior probability distribution of the mass in BHs in 47 Tuc for each of the fits

summarized in Table 5.1.
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Figure 5.6: Best-fitting model (in orange) for the Ter5-AllData fit compared to different

datasets (in blue). Top left: Model fit to the projected number density profile. Top right: Model

fit to the projected line-of-sight velocity dispersion profile. Bottom: Model fit to the projected

proper motion dispersion profile. The shaded regions represent the 1σ and 2σ credible intervals

of the model fits.

(bottom panels) and all the pulsars in Figures 5.14, 5.15 and 5.16. Our best-fitting model for the

Ter5-AllData fit is in excellent agreement with the data and is able to fully reproduce all of

the observables, including the pulsar data. The comparative lack of data for Terzan 5 means that

our inferred model parameters for Terzan 5 generally have larger uncertainties compared to our

fits of 47 Tuc. We present the median and 1σ uncertainties on all model parameters in Table 5.2.

For Terzan 5, most pulsars do not have reported proper motions, and fewer still have both

components of the proper motions reported, meaning that we have insufficient data to calculate

a velocity dispersion from the pulsar data to compare to our model prediction.

When we do not fit on the pulsar data (Ter5-NoPulsars), the uncertainties on model pa-

rameters and related quantities generally become larger than was the case for the Ter5-AllData

fit. This comparison suggests that the pulsar data can play a more dominant role in constraining

the models in the case of Terzan 5 (compared to 47 Tuc), given the lack of stellar kinematic data
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for this bulge cluster.

The third fit, Ter5-NoKinNoMF, was done to test the reliability of the stellar kinematics

data given the challenge of membership determination in the Galactic bulge. As we find for 47

Tuc, even when we exclude the stellar kinematic data from the fit, the pulsar timing data provides

enough constraints that the resulting best-fitting model is relatively similar and generally in good

agreement with the held-out data. With the insight from 47 Tuc (see Section 5.1.1) that pulsars

can provide strong constraints on the mass distribution of a cluster, we interpret this agreement

as a sign that the existing stellar kinematics for Terzan 5, while sparse, are likely not suffering

from significant contamination or other systematic effects.

As mentioned previously, the stellar mass function data available for Terzan 5 does not cover

a wide enough range of masses or radii to a sufficient completeness level to allow us to leave the

mass function slopes as free parameters when fitting models. We adopted the IMF of Baumgardt

et al. (2023) for each of our three fits and we show in Figure 5.7 that this mass function is in

excellent agreement with the available data.

We show our inferred cluster masses in BHs for each of our fits of Terzan 5 in Figure 5.8.

Comparing the fits, it is again obvious that the pulsar data is providing most of the constraining

power, with the Ter5-NoPulsars fit resulting in an upper bound on the mass in BHs roughly

double that of the two fits that do include the pulsar data. Even with the inclusion of the pulsar

data we are only able to place an upper limit on the mass in BHs in this cluster, though we do

significantly improve on existing estimates, lowering the range of allowed masses by a factor of

∼ 10 (see discussion in Section 5.2.3). With these results, we cannot rule out the possibility that

Terzan 5 contains zero BHs at the present day and indeed our posterior distribution of mass in

BHs is peaked towards zero for both fits that include the pulsar data.
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Figure 5.7: Continuation of Figure 5.6 showing the best-fitting model for the Ter5-AllData

fit compared to the stellar mass function data of Terzan 5. Each panel corresponds to a different

radial region within the HST field.
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Figure 5.8: Posterior probability distribution of the mass in BHs in Terzan 5 for each of the fits

summarized in Table 5.1.

5.2 Discussion

5.2.1 Constraints from pulsars

The specific constraints provided by the pulsar data are on the local acceleration of each pul-

sar, and thus on the enclosed mass profile of the cluster. The most stringent constraints on the

cluster gravitational field come from pulsars with large negative observed values of Ṗ /P . This

can be seen most easily in the rightmost panel of Figure 4.3 where the positive side of the Ṗ /P

distribution has a long tail due to the convolution with the intrinsic spin-down distribution. By

contrast, the negative side of the Ṗ /P distribution truncates sharply to zero at the Ṗ /P corre-

sponding to the maximum possible acceleration at a given projected radius. In terms of specific

pulsars, this means that pulsar S and aa in 47 Tuc provide the strictest limits on the enclosed

mass while pulsar ae provides the strictest limits in Terzan 5. When inferring the dark remnant

content of a cluster (in particular BHs), the ideal pulsars would be very close to the center of
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the cluster and would have large negative observed values of Ṗ /P 3, as these pulsars place the

strongest constraints on the central mass distribution of their host cluster, where the mass density

is dominated by heavy remnants due to mass segregation. We show in Figure 5.9 the minimum

and maximum allowed values of Ṗ /P and Ṗb/Pb due to the cluster potential, where pulsars

providing these stronger constraints fall along the bottom contour of the allowed values of Ṗ /P .

Our finding of pulsar S being the most constraining pulsar in 47 Tuc is not new and was

discussed by Giersz & Heggie (2011). These authors reported that when attempting to find a

suitable Monte Carlo model of 47 Tuc, the tension between the central surface brightness and

the large negative acceleration of pulsar S was the single most impactful factor. Similarly, Figure

2 (extended) of Kızıltan et al. (2017a) shows that pulsar S is just barely compatible with their

model and could potentially be a driving factor in requiring more mass in the cluster center,

therefore favoring models with an IMBH. Pulsars 47Tuc-S and Ter5-ae do have a binary com-

panions (Freire et al. 2017; Prager et al. 2017), however, due to the fact that the companions are

low-mass WDs any spin-up effects from accretion which would shift the observed spin period

derivatives towards more negative values are very unlikely. Pulsar 47Tuc-aa appears to be an

isolated pulsar, leaving little possibility for accretion-induced spin-up. Because these pulsars are

not likely to experience any spin period change from accretion, the constraints that their spin

period derivatives place on the mass distribution of the cluster are likely trustworthy.

