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Investigation of Atmospheric Trace Gas Composition and Air-Sea Flux Detection 

Potential over the Halifax (NS) Harbour Using OP-FTIR Spectroscopy 

By Lukas Donovan 

 

 

Abstract 

In a world where air quality and the future of the earth are being heavily influenced 
by anthropogenic pollution, it is vital to protect air quality and improve our understanding 
of the relationship between the ocean and atmospheric trace gas composition. Tropospheric 
trace gas concentrations as well as vertical concentration differences (an input to the 
calculation of ocean-air flux) are derived over a period of one month (August – September, 
2021), based on available long Open-Path Fourier Transform InfraRed (OP-FTIR) 
spectroscopic measurements at the air-sea interface in ambient air in Halifax, NS. Average 
concentrations and measurement errors are reported, as well as possible explanations 
driving the temporal behaviour of key air-quality related trace gases (ammonia, formic 
acid, carbonyl sulfide, carbon monoxide, and methanol), as well as the greenhouse gas 
carbon dioxide. The concentration results show ship plume events as well as diurnal cycles. 
The concentration differences suggest an ocean source of carbonyl sulfide and formic acid, 
and an ocean sink of carbon dioxide and ammonia, which is consistent with prior 
knowledge of air-sea gas exchange. This is the first report of the flux-related concentration 
difference of these gases in a marine environment by this technique. Prior to these spectral 
retrievals, the sensitivity to different parameter choices in fitting OP-FTIR spectra using 
the Multiple Atmospheric Layer Transition (MALT) Non-Linear Least Squares (NLLS) 
algorithm was investigated, with a focus on the FOV parameter, which is related to the 
optical configuration of the spectrometer and spectral line broadening.    
 

 

April 30, 2024 

 

  



4 

 

   

 

Acknowledgements 

 

Thank you to my family for all their support over the years.  
 
Thank you to Dr. Aldona Wiacek, my supervisor, for her support and encouragement 
throughout.  
 
Thank you to the members of the Wiacek Atmospheric Research Group for their support 
and inspiration as well.  
 
Thank you to Dr. Malcolm Butler for being my reader and giving me valuable feedback 
on my work. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



5 

 

   

 

Table of Contents 
Abstract ............................................................................................................................... 3 
Acknowledgements ............................................................................................................. 4 
Table of Contents ................................................................................................................ 5 
1. Introduction ..................................................................................................................... 7 

1.1 – Motivation: Target Molecules and the Environment ............................................. 7 
1.2 – Overview of OP-FTIR Spectroscopy and Spectral Fitting Methodology ............ 10 
1.3 – Objectives, Organization of Thesis and Scope of Work ...................................... 13 

2. Methods ......................................................................................................................... 18 
2.1 – Sensitivity Analysis of Spectral Fitting Parameter Choices ................................. 18 
2.2 – Spectral Data Quality and Filtering ...................................................................... 20 
2.3 – Trace Gas Concentration Retrieval Execution and Analysis ............................... 27 
2.4 – Ocean-Air Flux Related ....................................................................................... 28 

3. Results ........................................................................................................................... 30 
3.1 – Sensitivity Analysis of Spectral Fitting Methodology ......................................... 30 

3.1.1 – Ammonia (NH3)............................................................................................. 30 
3.1.2 – Carbon Monoxide (CO) ................................................................................. 36 

3.2 – Detailed Investigation of the ‘FOV’ Spectral Fitting Parameter .......................... 40 
3.3 – Concentration Results and Application to Shipping Emissions Detection .......... 44 
3.4 – Concentration Results and Application to Air-Sea Flux ...................................... 47 

3.4.1 – NH3 ................................................................................................................ 48 
3.4.2 – CO2 ................................................................................................................ 49 
3.4.3 – OCS ............................................................................................................... 51 
3.4.4 – HCOOH ......................................................................................................... 59 
3.4.5 – Note on O3 ..................................................................................................... 62 

4. Discussion ..................................................................................................................... 63 
4.1 – Retrieval-Related Discussion (Results Sections 3.1 and 3.2) .............................. 63 
4.2 – Concentration and Concentration Difference Discussion (Results Sections 3.3 - 
3.4) ................................................................................................................................. 67 

5. Conclusions ................................................................................................................... 68 
Future Work .................................................................................................................. 70 

Appendix ........................................................................................................................... 72 
A.1 – Retrieval Window and Spectral Fit Examples .................................................... 72 



6 

 

   

 

A.2 – Retrieval Configuration Details ........................................................................... 77 
A.3 – Extra Figures from 3.1 ......................................................................................... 78 

A.3.1 – NH3 Parameter Space Plots........................................................................... 78 
A.3.2 – CO Parameter Space Plots ............................................................................ 81 
A.3.3 – CO2 Parameter Space Plots ........................................................................... 82 

A.4 – CH3OH Diagnostics ............................................................................................ 85 
A.5 – Average Correlation Matrices ............................................................................. 85 

A.5.1 – CO (and CO2) Retrieval Average Correlation Matrices ............................... 86 
A.5.2 – NH3 Retrieval Average Correlation Matrices ............................................... 86 
A.5.3 – Other Retrieval Average Correlation Matrices ............................................. 88 

A.6 – CO2 Inter-window Comparison ........................................................................... 89 
References ......................................................................................................................... 92 
 
 

 

  



7 

 

   

 

1. Introduction 

1.1 – Motivation: Target Molecules and the Environment 

State-of-the-art global earth system models, which increasingly include 

biogeochemical processes, currently have large uncertainties on their simulated ocean-air 

fluxes of trace gases. The ocean is known to be a source, sink, or both, of various trace 

gases, and is in some cases a dominant factor in the resultant composition of the 

atmosphere. As the climate of the Earth changes, so does the nature of ocean-air 

interactions, and it is important to increase scientific knowledge of these processes to 

improve our predictive capacity — both for present and future climate predictions. The 

list of target molecules investigated in this work contains greenhouse gases (GHGs) 

(carbon dioxide (CO2)), air quality (AQ) related pollutants like carbon monoxide (CO), 

ozone (O3), ammonia (NH3), and Volatile Organic Compounds (VOCs).  

Also imperative for environmental preservation is the effective creation of policies 

that restrict destructive human activity. For example, Wiacek et al. (2018) showed that 

passenger ships (cruise ships) are responsible for almost 20% of trace gas and aerosol 

emissions during cruise ship season in Halifax. It is immediately worth mentioning that 

these emissions are a detriment to not only the environment and affected ecosystems but 

also to human health. Wiacek et al. also showed that shipping emissions from the Halifax 

port were “greater than or comparable to all vehicle NOX emissions in the city” over one 

year. This project similarly aims to demonstrate the ability of the Open-Path Fourier 

Transform Infrared (OP-FTIR) technique to detect shipping-related AQ-degrading trace 

gas emissions. With subsequent analysis, this information can be used to improve policies 
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in the shipping sector, as well as to identify and prevent the perpetuation of harmful 

practices.  

Atmospheric processes are complex; acids, bases, and the aerosolized salts that 

they form are strongly coupled to cloud formation — the largest unknown in climate 

modeling because of its strong influence on the radiative balance of the Earth. Acids and 

bases also cause ocean acidification and eutrophication, respectively. NH3 is the most 

prominent atmospheric base involved in particulate matter formation, by combination 

with acids to make salts (Behera et al., 2013). The environmental role of NH3 is even 

more complex as it donates both H+ and nitrogen to ecosystems following deposition, 

acting as both an acid and a fertilizer, and contributing to harmful ocean phenomena such 

as algal blooms and hypoxia. These in turn lead to greenhouse gas (N2O) emissions from 

the ocean to the atmosphere. OCS is another target molecule of this study because it is the 

main sulfur-containing compound in the atmosphere, maintaining natural sulfuric acid 

and sulfate aerosol production, important in cloud formation and in maintaining the 

globally cooling stratospheric aerosol layer. The complexity of the chemical family of 

VOCs strongly related to AQ is such that it includes hundreds of species that participate 

in thousands of chemical reactions; this study analyzes only the concentration of the 

VOCs methanol (CH3OH) and formic acid (HCOOH), which participate in harmful 

tropospheric ozone and secondary organic aerosol formation (HCOOH is both a VOC 

and an important organic acid). 

The main target molecules of this study with expected ocean-air fluxes are OCS, 

NH3, HCOOH, and CO2 (CH3OH has a known ocean sink, but was not pursued due to 
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time constraints). This project investigates the potential to detect ocean-air flux from the 

vertical concentration gradients of molecules in the atmosphere measured by the OP-

FTIR ‘flux-gradient’ technique. This approach has been used only once before at the air-

sea interface for the GHG nitrous oxide (N2O) (Hellmich, 2022), and is based on the 

land-air gas flux work of Flesch et al. (2016). This is a novel technique with which to 

measure the ocean-air flux of trace gases, with high temporal resolution and the capacity 

to detect a large variety of molecules simultaneously, provided they absorb infrared light 

at sufficient levels. These capabilities are unique to the OP-FTIR sensing method. 

