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We consider two extensions of free probability that have been 
studied in the research literature, and are based on the notions 
of c-freeness and respectively of infinitesimal freeness for 
noncommutative random variables. In a 2012 paper, Belinschi 
and Shlyakhtenko pointed out a connection between these two 
frameworks, at the level of their operations of 1-dimensional 
free additive convolution. Motivated by that, we propose 
a construction which produces a multi-variate version of 
the Belinschi-Shlyakhtenko result, together with a result 
concerning free products of multi-variate noncommutative 
distributions. Our arguments are based on the combinatorics 
of the specific types of cumulants used in c-free and in 
infinitesimal free probability. They work in a rather general 
setting, where the initial data consists of a vector space V
given together with a linear map Δ : V → V ⊗ V. In this 
setting, all the needed brands of cumulants live in the guise 
of families of multilinear functionals on V, and our main 
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result concerns a certain transformation Δ∗ on such families 
of multilinear functionals.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we study the relation between two extensions of the framework of free 
probability which have been considered in the research literature, and are based on the 
notions of c-free independence and respectively of infinitesimal free independence for 
noncommutative random variables.

1.1. Description of framework

We consider the plain algebraic framework of a “noncommutative probability space”, 
or ncps for short, by which we simply understand a pair (A, ϕ) with A a unital algebra 
over C and ϕ : A → C a linear functional having ϕ(1A) = 1. The fundamental con-
cept of interest for us in this framework is the one of free independence for a family of 
unital subalgebras A1, . . . , Ak ⊆ A. A handy tool for the combinatorial study of free 
independence is a sequence of multilinear functionals (κn : An → C)∞n=1, called the free 
cumulant functionals associated to (A, ϕ); indeed, the free independence of A1, . . . , Ak

can be conveniently re-phrased as a vanishing condition of the “mixed” free cumulants 
with entries in these algebras. For a basic exposition of how free cumulants are used in 
the study of free independence, see e.g. Lecture 11 of [15].

In this paper we consider two extensions of the free probability framework.
One of the extensions is to the framework of c-free (shorthand for “conditionally free”) 

independence, which was initiated in [6,7], and has accumulated a fairly large amount 
of work since then (see e.g. [5,16] and the references indicated there). Here one works 
with triples (A, ϕ, χ) where (A, ϕ) is an ncps (as above) and χ : A → C is an additional 
linear functional with χ(1A) = 1. We will refer to such a triple (A, ϕ, χ) by calling 
it a C-ncps. When dealing with a C-ncps, the fundamental concept of interest is the 
one of c-free independence (with respect to ϕ and χ) for a family of unital subalgebras 
A1, . . . , Ak ⊆ A; this amounts to asking that A1, . . . , Ak are freely independent in the 
usual sense with respect to ϕ, and in addition, that a multiplicativity condition on χ is 
fulfilled for certain special products formed with elements from A1, . . . , Ak. The paper [7]
also introduced a recipe for how to define a family (κ(c)

n : An → C)∞n=1 of c-free cumulant 
functionals associated to (A, ϕ, χ). In terms of cumulants, the c-free independence of a 
family of unital subalgebras A1, . . . , Ak ⊆ A is equivalent to: usual free independence of 
A1, . . . , Ak with respect to ϕ, plus a vanishing condition on the mixed κ(c)

n cumulants.
The other extension we want to consider is to the framework of infinitesimal free 

independence. This was introduced in [2], with some earlier combinatorial ideas around 
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this topic appearing in [3]. The literature on infinitesimal free probability is not extensive, 
but this is nevertheless a promising direction of research, e.g. due to its connections to 
random matrix theory ([19], see also the discussion in [14]). In order to study infinitesimal 
free independence, one works with triples (A, ϕ, ϕ′) where (A, ϕ) is an ncps (as above) 
and ϕ′ : A → C is an additional linear functional such that ϕ′(1A) = 0. We will refer to 
such a triple (A, ϕ, ϕ′) by calling it an I-ncps. In relation to an I-ncps, the fundamental 
concept of interest is the one of infinitesimal free independence (with respect to ϕ and 
ϕ′) for a family of unital subalgebras A1, . . . , Ak ⊆ A; this amounts to asking that 
A1, . . . , Ak are freely independent in the usual sense with respect to ϕ, and in addition, 
that a derivation-type condition on ϕ′ is fulfilled for certain special products formed 
with elements from A1, . . . , Ak. One has, as found in [11], a natural way of defining 
a family (κ′

n : An → C)∞n=1 of infinitesimal free cumulant functionals associated to 
(A, ϕ, ϕ′), obtained essentially by “taking a formal derivative with respect to ϕ” in the 
formulas describing the free cumulants of ϕ. In terms of cumulants, the infinitesimal free 
independence of a family of unital subalgebras A1, . . . , Ak ⊆ A is equivalent to: usual 
free independence of A1, . . . , Ak with respect to ϕ, plus a vanishing condition on the 
mixed κ′

n cumulants.

1.2. The map Ψ from [2], and its multivariate extension

The main objective of the present paper is to look for connections between the frame-
works of c-free independence and of infinitesimal free independence. Our starting point 
is a result of Belinschi and Shlyakhtenko, Theorem 22 in [2], which goes at the level of 
distributions. For our purposes here, distributions will be assumed to have finite moments 
of all orders, and will be viewed as linear functionals on the algebra of polynomials C[X]; 
the C-ncps and I-ncps considered in this context are thus of the form

(C[X], μ, ν) and respectively (C[X], μ, μ′), (1.1)

with μ, ν, μ′ : C[X] → C linear such that μ(1) = ν(1) = 1, μ′(1) = 0. For pairs (μ, ν) and 
(μ, μ′) as in (1.1) one naturally defines operations of free additive convolution, denoted 
by �c and3 respectively �B , which reflect the operation of adding c-free (respectively 
infinitesimally free) elements in a general C-ncps (respectively I-ncps).

Theorem 22 of [2] gives a connection between the operations of free additive convolu-
tion �c and �B. It is phrased in terms of a certain map

Ψ : M → M′

(introduced in the same paper [2]), where M is a space of probability distributions on 
R and M′ is a space of signed measures on R, with μ′(R) = 0, ∀ μ′ ∈ M′. For a ν ∈ M

3 The second of the two notations comes from the fact that �B is also known as “free additive convolution 
of type B”.
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with compact support, the definition of μ′ := Ψ(ν) ∈ M′ can be given in the guise of a 
formula describing the moments of μ′, namely:∫

R

tn dμ′(t) = nβn+1;ν , n ∈ N, (1.2)

where (βn;ν)∞n=1 is the sequence of Boolean cumulants of ν (some siblings of free cumu-
lants, which come from the parallel world of so-called “Boolean probability”). Referring 
to the map Ψ, Theorem 22 of [2] can be stated as follows: if we consider probability 
measures μ1, ν1, μ2, ν2 ∈ M and we put

(μ1, ν1) �c (μ2, ν2) = (μ, ν), (1.3)

then it follows that

(μ1,Ψ(ν1)) �B (μ2,Ψ(ν2)) = (μ,Ψ(ν)) ∈ M×M′. (1.4)

Clearly, one can consider a plain algebraic version of the implication “(1.3) ⇒ (1.4)”, 
where M and M′ are replaced with spaces of linear functionals on C[X]. In the present 
paper we show that, in this algebraic version, the map Ψ and the said implication 
“(1.3) ⇒ (1.4)” can be generalized to a multivariate framework where instead of C[X]
we use the algebra C〈X1, . . . , Xk〉 of polynomials in non-commuting indeterminates 
X1, . . . , Xk. More precisely: instead of M and M′ we will use the spaces of “distri-
butions” (in plain algebraic sense) Dalg(k) and D′

alg(k) defined by

{
Dalg(k) := {μ : C〈X1, . . . , Xk〉 : μ is linear, μ(1) = 1},

D′
alg(k) := {μ′ : C〈X1, . . . , Xk〉 : μ′ is linear, μ′(1) = 0},

(1.5)

and we will use a map

Ψk : Dalg(k) → D′
alg(k)

defined as follows.

Definition 1.1. Let k be a positive integer and let ν be in Dalg(k). Then Ψk(ν) is the 
linear functional μ′ ∈ D′

alg(k) determined by the requirement that

μ′(Xi1 · · ·Xin) =
n∑

m=1
βn+1;ν(Xim , . . . , Xin , Xi1 , . . . , Xim), (1.6)

holding for every n ∈ N and i1, . . . , in ∈ {1, . . . , k}, and where βn+1;ν denotes the (n +
1)-th Boolean cumulant functional of ν (a multilinear functional on C〈X1, . . . , Xk〉n+1

– the precise definition of Boolean cumulants is reviewed in Section 3 below).
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It is immediate that in the case k = 1, Equation (1.6) boils down to (1.2).
For general k ∈ N, the link between the k-variate versions of the operations �c and 

�B is stated in the same way as in the univariate case, with the detail that the first 
functional “μ” is assumed to be tracial (that is, it has the property that μ(PQ) = μ(QP )
for all P, Q ∈ C〈X1, . . . , Xk〉).

Theorem 1.2. Let k be a positive integer and let μ1, ν1, μ2, ν2 ∈ Dalg(k), where μ1 and 
μ2 are tracial. If we denote

(μ1, ν1) �c (μ2, ν2) = (μ, ν) ∈ Dalg(k) ×Dalg(k),

then it follows that

(μ1,Ψk(ν1)) �B (μ2,Ψk(ν2)) = (μ,Ψk(ν)) ∈ Dalg(k) ×D′
alg(k).

Closely related to Theorem 1.2, one has a result about the actual concepts of indepen-
dence that are under discussion. At the level of multi-variate distributions, the statement 
of this result concerns the suitable versions of free products of algebraic distributions – 
more precisely, one calls on the free product operations “�c” and “�B” which correspond 
to the operations of concatenating c-free tuples (and respectively infinitesimally free tu-
ples) in a general C-ncps (respectively I-ncps). The result about how the maps Ψk link 
these free product operations is stated as follows.

Theorem 1.3. Let k, � be positive integers and let μ1, ν1 ∈ Dalg(k), μ2, ν2 ∈ Dalg(�), where 
μ1, μ2 are tracial. Consider the free product

(μ1, ν1) �c (μ2, ν2) = (μ̃, ν̃) ∈ Dalg(k + �) ×Dalg(k + �).

Then one has

(μ1,Ψk(ν1)) �B (μ2,Ψ�(ν2)) = (μ̃,Ψk+�(ν̃)) ∈ Dalg(k + �) ×D′
alg(k + �).

Theorems 1.2 and 1.3 are, in turn, consequences of the next result about how c-free 
cumulants and infinitesimal free cumulants get to be related in connection to Ψk.

Theorem 1.4. Let k be a positive integer, let μ, ν be in Dalg(k) such that μ is tracial, and 
let μ′ := Ψk(ν) ∈ D′

alg(k). Then the infinitesimal free cumulants (κ′
n)∞n=1 of (μ, μ′) are 

related to the c-free cumulants (κ(c)
n )∞n=1 of (μ, ν) by the formula

κ′
n(Xi1 , . . . , Xin) =

n∑
m=1

κ
(c)
n+1(Xim , . . . , Xin , Xi1 , . . . , Xim),

holding for every n ∈ N and i1, . . . , in ∈ {1, . . . , k}.
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1.3. A further generalization of the map Ψk and of Theorem 1.4

A careful look at the proof of Theorem 1.4 reveals that the arguments needed there 
can be presented (and become in fact more transparent) in a framework where one 
simply focuses on relations between families of multilinear functionals on a vector space 
V, without assuming that V has a multiplicative structure. In the present subsection we 
explain how this goes. It will come in handy to use the following notation.

Notation 1.5. Let V be a vector space over C. We denote

MV := {ϕ : ϕ = (ϕn)∞n=1, with ϕn : Vn → C multilinear for every n ∈ N}. (1.7)

A family ϕ = (ϕn)∞n=1 ∈ MV is said to be tracial when it has the property that

ϕn(x2, . . . , xn, x1) = ϕn(x1, . . . , xn), ∀n ≥ 2 and x1, . . . , xn ∈ V. (1.8)

Throughout a substantial part of this paper we will work with{
couples (V, ϕ) where ϕ ∈ MV , and
triples (V, ϕ, ψ) where ϕ,ψ ∈ MV .

(1.9)

The motivating example for these structures is the one where V is a unital algebra and 
where ϕ = (ϕn)∞n=1 is completely determined by the linear functional ϕ1 : V → C via 
the formula

ϕn(x1, . . . , xn) = ϕ1(x1 · · ·xn), ∀n ≥ 1 and x1, . . . , xn ∈ V

(same for ψ = (ψn)∞n=1 being completely determined by ψ1 : V → C in the case of a triple 
(V, ϕ, ψ)). If in the motivating example we require that ϕ1(1V ) = 1, then looking at the 
couple (V, ϕ) is pretty much the same as looking at the ncps (V, ϕ1). Likewise, considering 
a triple (V, ϕ, ψ) in the motivating example boils down to looking at (V, ϕ1, ψ1) – the 
latter can be either a C-ncps or an I-ncps, upon making the requirements that ϕ1(1V ) =
ψ1(1V ) = 1, and respectively that ϕ1(1V ) = 1, ψ1(1V ) = 0.

There were four brands of cumulants appearing in the discussion of Sections 1.1 and 
1.2:

• free cumulants (κn)∞n=1 associated to a ncps (A, ϕ);
• Boolean cumulants (βn)∞n=1 associated to a ncps (A, ϕ);
• c-free cumulants (κ(c)

n )∞n=1 associated to a C-ncps (A, ϕ, χ);
• infinitesimal free cumulants (κ′

n)∞n=1 associated to an I-ncps (A, ϕ, ϕ′).