While pulsars with large negative observed values of Ṗ /P provide the strongest constraints,

the majority of pulsars have values that are much closer to zero or even on the positive extreme of

the distribution. These pulsars nonetheless provide useful constraints on the mass distribution of

the cluster, particularly when it comes to constraining the total mass of the cluster. These pulsars

have observed values of Ṗ /P that would be technically compatible with any model containing

3These pulsars would fall on the far side of the cluster along the line of sight. Pulsars on the near side of the

cluster would have positive line-of-sight accelerations due to the cluster potential which would shift the observed

Ṗ /P to positive values where our method is less constraining because intrinsic spin-down also shifts the observed

Ṗ /P towards positive values.
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Figure 5.9: Minimum and maximum values of Ṗ /P allowed from the acceleration in the cluster

potential for the best-fitting models of our 47Tuc-AllData (top) and Ter5-AllData (bot-

tom) fits. We show the median values as a dashed line while the shaded regions represent the

1σ and 2σ credible intervals of the model fits. The observed Ṗ /P of the pulsars are shown with

blue circles and the observed Ṗb/Pb are shown with orange squares. Uncertainties on the Ṗb/Pb

points represent measurement errors while the upward-facing error bars on the Ṗ /P points show

the typical width of the Ṗint distribution at each pulsar’s location in the P -Ṗ plane shown in Fig-

ure 4.1. Note that pulsars above the maximum contour are not disallowed by our models due

to the long tails on the spin-down side of the likelihood function shown in Figure 4.3. We note

that we have converted the projected radius of each pulsar from angular to linear units using the

median value of our inferred distances to each cluster from the AllData fits (see Table 5.2).
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some minimum mass at their radius. As the mass of the model grows however, the range of

possible Ṗ /P values grows, lowering the probability of observing these less extreme values. In

this way the pulsars provide not just a minimum enclosed mass at their projected radius, but also

some leverage on the exact value of the enclosed mass. We can see this when we compare our

fits of Terzan 5 with different subsets of the data, as the best-fitting models found when including

the pulsar data in the fits (Ter5-AllData and Ter5-NoKinNoMF) are less massive than the

fit that excludes the pulsar data (Ter5-NoPulsars).

5.2.2 Mass of Terzan 5

The total mass of Terzan 5 is somewhat uncertain in the current literature, with mass estimates

based on photometry (e.g. Lanzoni et al. 2010) a factor of a few higher than those based on

kinematics and dynamical modeling (e.g. Baumgardt & Hilker 2018; Prager et al. 2017). We

show in Figure 5.10 our inferred cumulative mass profile along with several literature values

for the cluster mass. Our profile is in good agreement with the estimate of the enclosed mass

at 1 pc from Prager et al. (2017) and our total mass estimate of 0.67+0.06
−0.04 × 106 M⊙ is in good

agreement with the total masses of Baumgardt & Hilker (2018) and Baumgardt et al. (2019b)

given that the true uncertainty on our inferred mass from multimass modeling is likely closer to

10% (see Section 3 in Dickson et al. 2024). The masses inferred from kinematics and dynamical

modeling, including our own value, are a factor of 2− 3 times smaller than the mass inferred by

Lanzoni et al. (2010) from photometry. A lower present-day mass for Terzan 5 potentially has

many important implications, in particular for studies that seek to model the star-formation and

chemical enrichment histories of this system (e.g. Romano et al. 2023).
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Figure 5.10: The inferred cumulative mass profile of Terzan 5 from our Ter5-AllData fit.

We show the median values as a solid line (blue) while the shaded regions represent the 1σ and

2σ credible intervals of the model fit. The enclosed mass at 1 pc measured by Prager et al. (2017)

is shown with an orange square. We show our inferred total mass and the values from Lanzoni

et al. (2010), Baumgardt & Hilker (2018) and Baumgardt et al. (2019b) as horizontal dashed

lines where the shaded regions represent the 1σ credible intervals.
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5.2.3 Comparison of mass in BHs to literature results

Our models allow us to place strong constraints on the mass in BHs in both 47 Tuc and Terzan

5. We compare our results with other studies that investigate the BH population in these clusters

in Table 5.3.

47 Tuc is a well-studied cluster with many previous works investigating its BH content, using

a variety of methods. In general, we see that recent works which employ Monte Carlo models

(Weatherford et al. 2020; Ye et al. 2022) generally infer larger BH populations (with larger un-

certainties) despite taking very different approaches while works employing equilibrium models

favor somewhat smaller populations of BHs. Our models place an upper limit (99th percentile)

on the total mass in BHs in 47 Tuc of 649 M⊙, very similar the results of Dickson et al. (2024)

who did not consider pulsar timing data. Our results are also in very good agreement with the

upper limit of 578 M⊙ on the mass of a central IMBH reported by Della Croce et al. (2024).

These authors employ action-based distribution function models to derive an upper limit on the

mass of a putative IMBH in 47 Tuc, which as discussed earlier (see discussion in Section 4.1),

is expected to have similar dynamical effects to a compact central cluster of BHs. Our inferred

upper limit on the mass in BHs corresponds to an upper limit of 0.07% on the BH mass fraction

fBH, slightly lower than the upper limit of 0.09% found by Della Croce et al. (2024)4. These

upper limits significantly limit the room for a more massive potential IMBH in 47 Tuc, which

we discuss in the following section.

Terzan 5 on the other hand, has only a single estimate of its BH content reported in the

literature, by Prager et al. (2017). These authors, also fitting on pulsar data, test for the presence

of an IMBH in the center of 47 Tuc, reporting marginal evidence of a ∼ 500 M⊙ IMBH and

an upper limit of 30 000M⊙. Our posterior for the mass in BHs in Terzan 5 is peaked near zero

4Our larger mass in BHs corresponds to a smaller fBH because we infer a larger total mass for 47 Tuc with

our multimass models than Della Croce et al. (2024) with their single-mass models, in line with the tendency for

single-mass equilibrium models to underestimate the total cluster mass (see Hénault-Brunet et al. 2019).
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Table 5.3: Reported masses in BHs (or upper limits) in 47 Tuc and Terzan 5 from dynamical

studies in the literature and from this work. Note that we have scaled the BH mass fraction

reported by Weatherford et al. (2020) to our inferred total mass to facilitate comparison. We note

that the uncertainties on the black hole content reported by studies that employ LIMEPY models

(Hénault-Brunet et al. 2020; Dickson et al. 2024 and this work) are likely underestimated by a

factor of 2− 3 (see discussion in Dickson et al. 2024). Listed uncertainties correspond to the 1σ
uncertainties.

†Note that the the posterior of Hénault-Brunet et al. (2020) is peaked towards zero.

∗These are upper limits on the mass of a putative IMBH, not the total mass in BHs.

