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Mineral dust aerosol sources in northern Canada:  

An investigation using the TROPOMI instrument 

By Kagan Akiyama 

Abstract 

 
Mineral dust aerosols (MDAs) are important for climate regulation, but little is known about their 
sources in high-latitude regions like northern Canada. This thesis investigates the atmospheric 
distribution and surface sources of MDAs in northern Canada using the satellite-based 
Tropospheric Monitoring Instrument (TROPOMI). TROPOMI Absorbing Aerosol Index (AAI) 
and Aerosol Layer Height (ALH) data were used, together with the TROPOMI cloud cover (CLO) 
and carbon monoxide (CO) products.  (Where CO and CLO are low, spurious impacts on AAI due 
to non-MDA atmospheric components are minimized.)  The three main research questions were: 
(1) What is the distribution of dust in northern Canada, according to TROPOMI? and (1b) What 
does ALH data imply about the sources of the observed dust distributions? (2) How do TROPOMI-
derived aerosol products compare to those of other well-characterized satellite instruments, like 
MODIS and OMI? (3) What are the effects of filtering the TROPOMI aerosol products by the 
carbon monoxide and cloud products?  It was found that frequent observations of AAI values 
greater than 0.5 were made by TROPOMI in high-latitude regions in 2021, suggesting the presence 
of absorbing aerosols, likely MDAs. Filtering AAI data by ALH isolated likely local MDA sources, 
previously uncharacterized in field observations. It was also found that TROPOMI AAI data 
broadly agrees with MODIS Aerosol Optical Depth (AOD) and OMI AAI data, especially when 
filtered for positive TROPOMI AAI values and statistically significant correlations. Unexpectedly, 
filtering AAI data by low CO or CLO did not improve the correlation between TROPOMI and 
MODIS data, but it also did not eliminate the dust sources isolated by ALH filtering. The findings 
suggest the presence of significant sources of MDAs in northern Canada, but more observational 
research is needed to confirm their existence and strength, and thus their impact on climate. 

April 30th, 2024 
  



 3 

Acknowledgements 

Firstly, I would like to thank my supervisors Dr. Aldona Wiacek and Dr. Ian Ashpole. 

Without their constant support and guidance, this work would have never been accomplished. I am 

grateful to have had the opportunity to learn from them and to have enriched my education with 

such a unique research project.  

With that, I would like to extend my thanks to the WARG research team, including Martin 

Hellmich, Kyle Yeates, Cameron Power, Lukas Donovan, and Hailey Wigmore, who have shown 

me kindness and friendship, and extended their own guidance throughout my time with the WARG 

team. A special thanks to Kyle Yeates for teaching me the basics of Python programming and 

sharing his code to aid in the preliminary analysis of this work’s data. 

I would also like to thank the staff at Saint Mary’s University who have provided me with 

the foundation to take on this project. I would also like to thank Dr. Thomas Duck from Dalhousie 

University for being my reader for this project and for teaching me the importance of radiative 

transfer. 

Lastly, I would like to thank my friends and family for supporting me in times when I 

needed it the most. Their constant confidence in my abilities and interest in my work kept me 

motivated when I could not do it myself.    



 4 

List of Figures 

Figure 1: Global observations of high-latitude dust. Black triangles indicate known local sources 
of MDA emissions. P/PET (potential evapotranspiration ratio) and subtropical dust emission 
zones are also included for reference. Red circles added highlight the Kluane Lake area (left) and 
the Lake Hazen area (right) (Adapted from Bullard, et al., 2016). ............................................... 15 

Figure 2: The measurement principle of the TROPOMI instrument (Zweers, 2022). .................. 19 

Figure 3: The n_obs for January (left), August (middle), and November (right) 2021 Grey 
coloring indicates gridboxes with NaN data for that gridbox for the entire month. NaN data 
means no good quality observations were made for the entire month. The minimum n_days is 1 
and maximum n_days is the total number of days in the month (30 or 31). If n_days was 0, the 
gridboxes were also set to NaN. ................................................................................................... 40 

Figure 4: FoO of AAI at increasing thresholds over August 2021. Grey coloring indicates 
gridboxes either with NaN data or gridboxes with AAI below the given threshold (if n_days = 0, 
it was set to NaN). The minimum n_days is 1 and the maximum n_days is 31. .......................... 41 

Figure 5: The changes in n_obs for August 2021 as the AAI data is filtered by ALH data at 
different thresholds. Gridboxes that did not have an ALH value below the desired threshold were 
set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 and the maximum is 31.
....................................................................................................................................................... 44 

Figure 6: FoO of AAI greater than 0.5 for August 2021. Each panel is a different AAI dataset that 
has been filtered by ALH, except the top left with is the unfiltered AAI dataset. NaN data is 
represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days 
was 0. ............................................................................................................................................ 46 

Figure 7:Zoomed-in FoO of AAI greater than 0.5 for August 2021. Left panel is the AAI dataset 
with no filtering. Right panel is the AAI dataset that has been filtered by ALH < 1000 m. NaN 
data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where 
n_days was 0. Red circles added to show Kluane Lake and Lake Hazen. ................................... 49 

Figure 8: Zoomed-in map of the Arctic Archipelago showing the FoO of AAI greater than 0.5 for 
August 2021. Left panel is the AAI dataset with no filtering. Right panel is the AAI dataset that 
has been filtered by ALH < 1000 m. NaN data is represented by grey coloring. Here, NaN data is 
either bad quality or gridboxes where n_days was 0. ................................................................... 50 

Figure 9: Google Maps image of the Arctic Archipelago showing the composite image of 
vegetation cover from multiple satellite sources (Adapted from Google Maps, 2024). ............... 51 

Figure 10: Scatterplots showing the correlation between TROPOMI AAI data and MODIS DOD 
data for individual gridboxes. Data is taken from non-NaN data across both datasets from June to 
September 2021. A line of best fit has been added to represent the correlation coefficient for the 
data points, calculated for the gridbox. Left panel shows a gridbox without a significant p value. 
Right panel shows a gridbox with p < 0.1. ................................................................................... 52 



 5 

Figure 11: Basis of the correlation data found for the TROPOMI AAI and MODIS DOD datasets. 
Top row shows the n_obs for TROPOMI (left) and MODIS (right). Middle and bottom rows 
show the correlation coefficient (R) of MODIS and TROPOMI data from June to September 
2021. Panels in the middle and bottom rows show the change in R as the number of minimum 
days (n) used in the correlation calculation increases. Red indicates high, positive correlation 
(close to or at 1) and blue indicates low negative correlation (close to or at -1). ......................... 53 

Figure 12: The correlation (R) of TROPOMI AAI and MODIS DOD for all values of AAI (left) 
compared to only positive values of AAI (right). Strong red and strong blue coloring indicate 
strong positive and strong negative correlations respectively. All data comes from June through 
September 2021 and the minimum number of day (n) used in the calculations was 2. ................ 55 

Figure 13: Graph showing the changes of percent gridboxes for different values of R (n > 2). The 
graph compares the percent gridboxes for positive AAI values (blue) to all AAI values (orange). 
Values for the “All AAI” data set (orange bars) for R > 0.7 and R < -0.7 are 0.22% and 0.03% 
respectively. Gridboxes are in the same geographical area shown in Figure 11........................... 56 

Figure 14: Changes in the percentage of gridboxes that correspond to different values of R as n 
increases. Gridboxes are in the same geographical area shown in Figure 11. All data comes from 
June through September 2021. ...................................................................................................... 57 

Figure 15: Correlation (R) between TROPOMI AAI and MODIS DOD for unfiltered (left) and 
filtered by p < 0.1 (right). Strong red and strong blue coloring indicate strong positive and strong 
negative correlations respectively. All data comes from June through September 2021 and the 
minimum number of day (n) used in the calculations was 2. ....................................................... 58 

Figure 16: Basis of the statistical data found for the TROPOMI AAI and OMI UVAI datasets 
data for August 2021. Top row shows the n_obs for TROPOMI (left) and OMI (right). Middle 
and bottom rows show statistical data of OMI and TROPOMI. (Middle left) – Correlation (R) for 
all between all TROPOMI AAI and OMI UVAI data. (Middle right) – Correlation for all OMI 
UVAI data and only positive TROPOMI AAI data. (Bottom right) – Correlation (R) of all 
TROPOMI AAI and OMI UVAI data, but only gridboxes corresponding to a significant p-value 
(p < 0.1) are kept. Red indicates high, positive correlation (close to or at 1) and blue indicates 
low negative correlation (close to or at -1). (Bottom left) – p-value for all TROPOMI AAI and 
OMU UVAI data. White indicates low p-value (close to or at 0) and red indicates high p-value 
(close to or at 1). Grey coloring indicates NaN data..................................................................... 60 

Figure 17: FoO maps showing the distribution of CO column density (measured in x 1018 
[mol/m2]) for August 2021. (Top left) – n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of 
CO at different thresholds. (Top right) - Monthly meaned CO. NaN data is represented by grey 
coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. ...................... 64 

Figure 18: The changes in n_obs for August 2021 as the AAI data is filtered by CO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CO. Gridboxes that did not have a CO 
value below the desired threshold were set to NaN, indicated by the grey coloring. The minimum 
n_days is 1 and the maximum is 31. ............................................................................................. 66 



 6 

Figure 19: FoO of AAI greater than 0.5 for August 2021. Each panel is a different AAI dataset 
that has been filtered by CO, except the top left which is the unfiltered AAI dataset. NaN data is 
represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days 
was 0. ............................................................................................................................................ 67 

Figure 20: Correlation (R) values for August 2021 between TROPOMI AAI and MODIS DOD. 
The TROPOMI AAI data has been regridded to match the 10 x 10 km2 resolution of MODIS 
DOD data. The AAI data has also been filtered by different values of CO. Grey areas indicate 
areas where there is no data, meaning that no correlation could be calculated for those gridboxes.
....................................................................................................................................................... 69 

Figure 21: Graph showing the changes in percentages of gridboxes for the different AAI datasets. 
The AAI datasets are where CO has been used to filter the data and the unfiltered AAI data 
(orange bar). Each color represents a different CO filter that had been used on the AAI data. An 
n>2 used in each dataset indicates a minimum of 2 data points (i.e. two days) were used in the 
correlation calculations for each gridbox. ..................................................................................... 70 

Figure 22: The changes in n_obs for August 2021 as the AAI data is filtered by CLO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CLO. Gridboxes that did not have a 
CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 31. ............................................................................ 73 

Figure 23: The changes in n_obs for August 2021 as the AAI data is filtered by CLO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CLO. Gridboxes that did not have a 
CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 31. ............................................................................ 74 

Figure 24: FoO of AAI greater than 0.5 for August 2021. Each panel is a different AAI dataset 
that has been filtered by CLO, except the top left which is the unfiltered AAI dataset.. NaN data 
is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days 
was 0. ............................................................................................................................................ 76 

Figure 25: Correlation (R) values for August 2021 between TROPOMI AAI and MODIS DOD. 
The TROPOMI AAI data has been regridded to match the 10 x 10 km2 resolution of MODIS 
DOD data. The AAI data has also been filtered by different values of CLO. Grey areas indicate 
areas where there is no data, meaning that no correlation could be calculated for those gridboxes.
....................................................................................................................................................... 78 

Figure 26: Graph showing the changes in percentages of gridboxes for the different AAI datasets. 
The AAI datasets are where CLO has been used to filter the data and the unfiltered AAI data 
(orange bar). Each color represents a different CLO filter that had been used on the AAI data. An 
n>2 used in each dataset indicates a minimum of 2 data points (i.e. two days) were used in the 
correlation calculations for each gridbox. ..................................................................................... 79 

Figure 27: Zoomed-in FoO of AAI greater than 0.5 for August 202. (Left) - unfiltered AAI 
dataset. (Right) – AAI dataset filtered by CO greater than 0.05. NaN data is represented by grey 



 7 

coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. Red circle 
shows the same area discussed in section 3.1.2 with low vegetation cover (see Figures 8 and 9).
....................................................................................................................................................... 81 

Figure 28: Zoomed-in FoO of AAI greater than 0.5 for August 202. (Left) - unfiltered AAI 
dataset. (Right) – AAI dataset filtered by CLO equal to 0 (i.e. cloud free pixels). NaN data is 
represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days 
was 0. Red circle shows the same area discussed in section 3.1.2 with low vegetation cover (see 
Figures 8 and 9) ............................................................................................................................ 82 

Figure 29: Differences in RPRO TROPOMI AAI data and OFFL TROPOMI AAI data for 
August 2021. (Left) – Monthly mean AAI for OFFL. (Middle left) – Monthly mean AAI for 
RPRO. (Middle right) - Difference in monthly mean AAI RPRO data and OFFL data. (Right) – 
Relative percent difference (to OFFL). ......................................................................................... 87 

Figure 30: FoO of AAI at increasing thresholds over June 2021. Grey coloring indicates 
gridboxes either with NaN data or gridboxes with AAI below the given threshold (if n_days = 0, 
it was set to NaN). The minimum n_days is 1 and the maximum n_days is 30. .......................... 87 

Figure 31: FoO of AAI at increasing thresholds over July 2021. Grey coloring indicates 
gridboxes either with NaN data or gridboxes with AAI below the given threshold (if n_days = 0, 
it was set to NaN). The minimum n_days is 1 and the maximum n_days is 31. .......................... 88 

Figure 32: FoO of AAI at increasing thresholds over August 2021. Grey coloring indicates 
gridboxes either with NaN data or gridboxes with AAI below the given threshold (if n_days = 0, 
it was set to NaN). The minimum n_days is 1 and the maximum n_days is 31. .......................... 88 

Figure 33: The changes in n_obs for July 2021 as the AAI data is filtered by ALH data at 
different thresholds. Gridboxes that did not have an ALH value below the desired threshold were 
set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 and the maximum is 30.
....................................................................................................................................................... 89 

Figure 34: The changes in n_obs for July 2021 as the AAI data is filtered by ALH data at 
different thresholds. Gridboxes that did not have an ALH value below the desired threshold were 
set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 and the maximum is 31.
....................................................................................................................................................... 89 

Figure 35: The changes in n_obs for September 2021 as the AAI data is filtered by ALH data at 
different thresholds. Gridboxes that did not have an ALH value below the desired threshold were 
set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 and the maximum is 30.
....................................................................................................................................................... 90 

Figure 36: FoO of AAI greater than 0.5 for June 2021. Each panel is a different AAI dataset that 
has been filtered by ALH. NaN data is represented by grey coloring. Here, NaN data is either bad 
quality or gridboxes where n_days was 0. .................................................................................... 90 



 8 

Figure 37: FoO of AAI greater than 0.5 for July 2021. Each panel is a different AAI dataset that 
has been filtered by ALH. NaN data is represented by grey coloring. Here, NaN data is either bad 
quality or gridboxes where n_days was 0. .................................................................................... 91 

Figure 38: FoO of AAI greater than 0.5 for September 2021. Each panel is a different AAI 
dataset that has been filtered by ALH. NaN data is represented by grey coloring. Here, NaN data 
is either bad quality or gridboxes where n_days was 0. ............................................................... 92 

Figure 39: R2 for all AAI (left) compared to positive AAI (right). White coloring indicates an R2 
at or close to 0 and red coloring indicates R2 at or close to 1. ...................................................... 92 

Figure 40: FoO maps showing the distribution of CO column density (measured in x 1018 
[mol/m2]) for June 2021. (Top left) – n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO 
at different thresholds. (Top right) - Monthly meaned CO. NaN data is represented by grey 
coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. ...................... 93 

Figure 41: FoO maps showing the distribution of CO column density (measured in x 1018 
[mol/m2]) for July 2021. (Top left) – n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO 
at different thresholds. (Top right) - Monthly meaned CO. NaN data is represented by grey 
coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. ...................... 94 

Figure 42: FoO maps showing the distribution of CO column density (measured in x 1018 
[mol/m2]) for September 2021. (Top left) – n_obs for the TROPOMI CO data. (Rows 2:4) - FoO 
of CO at different thresholds. (Top right) - Monthly meaned CO. NaN data is represented by grey 
coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. ...................... 95 

Figure 43: The changes in n_obs for June 2021 as the AAI data is filtered by CLO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CLO. Gridboxes that did not have a 
CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 30. ............................................................................ 96 

Figure 44: The changes in n_obs for July 2021 as the AAI data is filtered by CLO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CLO. Gridboxes that did not have a 
CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 31. ............................................................................ 97 

Figure 45: The changes in n_obs for September 2021 as the AAI data is filtered by CLO data at 
different thresholds. (Top left) – n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the 
AAI datasets that have been filtered by different values of CLO. Gridboxes that did not have a 
CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 30.. ........................................................................... 98 