The definitions of all these four brands of cumulants go through, without any change, 
to the situation where instead of an ncps (A, ϕ) we consider a couple (V, ϕ) as on the first 
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line of (1.9), and where instead of a C-ncps (A, ϕ, χ) or I-ncps (A, ϕ, ϕ′) we consider a 
triple (V, ϕ, ψ) as on the second line of (1.9). The precise formulas for all these cumulants 
are reviewed in Section 3 below. A pleasing feature arising in this more general framework 
is that the resulting families of cumulants belong to the same space MV that ϕ and ψ
were picked from.

We now proceed to explain how the construction of the map Ψ of Belinschi-
Shlyakhtenko extends to the framework of (1.9), and to present the generalization of 
Theorem 1.4 to this situation. We will take as input (besides the vector space V) a linear 
map Δ : V → V ⊗ V, and we will use a transformation Δ∗ of the space MV which is 
constructed from Δ in the way described as follows.

Notation 1.6. (The transformation Δ∗.)
Let V be a vector space over C and let Δ : V → V ⊗ V be a linear map.
(1) For every n ∈ N and m ∈ {1, . . . , n} we let Δ(m)

n : V⊗n → V⊗(n+1) be the linear 
map determined by the requirement that

Δ(m)
n (x1 ⊗ · · · ⊗ xn) = x1 ⊗ · · · ⊗ xm−1 ⊗

(
Δxm

)
⊗ xm+1 ⊗ · · · ⊗ xn,

for all x1, . . . , xn ∈ V. Note that in particular one has Δ = Δ(1)
1 .

(2) For every n ∈ N we let Γn : V⊗n → V⊗n be the linear map determined by the 
requirement that

Γn(x1 ⊗ · · · ⊗ xn) = x2 ⊗ · · · ⊗ xn ⊗ x1, for all x1, . . . , xn ∈ V.

In particular Γ1 is the identity map on V and Γ2 is the so-called flip map, Γ2(x1 ⊗x2) =
x2 ⊗ x1.

(3) For every n ∈ N we let Δ̃n : V⊗n → V⊗(n+1) be the linear map defined by

Δ̃n =
n∑

m=1
Γm
n+1 ◦ Δ(m)

n .

[For a concrete illustration, suppose that x1, . . . , xn ∈ V are such that every Δxi is a 
simple tensor x′

i ⊗ x′′
i , 1 ≤ i ≤ n. Then Δ̃n(x1 ⊗ · · · ⊗ xn) comes out as

n∑
m=1

x′′
m ⊗ xm+1 ⊗ · · · ⊗ xn ⊗ x1 ⊗ · · · ⊗ xm−1 ⊗ x′

m.]

(4) Let MV be the space of families of multilinear functionals from Notation 1.5. We 
define a transformation Δ∗ : MV → MV as follows: given ϕ = (ϕn)∞n=1 ∈ MV , we put

Δ∗(ϕ) := ψ = (ψn)∞n=1 (1.10)

where
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ψn := ϕn+1 ◦ Δ̃n, ∀n ∈ N. (1.11)

Equation (1.11) tacitly uses some natural identifications: first, ϕn+1 is viewed as a linear 
map V⊗(n+1) → C (rather than a multilinear map Vn+1 → C); this makes ϕn+1 ◦ Δ̃n

be defined as a linear map V⊗n → C, which is then identified with a multilinear map 
Vn → C, as ψn is required to be.

Theorem 1.7. Let V be a vector space over C and let Δ : V → V ⊗ V be a linear map. 
Let χ ∈ MV , and let

ϕ′ := Δ∗(β
χ
), (1.12)

with Δ∗ as above and where β
χ
∈ MV is the family of Boolean cumulants associated 

to (V, χ). Then for any tracial ϕ ∈ MV , the following happens: denoting the c-free 
cumulants of (V, ϕ, χ) by κ(c) and denoting the infinitesimal free cumulants of (V, ϕ, ϕ′)
by κ′, one has the relation

κ′ = Δ∗(κ(c) ). (1.13)

Remark 1.8. (1) The generalization “ΨΔ” of the map Ψk from Section 1.2 is implicitly 
captured by Equation (1.12) in Theorem 1.7. The explicit formula for ΨΔ would simply 
be

ΨΔ(χ) = Δ∗(β
χ
), χ ∈ MV .

(2) In order to derive Theorem 1.4 out of Theorem 1.7, one makes V = Ck and lets 
Δ be the linear map defined by the prescription that

Δei = ei ⊗ ei, 1 ≤ i ≤ k,

where e1, . . . , ek is a fixed basis in Ck. This prescription leads precisely to the statement 
of Theorem 1.4, via the natural identification of C〈X1, . . . , Xk〉 as the tensor algebra of 
Ck. The details of how this happens are given in Section 7 below.

1.4. Organization of the paper and some related remarks

We conclude this introduction by explaining how the paper is organized, and by giving 
a few highlights on the content of the various sections.

Section 2 describes the combinatorial background used throughout the paper, which 
revolves around the lattices NC(n) of non-crossing partitions. We make a brief review 
of some standard facts about the partial order given on NC(n) by reverse refinement, 
and we also discuss two other partial order relations on NC(n) (denoted as “” and 
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“�”) which were studied in the more recent research literature, and are relevant for the 
considerations of the present paper.

The rest of the paper is essentially divided into two parts. The first part is set in the 
more general framework outlined in Section 1.3 above, and consists of Sections 3–6:

– Section 3 reviews the types of cumulants we will work with.
– In Section 4 we derive an explicit formula for c-free cumulants, which is useful for 

the proof of Theorem 1.7.
– Section 5 is devoted to a parallel discussion of how certain lattices of non-crossing 

partitions with symmetries (NC(B)(n) and NC(B−opp)(n)) can be used in order to ap-
proach the cumulant functionals relevant to infinitesimally free and respectively to c-free 
probability. In this section we observe a simple formula, which seems to have been over-
looked up to now, and helps clarifying the connection between c-free cumulants and the 
lattices NC(B−opp)(n).

– In Section 6 we obtain the proof of Theorem 1.7.
The final part of the paper consists of Sections 7 and 8, which go in the framework 

of multi-variable distributions considered in Section 1.2 above. In Section 7 we connect 
to the setting of Section 6 and we observe how Theorem 1.4 can be derived from The-
orem 1.7. Then in Section 8 we show how, on the other hand, Theorem 1.4 implies 
Theorems 1.2 and 1.3.

2. Combinatorial background

2.1. Review of some basic NC(n) combinatorics

The workhorse for the combinatorial study of free independence is the family of lattices 
of non-crossing partitions NC(n). We review here some basic terminology related to 
this, which will be used throughout the paper. For a more detailed introduction to the 
NC(n)’s, one can for instance consult Lectures 9 and 10 of [15].

Definition 2.1. (1) Let n be a positive integer and let π = {V1, . . . , Vk} be a partition of 
{1, . . . , n}; that is, V1, . . . , Vk are pairwise disjoint non-void sets (called the blocks of π) 
with V1 ∪ · · · ∪ Vk = {1, . . . , n}. The number k of blocks of π will be denoted as |π|, and 
we will occasionally use the notation “V ∈ π” to mean that V is one of V1, . . . , Vk.

We say that π is non-crossing to mean that for every 1 ≤ i1 < i2 < i3 < i4 ≤ n such 
that i1 is in the same block with i3 and i2 is in the same block with i4, it necessarily 
follows that all of i1, . . . , i4 are in the same block of π.

Non-crossing partitions can be naturally depicted with the numbers 1, . . . , n drawn 
either along a line or around a circle, as illustrated in Fig. 1 below.

(2) For every n ∈ N, we denote by NC(n) the set of all non-crossing partitions of 
{1, . . . , n}. This is one of the many combinatorial structures counted by Catalan numbers:

|NC(n)| = Catn := (2n)!
, ∀n ∈ N. (2.1)
n!(n + 1)!
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Fig. 1. The partition π = { {1, 5, 6}, {2, 4}, {3}, {7}, {8, 10} {9} } ∈ NC(10), in linear representation (left) 
and in circular representation (right).

Definition 2.2. Let n be a positive integer. On NC(n) we consider the partial order by 
reverse refinement, where for π, ρ ∈ NC(n) we put

(π ≤ ρ) def⇐⇒
(

every block of ρ is a union of blocks of π
)
. (2.2)

The partially ordered set (NC(n), ≤) turns out to be a lattice. That is, every π1, π2 ∈
NC(n) have a least common upper bound, denoted as π1 ∨ π2, and have a greatest 
common lower bound, denoted as π1 ∧ π2.

We will use the notation 0n for the partition of {1, . . . , n} into n singleton blocks 
and the notation 1n for the partition of {1, . . . , n} into one block. It is immediate that 
0n, 1n ∈ NC(n) and that 0n ≤ π ≤ 1n for all π ∈ NC(n).

Definition and Remark 2.3. (Kreweras complementation map.)
One has a very useful order-reversing bijection Kn : NC(n) → NC(n), called 

the Kreweras complementation map, which provides an anti-isomorphism of the lat-
tice (NC(n), ≤). The pictorial description of Kn is given by using partitions of the set 
{1, . . . , 2n}, as follows.

• For every π, σ ∈ NC(n), let us denote by π(odd)�σ(even) the partition of {1, . . . , 2n}
which is obtained when we make π become a partition of {1, 3, . . . , 2n − 1} and we 
make σ become a partition of {2, 4, . . . , 2n}, in the natural way. That is, π(odd) � σ(even)

consists of blocks of the form {2v − 1 : v ∈ V } where V ∈ π, and of blocks of the form 
{2w : w ∈ W} where W ∈ σ.

• For π, σ ∈ NC(n) it is not generally true that π(odd) � σ(even) is a non-crossing 
partition of {1, . . . , 2n}. If we fix π ∈ NC(n), then the set

{σ ∈ NC(n) : π(odd) � σ(even) ∈ NC(2n)}

turns out to have a largest element σmax with respect to reverse refinement order. The 
Kreweras complement Kn(π) is, by definition, this special partition σmax.
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[As a concrete example: for the partition π depicted in Fig. 1, one finds that K10(π)
is the partition 

{
{1, 4}, {2, 3}, {5}, {6, 7, 10}, {8, 9}, 

}
∈ NC(10).

It is easily verified (see e.g. pages 146-148 in Lecture 9 of [15]) that the map π �→ Kn(π)
described above gives indeed an anti-isomorphism from (NC(n), ≤) to itself.

Definition and Remark 2.4. (Möbius function.)
For every n ∈ N, we will use the notation Möbn : {(π, ρ) ∈ NC(n)2 : π ≤ ρ} → Z for 

the Möbius function of the lattice (NC(n), ≤), defined via the general Möbius function 
machinery used for any finite partially ordered set (see e.g. Chapter 3 of the monograph 
[20]). One can explicitly write Möbn(π, ρ) as a product of signed Catalan numbers (see 
e.g. [15], pp. 162-167 in Lecture 10); it is useful for what follows to record that one has 
in particular the formula

Möbn(π, 1n) = Möbn(0n,Kn(π)) = (−1)|π|−1
∏

V ∈Kn(π)

Cat|V |−1, (2.3)

holding for every π ∈ NC(n) (where the Catalan numbers (Catm)∞m=1 are as reviewed 
in Definition 2.1, and we also make the convention to put Cat0 := 1).

For the subsequent considerations related to the framework of c-free independence, it 
is also useful to record the following facts about how blocks of non-crossing partitions 
are nested inside each other.

Definition and Remark 2.5. Let n be a positive integer and let π be in NC(n).
(1) Let V, W be two blocks of π. We say that V is nested inside W to mean that one 

has

min(W ) < min(V ) ≤ max(V ) < max(W ). (2.4)

Due to the non-crossing property of π, it is immediate that the condition (2.4) is equiv-
alent to the apparently weaker requirement that:

V �= W, and ∃ v ∈ V such that min(W ) < v < max(W ). (2.5)

(2) A block V of π is said to be inner if there exists a block W such that V is nested 
inside W . In the opposite case, V is said to be an outer block of π.

(3) Let V be an inner block of π. It is easy to check (see e.g. Proposition 2.10 in [1]) 
that there exists a block W of π, uniquely determined, with the properties that:

(i) V is nested inside W , and
(ii) there is no W ′ ∈ π such that V is nested inside W ′ and W ′ is nested inside W .
We will refer to this W as the parent-block of V in π.
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2.2. The partial order relations  and �

In this paper we also make use of two other partial order relations on NC(n), both 
of them coarser than reverse refinement, which are denoted as “” and as “�”. The 
partial order  has been used for some time in free probability (starting with [1]), in 
the description of relations between free and Boolean cumulants. The partial order �
is in a certain sense dual to ; it was introduced in [12], and its role was thoroughly 
investigated in the recent paper [4], in a more general setting which refers to the Bruhat 
order on Coxeter groups.

Definition and Remark 2.6. (The partial order “”.)
(1) For π, ρ ∈ NC(n), we will write π  ρ to mean that π ≤ ρ and that, in addition, 

for every block W of ρ there exists a block V of π such that min(W ), max(W ) ∈ V .
(2) Since in this paper we have a lot of occurrences of the special case “π  1n”, let us 

record the obvious fact that this simply amounts to requiring π to have a unique outer 
block W , with 1, n ∈ W . Another immediate fact which is relevant for what follows is 
that the Kreweras complementation map Kn maps the set {π ∈ NC(n) : π  1n} onto 
{σ ∈ NC(n) : {n} is a singleton block of σ}.