Study 47 Tuc Terzan 5

Hénault-Brunet et al. (2020)† 430+386
−301 M⊙

Weatherford et al. (2020) 1037+1640
−922 M⊙

Ye et al. (2022) ∼ 2375 M⊙

Della Croce et al. (2024)* < 578 M⊙

Dickson et al. (2024) 420+150
−80 M⊙

This work 446+75
−72 M⊙ < 3860 M⊙

Prager et al. (2017)* < 30 000 M⊙

and the 99th percentile upper limit is 3860 M⊙(fBH < 0.6%), representing an improvement of

nearly one order of magnitude on the existing constraints on the mass in BHs.

5.2.4 An IMBH in 47 Tuc?

GCs have long been suggested to host IMBHs. For proposed detections in multiple clusters

using various techniques, see e.g. Gerssen et al. (2002), Noyola et al. (2008), Jalali et al. (2012),

Lützgendorf et al. (2015), Kamann et al. (2016), Baumgardt (2017), Kızıltan et al. (2017a),

Paduano et al. (2024), and Häberle et al. (2024). Many of these possible detections have however

been contested. Typically, follow-up studies find that the dynamical effects of a central IMBH

and other ingredients like a large population of centrally concentrated dark stellar remnants

(including stellar-mass black holes - BHs) are highly degenerate, making the detection of a non-

accreting IMBH very difficult (see e.g. McNamara et al. 2003; Van Der Marel & Anderson 2010;

Freire et al. 2017; Zocchi et al. 2017, 2019; Gieles et al. 2018; Baumgardt et al. 2019c; Mann

et al. 2019, 2020; Hénault-Brunet et al. 2020). Ruling out the presence of an IMBH is also very
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difficult, with most works placing only an upper limit on the dark mass in the core of a cluster

(e.g. Mann et al. 2019; Häberle et al. 2021; Della Croce et al. 2024). Häberle et al. (2024) find

seven stars with velocities above the inferred escape velocity in the inner 0.08 pc of ω Cen, and

they conclude that this implies the presence of an IMBH with a mass ≳ 8200M⊙. We note that

only two of those seven stars are above the escape velocity of the mass model of Dickson et al.

(2023), but they are the two closest to the cluster center and remain difficult to reconcile with

explanations other than an IMBH, making this the strongest case for an IMBH in a Galactic GC

so far.

Particularly relevant to this work are the results from Kızıltan et al. (2017a,b) and Paduano

et al. (2024) who each report evidence for an IMBH in 47 Tuc. Kızıltan et al. (2017a) reported

evidence for a 2300 M⊙ IMBH in the center of 47 Tuc on the basis of pulsar timing measure-

ments. In order to constrain the mass of a central IMBH, they compared snapshots from a grid of

N -body models (with and without an IMBH) to surface density and velocity dispersion profiles.

The best-fitting models with and without an IMBH were then compared to measurements of pul-

sar accelerations (based on period derivatives) due to the cluster’s gravitational potential, and the

set of models with a central IMBH was found to be more consistent with these measurements.

Critically, several follow-up studies identified limitations and possible issues with the anal-

ysis of Kızıltan et al. (2017a) (see Freire et al. 2017; Mann et al. 2019, 2020; Hénault-Brunet

et al. 2020). Among the issues raised was the assumption of a short cluster distance of 4 kpc5,

the lack of primordial binaries in their N -body models, and the use of a grid of isolated N -body

models that have a much steeper present-day mass function than the bottom-light mass function

that is observed for 47 Tuc, all of which could affect the inferred amount of dark mass in the

cluster core.

We note that models of 47 Tuc that do not include a central IMBH have been shown to

5The latest estimates of the distance to 47 Tuc based on Gaia data place it 4.52 ± 0.03 kpc away (Baumgardt &

Vasiliev 2021).
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satisfyingly reproduce its velocity dispersion profile, number density profile, and stellar mass

function data (Baumgardt et al. 2019a; Hénault-Brunet et al. 2020; Dickson et al. 2023, 2024).

These studies, however, either did not consider the pulsar data, or they checked that the models

were consistent with the pulsars’ maximum accelerations and projected radial distribution but

did not directly incorporate the pulsar timing data in the fitting process.

Our results allow us to address the claims of Kızıltan et al. (2017a) since we are directly fit-

ting our models to the pulsar timing data. As mentioned previously, our fit to all the available 47

Tuc data (47Tuc-AllData) yields an upper limit of 649M⊙ in BHs (∼ 0.07% of the total cluster mass).

This argues against the conclusions of Kızıltan et al. (2017a) that the pulsar data requires a cen-

tral IMBH of 2300 M⊙ to explain the observed values of Ṗ /P . We performed a fit of 47 Tuc

with the distance set to 4 kpc, resulting in a noticeably worse quality of fit but also a larger

(∼ 2400 M⊙) population of BHs, perhaps indicating that the low distance assumed by Kızıltan

et al. (2017a) contributes to the differences in our inferred dark mass in 47 Tuc.

The potential IMBH detection reported by Paduano et al. (2024) has a much wider range of

possible masses, with the nominal 1σ uncertainty range spanning 56− 6000 M⊙. The results

of Della Croce et al. (2024), who infer an upper limit on the mass of an IMBH in 47 Tuc of

578 M⊙ reduce this range substantially. The fact that our inferred upper limit on the mass in

BHs is consistent with the upper limit on the mass of an IMBH from Della Croce et al. (2024)

highlights the fact there is very little room for a significant dark mass in the center of 47 Tuc.

While the effects of an IMBH and a centrally concentrated population of BHs are expected

to be similar, they are not identical because the dark mass is more centrally concentrated if it is

in an IMBH. This means that an upper limit on the mass in BHs does not necessarily correspond

directly to the upper limit on the mass of an IMBH. Despite this, we expect that in our models,

these effects are likely degenerate due to the spatial regions probed by our datasets. The half-

mass radius of the BH population in our 47Tuc-AllData fit is ∼ 0.1 pc, which is more

103



Peter J. Smith Dynamical Inference of BH Populations in GCs

centrally concentrated than the majority of the pulsars in this cluster. While we do have a few

pulsars inside this radius, the pulsars with large negative period derivatives (those that provide

the most stringent constraints on the enclosed mass) are located outside of this radius meaning

we are largely insensitive to the spatial extent and concentration of the mass in BHs in the central

regions of the cluster.