 

  



 9 

List of Tables 

Table 1:Summary of data products used for each RQ. Products and datasets are shown in 
chronological order in terms of when each was used and processed in section 2. ....................... 39 

Table 2: (Row 1) - Changes in the number of non-NaN gridboxes for the n_obs for August 2021 
for the filtered AAI datasets by ALH data. (Rows 2:5) - Percent differences in number of non-
NaN gridboxes from the other AAI datasets. All gridboxes are within the same geographical area 
represented in Figure 3.................................................................................................................. 46 

Table 3: (Row 1) - Changes in the number of non-NaN gridboxes for FoO AAI > 0.5 for August 
2021 for the filtered AAI datasets by ALH data. (Rows 2:4) - Percent differences in number of 
non-NaN gridboxes from the other AAI datasets. All gridboxes are within the same geographical 
area represented in Figure 3. ......................................................................................................... 48 

Table 4: Percent gridboxes for OMI and TROPOMI correlation for August 2021. The percent for 
each iteration of R does not change as n_obs changes. Bottom row shows the percent of 
gridboxes for the correlation dataset that has been filtered by significant p (p < 0.1). ................ 62 

 

  



 10 

Glossary of Terms and Abbreviations 

- AAI: Absorbing Aerosol Index 
- ALH: Aerosol Layer Height 
- ATBD: Algorithm Theoretical Basis Document 
- CLO: CLOud fraction 
- CO: Carbon Monoxide 
- DOD: Dust Optical Depth 
- FoO: Frequency of Occurrence 
- Gridbox: The spatial area of one pixel (area varies depending on the spatial resolution 

chosen) on a map made up of many pixels 
- MODIS: MODerate resolution Imaging Spectrometer 
- NASA: National Aeronautics and Space Administration 
- NaN: Not a Number 
- n_days: Number of days (with daily mean observations); interchangeable with n_obs 
- n_obs: Number of observations (that are daily means); interchangeable with n_days 
- OMI: Ozone Monitoring Instrument 
- PUM: Product User Manual 
- TROPOMI: TROPOspheric Monitoring Instrument 
- UV: UltraViolet 

- UVAI: UltraViolet Aerosol Index (similar to AAI) 

  



 11 

Table of Contents 
Abstract ................................................................................................................................ 2 

Acknowledgements ............................................................................................................... 3 

List of Figures ........................................................................................................................ 4 

List of Tables .......................................................................................................................... 9 

Glossary of Terms and Abbreviations ................................................................................... 10 

1. Introduction ..................................................................................................................... 13 

1.1 Mineral Dust Aerosols (MDAs) ................................................................................................ 13 

1.2 Remote Sensing ...................................................................................................................... 16 
1.2.1 TROPOMI ................................................................................................................................................... 17 
1.2.2 MODIS & OMI ............................................................................................................................................ 25 

1.3 Scope of Work ........................................................................................................................ 27 
1.3.1 RQ1 ............................................................................................................................................................ 27 
1.3.2 RQ2 ............................................................................................................................................................ 28 
1.3.3 RQ3 ............................................................................................................................................................ 29 

2. Methods .......................................................................................................................... 30 

2.1 NASA/Earthdata Granules ....................................................................................................... 30 

2.2 RQ1 ........................................................................................................................................ 32 

2.3 RQ2 ........................................................................................................................................ 34 

2.4 RQ3 ........................................................................................................................................ 36 

2.5 Summary of Data Products and Datasets ................................................................................. 39 

3. Results and Discussion ..................................................................................................... 40 

3.1 RQ1 ........................................................................................................................................ 40 
3.1.1 RQ1 b)........................................................................................................................................................ 44 
3.1.2 Implications in northern Canada ............................................................................................................... 49 

3.2 RQ2 ........................................................................................................................................ 52 
3.2.1 MODIS ....................................................................................................................................................... 52 
3.2.2 OMI ........................................................................................................................................................... 59 

3.3 RQ 3 ....................................................................................................................................... 64 
3.3.1 CO .............................................................................................................................................................. 64 
3.3.2 CLO ............................................................................................................................................................ 72 
3.3.3 Implications in northern Canada ............................................................................................................... 81 

4. Conclusions ...................................................................................................................... 83 

4.1 RQ1 ........................................................................................................................................ 83 

4.2 RQ2 ........................................................................................................................................ 83 
4.2.1 MODIS ....................................................................................................................................................... 83 
4.2.2 OMI ........................................................................................................................................................... 84 

4.3 RQ3 ........................................................................................................................................ 84 



 12 

4.3.1 CO .............................................................................................................................................................. 84 
4.3.2 CLO ............................................................................................................................................................ 85 

4.4 Relevance and Future Work .................................................................................................... 86 

Appendices .......................................................................................................................... 87 

Appendix A – Section 1 ................................................................................................................. 87 

Appendix B – Section 2 ................................................................................................................. 87 

Appendix C – Section 3 ................................................................................................................. 87 
3.1 ...................................................................................................................................................................... 87 
3.1.1 ................................................................................................................................................................... 89 
3.2 ...................................................................................................................................................................... 92 
3.3.1 ................................................................................................................................................................... 93 
3.3.2 ................................................................................................................................................................... 96 

References ........................................................................................................................... 99 
 
  



 13 

 

1. Introduction 

1.1 Mineral Dust Aerosols (MDAs) 

Mineral dust aerosols (MDAs) play an important role in global climate patterns (Bullard, 

et al., 2016). MDAs are suspended particles with a diameter of less than 10 µm that are comprised 

of windblown dust originating from the Earth’s surface (Meinander, et al., 2022). They are strongly 

absorbing of light in the UV range (100 – 400 nm) and they absorb some light in the visible range 

(400 – 700 nm), but this absorption becomes nearly negligible at wavelengths greater than 600 nm 

(Bergstrom, et al., 2007). Another important characteristic of MDAs is that they are comprised of 

particles that are emitted primarily from surfaces in arid and semi-arid regions (Bullard, et al., 

2016; Knippertz & Stuut, 2014; Meinander, et al., 2022). Scattering aerosols, like sulfate particles, 

disperse solar light and usually have a cooling effect on the climate. Absorbing aerosols, such as 

smoke from biomass burning, desert dust, volcanic ash, and anthropogenically produced soot, 

absorb radiation and have a warming effect on the climate (Boucher, 2015). MDAs, in general, 

play an important role in weather and air quality, marine life, climate, and health (Meinander, et 

al., 2022).  MDAs can impact Earth’s incoming and outgoing energy, clouds, precipitation, 

biogeochemistry, and air quality. For example, when dust is deposited on snow and ice it reduces 

the surface albedo thus increasing the melting rate (Williamson & Menounos, 2021). 

Mid-latitude deserts, such as the Gobi Desert or Taklamakan Desert, have long been 

recognized as MDA source hotspots (e.g., Wiacek et al., 2010), but emissions from high-latitude 

sources are expected to increase with climate change (Bullard, et al., 2016). This is partially why 

there is limited research in high latitudes:  since subtropical and mid-latitude deserts are the known 

major global dust sources, they have received more research focus than the potential newer sources 
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arising in Canada’s north. Climate change is also likely to decrease snow cover and retreat glaciers, 

thus allowing more surface crustal elements to become suspended by wind and therefore increase 

the probability of dust storms (Meinander, et al., 2022). MDAs from high-latitude sources are 

especially important in the Arctic, with around one-third of the dust atmospheric load and 90% of 

deposition to surface thought to have been from local sources (Groot Zwaaftink, et al., 2016).  

MDA importance in the Arctic is linked to the ice-albedo feedback effect. This effect 

describes the phenomenon where a decrease in snow and ice leads to a decrease of albedo, and 

then a decrease in albedo leads to a decrease of snow and ice, thus continuing the loop (Yong‐

Sang, et al., 2020). The reason a decreased albedo increases the melting of ice is that those snow-

free areas are now less able to reflect sunlight and therefore increase the temperature of the area 

since more of the radiation from the Sun is being absorbed, thus increasing the melting. When 

MDAs are deposited onto surfaces with high albedo, such as snow, the ability of said surface to 

reflect sunlight is reduced (Williamson & Menous, 2021). In areas like northern Canada where 

wind speeds are high, this can become a problem as MDAs may be picked up from local sources 

and deposited onto nearby snowy surfaces (Bullard, et al., 2016). The MDAs reducing the snow 

albedo have negative impacts on the climate, i.e., accelerated warming as compared to mid-

latitudes. 

In high latitudes, MDAs add another layer of complexity to the relationship between clouds 

and climate. MDAs act as cloud condensation nuclei (Garimella, et al., 2014; Shikwambana, 

2022). These microscopic particles can provide surfaces for water vapor to condense around, 

potentially leading to increased cloud formation (Garmiella, et al., 2014). The type of clouds that 

form, however, depends on the specific type of aerosols present (Garimella, et al., 2014). While 

increased cloud cover can reflect incoming solar radiation, exerting a cooling effect (Kooreman, 
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et al., 2020), the presence of clouds can also pose challenges for studying MDAs themselves. 

Clouds can potentially block aerosol plumes from satellite instruments, making it difficult to track 

and measure MDAs (Boucher, 2015; Bullard, et al., 2016). Additionally, clouds can be mistaken 

for other highly reflective surfaces, like snow and ice, further reducing the reliability of space-

based measurements of MDAs.  Therefore, understanding how MDA detection is influenced by 

clouds is equally as important as understanding the influence that MDAs have on cloud formation.  

 

Figure 1: Global observations of high-latitude dust. Black triangles indicate known local sources of MDA emissions. P/PET 
(potential evapotranspiration ratio) and subtropical dust emission zones are also included for reference. Red circles highlight the 

Kluane Lake area (Yukon) and the Lake Hazen area (Ellesmere Island) (Adapted from Bullard, et al., 2016). 

To date, there has been little research focusing on high-latitude MDA sources, with two well-

studied source areas having been characterized in Canada’s North. Figure 1 shows the global 

observations of high-latitude dust where the black triangles indicate known, published 

observations of dust sources. In this figure, it can be seen that there are two recognized dust sources 

around (60N, 150W) and (80N, 90W), circled in red. These two sources are found in the Kluane 
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Lake region in the Yukon Territory, Canada and the Lake Hazen region in Nunavut, Canada. These 

are not the only sources in northern Canada, but they are the two that are the most well studied, 

and there are likely even more sources than indicated on Figure 1 that have yet to be widely studied 

(Ranjbar, et al., 2021; Huck et al., 2023).  

1.2 Remote Sensing  

Remote sensing can be defined as the gathering and quantification of data concerning 

specific attributes of phenomena, objects, or materials using a recording device that does not make 

physical contact with the observed features (Khorram, et al., 2012). Remote sensing has been used 

across many fields in the past to understand different aspects of a study field. In agriculture, remote 

sensing is used to monitor crop health and assess agricultural productivity (Thenkabail, 2014). In 

forestry, remote sensing has been used to detect illegal logging and track deforestation patterns 

(Hansen, et al., 2013). In general, the benefit of remote sensing comes from its capacity for large-

scale coverage and frequent data acquisition (Khorram, et al., 2012). Remote sensing also allows 

for the monitoring of remote areas that may be difficult to access. It therefore allows for imaging 

of areas where aerosols may be likely to be found, such as in northern Canada (Mushtaq, et al., 

2023). This is not just the case in the north of Canada but is true for anywhere where it would be 

difficult to measure atmospheric properties from the ground. Dust sources are often linked to 

remote locations due to their typically dry nature. The prevailing high wind velocities in high 

latitudes can erode and loosen soils (Bullard, et al., 2016), therefore contributing to the presence 

of MDAs in the area (Meinander, et al., 2022). The benefit of remote sensing is that it can measure 

and image remote locations that might be dust sources that would otherwise be difficult to measure.  

Up to this point, there has been limited research regarding MDA distribution in high 

latitudes, largely because monitoring and imaging the atmosphere in those regions is difficult 
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(Meinander, et al., 2022; Bullard, et al., 2016). One of these reasons is the fact that dust sources 

near the north are hard to measure, primarily since ground instruments are hard to place in such 

remote areas. Remote sensing therefore becomes a useful tool for understanding aerosol properties 

in these areas, but not without its own problems (Bullard, et al., 2016). One reason atmospheric 

monitoring in those areas is difficult is because of the increased cloud cover. Compared to other 

regions, high-latitudes tend to have a higher cloud-coverage which makes it difficult for satellite-

based instruments to measure the atmospheric properties that lie below the clouds (Huck, et al., 

2023). Another problem is that the reflectance due to suspended MDA in the atmospheric column 

is very small compared to that due to bright clouds or surface ice, making it harder to detect MDA 

in polar regions (Ma et al., 2023). There is also limited sunlight for a greater percentage of the year 

at high latitudes compared to other areas, making it difficult for instruments that require sunlight 

to make their measurements, like the TROPOspheric Monitoring Instrument (TROPOMI) 

(Zweers, et al., 2022; Lubin, et al., 2006). Problems also arise when attempting to detect MDAs in 

snow covered areas that are also covered by clouds (Ma et al., 2023). This problem comes from 

difficulties in distinguishing snow from very low clouds, due to their similar reflectance properties 

and color (Ma, et al., 2023). These challenges therefore lead to questions in study results derived 

from remote sensing, like how one would know if a spatial pattern of TROPOMI aerosol 

measurements are truly the result of MDAs rather than an artefact due to noise effects from surface 

ice, low cloud cover and/or other aerosol types.  

1.2.1 TROPOMI 

The TROPOspheric Monitoring Instrument (TROPOMI) was launched on October 13, 

2017. TROPOMI is a spectrometer that conducts daily global observations of the crucial 

atmospheric constituents ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, and 
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formaldehyde, as well as properties related to clouds and aerosols (Apituley, et al., 2022b). 

TROPOMI is a nadir viewing hyperspectral imager with four separate spectrometers that measure 

radiation in the UV-visible wavelength range (270 – 500 nm), the near infrared (710 – 770 nm) 

and the shortwave infrared (2314 – 2382 nm) (Babić, et al., 2022; Zweers, 2022). Each of the four 

spectrometers corresponds to the four wavelength ranges that TROPOMI measures: mediumwave 

ultraviolet (UV, 270 – 320 nm), longwave ultraviolet combined with visible (UVIS, 320 – 490 

nm), near infrared (NIR, 710 - 775), and shortwave infrared (SWIR, 2305 – 2385 nm) (Babić, et 

al., 2022). Each of these spectrometers measure the solar radiation within its wavelength range 

that is primarily reflected by the Earth towards the top of the atmosphere (Zweers, 2022). The 

captured light then undergoes a series of calibrations and instrument processes to extract 

information about atmospheric properties that underlie the observed signal (Babić, et al., 2022). 

The Copernicus Sentinel-5P satellite, aboard which the TROPOMI instrument is found, is 

in a near-polar orbit with an inclination of approximately 98.7 degrees (Zweers, 2022). The satellite 

orbits the Earth at an altitude of around 824 km and the orbital cycle is 16 days (14 orbits per day, 

227 orbits per cycle). The orbit cycle is the time taken for the satellite to pass over the same 

geographical point on the ground. 
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Figure 2: The measurement geometry of the TROPOMI instrument (Zweers, 2022). 

TROPOMI observes the Earth’s surface in a push-broom fashion, which means it scans across a 

wide strip of the Earth’s atmosphere perpendicular to the satellite’s orbital path (Zweers, 2022; 

Tang, et al., 2023; Trees, et al., 2021). The swath width of TROPOMI is relatively large, 

approximately 2600 km, which means it can observe a wide area along its orbital track. This 

measurement geometry can be seen in Figure 2. The instrument images a strip of the Earth for 

around 1 second. After the 1-second observation, a new measurement is made continuously in time 

to eventually achieve the swath pattern seen in Figure 2 (Apituley, et al., 2022b; Zweers, 2022). 