(3) In the discussion around , a special role is played by interval partitions. A 
partition π ∈ NC(n) is said to be an interval partition when every block V of π is of 
the form V = [i, j] ∩ N for some 1 ≤ i ≤ j ≤ n. The set of all interval partitions of 
{1, . . . , n} will be denoted as Int(n). It is immediate that Int(n) is precisely equal to the 
set of maximal elements of the poset (NC(n), ).

Remark 2.7. It will be of relevance for what follows to have some information about the 
structure of lower and of upper ideals of the poset (NC(n), ). We review this here, 
following [1].

• Lower ideals. Let ρ be a fixed partition in NC(n). For every block W ∈ ρ such 
that |W | ≥ 3, let us split W into the doubleton block {min(W ), max(W )} and |W | − 2
singleton blocks; when doing this, we obtain a partition ρ0 ≤ ρ in NC(n), such that all 
the blocks of ρ0 have either 1 or 2 elements. From Definition 2.6 it is immediate that for 
π ∈ NC(n) we have: π  ρ ⇔ ρ0 ≤ π ≤ ρ. Thus the lower ideal {π ∈ NC(n) : π  ρ}
is just the interval [ρ0, ρ] with respect to reverse refinement order, for which one has a 
nice structure theorem (as presented for instance in [15], pages 148-150 in Lecture 9); in 
particular, one can explicitly write the cardinality of this lower ideal, which is

| {π ∈ NC(n) : π  ρ} | =
∏
W∈ρ

Cat|W |−1. (2.6)

• Upper ideals. For a fixed π ∈ NC(n), it turns out that the upper ideal {ρ ∈ NC(n) :
π  ρ} can be identified to a Boolean lattice, with the rank of any ρ in this lattice being 
equal to |π| − |ρ| (see Proposition 2.13 and Remark 2.14 in [1]). Clearly, the Boolean 
lattice 

(
{ρ ∈ NC(n) : π  ρ} , 

)
is trivial if and only if π is maximal with respect to 
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 in NC(n), that is, if and only if π ∈ Int(n). We record here that, as a consequence of 
the above, one has

∑
ρ∈NC(n) such

that π�ρ

(−1)|π|−|ρ| =
{

1, if π ∈ Int(n)
0, otherwise.

(2.7)

Definition and Remark 2.8. (The partial order “�”.)
The interval refinement order � was introduced by Josuat-Vergès [12]: for π, ρ ∈

NC(n), one writes π � ρ when π ≤ ρ and when, in addition, the partition induced by π
on every block of ρ is an interval partition.

One has a form of duality between the partial orders � and , implemented by the 
Kreweras complementation map. This was thoroughly investigated in a recent paper 
by Biane and Josuat-Vergés [4], in a more general setting involving the Bruhat order 
on Coxeter groups. (See Section 4 of [4], particularly Propositions 4.1 and 4.9.) For 
the reader’s convenience, we provide in Lemma 2.10 below a self-contained proof of an 
instance of this duality which will be needed in the Section 4 of the present paper. In the 
proof of Lemma 2.10 we will use some natural operations “cut/attach” on non-crossing 
partitions, defined as follows.

Definition 2.9. Let π ∈ NC(n) and let i ∈ {1, . . . , n} belong to an inner block P of π.
(1) If i is not the maximal element of P , then we define cut(π, i) ∈ NC(n) to be the 

partition obtained from π when we cut the block P into two interval pieces in order to 
get that

Q∈cut(π, i) ⇐⇒ (Q∈π and Q �= P ) or (Q = {j∈P : j ≤ i}) or (Q = {j∈P : j > i}).

(2) We define attach(π, i) ∈ NC(n) to be the partition obtained from π when we 
attach the block P to its parent-block R (defined in the way described in Definition 2.5). 
That is, we have

Q ∈ attach(π, i) ⇐⇒ (Q ∈ π and Q /∈ {P,R}) or (Q = P ∪R).

Lemma 2.10. The restriction of the Kreweras complementation map Kn gives an anti-
isomorphism between the posets

({π ∈ NC(n) : π  1n} , �) and ({σ ∈ NC(n) : {n} ∈ σ} , ) . (2.8)

Proof. Consider the Hasse diagrams of the two posets indicated in the lemma (where 
recall that for any finite poset (P, ≺), the corresponding Hasse diagram is the graph with 
vertex-set P and with a “down-edge” going from p to p′ if and only if p, p′ are distinct 
elements of P such that p′ ≺ p and such that there is no element q ∈ P \ {p, p′} with 
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p′ ≺ q ≺ p). It is easy to verify that the down-edges in these two Hasse diagrams are 
described as follows.

• In the Hasse diagram of ({π ∈ NC(n) : π  1n} ,�), there is a down edge from π
to π′ if and only if for some i in an inner block of π and not maximal in that block we 
have that π′ = cut(π, i).

• In the Hasse diagram of ({σ ∈ NC(n) : {n} ∈ σ} ,), there is a down edge from ρ
to ρ′ if and only if for some j in an inner block of ρ′ we have ρ = attach(ρ′, j).

We have already noticed in Remark 2.6(2) that Kn provides a bijection between the 
underlying sets of the two posets indicated in (2.8). In addition to that, let us make the 
following elementary observation, which holds for any partition π ∈ NC(n) with unique 
outer block: if a number i ∈ {1, . . . , n} belongs to an inner block of π and is not the 
maximal element of that block, then i belongs to an inner block of Kn(π) and one has

Kn(cut(π, i)) = attach(Kn(π), i). (2.9)

Upon combining (2.9) with the explicit descriptions recorded above for the edges of the 
two Hasse diagrams, one finds that Kn reverses the edges in these Hasse diagrams; this 
implies that Kn is indeed a poset anti-isomorphism, as required. �
3. Review of four types of cumulant functionals

Throughout this section we fix a vector space V over C, and we will work with the 
space MV of families of multilinear functionals introduced in Notation 1.5. The goal of 
the section is to review the definitions of four types of cumulant functionals which we use 
later in the paper, in the framework of a couple (V, ϕ) with ϕ ∈ MV or in the framework 
of a triple (V, ϕ, ψ) with ϕ, ψ ∈ MV . All the formulas we will use for definitions are 
very familiar to the people working in the area; these definitions are usually stated in 
the case (mentioned as “motivating example” in Section 1.3) when V is a unital algebra 
– however, nothing changes when we move to the somewhat more general framework 
chosen here.

Before starting, we record a customary notation which will appear in the formulas for 
all four types of cumulants: given an n ∈ N, a tuple (x1, . . . , xn) ∈ Vn, and a non-empty 
subset M = {i1, . . . , im} ⊆ {1, . . . , n} with i1 < · · · < im, we denote

(x1, . . . , xn) | M := (xi1 , . . . , xim) ∈ Vm. (3.1)

3.1. Review of free cumulants associated to a couple (V, ϕ)

Consider a couple (V, ϕ), where ϕ = (ϕn)∞n=1 ∈ MV . The free cumulants associated 
to (V, ϕ) are the family of multilinear functionals κ = (κn)∞n=1 ∈ MV which is uniquely 
determined by the requirement that
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ϕn(x1, . . . , xn) =
∑

π∈NC(n)

∏
V ∈π

κ|V |( (x1, . . . , xn) | V ), (3.2)

holding for all n ∈ N and x1, . . . , xn ∈ V. The family of Equations (3.2) can be solved 
in order to give explicit formulas for the κn’s, which come out as follows:

κn(x1, . . . , xn) =
∑

π∈NC(n)

∏
V ∈π

Möbn(π, 1n)ϕ|V |( (x1, . . . , xn) | V ), (3.3)

for all n ∈ N and x1, . . . , xn ∈ V, where Möbn(π, 1n) is the value of the Möbius function 
of NC(n) which was reviewed in Remark 2.4.

3.2. Review of Boolean cumulants associated to a couple (V, ϕ)

Consider a couple (V, ϕ), where ϕ = (ϕn)∞n=1 ∈ MV . The Boolean cumulants asso-
ciated to (V, ϕ) are the family of multilinear functionals β = (βn)∞n=1 ∈ MV which is 
uniquely determined by the requirement that

ϕn(x1, . . . , xn) =
∑

π∈Int(n)

∏
V ∈π

β|V |( (x1, . . . , xn) | V ), (3.4)

holding for all n ∈ N and x1, . . . , xn ∈ V, where Int(n) is the set of interval partitions 
reviewed in Definition 2.6(3). The family of Equations (3.4) can be solved in order to 
give explicit formulas for the βn’s, which come out as follows:

βn(x1, . . . , xn) =
∑

π∈Int(n)

∏
V ∈π

(−1)|π|+1ϕ|V |( (x1, . . . , xn) | V ), (3.5)

for all n ∈ N and x1, . . . , xn ∈ V. This is analogous to how (3.2) was solved in order to 
obtain (3.3), with an additional simplification due to the fact that the Möbius function 
of (Int(n), ≤) only takes the values ±1.

3.3. Review of infinitesimal free cumulants associated to a triple (V, ϕ, ϕ′)

Consider a triple (V, ϕ, ϕ′), where ϕ = (ϕn)∞n=1 and ϕ′ = (ϕ′
n)∞n=1 are in MV . The in-

finitesimal free cumulants associated to (V, ϕ, ϕ′) are the family of multilinear functionals 
κ′ = (κ′

n)∞n=1 which is uniquely determined by the requirement that

ϕ′
n(x1, . . . , xn) = (3.6)∑

π∈NC(n)

∑
Vo∈π

κ′
|Vo|

(
(x1, . . . , xn) | Vo

)
·

∏
V ∈π

V �=Vo

κ|V |;ϕ( (x1, . . . , xn) | V ),
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holding for all n ∈ N and x1, . . . , xn ∈ V, where κϕ = (κn;ϕ)∞n=1 are the free cumulants 
associated to (V, ϕ). The family of Equations (3.6) can be solved in order to give an 
explicit formula for κ′

n(x1, . . . , xn), which comes out as follows:

κ′
n(x1, . . . , xn) = (3.7)∑

π∈NC(n)

∑
Vo∈π

Möbn(π, 1n) · ϕ′
|Vo|

(
(x1, . . . , xn) | Vo

)
·

∏
V ∈π

V �=Vo

ϕ|V |( (x1, . . . , xn) | V
)
,

for all n ∈ N and x1, . . . , xn ∈ V. Here Möbn(π, 1n) is the same value of the Möbius 
function on NC(n) which appeared in Equation (3.3) above.

A way to remember the formulas (3.6) and (3.7) is by noting that they are precisely 
what comes out when one performs a “formal derivative with respect to ϕ” in the for-
mulas (3.2) and (3.3) concerning the free cumulant functionals of (V, ϕ). Another way 
of thinking about Equations (3.6) and (3.7) goes by treating the double sums on their 
right-hand sides as single sums over certain sets of non-crossing partitions “of type B” 
(cf. [11], also [10]; a brief review of this point of view is shown in Section 5.1 below).

3.4. Review of c-free cumulants associated to a triple (V, ϕ, χ)

Consider a triple (V, ϕ, χ), where ϕ = (ϕn)∞n=1 and χ = (χn)∞n=1 are in MV . The 
c-free cumulants associated to (V, ϕ, χ) are the family of multilinear functionals κ(c) =
(κ(c)

n )∞n=1 which is uniquely determined by the requirement that

χn(x1, . . . , xn) = (3.8)∑
π∈NC(n)

∏
V ∈π

V inner

κ|V |;ϕ
(
(x1, . . . , xn) | V

) ∏
W∈π

W outer

κ
(c)
|W |

(
(x1, . . . , xn) | W

)
,

holding for all n ∈ N and x1, . . . , xn ∈ V, where κϕ = (κn;ϕ)∞n=1 are the free cumulants 
associated to (V, ϕ).

The fact that κ(c) can indeed be defined by using Equation (3.8) is easily seen when one 
isolates the term κ(c)

n (x1, . . . , xn) indexed by the partition 1n ∈ NC(n) on the right-hand 
side of (3.8); a recursive argument then shows that all the values κ(c)

n (x1, . . . , xn) are 
uniquely determined in terms the functionals in χ and κϕ (where the latter ones can be 
calculated from knowing ϕ). This way of defining c-free cumulants goes back to [7], and 
is the one commonly used in the research literature on c-freeness.

It is not so straightforward to find some nicely structured formulas which give the 
κ

(c)
n ’s explicitly, in terms of ϕ and χ (analogously to what we had in Equations (3.3), 

(3.5) and (3.7) of the preceding subsections). An interesting aspect of the c-free theory 
is that one can still develop an approach based on certain lattices of partitions “of type 
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B − opp”, found in [8], only that the cumulant functionals resulting from that approach 
don’t coincide with the customary κ(c)

n ’s from (3.8). We will elaborate on this point in 
Section 5 below. Before that, in Section 4 we will present a direct derivation of an explicit 
formula relevant for the proof of our Theorem 1.7, which expresses κ(c)

n in terms of ϕ
and β

χ
(= the family of Boolean cumulants associated to (V, χ)).

4. An explicit formula for c-free cumulants

Throughout this section we fix a vector space V and two families of functionals ϕ =
(ϕn)∞n=1 and χ = (χn)∞n=1 picked from the space MV of Notation 1.5. We consider the 

family of c-free cumulants κ(c) = (κ(c)
n )∞n=1 ∈ MV associated to the triple (V, ϕ, χ) in 

the way described in Section 3.4. In the present section we put into evidence an explicit 
formula for κ(c)

n (x1, . . . , xn), stated in the next proposition.