We note that given the central line-of-sight velocity dispersion of 47 Tuc, the radius of influ-

ence of an IMBH of ∼ 600 M⊙ is ≲ 0.02 pc which at the distance of 47 Tuc corresponds to

≲ 0.8′′, a much smaller region than is probed by either the pulsar data or the stellar kinematic

data. This means that any future work seeking to use stellar kinematics to understand the nature

of the dark mass in the core of this cluster would need to precisely measure the velocities of

individual stars in the central arcsecond of 47 Tuc.

5.2.5 Central velocity dispersion of Terzan 5

The existing stellar kinematic data for Terzan 5 does not probe the central regions of the cluster,

but the pulsar timing data allows us to independently predict the central velocity distribution of

bright stars, without directly relying on any stellar kinematics. This also allows us to validate the

existing observed stellar kinematics for a cluster like Terzan 5 where bulge contamination makes

membership selection especially difficult. Our predicted central dispersion for Terzan 5 based

on fit Ter5-NoKinNoMF is 15.7+0.5
−0.4 km s−1. Future work seeking to constrain the central

kinematics of this cluster can use this prediction as a benchmark to which new measurements

can be compared. For example, a cusp in the central velocity dispersion within the radius of

influence of an IMBH should manifest as a velocity dispersion larger than this predicted central

velocity dispersion given that our models do not contain an IMBH.
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5.2.6 Terzan 5: a comparison with ω Cen

The formation of Terzan 5 and its multiple populations is a topic of much debate in the literature,

with suggested formation channels ranging from the stripped core of an accreted dwarf galaxy

(Ferraro et al. 2009, 2016) to a surviving fragment of the proto-bulge (Ferraro et al. 2009, 2016;

Taylor et al. 2022) to the product of a collision between a typical GC and a giant molecular cloud

or young massive cluster (McKenzie & Bekki 2018; Pfeffer et al. 2021; Bastian & Pfeffer 2022).

While it is generally accepted that the metal-rich population in Terzan 5 is too enriched to

have formed in a low-mass dwarf galaxy (e.g. Bastian & Pfeffer 2022), we can further inves-

tigate the dynamical evolution of this object by comparing Terzan 5 to ω Cen, a well-studied

GC which is frequently suggested to be the core of an accreted dwarf galaxy (e.g. Pfeffer et al.

2021). ω Cen is the most massive GC in the Milky Way (e.g. Harris 1996,2010 edition) and hosts

multiple stellar populations with a large spread in iron abundance (e.g. Johnson & Pilachowski

2010; Bellini et al. 2017). Several studies have presented dynamical models of ω Cen which

suggest that the cluster is host to a very large population of black holes (e.g. Zocchi et al. 2019;

Baumgardt et al. 2019c; Dickson et al. 2024) typically making up about 5% of the total cluster

mass (consistent with having retained almost all its BHs). The fact that we infer a much smaller

population of BHs and indeed rule out a population larger than 0.6% of the total cluster mass

in Terzan 5 suggests a different evolutionary history for this object. We note that ω Cen is more

massive than Terzan 5 by a factor of ∼ 3− 5, and has a factor of ∼ 5 larger rh, which both con-

tribute to a higher retention of BHs by the present day for ω Cen through an order of magnitude

longer relaxation time (diminishing the importance of dynamical ejections of BHs throughout

the evolution of the cluster). Additionally, the higher metallicity of Terzan 5 compared to ω Cen

is expected to produce lower-mass BHs from the same initial progenitor masses (e.g. Fryer et al.

2012; Banerjee et al. 2020), increasing the number of BHs lost to natal kicks and reducing the
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fraction of the cluster mass in BHs resulting from a given IMF.

While the origin of Terzan 5 remains uncertain, the discussion above highlights that further

studies of the evolution of Terzan 5 along with its BH population could help to shed light on the

initial conditions and formation of this peculiar system.

5.3 Conclusions

In this work, we presented a method to directly fit multimass dynamical models of GCs to pulsar

timing data, allowing to infer the mass distribution of clusters. We applied our method to 47

Tuc, a well-studied cluster with a wealth of conventional stellar kinematic and local stellar mass

function data as well as a large population of pulsars. We use this cluster as a benchmark by

which we evaluate the performance of our method. We then applied our method to Terzan 5,

a bulge cluster host to the largest population of pulsars of any Milky Way GC and lacking in

conventional stellar kinematic data. Our main conclusions are as follows:

1. For clusters like 47 Tuc and Terzan 5 that are host to large populations of pulsars, the

timing solutions of these pulsars can place similar constraints on the mass distribution and

dynamics of their host cluster as conventional stellar kinematics. We demonstrate that the

pulsar timing data allows us to accurately predict held-out stellar kinematic data and place

strong constraints on the BH content of clusters.

2. We infer new and improved values for the mass and structural parameters of Terzan 5,

finding a total mass of 0.67+0.06
−0.04 × 106 M⊙, and a (3D) half-mass radius of 2.1+0.3

−0.2 pc.

This mass is consistent with other dynamical estimates but is smaller by a factor of 2− 3

than the estimate derived from photometry.

3. We refine existing constraints on the BH content of 47 Tuc and lower the existing upper

limit on the mass in BHs of Terzan 5 by an order of magnitude. We infer the presence of
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446+75
−72 M⊙ in BHs in 47 Tuc and place an upper limit on the mass in BHs in Terzan 5 of

3860 M⊙.

4. Our results do not support the ∼ 2300 M⊙ IMBH reported by Kızıltan et al. (2017a) in

the center of 47 Tuc on the basis of pulsar timing data, as we instead infer an upper limit

of 649 M⊙ in BHs in this cluster, representing ∼ 0.07% of the total cluster mass. This

adds to several follow-up studies that refuted this original claim, but it is the first time that

pulsar timing data, a crucial component of the Kızıltan et al. (2017a) study, is revisited as

a direct constraint on the dynamical models.

5. We predict the central velocity dispersion of Terzan 5, independently of any stellar kine-

matic data, finding a dispersion of 15.7+0.5
−0.4 km s−1. This prediction provides a baseline

to which future work seeking to measure the central kinematics of this cluster can be

compared.

The next generation of radio telescopes is expected to dramatically increase the number of

detected pulsars in GCs (e.g. Hessels et al. 2015; Ridolfi et al. 2021; Chen et al. 2023; Berteaud

et al. 2024), allowing us to apply our methodology to clusters that are not currently known to

host large numbers of pulsars.

Perhaps the most promising candidate to host a large number of undiscovered pulsars is

Liller 1, a bulge cluster that is qualitatively very similar to Terzan 5 (e.g. Ferraro et al. 2021).