The typical pixel size of TROPOMI is therefore around 7 x 3.5 km2, an improvement over its 

predecessor, OMI, with a spatial resolution of 13 x 24 km2 (Zhao, et al., 2020).  The increased 

spatial resolution of TROPOMI, compared to past satellite instruments, makes it a valuable asset 

for viewing and understanding the MDAs in northern Canada. With a higher spatial resolution, it 

is less likely for smaller aerosol plumes to get lost in spatial averaging. Also, the impacts of highly 

reflective surfaces, like clouds or snow and ice, or other confounding variables on satellite 

measurements can be minimized with improved spatial filtering in smaller pixels.  
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The TROPOMI instrument reflectance measurement is the basis for several atmospheric 

property datasets. For the purposes of this work, the primary dataset that will be used and analysed 

is the absorbing aerosol index (AAI), discussed below.  Briefly, the AAI product is useful in 

indicating the absorption or scattering of aerosol loadings in certain areas, providing clues as to 

aerosol types. However, it is limited in that it is not directly sensitive to aerosol types, nor aerosol 

heights. So, in conjunction with the AAI dataset, the aerosol layer height (ALH), carbon monoxide 

(CO), and cloud (CLO) datasets (discussed below) will be used to better understand the observed 

aerosol distributions in the AAI dataset.  With the use of all of these datasets in combination, it 

may be possible to attain a better understanding of the locations and abundances of aerosols in the 

northern parts of Canada.  

1.2.1.1 TROPOMI Products 

The ultraviolet aerosol index (UVAI), or absorbing aerosol index (AAI), indicates the 

presence of absorption in the atmosphere attributed to aerosols. The AAI was first introduced with 

the introduction of the Total Ozone Mapping Spectrometer (TOMS) in 1978 (Tang, et al., 2022), 

when it was first realized that absorbing aerosols were interfering with the planned and desired 

ozone measurements of TOMS. The AAI has since become a well-established product used by 

several satellite instruments (Zweers, 2022; Althaf, et al., 2022). It is calculated by separating the 

spectral contrast at two ultraviolet (UV) wavelengths caused by aerosol absorption from that of 

molecular Rayleigh scattering, surface reflection, and absorption by trace gases (de Graaf, et al., 

2005; Torres et al., 1998). It is a unitless, numerical index, where higher values typically 

correspond to denser loadings of dust present in the atmosphere (Trees, et al., 2021). Theoretically, 

the AAI is zero if there are no absorbing or scattering aerosols present in the scene (Kooreman, et 

al., 2020). AAI can distinguish between absorbing and non-absorbing aerosols (Parya, et al., 2017). 



 21 

For this research, the AAI is particularly useful as it was optimized to be a detection tool for dust 

aerosols (Tang, et al., 2022). AAI is also useful because it can be derived over any kind of surface 

(i.e. ground or water, and even over a cloud deck) and can therefore give a good idea of what 

absorbing aerosol distribution might look like in areas with variations in surface types, like areas 

with many islands, such as in northern Canada (Tang, et al., 2022). 

The calculation of the AAI relies on measured and simulated reflectances at chosen 

wavelengths (de Graaf et al., 2005; Zweers et al., 2022). It is a measure of the spectral contrast at 

two wavelengths, λ1 and λ2, of the measured surface reflectance in the real atmosphere that contains 

UV absorbing aerosols (Rmeas) and the modelled (i.e.,  simulated) surface reflectance that would 

result from an aerosol-free atmosphere (Rsim) (de Graaf, et al., 2005). The AAI calculation is 

formally defined as follows (Torres, et al., 1998): 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −100 ∗ [𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅𝜆𝜆1
𝑅𝑅𝜆𝜆2

)𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅𝜆𝜆1
𝑅𝑅𝜆𝜆2

)𝑠𝑠𝑠𝑠𝑠𝑠]                (1) 

The simulated surface albedo (As) at λ1 can be deliberately chosen so that the simulated reflectance 

is equal to the measured reflectance at this wavelength, which is what is done in the case of the 

TROPOMI AAI calculation (de Graaf, et al., 2005; Zweers, 2022). This means adjusting As until 

Rsim is the same as Rmeas: 

𝑅𝑅𝑅𝑅𝜆𝜆1
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅𝜆𝜆1

𝑠𝑠𝑠𝑠𝑠𝑠(𝐴𝐴𝑠𝑠)            (2) 

The surface albedo is assumed to be nearly constant within the wavelength pair where the 

reflectances are calculated and measured, therefore allowing for Rsim  at λ2 to be calculated using 

As found at λ1. Thus, Eq. 1 reduces to: 
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𝐴𝐴𝐴𝐴𝐴𝐴 =  −100 ∗ log10(𝑅𝑅𝜆𝜆2
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅𝜆𝜆2
𝑠𝑠𝑠𝑠𝑠𝑠 )           (3) 

Equation 3 quantifies the statement that the AAI is calculated based on the ratio of the measured 

(aerosol-influenced) and simulated reflectance. The TROPOMI simulated reflectance calculations 

are made assuming a purely Rayleigh scattering atmosphere bounded by a Lambertian surface (de 

Graaf, et al., 2005; Kooreman, et al., 2022; Zweers, 2022). The primary wavelength pair used for 

the AAI calculation is 340 nm and 380 nm, which is the typical value used for other instruments 

(de Graaf, et al., 2005; Zweers, 2022). The Algorithm Theoretical Basis Document (ATBD) for the 

TROPOMI AAI goes into more specific details about the AAI calculation, including specifics 

about the chosen assumptions and wavelength pairs used in their data product.  

One TROPOMI team (of several) primarily focused on the retrieval algorithm of the AAI 

product and conducted several studies to determine the impact of clouds on the data product 

(Zweers, 2022).  A Lambertian cloud layer was simulated at different heights while cloud fractions 

were varied to determine the sensitivity of AAI to the presence of clouds (Zweers, 2022). These 

tests showed that observed aerosol plumes with an AAI above 1.0 are easily detectable when they 

are above clouds, whereas aerosols with low indices are more difficult to detect both above and 

below clouds (Zweers, 2022). While there is no precise AAI value that is deemed more significant 

than another due to it being a qualitative index, an AAI above 1 typically indicates a moderate to 

significant presence of absorbing aerosols in the atmosphere (Trees, et al., 2021; Tang, et al., 2023). 

It is also known that the higher the AAI, the greater the indication of highly dense aerosol 

concentrations, and the closer to 0, the less the presence of absorbing aerosols and the greater the 

indication of clouds (Tang, et al., 2023) or a clear, purely Rayleigh scattering atmosphere. AAI 

values close to 0 or negative in the TROPOMI algorithm are assumed to be clear air or clouds (~0) 
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or scattering aerosols (< 0) and are therefore not indicative of absorbing aerosols, such as MDAs 

(Zweers, 2022). 

TROPOMI also offers an aerosol layer height (ALH) product. ALH is valuable for air 

quality monitoring, climate studies, and weather forecasting (Griffin, et al., 2020). ALH gives the 

vertical height, either in altitude, measured in km, or pressure, measured in hPa, at which aerosols 

may be found in the atmosphere (de Graaf, et al., 2022; Wu, et al., 2016). ALH therefore indicates 

the proximity of aerosols to the surface of the Earth (Chen, et al., 2020). One of the drawbacks of 

the AAI product from TROPOMI is that it does not measure what kind of aerosol is being attributed 

to the measurements, nor where those aerosols have come from. Oftentimes, aerosols that are 

found higher in the atmosphere are more likely to have been transported from farther regions, 

whereas aerosols measured closer to the surface are more likely to be near their sources (Buseck 

et al., 1999; de Graaf, et al., 2022; Gupta, et al., 2021). ALH data therefore provides important 

information about the vertical distribution of aerosols in the atmosphere, thus when paired with 

AAI, ALH can be a useful tool in understanding the distribution and sources of aerosols in different 

locations.  

For ALH retrievals, the layer has a fixed pressure thickness, meaning that the difference 

between the top pressure and the bottom pressure of the layer is held constant, and the reported 

height parameter is the mid pressure of the aerosol layer (top pressure plus bottom pressure divided 

by two) (Apituley, et al., 2022b). TROPOMI’s ALH product provides a newer aerosol product 

focused on retrieving tropospheric aerosol height, addressing the lack of daily global observations 

of this variable (Apituley, et al., 2022b). While active sensors like ground-based lidar or space-

borne Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) offer high vertical resolution 

of the ALH variable, they have limited spatial coverage (Apituley, et al., 2022b). The algorithm 
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for TROPOMI ALH relies on the absorption within the oxygen A band, occurring in the spectrum 

between 759 and 770 nm (Griffin, et al., 2020). 

The TROPOMI carbon monoxide (CO) product includes information on the vertical 

column density of carbon monoxide in the Earth’s atmosphere. CO-related aerosols, like soot, tend 

to be aerosols that come from non-dust-related sources, such as forest fires or industrial and 

automotive combustion emissions. CO is typically not related to MDAs and it can therefore be 

useful to know whether observed AAI values also correspond to high CO values that are co-

located, thus providing additional information about the aerosol type being measured by the AAI. 

TROPOMI measures the absorption of surface-reflected sunlight in the near-infrared spectral 

range to infer the concentration of carbon monoxide (Landgraf, et al., 2023). TROPOMI retrieves 

CO based on the SICOR (SWIR CO Retrieval) algorithm, which is based on SCIAMACHY 

heritage (Landgraf, et al., 2022). It improves upon the CO retrieval algorithm used for 

SCIAMACHY, addressing challenges in cloudy and aerosol-loaded atmospheres. The algorithm 

used in TROPOMI CO retrievals also accounts for multiple scattering effects, therefore aiding in 

the elimination of overestimations or underestimations in measured CO concentrations (Landgraf, 

et al., 2022).  

The TROPOMI cloud (CLO) product provides information about cloud properties in the 

atmosphere. Since the AAI product does not have a cloud-clearing feature, the CLO product can 

be used to clear the AAI data of gridboxes that are known to have clouds, thus acting as a cloud-

clearing parameter. There are two main algorithm methods that TROPOMI uses to derive its CLO 

product. First, is the Optical Cloud Recognition Algorithm (OCRA) which uses the “color” or 

“whiteness” of a pixel in different spectral bands to estimate cloud fraction (Lutz & Loyola, 2021). 

The second is the Retrieval of Cloud Information using Neural Networks (ROCINN), which is a 
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more advanced approach that employs machine learning to analyze spectral information and derive 

cloud properties (Lutz & Loyola, 2021). The available parameters in this data product include the 

cloud fraction, using the OCRA algorithm, which is the main measurement analysed in this study. 

The cloud fraction measurement indicates how much of a ground pixel is covered by clouds: 0 

meaning no clouds (clear sky) and 1 meaning all clouds (complete cloud cover).  

1.2.2 MODIS & OMI 

The Moderate Resolution Imaging Spectroradiometer (MODIS), is an instrument that is aboard 

two NASA satellites, Terra and Aqua (Zheng Cao, 2020). Launched in 1999 and 2002 respectively, 

these satellites have been capturing valuable data of Earth Observation (EO) for over two decades. 

MODIS is a widely used instrument in the world of remote sensing and MDA research (Tang, et 

al., 2023; Williamson & Menounos, 2021). MODIS has also been verified against other long-

standing instruments in the field, therefore making it a key instrument in validation and 

understanding of newer aerosol instruments and products. For this study, MODIS data will be used 

to see if TROPOMI data agrees with the MODIS-observed aerosol distribution.  This provides a 

measure of ‘validation’ of TROPOMI results, although it is strictly an ‘intercomparison’ since a 

true validation requires a comparison to a known ‘true’ measurement. 

All MODIS data used in this study was processed, gridded, and saved by Dr. Ian Ashpole. The 

MODIS data to be used in the research questions is Dust Optical Depth (DOD) data which was 

derived from Aerosol Optical Depth (AOD) data by Dr. Ashpole in our research group. DOD is 

often used to depict the spatial distribution of dust aerosols. DOD indicates the proportion of AOD 

attributed solely to mineral dust particles, distinct from the overall contribution of all aerosols. 

Originally introduced for global dust source mapping by Ginoux et al. (2012), DOD calculations 

rely on the retrieval of Ångström exponent (α) and single scattering albedo (ω) to isolate the dust 
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component in AOD. DOD used in this study is calculated according to the method of Pu and 

Ginoux (2016), where DOD is calculated from every AOD retrieval based on an empirically 

derived continuous function relating α to AOD (Anderson et al., 2005): 

𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐴𝐴𝐴𝐴𝐴𝐴 × (0.98 − 0.5089α + 0.0512α2), 𝑖𝑖𝑖𝑖 α < 1 

The DOD dataset used in this study comes from MODIS aerosol products retrieved using the 

“Deep Blue” algorithm. MODIS collects data over 36 spectral bands which are each sensitive to 

specific wavelengths (Zheng Cao, 2020). Deep Blue uses radiance measurements in the blue 

channels, meaning the shortwave visible blue light wavelengths, to detect aerosols globally over 

land, even over bright surfaces such as deserts (Hsu, et al., 2013).  

 

The Ozone Monitoring Instrument (OMI) is a space-based spectrometer that covers the globe 

daily; it is in many ways the heritage instrument to TROPOMI and also measures reflectance, 

albeit with a coarser spatial resolution of 13 × 24 km2 at nadir (Althaf, et al., 2022). It was 

developed and launched as part of the NASA Aura satellite mission in 2004. OMI has provided 

data for monitoring various atmospheric parameters, namely its UVAI product. One of the aims of 

the TROPOMI mission was to eventually overtake the OMI heritage by providing improved 

versions of the same data products in the future (de Smedt, et al., 2021). To continue the OMI data 

record and for comparison purposes, the TROPOMI AAI is also calculated for the 354/388 nm 

wavelength pair, the same pair used for OMI’s UVAI product, as the additional computational 

effort was found to be minimal (Zweers, 2022) and it makes for an easier transition between the 

instruments when the time comes for OMI to retire (Zweers, 2022). The connection between 
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TROPOMI and OMI therefore supports the use of OMI data in this study to help interpret the 

TROPOMI results. 

1.3 Scope of Work 

To guide the research and writing process of the project, the following research questions 

have been articulated.  

1.3.1 RQ1 

As previously mentioned, there are only two well documented sources of MDAs in 

northern Canada, however, current MDA research in northern Canada is limited. Dr. Ashpole has 

done work on mapping aerosol patterns (like frequency of occurrence) using data from the MODIS 

instrument. His results indicate that prominent MDA activity in northern Canada is relatively 

common.  

As previously discussed, atmospheric monitoring in high-latitudes is challenging. The 

results of Dr. Ashpole’s remote sensing-based work indicate previously unmapped dust sources 

that are consistent with other researchers’ predictions about where MDA sources may be in 

northern Canada, based on dry lakebed and peri-glacial locations (Bullard, et al., 2016; Meinander, 

et al., 2022). This therefore begs the question: What is the distribution of dust in northern Canada, 

according to TROPOMI? (herein referred to as RQ1). A secondary question can further be asked 

as to the nature of these distributions and the implications of the ALH dataset for the AAI dataset: 

What does ALH data imply about the sources of the observed dust distributions? (herein referred 

to as RQ1b). 
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1.3.2 RQ2 

TROPOMI relies on solar radiation to make its measurements. Parts of the northern 

hemisphere do not receive much solar radiation in the winter months due to the axial tilt of the 

Earth away from the Sun at those times. This means that high quality TROPOMI retrievals are not 

often possible at times when limited solar radiation is detected by the instrument. It is important 

to note that not the entire northern hemisphere is affected by this lack of light and that many mid-

latitudes and tropics have little issues in the winter months. Despite this, the general high-quality 

data availability is expected to be lower in the winter months of the year. However, TROPOMI 

always records data, even with limited sunlight and increased cloud coverage. The quality of the 

measured data is also tracked and flagged to ensure that only the recommended data is used and 

analysed. To increase confidence in TROPOMI measurements, a question can be asked: How do 

TROPOMI-derived aerosol products compare to those of other well-characterized satellite 

instruments, like MODIS and OMI? (herein referred to as RQ2). 

The MODIS dust optical depth (DOD) product will be intercompared with  TROPOMI’s 

aerosol products and will likely demonstrate similar patterns. This is because both DOD and AAI 

provide information about the concentration of aerosols in the atmosphere. Higher values of either 

value suggest a greater abundance of aerosols. The OMI UVAI product measures the aerosol index 

within the same visible channel as TROPOMI, therefore allowing the two datasets to be easily 

intercompared (Zweers, 2022). The similarities in both instruments’ retrieval algorithms will likely 

lead to similarities in MDA hotspots when analysed. These comparisons will build confidence in 

the results found in answering RQ1.  
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1.3.3 RQ3 

Both the AAI and ALH data products have limited sensitivity to the type of aerosols present  

(de Graaf, de Haan, & Sanders, 2022). It is known that AAI values around 0 are typically 

indications of a clear atmosphere or clouds, while negative values are typically indicative of UV 

scattering aerosols, none of which are MDAs (Zweers, 2022). The lack of direct aerosol type 

detection is a limitation of this study as it does not allow for direct analyses of MDAs. However, 

it is well known that MDAs can be picked out from the overall aerosol datasets by filtering with 

the TROPOMI CO and CLO data products, so we can ask the question: What are the effects of 

filtering the TROPOMI aerosol products by the Carbon Monoxide and Cloud products? (herein 

referred to as RQ3).  