Proposition 4.1. Consider the notations introduced above, and let us also consider the 
family β

χ
= (βn;χ)∞n=1 of Boolean cumulants associated to (V, χ). For every n ∈ N and 

x1, . . . , xn ∈ V one has:

κ(c)
n (x1, . . . , xn) = (4.1)∑

π∈NC(n),

π�1n

Möbn(π, 1n) ·β|Vo(π)|;χ
(
(x1, . . . , xn) | Vo(π)

)
·

∏
V ∈π

V �=Vo(π)

ϕ|V |
(
(x1, . . . , xn) | V

)
,

where (following the notations from Section 2) we write “π  1n” to mean that π has 
a unique outer block, and where for π  1n we denote the unique outer block of π as 
Vo(π).

Proposition 4.1 solves the implicit equations (3.8) of the preceding section in a 
somewhat non-canonical way, which is however what is needed for going towards the 
connection with infinitesimal free cumulants. (As the reader may notice, the expression 
on the right-hand side of (4.1) bears some resemblance with the formula for free infinites-
imal cumulants reviewed in Equation (3.7), with the Boolean cumulants of χ appearing 
in the place where we would want to have occurrences of ϕ′.)

In order to prove Proposition 4.1, we will use several lemmas.

Lemma 4.2. Let κϕ = (κn;ϕ)∞n=1 and β
ϕ

= (βn;ϕ)∞n=1 denote the free and respectively the 

Boolean cumulants associated to (V, ϕ). Then for every n ∈ N and x1, . . . , xn ∈ V one 
has

κn;ϕ(x1, . . . , xn) =
∑

π∈NC(n),

π�1n

(−1)|π|−1
∏
V ∈π

β|V |;ϕ( (x1, . . . , xn) | V ). (4.2)
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Proof. This connection between free and Boolean cumulants is well-known. The deriva-
tion of Equation (4.2) can for instance be obtained by an immediate adaptation of the 
argument proving Proposition 3.9 of [1]. �

In a somewhat different formulation, Equation (4.3) of the next lemma was obtained 
in [9, Eqn. (61) in Section 6], as an application of the shuffle algebra approach to c-free 
cumulants developed in that paper. We present here a direct proof of Equation (4.3), 
relying on some basic properties of the partial order  on NC(n).

Lemma 4.3. Consider the framework and notations introduced above. For every n ∈ N

and x1, . . . , xn ∈ V, one has:

κ(c)
n (x1, . . . , xn) = (4.3)∑

π∈NC(n),

π�1n

(−1)|π|−1 · β|Vo(π)|;χ( (x1, . . . , xn) | Vo) ·
∏
V ∈π

V �=Vo(π)

β|V |;ϕ( (x1, . . . , xn) | V ).

Proof. For every n ∈ N and x1, . . . , xn ∈ V, we denote the right-hand side of (4.3) as 
λn(x1, . . . , xn). In this way we define a family of multilinear functionals λ = (λn)∞n=1 ∈
MV , and the statement of the lemma amounts to proving that λ = κ(c). In order to obtain 
this equality, it suffices to prove that λ satisfies the family of equations (3.8) which were 
used to define κ(c). That is, we have to verify the family of equalities of the form

χn(x1, . . . , xn) = (4.4)∑
π∈NC(n)

∏
V ∈π

V inner

κ|V |;ϕ( (x1, . . . , xn) | V )
∏
W∈π

W outer

λ|W |( (x1, . . . , xn) | W ).

For the remaining part of the proof we fix an n ∈ N and some x1, . . . xn ∈ V, for which 
we will verify that (4.4) holds.

We start from the sum on the right-hand side of (4.4). Let us fix for the moment a 
π ∈ NC(n), and let us focus on the term indexed by π in the said sum. This term can 
be itself written as a sum, if we take the following steps:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– for every inner block V of π, we replace κ|V |;ϕ( (x1, . . . , xn) | V ) ) as a
sum

∑
V indexed by {ρV ∈ NC(|V |) : ρV has unique outer block}, by

using Lemma 4.2;
– for every outer block W of π, we replace λ|W |( (x1, . . . , xn) | W ) ) as
a sum

∑
W indexed by {ρW ∈ NC(|W |) : ρW has unique outer block},

by using the definition of λ|W |;
– we cross-multiply all the sums

∑
V and

∑
W found in the preceding

two steps.

(4.5)
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If one chooses a partition ρV for every inner block V ∈ π and a partition ρW for every 
outer block W ∈ π in the way indicated in (4.5), then putting all these ρV , ρW together 
results in a partition ρ ∈ NC(n) such that ρ  π, with “” being the partial order 
discussed in Remark 2.6. We leave it as an exercise to the reader to write down the 
general term of the summation over {ρ ∈ NC(n) : ρ  π} which is produced by the 
third step of (4.5), and to conclude that what one gets is the following formula:∏

V ∈π

V inner

κ|V |;ϕ( (x1, . . . , xn) | V )
∏
W∈π

W outer

λ|W |( (x1, . . . , xn) | W ) (4.6)

=
∑
ρ�π

(−1)|ρ|−|π|
∏
V ∈ρ

V inner

β|V |;ϕ( (x1, . . . , xn) | V )
∏
W∈ρ

W outer

β|W |;χ( (x1, . . . , xn) | W ).

We now let π run in NC(n). Returning to the equality to be proved, Equation (4.4), 
we see that its right-hand side (obtained by summing over π in (4.6)) is equal to∑
π∈NC(n)

∑
ρ�π

(−1)|ρ|−|π|
∏
V ∈ρ

V inner

β|V |;ϕ( (x1, . . . , xn) | V ) ·
∏
W∈ρ

W outer

β|W |;χ( (x1, . . . , xn) | W ).

(4.7)

We must verify that the quantity in (4.7) is equal to χn(x1, . . . , xn). To this end, we 
exchange the order of summation over π and ρ, so that (4.7) becomes:

∑
ρ∈NC(n)

( ∑
π∈NC(n),

π	ρ

(−1)|ρ|−|π|
) ∏

V ∈ρ

V inner

β|V |;ϕ
(
(x1, . . . , xn) | V

)
×

×
∏
W∈ρ

W outer

β|W |;χ
(
(x1, . . . , xn) | W

)
. (4.8)

It was however noticed in Section 2 that for a fixed ρ ∈ NC(n) one has:

∑
π∈NC(n),

π	ρ

(−1)|ρ|−|π| =
{

1 if ρ ∈ Int(n),
0 otherwise.

Therefore the summation in (4.8) reduces to just 
∑

ρ∈Int(n)
∏

W∈ρ β|W |;χ
(
(x1, . . . , xn) |

W
)

(where we also took into account that all blocks of an interval partition are outer 
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blocks). The latter sum is indeed equal to χn(x1, . . . , xn), as required, by the definition 
of Boolean cumulants. �
Lemma 4.4. Let n ≥ 2 be an integer, let Vo be a subset of {1, . . . , n} such that Vo � 1, n, 
and let x1, . . . , xn be in V. One has:∑

π∈NC(n) such

that Vo∈π

(−1)1+|π|
∏
V ∈π,

V �=Vo

β|V |;ϕ
(
(x1, . . . , xn) | V

)
(4.9)

=
∑

ρ∈NC(n) such

that Vo∈ρ

Möbn(ρ, 1n) ·
∏
V ∈ρ

V �=Vo

ϕ|V |
(
(x1, . . . , xn) | V

)
.

Proof. Fix for the moment a partition π ∈ NC(n) such that Vo ∈ π. For every 
block V �= Vo of π, we use the definition of Boolean cumulants in order to express 
β|V |;ϕ( (x1, . . . , xn) | V ) as a sum indexed by Int(|V |), and then we cross-multiply the 
resulting sums. The reader should have no difficulty to verify that, upon doing this 
cross-multiplication, one arrives to the formula∏

V ∈π,

V �=Vo

β|V |
(
(x1, . . . , xn) | V

)
=

∑
ρ
π such

that Vo∈ρ

(−1)|ρ|−|π|
∏
V ∈ρ,

V �=Vo

ϕ
(
(x1, . . . , xn) | V

)
, (4.10)

where � is the partial order relation on NC(n) reviewed in Section 2.2.
We now let π run in the index set shown on the left-hand side of (4.9). By summing 

in Equation (4.10) over this range for π, we find that∑
π∈NC(n) such

that Vo∈π

(−1)|π|−1
∏

V ∈π, V �=Vo

β|V |
(
(a1, . . . , an) | V

)

=
∑

π∈NC(n) such

that Vo∈π

∑
ρ
π such

that Vo∈ρ

(−1)|ρ|−1
∏

V ∈ρ, V �=Vo

ϕ
(
(a1, . . . , an) | V

)
.

By exchanging sums indexed by ρ and π, we can continue the above with

=
∑

ρ∈NC(n) such

that Vo∈ρ

(−1)|ρ|−1|{π ∈ NC(n) : ρ � π}| ·
∏
V ∈ρ

V �=Vo

ϕ|V |
(
(a1, . . . , an) | V

)
.
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In order to conclude the proof, we are left to verify that for every ρ ∈ NC(n) such 
that Vo ∈ ρ, one has

(−1)|ρ|−1 |{π ∈ NC(n) : ρ � π}| = Möbn(ρ, 1n).

To this end, we invoke Lemma 2.10, which gives us that

|{π ∈ NC(n) : ρ � π}| = |{π ∈ NC(n) : π  ρ}| .

It was noticed in Section 2 that the latter cardinality is equal to the product of Catalan 
numbers 

∏
V ∈ρ C|V |−1, and upon multiplying this with (−1)|ρ|−1, one arrives indeed to 

the required value Möbn(ρ, 1n). �
Proof of Proposition 4.1. The case when n = 1 is clear (both sides of Equation (4.1) are 
equal to χ1(x1)). For n ≥ 2, we start from the expression for κ(c)

n (x1, . . . , xn) found in 
Lemma 4.3, where we write the sum on the right-hand side of Equation (4.3) as a double 
sum of the form ∑

Vo⊆{1,...,n}

with Vo�1,n

∑
π∈NC(n) such

that Vo∈π

[term indexed by Vo and π]. (4.11)

Then for every Vo ⊆ {1, . . . , n} such that Vo � 1, n we replace the second sum in (4.11)
by using Lemma 4.4. When doing this replacement we arrive to a double sum of the form∑

Vo⊆{1,...,n}

with Vo�1,n

∑
ρ∈NC(n) such

that Vo∈ρ

[term indexed by Vo and ρ],

and converting the latter double sum into one sum indexed by {ρ ∈ NC(n) : ρ  1n}
leads to the required formula (4.11). �
5. Non-crossing partitions with symmetries, and a variation on c-free cumulant 
functionals

The “typical” combinatorial approach to any brand of cumulants goes by identifying 
a coherent sequence of lattices of partitions, which are used as index sets for the various 
summation formulas describing the cumulants in question. This applies in particular to 
the free cumulants and to the Boolean cumulants reviewed in Sections 3.1 and 3.2, where 
the relevant lattices of partitions are {NC(n) : n ∈ N} and respectively {Int(n) : n ∈ N}. 
The approach with partitions is good because it offers streamlined ideas on how to 
proceed – for instance one typically uses (following a method initiated by Rota in the 
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Fig. 2. The partition { {1, 3,−1,−3}, {2}, {−2}, {4, 5}, {−4,−5} } ∈ NC(B)(5).

1960’s) a notion of “multiplicative functions” on the relevant sequence of lattices, then 
one looks for a formula for “cumulants with products as entries”, where an essential 
ingredient in the formula is the use of lattice operations (see e.g. Section 3.2 of [13]).

In this section we review the approach to cumulants via partitions in the two extended 
frameworks we are considering: c-free cumulants and infinitesimal free cumulants, and 
we point out a relevant fact which seems to have been overlooked in the c-free case.

5.1. Lattices of partitions for infinitesimal free cumulants

We first go over the (better understood) case of infinitesimal free cumulants. In order 
to approach these cumulants via the study of multiplicative functions on a sequence of 
lattices, one uses an “analogue of type B” for the NC(n)’s; this is a family of lattices 
denoted as NC(B)(n) which were introduced in [17]. In order to depict a partition σ ∈
NC(B)(n), one starts by marking on a circle 2n points, labeled as 1, . . . , n and −1, . . . , −n

(as exemplified, for n = 5, in Fig. 2 above). Then σ must achieve a non-crossing partition 
of these 2n points, with the additional symmetry requirement that if U is a block of σ
then −U := {−i : i ∈ U} is a block of σ as well.

Note that a block U of a σ ∈ NC(B)(n) either is such that U = −U , in which 
case we say that U is a zero-block of σ, or is such that U ∩ (−U) = ∅. The non-
crossing condition forces every σ ∈ NC(B)(n) to have at most one zero-block; moreover, 
there exists a natural bijection between {σ ∈ NC(B)(n) : σ has a zero-block} and 
{σ ∈ NC(B)(n) : σ has no zero-block}, which is implemented by a suitable version of 
the Kreweras complementation map.

In the papers [3] and then [11] it was pointed out that, when used on the lattices 
NC(B)(n), the general machinery of Rota leads to the infinitesimal free cumulant func-
tionals κ′

n : An → C associated to an I-ncps (A, ϕ, ϕ′). The same considerations apply, 
without any changes, to the framework of (V, ϕ, ϕ′) used in Section 3.3. Since the families 
of equations (3.6) and (3.7) shown in Section 3.3 did not, at the face of it, call on the lat-
tices NC(B)(n), it is of relevance to mention here that the double sum “

∑
π∈NC(n)

∑
V ∈π” 
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Fig. 3. The partitions { {1, 3, −1, −3}, {2}, {−2}, {4, 5}, {−4, −5} } (left) and {{1, 3, −1, −3}, {2}, {−2},
{4, 5, −4, −5} } (right) in NC(B−opp)(5).

appearing in these families of equations comes from processing a single sum indexed by 
{σ ∈ NC(B)(n) : σ has a zero-block}. For instance, Equation (3.6) corresponds to a 
formula which looks like this:

ϕ′
n(x1, . . . , xn) =

∑
σ∈NC(B)(n)

with zero−block Z

κ′
|Z|/2

(
(x1, . . . , xn) | Abs(Z)

)
× (5.1)

×
∏

pairs U,−U∈σ

such that U �=(−U)

κ|U |;ϕ
(
(x1, . . . , xn) | Abs(U)

)
,

where Abs : {1, . . . , n} ∪{−1, . . . , −n} → {1, . . . , n} is the absolute value map sending ±i

to i for 1 ≤ i ≤ n. (For the details of how one passes back-and-forth between Equations 
(3.6) and (5.1) we refer the reader to Section 6 of [11].)