Typical methods for ocean-air flux measurements such as eddy covariance (e.g. Miller et 

al., 2010) are more commonly used but not as versatile. Previous studies using these other 

techniques have found that NH3 has an expected ocean sink at the latitude of Halifax 

(Paulot et al., 2015), OCS has an expected source in the ocean (e.g. Lennartz et al., 2020; 

Ferek & Andreae, 1984), and atmospheric HCOOH has a missing source that may be due 

to ocean-air flux (HCOOH is also formed via photochemical processes in the 

atmosphere) (Millet et al., 2015). CO2 has been found to have an ocean uptake of ~ 1 

mol/m2/year around Nova Scotia (PMEL Carbon Program, 2000) and the ocean absorbs 

25% of anthropogenic CO2 emissions at all times (Watson et al., 2020), mitigating the 

atmospheric concentration increase by doing so.   
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1.2 – Overview of OP-FTIR Spectroscopy and Spectral Fitting Methodology 

Spectroscopy is the study of electromagnetic radiation emission or absorption by 

matter. In OP-FTIR spectroscopy, a beam of infrared light is generated and transmitted 

through an open atmospheric path of several hundred meters, then a Fourier Transform 

(IR) spectrometer is used to measure the IR absorption signals (i.e., the absorption 

spectra) due to the IR-absorbing gases in the open path (the geometry of the experimental 

setup is discussed in the next section). In order to ‘retrieve’ the concentrations of the 

absorbing atmospheric trace gases, the spectra recorded by the OP-FTIR spectrometer are 

fitted using the program ‘MALT’ (Griffith, 1996) in this study, which currently uses a 

Non-Linear Least Squares (NLLS) approach for spectral fitting and does not assume 

linearity of Beer’s Law (Griffith, 2010). The original version of MALT used Classical 

Least Squares (CLS) fitting (Griffith, 1996) and assumed linearity in Beer’s Law 

(transmitted radiation intensity, I, is proportional to the absorber concentration, C).  

Beer’s Law is fully stated as log10(Io/I) = A (= εbC) in which the absorbance, A, of IR 

light is related to gas concentration, C, with constants ε and b representing the molar 

absorptivity and the path length, respectively; Io represents the initial radiation intensity 

before attenuating matter is encountered. The NLLS ‘retrieval’ process consists of 

iteratively simulating the spectrum with varying gas concentrations so as to minimize a 

cost function derived from the difference between the simulated and measured spectrum. 

This simulation allows for a deconstruction of the recorded spectrum into the 

contributions (i.e. absorption signatures, or spectral absorption lines) of the various gases 

present in the beam path of the spectrometer (see Figures 1-1 & 1-2 for an example of 
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this). This can be done using the HITRAN spectral database (e.g. HITRAN 2004 

(Rothman et al., 2005)), which is based on both first principles calculations and high-

precision laboratory measurements of the vibrational and rotational state transitions of 

molecules (e.g., line strength and position (wavenumber)); see, e.g., Fundamentals of 

Molecular Spectroscopy by Banwell and McCash (1994) for a more in-depth overview of 

the theory. The forward model of MALT (for simulating the gas spectrum) can also be 

run using a reference spectrum from the Pacific Northwest National Laboratory (PNNL) 

database (Sharpe et al., 2004) instead of the HITRAN database. The spectral transmission 

model also depends on continuum, instrumental and environmental parameters. The 

continuum parameters used were ‘poly2’ and ‘poly3’ (relating to the degree of the fitted 

polynomial used to describe the spectral continuum; ‘poly2’ = first degree polynomial 

with two terms, and ‘poly3’ = second degree polynomial with three terms — this is the 

convention used by MALT). Although it is possible to fit higher order polynomials, it 

was sufficient to consider these two options for this project’s purposes due to the 

relatively simple nature of the relevant spectral continuums — mainly because the fitting 

process focused on smaller spectral regions (in which the section of the continuum to be 

modelled is less complex) where the specific absorption features of a target molecule are 

found. The instrumental parameters modelled were phase, shift, effective apodization 

(FAP), and field of view (FOV). They relate to the details of an FTIR spectrometer and 

manifest in the spectrum as an asymmetry of all lines (phase), a shift of all lines, and a 

line broadening/line shape adjustment of all lines (FAP and FOV). Finally, the 

environmental parameters are atmospheric pressure and temperature, which influence 
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both line strength and line broadening coefficients calculated based on the HITRAN 

database. An example of this method in practice for a very low abundance gas (ammonia) 

is illustrated in Figure 1-1 and Figure 1-2. Examples showing the targeted absorption 

features for the other molecules retrieved in this work can be seen in Appendix – A.1. 

 

Figure 1-1: Example of an ammonia spectral fit in the 912 – 970 cm-1 region. The top panel 
shows the measured vs simulated (fitted) spectrum, the middle panel shows the ‘decomposition’ 
of the spectrum into the contributions from each gas absorption, and the bottom panel shows the 
residual spectrum (fitted – measured).  
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Figure 1-2: Figure 1-1 zoomed in to show the shallow NH3 absorption feature in this window.  
 

 

1.3 – Objectives, Organization of Thesis and Scope of Work 

The aim of this project was to derive the atmospheric concentrations of the 

previously mentioned trace gases by performing spectral fitting on OP-FTIR data taken at 

the Department of National Defense (DND) in Halifax (four weeks spanning August – 

September, 2021). The open-path data consists of two datasets (series 1 and 2) recorded 

at a known vertical separation above and across the Halifax harbour, and so in addition to 

gas concentration time-series analysis, this project investigates the potential to detect 

ocean-air flux for the targeted gas molecules following the procedure of Hellmich (2022), 
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which is possible to derive from the vertical concentration gradient. Figure 1-3 shows the 

geometry of the experimental setup. The air-sea flux-related concentration gradient 

results represent the furthest level of data processing and are therefore presented last 

(Section 3.4), alongside noteworthy observations regarding the general behaviour of these 

target molecules. The concentration time series results used to study shipping emissions 

(based on time-correlated increases in pollutant concentrations) logically fall in Section 

3.3, since they are one data processing step below the concentration gradient results. 

Prior to these one-month spectral retrievals, the parameters used for fitting spectra with 

the program MALT were examined based on an extensive assembly of short-term (24-

hour) NH3 retrievals (work that began over summer 2023) as well as joint CO and CO2 

retrievals (in one spectral window), with the goal of determining what makes a fitting 

configuration systematically robust. This knowledge was then generalized and applied to 

the retrievals for the other gases.  
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Figure 1-3: Experimental setup. Adapted from Hellmich (2022). Infrared radiation is continuously 
generated at the spectrometer, traverses the open path to the retroreflectors (alternating 
continuously between the top height and the bottom height), which reflect it back to the 
spectrometer, where a detector is co-located and an absorption spectrum is recorded. A 3-D sonic 
anemometer was deployed outside of the period studied in this work (i.e., from Dec 2020 to May 
2021). 
 

Originally, the investigation into spectral fitting parameters was going to be a 

small component of the Honours research, assuming that this work would be completed 

during summer 2023. However, understanding the fitting process is a complex task since 

it is not completely generalizable from one gas to another. As general curiosity regarding 

the accuracy, sensitivity, and nature of OP-FTIR spectral retrievals grew over time, the 
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decision was made to invest more time into optimizing the retrievals. So, in addition to 

analyzing the effect of fitting/fixing various spectrometer-related parameters (phase, shift, 

effective apodization (FAP), field of view (FOV)) for NH3 (much of which was done 

during summer 2023), the same analysis was expanded and repeated for CO and CO2 

(which were co-retrieved from the same spectral region) to see how various sensitivities 

(e.g., how the retrieved concentration varies with respect to fit parameters used) 

compared for gases with stronger spectral absorption features (CO and CO2) versus for 

weak absorbers (NH3). This work is chronologically presented in Section 3.1, as it 

represents a broad investigation that influenced much of the rest of this work. Further 

analysis of the FOV parameter was inspired by Smith et al. (2011), who found (via CO 

and other gas retrievals) that an optimal initial FOV value (FOV is important since it is 

convolved with the line shape of each absorption feature during the spectral simulation) 

was 10% different from the value stated by the spectrometer manufacturer. They also 

showed that this relatively small difference in initial FOV value could increase the true 

error in CO and other gases (w.r.t. a known sample concentration) from ~ 0 to 15%, 

while the reported MALT NLLS algorithm retrieval error was far less sensitive. They 

also showed that CO absorption lines were most sensitive to the instrument line shape 

(ILS) due to their narrow nature (more narrow than CO2 and NH3) and are thus a good 

candidate for fitting the true FOV. To investigate this for our own spectrometer, CO and 

NH3 were fitted in ~1 month of data (August – September, 2021), both with and without 

FOV being allowed to vary with each fitting iteration. Two additional retrievals were 

done for NH3 (one fixed FOV, one fitted FOV) using the average fitted FOV from the CO 
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retrieval as an initial input FOV, to determine whether this approach performed better in 

the retrieval of a weakly-absorbing gas. This detailed analysis of two related retrieval 

parameter effects and interactions is presented in Section 3.2.   

Before Results, the Methods section details the spectral fitting parameter choices 

study (2.1), data quality control and filtering for both concentration time series and 

concentration differences (2.2), concentration time series analysis steps (2.3), and the 

vertical air-sea flux-related concentration gradient analysis (2.4). The Discussion is again 

divided into results pertaining to retrieval parameter choices (4.1) and concentration time 

series and gradients (4.2). The Conclusions section includes an outline of future work, 

while Appendices 1-6 document several supplementary plots and interesting but non-

central findings.  

This thesis makes use of OP-FTIR absorption spectra collected by the Wiacek 

Atmospheric Research Group in 2020-2021. All retrievals and analyses presented in this 

thesis were carried out independently by the author, with regular input from the 

Supervisor (Dr. Wiacek) and the one-time input of a Second Reader (Dr. Butler). All 

figures were created independently by the author, unless otherwise noted. Finally, this 

work involved porting a large and complex MATLAB code for retrievals into Python 

(Section 2.3), which is available as a digital resource, upon request. 
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2. Methods 

2.1 – Sensitivity Analysis of Spectral Fitting Parameter Choices 

To analyze the effect of fitting or fixing instrumental and spectral continuum 

parameters in the forward model (i.e., determining whether allowing them to vary in the 

iterative fitting algorithm strongly affects the retrieval results), an extensive set of 

different retrieval configuration experiments was run on the 24-hour data set (N = 360 

spectra) selected as described in Section 2.2. The retrieval performance of each parameter 

combination was described by two metrics: a single fit RMS (root mean square) residual 

value over the spectral window for each fit, and the percent error reported by the MALT 

NLLS algorithm on each retrieved concentration of the target molecule. This analysis 

mainly focused on NH3 and was done for every possible combination (25 total) of the 

instrumental parameters ‘poly2’, ‘poly3’, ‘phase’, ‘shift’, FAP, and FOV (fixed or fitted). 

