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ABSTRACT

A new adaptive mesh refinement (AMR) version of the ZEUS-3D astrophysical magnetohydrodynamical fluid
code, AZEuS, is described. The AMR module in AZEuS has been completely adapted to the staggered mesh that
characterizes the ZEUS family of codes on which scalar quantities are zone-centered and vector components are
face-centered. In addition, for applications using static grids, it is necessary to use higher-order interpolations for
prolongation to minimize the errors caused by waves crossing from a grid of one resolution to another. Finally,
solutions to test problems in one, two, and three dimensions in both Cartesian and spherical coordinates are
presented.
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1. INTRODUCTION

High-resolution, multidimensional simulations have become
indispensable for many complex problems in astrophysics,
particularly those involving (magneto-)fluid dynamics. One
of the most important innovations in this area has been the
use of dynamic and variable resolution techniques. Adaptive
mesh refinement (AMR), pioneered in the context of the fluid
equations by Berger & Oliger (1984) and Berger & Colella
(1989, hereafter BC89), is one such approach.

With AMR, a hierarchy of grids is used to provide high
numerical resolution when and where the physics requires it,
leaving as much of the volume at lower resolution as possible
to minimize computational effort. This makes AMR an efficient
means of studying problems with a very large spatial dynamic
range (e.g., star formation, galaxy evolution), as borne out
by the large number of codes that employ it: ORION (Klein
1999), FLASH (Fryxell et al. 2000), RIEMANN (Balsara 2001),
RAMSES (Fromang et al. 2006), PLUTO (Mignone et al. 2007),
NIRVANA (Ziegler 2008), AstroBEAR (Cunningham et al. 2009),
and ENZO (Collins et al. 2010) to name several.

Virtually all AMR fluid codes to date are based on a
zone-centered grid, with all hydrodynamical variables (density,
energy, and momentum components) taken to be located
at the centers of their respective zones. Indeed, AMR was
originally designed specifically for zone-centered schemes.
Magnetohydrodynamic (MHD) solvers are designed with either
zone-centered or face-centered magnetic field components, de-
pending in part on the mechanism used to preserve the solenoidal
condition. One scheme that has enjoyed somewhat of a renais-
sance of late is Constrained Transport (CT; Evans & Hawley
1988), which places magnetic field components at the centers
of the zone faces to which they are normal. The staggered mesh
introduced in such a scheme has to be specifically accounted
for in the AMR modules and in such a way that ∇ · �B re-
mains zero everywhere—including within the boundaries—to
machine round-off error.

The ZEUS family of codes are one of only a very few astro-
physical fluid codes in use that employ a fully staggered grid

3 Current address: Zentrum für Astronomie der Universität Heidelberg,
Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120
Heidelberg, Germany.

(e.g., STAGGER; Kritsuk et al. 2011 and references therein),
where the momentum components are also face-centered
(Figure 1). While concerns have been expressed over the suit-
ability of its MHD algorithms in certain pedagogical one-
dimensional (1D) test problems (e.g., Falle 2002), the fact
remains that in one form or another, ZEUS is among the best-
tested, documented, and widely used fluid codes in astrophysics
(Stone & Norman 1992a, 1992b; Stone et al. 1992; Clarke 1996,
2007, 2010; Hayes et al. 2006), and a proper merger with AMR
is warranted. To do this, AMR has to be modified for a fully
staggered grid, including the proper treatment of face-centered
magnetic field and face-centered momentum.

In this paper, we introduce the newest member of the ZEUS
family of codes, AZEuS, whose “maiden simulations” have
already appeared in Ramsey & Clarke (2011). AZEuS is a
block-structured AMR version of ZEUS-3D (Clarke 1996, 2010)
that preserves the modularity and structure of the underlying
ZEUS module. The AMR scheme of BC89, including the
changes described in Bell et al. (1994), is modified for a
fully staggered grid with additional modifications made to the
prolongation procedure to allow for smooth passage of all types
of waves between adjacent grids of differing resolution. AZEuS
is currently capable of ideal MHD in 1D, 1.5D, 2D, 2.5D, and
3D in Cartesian, cylindrical, and spherical polar coordinates
using both dynamic and static grids, and with a full suite of
physical boundary conditions. As with all ZEUS-type codes, its
operator-split design allows for additional physics (e.g., gravity,
viscosity, radiation, etc.) to be added without concern over how
such additions will affect the MHD algorithm. How the non-
hyperbolic additions are implemented for an adaptive grid is
another matter (e.g., radiation; Wise & Abel 2011).

This paper does not attempt to give a full recount of the basic
methodology in either AMR or ZEUS but focuses instead on
the modifications to AMR (not so much to ZEUS) necessary for
their merger. Thus, the reader should be familiar with BC89 and
Clarke (1996, 2010). In Section 2, we list the MHD equations
solved by AZEuS and define our conventions and notation. In
Sections 3 and 4, we enumerate the modifications necessary
for restriction and prolongation on a staggered grid, as well
as outline the interpolation schemes used to allow the smooth
passage of waves across grid boundaries. Section 5 focuses
on boundary conditions, while in Section 6 we discuss how
grids are created and how the proper nesting criterion must be
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Figure 1. Depiction of a single zone on a fully staggered grid, where scalars
(ρ, eT , e, p) are zone-centered, primitive vectors (�v, �B) are face-centered, and
derived vectors ( �E = −�v × �B, �J = ∇ × �B) are edge-centered.

modified for a fully staggered grid. Several of the 1D, 2D,
and 3D test problems used to validate AZEuS are given in
Section 7, followed by a quick summary in Section 8. Discussion
of curvilinear coordinates, use of the vector potential, and a
schematic overview of the code are relegated to the appendices.

2. PREAMBLE

2.1. Underlying Numerical Method

AZEuS solves the following equations of ideal MHD (with the
artificial viscosity and gravity terms included):

∂ρ

∂t
+ ∇ · (ρ�v) = 0; (1)

∂�s
∂t

+ ∇ · (�s �v) = −∇p + (∇ × �B) × �B − ∇ · Q − ρ∇φ; (2)

∂ �B
∂t

+ ∇ × �E = 0; (3)

∂e

∂t
+ ∇ · (e�v) = −p∇ · �v − Q : ∇�v; (4)

∂eT

∂t
+ ∇ · (eH �v + �E × �B + Q · �v) = 0, (5)

where ρ is the mass density, �v is the velocity, �s = ρ�v is the
momentum density, p is the thermal pressure, �B is the magnetic
induction,4 Q is the von Neumann–Richtmyer artificial viscous
stress tensor (von Neumann & Richtmyer 1950; Clarke 2010),
φ is the gravitational potential and satisfies the Poisson equation
(∇2φ = 4πGρ), �E = −�v × �B is the induced electric field, e
is the internal energy density, eH = e + (1/2)ρv2 + ρφ is the
hydrodynamical energy density, and eT = eH + (1/2)B2 is the
total energy density. This set of equations (in which Equation (5)
can be derived from Equations (1)–(4)) is closed by the ideal
gas law, p = (γ − 1)e, where γ is the ratio of specific heats.
Figure 1 shows the locations of most of these variables on a
fully staggered grid. Other physics terms often found in ZEUS
codes such as a second fluid, physical viscosity, radiation, etc.,
have yet to be implemented.
AZEuS inherits the operator-split methodology of ZEUS-3D,

wherein the terms on the right-hand side of Equations (1)–(5)
are treated in a source step while those on the left-hand side
are accounted for in a separate transport and inductive step.

4 In units where μ0 = 1.

As such, the algorithm is not strictly conservative. However,
based as it is on the version of ZEUS-3D described by Clarke
(2010), AZEuS can solve either the internal energy equation or
the total energy equation, where the latter choice does ensure
conservation of total energy to machine round-off error, but
at the cost of non-positive-definite thermal pressure. Should
positive definite pressures be paramount, the internal energy
equation offers a viable option with, in most cases, total energy
conserved to within 1% or less (see Clarke 2010 for further
discussion).

To accommodate the interpolation schemes, two boundary
zones must be specified at the edges of all grids. On a staggered
grid, all zone-centered quantities have just the two boundary
values, while face-centered quantities have two boundary values
plus a value that lies on the face separating the “active zones”
from the “boundary zones,” henceforth referred to as the
“skin” of the grid (Figure 2). As we shall see, skin values
for the magnetic field are treated just like active zones, while
the momenta on the skin are treated somewhere in between
active and boundary values, the difference attributed to the
conservation properties of these two quantities.

2.2. Conventions and Notation

We adopt the following conventions and notation throughout
this paper:

1. Quantities in coarse and fine zones are denoted with upper
and lower cases, respectively: e.g., Q(I, J,K), q(i, j, k).
Fluxes for a quantity Q (q) are denoted Fm,Q (fm,q), where
m = 1, 2, or 3 indicates the component direction.

2. If a “coarse” grid or zone is considered to be at level l, its
daughter “fine” grid or zone is at level l + 1. The base and
coarsest grid, which covers the entire domain, is at level
l = 1. The refinement ratio, ν, between level l and l + 1
must be a power of 2 and the same in all directions.

3. Grid volumes, areas, lengths, and time steps are ΔV , ΔAm,
Δxm, and Δt for a coarse grid, and δV , δAm, δxm, and δt
for a fine grid.

4. Indices (i, j, k) correspond to the fine zone at the (left,
bottom, back) of a coarse zone with indices (I, J,K).
The zone center of a particular fine zone within a coarse
zone is designated (i + α, j + β, k + η), where α, β, η =
0, 1, . . . , ν − 1. For the 1-face-center of a fine zone,
α = 0, 1, . . . , ν while β, η = 0, 1, . . . , ν − 1, etc.

5. Similarly, grid positions for the coarse grid use uppercase
indices (e.g., x1(I )), while grid positions for the fine grid
use lowercase indices (e.g., x1(i)).

6. The current time step for the coarse grid is indicated by
the uppercase superscript N, while the current fine time
step is indicated by the lowercase superscript n. Typically,
n = νN . To designate a fine time step within a coarse time
step, we use n + τ where 0 � τ � ν − 15.

7. The region of influence (ROI) of a variable is defined as
the area or volume over which that quantity is conserved.
For zone-centered scalars on the coarse grid, this is the
volume ΔV (I, J,K) (Figure 3(a)). For face-centered but
volume-conserved quantities (e.g., S1), the ROI is the stag-
gered volume (e.g., (1/2)(ΔV (I, J,K) + ΔV (I −1, J,K)))

5 While a coarse zone is always divided in each direction into ν fine zones, a
coarse time step is not necessarily divided into ν fine time steps; additional fine
time steps are taken if local CFL conditions demand it. For simplicity of
description, however, we shall proceed as though n = νN , though the reader
should be aware that this may not always be true.
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Figure 2. On a fully staggered grid, all variables have two boundary values. In addition, for each direction, one component of a face-centered vector and two
components of an edge-centered vector have one skin value.
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Figure 3. Regions of influence (ROI; shaded) for (a) zone-centered variables, (b) face-centered and volume-conserved variables, and (c) face-centered and area-
conserved variables. A refinement ratio of ν = 4 is shown.

(Figure 3(b)). Finally, for face-centered but area-conserved
quantities (e.g., B1), the ROI is the area of the face at which
the vector component is centered (e.g., ΔA1(I, J,K)) (Fig-
ure 3(c)).

Finally, while AZEuS is written in the covariant fashion of
ZEUS-2D (Stone & Norman 1992a), our discussion is given
in terms of Cartesian-like components with uniform zone
sizes within each grid for simplicity. As such, ΔV/δV =
ν3, ΔAm/δAm = ν2, Δxm/δxm = ν, and Δt/δt = ν. Some

of the modifications necessary for curvilinear coordinates are
given in Appendix A.