Liller 1 is a massive cluster (∼ 1×106 M⊙, Baumgardt et al. 2019b) that is similarly compact to

Terzan 5 and has been found to have a similarly high stellar encounter rate (Saracino et al. 2015).

This high stellar encounter rate, combined with strong gamma-ray emission detected from this

cluster, suggests that it may be host to hundreds of undiscovered MSPs (Tam et al. 2011).

Like Terzan 5, Liller 1 is difficult to observe due to its location, with bulge contamination

and strong differential reddening (e.g. Pallanca et al. 2021) making the collection of conventional
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stellar kinematic data very difficult. As we have shown for Terzan 5, pulsars present a unique

opportunity to investigate the internal dynamics of even heavily obscured clusters.
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5.4 Supplementary Material

5.4.1 Incorporating dispersion measures

Given a description of the gas distribution within a cluster (e.g. Abbate et al. 2018) Equation 4.6

can be modified to use the dispersion measure of a pulsar to form the line-of-sight probability
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distribution instead of using the model line-of-sight density profile:
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, (5.1)

where we have replaced the dm
dz term with P (z | zDM, σz,DM), the probability distribution of

line-of-sight positions z given the predicted line-of-sight position from the dispersion measure

zDM and its uncertainty σz,DM. The values of zDM,i and σz,DM can be calculated from the

an individual dispersion measure DMi, ng and DMc as zDM,i = (DMi − DMc)/ng (under the

assumption of a uniform gas distribution) with σz,DM following from Gaussian error propagation.

P (z | zDM,i, σz,DM,i) is then a Gaussian probability density function, centered at zDM,i with a

dispersion of σz,DM:

P (z | zDM,i, σz,DM,i) =
1

σz,DM,i

√
2π

exp

(

−1

2

(

z − zDM,i

σz,DM,i

)2
)

. (5.2)

5.4.2 Pulsar Data
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Table 5.4: Pulsar timing data used in this work for 47 Tuc. The columns indicate the pulsar ID, projected radius, spin period, spin-period derivative, the

uncertainty on the spin-period derivative, the orbital period, the orbital period derivative, the uncertainty on the orbital period derivative, and the proper

motion in R.A. and Dec. with associated uncertainties. In the rightmost column we indicate the work in which the timing solution was derived. Timing

References: F17: Freire et al. (2017), R16: Ridolfi et al. (2016), FR18: Freire & Ridolfi (2018).

Pulsar ID R P Ṗ ∆Ṗ Pb Ṗb ∆Ṗb µα∗ µδ Ref.

[arcmin] [ms] [s/s] [s/s] [days] [s/s] [s/s] [mas yr−1] [mas yr−1]

J0024-7204C 1.2298 5.75678 -4.99e-20 2e-24 – – – 5.2± 0.1 −3.1± 0.1 F17

J0024-7204D 0.6483 5.35757 -3.42e-21 9e-25 – – – 4.24± 0.07 −2.24± 0.05 F17

J0024-7204E 0.6205 3.53633 9.85e-20 5e-25 2.2568483 4.8e-12 2e-13 6.15± 0.03 −2.35± 0.06 F17

J0024-7204F 0.2149 2.62358 6.45e-20 7e-25 – – – 4.52± 0.08 −2.50± 0.05 F17

J0024-7204G 0.2781 4.04038 -4.22e-20 2e-24 – – – 4.5± 0.1 −2.9± 0.1 F17

J0024-7204H 0.7677 3.21034 -1.83e-21 1e-24 2.357696895 -7e-13 6e-13 5.1± 0.2 −2.8± 0.2 F17

J0024-7204I 0.2772 3.48499 -4.59e-20 2e-24 0.2297922489 -8e-13 2e-13 5.0± 0.2 −2.1± 0.2 F17

J0024-7204J 1.0185 2.10063 -9.79e-21 9e-25 – – – 5.27± 0.06 −3.59± 0.09 F17

J0024-7204L 0.1627 4.34617 -1.22e-19 1e-24 – – – 4.4± 0.2 −2.4± 0.2 F17

J0024-7204M 1.0688 3.67664 -3.84e-20 5e-24 – – – 5.0± 0.3 −2.0± 0.4 F17

J0024-7204N 0.4793 3.05395 -2.19e-20 2e-24 – – – 6.3± 0.2 −2.8± 0.2 F17

J0024-7204O 0.0806 2.64334 3.03e-20 6e-25 – – – 5.01± 0.05 −2.58± 0.08 F17

J0024-7204Q 0.9502 4.03318 3.4e-20 6e-25 1.1890840496 -1e-12 2e-13 5.2± 0.1 −2.6± 0.1 F17

J0024-7204R 0.1519 3.48046 1.48e-19 3e-24 0.06623147751 1.9e-13 4e-14 4.8± 0.1 −3.3± 0.2 F17

J0024-7204S 0.215 2.83041 -1.21e-19 1e-24 1.2017242354 -4.9e-12 4e-13 4.5± 0.1 −2.5± 0.1 F17

J0024-7204T 0.3179 7.58848 2.94e-19 1e-23 1.126176771 2.5e-12 1.1e-12 5.1± 0.6 −2.6± 0.7 F17

J0024-7204U 0.9386 4.34283 9.52e-20 2e-24 0.42910568324 6.6e-13 5e-14 4.6± 0.2 −3.8± 0.1 F17

J0024-7204W 0.087 2.35234 -8.66e-20 1e-24 – – – 6.1± 0.5 −2.6± 0.3 R16

J0024-7204X 3.828 4.77152 1.84e-20 7e-25 10.921183545 6e-12 2e-12 5.8± 0.1 −3.3± 0.2 R16

J0024-7204Y 0.3743 2.19666 -3.52e-20 8e-25 0.5219386107 -8.2e-13 7e-14 4.4± 0.1 −3.4± 0.1 F17

J0024-7204Z 0.1506 4.55445 -4.56e-21 1e-22 – – – 4± 2 1± 2 F17

J0024-7204aa 0.465 1.84538 -4.59e-20 1.5e-23 – – – 4.6± 0.8 −4.6± 1.3 FR18

J0024-7204ab 0.2092 3.70464 9.82e-21 8e-24 – – – 4.2± 0.6 −2.9± 0.5 F17
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Table 5.5: Same as Table 5.4 but for Terzan 5. Timing References: L00: Lyne et al. (2000), R05: Ransom et al. (2005), P17: Prager et al. (2017), C18:

Cadelano et al. (2018), A18: Andersen & Ransom (2018), R21: Ridolfi et al. (2021), P24: Padmanabh et al. (2024).