The Carbon Monoxide (CO) product provides detailed information about the concentration 

and distribution of carbon monoxide in Earth’s atmosphere (Lambert, et al., 2023). The CO product 

can be used to filter out the presence of carbon monoxide in the aerosol data, effectively filtering 

for forest fire aerosols that appear in the aerosol datasets. The primary reason for filtering by CO 

is because carbon monoxide is highly indicative of soot which also produces high AAI values. A 

secondary reason to filter for forest fires is because fires produce aerosols that do not typically 

originate in the north and are more likely to be in northern atmospheres due to transportation from 

winds (Williamson & Menounos, 2021). For the purposes of this study, interest is only in those 

aerosols that are MDAs, so filtering by carbon monoxide levels will help filter for aerosol types 

that are desired for this study.  

The cloud (CLO) product provides information about the presence, cover, and properties of 

clouds in the atmosphere (Lutz & Loyola, 2016). This means that this product can be used to filter 

the aerosol products by cloud contamination levels. While clouds are typically indicated as 
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negative or near zero TROPOMI AAI values, this can sometimes be a mischaracterization of the 

true cloud distributions since those numbers are based on assumptions of cloud layer thickness and 

height in simulations (Zweers, 2022). The cloud clearing offered by the CLO product can aid in 

the interpretation of the AAI data as it will remove any measured AAI values contaminated by 

high cloud coverage, thus giving a more accurate depiction of the aerosols, such as MDAs, in 

northern Canada. 

2. Methods 

2.1 NASA/Earthdata Granules 

As previously mentioned, TROPOMI is an ESA instrument. ESA is an international partner of 

NASA, meaning that TROPOMI data is also distributed by NASA. Earthdata is a NASA website 

that was created for public access to NASA’s Earth science data, and this is where TROPOMI data 

was downloaded from for this study. From this website, one can specify the location and date of 

the data to be downloaded, thus eliminating the need to download all available data for the given 

data product. 

Satellite data is distributed in three levels. Level 1 (L1) is the raw radiance data from the 

instrument, corrected for known instrument biases and known atmospheric effects. Level 2 (L2) 

data contains the retrieved products that rely on the radiances as inputs, e.g.,  AAI, ALH, CO 

concentration and cloud fraction (CLO) values in this study.  Level 3 (L3) data is further processed 

data from L2 that offers averaged results in a consistent grid or map, typically at 1 x 1° resolution 

as monthly means. For TROPOMI, the L2 data is the raw swath file that is stored for every orbital 

pass of the instrument, which also includes low-quality data typically due to sun glint. There are 

multiple L2 files for a given day that pass over the same geographical area given the 2600 km 

swath width. For the purposes of this study, analysing L2 data directly becomes cumbersome due 
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to the large geographical area and the large number of L2 files available for the study period (all 

of 2021). A regridding procedure to process the L2 files into L3 files was therefore used to better 

visualize the data present in the L2 files on a regular Cartesian grid. This meant converting the L2 

swath data from the pixel resolution of 7 x 3.5 km2 to a daily-averaged gridded product with a 

resolution of 5 x 5 km2 (cf. the typical 1 x 1° resolution and monthly means in standard L3 

products). This included filtering out low-quality data (described in detail below) before averaging 

all of the swaths passing over the same 5 x 5 km2 area daily and storing the number of L2 elements 

in the average. This procedure allowed for the comparison of TROPOMI data with other datasets 

and a more meaningful data analysis, e.g., calculating frequency of occurrence or means. 

All TROPOMI data granules come in three main types: near real-time (NRTI), offline 

(OFFL) and reprocessed (RPRO). NRTI data is the most approximate but fastest data that can be 

obtained directly from the instrument. OFFL data undergoes additional processing and operations 

that have been determined and optimized by the retrieval algorithms given known errors; it is 

typically available within 12 hours of initial sensing (Zweers, 2022). RPRO data is the newest 

version of the data that has been re-processed given the most up-to-date information about the 

satellite, instrument and data processing algorithms, which all affect the final data product, like 

AAI. When the work in this paper was in its preliminary stages, the first year that had all RPRO 

data for every day of the year was 2021. So, 2021 was used as the case study year for this project. 

RPRO data is, in theory, the best version of the data because it has been re-processed according to 

the newest information revealed about the full chain of processing (satellite, instrument and 

retrieval corrections). Appendix B has more information regarding differences in OFFL and RPRO 

data where it can be seen that they are not negligible, thereby justifying the use of the RPRO data. 
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2.2 RQ1 

To visualize the observations from TROPOMI, the data was gridded to fit on a cartesian 

map (i.e., high-resolution daily mean L3 files) at a resolution of 5 x 5 km2, for a total of 900 x 

3600 gridboxes, starting at (40N, 160W) and ending at (90N, 50W). The method used for 

regridding was adapted directly from the Atmospheric Toolbox Website where ESA has provided 

open source software in support of the Sentinel Earth Observation missions, with examples of how 

to use and process TROPOMI data. HARP is a toolbox designed to read, process, and compare 

data from various sources like satellites, models, on-site measurements, and ground-based remote 

sensing. The main purpose of HARP is to make it easier to compare different datasets. In this study, 

the HARP module was used to load each L2 granule and create a daily file for each day of the 

study period. The exact regridding parameters and explanations can be found under the use case 

titled “Creating gridded Level 3 data with HARP from multiple TROPOMI Level 2 UVAI files,” 

which can be found on the Atmospheric Toolbox Website. As per the recommendations in the 

Product User Manual (PUM) released by the TROPOMI team, individual data granules were 

filtered by the associated quality flag for each granule (Apituley, et al., 2022c). This means that 

data that did not pass quality assurance, meaning that they did not have a quality flag greater than 

80%, were excluded from this research. The individual granule files also contained a lot of 

information and metadata that is useful, but not necessary to preserve. Preserving all parameters 

stored in the raw data files would have necessitated a great deal of storage and computing power, 

both of which were often limited. For that reason, when the data was regridded, only the necessary 

parameters were kept (longitude, longitude_bounds, latitude, latitude_bounds, time, and 

absorbing_aerosol_index). The data was finally stored and saved as daily files for the full study 

period. 

https://atmospherictoolbox.org/
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Frequency of occurrence (FoO) analyses are a valuable method for gaining insights into 

data patterns, trends, and distributions. FoO analyses show the spatial distribution of the frequency 

of data points (gridboxes) that match the desired criteria. To create the FoO maps found in this 

study, an analysis was done daily over specific months in 2021. For each gridbox, a count of how 

often an AAI value met the threshold was found over the entire month. This is referred to 

interchangeably as “number of observations (n_obs)” or “number of days (n_days)” henceforth. 

In the end, I created a dataset with gridboxes, each with an integer number from 1 to 30 or 31, 

depending on the length of the month, which indicated how many days that gridbox had a daily 

mean AAI value above the desired threshold. The process of obtaining the mean AAI over a month 

was similar to that of FoO, but instead of a counter of the AAI above the given threshold, the actual 

daily mean AAI value was retained and then averaged for each gridbox for the entire month. 

To filter the AAI data by ALH data, the same regridding process was conducted. First, all 

ALH data was gridded to match the AAI data, also on a daily basis. The main difference in the 

ALH regridding was that the quality flag minimum recommended for the ALH data is 50%. Once 

the daily ALH files were obtained, the filtering of AAI data began. This was done by looking at 

each gridbox for each day and specifying whether or not the AAI gridbox should be set to “NaN,” 

based on whether or not the equivalent gridbox on the equivalent day of the ALH data was above 

the desired ALH threshold. For example, if it was chosen that we only wanted to look at data where 

daily mean ALH was less than 1000 m, a list of gridboxes where daily mean ALH was greater than 

1000 m was found, then used to set all of the equivalent gridboxes in the daily mean AAI dataset 

to “NaN,” since both datasets had the same number of gridboxes. In the end, I created a dataset of 

daily files that only contained AAI data if the ALH threshold was met. The purpose of filtering 

AAI data was to have a better understanding of the vertical aerosol distributions. Unlike AAI, ALH 
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has a cloud-clearing feature that, when the AAI data is filtered by ALH, can help in eliminating 

aerosol data that is contaminated by clouds (even though we were also looking for positive AAI 

values that should correspond to absorbing aerosols and not clouds). 

2.3 RQ2 

Correlation, used in this research question, is a statistical measure that quantifies the degree 

of association or relationship between two variables. It tells us how changes in one variable 

correspond to changes in another. For this work, the Pearson Correlation Coefficient was 

calculated using the following formula: 

𝑅𝑅 =
∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)

�∑(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)2 �∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥𝑖𝑖  𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 
𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥̅𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦� 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

If R is found to be close to 0, it indicates two datasets that do not correlate, whereas if R is found 

to be close to 1 it indicates a strong positive relationship, and an R close to -1 indicates a strong 

negative relationship (Berman, 2016; Faizi & Alvi, 2023). A strong correlation is said to be when 

R is greater than 0.7 or less than -0.7, which corresponds to R2 values of around 0.5 or greater. R2 

is a metric of how well a statistical analysis fits the analysed phenomenon, or how well the 

regression line fits the two analysed datasets (Faizi & Alvi, 2023). Another way to put it is that an 

R2 of 0.5 means that the model explains 50% of the variance in the data. Additionally, a p-value is 

representative of the probability that statistical results are due to random chance or if there is a true 

(i.e. ‘significant') relationship between the two datasets (Amrhein & Greenland, 2022; Faizi & 

Alvi, 2023). If the p-value is found to be significant, here meaning a p < 0.1, it indicates that there 
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is a significant relationship indicated by the correlation coefficient that is unlikely to be due to 

chance alone (Faizi & Alvi, 2023). 

In the case of MODIS-TROPOMI correlations, the calculation of correlation describes 

whether changes in aerosol distributions observed in MODIS data track the changes observed in 

TROPOMI data. TROPOMI and MODIS do not, however, measure precisely the same quantities. 

MODIS measures DOD and TROPOMI measures AAI. While the exact quantities are not the 

same, the qualitative information that the two measures provide has largely the same physical 

source (dust). An increase in DOD indicates an increase in absorbing aerosols in the atmosphere. 

An increase in AAI also indicates an increase in absorbing aerosols in the atmosphere. Since both 

changes qualitatively describe the same phenomenon (apart from biomass burning aerosols, which 

are also absorbing), calculating the correlation between the two datasets can reveal whether or not 

the two instruments measure the same changes in aerosol distributions.  

The daily gridded MODIS data used in this study was saved at a resolution of 10 x 10 km2, 

but the daily gridded TROPOMI data was saved as 5 x 5 km2. It was therefore necessary to regrid 

the TROPOMI data to match the coarser resolution of the MODIS data. TROPOMI was used as 

the dataset to adjust because its resolution was initially finer, meaning that it would require simple 

averaging instead of oversampling of data onto a finer gridbox. For each gridbox a correlation 

coefficient and p-value were calculated using the daily data for the desired study period. This 

correlation was only calculated in specific gridboxes. It was specified that there had to be non-

NaN data for the same day in the same gridbox for the AAI or DOD value to be included in the 

correlation calculations, otherwise that day and gridbox was skipped. This ensured that only days 

with data from both instruments were being correlated.  
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OMI scans the Earth daily with a spatial resolution of 13 × 24 km2 (Althaf, et al., 2022). The 

UVAI is derived from the OMI satellite, provided as gridded daily global L3 data with a resolution 

of 100 x 100 km2, which is accessible through Earthdata as well (Althaf, et al., 2022). The process 

of analyzing the correlation between OMI and TROPOMI data was the same as with MODIS data. 

The key difference was that the OMI correlation and p-value was calculated only for August, rather 

than for the four-month (June through September) summer period used for the MODIS 

correlations. The other difference is that OMI data is stored at an even coarser resolution, and 

TROPOMI data was also rebinned to match it.  

2.4 RQ3 

To understand the impacts of filtering the AAI dataset by the CO and CLO datasets, a 

combination of processes of data analysis were followed as in RQ1 and RQ2. The first step was to 

regrid the CO and CLO data using the same methods as regridding the AAI and ALH data, meaning 

that individual L2 granules were converted to daily mean maps on a grid of 5 x 5 km2. For both 

datasets, a quality flag of at minimum 50% was used, as recommended by both PUMs. Once both 

CO and CLO data were saved as daily mean gridded files, the next step was to filter the AAI data 

by CO and CLO data at different thresholds. This was done using the same programming methods 

as when filtering by ALH data, however thresholds were chosen as follows. 

For CO, any gridboxes in the AAI dataset that corresponded to gridboxes in the CO dataset 

that were below or equal to the desired threshold were kept, otherwise, the gridboxes were set to 

“NaN.” It was decided to do this over a month period in August 2021, due to computing and time 

requirements, but considering that August was the peak for both dustiness and satellite 

observations. To determine the desired CO thresholds to be used in the AAI filtering, the first step 

was to make FoO maps for a wide range of CO thresholds to understand the changes in CO values 
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as the thresholds changed. A mean CO map was also made to view the different CO values within 

the chosen geographical area. This was done to aid in visualizing the distributions of CO and what 

the minimum and maximum CO values were. Once this was done, a set of CO thresholds was 

determined to encompass the range of measured CO values, without having too few or too many 

maps. A study by Wan, et al., 2023, reports a total column CO value of between 0.018 mol m-2 and 

0.032 mol m-2 over Australian savanna and temperate forest as “background CO”, which was 

consistent with the observed CO values in the FoO and mean maps in this study, so it was decided 

that filtering would start with a value for CO of 0.01 mol m-2, then increase by 0.01 mol m-2 until 

a CO value of 0.05 mol m-2. The 0.05 mol m-2 value was used as the cutoff since it is nearly three 

times the lower literature value for background CO (3 * 0.018 = 0.054 mol m-2); the lower value 

is not unreasonable given that we are working in the Arctic. The filtering of the AAI dataset by the 

CO dataset was done for every day over the desired period for each gridbox at the desired CO 

thresholds. In summary, as the threshold for CO filtering decreases, more gridboxes would be set 

to “NaN” in the AAI dataset. If the gridbox had a higher CO, the corresponding AAI gridbox was 

set to NaN. “Higher” in this case meant above the chosen threshold, which was varied to properly 

evaluate the impacts that the CO dataset had on the AAI dataset.  

For CLO, any gridboxes in the AAI dataset that corresponded to gridboxes in the CLO 

dataset that were below or equal to the desired cloud fraction were kept, otherwise, the AAO 

gridboxes were set to NaN. Similar to the CO process, FoO and mean maps were made to 

understand and visualize the CLO data. This was done for every day over the month of August for 

each gridbox at the desired CLO thresholds. This means that AAI gridboxes that had high co-

incident CLO were removed to observe the distribution of AAI data that were not cloud 

contaminated. 
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Once two new daily mean high resolution L3 TROPOMI datasets were produced daily 

(AAI filtered by CO and AAI filtered by CLO), the correlation between these new filtered AAI 

datasets was calculated and again compared to MODIS DOD data. This gave an idea of how the 

CO and CLO filtering impacted the correlation of AAI data to MODIS, which has a cloud-clearing 

feature and is calculated so as to represent only dust aerosols. In theory, the AAI dataset filtered 

by CO should correlate better with MODIS DOD data since non-dust aerosols would be removed 

from the AAI data. Similarly, the AAI dataset filtered by CLO should correlate better with MODIS 

DOD since cloud-contaminated AAI gridboxes would be removed, acting as a cloud clearing for 

the AAI data to match MODIS cloud clearing. In the same fashion as with RQ2, the AAI datasets 

had to be regridded to match the spatial resolution of MODIS. Then, correlations were calculated 

for each gridbox for the desired period. This was repeated for the different AAI datasets for each 

CO and CLO threshold that was tested to filter the AAI data. 
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2.5 Summary of Data Products and Datasets 

Table 1:Summary of data products used for each RQ. Products and datasets are shown in chronological order in terms of when 
each was used and processed in section 2. 