3. RESTRICTION

Restriction is the process by which data on the coarse grid are
replaced by an average of data from an overlying fine grid. This
must be done in a fashion that locally preserves all conservation
laws and the solenoidal condition to within machine round-off
error. Two types of restriction are considered: the conservative
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overwrite of coarse values with ROIs that are entirely covered
by ROIs of overlying fine zones, and flux corrections to
coarse zones (sometimes called “refluxing”) with ROIs that are
adjacent to, or partially covered by, the ROIs of fine zones.

3.1. Conservative Overwrite

At the end of a coarse time step, fine and coarse grids
are synchronized by overwriting the coarse grid with “better”
values from overlying fine grids. Because of the different
ROIs on a staggered mesh, the specifics of the overwriting
procedure depend on which variable is being overwritten. For
zone-centered, volume-conserved quantities (e.g., ρ, e, eT ), the
procedure is the same as in BC89:

Q(I, J,K) = 1

ν3

ν−1∑
α,β,η=0

q(i + α, j + β, k + η), (6)

where the sum is a triple sum. By inspection, one can confirm
that Equation (6) conserves Q (q) locally to within machine
round-off error.

For face-centered, volume-conserved quantities such as the
momentum density whose ROIs are completely covered by the
ROIs of overlying fine zones, we have

S1(I, J,K) = 1

ν3

ν/2∑
α=−ν/2

ν−1∑
β,η=0

G(α) s1(i +α, j +β, k +η), (7)

where G(α) =
{

1/2 if α = ± ν/2
1 otherwise, (8)

for the 1-component of the momentum. The factor G(α) takes
into account that only half of the ROIs of the fine momenta
at α = −ν/2, ν/2 cover the ROI of coarse momentum
(Figure 3(b)).

Coarse momenta with ROIs partially covered by a fine grid are
cospatial with the skin of the overlying fine grid. As skin values
of momenta are considered to be boundary values (since one of
the fluxes is completely determined from within the boundary),
they are not taken to be more reliable than the underlying coarse
values (whose fluxes are determined exclusively by interior
zones), and thus the coarse values are not overwritten by the
fine grid values. Instead, coarse momenta cospatial with a fine
grid skin are considered to be adjacent to the fine grid and, as
such, are subject to the “flux-correction” step described in the
next subsection.

For magnetic field, the conserved quantity is the magnetic
flux (

∫ �B · d �A). Thus, coarse values of B1 are overwritten using

B1(I, J,K) = 1

ν2

ν−1∑
β,η=0

b1(i, j + β, k + η), (9)

where the sum is over all fine ROIs (areas of 1-faces) that cover
the coarse ROI. One can easily show that overwritten values
of �B will still satisfy the solenoidal condition—even when
combined with values of �B that are not overwritten—so long as
the overlying values of �b are divergence free and adjacent values
of �B are properly “refluxed” (Section 3.2). In addition, since �B
is an area-conserved quantity, there is never partial coverage of
ROIs as there is with the momenta, and thus no analog of G(α)
(Equation (8)) is necessary for the magnetic field.

A straightforward permutation of indices gives the analo-
gous expressions for the other components of momentum and
magnetic field.

3.2. Flux Corrections

A coarse zone adjacent to but not covered by a fine grid shares
a face with the fine grid. In order that local mass, momentum,
and magnetic flux remain conserved to within machine round-
off error, the coarse and fine zones must agree on the fluxes
passing across their common face. This is accomplished by
keeping track of all coarse fluxes passing across the skin of a
contained fine grid, and then subtracting from these the fine
fluxes computed during the MHD updates of the fine grids.
These “flux corrections” are then subtracted from the coarse
zones adjacent to the fine grid during the so-called refluxing
step, effectively replacing the coarse fluxes with the fine fluxes
along their common face.

For zone-centered, volume-conservative quantities this pro-
cedure follows BC89. Thus, for transport in the 1-direction, we
have for the flux-corrected quantity, Q̃,

Q̃N+1(I, J,K) = QN+1(I, J,K) − 1

ΔV (I, J,K)

×
[
F

N+ 1
2

1,Q (I, J,K) −
ν−1∑

β,η,τ=0

f
n+τ+ 1

2
1,q

× (i, j + β, k + η)

]
, (10)

where the quantities in square brackets are the flux corrections.
For the purpose of illustration, the coarse zone (I, J,K) is taken
to be immediately to the right (increasing I) of a fine grid. FN+1/2

1,Q

is the time-centered 1-flux of Q (with units QVΔAΔt , where V
is the coarse velocity)6 passing across the 1-face cospatial with
the skin of the fine grid, while f

n+τ+1/2
1,q are the corresponding

fine fluxes (with units qvδAδt , where v is the fine velocity;
Figure 4(a)). Note the sum over τ reflecting the fact that there
are several fine time steps (typically ν of them) within a single
coarse time step.

When flux correcting the face-centered, volume-conserved
momenta, we must depart from BC89 as the staggered mesh
gives rise to four distinct cases that must be dealt with indi-
vidually. The first case is when both the flux and momentum
components are parallel to the fine grid skin normal. Here, the
ROI at the boundary is halfway inside the fine grid. For exam-
ple, consider the 1-flux of S1 in the ROI straddling the right
boundary of a fine grid as shown in Figure 4(b) where the 1-flux
correction takes the form

S̃N+1
1 (I, J,K) = SN+1

1 (I, J,K) − 1

ΔV (I, J,K)

×
[
F

N+ 1
2

1,S1
(I − 1, J,K) − 1

2

ν−1∑
β,η,τ=0

×
(

f
n+τ+ 1

2
1,s1

(
i − ν

2
− 1, j + β, k + η

)
+ f

n+τ+
1
2

1,s1

(
i − ν

2
, j + β, k + η

))]
. (11)

Note that in the 1-direction, the coarse and fine momenta pass
through the same face, but the fluxes do not. Thus, an average

6 Strictly speaking, this is not a flux because of the factor Δt . However, for
the purposes of accounting, we find it advantageous to define the fluxes with
the time steps embedded.
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(a)
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(b)

(c)

(e)

Figure 4. Different cases for flux corrections on a staggered grid, including (a) zone-centered quantities; (b)–(d) the three different cases for face-centered, volume-
conserved momenta; and (e) area-conserved magnetic field corrections via the EMFs. Shaded regions denote typical ROIs referred to in the text. Note that in this
figure, all arrows correspond to components of fluxes or EMFs.

of the fine fluxes at i − ν/2 − 1 and i − ν/2 is needed to
properly center the fine fluxes and to ensure local conservation
of momentum.

The second case is when the flux is parallel and the mo-
mentum component perpendicular to the fine grid skin normal.
Here, the adjacent ROI lies entirely outside the fine grid just as
a zone-centered quantity. For example, consider the 1-flux of S2
in the ROI adjacent the right boundary of a fine grid as shown
in Figure 4(c), where the flux correction takes the form

S̃N+1
2 (I, J,K) = SN+1

2 (I, J,K) − 1

ΔV (I, J,K)

×
[
F

N+ 1
2

1,S2
(I, J,K) −

ν/2∑
β=−ν/2

ν−1∑
η,τ=0

G(β)

× f
n+τ+ 1

2
1,s2

(i, j + β, k + η)

]
. (12)

The factor G(β) (Equation (8)) ensures that only half of the
fine 1-fluxes of the fine ROIs at β = ±ν/2 are included, as a
quick glance at Figure 4(c) will verify.

The third case is when the flux is perpendicular and the
momentum component parallel to the fine grid skin normal.
As with the first case, the ROI at the boundary is halfway inside
the fine grid. For example, consider the 1-flux of S2 in the
ROI straddling the lower boundary of a fine grid as shown in

Figure 4(d), where the flux correction takes the form

S̃N+1
2 (I, J,K) = SN+1

2 (I, J,K) − 1

ΔV (I, J,K)

{
ν − 1

2ν

×
[
F

N+ 1
2

1,S2
(I, J,K) − F

N+ 1
2

1,S2
(I + 1, J,K)

]
−

ν/2∑
β=1

ν−1∑
η,τ=0

G(β)
[
f

n+τ+ 1
2

1,s2
(i, j + β, k + η)

− f
n+τ+ 1

2
1,s2

(i + ν, j + β, k + η)
]}

. (13)

The fraction (ν − 1)/2ν is the area filling ratio between the
fine and coarse fluxes. For example, for ν = 4, (ν−1)/2ν = 3/8
(Figure 4(d)), and 3/8 of the coarse flux must be replaced
with the overlapping fine fluxes. Note that f1,s2 (i, j, k) does
not contribute to the fine fluxes that replace part of the coarse
flux since it is determined, in part, by values from the boundary
region of the fine grid, and thus not taken as reliable enough
to replace part of the coarse flux determined exclusively from
active zones of the coarse grid.

Equation (13) assumes that both the left and right faces of
the coarse ROI need to be flux corrected. Should the fine grid in
Figure 4(d) not cover coarse zones (I, J,K) and (I + 1, J,K),
flux corrections need only be applied to the left side of the coarse
ROI (I, J,K). In this case, the terms F

N+1/2
1,S2

(I + 1, J,K) and

5



The Astrophysical Journal Supplement Series, 199:13 (22pp), 2012 March Ramsey, Clarke, & Men’shchikov

f
n+τ+1/2
1,s2

(i + ν, j + β, k + η) are omitted. Similarly, if the fine
grid does not cover coarse zones (I −1, J,K) and (I, J,K), the
terms F

N+1/2
1,S2

(I, J,K) and f
n+τ+1/2
1,s2

(i, j + β, k + η) are omitted.
The fourth and final case is when both the flux and momentum

components are perpendicular to the fine grid skin normal. Here,
no flux corrections are required, as can be readily seen by
inspection of Figure 4(c).

For the magnetic field components, the operator in the evolu-
tion equation (Equation (3)) is the curl, and not the divergence
of the hydrodynamical variables. Thus, �B is a surface-conserved
quantity (rather than volume-conserved) and, as such, we make
adjustments to the so-called EMFs (defined below) instead of
the fluxes; otherwise, the procedure is the same.

Consider the coarse ROI of B3 immediately to the right of a
fine grid (Figure 4(e)). Following Balsara (2001), we have

B̃N+1
3 (I, J,K) = BN+1

3 (I, J,K) +
1

ΔA3(I, J,K)

×
[
EN+ 1

2
2 (I, J,K) −

ν−1∑
β,τ=0

ε
n+τ+ 1

2
2

× (i, j + β, k)

]
, (14)

where EN+1/2
2 (I, J,K) = E2Δx2Δt is the time-centered coarse

2-EMF7 (“electro-motive force”) located along the 2-edge, and
where ε

n+τ+1/2
2 (i, j + β, k) is the time-centered fine 2-EMF, lo-

cated along the same 2-edge as the coarse 2-EMF. Here, the
quantities in square brackets are the “EMF corrections,” analo-
gous to the flux corrections for the hydrodynamical variables. In
ZEUS-3D, the EMFs can be evaluated using various algorithms.
In our case, we use the Consistent Method of Characteristics
(CMoC) described by Clarke (1996).

Because the magnetic field is an area-conserved quantity,
there is no situation where the coarse ROI of a magnetic field
component is partially covered by fine ROIs as can happen
for the volume-conserved, face-centered momentum. Thus,
Equation (14) and its permutations are sufficient to cover all
EMF corrections for all field components in all directions.
Note, for example, that there are no corrections to be made
in the 1-direction for the 1-field, again because of the surface
conservative nature of the magnetic field.