Pulsar ID R P Ṗ ∆Ṗ Pb Ṗb ∆Ṗb Ref.

[arcmin] [ms] [s/s] [s/s] [days] [s/s] [s/s]

J1748-2446C 0.179 8.4361 -6.06e-19 4e-21 – – – L00

J1748-2446D 0.693 4.71398 1.3e-19 – – – – R05

J1748-2446E 0.361 2.1978 -1.8e-20 – – – – R05

J1748-2446F 0.125 5.54014 4e-21 – – – – R05

J1748-2446G 0.185 21.6719 3.9e-19 – – – – R05

J1748-2446H 0.227 4.92589 -8.3e-20 – – – – R05

J1748-2446I 0.03 9.57019 -7.1e-20 – – – – R05

J1748-2446J 0.948 80.3379 2.5e-18 – – – – R05

J1748-2446K 0.22 2.96965 -9.4e-20 – – – – R05

J1748-2446L 0.149 2.2447 -1.7e-20 – – – – R05

J1748-2446M 0.083 3.56957 4.9e-19 – – – – R05

J1748-2446N 0.154 8.6669 5.5e-19 – – – – R05

J1748-2446O 0.119 1.67663 -6.9e-20 – – – – R05

J1748-2446Q 0.36 2.812 -3.6e-20 – – – – R05

J1748-2446R 0.101 5.02854 4.7e-19 – – – – R05

J1748-2446S 0.249 6.11664 6.4e-20 – – – – R05

J1748-2446T 0.443 7.08491 3.1e-19 – – – – R05

J1748-2446U 0.148 3.28914 3e-19 – – – – R05

J1748-2446V 0.178 2.07251 -9.5e-20 – – – – R05

J1748-2446W 0.037 4.20518 1.2e-19 – – – – R05

J1748-2446X 0.488 2.99926 5.9e-20 – – – – R05

J1748-2446Y 0.056 2.04816 1.5e-19 – – – – R05

J1748-2446Z 0.033 2.46259 -8.6e-20 – – – – P17
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Table 5.6: Same as Table 5.4 but for Terzan 5. Timing References: L00: Lyne et al. (2000), R05: Ransom et al. (2005), P17: Prager et al. (2017), C18:

Cadelano et al. (2018), A18: Andersen & Ransom (2018), R21: Ridolfi et al. (2021), P24: Padmanabh et al. (2024).

Pulsar ID R P Ṗ ∆Ṗ Pb Ṗb ∆Ṗb Ref.

[arcmin] [ms] [s/s] [s/s] [days] [s/s] [s/s]

J1748-2446aa 0.222 5.78804 -4.4e-19 – – – – P17

J1748-2446ab 0.038 5.11971 4.2e-19 – – – – P17

J1748-2446ac 0.337 5.08691 2.3e-19 – – – – P17

J1748-2446ae 0.032 3.65859 -5.7e-19 – – – – P17

J1748-2446af 0.145 3.30434 -2.3e-19 – – – – P17

J1748-2446ag 0.167 4.44803 1.2e-20 – – – – P17

J1748-2446ah 0.127 4.96515 5.7e-19 – – – – P17

J1748-2446ai 0.192 21.22838 1.4e-18 – – – – P17

J1748-2446aj 0.17 2.95891 1.41232e-19 6e-24 – – – C18

J1748-2446ak 0.287 1.8901 8.8495e-20 6-24 – – – C18

J1748-2446am 0.044 2.93382 -1.368e-19 3e-23 – – – A18

J1748-2446an 0.201 4.802 1.55746e-19 6-24 – – – R21

J1748-2446ao 0.156 2.27438 8.6979e-20 1e-24 57.5556 1.65e-10 9e-12 P24

J1748-2446ap 0.253 3.74469 3.07e-19 1e-24 21.3882 1.3e-10 2.1e-11 P24

J1748-2446aq 0.038 12.52194 -7.16198e-19 6e-24 – – – P24

J1748-2446as 0.084 2.32646 2.559829e-19 6e-25 – – – P24

J1748-2446at 0.123 2.18819 -5.89966e-20 4e-25 – – – P24

J1748-2446au 0.053 4.54822 -1.06797e-19 2e-24 – – – P24

J1748-2446av 0.045 1.84945 -4.25047e-20 2e-25 3.38166 -1e-11 2e-12 P24

J1748-2446aw 0.156 13.04908 1.306465e-18 3e-24 0.73138 5.92e-12 2e-14 P24

J1748-2446ax 0.161 1.9435 -9.5495e-21 7e-25 30.2088 -1.3e-11 9e-12 P24
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Figure 5.11: Likelihood functions corresponding to the best-fitting model (47Tuc-AllData)

for the observed Ṗ /P for each pulsar in 47 Tuc. In each panel, we show the observed period

derivative as a vertical orange line.
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Ṗ /P [s−1] ×10−16

0.0

0.5

1.0

1.5

×1016 J0024-7204O

−2 0 2
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Figure 5.12: Continuation of Figure 5.11.
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Ṗb/Pb [s−1] ×10−17

0

1

×1016 J0024-7204S

−4 −2 0 2 4
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Figure 5.13: Likelihood functions corresponding to the best-fitting model (47Tuc-AllData)

for the observed Ṗb/Pb for each pulsar in 47 Tuc with an orbital timing solution. In each panel,

we show the observed period derivative as a vertical orange line.
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Figure 5.14: Likelihood functions corresponding to the best-fitting model (Ter5-AllData)

for the observed Ṗ /P for each pulsar in Terzan 5. In each panel, we show the observed period

derivative as a vertical orange line.
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Ṗ /P [s−1] ×10−16

0

5

×1015 J1748-2446ag

−2 0 2
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Ṗ /P [s−1] ×10−16

0

1

×1016 J1748-2446ak

−2 0 2
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Ṗ /P [s−1] ×10−16

0

1
×1016 J1748-2446ao

−1 0 1
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Ṗ /P [s−1] ×10−16

0

1
×1016 J1748-2446av

−2 0 2
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Figure 5.15: Continuation of Figure 5.14.
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Figure 5.16: Likelihood functions corresponding to the best-fitting model (Ter5-AllData)

for the observed Ṗb/Pb for each pulsar in Terzan 5 with an orbital timing solution. In each

panel, we show the observed period derivative as a vertical orange line.
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Chapter 6

Conclusions

In this thesis we have examined the present-day BH populations in Galactic GCs. These BHs

are expected to form through the evolution of massive stars in clusters, and the properties of the

present-day populations have wide-ranging implications for many areas of astronomy (Section

1.1).