Additionally, three fit combinations tested the updated HITRAN 2020 H2O spectroscopy 

(updated as of July 21, 2023) from the SFIT4 version 1.0.xx release notes (Hannigan, 

2023), and were labelled ‘HIT20’ (water is the most abundant trace gas and has pervasive 

spectral signatures, therefore improvements in line parameters can lead to significant 

improvements in spectral fits). This multitude of fit configurations was plotted in the 

variable space of reported MALT retrieval error vs. RMS residual, where both were 

averaged over the 360 individual fits for a given configuration, to look for an optimal 

retrieval parameter combination that (ideally) minimized both, or simply to identify 

parameters that are ubiquitous in ‘good’ fits. These fit configurations were also repeated 

using a PNNL reference spectrum for NH3 to investigate the difference between using 
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HITRAN and PNNL. Although HITRAN is known to be a better database for absorption 

parameters (since it is based on first-principle calculations and ultra-high precision lab 

measurements), there are many gases which are absent from the HITRAN database (their 

‘line-by-line’ calculations are too complex) for which it is necessary to use a PNNL 

reference ‘cross-section’ spectrum (e.g. acetic acid and acetaldehyde). Given this, it is 

informative to quantify how different retrieval results may be when using these two 

databases for a gas which can be retrieved using both (assuming that differences for NH3 

translate to differences for other gases). The 24-hour retrievals for the NH3 sensitivity 

analysis (Section 3.1.1) were mostly done during the summer of 2023 in the same 

spectral region of 1078 – 1125 cm-1 (Appendix A.1, Figure A-7), with H2O and CO2 as 

interferers. This window turned out to be suboptimal for NH3 retrievals upon further 

examination in fall 2023, when a superior window was found and used to fit the entire 

one-month dataset for this Honours work (Sections 3.3 and 3.4, which focus on 

concentration and flux-related time series). A subsequent investigation focusing directly 

on the FOV parameter was done (Section 3.2), testing whether NH3 and CO would have a 

‘better’ fit with a fixed or fitted FOV; this was done in the superior NH3 window 

mentioned above due to better absorption features (912 – 970 cm-1), with the same 

interferers (H2O and CO2). For the CO component of the investigation, CO was in all 

cases fitted with H2O and CO2 as interferers in the spectral region of 2080 – 2133 cm-1. 

The spectral windows and retrieval configurations used for each gas are summarized in 

Appendix A.2, Table A-2, with examples of spectral fits shown in Appendix A.1.    
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This work also tested whether setting the initial FOV value (and leaving it fixed 

during fitting) to the average fitted value from CO fits would improve NH3 fit quality. 

This hypothesis was based on the fact that CO is more sensitive to the ILS convolution 

due to its narrow absorption lines, and also has strong absorption features, meaning it 

contains sufficient information on the true FOV and is thus a good fit from which to 

estimate FOV for fixed use in the NH3 retrieval (Smith et al., 2011), as introduced in 

Section 1.2. To better characterize the effect of fitting or fixing FOV, separate retrievals 

of both CO and NH3 were performed with FOV fixed or fitted in order to compare fit 

metrics (i.e., RMS residual, % retrieval error, average concentration and standard 

deviation in time, etc.). Both retrievals also fitted phase, shift, and FAP, i.e., physically 

justified parameters related to spectral line asymmetry, wavenumber shift and line 

broadening. Finally, incorporating the retrieved FOV from the CO retrieval as the initial 

FOV value, two more retrievals of NH3 were performed (one fixing FOV, one fitting 

FOV) to determine whether the theoretical FOV was incorrect and leading to inferior 

retrievals.  

 

 

2.2 – Spectral Data Quality and Filtering 

Ambient environmental factors influence the quality of spectral data, and they are 

recorded in parallel with spectral information: pressure, temperature, relative humidity 

(RH), solar intensity, UV intensity, wind direction and speed, and precipitation. The 

source of this data is the Davis Weather Station at Halifax Harbour, nearly co-located 
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with the Sonic anemometer shown in Figure 1-3. Figure 2-1 shows the weather data that 

was used to identify a day containing high signal-to-noise ratio (SNR) spectral data, 

which is most likely to occur on fair-weather, low humidity days. Based on this, August 

15th (2021) was selected for the study on fitting parameter choices (Section 3.1). Figure 

2-2 shows the weather data for this day; the bottom right panel shows a symmetric solar 

intensity curve (cloudless conditions), and the third panel down on the left side shows a 

daytime minimum in RH, with no precipitation (third panel down on right), all indicators 

of high quality spectral data. Wind speeds are not at a minimum, but at 6 m/s they are 

reasonable. Some retrievals failed to run and returned RMS values of ‘NaN’ (Not a 

Number) leading to static concentration values (i.e. simply the initial ‘guess’ value); these 

fits were removed from the dataset as well. These retrievals were caused by a lack of 

corresponding temperature/pressure data, essential inputs for the spectral simulation, 

which can be seen as missing values in Figure 2-2.  
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Figure 2-1: Weather data over the one-month time period (08/07/2021 – 09/10/2021). Units are: 
temperature (‘Temp’) in °C, pressure (‘Press’) in mbar, wind speed (Wspd) in m/s, wind direction 
(‘Wdir’) as an angle between 0 and 360 degrees, relative humidity (‘RH’) as a percentage, 
precipitation (‘Precip’) in mm, UV as the typical UV index, and solar radiation in W/m2. 
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Figure 2-2: Same as Figure 2-1, but zoomed in to show weather data for the day used for the NH3 
and CO fitting parameter analysis.  
 

It is common practice to filter spectral data based on IR signal levels at 2500 cm-1 (signal 

intensity > 0.05 a.u.), which in this case removed ~8.3% of data points (for both series 1 

and series 2); this approach helps remove visible outliers from the concentration data. We 
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can see in Figure 2-3 that outliers are produced in areas of lower signal intensity (e.g. 

highly scattered CO concentrations, and also negative retrieved concentrations that are 

unphysical), which correspond to instances of high retrieval RMS residual (Figure 2-4). 

The cut-off value of 0.05 a.u. was determined by trial and error, until a minimum signal 

intensity that effectively removed the noisy/unphysical concentrations was found. The 

same time series is shown in Figures 2-3 – 2-6, coloured by the signal intensity and RMS 

residual before and after filtering the data.   

 

Figure 2-3: Unfiltered concentration time series for CO, coloured by 2500 cm-1 signal intensity.  
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Figure 2-4: Unfiltered concentration time series for CO, coloured by retrieval RMS residual.  
 

 
Figure 2-5: CO concentration time series after filtering the data based on the following criteria: 
2500 cm-1 signal intensity > 0.05 a.u., and RMS ≠ NaN. 
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Figure 2-6: Same as Figure 2-5 but coloured by RMS Residual instead of signal intensity. 

 

As mentioned above, the RMS residual NaN values were found to correspond to spectra 

which did not have associated temperature measurement data (a key input to MALT as it 

largely determines spectral lineshape), and so the program failed to run correctly. There 

were 216 spectra with this problem, and the total number of points removed after both 

signal intensity and NaN filtering was:  

• N = 1041 removed for series 1 (total)  

• N = 1037 removed for series 2 (total)  

so that ~ 9% of the data set was removed for each series in total. For reference, a plot of 

2500 cm-1 signal intensity was created for series 2 during the time period used in this 

study (Figure 2-7). Precipitation and fog events correspond to regions of greatly reduced 

IR signal intensity and can be anti-correlated with the high (near 100%) RH and 

precipitation values in Figure 2-1. The ~24h period on which the parameter analysis was 
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done is identified between the x-axis ticks labelled ‘815’ and ‘816’, a date with relatively 

good signal intensity and sunny and stable weather conditions (August 15th, 2021).  

 

  

Figure 2-7: Upper path (series 2) IR Signal intensity from 08/07–09/10 (2021).  

 

 

2.3 – Trace Gas Concentration Retrieval Execution and Analysis 

The individual MALT retrievals of concentration from each spectrum are run 

using a ‘shell’ code that supplies and directs input and output text files. As part of this 

work, this code was translated and improved from a set of MATLAB scripts developed 

by Dr. Li Li in the Wiacek Atmospheric Research Group, and then implemented in 

Python using object-oriented programming (summer 2023). After assembling retrieval 

data and filtering it as described in section 2.2, gas concentrations were plotted over the 

entire one-month period, as well as over daily time scales to identify smaller scale 

temporal variations in gas concentrations or (vertical) concentration differences. Plots 
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over smaller time scales were coloured by solar radiation intensity to indicate whether 

sunlight was a factor in trace gas behaviour (i.e. temporal variation) via photochemical 

reactions.  