5.2. Lattices of partitions for conditionally free cumulants

Now let us look at the c-free framework. In order to approach cumulants via the 
study of multiplicative functions on a sequence of lattices, one uses here some lattices 
NC(B−opp)(n) which were identified in [8]. The drawing of a σ ∈ NC(B−opp)(n) starts 
by marking on a circle 2n points, labeled as 1, . . . , n and −n, . . . , −1 (as exemplified, 
for n = 5, in Fig. 3 above). Then σ must achieve a non-crossing partition of these 
2n points, with the additional symmetry requirement that if U is a block of σ then 
−U := {−i : i ∈ U} is a block of σ as well. Note that the description of how we obtain 
our σ is strikingly similar to the description at the beginning of Section 5.1 – the only 
difference (and the reason for using the name “NC(B−opp)(n)”) is that the points with 
negative labels −1, . . . , −n now appear in reverse order as we travel around the circle.
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Similar to how things went for partitions in NC(B)(n), a block U of a partition σ in 
NC(B−opp)(n) either is such that U = −U , in which case we say that U is a zero-block of 
σ, or is such that U ∩ (−U) = ∅. But unlike how things went for NC(B)(n), a partition 
σ ∈ NC(B−opp)(n) may have multiple zero-blocks (for instance the second partition 
shown in Fig. 3 has two such blocks).

In the paper [8] it was shown that, when used on the lattices NC(B−opp)(n), the 
general machinery of Rota leads to the identification of a family of cumulants (κ(cc)

n :
An → C)∞n=1 associated to a C-ncps (A, ϕ, χ), which can be used for describing c-freeness 
for subalgebras of A. A puzzling detail appearing at this point is that the functionals κ(cc)

n

are not the same as the κ(c)
n ’s coming from [7], which were reviewed in Section 3.4. The 

main goal of the present section is to resolve this puzzle by pointing out a neat direct 
connection between the κ(c)

n ’s and κ(cc)
n ’s, in Proposition 5.4 below. We start towards 

that by recording a few elementary observations about the structure of the partitions in 
NC(B−opp)(n).

Remark 5.1. Let σ be a partition in NC(B−opp)(n).
(1) If U is a block of σ such that U ∩ {1, . . . , n} �= ∅ �= U ∩ {−1, . . . , −n}, then U

must be a zero-block. Indeed, let i, j ∈ {1, . . . , n} be such that i, −j ∈ U . If i = j, then 
i ∈ U ∩ (−U), which forces U = −U . If i �= j, then we look at the four points i, j, −i, −j

drawn around the circle and we observe that if U and −U would be distinct blocks of 
σ, then there would be crossings between them (e.g. if i < j, then the four points we’re 
looking at come in the order i, j, −j, −i, with i, −j ∈ U and j, −i ∈ −U). So this case, 
too, leads to the conclusion that U = −U .

(2) The contrapositive of (1) is that every non-zero-block of σ either is contained 
in {1, . . . , n} or is contained in {−1, . . . , −n}. Thus the non-zero blocks of σ come in 
pairs U, −U , with one of U, −U contained in {1, . . . , n} and the other contained in 
{−1, . . . , −n}.

Definition and Remark 5.2. Let V be a vector space over C, and consider (analogous 
to the considerations of Section 3.4) a triple (V, ϕ, χ) where ϕ = (ϕn)∞n=1 and χ =
(χn)∞n=1 are families of multilinear functionals on V. We will use the name of alternative 
c-free cumulants associated to (V, ϕ, χ) for the family of multilinear functionals κ(cc) =
(κ(cc)

n )∞n=1 which is uniquely determined by the requirement that

χn(x1, . . . , xn) = (5.2)∑
σ∈NC(B−opp)(n)

∏
U∈σ,

U⊆{1,...,n}

κ|U |;ϕ( (x1, . . . , xn) | U)
∏
Z∈σ,

Z=−Z

κ
(cc)
|Z|/2( (x1, . . . , xn) | Z∩{1, . . . , n}),

holding for all n ∈ N and x1, . . . , xn ∈ V, and where (κn;ϕ)∞n=1 are the free cumulants 
associated to (V, ϕ).
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The fact that κ(cc) can indeed be defined by using Equation (5.2) is easily seen, in a 
similar way to how it was seen that the c-free cumulants κ(c) associated to (V, ϕ, χ) are 
correctly defined by Equation (3.8) of Section 3.4. In the case at hand, one isolates on 
the right-hand side of (5.2) the term κ(cc)

n (x1, . . . , xn) which is indexed by the partition 
σ ∈ NC(B−opp) with only one block, and then one proceeds by induction.

Before stating the proposition which relates κ(cc) to κ(c) we record another remark 
about NC(B−opp), concerning the natural “absolute value map” Abs : NC(B−opp)(n) →
NC(n).

Remark and Notation 5.3. Let n be a positive integer, and for every subset U ⊆
{1, . . . , n} ∪ {−1, . . . , −n}, let us agree to denote Abs(U) := {|i| : i ∈ U}.

(1) It is immediate that if σ is a partition in NC(B−opp)(n) and if U1, U2 are two 
blocks of σ, then either Abs(U1) = Abs(U2) or Abs(U1) ∩Abs(U2) = ∅. This implies that 
the set of sets

Abs(σ) := {Abs(U) : U ∈ σ}

is a partition of {1, . . . , n}. It is, moreover, easily seen that Abs(σ) must belong to 
NC(n). Indeed, for any two distinct blocks V1, V2 of Abs(σ) it is possible to pick two 
distinct blocks U1, U2 of σ such that V1 ⊆ U1 and V2 ⊆ U2; so a crossing between V1 and 
V2 would entail a crossing between U1 and U2, which is not possible.

(2) Let σ be in NC(B−opp)(n), and consider the partition π = Abs(σ) ∈ NC(n). 
We note that if Z is a zero-block of σ, then W := Abs(Z) has to be an outer block of 
π. Indeed, if W was to be nested inside some other block V of π, then upon writing 
V = Abs(U) for some U ∈ σ one would immediately find crossings between Z and U , 
which is not possible.

(3) Parts (1) and (2) of this remark provide us with a map

σ �→
(

Abs(σ), {Abs(Z) : Z ∈ σ, Z = −Z}
)

(5.3)

going from NC(B−opp)(n) to the set {(π, S) : π ∈ NC(n), S ⊆ Out(π)}, where we used 
the notation Out(π) for the set of all outer blocks of a partition π ∈ NC(n). We leave 
it as an exercise to the reader to check that the map (5.3) is a bijection, with inverse 
described as follows: given π ∈ NC(n) and a set S (possibly empty) of outer blocks of 
π, we put

σ := {W ∪ (−W ) : W ∈ S} ∪ {V : V ∈ π \ S} ∪ {−V : V ∈ π \ S}

(where π \ S denotes the set of blocks of π not taken in S).

Proposition 5.4. Let V be a vector space over C, and consider a triple (V, ϕ, χ) where 

ϕ = (ϕn)∞n=1 and χ = (χn)∞n=1 are in MV . Let κ(c) = (κ(c)
n )∞n=1 be the c-free cumulants 
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associated to (V, ϕ, χ) as in Section 3.4, and let κ(cc) = (κ(cc)
n )∞n=1 be the alternative 

c-free cumulants considered in Definition 5.2. One has

κ(cc)
n = κ(c)

n − κn;ϕ, n ∈ N, (5.4)

where (κn;ϕ)∞n=1 are the free cumulants associated to (V, ϕ).

Proof. The bijection observed in Remark 5.3(3) can be used as a change of variable in 
the Equation (5.2) defining κ(cc), which then takes the form:

χn(x1, . . . , xn) = (5.5)∑
π∈NC(n)

∑
S⊆Out(π)

∏
V ∈π\S

κ|V |;ϕ( (x1, . . . , xn) | V ) ·
∏
W∈S

κ
(cc)
|W |( (x1, . . . , xn) | W ),

holding for all n ∈ N and x1, . . . , xn ∈ V. It is immediate that if on the right-hand side 
of (5.5) we fix a π ∈ NC(n) and we only perform the sum over S ⊆ Out(π), what results 
is the product∏
V ∈π

V inner

κ|V |;ϕ((x1, . . . , xn) | V ) ·
∏
W∈π

W outer

(
κ|W |;ϕ((x1, . . . , xn) | W ) + κ

(cc)
|W |((x1, . . . , xn) | W )

)
.

(5.6)

For every n ∈ N let us put λn := κ
(cc)
n + κn;ϕ, and let λ := (λn)∞n=1 ∈ MV . Upon 

replacing (5.6) inside the right-hand side of Equation (5.5), we find that

χn(x1, . . . , xn) = (5.7)∑
π∈NC(n)

∏
V ∈π

V inner

κ|V |;ϕ((x1, . . . , xn) | V ) ·
∏
W∈π

W outer

λ|W |( (x1, . . . , xn) | W ),

holding for every n ∈ N and x1, . . . , xn ∈ V. We have thus obtained that λ satisfies the 
family of equations (3.8) which were used to define κ(c). It follows that λ = κ(c), which 
concludes the proof. �
Remark 5.5. (1) Let (A, ϕ, χ) be a C-ncps, and let A1, . . . , Ak be unital subalgebras of 
A. Proposition 5.4 explains in a rather neat way why the functionals κ(cc)

n can indeed 
be used in the description of c-free independence, in a similar way to how the κ(c)

n are 
used. Indeed, in the presence of the background condition that A1, . . . , Ak are freely 
independent with respect to ϕ (which imposes the vanishing of the mixed free cumulants 
with respect to ϕ), Proposition 5.4 assures us that the vanishing of mixed cumulants 
κ

(cc)
n is equivalent to the one of mixed cumulants κ(c)

n .
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(2) κ(cc) is useful because it can be related to the lattice operations on NC(B−opp)(n). 
This allows, for instance, a nicely streamlined treatment of the formula for cumulants 
with products as entries (as shown in Theorem 2.6 of [8]).

(3) The formula (5.2) which was used for introducing κ(cc) in Definition 5.2 can be 
re-written in a way which only uses partitions with zero-blocks on the right-hand side. 
Indeed, it is immediate that the sub-sum over {σ ∈ NC(B−opp)(n) : σ has no zero-blocks}
on the right-hand side of (5.2) simply gives ϕn(x1, . . . , xn). With this observation, Equa-
tion (5.2) can be put in the form

(χn − ϕn)(x1, . . . , xn) =
∑

σ∈NC(B−opp)(n)

with zero−blocks

∏
Z∈σ,

Z=−Z

κ
(cc)
|Z|/2( (x1, . . . , xn) | Abs(Z))× (5.8)

×
∏

pairs U,−U∈σ,

such that U �=−U

κ|U |;ϕ( (x1, . . . , xn) | Abs(U));

this is strikingly similar to the formula (5.1) which was reviewed in Section 5.1 in the 
framework of infinitesimal free cumulants.

The apparent resemblance between Equations (5.1) and (5.8) is, in some sense, a man-
ifestation of the resemblance between the two types of pictures shown in Figs. 2 and 3, for 
partitions in NC(B)(n) and in NC(B−opp)(n). We should point out here the intriguing 
additional detail that the lattices NC(B)(n) and NC(B−opp)(n) have the same cardinal-
ity – they are both counted by the binomial coefficient 2n-choose-n. Tantalizing as this 
may be, we are not aware of any result that would relate c-free independence to infinites-
imal free independence via a direct connection between NC(B)(n) and NC(B−opp)(n); 
an example of a rather natural bijection NC(B)(n) → NC(B−opp)(n), based on systems 
of parentheses, was explained to one of us by Vic Reiner [18], but that does not seem to 
convert well into considerations on non-commutative random variables.

6. Proof of Theorem 1.7

Notation 6.1. (Framework of the section.)
Throughout this section we fix a vector space V over C and two families of multilinear 

functionals ϕ, χ ∈ MV , where ϕ = (ϕn)∞n=1 and χ = (χn)∞n=1, as in Notation 1.5. We 
assume that ϕ is tracial, in the sense indicated in that same notation. We also fix a 
linear map Δ : V → V ⊗ V, and we consider the transformation Δ∗ : MV → MV
constructed from Δ in the way described in Notation 1.6. We then put ϕ′ := Δ∗

(
β
χ

)
, 

where β
χ

= (βn;χ)∞n=1 ∈ MV is the family of Boolean cumulants of χ. Our goal for the 

section is to prove the equality claimed in Theorem 1.7:

κ′ = Δ∗(κ(c) ),
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where κ′ = (κ′
n)∞n=1 ∈ MV are the infinitesimal free cumulants associated to (V, ϕ, ϕ′), 

while κ(c) = (κ(c)
n )∞n=1 are the c-free cumulants associated to (V, ϕ, χ). In view of how 

Δ∗ is defined, proving the latter equality amounts to proving that for every n ∈ N one 
has

κ′
n =

n∑
m=1

κ
(c)
n+1 ◦ Γm

n+1 ◦ Δ(m)
n , (6.1)

with Γn+1 : V⊗(n+1) → V⊗(n+1) and Δ(m)
n : V⊗n → V⊗(n+1) as in (1) and (2) of 

Notation 1.6. In Equation (6.1), κ′
n and κ(c)

n+1 are treated as linear functionals on V⊗n

and respectively V⊗(n+1) (rather than multilinear functionals on Vn and Vn+1).
In order to handle the left-hand side of Equation (6.1), it is convenient to introduce 

the following notation.