Further, induction of magnetic field components penetrating
the skin of a fine grid is affected by EMFs computed from
quantities taken entirely from within the active portion of the
grid. This is in contrast to a momentum component penetrating
the skin, half of whose fluxes are computed from boundary
values. Thus, we take the skin values of the EMFs and the
magnetic components they induce to be just as reliable as those
evaluated from within the grid, and it is appropriate to restrict
the coarse magnetic field values on the skin of a fine grid with
the overlying fine values (e.g., Equation (9)).

Finally, flux-correction equations for coarse zones adjacent
to other sides of a fine grid can be obtained by a suitable
permutation of indices and subscripts.

4. PROLONGATION

Prolongation is the process by which fine grid zones are filled
using the best information available. This could be by either

7 Similar to the hydrodynamical fluxes, we define the EMFs with the factor
Δt embedded to simplify the accounting.

interpolating values from the underlying coarse grid in a way
to ensure local conservation and local monotonicity or taking
them from adjacent or overlapping fine grids. As with restriction,
prolongation can be divided into two types. First, when a fine
grid is created or extended, the new fine zones must be filled.
Second, at the beginning of a fine grid time step, fine boundary
zones must be set. Both types require interpolation methods,
some of which have been introduced here specifically for static
grid refinement.

4.1. Spatial Interpolation

In an effort to minimize the errors caused by waves traveling
across boundaries between fine and coarse grids, we have
introduced higher-order interpolation schemes (e.g., piecewise
parabolic interpolation, PPI; Colella & Woodward 1984) to
the prolongation step. This improves the results for adaptive
refinement and has proven important for static refinement
where strong waves are required to cross grid boundaries. By
design, these interpolation schemes honor conservation laws
and monotonicity.

In all cases and for all variables, we begin by estimating
the interface values QL,R(I ) from cubic fits to the coarse grid
data (Section 1 of Colella & Woodward 1984) without the
monotonization or steepening steps. Now, to fit a parabolic
interpolation function, q∗

1 (x), across the coarse ROI for zone I,
we need three constraints. Two come from requiring that q∗

1 (x)
passes through QL,R(I ), while the third comes from requiring
that the zone-average value Q(I, J,K) times the zone volume
equals the volume integral of q∗

1 (x). For the original PPI scheme,
this final constraint is written as

Q(I, J,K)Δx1(I ) =
∫

Δx

q∗
1 (x)dx.

For our purposes, we need to interpolate fine zone averages
from the coarse ones and, as such, the conserved quantity is the
Riemann sum and not the integral. Thus, in the 1-direction, our
final constraint is

Q(I, J,K)Δx1(I ) =
ν−1∑
α=0

q∗
1 (i + α, j, k) δx1(i) (15)

⇒ Q(I, J,K) = 1

ν

ν−1∑
α=0

q∗
1 (i + α, j, k) (16)

for constant Δx, δx. With this, our parabolic interpolation
function is (cf. Equation (1.4) in Colella & Woodward 1984)

q∗
1 (i + α) = QL(I ) + ζ (QR(I ) − QL(I ) + H1(1 − ζ )), (17)

where

ζ = x1(i + α) − x1(I )

Δx1(I )
;

H1 = 1

f1(ν) − f2(ν)
× (Q(I, J,K) − QL(I ) − f1(ν)(QR(I ) − QL(I )));

f1(ν) = 1

2ν2

ν∑
ξ=1

(2ξ − 1) = 1

2
;

f2(ν) = 1

4ν3

ν∑
ξ=1

(2ξ − 1)2 = 4ν2 − 1

12ν2
. (18)
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With q∗
1 (i + α) determined, we set the differences between the

fine and coarse zones:

δq1(i + α) = q∗
1 (i + α) − Q(I, J,K). (19)

For zone-centered quantities, we determine the fine-zone
differences in the manner of Equation (19) in each of the three
directions and set the interpolated fine zone averages to be

q(i + α, j + β, k + η) = Q(I, J,K) + δq1(i + α)

+ δq2(j + β) + δq3(k + η). (20)

Given Equation (16) and analogous expressions in the
2- and 3-directions, it is easy to show that this prescription
is conservative, that is,

Q(I, J,K) = 1

ν3

ν−1∑
α,β,η=0

q(i + α, j + β, k + η), (21)

for uniform grids (ΔV = ν3δV ).
For face-centered quantities, we determine the fine-zone

differences in the manner of Equation (19) in each of the two
orthogonal directions (e.g., in the 2- and 3-directions for S1) and
set the interpolated fine zone averages along each coarse face to
be

s1(i, j + β, k + η) = S1(I, J,K) + δs1,2(j + β) + δs1,3(k + η).

(22)

Exactly the same procedure is used to interpolate B1 across
each coarse 1-face. As with the zone-centered quantities, it
is easy to show that this procedure conserves momentum
(magnetic) flux on the face:

S1(I, J,K) = 1

ν2

ν−1∑
β,η=0

s1(i, j + β, k + η). (23)

The next step is to interpolate the face-centered quantities
into the interior of the zone, and it is here where the procedure
for momentum and magnetic components diverge.

For the volume-conserved momenta, we perform a linear
interpolation between the fine momenta on opposing coarse
faces. For example, between s1(i, j + β, k + η) and s1(i + ν, j +
β, k + η) we set

s1(i + α, j + β, k + η) = (1 − ζ ) s1(i, j + β, k + η)

+ ζ s1(i + ν, j + β, k + η), (24)

where α = 1, . . . , ν − 1 and ζ = αδx/Δx. This prescription
guarantees that over a zone-centered volume, the prolongation
of the 1-momentum is conservative. The fact that conservation
is over the zone-centered volume and not specifically the
1-momentum ROI is required for Equations (23) and (24) to
be consistent with the restriction procedure of Equation (11).

For the area-conserved magnetic field, a simple linear inter-
polation between opposing coarse faces does not preserve the
solenoidal condition. Thus, we turn to a generalized, direction-
ally unsplit version of the algorithm described by Li & Li (2004)
in which ∇ · �b = 0 so long as ∇ · �B = 0 holds on the underlying
coarse grid.

In this approach, we take the coarse and recently interpolated
fine values of magnetic field (Equation (22)) and apply the
solenoidal condition to determine “intermediate” coarse field

values (e.g., B∗
1 ; Figure 5), which are cospatial with fine zone

faces. For example, the intermediate values for B1 are given by

B∗
1 (i + α + 1) = B∗

1 (i + α) − δx1(i + α)

×
(

b∗
2,1(i + α, j + ν, k) − b∗

2,1(i + α, j, k)

Δx2(J )

+
b∗

3,1(i + α, j, k + ν) − b∗
3,1(i + α, j, k)

Δx3(K)

)
,

(25)

where

b∗
2,1(i + α, j, k) = 1

ν

ν−1∑
η=0

b2(i + α, j, k + η),

b∗
3,1(i + α, j, k) = 1

ν

ν−1∑
β=0

b3(i + α, j + β, k);

B∗
1 (i + 0) = B1(I, J,K), (26)

and 0 � α � ν − 2. Given B∗
1 (i + α + 1), and the differences

between fine and coarse values at the coarse faces (δb1,l , l =
2, 3; Equation (19)), we then calculate the fine magnetic field at
i + α + 1:

b1(i + α + 1, j + β, k + η) = B∗
1 (i + α + 1)

+ δb1,2(i + α + 1, j + β, k)

+ δb1,3(i + α + 1, j, k + η), (27)

where

δb1,2(i + α, j + β, k) = (1 − ζ ) δb1,2(i, j + β, k)

+ ζ δb1,2(i + ν, j + β, k),

δb1,3(i + α, j, k + η) = (1 − ζ ) δb1,3(i, j, k + η)

+ ζ δb1,3(i + ν, j, k + η), (28)

and ζ = αδx/Δx.
Proceeding incrementally from i +1 to i +ν−1 provides all of

the values of b1(i, j, k) between the coarse faces (I, J,K) and
(I +1, J,K). Values for the other magnetic field components are
given by a straightforward permutation of indices. In aggregate,
these yield a third-order interpolation of fine magnetic field
components that preserve the divergence of the underlying
coarse magnetic field to machine round-off error.

Finally, a note on the use of vector potentials. Igumenshchev
& Narayan (2002) have demonstrated that the vector potential,
�A, may be used in the CT algorithm (Evans & Hawley 1988)

instead of the magnetic field with results identical to machine
round-off error. Thus, one may be tempted to adopt this approach
so that prolongation methods simpler than the Li & Li algorithm
may be used on �A as a way to guarantee that the fine grid satisfies
the solenoidal condition. Reasons for not taking this approach
are given in Appendix B.

4.2. Temporal Interpolation

Fine grids require prolonged boundary values at the beginning
of each fine time step, and thus we also need to perform
temporal interpolations on the coarse values. Following BC89,
we perform a linear interpolation on the coarse hydrodynamic
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Figure 5. Schematic representation of the directionally unsplit Li & Li algorithm for calculating fine values of �b between coarse grid faces when ν = 4.

variables in time and then spatially interpolate them as described
above to obtain the necessary boundary information for each fine
time step.

For the magnetic field, the fine components penetrating the
skins of the fine grid are retained; only those values completely
within the boundary region are prolonged from the coarse grid.
For this, we require coarse grid EMFs on the fine grid skin and
within the boundary region that are time-centered on the current
fine time step.

The coarse EMFs coincident with the fine grid skin are
replaced with the spatial and temporal sum of the overlying
fine EMFs, where the sum over time is necessary since the time
step is embedded in our definition (footnote 7). Thus and for
example, for E2 we set

EN+ψ

2 (I, J,K) =
τ ′∑

τ=0

ν−1∑
β=0

ε
n+τ+

1
2

2 (i, j + β, k), (29)

where ψ = (2τ ′ + 1)/2ν, and where 0 � τ ′ � ν − 2 designates
the last completed fine time step. This yields values on the fine
grid skin that are time-centered between the beginnings of the
coarse time step and the current fine time step and take into
account the superior quality of the fine grid data.

The coarse EMFs residing entirely within the fine grid
boundary region are retained. However, these are time-centered
for the coarse grid and, as such, have embedded in them a factor
Δt . To render them coeval with fine time step τ ′ and thus the
coarse skin EMFs computed in Equation (29), we must multiply
them by (2τ ′ + 1)/ν = 2ψ to correct the embedded time step
factor.

With coarse EMFs on the fine skin and inside the fine
boundary region properly time-centered, the coarse magnetic
field components are updated to the beginning of the current
fine time step using Equation (3), and it is these values that are
used in the prolongation methods described in Section 4.1 to
create the fine grid magnetic field boundary values.

One might ask why a linear temporal interpolation of the
divergence-free coarse magnetic field components is not enough
to preserve the solenoidal condition within the boundary region.
Indeed, such an approach does guarantee ∇ · �B = 0 within the

region interpolated, but not in the layer between the interpo-
lated region and its immediate non-interpolated neighbors. The
method outlined above based on the coarse EMFs allows in-
terpolations to be performed locally and only where they are
needed, while still preserving the solenoidal condition globally
to machine round-off error.

4.3. Monotonicity

We have found it necessary to maintain a certain monotonicity
in our prolongations. Failure to do so can lead to negative
pressures (even when solving the internal energy equation) and
violations of the CFL condition. For example, if the current
time step is governed by the sound speed, and the prolongation
process leads to an interpolated density less than the surrounding
zones, the sound speed in a fine zone could be greater than that
which was used in determining the CFL time step, possibly
leading to numerical oscillations and loss of stability.