Among the array of possible methods for directly detecting BHs in GCs, we have briefly

discussed X-ray and radio detections of accreting BHs (Section 1.2.1, e.g. Strader et al. 2012),

radial velocity detections of BHs in binary systems (Section 1.2.2, e.g. Giesers et al. 2018), and

the potential for gravitational lensing detections with future observatories (Section 1.2.3, e.g.

Kıroğlu et al. 2022).

Of these methods, those that are expected to find the most BHs are X-ray and radio detections

and radial velocity detections. Common to both of these methods is the significant caveat that

the number of BHs we expect to detect via their accretion or binary companions is not a good

indicator of the total number of BHs in a cluster (Kremer et al. 2018b,a). This is a significant

issue as the total number of BHs in a cluster is the most important quantity for understanding

the role of BHs in the dynamical evolution of the cluster, and for understanding the broader

astrophysical implications of BHs in GCs.
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6.1 Summary of indirect methods for detecting black holes

Given the limitations of direct detections, we have focused on indirect methods for detecting BHs

in GCs. These methods rely on the dynamical effects of the BHs on the cluster as a whole, and

are therefore sensitive to the total number of BHs in the cluster. Underlying each of the indirect

methods we have discussed is the fact that the presence of BHs in a cluster has a significant

effect on the dynamics of the cluster as a whole. This means that by observing the dynamics of

the stars in a cluster, we can infer the presence of BHs in the cluster through the use of dynamical

models (Section 1.3).

These dynamical signatures manifest themselves in a number of observable ways, each a

consequence of the BHs acting as a heat source in the core of the cluster. In brief, BHs and espe-

cially BH binaries transfer energy to surrounding stars through dynamical interactions, leading

to an expansion of the core of the cluster, an increase in the velocity dispersion of the core, and a

decrease in the degree of mass segregation in a cluster (Section 1.3.1). Each of these effects can

be used to infer the presence of BHs in a cluster, and to estimate the number of BHs in a cluster,

when coupled with sufficiently detailed dynamical models.

There are several approaches to using these dynamical signatures to infer the presence of

BHs in a cluster. The most direct approach is to compute a dynamical model of the cluster, accu-

rately reproducing the observed properties of the cluster, and then inspecting the model to infer

the BH population (Section 3.1, e.g. Kremer et al. 2018b; Ye et al. 2022; Dickson et al. 2024).

This approach has been used in a number of studies, and we have shown in this thesis that it

can be successful in inferring the presence of BHs in a cluster, given a sufficient array of obser-

vational data. This approach can be conducted with either evolutionary models or equilibrium

models, with the former being more computationally expensive but providing the evolutionary

history of the cluster, and the latter omitting the evolutionary history in favour of being fast
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enough to be used in a Bayesian analysis.

The other approach to inferring the presence of BHs in a cluster is to compute a large grid

of models (typically evolutionary models), designed to approximate the population of GCs, and

then to look for correlations between observable properties of the models and their BH content

(Section 3.2, Askar et al. 2018; Weatherford et al. 2020). This approach has the advantage of

being applicable to a large number of clusters so long as they fall within the parameter space of

the grid of models, without the need to compute dedicated models for individual clusters. This

approach relies on the grid of models being sufficiently large and dense to accurately represent

the population of Milky Way GCs, and on the ability to construct a robust relationship between

the observable properties of a cluster and its BH content. We presented a discussion of these

methods as well as their strengths and limitations in Chapter 3.

6.2 This thesis

6.2.1 Tests of equilibrium models with mock data

In this thesis we have focused on the use of multimass distribution function (LIMEPY) models

to infer the presence of BHs in GCs. Through the use of mock data extracted from a large grid

of Monte Carlo models, we have shown that these models can be used to accurately infer the

presence of BHs in a cluster (Chapter 2, see also Dickson et al. 2024). We matched snapshots of

the Monte Carlo models to real Milky Way clusters and extracted mock observations, designed

to mimic the observational data available for real clusters. We then fit the LIMEPY models to

the mock data using the same procedure as we do for real clusters, and compared the inferred

BH populations to the true BH populations of the models. We examined the median BH mass

fraction inferred by the models, and the associated uncertainties. Our main conclusions from this

first part can be summarized as follows:
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• When coupled with a mass-evolution algorithm, the LIMEPY models are able to accurately

infer the BH content of a cluster from observational data, with the inferred BH mass

fraction, fBH falling along the one-to-one line with the true fBH for most snapshots. We

find no evidence of systematic biases in the inferred BH populations as a function of the

true BH content of the cluster.

• The models have a tendency to significantly underestimate the BH content of some dy-

namically young clusters. We developed a criterion to efficiently identify these clusters

and exclude them from the analysis.

• The uncertainties on the BH mass fraction are found to be underestimated by a factor

of ∼ 2.5. Under the assumption that the estimates are not biased as a function of fBH,

we developed a simple correction to the uncertainties that reflects the true spread in the

estimates of the LIMEPY models around the true values.

6.2.2 Pulsar timing constraints for dynamical modelling

In addition to the tests of the LIMEPY models with mock data, we have also developed a new

method to include timing data from millisecond pulsars as additional constraints on dynamical

models (Chapters 4 and 5). Pulsar timing provides one of the few opportunities in astrophysics

to directly measure accelerations of individual objects, allowing us to directly probe the gravita-

tional potential of the cluster.

While modern pulsar timing data gives extremely precise measurements of periods and pe-

riod derivatives (both spin and orbital) for individual millisecond pulsars (Section 4.2), the ob-

served period derivatives does not by itself provide a direct measurement of the acceleration of

the pulsar. Instead, the observed period derivative is a combination of the intrinsic spin-down of

the pulsar with several real or apparent accelerations that the pulsar is subject to. Because we
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are only concerned with the acceleration due to the cluster potential, we need to account for the

accelerations due to galactic potential, the apparent acceleration due to the proper motion of the

pulsar, and the intrinsic spin-down of the pulsar (Section 4.3). Among these effects, the galactic

acceleration and the apparent acceleration due to the proper motion of the pulsar are straight-

forward to calculate and account for while the intrinsic spin-down of the pulsar requires a more

careful treatment. To marginalize over the range of possible intrinsic spin-downs, we take the

field population of pulsars, which are only subject to the galactic acceleration and the apparent

acceleration due to the proper motion of the pulsar, as a reference population. We then construct

a Gaussian KDE over the observed period-period derivative space, allowing us to estimate the

distribution of intrinsic spin-downs for a pulsar of a given period. Having corrected for the above-

mentioned effects, we can then calculate a likelihood for the observed period derivative and fit

dynamical models of the cluster to the pulsar timing data.