Notation 6.2. (1) For every n ∈ N and m ∈ {1, . . . , n}, we denote

γ(m)
n := βn+1;χ ◦ Γm

n+1 ◦ Δ(m)
n . (6.2)

We will view γ(m)
n , as needed, either as a linear functional V⊗n → C or as a multilinear 

functional Vn → C.
(2) For every n ∈ N, m ∈ {1, . . . , n} and π ∈ NC(n) we will denote by γ(m)

π the 
multilinear functional Vn → C defined as follows:

γ(m)
π (x1, . . . , xn) := γ

(r)
|Vo|((x1, . . . , xn) | Vo) ·

∏
V ∈π

V �=Vo

ϕ|V |((x1, . . . , xn) | V ), (6.3)

where Vo denotes the block of π which contains the number m, and r denotes the “rank 
of m inside Vo” – that is, upon writing Vo = {i1, . . . , ip} with i1 < · · · < ip, one has 
m = ir.

[Note that part (2) of this notation is an extension of part (1), since γ(m)
n may be 

retrieved as γ(m)
π for π = 1n ∈ NC(n).]

Lemma 6.3. For every n ∈ N, one has

κ′
n =

∑
π∈NC(n)

n∑
m=1

Möbn(π, 1n) γ(m)
π . (6.4)

Proof. We start from the formula (3.7) which defines κ′
n(x1, . . . , xn), and on the right-

hand side of that formula we replace the quantity ϕ′
|Vo|

(
(x1, . . . , xn) | Vo

)
by using the 

definition of ϕ′ , which is
|Vo|



M. Février et al. / Advances in Applied Mathematics 110 (2019) 299–341 327
ϕ′
|Vo| = β|Vo|+1;χ ◦ Δ̃|Vo| =

|Vo|∑
j=1

β|Vo|+1;χ ◦ Γj
|Vo|+1;χ ◦ Δ(j)

|Vo|.

It is convenient to re-write the latter sum in the equivalent form∑
m∈Vo

β|Vo|+1;χ ◦ Γr(m)
|Vo|+1;χ ◦ Δ(r(m))

|Vo| , (6.5)

where r(m) indicates the rank of m within the block Vo (as indicated in Notation 6.2(2)). 
Upon substituting (6.5) in (3.7), one arrives to an equation of the form

κ′
n(x1, . . . , xn) =

∑
π∈NC(n)

∑
Vo∈π

∑
m∈Vo

Möbn(π, 1n) · term(π, Vo,m), (6.6)

and the reader should have no difficulty to verify that the quantity “term(π, Vo, m)” 
appearing in (6.6) is nothing but the γ(m)

π (x1, . . . , xn) from Notation 6.2(2). Finally, the 
double sum 

∑
Vo∈π

∑
m∈Vo

in (6.6) can be re-written as a plain sum 
∑n

m=1, which leads 
to the formula (6.4) stated in the lemma. �

We next introduce a notation which captures the multilinear functionals used for the 
description of c-free cumulants in Proposition 4.1.

Notation 6.4. For n ∈ N and π ∈ NC(n) such that π  1n we define ηπ : Vn → C by

ηπ(x1, . . . , xn) = β|Wo|;χ ((x1, . . . , xn)|Wo) ·
∏
V ∈π,

V �=Wo

ϕ|V | ((x1, . . . , xn)|V ) ,

where Wo is the block of π which contains the numbers 1 and n.

Lemma 6.5. For every n ∈ N, the right-hand side of Equation (6.1) can be written as

∑
ρ∈NC(n+1),

ρ�1n+1

n∑
m=1

Möbn(ρ, 1n+1) ηρ ◦ Γ(m)
n+1 ◦ Δ(m)

n . (6.7)

Proof. Proposition 4.1 tells us that

κ
(c)
n+1 =

∑
ρ∈NC(n+1),

ρ�1n+1

Möbn(ρ, 1n+1) ηρ.

Substituting this on the right-hand side of Equation (6.1) leads to (6.7). �
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Returning to the formula (6.1) that needs to be proved: we now have both its sides 
expressed as sums, in Lemmas 6.3 and 6.5. Our proof of (6.1) will go by showing that 
the sums appearing in the two said lemmas can be identified term by term. In order to 
do the identification of the indexing sets, we will use the bijection described as follows.

Remark and Notation 6.6. Let n ∈ N and m ∈ {1, . . . , n} be given. We consider the 
natural bijections

{ρ∈NC(n + 1) : ρ  1n+1}→

⎧⎪⎨⎪⎩ρ̂∈NC(n + 1)
m and m + 1
belong to the

same block of ρ̂

⎫⎪⎬⎪⎭→NC(n), (6.8)

where:
– The first map in (6.8) does a forward cyclic translation by m; that is, this map sends 

ρ to ρ̂ = {τm(V ) : V ∈ ρ}, with τm(k) = m + k mod(n + 1), 1 ≤ k ≤ n + 1.
– The second map in (6.8) merges together the numbers m and m + 1 in the block of 

ρ̂ which contains them.
We will use the notation

F (m)
n : {ρ ∈ NC(n + 1) : ρ  1n+1} → NC(n)

for the bijection obtained by composing the two maps from (6.8).
It is useful to observe that for every ρ ∈ NC(n + 1) such that ρ  1n+1, one has

Möbn

(
F (m)
n (ρ), 1n

)
= Möbn+1(ρ, 1n+1). (6.9)

Indeed, if we follow the arrows ρ �→ ρ̂ �→ π = F
(m)
n (ρ) in (6.8), one first has that 

Möbn+1(ρ, 1n+1) = Möbn+1(ρ̂, 1n+1), because the cyclic translation by m gives an auto-
morphism of NC(n +1) which preserves the values of the Möbius function. Then one has 
the equality Möbn+1(ρ̂, 1n+1) = Möbn(π, 1n), which is seen by writing the explicit for-
mulas of Möbn+1(ρ̂, 1n+1) and of Möbn(π, 1n) (as in Remark 2.4), and by observing that 
the block structure of Kn+1( ̂ρ ) only differs from the one of Kn(π) by a singleton-block 
at m.

Lemma 6.7. Let n ∈ N and m ∈ {1, . . . , n} be given. Let us also fix a partition ρ ∈
NC(n +1) such that ρ  1n+1, and let us denote π := F

(m)
n (ρ) ∈ NC(n). We then have

γ(m)
π = ηρ ◦ Γm

n+1 ◦ Δ(m)
n (6.10)

(equality of multilinear functionals on Vn).

Proof. The verification of Equation (6.10) is done by a mere unfolding of the definitions 
of the functionals indicated on the two sides of the equation. As this unfolding only 
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Fig. 4. (a) The partition ρ � 110 used for illustration in this proof. (b) The cyclic permutation ρ̂ of ρ by 
m = 3. (c) The partition π = F

(3)
9 (ρ) ∈ NC(9).

presents difficulties of notational nature, we believe it is more beneficial to the reader if 
we show it on a suitable concrete example which captures the relevant features of what is 
going on. At the end of the proof we will elaborate on why the details of the verification 
are in fact general, rather than being specific to the example shown.

The concrete example we pick for illustration has

n = 9, m = 3, ρ =
{
{1, 4, 9, 10}, {2, 3}, {5, 6, 8}, {7}

}
∈ NC(10).

Fig. 4 above depicts the partition ρ, the partition

π = F
(3)
9 (ρ) =

{
{1, 7, 8}, {2, 3, 6}, {4, 5}, {9}

}
∈ NC(9),

and also the partition ρ̂ ∈ NC(10) which is used as an intermediate between ρ and π in 
Notation 6.6.

Given a tuple (x1, . . . , xn) ∈ Vn, the processing of either side of Equation (6.10) will 
require the explicit writing of Δ(xm) ∈ V ⊗ V. We will denote

Δ(xm) =
s∑

h=1

yh ⊗ zh.

In the concrete example used for illustration (with n = 9, m = 3), the block of π which 
contains m is Vo = {2, 3, 6}, and the rank of m in Vo is r = 2; hence the evaluation of 
the left-hand side of Equation (6.10) starts with

γ(3)
π (x1, . . . , x9) = γ

(2)
3 (x2, x3, x6) · ϕ3(x1, x7, x8)ϕ2(x4, x5)ϕ1(x9), (6.11)

where we then replace

γ
(2)
3 (x2, x3, x6) = (β4;χ ◦ Γ2

4 ◦ Δ(2)
3 )(x2 ⊗ x3 ⊗ x6) (cf. Notation 6.2(1))

= (β4;χ ◦ Γ2
4)(x2 ⊗ Δ(x3) ⊗ x6)

=
s∑

β4;χ
(
Γ2

4(x2 ⊗ yh ⊗ zh ⊗ x6)
)

h=1
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=
s∑

h=1

β4;χ(zh ⊗ x6 ⊗ x2 ⊗ yh) =
s∑

h=1

β4;χ(zh, x6, x2, yh)

(with β4;χ interchangeably viewed as a linear functional on V⊗4 or as a multilinear 
functional on V4). Hence the evaluation started in (6.11) comes to

γ(3)
π (x1, . . . , x9) =

s∑
h=1

β4;χ(zh, x6, x2, yh) · ϕ3(x1, x7, x8)ϕ2(x4, x5)ϕ1(x9). (6.12)

Moving now to the corresponding evaluation on the right-hand side of Equation (6.10), 
we have

(ηρ ◦ Γ3
10 ◦ Δ(3)

9 )(x1, . . . , x9) = (ηρ ◦ Γ3
10)(x1 ⊗ x2 ⊗ Δ(x3) ⊗ x4 ⊗ · · · ⊗ x9)

=
s∑

h=1

ηρ
(
Γ3

10(x1 ⊗ x2 ⊗ yh ⊗ zh ⊗ x4 ⊗ · · · ⊗ x9)
)

=
s∑

h=1

ηρ(zh ⊗ x4 ⊗ · · · ⊗ x9 ⊗ x1 ⊗ x2 ⊗ yh) =
s∑

h=1

ηρ(zh, x4, . . . , x9, x1, x2, yh).

In the latter expression, we use the definition of ηρ from Notation 6.4; when doing so, it 
is instructive to re-draw the picture of ρ from Fig. 4, with the labels 1, 2, . . . , 10 being 
replaced by labels “zh, x4, . . . , x2, yh”:

The result of the evaluation for the right-hand side of Equation (6.10) then comes to

(ηρ ◦ Γ3
10 ◦ Δ(3)

9 )(x1, . . . , x9) (6.13)

=
s∑

h=1

β4;χ(zh, x6, x2, yh) · ϕ2(x4, x5)ϕ3(x7, x8, x1)ϕ1(x9).

The expression obtained on the right-hand side of Equation (6.13) coincides with the 
one on the right-hand side of Equation (6.12), modulo the detail that the arguments 
x1, x7, x8 were cyclically rotated in (6.13) (which doesn’t change, however, the value of 
ϕ3(x1, x7, x8), due to the hypothesis that ϕ is tracial). This completes the verification 
of Equation (6.10) in the concrete example picked for illustration.

We conclude our argument with a discussion about what is the general structure of 
the expressions encountered in (6.12) and (6.13), and what were the relations between 
the block structure of π and of ρ which produced the equality between these expressions. 
We hope that, upon examination, the reader will agree that this discussion is not specific 
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to the special example considered above for illustration, but can be made whenever we 
consider partitions ρ ∈ NC(n + 1) and π = F

(m)
n (ρ) ∈ NC(n) as described in the 

statement of the lemma.
– We first note that the processing of either side of Equation (6.10) leads to an 

expression which is a sum of products. The number s of terms in the sum is picked from 
an explicit writing of Δ(xm), and every term has one factor which is a Boolean cumulant 
of χ, multiplied by several factors which are moments of ϕ.

– The factors which are Boolean cumulants of χ are found by looking at the block 
Vo = {i1 < · · · < ip} of π which contains the number m and, on the other hand, at the 
unique outer block Wo of ρ. The sets Vo and Wo are related: one obtains Vo out of Wo via 
a cyclic rotation by m followed by merging of m with m +1, as explained in Notation 6.6. 
Both the processing using Vo in (6.12) and the one using Wo in (6.13) involve the same 
Boolean cumulants, which are4 of the form

βp+1;χ(zh, xir+1 , . . . , xip , xi1 , . . . , xir−1 , yh), with 1 ≤ h ≤ s.

– The factors which are moments of ϕ are found by looking at blocks V �= Vo of π (for 
(6.12)) and at blocks W �= Wo of ρ (for (6.13)). One has a natural bijective correspon-
dence between such V ’s and W ’s, where every V is obtained from the corresponding W
by a cyclic permutation followed by suitable relabeling. (For instance, in the example 
of Fig. 4: the block W = {2, 3} of ρ is cyclically permuted to {5, 6} and then relabeled
to become the block V = {4, 5} of π.) For a V and W that correspond to each other: 
the definitions of the functionals γ(m)

π and ηρ are made in such a way that the choice 
of components selected out of a tuple (x1, . . . , xn) ∈ Vn is the same when we look at V
in (6.12) and when we look at W in (6.13), modulo a possible cyclic permutation of the 
arguments. This possible cyclic permutation of the arguments is, however, taken care by 
the hypothesis that ϕ is tracial. �
6.8. Conclusion of the proof of Theorem 1.7. In view of Lemmas 6.3 and 6.5, we are left 
to show that, for every n ∈ N, one has

∑
π∈NC(n)

n∑
m=1

Möbn(π, 1n) γ(m)
π =

∑
ρ∈NC(n+1),

ρ�1n+1

n∑
m=1

Möbn+1(ρ, 1n+1) ηρ ◦ Γ(m)
n+1 ◦ Δ(m)

n .