 

 

2.4 – Ocean-Air Flux Related 

The approach for using a vertical concentration difference, ΔC, to derive a flux 

rate is based on the land-air gas flux work of Flesch et al. (2016) and follows that of 

Hellmich (2022), demonstrated for N2O in Halifax Harbour. The concentration data was 

not interpolated before subtraction to avoid additional error, deemed acceptable since the 

time separation between concentration time series is small (~2 min between the middle of 

acquisition of each spectrum). This project focuses on estimating the signal to noise ratio 

for the vertical concentration difference of target gases that are expected to demonstrate 

ocean-air flux. The calculated concentration difference was plotted over the time range of 

the retrievals, including MALT errors which were propagated through the subtraction 

using the formula for gaussian error propagation: 𝜎𝜎∆𝐶𝐶 = �𝜎𝜎𝐶𝐶12 + 𝜎𝜎𝐶𝐶22, in which the 

subscripts C1 and C2 indicate series 1 and series 2 concentrations. These errors help 

identify where the concentration difference may be significant given the uncertainty. The 

concentration differences were also binned by 30 minutes (and in some cases 3 hours) 

following the procedure of Hellmich (2022) to observe the variation in ΔC on different 

temporal scales as well as to convert the uncertainty into standard error (calculated from 

the standard deviation over 30 minutes divided by √𝑁𝑁 = 7 , based on the fact that there 
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are ~7 spectra recorded for each series in 30 minutes, each taking ~2 min and alternating 

between series 1 and 2), assuming flux to be stable over this time range. This standard 

error does not make use of the MALT retrieval error, and instead captures the variation in 

the repeated measurement of an assumed-to-be constant quantity during a 30-minute 

window; this approach provides an estimate of the measurement stability that may be 

more directly related to measurement precision than the MALT retrieval error is.  
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3. Results 

3.1 – Sensitivity Analysis of Spectral Fitting Methodology  

3.1.1 – Ammonia (NH3) 

It was initially thought that plotting the results from each fitting configuration 

(described in more detail below) for HITRAN and PNNL NH3 retrievals in a parameter 

space of average % Retrieval Error vs average RMS residual (Figure 3-1) would yield a 

clearly optimal fitting configuration, along with the expected result of HITRAN line-by-

line spectral line calculations out-performing the PNNL reference spectrum method. This 

was not however the case, and instead called for a deeper understanding of the MALT 

NLLS algorithm and the fitting parameters used. 

 

Figure 3-1: Average values (based on 360 spectra in a 24-hour period) for percent error on the 
target molecule’s retrieved concentration (NH3) vs. the RMS residual of the spectral fit. There are 
28 retrieval parameter combinations, doubled by using either a PNNL reference spectrum or the 
HITRAN line-by-line database for NH3.  
 

Figure 3-1 shows that rather than HITRAN clearly performing better, there are 

many retrieval combinations using the PNNL database that lead to lower RMS residual 
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and retrieval error pairs. Notably, PNNL leads to many higher RMS residual values, but 

its retrieval error is on par with HITRAN retrieval error (It is noteworthy that retrieval 

errors are normally high for NH3 (~100% in some cases) because it is a very low 

abundance gas, pushing the technique to its limit). To better compare the effect of PNNL 

vs. HITRAN in each of the 28 retrieval cases, a HITRAN – PNNL difference plot was 

made for both RMS residual and retrieval error (Figure 3-2). Although there appears to be 

no obvious category of fits for which PNNL out-performed HITRAN, it is interesting that 

it happened at all. The common characteristic of fits where HITRAN outperforms PNNL 

is that none of them include the intrinsic line broadening parameter FOV (only the 

second-order broadening parameter FAP); without FOV it is perhaps more difficult for 

the inferior PNNL spectral database to lead to a small RMS residual. The most extreme 

change in retrieval percent error (where HITRAN retrievals had the bigger error) 

corresponds to a fit with only the poly2 parameter but no phase, shift or either line 

broadening parameter (FOV and FAP), which is a ‘very rough’ way to fit a measured 

spectrum.    
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Figure 3-2: Difference in average retrieval percent error vs. difference in average RMS residual 
for retrieval configurations using HITRAN and PNNL spectroscopic databases (HITRAN value - 
PNNL value). Identical fitted parameter combinations are labelled with the same shapes, but 
green is used for fits with poly3 (quadratic transmission background) and cyan is used for fits 
with poly2 (linear transmission background). Navy is used for poly2 fits that additionally used a 
newer HITRAN database for H2O lines (Updated HITRAN 2020 instead of 2004 in all other 
cases). PNNL out-performs HITRAN for points where ΔRMS > 0 & Δ%Error > 0.  
 
 

Figure 3-3 focuses only on the HITRAN-driven retrievals from Figure 3-1. The 

FOV offset is included in the legend to help understand whether the algorithm is 

performing ‘mathematical gymnastics’ by fitting an unrealistic FOV starting from the 

initial (theoretical) value of 21.739 mrad. 
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Figure 3-3: NH3 retrieval percent error vs RMS residual for the HITRAN fits from Figure 3-1, 
with shape and color labelling the same as in Figure 3-2. The legend also indicates the fitted FOV 
offset from the initial value (theoretical = 21.739 mrad) for parameter combinations that fitted the 
FOV value.   
 

The cluster of points around 0.0040 RMS all fitted ‘phase’, but not ‘shift’. The grouping 

around 0.0030 RMS all fitted ‘shift’ or ‘shift’ and ‘phase’. This leads to the conclusion 

that fitting ‘shift’ improved RMS by roughly 25% and that it is a critical parameter; given 

that practical FTIR spectrometers routinely lead to spectra with systematic shifts in the 

wavenumber axis, this makes sense. The PNNL version of Figure 3-3 is in Appendix 

A.3.1, Figure A-11, which also shows an improvement due to fitting shift except when 

only ‘shift’ and ‘poly3’ are fitted. Figure 3-4 shows the retrieved NH3 concentration 

rather than the NLLS retrieved error as a function of RMS residual, only for HITRAN 

results. One can see that the ‘rough fit’ using only ‘poly2’ leads to an anomalously low 

NH3 mixing ratio (~0.4 ppb) and the highest RMS residual. The other two clusters of 

results are formed from including or omitting the ‘shift’ parameter, as in Figure 3-3. NH3 

is found in the environment at ~1 ppb and we see that this can be considerably varied 
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between ~0.95 ppb and ~0.65 ppb through the choice of the remaining retrieval 

parameters. Notably, the use of ‘poly3’ to model a quadratic transmission background or 

‘poly2’ to model a linear transmission background splits the retrieved NH3 mixing ratios 

into two sub-clusters. Although the number of retrievals done with updated HITRAN 

2020 water spectroscopy was limited (only 3 parameter combinations were completed), it 

was found that the maximum difference in the retrieved NH3 concentration (due only to 

moving from HITRAN 2004 to updated HITRAN 2020 H2O data) was less than ~0.1 

ppb, or less than ~10% on the retrieved values of 1.2 – 1.4 ppb (see Figure 3-4). The 

retrievals using HITRAN 2020 water spectroscopy appear to be systematically different 

(they are offset by a similar amount in both RMS and NH3 concentration) — see the 

upper middle section of Figure 3-4, comparing navy and cyan points. Note that these 

three retrievals did not fit the shift parameter.  

 

 

Figure 3-4: NH3 concentration vs. RMS Residual. In colour (green indicates poly3, cyan indicates 
poly2, navy indicates poly2 and HITRAN 2020) and marker style (repeating for each colour) are 
the various parameter combinations fitted (see legend). The legend also includes the value of 
ΔFOV for combinations that fitted an FOV value.  
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Figure 3-4 was recreated for PNNL NH3, but was placed in Appendix A.3.1, Figure A-12. 

Based on Figures 3-4 & A-12, the retrieved NH3 concentration is quite sensitive to the 

fitting routine (ranging from approximately 0.4 – 1.6 ppb in a 24-hour average), and a 

group of points that fitted a 2nd degree polynomial (poly3) appear to be clustered around 

a minimum RMS value.  

To compare PNNL and HITRAN NH3 over the entire parameter space, they were 

plotted against each other in Figure 3-5 to check their correlation. The linear fit has a 

slope of ~0.9 and an offset of 0.1, suggesting that HITRAN retrieves higher 

concentrations in general, although there are many variables at play here. The methods 

produce similar results, in that the spread of retrieved NH3 concentrations due to retrieval 

parameter choices is similar when using each database. The ‘Pearson r’ correlation 

coefficient was found to be 0.79, and corresponds to what is typically referred to as a 

‘strong’ (0.60 – 0.79) or ‘very strong’ (0.80 – 1.00) correlation.    

Figure 3-5: Concentration of NH3, as retrieved using HITRAN NH3 spectroscopic data for each 
parameter combination vs. that retrieved using a PNNL reference spectrum for NH3. Parameter 
combinations are labelled and coloured as in Figure 3-2. A line of best fit is plotted as well, fitted 
with an offset.   
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3.1.2 – Carbon Monoxide (CO) 

Using the same spectral data as the NH3 analysis, and following the same 

procedure, the retrieval parameter sensitivity study was repeated for CO. NH3 is a weakly 

absorbing gas, meaning that it is more difficult for the fitting algorithm to distinguish 

from the spectral features of other interfering gases. This potentially makes it inferior for 

gaining insight on the effects of each parameter on the quality of the fit, and inspired a 

recreation of the analysis for a gas with stronger absorption. CO was a perfect candidate 

for this. This analysis was done using the HITRAN spectroscopic database only, as the 

investigation no longer focused on the difference between using HITRAN or PNNL — 

this was left for future work. Figure 3-6 is a recreation of Figure 3-2 but for CO. A clear 

linear correlation can be seen, meaning the MALT output percent error is a better 

reflection of the fit quality in a CO retrieval, as opposed to for NH3 (Figure 3-3). 

Interestingly, but not surprisingly, updated HITRAN 2020 H2O points are optimal.     

Figure 3-6: Retrieval Error vs RMS Residual for CO, with labels as in Figure 3-3 for NH3.  
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Figure 3-7 also shows percent error vs RMS for CO, but only for retrievals that fitted 

FOV, allowing the fitted FOV to be used as a colour map. This investigates why fitting 

FOV does not always produce the same fitted FOV.  

 

Figure 3-7: [CO] Retrieval Error vs RMS Residual, FOV fitted value in colour (21.739 mrad is 
the theoretical initial value). 
 

Two solution clusters for FOV can be seen (magenta and cyan), although the % Error is 

not very sensitive (~1% changes vs ~4% changes). Cyan points (and the purple point) 

also fitted FAP, while magenta points did not fit FAP. This was determined using Figure 

3-8, which labels the points in Figure 3-7 by the respective FOV-fitting parameter 

combinations used.   
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Figure 3-8: Same as Figure 3-6 but with FOV fits circled in black. 