Research 
Question 

Instrument Product Time Period Resolution File Type Dataset 
size 

RQ1 TROPOMI AAI 01/01/2021 – 
12/31/2021 

L2: 3.5 x 7 km2 netCDF4 1.03 TB 
L3: 5 x 5 km2 18.01 GB 

ALH 01/01/2021 – 
12/31/2021 

L2: 3.5 x 7 km2 netCDF4 408.44 GB 
L3: 5 x 5 km2 27.53 GB 

AAI x 
ALH 

06/01/2021 – 
09/30/2021 

L3: 5 x 5 km2 netCDF4 133.38 GB 

RQ2 TROPOMI AAI 06/01/2021 
09/30/2021 

L3: 10 x 10 km2 netCDF4 4.73 GB 

08/01/2021 – 
08/31/2021 

L3: 100 x 100 km2 126.8 MB 

MODIS DOD 06/01/2021 – 
09/30/2021 

L3: 10 x 10 km2 netCDF4 9.42 GB 

OMI UVAI 08/01/2021 – 
08/31/2021 

L3: 100 x 100 km2 hdf5 25.2 MB 

RQ3 TROPOMI CO 06/01/2021 – 
09/30/2021 

L2: 3.5 x 7 km2 netCDF4 368.46 GB 
L3: 5 x 5 km2 4.77 GB 

CLO 06/01/2021 – 
09/30/2021 

L2: 3.5 x 7 km2 netCDF4 972.8 GB 
L3: 5 x 5 km2  6.26 GB 

AAI x 
CO 

06/01/2021 – 
09/30/2021 

L3: 5 x 5 km2 netCDF4 230.81 GB 

08/01/2021 – 
08/31/2021 

L3: 10 x 10 km2 netCDF4 4.44 GB 

AAI x 
CLO 

06/01/2021 – 
09/30/2021 

L3: 5 x 5 km2 netCDF4 155.6 GB 

08/01/2021 – 
08/31/2021 

L3: 10 x 10 km2 netCDF4 3.37 GB 

MODIS DOD 08/01/2021 – 
08/31/2021 

L3: 10 x 10 km2 netCDF4 2.41 GB 

 Total 3.36 TB 
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3. Results and Discussion 

3.1 RQ1 

 

Figure 3: TROPOMI n_days with AAI observations for January (left), August (middle), and November (right) 2021. Grey 
coloring indicates gridboxes with NaN data for that gridbox for the entire month. NaN data means no good quality observations 
were made for the entire month. The minimum n_days is 1 and maximum n_days is the total number of days in the month (30 or 

31). If n_days was 0, the gridboxes were also set to NaN. 

 
 Figure 3 illustrates the n_days with TROPOMI AAI observations for each 5 x 5 km2 

gridbox over three select months. The darker a section is, the greater the number of days those 

areas have valid data. The grey areas seen in the first and last panels represent gridboxes that are 

“NaN,” i.e., gridboxes that did not have any days with observations over the entire month. This 

figure shows the phenomenon discussed in section 1.2 regarding the lack of available data in the 

winter months; in January and November, there was either no good quality data or no data at all 

due to a lack of sunlight in northern Canada. This gives reason to analyze data from June to 

September, to ensure that there is sufficient data in northern Canada. 
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Figure 4: FoO of AAI at increasing thresholds in August 2021. Grey coloring indicates gridboxes either with NaN data or 
gridboxes with AAI below the given threshold (if n_days = 0, it was set to NaN). The minimum n_days is 1 and the maximum 

n_days is 31. 

Figure 4 shows darker areas (around 70N) where AAI is above the given threshold for multiple 

days in the month of August. The top left panel shows the FoO of AAI above 0. The 0 threshold 

was deliberately chosen due to the fact that AAI = 0 is more likely to be clouds or clear skies, 

meaning that there is little to no absorbing aerosols present or readily detectable by TROPOMI,  

and AAI < 0 corresponds to small scattering aerosols like sulphate. The top right panel shows the 

FoO of AAI above 0.25, which has decreased compared to the top left panel. At this AAI threshold, 

the retained gridboxes are now showing aerosol plumes that are not scattering and are therefore 

likely to be MDAs; any confounding clouds impacts on AAI are also lower at this threshold. 

Looking more closely at northern Canada across all four panels (70N and above), it can be 

seen that there are areas that show observed AAI values above 0 for multiple days over the 31-day 
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month. This is apparent especially across the 70N band in the top two panels, where there is a clear 

concentration of measured AAI values above 0 and 0.25. This observed FoO spatial distribution 

was unexpected and led to a great deal of thought as to what was causing it. It appeared as an 

artificial feature and was first thought to have been an issue caused during data analysis. However, 

a replication of the banding feature was made by Dr. Ashpole, therefore leading to more questions 

about what was causing it. Before the commencement of this project, the banding feature was 

intensely investigated over the summer of 2023. The investigation included issues with data 

versions, sampling geometry, daytime or nighttime observations, or issues with cloud coverage. 

None of these appeared to yield a strong conclusion as to what was causing the feature. It is 

important to note that the banding feature disappears with higher AAI values being used as the 

FoO threshold, notably the bottom panels in Figure 4 (AAI threshold of 0.5 and 1). This is an 

important observation because MDAs are unlikely to be detected with an AAI threshold close to 

0, since they are non-scattering aerosols (and not clear skies). Since no clear explanation was found 

for the banding feature and since the banding feature disappeared upon analysis of AAI values 

more closely linked to MDAs, it was decided to focus on the notable FoO values of higher AAI 

values in northern Canada. 

Across all panels in Figure 4, there is evidence of frequent observations of AAI above the given 

threshold around previously mentioned source areas, such as Kluane lake around (60N, 140W), 

which will be further discussed in section 3.1.2. The spatial distributions of FoO where AAI is 

above a given threshold in northern Canada are especially important in the bottom panels since 

those AAI thresholds are even greater, meaning that those AAI measurements are even less likely 

to be caused by scattering aerosols and are more likely to be caused by absorbing aerosols, like 

MDAs. This is an important observation as it indicates that the presence of absorbing aerosols at 
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substantial levels exists in the areas of interest to this study. From the bottom panels, there is a 

decrease in the number of days observed to have AAI observations above the given threshold, 

shown by the increased grey area and the more white (i.e. closer to 1) coloring that appears. This 

indicates that AAI values that are higher, indicating greater abundance of absorbing aerosol 

plumes, are less and less frequent. This finding indicates that occurrences of dense and absorbing 

aerosol plumes are not frequent, but they do exist. It is also important to emphasize that these maps 

show the frequent observations of AAI values at and above the given thresholds, but they do not 

uniquely indicate aerosol types (dust vs. soot) or aerosol plume densities. These maps are an 

indication of geographical locations where particles are absorbing radiation. 

Figure 4 also shows frequent observations of highly positive AAI values in the southwestern 

study areas, roughly below 50N, and between 125W and 100W. The highest AAI values in this 

area are most likely associated with wildfires, as supported by co-incident (August 2021) elevated 

mean CO values in northern California and Oregon in this work (Figure 17, Section 3.3.1).  The 

historical distribution of MODIS-derived fire counts in the northwest US has been well 

documented (e.g., Vaillant et al., 2016), but wildfires exhibit high interannual variability (e.g., Park 

et al., 2007, van der Werf et al., 2006).   It is interesting to note that 2021 was an exceptionally 

active fire season in North America (Jain et al., 2024), including in BC, Saskatchewan, Manitoba 

and western Ontario (also evident in Figure 17).  These 2021 fires are likely contributing to the 

diffuse patch of FoO ~ 10 in central Canada below 60 N, transported all the way to northern Quebec 

by prevailing westerly winds; however, they are spatially separate from FoO enhancements in the 

Arctic Archipelago, the latter unlikely to be the result of smoke (absorbing) aerosols and most 

likely the result of dust (absorbing aerosols).  We return to these latter dust absorbing aerosols, 

which are the focus of this study.   
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The same four-panelled figures seen in Figure 4 were made for June, July, and September (seen 

in Appendix C). Across all these figures, there is a common theme of observed AAI values for a 

frequent number of days at high latitudes. Since the observed AAI were filtered for values greater 

than 0, these are non-scattering – or rather absorbing – aerosols. This further implies that there is 

a source of some kind that is emitting absorbing aerosols in high latitudes. 

3.1.1 RQ1 b) 

 

Figure 5: FoO AAI (n_obs) for August 2021 as the AAI data is filtered by ALH data at different height thresholds. Gridboxes that 
did not have an associated ALH value below the desired threshold were set to NaN, indicated by the grey coloring. The minimum 

FoO AAI is 1 and the maximum is 31.  AAI includes all values (> and < 0). 

The first panel in Figure 5 shows the n_obs of AAI (both above and below zero) where 

only those AAI values were removed that corresponded to “NaN” ALH values.  Since there is no 

specified ALH threshold being used, the AAI data has been effectively filtered by either low 



 45 

quality ALH data, seen as “NaN” values in the ALH dataset, or by cloud contaminated ALH data, 

also seen as “NaN.” This first set of filtering practically acts as a cloud clearing filter for the AAI 

data, since ALH has a cloud clearing feature, discussed in section 1.2.1.1; 34.71% of grid boxes 

were removed in this step. As the ALH threshold gets lower, meaning only considering aerosol 

layers closer to the ground, any gridboxes with aerosol layers above that threshold were excluded. 

Filtering for ALH < 5000 m has little additional effect (35.09%) compared to filtering for all ALH 

(34.71%) because most aerosol plumes identified by TROPOMI are below 5000 m.  As the dataset 

was filtered for aerosol layers closer to the surface of the Earth, the percentage of valid AAI 

gridboxes in many regions decreased. The exact numbers and changes in valid AAI gridboxes can 

be seen in Table 2. The total number of AAI gridboxes for ALH < 5000 m is 2,115,443 and for 

ALH < 3000 m is 2,103,099 (1.68% decrease). Restricting AAI to plumes below 1000 m leaves 

1,703,033 gridboxes (a further 17.64% decrease).  A summary of this information is found in Table 

2 where it can be seen that there is a decrease in the number of gridboxes across all datasets, but 

that decrease is not overly large after the initial drop (34.75%) corresponding to cloud filtering. It 

can also be seen, however, that the FoO (plot colour) does not drastically decrease as ALH gets 

closer to the surface. 

I 
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Table 2: (Row 1) - Changes in the number of non-NaN gridboxes for the n_obs for August 2021 for the filtered AAI datasets by 
ALH data. (Rows 2:5) - Percent differences in number of non-NaN gridboxes from the other AAI datasets. All gridboxes are 
within the same geographical area represented in Figure 3. 

Row  No ALH 
filtering 

ALH = NaN ALH < 
5000 m  

ALH < 
3000 m 

ALH < 
1000 m 

1 Total non-NaN 
gridboxes 

3240000 2115443 2103099 2067817 1703033 

2 Percent difference 
from no ALH 
filtering  

 34.71 % 35.09 % 36.18 % 47.44 % 

3 Percent difference 
from ALH = NaN  

 0.58 % 2.25 % 19.50 % 

4 Percent difference 
from ALH < 5000 m 

 1.68 % 19.02 % 

5 Percent difference 
from ALH < 3000 m 

 17.64 % 

 

 

Figure 6: FoO of AAI greater than 0.5 for August 2021. Each panel is the same AAI dataset that has been filtered by ALH, except 
the top left which is unfiltered. NaN data is represented by grey coloring. Here, NaN data is either bad quality ALH data or 

gridboxes where n_days was 0. 
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Figure 6 shows the FoO of AAI that has been filtered by decreasing values of ALH. For this 

figure, only FoO of AAI > 0.5 is shown. This is primarily because the banding feature previously 

discussed does not appear in the FoO maps for AAI values greater than 0.5, as these AAI values 

are more strongly associated with absorbing aerosols and not clouds. A paper published by Penning 

de Vries et al. (2009) also shows, via simulations, that AAI is below 0.5 when examining the 

impacts of various cloud configurations on UVAI (their Figure 2). The top left panel in Figure 6 

shows the unfiltered FoO of AAI greater than 0.5. There are significant frequencies of aerosol 

observations around 125W and below 50N, as discussed already. It can also be seen that there are 

frequencies of occurrences in the higher latitudes, around 70N. These distributions, while not as 

frequent as the distributions around 125W and 50N, tell us that there are frequent absorbing 

aerosols in those regions. The top right panel shows the FoO of AAI above 0.5, but all gridboxes 

with an ALH greater than 5000 m have been removed. The general distribution of AAI data is 

comparable to that of the first panel but with fewer spatially and less frequent (at a given gridbox) 

observations. These exact numbers can be seen in Table 3. The bottom left panel of Figure 6 shows 

the FoO of AAI above 0.5, but all gridboxes with an ALH greater than 3000 m have been removed. 

Again, the general distribution of the FoO of AAI greater than 0.5 is comparable to the first two 

panels discussed, but with less frequent observations, (percent difference seen in Table 3). This is 

to be expected.  
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Table 3: (Row 1) - Changes in the number of non-NaN gridboxes for FoO AAI > 0.5 for August 2021 for the filtered AAI datasets 
by ALH data. (Rows 2:4) - Percent differences in number of non-NaN gridboxes from the other AAI datasets. All gridboxes are 
within the same geographical area represented in Figure 3. 

Row  No ALH 
filtering 

ALH < 5000 
m  

ALH < 3000 
m 

ALH < 
1000m 

1 Total non-NaN 
gridboxes 

1308713 318416 292838 151459 

2 Percent difference from 
no ALH filtering  

 75.67 % 77.62 %  88.43 % 

3 Percent difference from 
ALH < 5000 m 

  8.03 % 52.41 % 

4 Percent difference from 
ALH < 3000 m 

   48.28 % 

 

It is important to notice that there are still distributions of FoO of AAI greater than 0.5 in the 

northern latitudes, indicated by the non-grey gridboxes in Figure 6. The bottom right panel shows 

the FoO of AAI above 0.5, but all gridboxes with ALH greater than 1000 m have been removed. 

This panel shows the distribution of AAI which is also the closest to the surface of the Earth. It 

can be seen that there are areas in the high latitudes, like around 75N and 90W, where there are 

still frequent observations of AAI above 0.5. This indicates that the observed AAI values are also 

close to the surface. As previously mentioned, aerosols that are closer to the surface are less likely 

to have been transported from other regions and are therefore indicative of aerosol distributions 

that are in close proximity to their source. These high latitude regions are displaying 

characteristics, based on the AAI and ALH data, that indicate that there may be sources of dust in 

northern Canada, located in regions not previously studied/mentioned. 

Another important observation to be made upon inspection of Figure 6 is that as high ALH 

data is removed, the FoO of aerosols in the southwest region, like around (45N, 110W), decreases. 

This means that the aerosol distributions observed in those locations are less frequently observed 

close to the surface of the Earth and are more commonly found in aerosol layers higher in the 
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atmosphere. As previously mentioned, aerosols that are found to be higher in the Earth’s 

atmosphere are more likely to have been transported from other regions or other source areas. The 

northwest US is known for its active fire season in the summer months (e.g., Griffin, et al., 2020) 

but also especially in 2021, as already noted in section 3.1. Wildfire aerosols are typically found 

several kilometers above the Earth’s surface, due to the small size of these aerosols and the 

increased buoyancy of fire-heated air parcels (Griffin, et al., 2020). So, the observed decrease in 

FoO in these south-western map regions is to be expected because of the nature of fire aerosols, 

therefore implying that the ALH filtering on the AAI dataset is effective in scrutinizing aerosol 

types and aerosol source locations.  It should, however, be noted that terrain in the northwest US 

is elevated such that filtering for below 1000 m intercepts the local topography in much of the 

region, which can be seen in the bottom right panel of Figure 6.  

3.1.2 Implications in northern Canada 

 
Figure 7:Zoomed-in FoO of AAI greater than 0.5 for August 2021. Left panel is the AAI dataset with no filtering. Right panel is 
the AAI dataset that has been filtered by ALH < 1000 m. NaN data is represented by grey coloring. Here, NaN data is either bad 

quality or gridboxes where n_days was 0. Red circles added to show Kluane Lake and Lake Hazen. 

 Figure 7 is a zoomed-in comparison of some of the key results found in section 3.1, 

focusing on FoO of AAI > 0.5 for latitudes above 60N. It can be seen that there are multiple days 

where AAI values above 0.5 are observed in northern Canada. The red circles, specifically, show 

known source areas at Kluane Lake (left circle) and Lake Hazen (right circle). The left panel shows 

the AAI dataset where there is no ALH filtering. It can be seen that there are AAI observations 
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around Kluane Lake and Lake Hazen, more so for the latter. AAI observations near Lake Hazen 

are sometimes found at heights greater than 1000 m but the elevated topography near Kluane Lake 

leaves no observations in its vicinity. Another important observation to be made is that the n_days 

around both known source locations is not very high. This indicates that known sources of MDAs 

may not always have the most frequent observations, i.e., both are in mountainous terrain that 

presents challenges and Lake Hazen is also in the extreme north where light angles are a challenge. 