(6.14)

And indeed, for any fixed n ∈ N and m ∈ {1, . . . , n} we see that

4 It is fortunate that for these factors we don’t need to do any kind of permutation in the arguments of 
the Boolean cumulants that appear. Indeed, Boolean cumulants are not invariant under cyclic permutations 
of variables – so even if we required χ to be tracial, this feature would not be passed onto β .
χ
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∑
π∈NC(n)

Möbn(π, 1n) γ(m)
π =

∑
ρ∈NC(n+1),

ρ�1n+1

Möbn(F (m)
n (ρ), 1n) γ

(m)
F

(m)
n (ρ)

(via the change of summation variable “π = F
(m)
n (ρ)”, based on Remark 6.6), which can 

be continued with

=
∑

ρ∈NC(n+1),

ρ�1n+1

Möbn+1(ρ, 1n+1) ηρ ◦ Γ(m)
n+1 ◦ Δ(m)

n

(by Lemma 6.7 and the equality of Möbius functions observed in (6.9)). Summing over 
m ∈ {1, . . . , n} in the latter equalities leads to (6.14). �
7. Proof of Theorem 1.4

In this section we re-connect with the framework of Section 1.2 of the Introduction, 
and we explain how Theorem 1.4 is a consequence of Theorem 1.7.

Notation 7.1. We fix throughout the section a positive integer k. We put V := Ck, we 
fix a basis e1, . . . , ek of V, and we consider the linear map Δ : V → V ⊗V determined by 
the requirement that

Δ(ei) = ei ⊗ ei, 1 ≤ i ≤ k. (7.1)

We then consider the space MV of families of multilinear functionals defined as in No-
tation 1.5, and the transformation Δ∗ : MV → MV constructed by starting from Δ in 
the way shown in Notation 1.6. It is immediate that, in the special case considered here, 
Δ∗ acts as follows: given ϕ = (ϕn)∞n=1 ∈ MV , one has Δ∗(ϕ) = ψ = (ψn)∞n=1, with ψn

determined via the requirement that for every i1, . . . in ∈ {1, . . . , k} one has

ψn(ei1 , . . . , ein) =
n∑

m=1
ϕn+1(eim , . . . , ein , ei1 , . . . , eim). (7.2)

Remark and Notation 7.2. In the present section, the notations for families of cumulants 
from Section 3 get to be used in two distinct ways. On the one hand, we can consider 
families of functionals ϕ, χ, ϕ′ ∈ MV ; in connection to such families we can define the four 
brands of cumulants discussed in Section 3, which will be denoted here with appropriate 
indices such as
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

κϕ = (κn;ϕ )∞n=1, for the free cumulants of ϕ;
β
χ

= (βn;χ )∞n=1, for the Boolean cumulants of χ;

κ
(c)
(ϕ,χ) = (κ(c)

n;(ϕ,χ) )∞n=1, for the c-free cumulants of ϕ and χ;
κ′

(ϕ,ϕ′) = (κ′
n;(ϕ,ϕ′) )∞n=1, for the infinitesimal free cumulants of ϕ and ϕ′.

(7.3)

On the other hand, we can consider linear functionals μ, ν, μ′ on the algebra of non-
commutative polynomials C〈X1, . . . , Xk〉, with μ(1) = ν(1) = 1 and μ′(1) = 0. In 
connection to such functionals: since C〈X1, . . . , Xk〉 is a unital algebra (where a linear 
functional naturally induces multilinear functionals on all the powers C〈X1, . . . , Xk〉n) 
we can also define families of cumulants, with notations such as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κμ = (κn;μ )∞n=1, for the free cumulants of μ;
β
ν

= (βn;ν )∞n=1, for the Boolean cumulants of ν;

κ
(c)
(μ,ν) = (κ(c)

n;(μ,ν) )∞n=1, for the c-free cumulants of μ and ν;
κ′

(μ,μ′) = (κ′
n;(μ,μ′) )∞n=1, for the infinitesimal free cumulants of μ and μ′.

(7.4)

One has an obvious connection between the families of cumulants listed in (7.3) and 
in (7.4), as recorded in the next lemma.

Lemma 7.3. Let μ, ν, μ′ : C〈X1, . . . , Xk〉 → C be linear functionals with μ(1) = ν(1) = 1
and μ′(1) = 0. Consider the families of functionals ϕ, χ and ϕ′ in MV defined via the 
requirement that for every n ∈ N and i1, . . . , in ∈ {1, . . . , k} we have⎧⎪⎪⎨⎪⎪⎩

ϕn(ei1 , . . . , ein) = μ(Xi1 · · ·Xin),

χn(ei1 , . . . , ein) = ν(Xi1 · · ·Xin), and

ϕ′
n(ei1 , . . . , ein) = μ′(Xi1 · · ·Xin).

(7.5)

Then, for every n ∈ N and i1, . . . , in ∈ {1, . . . , k}, we have the following equalities of 
cumulants:

(1) κn;μ(Xi1 , . . . , Xin) = κn;ϕ(ei1 , . . . , ein).
(2) βn;ν(Xi1 , . . . , Xin) = βn;χ(ei1 , . . . , ein).
(3) κ(c)

n;(μ,ν)(Xi1 , . . . , Xin) = κ
(c)
n;(ϕ,χ)(ei1 , . . . , ein).

(4) κ′
n;(μ,μ′)(Xi1 , . . . , Xin) = κ′

n;(ϕ,ϕ′)(ei1 , . . . , ein).

Proof. This is because, in each of the equations listed in the conclusion of the lemma, 
the same moment-cumulant formulas are used on both sides of the equation. �
Lemma 7.4. Consider the framework and notations of Lemma 7.3. Suppose we have μ′ =
Ψk(ν), in the sense of Definition 1.1. Then it follows that ϕ′ = Δ∗(β

χ
), with Δ∗ as 

reviewed in Notation 7.1.
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Proof. Let Δ∗(β
χ
) := ψ = (ψn)∞n=1. For every n ∈ N and i1, . . . , in ∈ {1, . . . , k} we 

write

ψn(ei1 , . . . , ein) =
n∑

m=1
βn+1;χ(eim , . . . , ein , ei1 , . . . , eim) (by Equation (7.2))

=
n∑

m=1
βn+1;ν(Xim , . . . , Xin , Xi1 , . . . , Xim) (by Lemma 7.3(2))

= μ′(Xi1 · · ·Xin) (by Equation (1.6) in Definition 1.1)
= ϕ′

n(ei1 , . . . , ein) (by the definition of ϕ′
n in Eqn. (7.5)).

By multilinearity, it follows that ψn = ϕ′
n for all n ∈ N. Hence ϕ′ = ψ = Δ∗(β

χ
). �

7.5. Proof of Theorem 1.4. Recall that we have the following data: k is a positive integer, 
μ, ν are in Dalg(k), and we let μ′ := Ψk(ν) ∈ D′

alg(k). We assume μ to be tracial. We 
have to prove that the infinitesimal free cumulants of (μ, μ′) are related to the c-free 
cumulants of (μ, ν) by the formula

κ′
n;(μ,μ′)(Xi1 , . . . , Xin) =

n∑
m=1

κ
(c)
n+1;(μ,ν)(Xim , . . . , Xin , Xi1 , . . . , Xim),

holding for every n ∈ N and i1, . . . , in ∈ {1, . . . , k}.
Consider the families of functionals ϕ, χ, ϕ′ ∈ MV defined as in Lemma 7.3. Note that 

the hypothesis of μ being tracial immediately implies that ϕ is tracial as well. On the 
other hand, Lemma 7.4 gives us the fact that ϕ′ = Δ∗(β

χ
). Theorem 1.7 then applies 

to ϕ, χ, ϕ′, which leads to a formula relating the infinitesimal free cumulants κn;(ϕ,ϕ′)

to the c-free cumulants κ(c)
n;(ϕ,χ). We are only left to write that, for every n ∈ N and 

i1, . . . , in ∈ {1, . . . , k}:

κ′
n;(μ,μ′)(Xi1 , . . . , Xin) = κ′

n;(ϕ,ϕ′)(ei1 , . . . , ein) (by Lemma 7.3(4))

=
n∑

m=1
κ

(c)
n+1;(ϕ,χ)(eim , . . . , ein , ei1 , . . . , eim) (by Theorem 1.7)

=
n∑

m=1
κ

(c)
n+1;(μ,ν)(Xim , . . . , Xin , Xi1 , . . . , Xim),

where at the latter equality we used Lemma 7.3(3). �
8. c-free and infinitesimally free products and additive convolutions

In this section we continue with the framework of algebraic distributions in Dalg(k) and 
D′

alg(k), and with the various families of cumulants associated to such distributions, with 
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notations as in (7.4) of the preceding section. We will review the variations of the notions 
of free product and free additive convolution that are relevant for the present paper, 
and we will show how Theorems 1.2 and 1.3 follow from the formula about cumulants 
obtained in Theorem 1.4. Since the latter formula only addresses cumulants for tuples of 
the special form (Xi1 , . . . , Xin) (rather than covering cumulants for tuples (P1, . . . , Pn)
with general P1, . . . , Pn ∈ C〈X1, . . . , Xk〉) it is useful to start by recording the following 
lemma.

Lemma 8.1. Let k be a positive integer.
(1) Let μ1, μ2 be in Dalg(k), and suppose that the free cumulant functionals of μ1

agree with those of μ2 on all tuples {(Xi1 , . . . , Xin) : n ∈ N, 1 ≤ i1, . . . , in ≤ k}. Then 
μ1 = μ2.

(2) Let μ, ν1, ν2 be in Dalg(k), and suppose that the c-free cumulants of (μ, ν1) agree 
with those of (μ, ν2) on all tuples {(Xi1 , . . . , Xin) : n ∈ N, 1 ≤ i1, . . . , in ≤ k}. Then 
ν1 = ν2.

(3) Let μ ∈ Dalg(k) and μ′
1, μ

′
2 ∈ D′

alg(k), and suppose the infinitesimal free cumu-
lants of (μ, μ′

1) agree with those of (μ, μ′
2) on all tuples {(Xi1 , . . . , Xin) : n ∈ N, 1 ≤

i1, . . . , in ≤ k}. Then μ′
1 = μ′

2.

Proof. Each of the three parts of the lemma follows by an immediate application of 
the suitable moment-cumulant formula. For instance: in the case of statement (3), the 
formula (3.6) used in the definition of infinitesimal free cumulants gives us that both 
μ′

1(Xi1 · · ·Xin) and μ′
2(Xi1 · · ·Xin) are equal to

∑
π∈NC(n)

∑
Vo∈π

κ′
|Vo|

(
(Xi1 , . . . , Xin) | Vo

)
·

∏
V ∈π

V �=Vo

κ|V |( (Xi1 , . . . , Xin) | V ),

where the κ|V |s are free cumulant of μ, while κ′
|Vo|

(
(Xi1 , . . . , Xin) | Vo

)
is the com-

mon value of the infinitesimal free cumulants of (μ, μ′
1) and (μ, μ′

2) on the tuple 
(Xi1 , . . . , Xin) | Vo. Thus μ′

1 and μ′
2 agree on all monomials Xi1 · · ·Xin with n ∈ N

and i1, . . . , in ∈ {1, . . . , k}, and it follows that μ′
1 = μ′

2, as required. �
8.1. Free product operations and the proof of Theorem 1.3

In this subsection we review the necessary extensions of the notion of free product of 
distributions, and we show how Theorem 1.3 follows from Theorem 1.4.

For our purposes, it is most convenient to treat all versions of free products in terms of 
cumulants. This starts with the standard free product operation, as described for instance 
in Lecture 6 of [15]. Indeed, the free product μ1�μ2 of two distributions μ1 ∈ Dalg(k) and 
μ2 ∈ Dalg(�) (for some k, � ∈ N) can be identified as the distribution μ̃ ∈ Dalg(k+�) which 
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is uniquely determined by the requirement that its free cumulants fulfill the following 
condition: for every n ∈ N and i1, . . . , in ∈ {1, . . . , k + �}, one has

κn;μ̃(Xi1 , . . . , Xin) =

⎧⎪⎨⎪⎩
κn;μ1(Xi1 , . . . , Xin), if i1, . . . , in ≤ k

κn;μ2(Xi1−k, . . . , Xin−k), if k < i1, . . . , in ≤ k + �

0, otherwise.
(8.1)

For the proof of the fact that μ̃ := μ1 � μ2 satisfies the conditions (8.1), we refer to 
Lecture 11 of [15]. The uniqueness of a distribution which satisfies (8.1) follows directly 
from Lemma 8.1(1). Let us also note here that when the formulas connecting moments 
to free cumulants are used in conjunction to Equation (8.1), it follows in particular that

μ1 � μ2 | C〈X1, . . . , Xk〉 = μ1, (8.2)

and also that μ1 � μ2 | C〈Xk+1, . . . , Xk+�〉 is obtained from μ2 via the relabeling Xi �→
Xk+i, 1 ≤ i ≤ �.

The versions of free product operations used for c-free and for infinitesimal free inde-
pendence can be identified by using the same blueprint as above. More precisely, we can 
proceed as follows.