For this study, we build on the work we presented in Dickson et al. (2023, 2024), using the

same models and fitting procedure, but with the addition of the pulsar timing data. We focus

on two clusters, Terzan 5 and 47 Tuc, the clusters which host the two largest populations of

millisecond pulsars in the Milky Way.

In general, we treat 47 Tuc as a test case for the method, as the cluster is well-studied and has

an abundance of conventional stellar kinematic data. We run three fits to the cluster, one with all

data included (47Tuc-AllData), one without the pulsar timing data (47Tuc-NoPulsars),

and one with the pulsar timing data included, but the stellar kinematics excluded (47Tuc-NoKin).

We find that the pulsar timing data is able to provide very strong constraints on the mass distri-

bution and dynamics of the cluster, with the 47Tuc-NoKin fit very accurately predicting the

held-out stellar kinematic data. Looking at the inferred BH content, we see a similar agreement

between the fits, with the 47Tuc-NoKin fit resulting in a slightly wider posterior distribution

for the BH fraction, but recovering a similar median value to the 47Tuc-AllData fit.
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In contrast to 47 Tuc, Terzan 5 is a cluster with very little conventional stellar kinematic

data, owing primarily to its location in the Galactic bulge. The fact that this cluster is host to

a large population of millisecond pulsars gives us a unique opportunity to probe the dynamics

of a cluster that would otherwise be extremely challenging to model. We again run three fits

to the cluster, one with all data included (Ter5-AllData), one without the pulsar timing

data (Ter5-NoPulsars), and one with all stellar kinematics and stellar mass function data

excluded (Ter5-NoKinNoMF). Comparing the three fits, we find that the fit without the pulsar

timing data is unable to place strong constraints on the BH content, resulting in a wide posterior

distribution for the BH fraction spanning several thousand solar masses.

Our conclusions can be summarized as follows:

• Pulsar timing data can provide strong constraints on the dynamics of GCs, and can be used

to infer the presence of BHs in a cluster even when conventional stellar kinematic data is

lacking.

• We are able to place a firm upper limit on the mass in BHs in Terzan 5 of ∼ 4000 M⊙,

an order of magnitude lower than the previous estimate from the literature (Prager et al.

2017).

• We refine existing constraints on the BH content of 47 Tuc, find that a population of stellar-

mass BHs with a total mass of 446+75
−72 M⊙ is preferred by the data. The presence of an

IMBH in 47 Tuc of several thousand solar masses is not supported by our analysis, but a

less massive IMBH of ≲ 600M⊙ is still possible.

• We present a new measurement of the total mass of Terzan 5, finding a value of 0.67+0.06
−0.04×

106 M⊙, consistent with previous dynamical measurements (Prager et al. 2017; Baum-

gardt & Hilker 2018; Baumgardt et al. 2019b) but a factor of 2 − 3 lower than the photo-

metric measurement from the literature (Lanzoni et al. 2010).
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• We predict the central velocity dispersion of Terzan 5 to be 15.7+0.5
−0.4 km s−1, providing a

baseline for future efforts to measure the central kinematics of this cluster, which are most

sensitive to the presence of BHs or a potential IMBH.

As the next generation of radio telescopes come online, the power of this method will only

increase. The SKA is expected to provide a significant increase in the number of pulsars de-

tected, many of which will be in GCs (Hessels et al. 2015). Adding to the census of pulsars in

clusters will allow us to apply the method we have developed here to a larger number of clusters,

providing a more complete picture of the dynamics of GCs and the populations of BHs within

them. As we have seen in Section 5.2, all pulsars do not contribute equally to the dynamical

constraints, and the method is most effective when we have pulsars with large negative period

derivatives located close to the cluster centre. This means that discoveries of individual pulsars

that match these criteria can by themselves be extremely valuable, even if the total number of

pulsars in a cluster is not significant.

6.3 Future work

Much of the work presented in this thesis has the potential to be expanded upon in the future.

The most obvious extension is to simply wait for the discovery and timing of new pulsars, and

applying the methodology we have presented here to new clusters or new pulsars. Likewise,

the framework we have developed for testing inferred BH populations with mock data can be

applied to other methodologies, such as those discussed in Section 1.3. Beyond these immediate

extensions, there are several areas of theoretical work that could be pursued, for both of the main

topics of this thesis.

When testing inferred BH populations with mock data, we currently use the pre-existing

public grid of CMC models presented in Kremer et al. (2020). The models included in this grid
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cover a wide range of initial conditions, but the limitations of the grid are especially apparent

towards the high-mass end of the cluster population. Additional parameters like the primordial

binary fraction and the initial mass function of the cluster could be also varied to provide a more

complete picture of the parameter space of Milky Way GCs. Beyond changes to the initial con-

ditions of the models, the models themselves have the inherent limitation of spherical symmetry

and do not include cluster rotation (a property shared by the LIMEPY models). While most clus-

ters are not strongly rotating (Sollima et al. 2019; Vasiliev & Baumgardt 2021), the effects of

modelling a rotating cluster with a non-rotating model could be explored. In order to do this, we

would likely need to employ direct N -body models, which can include rotation.

For the pulsar timing work, one possible extension is to jointly consider the spin and orbital

timing solutions of individual pulsars. In this thesis, we treat the spin and orbital solutions as

separate data but, in reality, their period derivatives should be affected by the same accelerations.

By comparing the two period derivatives, it is possible to constrain the true intrinsic spin-down of

the pulsar (e.g. Padmanabh et al. 2024), which would allow us to forgo the current KDE-based

method of marginalizing over the intrinsic spin-downs of the pulsars. This would allow us to

more accurately infer the accelerations of individual pulsars, and would mean that pulsars with

large positive period derivatives could be just as informative as those with large negative period

derivatives. While the relative uncertainties on the orbital period timing solutions are larger than

the spin period solutions, longer timing baselines should improve these measurements, allowing

us to directly measure line-of-sight accelerations for individual pulsars and directly measure the

gravitational potential within clusters for the first time.
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