This analysis is further important because it implies that other source areas may also show low 

FoO values, which are observed in many locations above 60N, such as around (70N, 85W) or 

(70N, 110W). Figure 7 shows many areas where the n_days is either close to or greater than the 

n_days around Kluane Lake and Lake Hazen, indicating that there are aerosol observations that 

are comparable to those around known aerosol source areas, therefore indicating that sources of 

MDAs might exist in these unstudied areas. 

 
Figure 8: Zoomed-in map of the Arctic Archipelago showing the FoO of AAI greater than 0.5 for August 2021. Left panel is the 

AAI dataset with no filtering. Right panel is the AAI dataset that has been filtered by ALH < 1000 m. NaN data is represented by 
grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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Figure 9: Google Maps image of the Arctic Archipelago showing the composite image of vegetation cover from multiple satellite 

sources (Adapted from Google Maps, 2024). 

 Figures 8 and 9 are showing parts the Arctic Archipelago area of northern Canada. This 

area specifically demonstrated a high number of days with AAI values above 0.5, both in the 

unfiltered dataset (left panel, Figure 8) and when ALH is below 1000 m (right panel, Figure 8). 

This hotspot across both FoO maps indicates that there are absorbing aerosols that are low in the 

atmosphere, suggesting that there might be a source area in this location previously unknown. 

Figure 9 shows the same area in visible imagery from multiple satellite sources, thus providing a 

clue to the nature of the AAI observations made. Notably, Figure 9 reveals that the Brodeur 

Peninsula of Baffin Island (the area encompassed by the red circle) appears to have less dense 

vegetation cover compared to the surrounding areas. This is apparent from the muted green, 

grayish coloring in the circle compared to the surrounding greener areas.  Since sparse vegetation 

cover translates to looser soils that are more susceptible to wind erosion (Li, et al., 2021), this 

finding is consistent with the TROPOMI observations of frequent occurrences of high AAI values. 

After consulting a Government of Canada Land Use Atlas, the Brodeur Peninsula is confirmed as 

barren land.  This analysis further suggests that there is a source area for MDAs in this region not 

previously researched. These results demonstrate a need for further investigation of the cause of 

the observed AAI values, preferably with ground-based observations of dustiness. 

https://atlas.gc.ca/lcct/en/index.html
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3.2 RQ2 

3.2.1 MODIS 

 

Figure 10: Scatterplots showing the correlation between TROPOMI AAI data and MODIS DOD data for two individual 
gridboxes. Data includes coincident non-NaN values from June to September 2021. Left and right panels show statistically 

insignificant and significant (p > 0.1) correlations, respectively. See text for details. 

To better understand the validity of TROPOMI’s aerosol measurements, a comparison of 

TROPOMI AAI and MODIS DOD was carried out. For each gridbox, DOD and AAI were tracked 

over time (June to September, 2021) and a correlation between the values was found. Figure 10 

illustrates the scatter of data around the line of best fit for two selected gridboxes for the coincident 

AAI-DOD dataset. These gridboxes were chosen as they were found to have an R-value greater 

than 0.7. This corresponds to an R2 value of 0.5. Typically, an R2 of 0.5 is said to indicate a 

moderately strong correlation between the two variables, where the line of best fit explains 50% 

of the variance in the dataset (Faizi & Alvi, 2023). In the left panel, there is a significant amount 

of scattering around the line of best fit, as well as some outliers, such as the AAI value around 1.5. 

The right panel shows the scatter of data around the line of best fit from a different gridbox than 

in the left panel, again with some outliers around AAI of 1 and 1.5. The difference here, however, 

is that the p-value in the right panel was found to be significant (< 0.1). Compared to the spread of 

the left panel, the right panel appears to have more data points that lie close to the line of best fit. 

This is because a statistically significant gridbox will display less spread from the linear regression 

model. It can also be seen that there is a lower number of obvious outliers in the right panel 
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compared to the left, again showing the statistical significance difference between the two 

gridboxes. 

 

 

Figure 11: Basis of the coincident data found for the TROPOMI AAI (all data) and MODIS DOD datasets. Top row shows the 
n_obs for TROPOMI (left) and MODIS (right). Middle and bottom rows show the correlation coefficient (R) of MODIS and 
TROPOMI data from June to September 2021. Panels in the middle and bottom rows show the change in R as the number of 
minimum days (n) used in the correlation calculation increases. Red indicates high, positive correlation (close to or at 1) and 

blue indicates low negative correlation (close to or at -1). 
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Figure 11 shows the results from the correlation calculations made between MODIS and 

TROPOMI. The n_obs for TROPOMI and MODIS are shown in the top two panels. These panels 

show the distributions of observations over the four summer months, which impacts interpretation. 

Many of the gridboxes in the top right panel in northern Canada have 0 observations for the entire 

period, which is represented by the grey color. This indicates that, for this section of the analysis, 

there is a significant lack of data in northern Canada in the DOD dataset, which is the focus of this 

section. While the purpose of this section is to understand the agreement, or lack thereof, of the 

instruments, it is important to note that this analysis is limited by MODIS data availability. 

When conducting a correlation analysis, a key component lies in the amount of data in each 

dataset that is being correlated. With more data points, represented by “n”, the correlation 

coefficient becomes a more reliable estimate of the true relationship observed between the two 

datasets (Berman, 2016). A larger sample size can also reduce the impact of sampling errors, 

meaning the results are less likely to be skewed by random measurement errors not caught by the 

quality filtering (Berman, 2016). The TROPOMI AAI and MODIS DOD datasets have a high, 

positive correlation in many locations (Figure 11), especially as n increases. However, there are 

several places where there is a strong negative correlation. This could be due to AAI having 

negative values, and because AAI does not have a cloud-clearing feature, so many of the AAI 

values are not indicative of pure dust in the atmospheric column (i.e., dust can be over a cloud), 

like MODIS is. So, removing negative AAI values might eliminate some of the negative 

correlations observed. However, negative correlations can also arise from other factors, such as 

different spatial resolution and averaging, sensitivity differences, or assumptions in retrieval 

algorithm differences. Understanding what causes the negative correlations is ultimately beyond 

the scope of this study. 
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Figure 12: The correlation (R) of TROPOMI AAI (all data) and MODIS DOD for all values of AAI (left) compared to only 
positive values of AAI (right). Strong red and strong blue coloring indicate strong positive and strong negative correlations 

respectively. All data comes from June through September 2021 and the minimum number of day (n) used in the calculations was 
2. 

Figure 12 shows the difference in correlation when the TROPOMI AAI data only includes 

positive AAI values, which correspond most closely to MODIS DOD (cf. Figure 10, where the 

negative AAI values are now eliminated, along with their coincident DOD values). There is a slight 

increase in positive correlation when negative AAI values are removed, but visible negative 

correlations remain. The observed increase in red gridboxes, indicating positive correlations, is to 

be expected since MODIS DOD does not include scattering aerosols (i.e. aerosols that lead to AAI 

< 0) like TROPOMI AAI does. The change in gridboxes after AAI filtering is quantified next.  
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Figure 13: Changes of percent gridboxes for different values of R (n > 2) when either positive AAI values (blue) or all AAI values 
(orange) are included. Values for the “All AAI” data set (orange bars) for R > 0.7 and R < -0.7 are 0.22% and 0.03% 

respectively. Gridboxes are in the geographical area shown in Figure 11. 

Figure 13 summarizes the percent gridboxes for different values of R for the correlation 

between MODIS and all TROPOMI AAI, compared to MODIS and only positive TROPOMI AAI. 

The percent gridboxes are fairly similar (within 10%) for all negative and positive correlations, no 

matter if AAI is filtered to include only positives, or not. Nevertheless, the percentage of positive 

R values increases after filtering (72%  80%) and the percentage of negative R values decreases 

after filtering (28%  20%). However, the percentage of gridboxes with R > 0.7 or R < -0.7 is 

much higher for only positive AAIs (~0%  46% and ~0%  8%, respectively). These R values 

correspond to an R2 > 0.5, meaning that the regression line explains 50% of the variance between 

the datasets. (Appendix C has a map that shows the R2 values for all AAI compared to positive 

AAI.) After filtering, the regression model between MODIS DOD and positive TROPOMI AAI 

fits better (46% of coincident data have R > 0.7 as opposed to ~0% before). This also indicates 

that, in general, the instruments display generally positive correlations, but they have even stronger 

positive correlations when negative AAI values, meaning scattering aerosols or clouds, are 

removed. This is to be expected as MODIS DOD specifically looks at dust aerosols (i.e. highly 
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absorbing and non-negative) and therefore should track better when TROPOMI also looks at AAI 

values that are more likely to be dust. It therefore appears that the agreement between MODIS and 

TROPOMI is improved when looking only at positive AAI values from TROPOMI. 

 

Figure 14: Changes in the percentage of gridboxes that correspond to different values of R as n increases. Gridboxes are in the 
same geographical area shown in Figure 11. All data comes from June through September 2021. 

 Figure 14 shows the percentage of gridboxes for different R values as n changes (cf. Figure 

10, where n was 26 over June to September in two example gridboxes; cf. also Figure 11 that 

showed the number of gridboxes decreasing as more coincidence is required).  As n increases, the 

percentage of gridboxes that have a positive correlation also increases, indicating that the 

instruments agree better as more coincident observations are required, although at the expense of 

losing gridboxes that do not satisfy the more stringent coincidence criteria (this will have an impact 

on p-values). Of note is that the percentage of negative correlation gridboxes decreases 

significantly as n increases, with strongly negatively correlated gridboxes dropping to 0% for 18 

coincident observations or more. This supports the idea that MODIS and TROPOMI aerosol data 

agree for the geographical area shown in Figure 11. 
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Figure 15: Correlation (R) between TROPOMI AAI (all data) and MODIS DOD for all p (left, same as Figure 12) and filtered by 
p < 0.1 (right). Strong red and strong blue coloring indicate strong positive and strong negative correlations respectively. All 

data comes from June through September 2021 and the minimum number of day (n) used in the calculations was 2. 

Figure 15 illustrates how filtering the correlation data for significant p-values leaves 

stronger correlations between MODIS DOD and TROPOMI AAI. This is evident from the 

decrease in correlations close to zero, apparent in the west of Canada near (70N, 125W) where 

much of the white and faint coloring disappears in the right panel. Although some regions, 

particularly in northern Canada, lack sufficient data, overall, the p-filtered dataset highlights 

areas of significant correlation between the two datasets. (cf. Figure 10 for a single grid box, 

which shows the high scatter in a non-significant p-value gridbox.)  Notably, strong negative 

correlations remain, but this figure requires the least coincident data points (n > 2), and Figure 

14 showed that negative correlations will decrease as n increases (at the expense of geographic 

coverage as seen in Figure 11).  The results shown in Figure 15 further characterize the 

agreement between the two instruments, now with p-value filtering.  The overall impression 

of this analysis is that the TROPOMI AAI > 0 data product agrees reasonably well with the 

MODIS DOD product.  As we require higher levels of data coincidence (increasing n, Figure 

11), higher correlation coefficients (R > 0.7, Figures 13 and 14), and higher statistical 

significance (p < 0.1, Figure 15), the number of gridboxes in the region of interest (northern 

Canada, > 60N) decreases.  However, this does not mean that the abundant TROPOMI 
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observations in northern Canada (Section 3.1) are suspect.  In the next section we compare 

TROPOMI to its heritage instrument, OMI, which produces the very similar UVAI product, 

and which is impacted by clouds in the same way as TROPOMI (as opposed to cloud-cleared 

MODIS DOD data). 

3.2.2 OMI 

 The top two panels in Figure 16 show the n_obs for each instrument for each gridbox over 

the entire month of August 2021. The important feature to notice here is that both instruments 

show n=31 for nearly every gridbox for the entire month. This means that the correlation plots will 

not change as we increase n_obs, especially in northern Canada. The middle-left panel shows the 

correlation of TROPOMI AAI and OMI UVAI for each gridbox over the entire month. Table 4 

shows the percent change in gridboxes when the minimum value of n increases. This data shows 

that, as expected, no changes to the calculated correlations are observed with increasing n. Looking 

back at Figure 16, it can be seen that there is a significant amount of positive correlations between 

both instruments (72.6 % positive gridboxes), as shown by the red on the map in the middle left 

panel. There is also a significant amount of deeper red gridboxes in higher latitudes, which means 

stronger positive correlations; however, very few gridboxes in Northern Canada have an R greater 

than 0.7 (see Table 4). Since both of these datasets are measuring the same quantity, absorbing 

aerosol index, there is no obvious need to filter out negative AAI values. This is because, in theory, 

negative AAIs should be measured in both datasets at the same time, therefore giving a high 

correlation. However, there are some locations where there is a negative correlation, indicated by 

the blue. There are not, however, large amounts of strongly negative correlations. This is further 

supported by Table 4 (below), which shows that negative R values account only for 27.4 % of the 

total gridboxes, with only 0.03% being less than -0.7.  
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Figure 16: Correlations between TROPOMI AAI and OMI UVAI datasets for August 2021. Top row shows the n_obs for 
TROPOMI (left) and OMI (right). (Middle left) – Correlation (R) between all TROPOMI AAI and OMI UVAI data. (Middle 
right) – Correlation for all OMI UVAI data and only positive TROPOMI AAI data. (Bottom right) – Correlation (R) of all 

TROPOMI AAI and OMI UVAI data, but only gridboxes corresponding to a significant p-value (p < 0.1) are kept. (Bottom left) – 
p-value for all TROPOMI AAI and OMU UVAI data. Grey coloring indicates NaN data. 

The right panel in the middle of Figure 16 shows that filtering TROPOMI for positive AAI 

increases the intensity of the calculated correlations. In fact, filtering for only positive AAI values 

increases the number of gridboxes with R > 0.7 from 0.23% to 47.6%. This is a significant 
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improvement from the first set of correlations with all AAI being included. Supported by the ATBD 

document and the discussion in section 1.2.1.1, filtering for positive AAI values strengthens the 

correlation with OMI AAI since TROPOMI can more readily detect high AAI even with clouds 

(Zweers, 2022). This filtering step helps ensure that a comparison of data less affected by cloud 

contamination is being made and that the data more likely represents true absorbing aerosols. 

Despite the TROPOMI algorithm being adapted from the OMI algorithm, there is clear 

disagreement between the instruments in some cases. This is indicated by negative correlation 

shown on the map in Figure 16. If the two datasets were exactly measuring the same aerosol 

changes in the atmosphere, a uniform color map would be observed where all gridboxes have an 

R = 1, but this is not the case. There is a large difference in the spatial resolution of TROPOMI 

compared to OMI, where the OMI is significantly coarser. This means that during the analysis 

process, the TROPOMI data had to be binned on a coarser scale, meaning that more AAI data is 

being averaged between each gridbox than for the OMI data. In fact, 400 5 x 5 km2 TROPOMI 

gridboxes were averaged into one 100 x 100 km2 gridbox to match the spatial resolution of OMI 

L3 products (the actual footprint of OMI is 13 x 24 km2). This is perhaps the reason why there is 

disagreement in some areas between the two instruments, i.e, having to do with AAI retrieval 

quality and robustness around clouds, which are sampled differently at different instrument 

measurement (native) resolutions.  

Another important feature of Figure 16 is that when filtering for positive TROPOMI AAI 

values there is an increase in strong correlations, but many of these strong correlations are in areas 

where the p-value was found not to be significant. In a direct comparison to the middle and bottom 

right panels in Figure 16, it can be seen that most of the stronger correlations in the southern parts 

of Canada are not statistically significant at the p < 0.1 threshold (bottom right panel). However, 
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it is important to note that the p-values used to filter the correlation data in the bottom right panel 

were found using all AAI data, while the middle right panel shows correlations found using only 

positive TROPOMI AAI data. While the feature of missing data is comparable, the datasets used 

between the two are not. A further analysis could be done to filter for positive AAI and statistically 

significant p-values. 

The last panel of Figure 16 shows that there are some statistically significant correlations 

between TROPOMI and OMI in northern Canada. However, there is a lack of strong and 

significant correlations across much of the rest of Canada.  Additionally, the filtering approaches 

used and the difference in spatial resolution require further analyses to fully understand the 

agreement and disagreement between the two instruments.  Overall, these findings suggest that 

TROPOMI shows reasonable AAI retrievals in agreement with OMI, notably also at the higher 

latitudes identified as potentially dust emitting (Figure 9). 

Table 4: Percent gridboxes for OMI and TROPOMI correlation (all AAI data) for August 2021. Bottom row shows the percent of 
gridboxes for the correlation dataset that has been filtered by significant p-value (p < 0.1). 