Proposition and Definition 8.2. Let k, � be positive integers.
(1) Let μ1, ν1 ∈ Dalg(k) and μ2, ν2 ∈ Dalg(�). We denote μ̃ := μ1 � μ2 ∈ Dalg(k + �). 

There exists a distribution ν̃ ∈ Dalg(k + �), uniquely determined, such that the c-free 
cumulants of (μ̃, ̃ν) fulfill the following condition: for every n ∈ N and i1, . . . , in ∈
{1, . . . , k + �}, one has

κ
(c)
n;(μ̃,ν̃)(Xi1 , . . . , Xin) =

⎧⎪⎨⎪⎩
κ

(c)
n;(μ1,ν1)(Xi1 , . . . , Xin), if i1, . . . , in ≤ k

κ
(c)
n;(μ2,ν2)(Xi1−k, . . . , Xin−k), if k < i1, . . . , in ≤ k + �

0, otherwise.
(8.3)

The couple (μ̃, ̃ν) is called the c-free product of the couples (μ1, ν1) and (μ2, ν2); we will 
use for it the notation

(μ̃, ν̃) = (μ1, ν1) �c (μ2, ν2). (8.4)

(2) Let μ1 ∈ Dalg(k), μ′
1 ∈ D′

alg(k) and μ2 ∈ Dalg(�), μ′
2 ∈ D′

alg(�). We denote μ̃ :=
μ1 � μ2 ∈ Dalg(k + �). There exists a distribution μ̃′ ∈ D′

alg(k + �), uniquely determined, 
such that the infinitesimal free cumulants of (μ̃, ̃μ′) fulfill the following condition: for 
every n ∈ N and i1, . . . , in ∈ {1, . . . , k + �}, one has
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κ′
n;(μ̃,μ̃′)(Xi1 , . . . , Xin) =

⎧⎪⎨⎪⎩
κ′
n;(μ1,μ′

1)
(Xi1 , . . . , Xin), if i1, . . . , in ≤ k

κ′
n;(μ2,μ′

2)
(Xi1−k, . . . , Xin−k), if k < i1, . . . , in ≤ k + �

0, otherwise.
(8.5)

The couple (μ̃, ̃μ′) is called the infinitesimal free product of the couples (μ1, μ′
1) and 

(μ2, μ′
2); we will use for it the notation

(μ̃, μ̃′) = (μ1, μ
′
1) �B (μ2, μ

′
2). (8.6)

Proof. (1) The existence of ν̃ is a special case of the general result about free product 
of C-ncps spaces proved in [7]. Uniqueness follows from Lemma 8.1(2).

(2) The existence of μ̃′ is a special case of the general construction of a free product 
of I-ncps spaces which is e.g. discussed in Section 2 of [11]. Uniqueness follows from 
Lemma 8.1(3). �
Remark 8.3. (1) Analogously to what we had for μ1 �μ2 in Equation (8.2), the cumulant 
relations stated in Proposition 8.2(1) imply in particular that ν̃ | C〈X1, . . . , Xk〉 =
ν1, and those from Proposition 8.2(2) imply that μ̃′ | C〈X1, . . . , Xk〉 = μ′

1. Similar 
relations (modulo relabeling of X1, . . . , X� as Xk+1, . . . , Xk+�) hold in connection to the 
restrictions of ν̃ and μ̃′ to C〈Xk+1, . . . , Xk+�〉.

(2) In Proposition 8.2 it was sufficient to prescribe how the cumulant functionals 
κ

(c)
n;(μ̃,ν̃) and κ′

n;(μ̃,μ̃′) act on tuples (Xi1 , . . . , Xin). The action of these functionals on 

general tuples (P1, . . . , Pn) ∈
(
C〈X1, . . . , Xk〉 

)n

could also be explicitly described, if 
needed, by reducing (via multilinearity) to the case when P1, . . . , Pn are monomials, and 
then by invoking the suitable formulas for cumulants with products as entries. In order 
to get the latter formulas for functionals κ(c)

n;(μ̃,ν̃) one can combine Theorem 2.6 of [8]
with Proposition 5.4 of the present paper, while for functionals κ′

n;(μ̃,μ̃′) one can use 
Propositions 3.15 and 4.3 from [11].

8.4. Proof of Theorem 1.3. Recall that we have the following data: k, � are positive 
integers and we are given distributions μ1, ν1 ∈ Dalg(k), μ2, ν2 ∈ Dalg(�), such that 
μ1, μ2 are tracial. We consider the free products

(μ1, ν1) �c (μ2, ν2) = (μ̃, ν̃) ∈ Dalg(k + �) ×Dalg(k + �), and (8.7)

(μ1,Ψk(ν1)) �B (μ2,Ψ�(ν2)) = (μ̃, μ̃′) ∈ Dalg(k + �) ×D′
alg(k + �), (8.8)

where the common μ̃ appearing in (8.7) and (8.8) is the free product μ1 � μ2. We have 
to prove that Ψk+�(ν̃) = μ̃′. In view of Lemma 8.1(3), it will suffice to verify that the 
equality

κ′
n;(μ̃,Ψ (ν̃))(Xi1 , . . . , Xin) = κ′

n;(μ̃,μ̃′)(Xi1 , . . . , Xin) (8.9)

k+�
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holds for all n ∈ N and 1 ≤ i1, . . . , in ≤ k + �.
For the verification of (8.9) we distinguish three cases:
Case 1. All of i1, . . . , in are in {1, . . . , k}.
Case 2. All of i1, . . . , in are in {k + 1, . . . , k + �}.
Case 3. We are not in Case 1 or Case 2.
In Case 1, the needed verification goes as follows:

κ′
n;(μ̃,Ψk+�(ν̃))(Xi1 , . . . , Xin)

=
n∑

m=1
κ

(c)
n+1;(μ̃,ν̃)(Xim , . . . , Xin , Xi1 , . . . , Xim) (by Theorem 1.4)

=
n∑

m=1
κ

(c)
n+1;(μ1,ν1)(Xim , . . . , Xin , Xi1 , . . . , Xim) (by Proposition 8.2(1))

= κ′
n;(μ1,Ψk(ν1))(Xi1 , . . . , Xin) (by Theorem 1.4)

= κ′
n;(μ̃,μ̃′)(Xi1 , . . . , Xin),

where at the latter equality we invoke Proposition 8.2(2) in connection to how (μ̃, ̃μ′) is 
defined in (8.8).

The verifications of Cases 2 and 3 are analogous, where in Case 2 we must at some 
point shift the indices to i1 − k, . . . , in − k ∈ {1, . . . , �}, while in Case 3 both sides of the 
required equality (8.9) come out as equal to 0. �

We note that, when expressing the content of Theorem 1.3 directly in terms of the 
notions of c-free and infinitesimally free independence, one gets the following statement.

Corollary 8.5. Let k, � be positive integers, consider the algebra of polynomials A =
C〈X1, . . . , Xk+�〉 and its subalgebras

A1 = C〈X1, . . . , Xk〉, A2 = C〈Xk+1, . . . , Xk+�〉.

Let μ̃, ̃ν be in Dalg(k + �) and let μ̃′ = Ψk+�(ν̃) ∈ D′
alg(k + �). If the subalgebras A1

and A2 are c-freely independent in the C-ncps (A, ̃μ, ̃ν), then it follows that they are 
infinitesimally free independent in the I-ncps (A, ̃μ, ̃μ′).

Proof. Let μ1, ν1 ∈ Dalg(k) be the restrictions of μ̃, ̃ν to A1, and let μ2, ν2 ∈ Dalg(�) be 
obtained from the restrictions of μ̃, ̃ν to A2 by the natural shift of indices (for instance 
μ2(Xi1 · · ·Xin) := μ̃(Xi1+k · · ·Xin+k) for every n ∈ N and 1 ≤ i1, . . . , in ≤ �). The 
hypothesis that A1 and A2 are c-freely independent in the C-ncps (A, ̃μ, ̃ν) amounts 
to the fact that (μ̃, ̃ν) = (μ1, ν1) �c (μ2, ν2). But then Theorem 1.3 tells us that 
(μ1, Ψk(ν1)) �B (μ2, Ψ�(ν2)) = (μ̃, ̃μ′), and the latter equation converts into the conclusion 
about the infinitesimal free independence of A1 and A2 in the I-ncps (A, ̃μ, ̃μ′). �
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8.2. Operations of free additive convolution and the proof of Theorem 1.2

For every k ∈ N one has an operation � of free additive convolution on Dalg(k), 
which reflects the operation of adding two freely independent k-tuples of elements in a 
noncommutative probability space. When going to free cumulants, the definition of �
takes the form of a “linearization” property: for μ1, μ2 ∈ Dalg(k), one has

κn;μ1�μ2 = κn;μ1 + κn;μ2 (8.10)

(equality of multilinear functionals on C〈X1, . . . , Xk〉n), holding for every n ∈ N – see 
e.g. Lecture 16 in [15]. In a context, such as the one of the present paper, where cumulants 
are the primary object of the discussion, the linearization property from Equation (8.10)
can in fact be used in order to define the operation �. The extensions of � to c-free and 
to infinitesimal free probability can be approached in the same way, as indicated next.

Proposition and Definition 8.6. Let k be a positive integer.
(1) Let μ1, μ2, ν1, ν2 be in Dalg(k). We denote μ1 � μ2 =: μ ∈ Dalg(k). There exists a 

distribution ν ∈ Dalg(k), uniquely determined, such that for every n ∈ N and i1, . . . , in ∈
{1, . . . , k} one has

κ
(c)
n;(μ,ν)(Xi1 , . . . , Xin) = κ

(c)
n;(μ1,ν1)(Xi1 , . . . , Xin) + κ

(c)
n;(μ2,ν2)(Xi1 , . . . , Xin). (8.11)

The couple (μ, ν) is called the c-free additive convolution of the couples (μ1, ν1) and 
(μ2, ν2); we will use for it the notation

(μ, ν) = (μ1, ν1) �c (μ2, ν2). (8.12)

(2) Let μ1, μ2 be in Dalg(k) and let μ′
1μ

′
2 be in D′

alg(k). We denote μ1 � μ2 =: μ ∈
Dalg(k). There exists a distribution μ′ ∈ D′

alg(k), uniquely determined, such that for 
every n ∈ N and i1, . . . , in ∈ {1, . . . , k} one has

κ′
n;(μ,μ′)(Xi1 , . . . , Xin) = κ′

n;(μ1,μ′
1)(Xi1 , . . . , Xin) + κ′

n;(μ2,μ′
2)(Xi1 , . . . , Xin). (8.13)

The couple (μ, μ′) is called the infinitesimally free additive convolution of the couples 
(μ1, μ′

1) and (μ2, μ′
2); we will use for it the notation

(μ, μ′) = (μ1, μ
′
1) �B (μ2, μ

′
2). (8.14)

Proof. The existence statement in both (1) and (2) of this proposition follow, by a 
standard argument, from the corresponding parts of Proposition 8.2. (For instance in part 
(1), one considers the free product (μ̃, ̃ν) = (μ1, ν1) �c (μ2, ν2) ∈ Dalg(2k) ×Dalg(2k), and 
defines ν via the prescription that ν(Xi1 · · ·Xin) = ν̃

(
(Xi1 +Xi1+k) · · · (Xin +Xin+k) 

)
, 

for all n ∈ N and 1 ≤ i1, . . . , in ≤ k.) The uniqueness statements concerning the required 
ν and μ′ follow from parts (2) and respectively (3) of Lemma 8.1. �
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8.7. Proof of Theorem 1.2. Recall that we have the following data: k is a positive integer 
and μ1, ν1, μ2, ν2 are in Dalg(k), with μ1, μ2 tracial. We denote

(μ1, ν1) �c (μ2, ν2) = (μ, ν) ∈ Dalg(k) ×Dalg(k) and (8.15)

(μ1,Ψk(ν1)) �B (μ2,Ψk(ν2)) = (μ, μ′) ∈ Dalg(k) ×D′
alg(k), (8.16)

where the common “μ” appearing in (8.15) and in (8.16) is μ = μ1�μ2. We have to prove 
that μ′ = Ψk(ν). In view of Lemma 8.1(3), it will suffice to verify that the infinitesimal 
free cumulants associated to (μ, μ′) and to (μ, Ψk(ν)) agree on all tuples of the form 
(Xi1 , . . . , Xin). In order to do this verification, we can proceed as follows: we start from 
the equality

κ′
n;(μ,μ′)(Xi1 , . . . , Xin) = κ′

n;(μ1,Ψk(ν1)(Xi1 , . . . , Xin) + κ′
n;(μ2,Ψk(ν2)(Xi1 , . . . , Xin)

(8.17)

(which holds by Equation (8.16) and the additivity property of �B), and we expand 
both cumulants on the right-hand side of (8.17) as sums “

∑n
m=1” in the way indicated 

by Theorem 1.4. The sum of the two resulting “
∑n

m=1” can be further processed by using 
the fact that the functionals κ(c)

n+1;(μ,ν) and κ(c)
n+1;(μ1,ν1) + κ

(c)
n+1;(μ2,ν2) agree on tuples of 

the form (Xim , . . . , Xin , Xi1 , . . . , Xim), with 1 ≤ m ≤ n. In this way we arrive to the 
equality

κ′
n;(μ,μ′)(Xi1 , . . . , Xin) =

n∑
m=1

κ
(c)
n+1;(μ,ν)(Xim , . . . , Xin , Xi1 , . . . , Xim);

the latter sum is indeed equal to κ′
n;(μ,Ψk(ν))(Xi1 , . . . , Xin), by another application of 

Theorem 1.4. �
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