Sequentially stringing together two (or three) 1D PPIs
as we do for prolongation of zone-centered quantities (e.g.,
Equation (20)) can lead to non-monotonic behavior even if each
1D interpolation is separately monotonic. If a PPI-determined
value q(i + α, j + β, k + η) is found to lie outside the range set
by neighboring coarse zones,

Qmin = min (Q(I + Γ, J + Λ,K + ϒ));
Qmax = max (Q(I + Γ, J + Λ,K + ϒ)),

}
− 1 � Γ, Λ, ϒ � +1,

then we “fall back” to piecewise linear interpolations (PLI; van
Leer 1977, Appendix A). In rare cases where the PLI-determined
value is also non-monotonic (possible only in 3D), we revert to
piecewise constant interpolations (PCI, a.k.a. “direct injection”
or “donor cell”):

q(i + α, j + β, k + η) = Q(I, J,K).

Where PPI yields non-monotonic results, we note that transmis-
sion of strong waves across changes in resolution (e.g., static
grids) is significantly improved if one first tries PLI rather than
falling back directly to PCI or limiting the interpolated value to
lie between Qmin and Qmax.
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5. BOUNDARY CONDITIONS

Boundary conditions are applied directly to the hydrodynam-
ical variables (ρ, e, �v) and indirectly to the magnetic field via
the EMFs. Attempting to apply boundary conditions directly to
�B often generates monopoles in the boundary regions, which
can have significant effects on the dynamics in the active grid,
as illustrated in Appendix C.

In addition to the usual boundary conditions applied by the
ZEUS module during each MHD cycle, the AMR module must
also set boundary conditions on two occasions. After restriction
and before prolongation, boundary values are set on the coarse
grid. Then, after prolongation and before the ZEUS module is
called for the next MHD cycle, boundary values for the fine
grid are set using the results of the prolongation step. These
additional applications of boundary conditions are necessary to
maintain the imposed physical boundaries after restriction and
prolongation have altered some of the values on the active grid
and to reconcile boundaries of grids that may be contained
within or adjacent to other grids (henceforth referred to as
adjacent boundaries).

Because of their nature, physical boundaries (inflow, outflow,
reflecting; those traditionally applied by single-grid MHD
codes) and adjacent boundaries must be treated differently, and
each is discussed in turn.

5.1. Physical Boundaries

Generally, a fine grid is completely embedded within a coarse
grid. The single exception is when both grids share a physical
boundary and two items of note must be borne in mind when
adapting the physical boundary condition routines in ZEUS-3D
to AZEuS.

First, since each grid has only two boundary zones, only
part of the coarse boundary region is covered by fine bound-
ary zones. Thus, coarse boundary zones cannot be included in
the restriction step, a particular concern when setting magnetic
boundary conditions. In AZEuS, we extend the EMF correction
scheme of Section 3.2 by retaining three layers of transverse
EMF corrections and two layers of longitudinal EMF correc-
tions,8 including the skin layer plus two additional layers inte-
rior and adjacent to the skin. Immediately before the restriction
step, physical boundary conditions are applied to the EMF cor-
rections, which are then used to update the boundary values of
the magnetic field components in the coarse grid according to
Equation (14). Done in this fashion, there is no risk of introduc-
ing monopoles to the coarse boundary zones during the restric-
tion step when two or more grids overlap a physical boundary.

Second, not handled properly, inflow boundary conditions can
introduce unexpected violations of conservation laws that can
cause unwanted discontinuities in the boundary. In particular,
if a boundary variable is to be set according to an analytical
function of the coordinates, that variable should be set to the
zone average of that function, and not simply to the function
value at the location of the variable. While this is good advice
for a single-grid application, it is critical for AMR.

For example, suppose the density profile,

ρ(r) = 1

r3/2
, (30)

is to be maintained in cylindrical coordinates along the z = 0
boundary. Let ρ(J ) be the density in the coarse zone of

8 For example, the transverse (longitudinal) EMFs for the 1-boundary are ε2
and ε3 (ε1).

Figure 6. Single coarse zone in the z = 0 boundary with zone center at r(J ) = r

and with refinement ratio of ν = 2.

dimension (Δz, Δr) centered at r(J ) = r , and let ρ(j ) and
ρ(j + 1) be the densities in the fine zones of dimension (δz, δr)
centered at r(j ) and r(j + 1) (Figure 6). For a refinement
ratio of 2, Δr = 2δr , Δz = 2δz, r(j ) = r − (1/2)δr , and
r(j + 1) = r + (1/2)δr .

If we naively set ρ(J ) using Equation (30), the mass of zone
J (with volume ΔV = rΔrΔz) is

m(J ) = ρ(J )ΔV (J ) = ΔrΔz

r1/2
.

Similarly, for the fine zones,

m(j ) = δrδz(
r − 1

2δr
)1/2 ; m(j + 1) = δrδz(

r + 1
2δr

)1/2 .

Adding the masses in the four fine zones contained by the coarse
zone, we find

2
[
m(j ) + m(j + 1)

] = m(J )

[
1 +

3

32

(
δr

r

)2

+ . . .

]
> m(J ),

and the physical boundary conditions violate mass conservation.
Instead, ρ(J ) should be set to the zone average, determined

by

ρ(J ) = m(J )

ΔV (J )
where the mass function, m(J ), is given by

m(J ) =
∫

ΔV (J )
ρ(r)dV, (31)

where ρ(r) is the given density profile (e.g., Equation (30)).
Similar expressions apply for m(j ) and m(j + 1). Done in this
fashion, it is easy to show that

ρ(J )ΔV (J ) = 2[ρ(j + 1)δV (j + 1) + ρ(j )δV (j )],

and both grids agree on the mass contained within coarse
boundary zone J to within machine round-off error. With a
little bit of algebra, this can be confirmed analytically for the
specific case of Equation (30). For more complicated profiles, a
numerical integrator can be employed to perform the necessary
integrations in Equation (31).

5.2. Adjacent Boundaries

Unlike Godunov methods, which typically require a single
application of boundary conditions at the end of each MHD
cycle, the operator-split nature of ZEUS requires boundary
conditions to be set several times. For physical boundaries,
this is not an issue; physical boundary conditions may be set

9
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whenever needed based on data from a single grid. However,
adjacent boundaries pose a unique challenge in AZEuS since
the ZEUS module is aware only of the grid being updated, and
other grids cannot be accessed in the middle of an MHD cycle
to update these boundaries.

We have introduced into AZEuS the concept of “self-
computing” boundary conditions for adjacent boundaries. In
this approach, boundary zones are set at the beginning of each
time step using the best information available (either from an ad-
jacent grid of the same resolution or from the prolongation of an
underlying coarse grid possibly interpolated in time), and then
the full set of operator-split MHD equations are applied to both
the boundary and active zones; no adjacent boundary zones are
reset to any predetermined quantity inside a single MHD time
step. Further, self-computed boundary zones are included in the
calculation of the CFL time step, which we find critical (for an
operator-split code such as AZEuS) in minimizing transmission
errors when waves of any significant amplitude cross adjacent
boundaries.

Of course, assumptions about missing data beyond the out-
ermost edge of the grid must be made, and “pollution” from
these missing data necessarily propagates inward. For example,
consider the left 1-boundary where v1(i = 1) and v1(i = 2)
represent the boundary values of v1, v1(i = 3) the skin value
(treated as a boundary value), and v1(i = 4) the first active value.
The pressure gradient at v1(1) is proportional to p(1) − p(0),
yet p(0) is completely unknown (p(1) and p(2) are the only
boundary values available). The best we can do for a missing
datum such as this is to extrapolate assuming a zero gradient, in
which case p(0) = p(1) and no pressure gradient is applied to
v1(1). In this manner, v1(1) is polluted by the missing datum at
the very beginning of the source step.

Additional steps inside a single MHD cycle include the appli-
cation of artificial viscosity, adiabatic expansion/compression
for the internal energy equation, the transport steps, and the
induction step. All but the latter contribute to propagating pol-
lution from missing data toward the active portion of the grid.
Ideally, one would carry enough boundary zones to prevent pol-
lution from reaching the active grid within a single MHD step,
so that the AMR module (with knowledge of all grids) can re-
set all boundary values to new and unpolluted values before
their effects ever reach the active zones. However, for van Leer
(1977) interpolation in the transport step and within a single
MHD cycle, pollution from missing data reaches the skin and
first active zone center on the grid, as well as the first active face
and second active zone center if the local velocity points away
from the boundary (true regardless of which energy equation is
used). Thus, to completely prevent pollution from reaching the
active grid, we would have to double the number of boundary
zones from two to four.

We have investigated this effect thoroughly and have found
no test problem that demonstrates anything but the slightest
quantitative effect from pollution by missing data at adjacent
boundaries between fine and coarse grids. For adjacent bound-
aries between grids of like resolution, we have elected to force
these grids to overlap (for reasons explained in Section 6) by
an amount sufficient to eliminate the problem of missing data
pollution altogether.

6. GRID CREATION AND ADAPTATION

Creation or modification of adaptive grids in AZEuS proceeds
in a manner similar to Bell et al. (1994) including the suggestions
of Berger & Rigoutsos (1991) with two important differences.

First, we have had to modify the proper nesting criterion of
BC89 by increasing from one to three the number of zones at
level l − 1 separating an active zone at level l from level l − 2.
This is because prolongation of boundary values for level l from
level l − 1 requires one zone from level l − 1 beyond the edge
of a grid at level l, plus two additional zones at level l − 1 on
either side to satisfy the five-zone molecule needed by PPI.

Second, BC89 allow grids of the same resolution to abut
without overlapping, whereas we have found it advantageous for
at least two reasons to extend abutting grids so that they overlap
by a minimum of one coarse zone (Figure 7). For one, since
the momenta penetrating a grid skin are no more reliable than
boundary values, two abutting grids would, in general, disagree
on the values of the momentum penetrating their common skin.
This turns out to pose an intolerable ambiguity in the solution.
Second, the problem of pollution propagating from missing
data onto the active grid (Section 5.2) is completely averted
by overlapping two abutting grids by one coarse zone.

By forcing abutting grids to overlap, there is always a clear
choice of which value to use at a given location. Where the
boundary and skin values of one grid overlap the active zone
values of another, the active zone values prevail and are used by
the other grid for its boundary values.

Grids that are abutting at the end of the grid generation and
modification process, but before they are prolonged, are made
to overlap by one coarse zone. Numerous situations arise in
which more than one grid may overlap at the same location
(e.g., the test problems in Sections 7.2.1 and 7.2.2), and this
can result in overlaps that are greater than one coarse zone.
Further, the possibility of a complex distribution of AMR grids
opens up a whole host of pedagogical cases that one must
consider, particularly when looking to maintain the solenoidal
condition. During the development of AZEuS, we have carefully
examined each case involving multiple levels with numerous
grids overlapping each other to ensure that where grids overlap,
they all agree on the flow variables and all conservation laws
are preserved to machine round-off error.

In this regard, the EMFs turn out to be a very sensitive dis-
criminator. Any mismatches between overlapping grids in the
conserved variables at the beginning of a time step will first
generate mismatched velocities, followed by disagreements in
cospatial EMFs before ν time steps have passed. These can be
detected, for example, as monopoles arising in either the bound-
ary or active zones in either or both of the overlapping grids.
Even if such monopoles are restricted entirely to the bound-
ary zones, their unphysical forces can affect neighboring active
zones whose effects propagate rapidly throughout the grid (e.g.,
Appendix C). Preserving agreement between overlapping zones
including boundary zones to machine round-off is, therefore, of
paramount importance.

7. NUMERICAL TESTS

We have verified AZEuS against a number of standard test
problems, some of which are presented in this section. Further
results will be posted to http://www.ica.smu.ca/azeus, as they
become available. Additional and similar test problems for
ZEUS-3D (without AMR) are found in Clarke (2010) and online
at http://www.ica.smu.ca/zeus3d.