 Percent Gridboxes 

n_obs Positive R Negative R R > 0.7 R < -0.7 

> 2 72.6 % 27.4 % 0.23 % 0.03 % 

> 10 72.6 % 27.4 % 0.23 % 0.03 % 

31 72.6 % 27.4 % 0.23 % 0.03 % 

R filtered by p < 0.1 92.9 % 7.45 % 0.98 % 0.11 % 

Table 4 summarizes the distribution of gridboxes across various correlation coefficient (R) 

values for different threshold numbers of observations (n_obs). Notably, the percentage of 

gridboxes associated with each R value remains consistent even when n_obs reaches 31, as 

expected, since 31 observations are always present. The table further reveals that most gridboxes 
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show positive correlations, though the majority fall below an R of 0.7, indicating weak to moderate 

agreement between the two instruments. When the R dataset is filtered only for significant p 

values, the positive, strongly positive, and strongly negative correlations increase, while the total 

amount of negative correlations decrease. There is evidence therefore that some deeper analysis of 

the TROPOMI AAI data is required to ensure that its measurements are comparable to those made 

by OMI. The filtering tested in this study used for deeper analyses were positive AAI values and 

significant p values, but further testing or a combination of both of these might better reveal how 

well both instruments track aerosol changes in the atmosphere. The remaining disagreement likely 

stems from OMI's lower spatial resolution, causing TROPOMI gridboxes to average a wider range 

of AAI values and deviate from OMI's data, particularly in the presence of clouds. Alternatively, 

the discrepancy might be attributed in some part to TROPOMI's advancements in technology and 

retrieval algorithms compared to OMI. The OMI-TROPOMI correlation calculations were also 

only made over one month. This means that there are only 31 data points being used to calculate 

the correlation. It is possible that, if the correlation were to be made over a greater time span, say 

over the four-month summer period studied in the MODIS-TROPOMI correlation, the amount of 

strong correlations may increase. However, a deeper understanding of this disagreement falls 

outside the scope of this study. 
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3.3 RQ 3 

3.3.1 CO 

 

Figure 17: FoO maps showing the distribution of CO column density (measured in x 1018 [mol/m2]) for August 2021. (Top left) – 
n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO above different thresholds. (Top right) - Monthly mean CO. NaN 

data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 

Figure 17 illustrates the distribution of CO column density for August 2021. It specifically 

shows the FoO of CO for different CO thresholds, as well as the total n_obs (top left panel) and 

monthly mean (top right panel). The bottom six panels show that there are frequent amounts of 



 65 

CO above ~ 0.02 x 1018 mol/m2 while the frequency of even higher CO values reduces beyond that 

threshold. This is in line with a study by Wan, et al., 2023, which reports a CO value of 0.018 as 

“background CO”. These figures also show, specifically in the first panel, that most of the 

gridboxes over land have an n_obs greater than 1 and close to 31, (depending on the number of 

days in the month). There is a significant reduction in frequency of CO as the threshold value 

increases. This is to be expected since high amounts of CO in an atmospheric column are less 

frequent due to the finite amount of fuel available to emit CO. Appendix C shows the same plots 

but for the rest of the summer months, June, July and September. The patterns observed in Figure 

17 are consistent across all four months. 

With the information presented in Figure 17, it was decided to use a threshold of CO 0.01 

to begin the filtering of AAI data. The decision of what CO values to use to filter the AAI data 

depends on the desired outcome of the analysis. For the purposes of this study, several CO 

thresholds (ranging from 0.01 to 0.05) were used to filter the AAI data to understand how the CO 

dataset would impact the distributions of aerosols observed in the dataset. It was desired to use a 

CO value below the background value to compare and ensure that the literature value of 0.018 was 

consistent with the observations made in TROPOMI. What this means is the AAI dataset filtered 

by CO of 0.01 should leave little to no data in the AAI dataset after filtering. This is primarily 

because the n_obs for all CO (first panel in Figure 17) and the n_obs for CO greater than 0.01 

(second row right panel) shows the same thing, meaning that all CO data is contained at a value 

greater than 0.01. It is expected to remove all AAI data because CO is below the accepted 

background value, meaning that the “normal” amount of CO that is naturally found in the 

atmosphere is accepted to be 0.018 mol/cm2 so any CO values below 0.01 mol/cm² would likely 

represent measurement noise or other outliers, and not true atmospheric CO concentrations. 
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Figure 18: The changes in n_obs for August 2021 as the AAI data is filtered by CO data at different thresholds. (Top left) – n_obs 
for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CO. 
Gridboxes that did not have a CO value below the desired threshold were set to NaN, indicated by the grey coloring. The 

minimum n_days is 1 and the maximum is 31. 

 The top left panel in Figure 18 shows the n_obs for unfiltered data. In subsequent panels, 

as the CO threshold increases, so does n_obs. The bottom right panel shows zero n_obs for AAI 

data where coincident CO values are also 0.01 or below, as expected based on the literature value 

for background CO of 0.018. The rest of the panels in Figure 18 show the n_obs increasing as the 
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threshold for CO increases. This increase in n_obs indicates that there are a lot of AAI data that 

are not coincident with high CO values, meaning that the observed AAI are unlikely due to forest 

fire absorbing aerosols (soot) associated with high CO gas values, i.e., confounding of dust. 

 

Figure 19: FoO of AAI greater than 0.5 for August 2021. Each panel is the same AAI dataset but filtered by different CO 
thresholds, except the top left which is the unfiltered AAI dataset. NaN data is represented by grey coloring. Here, NaN data is 

either bad quality or gridboxes where n_days was 0. 
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Figure 19 illustrates the distribution of FoO of AAI > 0.5 for different thresholds of CO 

applied to filter the AAI data. The last panel in Figure 19 shows an entirely grey map, which means 

that there are no distributions of AAI above 0.5 that also have a coincident CO value of 0.1 or 

below. This, again, is to be expected from Figure 18. As the CO threshold increases, increasing 

areas with frequencies of occurrence of AAI appear on the maps, with increasing FoO values. For 

example, looking at the region near 110W and 50N, as more CO data is kept, more frequently we 

find AAI above 0.5 in that region. This indicates that those distributions of AAI are areas with low 

concentrations of CO and are therefore more likely to be MDAs instead of urban or biomass 

burning absorbing aerosols like soot. Looking at the northern part of Canada, around 70N and 

110W to 80W, there are frequencies of occurrence of AAI above 0.5, even after gridboxes with 

high CO were removed. This indicates that those regions show distributions of absorbing aerosols 

that are not associated with CO, meaning they are not smoke or soot and are therefore more likely 

to be MDAs. Removing data from the AAI dataset where there are high coincident CO values 

effectively eliminates distributions of AAI data that are unlikely to be MDAs, since MDAs are not 

co-emitted with CO. The general effect of the CO dataset on the AAI dataset is that it aids in 

filtering for different types of absorbing aerosols, which the AAI product does not distinguish 

alone. It helps in understanding the distribution of AAI data by removing hotspots with a lot of CO 

that are likely to be forest fires or perhaps transported dust mixed with CO, effectively removing 

areas that would not be the dust source areas (i.e., Figure 9) of most direct interest to this study. 
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Figure 20: Correlation (R) values for August 2021 between TROPOMI AAI and MODIS DOD. The TROPOMI AAI data has been 
regridded to match the 10 x 10 km2 resolution of MODIS DOD data. The AAI data has also been filtered by different values of 

CO. Grey areas indicate areas where there is no data, meaning that no correlation could be calculated for those gridboxes. 

 Figure 20 shows the correlation between TROPOMI and MODIS aerosol data. The bottom 

two panels show nearly no gridboxes where correlations could be calculated, since they have been 

filtered to remove any AAI data that is coincident with CO data near or below the background 

value. The bottom left panel, in reality, has only 64 gridboxes with available data, which is 

essentially negligible with the total number of gridboxes of 3,240,000. The rest of the panels show 

significant variations between red and blue coloring, indicating heterogeneously distributed 

positive and negative correlations. This indicates that, while there is agreement between the 
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instruments in some locations, there is also disagreement. To better understand how CO filtering 

impacts the correlation between MODIS and TROPOMI, we look at the specific numbers of strong 

and significant correlations that remain before and after filtering. However, it is a limitation of this 

study that the correlation calculations made are severely lacking in the area of interest (i.e. northern 

Canada). 

 

Figure 21: Graph showing the changes in percentages of gridboxes for the different AAI datasets plotted in Figure 20. The AAI 
datasets are where CO has been used to filter the data and the unfiltered AAI data (orange bar). Each color represents a different 

CO filter that had been used on the AAI data. An n>2 used in each dataset indicates a minimum of 2 data points (i.e. two days) 
were used in the correlation calculations for each gridbox. 

 Figure 21 shows the variation in the percentage of gridboxes for the differently filtered 

AAI datasets. The dataset where gridboxes with a CO value greater than 0.01 were removed had 

0 gridboxes remaining, hence why it is not seen on the graph. For the datasets filtered by CO of 

0.03, 0.04, and 0.05, there are more negative correlations than positive ones. This observation can 

also be made by looking at Figure 20 and observing the large amounts of blue on the maps in 

panels in the last two rows. While the dataset with CO filtering of 0.02 shows similar patterns as 
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the other three datasets, it is important to note that there is a significant lack of gridboxes for this 

dataset compared to the others (i.e. 64 total gridboxes compared to 23945 or 89344 gridboxes). 

This analysis shows that filtering the AAI dataset does not improve the correlation between 

MODIS DOD and TROPOMI AAI, as anticipated. 

 Figure 21 also shows the dataset where CO greater than 0.05 has been removed from the 

AAI data. It can be seen that this dataset has more positive correlations than negative ones, 

indicating a better agreement between the two instruments compared to the other CO filters. This 

is also the dataset where the least AAI data has been removed, meaning that there is more AAI 

data available to make correlations. This is indicated in Figure 20, as well as by the decrease in 

grey areas. The fact that there is better agreement in this dataset indicates that filtering CO data 

and thereby removing certain AAI hotspots does not necessarily increase the correlation between 

the two instruments. The orange bar in Figure 21 represents the AAI dataset that has not been 

filtered by any CO. This dataset has the greatest percentage of positive gridboxes and the lowest 

amount of negative gridboxes. This means that the greatest amount of agreement between MODIS 

and TROPOMI is found in the unfiltered dataset. This also aligns with the results in section 3.2.1 

where the strongest correlations are observed when the greatest number of observations are used. 

In the case of the filtered AAI datasets, retrievals for individual grid boxes are removed if they do 

not meet the CO filtering criteria. This effectively reduces the number of observations used for 

comparison within those grid boxes, thereby decreasing the observed agreement between the two 

instruments. 

 The lack of improved agreement between the two instruments from the filtered datasets 

compared to the unfiltered datasets, as seen in Figure 20, has several implications. First, the 

filtering may not be effectively removing all fire aerosols from the AAI data. While CO is often a 
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good indicator of fires, it is not a perfect one in this case. Other fire emissions, like organic matter 

or black carbon, might still be present in the AAI data and contribute to the lack of increased 

correlation with MODIS DOD. It is also possible that factors unrelated to fire or dust aerosols are 

influencing the datasets. This may be due instrument calibration issues, retrieval errors, or the 

presence of other aerosol types not captured by the filtering or DOD measurements. While the lack 

of increased correlation after CO filtering was not anticipated, it was based on a logical assumption 

of correlation between non-MDA absorbing aerosols like soot and CO.  It indicates the need to 

consider the limitations of the filtering approach in detail, and the potential dominance of other 

aerosol types in the analysis, which are beyond the scope of this study.  

3.3.2 CLO 

Figure 22 shows the different FoOs for CLO for August 2021. In most areas, frequency of 

occurrence decreases as the CLO threshold increases. This indicates that days with gridboxes 

covered by high percentages of clouds are less frequent. The first panel in Figure 22 shows the 

total n_obs for the month. The nearly uniform dark color indicates that most gridboxes had 

observations for each day of the month. The n_obs distribution is almost entirely over land in the 

higher latitudes, besides around 75N and 140W. The lack of observations over the water in these 

regions indicates that the CLO collected over water in higher latitudes either does not exist or did 

not pass the quality filtering when gridding the data. This makes sense because remote sensing 

over water with large amounts of sea ice can be confounding for remote sensing instruments. The 

TROPOMI CLO product does collect data over oceans but increasing sun glint from sea ice is 

high, especially in the summer months. Appendix C, showing the same information as Figure 22 

but for the other three months, shows the same phenomenon with lack of data over oceans. 
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Figure 22: The changes in n_obs for August 2021 as the AAI data is filtered by CLO data at different thresholds. (Top left) – 
n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CLO. 

Gridboxes that did not have a CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 31. 

The top right panel in Figure 22 shows the monthly mean CLO for August 2021, which 

varies significantly in space. The regions where the mean CLO is closer to 1 are cloudier than 

regions with a lower cloud fraction. Average CLO around the 70N band is fairly high (> 0.7). It 

can therefore be inferred that a lot of the AAI data around that band may be obscured by clouds, 
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which may be confounding for the AAI dataset since it does not clear clouds, but rather exhibits 

values near and below zero for clouds (Zweers, 2022). 

 

Figure 23: The changes in n_obs for August 2021 as the AAI data is filtered by CLO data at different thresholds. (Top left) – 
n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CLO. 

Gridboxes that did not have a CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 31. 

The first panel in Figure 23 shows the unfiltered n_obs for the month of August 2021. As the 

CLO threshold increases, the n_obs also increases. This is because more gridboxes are being 
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included with the higher CLO threshold. The right panel in the top row shows the n_obs where 

CLO not being 0 is removed. This means that any gridboxes with any cloud contamination have 

been removed from the AAI data. This panel is the one with the least n_obs, which is to be expected 

because the most data has been removed from that AAI dataset. Throughout the rest of the panels 

there is a significant frequency of observations in the northern part of Canada. Looking specifically 

at the second and third panels, many of the regions in northern Canada, say around (65W, 85N), 

frequently have non-NaN data. This indicates that the distributions of AAI data in that region are 

not just from cloudy observations, therefore indicating the likelihood of the presence of other kinds 

of aerosols, particularly when AAI > 0. 
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Figure 24: FoO of AAI greater than 0.5 for August 2021. Each panel is based on the same AAI dataset that has been filtered by a 
different CLO threshold, except the top left which is the unfiltered AAI dataset. NaN data is represented by grey coloring. Here, 

NaN data is either bad quality or gridboxes where n_days was 0. 

The first panel in Figure 24 shows the FoO AAI above 0.5 that is unfiltered by CLO data. 

The top right panel shows the FoO AAI above 0.5 where only gridboxes with no cloud 

contamination are kept. Despite a lot of “NaN” data, there are some regions in northern Canada 

that have frequencies of occurrences, and they correspond to those highlighted in Figure 8. 

Looking specifically at 80W – 95W and 70N, there are regions with AAI above 0.5 for multiple 
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days over the month. This indicates that those AAI distributions are not from clouds as the only 

gridboxes kept in this second panel are gridboxes with a cloud fraction of 0. 

As the cloud fraction threshold increases, more frequent observations are noted, indicated 

by the increased number of gridboxes and increased color. This is particularly noticeable around 

125W and 50N where more frequent observations are made as more cloud-covered retrievals are 

kept. This increase in FoO across CLO thresholds indicates that the observed distributions of AAI 

data may be from clouds rather than absorbing aerosols. The fact that, with a cloud fraction of 0.4 

or 0.2 kept only (i.e. middle row of Figure 24), there are still distributions of AAI data in northern 

Canada indicates that those aerosols are more reliable indicators of non-scattering aerosols or 

clouds. This is an important observation as the AAI data does not have a cloud-clearing feature, 

but using the CLO data to remove gridboxes with high CLO values is essentially manually creating 

a cloud-clearing. This is an important step in the analysis as it aids in removing distributions of 

AAI data that are contaminated by clouds and therefore less reliable indicators of MDAs, therefore 

allowing for closer examination of regions left with low cloud coverage and frequent AAI values. 

As previously mentioned, clouds can be confounding for satellite instruments, especially for the 

AAI product. It is known that AAI values are easily detectable in the presence of clouds if the AAI 

is greater than 1 (Zweers, 2022), but removing cloudy data from the AAI datasets further adds a 

level of confidence in the measured AAI values that are indicative of MDAs (AAI > 0.5), but are 

less reliable in the presence of clouds. 
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Figure 25: Correlation (R) values for August 2021 between TROPOMI AAI and MODIS DOD. The TROPOMI AAI data has been 
regridded to match the 10 x 10 km2 resolution of MODIS DOD data. The AAI data has also been filtered by different values of 
CLO. Grey areas indicate areas where there is no data, meaning that no correlation could be calculated for those gridboxes. 