 

Figures 3-7 and 3-8 work together to show a small but systematic improvement in fit 

quality (reduced RMS residual and reduced percent error) when FAP is fitted together 

with FOV, except for the navy point with updated HITRAN 2020 H2O spectroscopy 

(fitting them together reduced RMS residual but increased percent error). The fitted FOV 

value (without FAP fitting) decreases from 21.739 mrad (theoretical and initial fit value) 

to ~21.2 mrad (2.5% reduction); when FAP is also fitted the FOV fits to ~20.4 mrad 

(6.2% reduction from theoretical initial value), except when updated H2O spectroscopy is 

used (~20.8 mrad or 4.3% reduction). Similar improvements in RMS are found for NH3 

when FAP is fitted alongside FOV, but they exist in the context of errors of ~100–1000% 

(Figure 3-3) and the retrieved FOV values increase by 5–10% from theoretical while FAP 

is being fit simultaneously (Figure A-7). It is apparent that the two line broadening 
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parameters are not completely independent of one another. This can also be seen in the 

average fit correlation matrices that are output by MALT, which are recorded in 

Appendix A.5 and show the correlations between each of the fitted parameters. That H2O 

spectroscopy has an effect is not unexpected since many broad H2O lines contaminate the 

CO retrieval window, with stronger absorption than in the NH3 window. While more 

investigation of FOV, FAP, and the updated HITRAN 2020 H2O linelist is needed, it 

makes sense that fitting vs not fitting FAP and FOV simultaneously leads to a different 

fitted FOV value since they are both broadening parameters and trade off one another.  

Figure 3-9 continues the analysis by checking the sensitivity of the retrieved 

concentration of CO. Although it is not very sensitive to the parameter combination (~ 

±1%), changing from fitting poly2 to poly3 for the continuum (i.e. from cyan to green in 

Figure 3-9) systematically translates CO values in the parameter space by a similar 

amount for all points (~5% reduction in RMS with ~0.5% increase in CO).
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Figure 3-9: CO concentration vs RMS Residual, each point labelled by parameters fit.  

 

More plots were made for NH3, CO, and CO2 (an interfering species in the CO 

retrieval window), in attempts to discover the intricacies of the relationships between 

these fit parameters and metrics (percent retrieval error, RMS residual), and they are 

included in Appendix A.3.1–A.3.3 to conserve space and focus the discussion.   

 

 

3.2 – Detailed Investigation of the ‘FOV’ Spectral Fitting Parameter 

In this section, the effect of the FOV parameter on a retrieval from a 1-month 

dataset is discussed. The effect of fitting or fixing the FOV parameter, with various initial 

values, is shown in Table 1 for NH3 and in Table 2 for CO retrievals. The additional 

retrievals for NH3, using CO FOV results, were done with an initial FOV of 20.189 mrad. 
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The pressure/temperature NaN data filter was not applied in this average FOV calculation 

since it had not been discovered yet (see Section 2.2), although the correctly filtered FOV 

from CO of ~20.2 mrad is close to and agrees with 20.189 mrad within uncertainty.   

Table 1: Diagnostics from retrievals of NH3 when fitting or fixing the FOV instrumental line 
shape (ILS) parameter. All retrievals were done on the same 1-month dataset between August and 
September 2021 (N = 9579 spectra for series 2 and 9575 for series 1, post-filtering).  

 FOV fixed at 
theoretical 
value (21.739) 

FOV fitted 
(NH3) 

FOV initialized 
using fitted FOV 
from CO 
retrievals 
(20.189), then 
fixed 

FOV initialized 
using fitted 
FOV from CO 
retrievals 
(20.189), then 
fitted 

Average [NH3] S1: 1.41 ppb 
S2: 1.49 ppb 

S1: 1.37 ppb 
S2: 1.44 ppb 

S1: 1.45 ppb 
S2: 1.53 ppb 
 

S1: 1.38 ppb 
S2: 1.45 ppb 

Average [NH3] 
std deviation 

S1: 0.56 
S2: 0.50 

S1: 0.56 
S2: 0.51 

S1: 0.56  
S2: 0.51 

S1: 0.58 
S2: 0.53 

Average %Error 
from MALT on 
[NH3] 

S1: 45.8 % 
S2: 18.6% 

S1: 50.8% 
S2: 19.5% 

S1: 34.2% 
S2: 18.4% 

S1: 47.5% 
S2: 19.7% 

Average RMS 
Residual 

S1: 0.00325 
S2: 0.00256 

S1: 0.00324 
S2: 0.00255 

S1: 0.00327 
S2: 0.00260 

S1: 0.00329 
S2: 0.00262 

Average 
Retrieved FOV 
± σFOV 
 

NA S1: 22.8 ± 2.2 
S2: 23.2 ± 1.9 

NA S1: 22.8 ± 2.3 
S2: 23.1 ± 2.0 

FOV Absolute 
Error from 
MALT 
(EFOV) (average) 
± σEFOV 
 

NA S1: 1.8 ± 22.1 

S2: 1.0 ± 6.5 

 

NA S1: 2.7 ± 29.9 

S2: 2.0 ± 24.3 
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Table 2: As for Table 1 but for CO retrievals from the same spectra.  

 FOV fixed at 21.739 
mrad (CO) 

FOV fitted (CO) 

Average [CO] S1: 227.6 ppb 
S2: 218.7 ppb 

S1: 228.5 ppb 
S2: 219.5 ppb 

Average [CO] std deviation S1: 124.1 
S2: 103.1  

S1: 125.5 
S2: 104.4 

Average % Error from MALT on 
[CO] 

S1: 1.31% 
S2: 1.34% 

S1: 1.24% 
S2: 1.26% 

Average % Error from MALT on 
[CO2] 

S1: 2.56% 
S2: 2.58% 

S1: 2.42% 
S2: 2.42%  

Average RMS Residual S1: 0.00626 
S2: 0.00635 

S1: 0.00589 
S2: 0.00593 

Average Retrieved FOV ± σFOV NA S1: 20.3 ± 0.3 
S2: 20.2 ± 0.3 

FOV Absolute Error from MALT  
(EFOV) (average) ± σEFOV  

NA S1: 0.3168 ± 0.3 
S2: 0.32305 ± 0.3 

 

As shown in Table 1, it was found that in both cases where FOV was fitted for 

NH3, the average fitted FOV was approximately 22.8 mrad with a standard deviation of 

2.19 mrad, agreeing with the theoretical value (21.739 mrad) within the NLLS algorithm 

uncertainty on FOV, although still ~1 mrad higher on average. Comparing the retrievals 

of NH3 with and without fitting FOV, they are very similar (see Table 1 above), except 

that the percent error on NH3 was significantly lower for the series 1 retrieval (45.8% → 

34.2% — 45.8% is the second lowest series 1 percent error) when FOV was fixed to the 

value retrieved from the CO window and left fixed. Series 2 did not see the same large 

benefit from fixing FOV at the CO value (only 18.6% → 18.4%) but series 2 spectra are 
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less noisy to begin with because they used a retroreflector in better condition (note the 

lower RMS residuals for series 2, which are a partial reflection of spectral noise). This 

seems to imply that the FOV parameter becomes more impactful when dealing with 

noisier data. If that is the case, the initial FOV value is probably not the limiting problem 

in series 2 retrievals. Overall, the large improvement in NH3 percent error when using the 

FOV from the CO window is sufficient to conclude that ~20.2 mrad is indeed optimal 

and should be implemented in future retrievals, but only with FOV then fixed at this 

value. Fitting FOV while starting from the CO-derived value (column 4 of Table 1) offers 

marginal (S1) to no (S2) benefits — this is because there is little FOV-related information 

in the broad NH3 spectral features, and FOV fits to roughly the same value regardless of 

which initial value is used (see the second last row of Table 1). Regarding CO, fitting 

FOV yielded a slight improvement in the fit residual (RMS) and percent error (Table 2), 

also supporting this conclusion of an ‘optimal’ FOV value. There are two important 

limitations to these results. For NH3 (Table 1), the spectral fitting region is 

suboptimal (Section 2.1). While the optimal NH3 window also does not contain narrow 

CO lines that provide FOV information, the percent errors for NH3 are likely to change in 

an optimal fitting window. As such, the numbers in Table 1 should not be over-

interpreted. The second limitation that cautions against overinterpreting the numbers both 

in Table 1 and 2 is that FAP was fitted simultaneously to FOV for both NH3 and 

CO. FOV and FAP are known to be correlated parameters that manifest similarly in the 

spectrum, and there are correlation matrices showing that in Appendix A.5. If Table 1 and 
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2 were repeated with FAP fitting turned off (i.e. fixed), we may expect the percent error 

on FOV to decrease (for sure), if not on CO or NH3 concentrations as well (not for sure).  

 

 

3.3 – Concentration Results and Application to Shipping Emissions 

Detection 

In this section, retrieval results are summarized for species over one month’s 

worth of series 2 spectral data (Table 3). Series 2 was chosen for time-series analysis that 

was not focused on ocean-air flux because the upper path retroreflector had higher 

reflectivity, and so the spectral data has a higher SNR. Based on the findings in section 

3.2, the CO results correspond to those for series 2 with FOV fitted, which were 

identified as optimal (Table 2), while NH3 results correspond to series 2 with FOV fixed 

at the CO-derived series 2 value.  

Table 3: Average concentration, standard deviation, and retrieval diagnostics for trace gas 
retrievals over the Halifax harbour between 08/07/2021 – 09/10/2021, series 2 only (N = 9579).  