7.1. 1D Shock Tubes

While most AMR applications rely exclusively on dynamic
grids, certain applications, particularly those that exhibit some
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(a) (b)

Figure 7. Two grids that originally abut (panel (a)) are made to overlap by at least one coarse zone (panel (b)).

degree of self-similarity, can benefit enormously from the use
of a base of nested, static grids (e.g., Ramsey & Clarke 2011).
As such solutions evolve, waves of all types—including strong
shocks—must pass sequentially from one grid to another, and
it is here where our higher-order prolongation algorithms for
adjacent boundaries are critical.
AZEuS has been tested with all 1D shock tube problems from

Ryu & Jones (1995, hereafter RJ95) for both static and dynamic
grids, and we show the results from two to highlight these
features of the code. Both tests use the total energy equation with
γ = 5/3, C = 0.75 (Courant number), and artificial viscosity
parameters qcon = 1.0 and qlin = 0.2.

For static grids, Figure 8 shows two solutions for ρ, eT , v2, and
B2 from problem (4a) of RJ95 over a domain of x1 ∈ [−0.5, 2.5]
(three times larger than RJ95) for a time t = 0.45 (three times
longer). The initial discontinuity is placed at x1 = 0.5, with the
left and right states given in the figure caption. The left panels
show the domain resolved with 1200 zones and no AMR, while
the central panels show the AMR solution with a base resolution
of 600 zones and fine static grids with a refinement ratio of 2
placed at x1 ∈ [−0.2, 0.1] and x1 ∈ [0.7, 1.245] (gray). These
locations allow all the physical features, with the exception
of the sluggish slow rarefaction, to suffer at least one change
in resolution. The right panels show the percent differences
between the two solutions.

Discounting all zones trapped within a discontinuity (which,
even without AMR, are already in error by as much as 100%
since discontinuities are supposed to be infinitely sharp), the
maximum error one can attribute to the use of static grids in any
of the variables is less than 1%. As further evidence of the ability
of AZEuS to pass waves of all types across adjacent boundaries,
Ramsey & Clarke (2011) find almost no sign of reflection,
refraction, or distortion of any type of wave across any of the
static grid boundaries in their 2D axisymmetric simulations of
protostellar jets in cylindrical coordinates.

For dynamic grids, Figure 9 illustrates the results of test
problem (2a) of RJ95. We employ four levels of refinement
(sequentially darker shades of gray) above the base grid with
a resolution of 40 zones over the domain x1 ∈ [0.0, 1.0]. The
initial discontinuity is located at x1 = 0.5, with the left and
right states given in the figure caption. To track the developing
features, refinements are based on three criteria (Khokhlov
1998): contact discontinuities (CD), shocks, and gradients in
certain variables, each requiring a threshold value to be set above
which a zone is flagged for refinement. Here, we set parameters
tolcd = tolshk = 0.1 for CDs and shocks, respectively, and
check v2 for gradients above tolgrad = 0.1. For this problem,
the gradient detector is needed to refine both the discontinuity of
the initial conditions and rotational discontinuities (x1 	 0.53

and x1 	 0.71 in Figure 9), neither of which are detectable as a
CD or shock.

Additional parameters used to obtain this solution include
kcheck = 5 (the number of cycles between successive grid
modifications), geffcy = 0.95 (the minimum allowed grid
efficiency, defined as the ratio of zones flagged for refinement to
the number of zones actually present in a new grid), andibuff=
2 (the number of buffer zones added around flagged zones).
These parameters, in addition to the non-AMR parameters, are
summarized in Table 1.

7.2. 2D Tests

7.2.1. MHD Blast

The MHD blast problem of Londrillo & Del Zanna (2000)
and Gardiner & Stone (2005) has proven to be a very valuable
test of our AMR algorithms and for rooting out problems
in the code. It is also a good test of directional biases and
the ability of a code to handle the evolution of strong MHD
waves. We initialize the problem in the same manner as Clarke
(2010) with domain x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5], and
(ρ, �v, B1, B2, B3) = (1, 0, 5

√
2, 5

√
2, 0) everywhere. Within

radius r = 0.125 of the origin, we set the gas pressure to p =
100, and p = 1 elsewhere.

Figure 10 presents our results for the 2D blast problem at
t = 0.02 for a base grid of 2002 zones and one additional
level of refinement with ratio ν = 2. For this test, we have
purposely chosen a high grid efficiency of geffcy = 0.92 to
strenuously test the ability of AZEuS to handle a large number
of grids in a complicated pattern and refine on features that are
not preferentially aligned with a coordinate axis. Typically, a
lower value for the grid efficiency is used (e.g., geffcy 	 0.7)
to try to balance minimizing the number of refined zones with
the overhead associated with managing an increasing number
of small grids.

Evidently, AZEuS is able to follow the blast wave closely,
regardless of its orientation. Table 2 compares the extrema of
the plotted variables between the AMR calculation and uniform
grid solutions with 2002 and 4002 zones. With the exception of
the pressure, which exhibits differences between the uniform
4002 and AMR solutions of �0.5%, the uniform grid results
bracket the AMR solution.

For this test, we set tolshk = tolcd = 0.2 and apply
tolgrad = 0.2 to eT . While the gradient detector is useful
in refining the initial pressure jump, most (∼99.9%) of the
zones flagged for refinement soon thereafter are detected by the
CD and shock detectors. Additional parameter settings include
kcheck = 10, ibuff = 3, γ = 5/3, C = 0.5, qcon = 1.0, and
qlin = 0.1. All boundaries are set to outflow conditions.
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Figure 8. Static grid solution to problem (4a) of RJ95 at time t = 0.45. The initial left and right states are (ρ, v1, v2, v3, B2, B3, p) = (1, 0, 0, 0, 1, 0, 1) and
(0.2, 0, 0, 0, 0, 0, 0.1), with B1 = 1. From left to right, the physical features are (1) fast rarefaction, (2) slow rarefaction, (3) contact discontinuity, (4) slow shock, and
(5) “switch-on” shock. Left panels: uniform “fine” grid solution; middle panels: same solution with two fine, static grids (gray) overlying the coarse grid; right panel:
percent difference between the uniform and static grid solutions. Solid lines are the analytical solutions from the Riemann solver described in RJ95.

Table 1
Summary and Description of the Significant User-set Parameters in AZEuS

Parameter Description

C The Courant number
qcon Quadratic artificial viscosity parametera

qlin Linear artificial viscosity parametera

tolcd Threshold value for the CD detector (range 0–1)
tolshk Threshold value for the shock detector (range 0–1)
tolgrad Threshold value(s) for the gradient detector(s) (range 0–1)
kcheck Number of cycles between successive grid modifications
geffcy The minimum allowed fractional grid efficiency for creation of new grids (range 0–1)
ibuff The number of buffer zones added around zones flagged for refinement

Note. a See Clarke (2010) for a more detailed description of the artificial viscosity parameters.

7.2.2. Orszag–Tang MHD Vortex

The 2D vortex problem of Orszag & Tang (1979) has become
a standard test for astrophysical MHD codes, and as it has not
previously been performed using our version of ZEUS-3D, we

present both non-AMR and AMR results here. It is important to
note that the same code was used to produce both sets of results:
AZEuS is designed to be modular, and by deselecting the “AMR”
option at the precompilation step, the code reverts to ZEUS-3D.

12
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Figure 9. AZEuS solution to problem (2a) of RJ95 at t = 0.20. The initial left and right states are (ρ, v1, v2, v3, B2, B3, p) = (1.08, 1.2, 0.01, 0.5,

3.6/
√

4π, 2/
√

4π, 0.95) and (1, 0, 0, 0, 4/
√

4π, 2/
√

4π, 1), with B1 = 2/
√

4π . The physical features, from left to right, are (1) fast shock, (2) rotational discontinuity,
(3) slow shock, (4) contact discontinuity, (5) slow shock, (6) rotational discontinuity, and (7) fast shock. Shaded regions indicate the location of finer grids, with the
level of shading indicating the level of refinement. Ψ = tan−1(B3/B2) is the angle between the transverse field components. The solid lines are the analytical solution
from the Riemann solver described in RJ95.

Table 2
Extrema for Density, ρ, Gas Pressure, p, and Magnetic Pressure, pB, in AMR

and Uniform Grid Solutions of the 2D MHD Blast Problem at t = 0.02

AMR Uniform, 2002 Uniform, 4002

Min Max Min Max Min Max

ρ 0.199 3.36 0.200 3.22 0.189 3.40
p 0.712 32.3 0.771 32.0 0.714 32.1
pB 24.3 75.7 24.9 76.0 23.6 75.6

For this test, we follow Stone et al. (2008) by initial-
izing a periodic, Cartesian box of size x, y ∈ [0, 1] with
initially constant pressure and density, P = 5/12π and
ρ = γP = 25/36π , for γ = 5/3. The velocity is ini-
tialized to (vx, vy, vz) = (−sin (2πy), sin (2πx), 0), and the
magnetic field is set through the vector potential Az =
(B0/4π ) cos (4πx) + (B0/2π ) cos (2πy), where B0 = 1/

√
4π .

The results for uniform grids with 2562 and 5122 zones at
t = 1/2, as well as the AMR results for a base grid of 1282

zones and two levels of refinement (effective resolution of 5122

zones), are presented in Figure 11. The bottom right panel shows
the distribution of AMR grids at t = 1/2. For clarity, we have
only plotted the grids at level 3 (i.e., two levels higher resolution

than the base grid). Even then, the filling factor of level l = 2
grids at this time is �95%. Examining the first three panels of
Figure 11 closely, features are noticeably sharper in the 5122

solution relative to the 2562 results, while the AMR and 5122

solutions are indistinguishable.
Figure 12 shows slices of the gas pressure as a function of x at

t = 1/2 and y = 0.4277, which once again demonstrate that the
AMR and 5122 uniform grid solutions are virtually identical.
Quantitatively, these solutions compare favorably with those
from higher-order codes such as ATHENA (Stone et al. 2008),
with the discontinuities in the AZEuS solutions being slightly
broader.

For this problem, we set C = 0.5, qcon = 1.0, and qlin =
0.1 for both uniform and adaptive grids. For the AMR results,
kcheck = 10, geffcy = 0.9, ibuff = 2, and tolshk = 0.2.
Neither the CD nor gradient detector was engaged.

7.2.3. Magnetized Accretion Torus

This test is based on the simulations of Hawley (2000)
and Mignone et al. (2007) for a magnetized, constant angular
momentum torus in axisymmetric spherical (r, ϑ) coordinates
and highlights the use of curvilinear coordinates in AZEuS.
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Figure 10. AZEuS solution for the 2D MHD blast problem at t = 0.02 using two levels of refinement. Top left: gas pressure; bottom left: magnetic pressure
(pB = |B|2/2); top right: gas density; and bottom right: distribution of AMR grids at t = 0.02.

The torus structure is described by the equilibrium condition:

γp

(γ − 1) ρ
= C − φ − 1

2

l2
Kep

r2 sin2ϑ
, (32)

where C is a constant of integration, φ = −1/(r − 1) is
the pseudo-Newtonian gravitational potential, and lKep is the
Keplerian angular momentum at the pressure maximum. The
pressure p is initially related to the density via the polytropic
relation, p = κργ , with γ = 5/3. By specifying the location
of the pressure maximum (rmax = 4.7) and the inner edge of
the torus (rmin = 3), we can determine the value of C and the
(hydrodynamic) structure of the torus.

A poloidal magnetic field is initialized in the torus from the
ϕ-component of the vector potential:

Aϕ = B0

ρm
min (ρ(r, ϑ) − ρc, 0),

where B2
0 = 2κρ

γ
m/βm, βm and ρm are, respectively, the plasma-

beta and density at rmax, κ is determined by Equation (32)
evaluated at rmax, and ρc = ρm/2 determines the surface of
the last vector equipotential. For the simulations presented here,
βm = 350 and ρm = 10. The toroidal velocity (vϕ) in the torus

is initialized to the local Keplerian speed, while the poloidal
velocity is set to zero everywhere.