 Figure 25 shows the correlation map between TROPOMI AAI and MODIS DOD where 

the AAI data has been filtered by the cloud data. It can be seen that throughout all panels, there 

tends to be a spatial heterogeneity of positive and negative correlations. The coloring across all 

four panels also appears to be intense, indicating that there are many, strong positive or negative 

correlations. While there is a lack of data availability in the northern latitudes, there appear to be 

mainly red, therefore positive, correlations in the higher latitudes. This indicates that there is 
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potential agreement between the instruments when CLO data has been used to remove gridboxes 

where there are known clouds in the AAI data. Next we quantify the changes in correlation and 

the precise numbers of strong and significant correlations when the AAI data has been filtered by 

CLO. 

 

Figure 26: Graph showing the changes in percentages of gridboxes for the different AAI datasets. The AAI datasets are where 
CLO has been used to filter the data and the unfiltered AAI data (orange bar). Each color represents a different CLO filter that 

had been used on the AAI data. An n>2 used in each dataset indicates a minimum of 2 data points (i.e. two days) were used in the 
correlation calculations for each gridbox. 

 Figure 26 shows a bar graph representing the changes in percentages of gridboxes for 

different values of R. The different colors represent the different CLO thresholds used to filter the 

AAI data. In most cases, there are more positive correlations than negative ones, indicating overall 

agreement between the two instruments. The exception is the dataset where only cloud-free 

gridboxes were kept, shown by the green bar in Figure 26. The greater amount of negative 

correlation existing for this dataset implies that filtering for purely cloud-free scenes is removing 
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instances of aerosol detection from the AAI dataset that are mixed with cloud-contaminated pixels, 

thus leading to the mismatch in measurements in aerosol properties between the two instruments. 

It can also be seen that as more gridboxes with a higher percentage of cloud coverage are kept in 

the AAI data, the greater the percentage of gridboxes that are greater than 0.7. This is seen in 

Figure 26 where, from right to left (meaning lower CLO threshold to greater CLO threshold), the 

bar gets larger, indicating a higher percentage of gridboxes. This R value also indicates an R2 

greater than 0.5. This therefore implies that as more gridboxes are kept, the greater the amount of 

strong R2 values, therefore implying that those datasets with less cloud clearing are a better 

representation of the aerosol distributions, in relation to MODIS DOD data. The fact that the 

orange bar, indicating the unfiltered dataset, is largest for positive correlations suggests that the 

most agreement between MODIS and TROPOMI is seen when the AAI data is unfiltered. 

The increase in positive correlations from CLO 0.2 to CLO 0.8 (12.5%), meaning an 

increased amount of gridboxes are kept with a cloud fraction up to 80%, suggests that more AAI 

data, regardless of the cloud cover, improves the correlation and therefore the agreement between 

MODIS and TROPOMI. This means that including more cloud-covered data may increase the 

chance of capturing these positive relationships. The increase in positive correlations and decrease 

in negative correlations as less AAI data is removed indicates that the filtering of AAI data by CLO 

data does not increase its correlation to MODIS DOD. As with the CO results, this is inline with 

the results in section 3.2.1 where more observations lead to more positive correlations. 

Filtering the AAI data by cloud data has unexpected consequences for the correlation 

between TROPOMI AAI and MODIS DOD. Clouds can act like a physical curtain that blocks the 

view of the Earth's surface from satellites, including areas with high concentrations of dust aerosols 

that MODIS DOD is designed to detect. When filtering out these cloud-covered gridboxes from 
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the AAI data, it may be disregarding datapoints where AAI is below 1 (i.e. where AAI values are 

easily detectable in the presence of clouds (Zweers, 2022)) and therefore contaminated by clouds 

and not easily detectable. This can lead to underestimating the actual positive correlation between 

dust aerosols and the total aerosols measured by TROPOMI. 

3.3.3 Implications in northern Canada 

 
Figure 27: Zoomed-in FoO of AAI greater than 0.5 for August 202. (Left) - unfiltered AAI dataset. (Right) – AAI dataset filtered 

by CO greater than 0.05. NaN data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where 
n_days was 0. Red circle shows the same area discussed in section 3.1.2 with low vegetation cover (see Figures 8 and 9). 

 Figure 27 is a zoomed in map of the unfiltered AAI dataset compared to the AAI dataset 

where CO > 0.05 has been removed. This figure shows the FoO of AAI greater than 0.5. In both 

cases, there are clear observations of AAI values for multiple days over the month. Looking at the 

right panel, there are places where aerosol loadings exist for multiple days that have an AAI greater 

than 0.5, indicating that these distribution of AAI values are due to aerosols that are not coincident 

with high CO. This is especially important to note as a CO of 0.05 (around three times the 

background value of CO (0.018 × 3 = 0.054 ~ 0.05)), does not significantly alter the FoO 

distribution of AAI greater than 0.5, implying that these observed absorbing aerosols are not 

strongly associated with smoke aerosols. The FoO of AAI circled in red in both panels is the same 

area within the Arctic Archipelago that had low vegetation coverage and high FoO of AAI close 

to the surface. This is significant as it further indicates that the results in section 3.1.2 are showing 
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MDA distributions and may be originating from a close by source and are unlikely to be linked to 

absorbing aerosols mixed with high CO concentration.  

 

 
Figure 28: Zoomed-in FoO of AAI greater than 0.5 for August 202. (Left) - unfiltered AAI dataset. (Right) – AAI dataset filtered 

by CLO equal to 0 (i.e. cloud free pixels). NaN data is represented by grey coloring. Here, NaN data is either bad quality or 
gridboxes where n_days was 0. Red circle shows the same area discussed in section 3.1.2 with low vegetation cover (see Figures 

8 and 9) 

Figure 28 is a zoomed in map of the unfiltered AAI dataset compared to the AAI dataset 

where CLO not equal to 0 has been removed, meaning only cloud-free gridboxes were kept. This 

figure shows the FoO of AAI greater than 0.5. It can be seen that in both figures, there are frequent 

observations of AAI greater than 0.5. Notably, the same area in the Arctic Archipelago (circled in 

red) has recurring observations of AAI greater than 0.5. Since the right panel shows the AAI data 

where only cloud-free scenes have been kept, it is unlikely that these AAI observations are showing 

clouds. This is significant because the TROPOMI AAI can be calculated in the presence of clouds, 

but clouds can also block absorbing aerosols that are below it. So, the AAI data left are not 

obscured by clouds and are therefore likely only absorbing aerosols, thus showing the presence of 

MDAs. This further supports the results found in section 3.1.2. 
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4. Conclusions 

4.1 RQ1 

The results in section 3.1 demonstrate the distributions of aerosols in northern Canada, 

according to TROPOMI’s aerosol products. These distributions are not as frequent or absorbing as 

other areas (like BC or Alberta) but there is still evidence in these maps that there is aerosol activity 

there. Some of the distributions are in line with already researched areas, but in some cases, there 

is evidence that there may be dust activity in other parts of northern Canada. So, according to 

TROPOMI, the distribution of dust in northern Canada appears to suggest that there is aerosol 

activity in unexplored or unidentified areas. 

When filtering by ALH, there continues to be AAI values of interest in northern Canada. As 

ALH decreased (i.e. got closer to the surface) it was observed that the corresponding AAI values 

became less frequent. However, there was still some evidence of aerosol activity in northern 

Canada at an ALH below 1000 m. This indicates that those aerosols are close to the Earth’s surface 

and therefore are unlikely to have been transported across any large distance. So, the ALH filtering 

implies that those areas with frequent aerosol activity and that are in close proximity to the Earth’s 

surface are more likely to be aerosols originating in those areas, rather than aerosols that have been 

transported from somewhere else. 

4.2 RQ2 

4.2.1 MODIS 

The correlation plots and statistical information in section 3.2.1 showed that MODIS and 

TROPOMI agreed as the number of minimum observations used in the correlation calculation (n) 

increased. The results also showed that strong correlations (i.e. R2 greater than 0.5) became more 

frequent as n increased. When filtering by positive TROPOMI AAI values, the correlations became 
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even stronger. This observation is to be expected because MODIS rejects radiance data when it is 

contaminated by high cloud coverage and radiances have been analyzed for dust-specific aerosols. 

So, MODIS DOD data and TROPOMI AAI data demonstrate stronger correlations with positive 

AAI values. 

4.2.2 OMI 

Similar to the results found for MODIS-TROPOMI correlations, OMI and TROPOMI 

showed overall agreement, based on the results in section 3.2.2. It was found that the two 

instruments agreed for the majority, with positive correlations accounting for ~70% of all 

gridboxes. There were some phenomena of disagreement observed that were unexpected. While 

the disagreement in some areas was unexpected and unexplainable within the scope of this study, 

most of the gridboxes showed agreement between the two instruments. It can therefore be said that 

OMI and TROPOMI demonstrate mostly positive correlations and therefore the two instruments 

moderately agree. 

4.3 RQ3 

4.3.1 CO 

The CO product removed certain instances of observed aerosols distributions when the 

AAI data was filtered by it. The results showed that as the threshold for CO increased, the 

significant hotspot areas of AAI became less frequent (i.e. the banding at 70N or southwest 

Canada). This result is indicative of absorbing aerosols being coincident with high concentrations 

of CO, which is in turn associated with aerosols that are not of interest in this study (e.g., soot, co-

emitted with CO in fires). In essence, the effect of the CO product is that it aids in removing aerosol 

hotspots that are unlikely to be MDAs, which are the interest of this study. It was found that FoO 
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of AAI with CO filtering persists in the same areas as found with RQ1, therefore solidifying the 

idea that MDAs exist in areas previously unstudied in northern Canada (Figure 8). 

When analysing the impacts of CO filtering on the correlation to other notable instruments, 

it was seen that CO filtering did not increase the correlation between MODIS and TROPOMI as 

anticipated. While CO is a good indicator of fires, other fire-related aerosols could still be present 

in the AAI data, leading to a minimal increase in correlation with DOD. 

4.3.2 CLO 

The CLO product removed gridboxes from the AAI data that were likely to be 

measurements of clouds mixed with MDAs, or pure clouds. As the threshold for CLO increased, 

many of the hotspot frequencies decreased. However, it was also observed that many of the high 

latitude regions retained their FoOs, even when only cloud-free scenes were kept. This indicates 

that the aerosols observed in those locations are not clouds and are therefore likely to be other, 

non-scattering aerosols (like MDAs).This filtering also showed the same frequent observations of 

AAI values above 0.5 in the same Arctic Archipelago regions (Figure 8) as found in RQ1, therefore 

continuing to support the likelihood of the aerosols being MDAs and not clouds or CO-related 

aerosols. 

Examining the correlation of the filtered AAI data to MODIS DOD revealed that the CLO 

data filtering does not increase the correlation between the two instruments. Similar to CO 

filtering, CLO filtering might not be very effective in isolating mixed or obscured aerosols. The 

retrieval process for AAI might not directly correspond to the parameters measured by CLO, 

leading to a limited impact on the overall correlation with MODIS DOD. 
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4.4 Relevance and Future Work 

The results in this study highlight the distributions of aerosols in northern Canada. The 

study used TROPOMI data to understand aerosol patterns in high latitudes. It was found that, 

according to TROPOMI, there are distributions of absorbing aerosols that appear to be close to the 

surface of the Earth in northern Canada (Figure 8), indicating possible MDA sources in those areas. 

The information on aerosol distributions found in this study paves the way for a few avenues of 

future research. Efforts could be directed towards verifying and characterizing these potential 

MDA sources. This might involve deploying instruments for ground-based measurements within 

the identified areas to directly confirm the presence and characteristics of the sources, such as dust 

emission and composition. Developing atmospheric models to include dust emission from these 

regions could also offer valuable insights into the emission and deposition patterns of these 

aerosols, therefore accurately assessing the potential climate impacts discussed in section 1. By 

building upon the current study and pursuing these suggested avenues of future research, there is 

a possibility of gaining a more comprehensive understanding of aerosol distributions and their 

potential climate and air quality impacts in northern Canada. This knowledge could ultimately 

inform strategies for environmental monitoring and climate change prevention practices. 
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Appendices 

Appendix A – Section 1 

No appendix materials from Section 1 (Introduction) were included. 
 
Appendix B – Section 2 

 
Figure 29: Differences in RPRO TROPOMI AAI data and OFFL TROPOMI AAI data for August 2021. (Left) – Monthly mean 
AAI for OFFL. (Middle left) – Monthly mean AAI for RPRO. (Middle right) - Difference in monthly mean AAI RPRO data and 

OFFL data. (Right) – Relative percent difference (to OFFL). 

Appendix C – Section 3 

3.1 

 
Figure 30: FoO of AAI at increasing thresholds over June 2021. Grey coloring indicates gridboxes either with NaN data or 
gridboxes with AAI below the given threshold (if n_days = 0, it was set to NaN). The minimum n_days is 1 and the maximum 

n_days is 30. 
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Figure 31: FoO of AAI at increasing thresholds over July 2021. Grey coloring indicates gridboxes either with NaN data or 

gridboxes with AAI below the given threshold (if n_days = 0, it was set to NaN). The minimum n_days is 1 and the maximum 
n_days is 31. 

 
Figure 32: FoO of AAI at increasing thresholds over August 2021. Grey coloring indicates gridboxes either with NaN data or 
gridboxes with AAI below the given threshold (if n_days = 0, it was set to NaN). The minimum n_days is 1 and the maximum 

n_days is 31. 
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3.1.1 

 
Figure 33: The changes in n_obs for July 2021 as the AAI data is filtered by ALH data at different thresholds. Gridboxes that did 
not have an ALH value below the desired threshold were set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 

and the maximum is 30. 

 

 
Figure 34: The changes in n_obs for July 2021 as the AAI data is filtered by ALH data at different thresholds. Gridboxes that did 
not have an ALH value below the desired threshold were set to NaN, indicated by the grey coloring. The minimum FoO AAI is 1 

and the maximum is 31. 
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Figure 35: The changes in n_obs for September 2021 as the AAI data is filtered by ALH data at different thresholds. Gridboxes 
that did not have an ALH value below the desired threshold were set to NaN, indicated by the grey coloring. The minimum FoO 

AAI is 1 and the maximum is 30. 

 
Figure 36: FoO of AAI greater than 0.5 for June 2021. Each panel is a different AAI dataset that has been filtered by ALH. NaN 

data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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Figure 37: FoO of AAI greater than 0.5 for July 2021. Each panel is a different AAI dataset that has been filtered by ALH. NaN 

data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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Figure 38: FoO of AAI greater than 0.5 for September 2021. Each panel is a different AAI dataset that has been filtered by ALH. 

NaN data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 

 
 
3.2 

 
Figure 39: R2 for all AAI (left) compared to positive AAI (right). White coloring indicates an R2 at or close to 0 and red coloring 

indicates R2 at or close to 1. 
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3.3.1 

 

Figure 40: FoO maps showing the distribution of CO column density (measured in x 1018 [mol/m2]) for June 2021. (Top left) – 
n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO at different thresholds. (Top right) - Monthly meaned CO. NaN data 

is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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Figure 41: FoO maps showing the distribution of CO column density (measured in x 1018 [mol/m2]) for July 2021. (Top left) – 
n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO at different thresholds. (Top right) - Monthly meaned CO. NaN data 

is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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Figure 42: FoO maps showing the distribution of CO column density (measured in x 1018 [mol/m2]) for September 2021. (Top 
left) – n_obs for the TROPOMI CO data. (Rows 2:4) - FoO of CO at different thresholds. (Top right) - Monthly meaned CO. NaN 

data is represented by grey coloring. Here, NaN data is either bad quality or gridboxes where n_days was 0. 
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3.3.2 

 

Figure 43: The changes in n_obs for June 2021 as the AAI data is filtered by CLO data at different thresholds. (Top left) – n_obs 
for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CLO. 
Gridboxes that did not have a CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 

minimum n_days is 1 and the maximum is 30. 
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Figure 44: The changes in n_obs for July 2021 as the AAI data is filtered by CLO data at different thresholds. (Top left) – n_obs 
for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CLO. 
Gridboxes that did not have a CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 

minimum n_days is 1 and the maximum is 31. 

 



 98 

 

Figure 45: The changes in n_obs for September 2021 as the AAI data is filtered by CLO data at different thresholds. (Top left) – 
n_obs for the unfiltered dataset. (Rest of panels) – n_obs for the AAI datasets that have been filtered by different values of CLO. 

Gridboxes that did not have a CLO value below the desired threshold were set to NaN, indicated by the grey coloring. The 
minimum n_days is 1 and the maximum is 30.. 
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