Gas Average Retrieved 
Concentration 

σC 
 

Average % 
Retrieval Error 

Average RMS 
Residual 

NH3  1.5 ppb 0.5 18.4% 0.0026 

HCOOH 1.7 ppb 0.4 20.8% 0.0034 
 

CO 219.5 ppb 104.4 1.3% 0.0125 

CO2 444.2 ppm 18.1 2.4% 0.0125 

OCS 1.0 ppb 0.1 40.8% 0.0121 

O3 27.4 ppb 9.8 2.7% 0.0015 
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CH3OH 2.3 ppb 1.3 49.7% 0.0015 

 

The gases directly linked to ship plumes and emissions are methanol, carbon monoxide, 

carbon dioxide, ozone, and ammonia, which were plotted together (Figure 3-10) for the 

preliminary identification of correlated concentration changes indicating ship plume 

events, which are typically characterized by increased CO, CO2, CH3OH, and NH3, as 

well as O3 titration (decrease in concentration) during temporally extended emission 

events.   
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Figure 3-10: CO, CO2, CH3OH, O3, and NH3 concentrations (mixing ratios) from 08/07/2021 – 
09/10/2021. Series 2 only; N = 9579 data points. Error bars represent the retrieval error from 
MALT (black) and the blue points show the retrieved concentration. The x-axis ticks show the 
date [MDD (month day)].  
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Many instances of elevated CO and CO2 are visibly correlated with elevated 

CH3OH and NH3, as well as O3 titrations, as expected. The peak in pollutants on 

~08/25/2021 is particularly striking and signifies an extended emissions accumulation 

event. Further analysis with AIS marine traffic data is needed to accurately characterize 

all emissions in future work, as well as checking the correlations between each gas. We 

note that the methanol and ozone fitting (from a common spectral window) was done 

while also fitting the field of view, and in light of the results in tables 1 & 2, these 

concentration retrievals may be repeated without FOV fitting in the absence of time 

constraints, since in the case of NH3 fitting FOV vs. fixing the FOV at the CO-derived 

value introduced a 6% positive bias in the mean results. However, OP-FTIR is generally 

considered very precise (e.g. Smith et al., 2011) and can capture temporal variations 

accurately; it is mainly the variations of CH3OH and O3 that were of importance for this 

preliminary result, rather than absolute concentrations. 

 

 

3.4 – Concentration Results and Application to Air-Sea Flux 

In this section, the 1-month concentration time series are examined from both the 

upper and lower open paths across the Halifax harbour, together with the vertical 

concentration differences that are proportional to ocean-air flux. 
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3.4.1 – NH3 

In Figure 3-11, NH3 exhibits signs of a diurnal cycle, with an average 

concentration over the time period of 1.53 ppb, and a maximum at ~5.5 ppb (this peak is 

linked to the strong pollution event shown in Figure 3-10). 

Figure 3-11: Concentration of NH3 [ppb] over time, as in Figure 3-10.   
 

Regarding air-sea flux, the vertical concentration difference for NH3 over the entire time 

range appears to hover slightly above zero (Figure 3-12). Many of the data points have 

error bars which do not cross zero, meaning that the sign of the flux is more certain for 

these points. In this figure, the error bars represent the standard error of the binned data as 

described in section 2.4.  
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Figure 3-12: Concentration difference binned in 30-minute intervals (series 2 [upper] - series 1 
[lower]) over time calculated from the retrieval of NH3 for all data points after filtering (N = 
9575). The error bars (standard error) are in black and the data points are in green. ΔC < 0 
indicates flux into ocean (sink) and ΔC < 0 indicates flux out of the ocean (source).  
 

Figure 3-12 suggests that the ocean is a net sink of ammonia in Halifax, NS, during this 

period of time. The data becomes noisy after ~09/02/2021, which is likely due to higher 

wind speeds (see Figure 2-1).  

 

3.4.2 – CO2 

In addition to being useful in identifying ship plume signatures and the general 

need to track the atmospheric concentration of this important GHG, CO2 also exhibits a 

significant positive concentration difference for the majority of the data, indicating an 

ocean sink (Figure 3-13). This agrees with the current understanding that the ocean is 

indeed a net sink for CO2 near Nova Scotia and world-wide (e.g., NOAA PMEL Carbon 

Program, 2000).  
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Figure 3-13: Same as Figure 3-12 but for Δ[CO2], including a 3h moving average. 
 

Regarding the general behaviour of this GHG, the diurnal cycle of CO2 was examined for 

most days in the time series and was found to be heavily related to solar radiation 

intensity, as shown in Figure 3-14. This result is likely to be driven at least in part by 

plant respiration, because the CO2 emitted from plant respiration is easily transported by 

wind and detected over the harbour. However, CO2 is also emitted from port activities 

and all land-based fossil fuel burning, and so it does not always look like Figure 3-

14. The accumulation and rapid fall of CO2 on the morning of 8-17 is likely connected to 

suppressed nighttime mixing followed by sunrise and convection. Interestingly, Figure 3-

15 shows a sawtooth-patterned variation in CO2 during a period of rising concentration 

between roughly ‘81820’ and ‘81914’ (nearly 24 hours). Its cause is not clear, but it is 

shown in the next section to be linked to OCS variations.    
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Figure 3-14: CO2 concentration over a 48h time period between 08/15 and 08/18, 2021. Solar 
radiation intensity (W/m2) is in colour. 
 

Figures 3-15: CO2 concentration over a 48h time period between 08/18 and 08/20, 2021. Solar 
radiation intensity (W/m2) is in colour.  
 

3.4.3 – OCS 

OCS is found in a spectral window partly overlapping with CO2. Unlike CO2, 

OCS is known to have an ocean source as opposed to an ocean sink. The diagnostic 

results from this OCS retrieval are shown in Table 3, and confirm that it is a low 

abundance gas that is retrieved with similar errors to NH3. It shows less variability in 
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time than NH3, which may be explained by a lack of strong anthropogenic sources for 

OCS. The time series of OCS concentration shows some diurnal variation (Figure 3-16).  

 
Table 3-4: Diagnostics for the OCS retrieval. Fitted on 2021 data from 08/07 – 09/10. N = 9579 
spectra for series 2 and 9575 for series 1.  

 Poly3, phase, shift, fap fitted, FOV fixed 
at 20.2 mrad (based on CO – section 3.2) 

Average [OCS] S1: 1.08 ppb 
S2: 1.03 ppb 

Average [OCS] std deviation S1: 0.13 
S2: 0.14 

Average % Error from MALT on [OCS] S1: 39.0% 
S2: 40.8% 

Average RMS  S1: 0.0122 
S2: 0.0121 

 

 

Figure 3-16: Concentration time series of OCS from 08/07 – 09/10, 2021. Error bars represent the 
MALT retrieval error.  
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This diurnal cycle appears somewhat related to solar intensity, and this permits a 

speculative explanation, i.e., production via photochemical formation — this hypothesis 

is supported by prior research, for example Ferek & Andreae (1984) document OCS 

production in the sea surface microlayer by ultraviolet radiation (rather than deeper in the 

ocean by microbes, like N2O production). The 48h periods show some correlation with 

solar intensity, and after learning about an expected CO2/OCS correlation (Commane et 

al., 2013), albeit in terrestrial environments, OCS was plotted alongside CO2 over a 48h 

period (Figure 3-17). These temporally zoomed plots show a very strong anti-correlation 

with the CO2 results, during both day and night on many days, and this correlation leads 

to a potential explanation for the variation pattern that was unexplained in the diurnal 

cycle of CO2 (Figure 3-15) — Figure 3-15 is repeated within Figure 3-17 to show OCS at 

the same time.    
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Figure 3-17: 48h time series of CO2 (top panel) and OCS (bottom panel), colored by solar 
intensity.  
 

The variations are seen to occur on a time scale of ~ 2 cycles/9h, or ~ 4.5h/cycle. This 

interesting variation does not occur as clearly every day (e.g. Figure 3-18, in which the 

saw-toothed pattern seen in Figure 3-17 is not seen as clearly, although the two molecules 

are still strongly anti-correlated). 
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Figure 3-18: 48h time series of CO2 (top) and OCS (bottom). Coloured by solar radiation in 
W/m2. 
 

For a general analysis of the CO2-OCS correlation over the entire data set, they were 

plotted against each other and separated into a nighttime and daytime dataset, since it was 

not expected to be the same correlation (Figure 3-19) on account of the different physical 

processes taking place during day and night. This was done by using a solar intensity cut-

off value of 100 W/m2, simply based on the colour bar in Figure 3-18. A linear regression 

was fitted to the data using the scipy.stats.linregress module in Python. The value given 

for the y-intercept should be ignored, but was necessary to fit this negative slope. The fit 
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indicates that during the daytime, ∆OCS
∆CO2 

≈ 0.0063 ppb OCS increase / ppm CO2 depletion. 

Note that here ΔOCS is generally positive and ΔCO2 is generally negative, since during 

the daytime the observed trend is that decreasing levels of CO2 accompany an increase in 

the concentration of OCS. During the nighttime, ∆OCS
∆CO2 

≈ 0.0024 ppb OCS depletion / 

ppm CO2 increase. The data in Figure 3-19 was coloured by signal intensity (the data was 

already filtered as described in Section 2.2) to test whether it is the cause of the spread in 

the data, however that is not clearly the case. This is only an estimate since there is a 

significant degree of uncertainty here — the data is scattered with a relatively low 

correlation coefficient.  
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Figure 3-19: CO2-OCS Correlation plot, for daytime correlation (top panel) and nighttime 
correlation (bottom panel). Points are coloured by signal intensity. 
 

The observed correlation must be interpreted with some caution for two reasons. First, the 

OCS spectral feature lines up with a CO2 branch, and retrieved concentrations show an 

average anti-correlation of -0.335 (Figure A-19), which is weak, but it may be 

statistically significant (significance was not tested). Second, the concentrations are 

changing due to several complex processes at the same time that are hard to disentangle 
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and require further study:  air-sea gas exchange of CO2 and OCS in opposite directions, 

terrestrial processes that affect CO2 and OCS in different ways during day vs. night (with 

OCS processes much less understood), the production of OCS (and CO) within the sea 

surface microlayer being driven by UV as opposed to plant respiration being driven by 

blue and green light, and, finally, anthropogenic production of CO2 in the atmosphere 

superimposed on both ocean and terrestrial biogenic processes – while modulated by 

dynamic effects on planetary boundary layer mixing.  