Outside the torus, the magnetic field is zero and we initialize a
hydrostatic atmosphere with density and temperature contrasts
of ρatm/ρm = 10−4 and Tatm/Tm = 100, respectively, where Tm
is the temperature at rmax.

The domain of the grid is r ∈ [1.5, 20] and ϑ ∈ [0, π/2]. We
impose reflecting boundary conditions suitable for a rotation
axis at ϑ = 0, reflecting/conducting boundary conditions at the
equatorial plane (ϑ = π/2), and outflow boundary conditions
at r = 20. At r = rin = 1.5, we impose “sink” boundary
conditions in an attempt to absorb any material reaching the
inner boundary. This involves maintaining the density and
pressure at their initial values and setting vr = vϑ = vϕ = 0
within the boundary. On the inner skin (r = rin), vr is set to
the minimum of zero and a linear extrapolation from the grid.
Finally, outflow boundary conditions are applied to the EMFs:

E1(r < rin) = E1(2rin − r);
E2(r < rin) = 2E2(rin) − E2(2rin − r);
E3(r < rin) = 2E3(rin) − E3(2rin − r). (33)

Values of E2(rin) and E3(rin) are determined by the CMoC
algorithm in AZEuS.

14



The Astrophysical Journal Supplement Series, 199:13 (22pp), 2012 March Ramsey, Clarke, & Men’shchikov

Figure 11. Uniform and adaptive grid solutions for the Orszag–Tang MHD vortex at t = 1/2. Plotted are 20 evenly spaced contours of the gas pressure with range
[0.03, 0.50]. Top left: uniform grid solution with 2562 zones; top right: uniform grid solution with 5122 zones; bottom left: AMR solution with a base grid resolution
of 1282 and two levels of refinement; and bottom right: distribution of grids at level 3 in the AMR solution.

Figure 12. 1D slices of the gas pressure at t = 1/2 and y = 0.4277 in the
Orszag–Tang MHD vortex problem. From top to bottom, uniform 2562 grid,
uniform 5122 grid, AMR solution with two levels of refinement and an effective
resolution of 5122 zones.

Both the uniform grid and AMR solutions are presented here.
For the single-grid calculation, we use 592 uniform radial zones

and 256 uniform meridional zones. For the AMR solution, we
use a base grid of 296 × 128 zones and allow one level of
refinement with a refinement ratio ν = 2, giving the same
effective resolution as the uniform grid calculation.

For both calculations, C = 0.5, qcon = 1.0, and qlin =
0.1. For AMR, kcheck = 50, geffcy = 0.8, ibuff = 2,
tolshk = tolcd = 0.2, and tolgrad = 0.2 is applied to Bϑ .
We use the gradient detector to refine on the initial magnetic
field configuration (contained entirely within the torus) and
the complex field structure that develops later on from the
magnetorotational instability (MRI; Balbus & Hawley 1991),
since neither is well tracked by the shock and CD detectors.

Following Hawley (2000), we enforce a density floor of
10−3ρ(rin) to prevent the time step from becoming prohibitively
small, and we use the internal energy equation to avoid negative
pressures. Unlike Hawley (2000), we do not introduce any
perturbations on the initial conditions, which slows but does
not prevent the onset of MRI.

Figure 13 presents the results of our simulations at t = 300.
Evidently and very much unlike the Orszag–Tang vortex, the
AMR and uniform grid solutions are visually different, even
though they have the same effective resolution. For a pseudo-
turbulent, “irreversible” problem such as this, small differences
between values in the coarse and fine grids grow exponentially
during the simulation and lead to visually different solutions.
This is quite unlike the behavior of a “reversible” problem such
as the Orszag–Tang vortex, for which small fluctuations grow at
worse linearly in time and never manifest as visual differences
in the plots. On the other hand, integrated quantities tend to be in
better agreement than their detailed distributions. For example,
between the uniform grid and AMR solutions, the integrated
mass and kinetic energy at t = 300 differ by only 0.9% and 6.5%,
respectively. Furthermore, our results are qualitatively similar
to Mignone et al. (2007); Figure 13 could easily fit in with
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Figure 13. “Beard of AZEuS”: results of MHD accretion torus simulations in (r, ϑ) coordinates at t = 300, where the vertical axis is the rotation axis. Plotted are
contours of poloidal magnetic field (left) and logarithmic density (right). Top panels are for the uniform grid, bottom panels for the AMR solution with one level of
refinement. Borders of the adaptive grids are shown with white lines.

Figure 14. AZEuS results for the normalized magnetic field divergence,
|∇ · �B| Δx/| �B|, in the MHD accretion torus simulation at t = 300. The maximum
value of the normalized divergence at this time, including both physical and
adjacent boundary zones, is 1.34 × 10−15. Borders of the adaptive grids are
shown with white lines.

their Figure 8 for different Riemann solvers and interpolation
schemes.

Figure 14 shows the normalized magnetic field divergence,
|∇ · �B| Δx/| �B|, at the simulation end time, where the maximum
value is 1.34 × 10−15, including both physical and adjacent
boundary zones. Indeed, the minimum and maximum values
for the divergence throughout the simulation lifetime reach
−7.392×10−15 and 7.396×10−15, respectively, demonstrating
that the algorithms employed for prolongation and restriction
of the magnetic field in AZEuS are capable of maintaining the
solenoidal condition to machine round-off, assuming that the
initial conditions are also divergence free. It is also worthwhile
to note the absence of grid boundary effects in Figure 14, which
one might expect if monopoles existed within the boundaries of
the fine grids.

7.3. A 3D Test: Self-gravitational Hydrodynamical Collapse

The last test is the self-gravitational hydrodynamical collapse
calculation first presented by Truelove et al. (1997) and Truelove
et al. (1998, hereafter T98). At the time of this writing, self-

gravity had not been fully implemented in AZEuS, and so we
used the successive over-relaxation (SOR) method (Press et al.
1992) as an easy-to-program, albeit slow, stop-gap measure.
Since SOR is incompatible with periodic boundary conditions,
we apply inflow boundary conditions instead. This results in
some subtle differences from T98, which we discuss below.

A rotating, uniform cloud of mass M = 1 M� and radius
R = 5 × 1016 cm is initialized in the center of a 3D Cartesian
box with side length 4R. We use a nearly isothermal equation
of state (p = κργ , γ = 1.001), initially uniform rotation
Ω = 7.14 × 10−13 rad s−1 with angular momentum axis in the
positive x3-direction, and energy ratios of

α = 5

2

(
3

4πρ0M2

)1/3
c2
s

G
= 0.16 and

βΩ = 1

4π

Ω2

Gρ0
= 0.26, (34)

where ρ0 and cs are, respectively, the initial density and sound
speed of the uniform cloud (T98). The remainder of the
computational volume is initialized with uniform density and
pressure given by ρatm = 100ρcloud and patm = 10pcloud. Upon
the initial uniform density distribution, we apply an azimuthal
m = 2 perturbation of the form ρcloud(1 + A cos(2ϕ)), where
A = 10% is the perturbation amplitude and ϕ is the azimuthal
angle relative to the cloud center.

Following T98, we set the coarsest grid to 323 zones and
designate it as R8 (meaning that the cloud radius is resolved with
eight zones). We immediately add one level of refinement by
flagging all zones that have density ρ > ρcloud (for a refinement
ratio of 4, this gives 32 zones per cloud radius, or R32). Beyond
this, we enforce the so-called Truelove criterion:

J = Δx

λJ

= Δx

(
Gρ

πc2
s

)1/2

< Jmax, (35)

refining zones that have Jeans numbers J larger than critical
value Jmax = 0.25. Additional run-time parameters for this test
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Figure 15. AZEuS results for the Truelove problem with a 10% amplitude perturbation at t = 0.59808 = 1.2152tff , where tff is the free-fall time. Left: equatorial
x1–x2 slice of logarithmic density with velocity vectors superposed. The highest resolution shown here is R8192, five levels of refinement above the base grid. Right:
equatorial x1–x2 slice of logarithmic density of the upper fragment. The highest resolution in this plot is R32768 (six levels) with one additional level of refinement
not shown. White lines denote the borders of AMR grids, and the units of density are g cm−3. For each panel, 20 evenly spaced contours are plotted with ranges
log ρ = [−16.10,−9.905] (left) and [−14.30,−9.604] (right).

include C = 0.33, qcon = 1.0, qlin = 0.1, kcheck = 20,
geffcy = 0.7, ibuff = 2, and refinement ratio ν = 4.

Figure 15 shows our results at t = 0.59808 = 1.2152tff .
At this time, there are seven levels of refinement above the
base grid (R131072). Our maximum density at this time is
log ρmax = −9.347399, with density measured in g cm−3,
an increase over ρ0 of more than eight orders of magnitude.
While our simulation collapses more quickly than T98 and our
Figure 15 does not correspond exactly with their Figures 12
and 13, we also reach a somewhat lower maximum density.

The differences between our results and T98 are most likely
caused by the differing boundary conditions (ours inflow, theirs
periodic). Indeed, T98 allude to this possibility, suggesting that
non-periodic boundary conditions could slightly increase the
rate of collapse, which we observe.

8. SUMMARY

We have described a method for block-based AMR on a
fully staggered mesh and implemented this method in a new
version of ZEUS-3D called AZEuS. In addition to describing the
modifications required to AMR to account for the fully staggered
grid, we also describe higher-order interpolation methods for
the prolongation step that we found necessary to allow for
static grids. Static grids are important for problems that, at
first order, have a self-similar character and expand over the
course of the simulation to ever larger scale lengths. Such a
simulation by AZEuS has already appeared in the literature
(Ramsey & Clarke 2011), which showcases the ability of
the code to transmit waves of all types and strengths across
grid boundaries, and to do so in cylindrical coordinates. The
higher-order prolongation operator is designed to maintain the
conservation of all important physical quantities such as mass,
momentum, energy, and magnetic flux.

Numerous test problems were also presented in 1D, 2D,
and 3D, and in both Cartesian and spherical polar coordinates.
These tests demonstrate the ability of the code to produce essen-
tially identical results in “reversible” (non-turbulent) problems
whether using a single grid or AMR and give an example of the
differences that can occur in “irreversible” (turbulent) problems

as minute differences caused by the insertion or deletion of a
grid amplify.

Finally, the AZEuSWeb site http://www.ica.smu.ca/azeus was
introduced on which test problems and simulations will be
posted as they become available, and from which the code can
be downloaded in the near future.
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in the original draft. We also thank Marsha Berger for providing
her AMR subroutines. This work is supported, in part, by the
Natural Sciences and Engineering Research Council (NSERC).
Computing resources were provided by ACEnet, which is
funded by CFI, ACOA, and the provinces of Nova Scotia,
Newfoundland & Labrador, and New Brunswick.

APPENDIX A

CURVILINEAR COORDINATES

Like other codes in the ZEUS family, AZEuS uses the “co-
variant” (coordinate independent) form of the MHD equations
(Stone & Norman 1992a). Supported geometries in AZEuS in-
clude Cartesian (x, y, z), cylindrical (z, r, ϕ), and spherical polar
(r, ϑ, ϕ) coordinates, while other orthogonal curvilinear coordi-
nate systems may be easily implemented as needed. For sim-
plicity, the equations presented in the main body of the paper
were all written assuming Cartesian-like coordinates. In this
Appendix, we show how these may be rewritten in a covariant
fashion.

The distance differential in an orthogonal coordinate system,
(x1, x2, x3), is given by

ds2 = g2
1 dx2

1 + g2
2 dx2

2 + g3 dx2
3 , (A1)

where gi, i = 1, 2, 3, are the usual metric scaling factors, all
functions of the coordinates. If the scaling factors are separable
and independent of their own direction, we can write

g1 = g1(j, k) = g12(j ) g13(k);
g2 = g2(k, i) = g23(k) g21(i); (A2)

g3 = g3(i, j ) = g31(i) g32(j ),

17

http://www.ica.smu.ca/azeus


The Astrophysical Journal Supplement Series, 199:13 (22pp), 2012 March Ramsey, Clarke, & Men’shchikov

Table 3
Metric Scaling Factors in AZEuS for Cartesian, Cylindrical,

and Polar Coordinates

(x1, x2, x3) g12(j ) g13(k) g23(k) g21(i) g31(i) g32(j )

(x, y, z) 1 1 1 1 1 1
(z, r, ϕ) 1 1 1 1 1 x2(j )
(r, ϑ, ϕ) 1 1 1 x1(i) x1(i) sin x2(j )

listed in Table 3 for Cartesian, cylindrical, and spherical polar
coordinates.

Face areas and zone volumes important for the calculation of
fluxes and conserved quantities are written as

δA1(i, j, k) =
∫ x2(j+1)

x2(j )

∫ x3(k+1)

x3(k)
g21(i) g31(i) g32(j ′) dx ′

2 dx ′
3

= g21(i) g31(i)
∫ x2(j+1)

x2(j )
g32(j ′) dx ′

2

∫ x3(k+1)

x3(k)
dx ′

3

≡ g21(i) g31(i) δA12(j ) δA13(k), (A3)

δA2(i, j, k) =
∫ x3(k+1)

x3(k)

∫ x1(i+1)

x1(i)
g31(i ′) g32(j ) dx ′

3 dx ′
1

= g32(j )
∫ x3(k+1)

x3(k)
dx ′

3

∫ x1(i+1)

x1(i)
g31(i ′) dx ′

1

≡ g32(j ) δA23(k) δA21(i), (A4)

δA3(i, j, k) =
∫ x1(i+1)

x1(i)

∫ x2(j+1)

x2(j )
g21(i ′) dx ′

1 dx ′
2

=
∫ x1(i+1)

x1(i)
g21(i ′) dx ′

1

∫ x2(j+1)

x2(j )
dx ′

2

≡ δA31(i) δA32(j ), (A5)

δV (i, j, k) =
∫ x1(i+1)

x1(i)

∫ x2(j+1)

x2(j )

∫ x3(k+1)

x3(k)
g21(i ′) g31(i ′)

× g32(j ′) dx ′
1 dx ′

2 dx ′
3 =

∫ x1(i+1)

x1(i)
g21(i ′) g31(i ′) dx ′

1

×
∫ x2(j+1)

x2(j )
g32(j ′) dx ′

2

∫ x3(k+1)

x3(k)
dx ′

3 (A6)

≡
∫ x1(i+1)

x1(i)
dV ′

1

∫ x2(j+1)

x2(j )
dV ′

2

∫ x3(k+1)

x3(k)
dV ′

3 (A7)

≡ δV1(i) δV2(j ) δV3(k),

where metric scaling factors equal to 1 in Table 3 have been and
will continue to be dropped.

Finally, ZEUS has traditionally defined the momentum
densities, �s, as

s1(i, j, k) = ρ

(
i − 1

2
, j, k

)
v1(i, j, k);

s2(i, j, k) = g21(i) ρ

(
i, j − 1

2
, k

)
v2(i, j, k); (A8)

s3(i, j, k) = g31(i) g32(j ) ρ

(
i, j, k − 1

2

)
v3(i, j, k),

where the half indices in the density indicate two-point av-
erages. Defining the momentum components with the metric
scaling factors simplifies the momentum equation somewhat by
eliminating all “Coriolis-like” fictitious forces, leaving only the
“centrifugal-like” terms.

A.1. Restriction

A.1.1. Conservative Overwrite

When applying the conservative overwriting procedure on a
curvilinear grid, the equations of Section 3.1 must be modified
to account for the non-constant volumes of zones. For example,
Equation (6) for zone-centered quantities becomes

Q(I, J,K) ΔV1(I ) ΔV2(J ) ΔV3(K)

=
ν−1∑

α,β,η=0

q(i + α, j + β, k + η)

× δV1(i + α) δV2(j + β) δV3(k + η), (A9)

and Equation (7) for face-centered momenta generalizes to

S1(I, J,K) ΔV1(I ) ΔV2(J ) ΔV3(K)

=
ν/2∑

α=−ν/2

ν−1∑
β,η=0

G′(α) s1(i + α, j + β, k + η)

× δV1(i + α) δV2(j + β) δV3(k + η), (A10)

where

G′(α) =
{

w1,R(i + α) if α = −ν/2;
w1,L(i + α) if α = +ν/2;
1 otherwise,

(A11)

and where

w1,L(i) = 1

δV1(i)

∫ x1(i)

x1(i−1/2)
dV1;

w1,R(i) = 1

δV1(i)

∫ x1(i+1/2)

x1(i)
dV1. (A12)

While it is still true that the fine zones at α = ±ν/2 are
halfway outside the coarse ROI in position space (Figure 3(b)),
this is not generally true in volume space. As an example,
consider spherical coordinates where the 1-volume differential
is dV1(i) = g21(i)g31(i) dx1(i) = x2

1 (i) dx1(i). Clearly, dV1(i)
in spherical coordinates is not a linear function of position, and
it cannot be assumed that exactly 1/2 of the fine momentum
volume is outside the coarse ROI. To correct for this, we
calculate the ratio of the half-volume inside the coarse ROI to
the actual volume element (Equation (A12)), which is then used
as a weighting factor in G′(α). For reasonable grid parameters,
these weighting factors are small corrections (<a few %) relative
to the Cartesian factor of 1/2 but nonetheless are included for
accuracy.

Suitable expressions for the 2-direction are obtained by a
permutation of indices. No corrections are necessary for the
3-direction, since dV3(k) = dx3(k) for the curvilinear coordi-
nates discussed here.

For the magnetic field, Equation (9) changes to account for
non-uniform areas:

B1(I, J,K) ΔA1(I, J,K) =
ν−1∑

β,η=0

b1(i, j + β, k + η)

× δA1(i, j + β, k + η). (A13)
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A.1.2. Flux Corrections

Fluxes and EMFs as stored by ZEUS-3D already include the
appropriate area and length elements, so the required changes
for flux corrections in curvilinear coordinates are not sub-
stantial. As with the conservative overwrite, the corrections
(e.g., Equation (12)) need to be adjusted by replacing occur-
rences of G (Equation (8)) with G′ (Equation (A11)). Similar to
Equation (A10), Equation (11) for the flux corrections of
momentum components normal to the boundary must also be
modified to account for non-constant volumes:

S̃N+1
1 (I, J,K) = SN+1

1 (I, J,K) − 1

ΔV (I, J,K)

×
{

F
N+ 1

2
1,S1

(I − 1, J,K) −
ν−1∑

β,η,τ=0

[
w1,R

(
i − ν

2

)
f

n+τ+ 1
2

1,s1

×
(

i − ν

2
− 1, j + β, k + η

)
+ w1,L

(
i − ν

2

)
f

n+τ+ 1
2

1,s1

×
(

i − ν

2
, j + β, k + η

)]}
. (A14)

By the same argument, Equation (13) for coarse momenta
with flux components parallel to a grid boundary also needs to
be modified, as the original factor of (ν − 1)/2ν ≡ R is not
correct for curvilinear coordinates:

S̃N+1
2 (I, J,K) = SN+1

2 (I, J,K) − 1

ΔV (I, J,K)

×
{
L(J, ν)

[
F

N+ 1
2

1,S2
(I, J,K) − F

N+ 1
2

1,S2
(I + 1, J,K)

]

−
ν/2∑
β=1

ν−1∑
η,τ=0

G′(β)

[
f

n+τ+ 1
2

1,s2
(i, j + β, k + η)

− f
n+τ+ 1

2
1,s2

(i + ν, j + β, k + η)

]}
. (A15)

Here, L(J, ν) = W2,L(J, ν) if S2(I, J,K) is at the upper edge
of the fine grid (high j), and L(J, ν) = W2,R(J, ν) if S2(I, J,K)
is at the lower edge of the fine grid (low j), with

W2,L(J, ν) = 1

ΔV2(J )

∫ x2(J−1/2+R)

x2(J−1/2)
dV2;

W2,R(J, ν) = 1

ΔV2(J )

∫ x2(J+1/2)

x2(J+1/2−R)
dV2.

Like the function G′, L accounts for the portion of the coarse
zone flux in volume space that is being replaced by fine fluxes.
As before, expressions for the 2-direction are obtained by a
suitable permutation of indices.

A.2. Prolongation

The changes required for prolongation on curvilinear grids
deal entirely with making the interpolations conservative
for curvilinear volumes and areas. In the case of 1D PPI,
Equation (16) summarizing the conservation constraint is
modified to

Q(I, J,K)ΔV1(I ) =
ν−1∑
α=0

q(i + α, j, k)δV1(i), (A16)

which then affects the rest of the scheme (Equations (17) and
(18)):

q∗
1 (i + α) = QL(I ) + ζ [QR(I ) − QL(I ) + H′

1(1 − ζ )], (A17)

where

ζ = x1(i + α) − x1(I )

Δx1(I )
;

H′
1 = 1

f ′
1(ν, i) − f ′

2(ν, i)
{ΔV1(I )[Q(I, J,K) − QL(I )]

− f ′
1(ν, i)[QR(I ) − QL(I )]};

f ′
1(ν, i) = 1

2ν

ν∑
ξ=1

(2ξ − 1)δV1(i + ξ − 1);

f ′
2(ν, i) = 1

4ν2

ν∑
ξ=1

(2ξ − 1)2δV1(i + ξ − 1).

As for PLI, the original 1D scheme in the 1-direction takes
the form (van Leer 1977)

q∗
1 (i + α) = Q(I ) + (2ζ − 1) ΔQ′, (A18)

where

ΔQ′ =
⎧⎨⎩

ΔQR ΔQL
ΔQR+ΔQL

if ΔQR ΔQL > 0;

0, otherwise,

and where

ΔQR = Q(I + 1) − Q(I ); ΔQL = Q(I ) − Q(I − 1).

Equation (A18) will not generally conserve mass, momentum,
or magnetic flux on a curvilinear grid. To correct this, we relax
the constraint that the linear interpolation profile must pass
through Q(I ) at the zone center. This releases one degree of
freedom that can then be used with Equation (A16), resulting in

q∗
1 (i + α) = Q(I ) + ΔQ′

[
2ζ − 1 − 1

ΔV1(I )
f ′

3(ν, i)

]
,

(A19)

where

f ′
3(ν, i) = 1

ν

ν∑
ξ=1

[(2ξ − 1) − ν] δV1(i + ξ − 1).

The additional term in Equation (A19) can be viewed either as
a shift in the zone-centered intercept or as choosing a modified
value of ζ corresponding to the volume-centered rather than the
spatial-centered coordinate.