 Regarding OCS ocean-air flux, almost all concentration difference points lie 

below zero in Figure 3-20 and suggest a relatively constant ocean source of this trace gas 

between 08/07/2021 and 09/10/2021. A relatively larger concentration difference can be 

seen around 09/06/2021, but its cause remains unknown and it occurs during the noisier 

portion of the dataset. 

 

Figure 3-20: Same as Figure 3-12 but for Δ[OCS]. 
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3.4.4 – HCOOH 

HCOOH plays an important role in secondary organic aerosol formation, and thus 

cloud formation, an important factor in climate change modelling. This organic acid was 

retrieved over this dataset at an atmospheric mixing ratio of approximately 1.7 ppb. The 

results are summarized in Table 3-5, and its temporal variation can be seen in Figure 3-

21.  

 
Table 3-5: Diagnostics for the formic acid (HCOOH) retrieval ensemble. Fitted on 2021 data, 
08/07 – 09/10. N = 9579 spectra for series 2 and 9575 for series 1. All values are post-filtering.  

Average [HCOOH] S1: 1.72 ppb 
S2: 1.65 ppb 

Average [HCOOH] std deviation S1: 0.49 
S2: 0.39 

Average % Error from MALT on 
[HCOOH] 

S1: 28.7% 
S2: 20.8% 

Average RMS  S1: 0.00351 
S2: 0.00341 
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Figure 3-21: Concentration of HCOOH over time, as in Figure 3-10. 

Figure 3-22: Δ[HCOOH] over time, as in Figure 3-12. 

 

The majority of points in Figure 3-22 lie between 0 and -0.5, indicating an ocean 

source of HCOOH with a small standard error, and show some diurnal variations in the 

concentration difference itself. These variations on shorter timescales are easier to see on 
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a non-binned plot of the concentration difference with a 3-hour moving average plotted 

over top (Figure 3-23).  

Figure 3-23: Δ[HCOOH] over time; the error bars are MALT errors. 

 

Similar to the NH3 results, the data becomes visibly noisier after 9/02. Finally, Figure 3-

24 was made to analyze the behaviour of HCOOH concentration on a shorter time scale. 

 

Figure 3-24: HCOOH concentration over 48h period with solar radiation in colour. The x-axis 
ticks represent the date and time (mddhh meaning the format is “month day day hour hour”). 
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Two peaks in Figure 3-24 (the first is cut off at the left side) are seen to correlate with 

solar intensity, however this is not always the case (e.g., right side). This could be a sign 

of a photochemical source of HCOOH.  

 

3.4.5 – Note on O3 

A possible relationship between O3 and UV intensity was observed (Figure 3-25), 

which would agree with expectations based on general textbook knowledge (e.g. Jacob, 

1999) that O3 is produced by photochemical reactions in the presence of UV light. This 

behaviour can be observed on multiple days, although O3 is also influenced (destroyed) 

by the titrating effect of ship emissions of NOX (= NO + NO2) and atmospheric dynamics 

that play a role in concentrations over time. This peak in O3 coincides with the central 

HCOOH peak in Figure 3-24. 

Figure 3-25: Same as Figure 3-24 but for ozone, with UV index in colour and MALT error as 
error bars. 
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4. Discussion  

4.1 – Retrieval-Related Discussion (Results Sections 3.1 and 3.2)  

In Section 3.1, the retrieval parameter choices were explored for NH3 and CO, 

using as metrics of performance the NLLS retrieval error, the RMS residual of the fit, and 

the retrieved concentration, averaged over 24-hours of high-quality OP-FTIR spectra. 

These spectra were recorded in fair weather and at low relative humidity for Halifax, 

which maximizes IR signal intensity and minimizes spectral interference due to 

ubiquitous water vapour features. While the investigation was complex and many fitting 

parameter choices are possible, each affecting the ensemble mean metrics, some overall 

conclusions can be drawn from this sensitivity study. Small systematic effects were 

observed due to the chosen polynomial degree of the spectral continuum (poly2 → poly3 

showed a clear linear translation in the CO percent error vs RMS plot (Figure 3-6)), as 

well as in the CO concentration vs RMS plot (Figure 3-9) with poly3 producing a slightly 

better fit as well as a slightly higher concentration of CO (Figure 3-9). There is also a 

systematic effect from fitting FAP and FOV simultaneously as opposed to individually in 

the CO retrievals (Figure 3-7 and Figure 3-8), however it remains unclear whether this is 

an improvement, or rather another example of overfitting due to the fact that these 

parameters trade off of each other — this is especially likely if the spectrum in question 

does not contain sufficient information (i.e. well-defined CO absorption lines) from 

which to fit a ‘true’ FOV value, which should be kept in mind. This FAP-FOV 

correlation can be seen in the correlation matrices in Appendix A.5 for retrievals that 

fitted both parameters simultaneously, which all show an average correlation of ~ –0.75 
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between FAP and FOV. The results from the parameter analysis in CO retrievals show 

that fitting FOV is also superior with this molecule itself as the target, which has the 

narrow spectral lines known to help with fitting FOV; moreover, the retrieved FOV offset 

from the initial theoretical value (between –1.5 and –0.4 in the legend of Figure 3-6) is 

much more stable from these optimal spectral lines than for NH3 fits (between ~ –0.5 and  

+1.7 in the legend of Figure 3-3). The additional points with updated HITRAN 2020 

water spectroscopy are not a complete sensitivity study, however they strongly suggest 

that using HITRAN 2020 water spectroscopy is optimal — this is not clearly shown in 

the NH3 results, however NH3 has weaker H2O absorption in its window, and this could 

explain why the better fit performance of updated water spectroscopy is not as visible 

(the water lines in the CO window are also much larger and reach saturation (zero 

transmittance) (see Appendix A.1, Figure A-2) while those in the NH3 window reach a 

minimum transmittance of ~0.5 (Figure 1-1). It could also be that there are other factors 

that are more significant than the H2O spectroscopy limiting the quality of the NH3 

retrievals, since it is a very small absorption feature. Moving on to the other fitting 

parameters, the NH3 analysis shows that fitting shift caused a ~25% reduction in the RMS 

value, meaning that it improved the quality of the retrieval. Similar to CO, the results 

from the NH3 parameter analysis also show that fitting FOV is superior, however the 

FOV offset for the most optimal point is ~+0.9. This does not agree with the reduced 

FOV value from CO, which is in agreement with Smith et al. (2011), and points again to 

overfitting. It should be noted that optimal FOV is subject to change for every 

spectrometer.   
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Regarding the difference between PNNL and HITRAN, there were instances 

where PNNL performed better, although these were not for the most optimal fits (see 

Figure 3-2). In conclusion, there is not a radical difference between methods (at least for 

NH3, in that window), although HITRAN is able to achieve slightly better results 

according to the metrics (see, e.g., figures 3-1, 3-2, and 3-5). This could change if dealing 

with a gas with stronger absorption features.  

The results from section 3.2 indicate that the average FOV value from fitting CO 

(~20.2 mrad) leads to higher quality fits for low-abundance species like NH3 where FOV 

fitting is uncertain, as compared to the theoretical manufacturer value (21.739 mrad). 

This is seen in a significant drop in the percent error on NH3 (25% decrease) when fitted 

using this CO-derived FOV as a fixed input value for each fit (specifically in the series 1 

result; thought to be due to higher noise levels due to lower signal intensity in the series 1 

data set — it is possible that this parameter becomes more crucial when dealing with 

higher levels of noise in the spectrum). This reduced FOV value agrees with Smith et al. 

(2011), who also found a similarly lower-than-theoretical FOV value to be optimal, and 

leads to the conclusion that the most physically justified spectral fitting configuration for 

NH3 is to fit ‘phase’, ‘shift’, and FAP (although FAP fitting still needs to be tested more 

rigorously to be certain), but to fix FOV to roughly 20.2 mrad. This FOV value of 20.2 

mrad was derived from a CO retrieval that also fitted FAP, and since FAP and FOV are 

correlated parameters, it is hard to tell whether a CO retrieval that only fits FOV would 

yield a superior FOV value — this is being left for future research. In fact, fitting FOV is 

a poor decision in spectra where there is not enough information on line broadening, and 
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can lead to results with deceptively ‘winning’ diagnostics (i.e. low RMS, low percent 

error). This is seen in the results for CH3OH (Appendix A.4, Table A-3), where the 

average fitted FOV value was ~25 mrad (unrealistically high), as well as in the parameter 

space plot for NH3. Reassuringly, the concentrations of NH3 and CO were not very 

sensitive to fitting/not fitting FOV (Tables 1 & 2) (although the FOV offset was not as 

large in these cases), so the results for CH3OH concentration are likely not biased too 

strongly and remain useful for time-correlation analysis and detection of shipping 

plumes.  

In summary of Section 3.1 and 3.2 results, the sensitivities of retrieved 

concentrations, fit residuals and retrieval errors are presented over the entire parameter 

space, however there are many variables at play and it remains difficult to identify a truly 

optimal set of fitted/fixed parameters without the presence of an objective truth. These 

results need to be interpreted on a case-by-case basis, and many additional plots 

containing interesting sensitivity-related findings are stored in Appendix A.3. For 

example, CO2 concentration varies by ~10 ppm (~ 2%) due to changing from a linear to a 

quadratic transmission background polynomial, irrespective of the fitting configuration 

(Appendix A.3.3, Figure A-14). This sensitivity agrees with the findings of Smith et al. 

(2011) on the accuracy of OP-FTIR concentration retrievals of CO, CO2 and CH4 

remaining “well below 10%” as compared to an actual ‘truth’ reference standard. It is 

fortunate that accuracy is less important than precision (here taken to mean measurement 

repeatability) when identifying trace gas correlations in the ambient atmosphere for ship 

plume identification (as was done in this work), as well as when analyzing vertical 
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concentration differences (which eliminate bias or accuracy errors) to determine air-sea 

flux values.   