Unfortunately, this “shift” can push q∗
1 (i + α) beyond neigh-

boring values of Q(I ) at the edges of the interpolation profile,
resulting in a loss of monotonicity. However, since ζ = 0 or 1
at the left or right side of the interpolation profile, we can write

ΔQ′
L = Q(I ) − q∗

1 (i + α) = ΔQ′(1 + K′
1)

or ΔQ′
R = q∗

1 (i + α) − Q(I ) = ΔQ′(1 − K′
1), (A20)

where K′
1 = f ′

3(ν, i) / ΔV1(I ). If we limit the slope of the
interpolation profile to

ΔQ′′ =
⎧⎨⎩sign

(
ΔQ′) |ΔQL| / (1 + K1) if |ΔQ′

L| > |ΔQL|
sign

(
ΔQ′) |ΔQR| / (1 − K1) if |ΔQ′

R| > |ΔQR|
ΔQ′ otherwise,

(A21)
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and, because of the properties of the PLI slope ΔQ′, the first two
cases of Equation (A21) will never occur simultaneously. Thus,
the equation for conservative, monotonic, 1D PLI in curvilinear
coordinates is

q∗
1 (i + α) = Q(I ) + ΔQ′′[(2ζ − 1) − K1]. (A22)

The previous discussion applies to interpolation of momenta
in the directions perpendicular to the component normal (e.g.,
s1 in the 2- and 3-directions). The covariant procedure for linear
interpolation in between coarse faces (e.g., s1 in the 1-direction;
Equation (24)) is as follows:

s1(i + α, j + β, k + η) δV1(i + α) = (1 − ζ ) s1(i, j + β, k + η)

× δV1(i) + ζ s1(i + ν, j + β, k + η) δV1(i + ν). (A23)

Finally, the generalized Li & Li (2004) algorithm is adapted
to curvilinear coordinates simply by replacing �B (and �b) in
Equations (25)–(28) with the magnetic “flux functions”:

�Ψ = (
Ψ1, Ψ2, Ψ3

) =
(

g21 g31
ΔV2

Δx2
B1, g31 g32 B2, g21 B3

)
.

(A24)
With this modification, the solenoidal condition can be written

in “Cartesian-like” form, regardless of the geometry:

∇ · �Ψ = ∂Ψ1

∂x1
+

∂Ψ2

∂x2
+

∂Ψ3

∂x3
= 0,

and the prolongation of magnetic field in curvilinear coordinates
proceeds exactly as described in Section 4.1.

APPENDIX B

THE VECTOR POTENTIAL

Writing �B = ∇ × �A and assuming 3-symmetry with an
appropriate gauge, one can easily show from the induction
equation (Equation (3)) that A3 obeys an “advection equation”:

∂A3

∂t
+ �v · ∇A3 = 0, (B1)

from which the poloidal components of the magnetic field are
given by

B1 = ∂A3

∂x2
; B2 = −∂A3

∂x1
. (B2)

Further, one can show that B3 is given by

∂B3

∂t
+ ∇ · (B3�v) = �B · ∇v3. (B3)

Since Equation (B3) has exactly the same form as the internal
energy equation (Equation (4)), and since Equation (B1) is a
simple advection equation, the induction step in the original
ZEUS code (zeus04; Clarke 1988) was based on solving these
equations using the hydrodynamical algorithms already in the
code and then calculating B1 and B2 from Equations (B2).
Evidently, the solenoid condition is strictly satisfied. Regardless
of the initial magnetic field configuration, it is easy to show that
a face-centered �B and a corner-centered (edge-centered in 3D)
A3 guarantee ∇ · �B = 0 everywhere and at all times to machine
round-off error.

However, Clarke (1988) points out that a second-order accu-
rate A3 means first-order accurate poloidal magnetic field com-
ponents and a zeroth-order accurate current density J3 (each

differentiation reduces the order of accuracy by one), and this
was found to have catastrophic consequences in computing the
�J × �B source terms in the momentum equation (Equation (2)).

Thus, the vector potential algorithm in zeus04 was abandoned,
and the first publicly released version of ZEUS-2D (Stone &
Norman 1992a, 1992b) and later ZEUS-3D (Clarke 1996) were
based on the CT algorithm of Evans & Hawley (1988) in which
the magnetic field is updated directly. Note that the CT scheme
conditionally satisfies the solenoidal condition, requiring that
the magnetic field be initialized such that ∇ · �B = 0.

Still, the failure of the vector potential algorithm in zeus04
is not a complete indictment of �A for use in numerical MHD
algorithms. Indeed, Londrillo & Del Zanna (2000) and Igumen-
shchev & Narayan (2002) have successfully demonstrated the
use of �A as the primary magnetic variable in their MHD codes.
By substituting �B = ∇ × �A into Equation (3) and with an
appropriate gauge, we can write

∂ �A
∂t

= �v × �B ≡ − �E. (B4)

Thus, CT can be used as originally designed in which ∇× �E is
used to update �B, or easily modified to use �E to update �A directly
and then update �B by taking a curl of the updated �A. Either way,
a curl must be taken and the algorithms are interchangeable to
machine round-off error. Based as they are on such a modified
CT scheme, the vector potential algorithms used by Londrillo
& Del Zanna (2000) and Igumenshchev & Narayan (2002) are
very different from the failed algorithm described for zeus04,
showing none of the effects of the inaccurate current density.

Based on this observation, preliminary versions of AZEuS
used the vector potential as the primary magnetic variable so
that prolongation could be accomplished by interpolating �A
(rather than �B), thus guaranteeing preservation of the solenoidal
condition on a newly created fine grid or in a fine boundary
region. Furthermore, because the vector potential conserves
magnetic flux via a path integral (

∮ �A·d�l = ∫ �B ·d �σ ), restricting
�A and then calculating �B means that no EMF corrections are

required at adjacent boundaries. This approach, however, was
found to be unsatisfactory since the parabolic interpolation
function generated by PPI on �A produces piecewise linear
profiles for �B and piecewise constant profiles for �J , recovering
the problem that doomed the original zeus04 algorithm.

In addition, having to match gauges on overlapping grids
poses a significant problem, and one that we never solved.
In order to arrive at Equation (B4), one implicitly assumes a
specific gauge. For a single grid, this is not a problem since
there is never a need to specify this gauge. For multiple grids,
however, each grid may have its own gauge (especially for grids
whose origins are not coincident), and leaving them unspecified
gives rise to discontinuities in the perpendicular components of
the magnetic field at adjacent boundaries. While a solution to this
problem likely exists, we abandoned vector potentials in AZEuS
before finding one because of the insurmountable problem of
the lack of accuracy in the current densities.

As an illustration, Figure 16 shows early results of the
simulations in Ramsey & Clarke (2011) in which the vector
potential is used as the primary magnetic variable. The left panel
shows the solution immediately before a grid modification, and
the right panel shows the solution a few time steps after and
after the fine grid was extended from x1 = 160 to x1 = 166.
The errors committed by the piecewise constant current densities
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Figure 16. Effects of differencing a parabolic interpolation of �A twice to calculate �J × �B forces. Left panel: the solution immediately before a grid adaptation step.
Right panel: the solution a few time steps after. Plotted are 20 evenly spaced contours of the toroidal magnetic field (top) and velocity divergence (bottom) with ranges
Bϕ = [−0.035, 0.0] and ∇ · �v = [−0.15, 0.15], respectively.

Figure 17. Results of placing a “field defect” at x2 = 0 in the left boundary of a static grid for a single fine time step. Plotted are contours of velocity divergence (left)
and normalized magnetic field divergence (right). The static grid boundaries are shown as a solid white line, and the simulation is depicted at t = 0.17.

take a while to dissipate and, in this particular example, result
in particularly egregious defects in the velocity divergence
distribution within the new portion of the grid. Conversely, the
Li & Li (2004) algorithm we currently employ renders adjacent
boundaries virtually invisible in the distributions of all variables.

APPENDIX C

THE EFFECTS OF A MONOPOLE IN THE BOUNDARY

Since AZEuS is vulnerable to boundary pollution (Section 5),
we must take care that values in the self-computed boundaries
of AMR grids are as free from non-physical phenomena (e.g.,
monopoles) as the grid itself. To demonstrate this, Figure 17
presents the results from a simulation with initially uniform and
quiescent conditions (ρ, p, �v, B1, B2, B3) = (1, 0.6, 0, 0, 1, 0),
where a static grid with corners [±0.2,±0.2] is positioned in
the center of a Cartesian domain (x1, x2) ∈ [−0.5, 0.5]. A single
“field defect” ( �B = 2B2x̂2; ∇ · �B Δx2/B2 = ±1) is deliberately
placed in the left boundary of the static grid at x2 = 0 and
t = 0. This field defect persists only for a single fine time step
before the boundaries are replaced by data prolonged from the
underlying coarse values in the manner described in Section 4.
Other parameters used in this simulation include a refinement

ratio of ν = 2, γ = 5/3, C = 0.5, qcon = 1.0, and qlin =
0.1 (as defined in Table 1). The base grid has a resolution of
200 × 200 zones, and all physical boundaries are set to outflow
conditions.

Although the field defect is only present for a single fine
time step, a fast magnetosonic wave is still launched from
the boundary of the fine grid, propagating into both fine and
coarse grids. All deviations from quiescence result from the
momentary presence of the monopole in the boundary, leading
to what is clearly an unacceptable result. And yet, ∇ · �B = 0
to within machine round-off error everywhere on the active
grid at all times (e.g., Figure 17, right), and additionally within
the boundaries after the first fine time step. Therefore, the
magnetic field prolongation and restriction operators in AZEuS
are designed to preserve magnetic divergence to machine round-
off error in both the active grid and the boundaries at all times.

APPENDIX D

SCHEMATIC OVERVIEW OF THE AMR MODULE

This Appendix is designed mainly for programmers and those
who may wish to use and/or modify AZEuS. It is meant as an
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overview to illustrate how the main ideas covered in this paper
have been implemented in the code.
Step 0. Initialise computational domain and all variables for

the current run.
Set level lvl = 1, ntogo(lvl) = 1.
MAIN LOOP:

Step 1. For level lvl, call REGRID(lvl) if kcheck cycles
have transpired at level lvl since the last call to
REGRID, or if t = 0.
For l = maxlevel - 1, lvl, -1:

Step 1a. Flag existing grids at level l for re-
finement based on one or more phys-
ical criteria. Add ibuff buffer zones
around flagged points.

Step 1b. Create grids around flagged points
based on geffcy.

Step 1c. Check for proper nesting on all new/
modified grids; fix grids that are not
properly nested via bisection.

Step 1d. If any new/modified grids are abutting,
make them overlapping instead.

End For
For l = lvl + 1, maxlevel:

Step 1e. Fill new/modified grids with values
either from old grids at level l or
interpolated from coarse grids at level
l - 1.

Step 1f. Remove old grids that are no longer in
use.

End For
Step 2. For level lvl, call ADVANCE(lvl, dt).

Step 2a. For all grids at level lvl, either fill
boundary zones from overlapping grids
at the same level or interpolate values
from coarse grids at level lvl - 1
(unless lvl = 1, in which case use
physical boundary values).

For each grid m at level lvl:
Step 2b. Advance grid m by time step dt with

ZEUS-3D.
Step 2c. Save fluxes/EMFs along the edges of

grid m for flux corrections later.
End For

Step 3. One time step at level lvl is complete; check for levels
> lvl.

Set ntogo(lvl) = ntogo(lvl) - 1.
Step 3a. If lvl < maxlevel, then:

Set lvl = lvl + 1.
Set ntogo(lvl) = nu, where nu
is the refinement ratio.
Set dt = dt / ntogo(lvl).
Go to the beginning of the main
loop.

End If
Step 3b. If ntogo(lvl) > 0, then go to the

top of the main loop,
Else Set lvl = lvl - 1.

Step 4. For level lvl, call UPDATE(lvl).
For each grid m at level lvl:

Step 4a. Flux correct each grid m with fluxes
from grids at level lvl + 1, if any.

Step 4b. Overwrite zones on grid m with overly-
ing zones at level lvl + 1, if any.

Step 4c. Update any physical (non-periodic)
boundary values that depend on zones
that were just flux corrected or over-
written.

End For
If lvl > 1, go to Step 3b.

Step 5. One entire AMR cycle is complete. Reconcile time
steps across all grids and levels.

Step 6. Perform any required input/output.
Step 7. If t < tlimit, go to the top of the main loop, else

exit.
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