 

 

4.2 – Concentration and Concentration Difference Discussion (Results 

Sections 3.3 - 3.4) 

A summary of the average vertical concentration difference results is presented in 

Table 4-1. To reiterate, the difference is defined as the upper path result minus the lower 

path result. The CO2 and NH3 results suggest a net ocean sink, while the OCS and 

HCOOH results indicate a net ocean source. CO2, being a common interfering gas, was 

originally thought to be retrieved with highest quality from the same window as CO 

(2080 – 2133 cm-1), however it was later discovered that the precision of the CO2 result 

from the OCS window (2000 – 2100 cm-1) was potentially superior (see Appendix A.6, 

Figure A-27 for a more in-depth discussion of this), likely because the CO2 absorption 

feature in the OCS window contains more information (i.e., more absorption lines and a 

complete P-branch) (see Appendix A.1, Figure A-6). This other CO2 result yields a 

notably different average concentration difference, so it is also recorded here in Table 4-

1. For reference, the time series of the different CO2 results from each of the spectral 

windows that fitted CO2 as an interferer in this work (concentration and concentration 

difference) are recorded in Appendix A.6.  
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Table 4-1: Average concentration differences for CO2, OCS, NH3, and HCOOH. N = 9575 
spectra. Positive numbers imply an ocean sink.  

Gas Mean Concentration Difference 

Δ[CO2] (from CO window) 1.885 ppm ± 2.637 ppm 

Δ[CO2] (from OCS window) 0.883 ppm ± 1.646 ppm 

Δ[OCS] -0.053 ppb ± 0.043 ppb 

Δ[NH3] 0.082 ppb ± 0.378 ppb 

Δ[HCOOH] -0.073 ppb ± 0.337 ppb 

 

 

5. Conclusions 

Using 24 hours of high-quality OP-FTIR data (an ensemble of 360 spectra) to 

conduct an extensive analysis on which parameters should be fitted during spectral trace 

gas retrievals, it is concluded that fitting the ‘FOV’ parameter (related to line broadening) 

in a CO retrieval yields an optimal FOV value (~20.2 mrad for our spectrometer), and 

this parameter should likely be fixed at this value in all retrievals where the spectral 

information is insufficient to independently retrieve the FOV. It remains unclear whether 

a superior FOV value could be obtained by fitting CO without simultaneously fitting the 

‘FAP’ parameter (a secondary parameter related to broadening), to avoid the correlation 

between the two parameters. Parameters ‘phase’ (manifesting as an asymmetry in all 

lineshapes), and ‘shift’ (horizontal wavenumber shift of each line) significantly affect the 

spectrum and should be fitted. An in-depth analysis of the FAP parameter remains to be 

done since it is not as intuitive, although it has been shown to help minimize fit RMS and 
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percent error when fitted (though this could be another case of overfitting). Finally, the 

degree of the continuum (i.e., transmission background) polynomial should be decided on 

a window-by-window basis. In this study, a quadratic (poly3) was found to be optimal in 

the spectral windows 2080 – 2133 cm-1 (CO and CO2,) and 1078 – 1125 cm-1 (NH3). The 

spectral database choice for trace gas line strength was investigated and it was found that 

using the updated HITRAN 2020 spectroscopic data for H2O lines is optimal in these two 

wavenumber regions. Since HITRAN data is not available for all molecules, the PNNL 

database was also investigated, and results were compared for NH3 because it is listed in 

both databases; retrieved NH3 concentrations were highly correlated when using alternate 

databases.  

The average concentrations of seven trace gases over 1 month of data (4-minute 

time resolution, N = 9575) were presented (Table 3-3), and Figure 3-10 shows the time 

series of shipping-related gases with various instances of ship emissions, characterized by 

increased levels of CO, CO2, CH3OH and NH3, as well as O3 titration during temporally 

extended pollution events. One especially large pollution accumulation event stands out 

in this time series on August 25th, 2021.    

The vertical concentration differences for NH3 and CO2 indicate an ocean sink for 

these gases, while the results for HCOOH and OCS indicate an ocean source, in 

agreement with prior knowledge. For the first time ever, this work measured the 

concentration differences of these molecules at the air-sea interface using OP-FTIR, to be 

used in future ocean-air flux derivations with the flux-gradient approach. Whether a gas 

had an ocean source or sink was hypothesized based on whether the concentration 



70 

 

   

 

difference lay above or below zero. For example, the OCS concentration difference lies 

consistently below the zero line, indicating an ocean source (a negative concentration 

difference corresponds to a positive flux). These four gases exhibit diurnal variation; 

OCS and CO2 show a strong cycle, with solar radiation influencing both of their diurnal 

cycles. HCOOH is also shown to be correlated with solar radiation on many occasions. 

O3 appears to be correlated with UV intensity when not affected by ship emissions 

(although this was not extensively analyzed), as expected from general knowledge of O3 

photochemistry. The results are summarized in Table 3-3, and the calculated average 

concentration differences are summarized in Table 4-1.  

 

 

Future Work  

− Perform a more comprehensive analysis of shipping emissions using AIS data 

and gas correlations to determine the true extent of shipping emissions in 

Halifax (i.e. the emissions themselves and how they have changed over time 

since Wiacek et al. (2018)).  

− Create diurnal variation plots to help explain gas behaviour.  

− Do further work to understand the OCS-CO2 relationship, including ocean 

processes, terrestrial emission processes, dynamical boundary layer effects, 

and atmospheric production of OCS from DMS.  

− Calculate ocean-air fluxes for these gases (possible from Dec 2020 to Apr 

2021, when 3-D sonic anemometer was measuring turbulence parameters). 
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Expand the analysis to other gases with a known air-sea flux. Compare 

calculated flux values to any reported literature values. A comparison of 

different time periods is also crucial to quantify how and whether the ocean-

air fluxes of these gases are changing significantly over time.   

− Better quantify the effect of using a reference spectrum for different gases. It 

is still unknown why PNNL out-performed HITRAN for certain parameter 

combinations in NH3 retrievals, and whether that would remain true for a 

strongly absorbing gas like CO. HITRAN 2020 H2O improvements in the CO 

retrieval warrant checking the effect of this new H2O spectroscopy in all new 

gas retrievals.  

− Investigate the behaviour of these trace gases in other seasons or years to 

study long term patterns and trends.   

− Repeat the analysis of the FOV parameter in the retrievals of NH3 and CO, but 

this time not fitting FAP in addition to FOV, in light of the result that FAP 

and FOV trade off of each other and systematically alter the fitted FOV in the 

CO spectral window (derived from Figure 3-8).  

− Use simulated spectra to further analyze whether the instrumental parameters 

are fitting accurately.  
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Appendix 

A.1 – Retrieval Window and Spectral Fit Examples 

Listed here are example spectral fit plots for each of the targeted molecules, 

showing the recorded and simulated spectrum, the decomposition of the spectrum into the 

contributions from each trace gas present fitted in the spectral window, and the fit 

residual (as in Figure 1-1). When dealing with weakly-absorbing gases, a y-axis cut-off 

value was implemented to better show the absorption features in the middle panel.  

Figure A-1: CH3OH fit, where O3 is a jointly-fitted target gas, but NH3 features are suboptimal. 
Top panel: Simulated and recorded spectrum. Middle panel: contributions from each trace gas 
with absorption features in the spectral window. Bottom panel: residual (recorded - simulated 
spectrum). 
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Figure A-2: As in Figure A-1 but for CO and CO2 jointly retrieved as target gases.
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Figure A-3: As in Figure A-1 but for HCOOH.
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Figure A-4: As in Figure A-1 but for NH3.
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Figure A-5: As in Figure A-1 but for OCS. The CO2 Q-branch 7% residual misfit near 2077 cm-1 
is a known ‘feature’ of spectroscopic parameter deficiencies and it is de-weighted in MALT fits 
in this study. 
 

Figure A-6: The Middle panel of Figure A-5, but slightly zoomed out to better show the CO2 
feature in this window. 
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Figure A-7: Example fit ‘component spectrum’ for the spectral window used for the NH3 
parameter choices analysis.  
 

 
A.2 – Retrieval Configuration Details 

Table A-2: Fitting configuration used for each trace gas concentration retrieval. H2O was always 
initialized at 1%, CO at 150 ppb, CO2 at 400 ppm, and O3 at 20 ppb, while CH3OH, NH3, 
HCOOH, and OCS were initialized at 1 ppb. HIT2020 indicates that the HITRAN 2020 database 
was used for the H2O line list.  

Gas Fitted 
Parameters 

Fixed Parameters Spectral Window 
(cm-1) 

Interfering 
Gases 

CO/CO2 
 

poly3, phase, 
shift, fap, FOV 

- 2080 – 2133 H2O 

CH3OH/O3 
 

poly3, phase, 
shift fap, FOV 

- 1031.5 – 1063 H2O 
(HIT2020), 
CO2, NH3 
 

NH3 poly3 phase 
shift fap 

FOV fixed at 20.2 
mrad 

912 – 970 H2O, CO2 
 

OCS poly3 phase 
shift fap  

FOV fixed at 20.2 
mrad 

2000 – 2100 H2O, CO, 
CO2 
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HCOOH poly2, phase, 
shift, fap 

FOV fixed to 20.2 
mrad 

1090 – 1135 H2O 
(HIT2020) 

 

 

A.3 – Extra Figures from 3.1 

This section shows plots from section 3.1 that were moved to the appendix to 

streamline the discussion of results, and they are separated into plots for NH3, CO, and 

CO2, analyzing the effects of spectral fitting parameter choices.  

 

A.3.1 – NH3 Parameter Space Plots 

Figure A-8 was created to gain insight into how the retrieved concentration of 

NH3 varies with respect to the fitted FOV value. It is however difficult to draw 

conclusions from, since there are many varying parameters. The same thing was done in 

Figure A-9, but for the percent error on NH3 from MALT. Interestingly in Figure A-9, the 

points that fitted phase and FOV only (star-shaped points) cluster together just below a 

fitted FOV of 21.5 mrad. The addition of the FAP parameter increased the fitted FOV 

value, unlike for CO. 
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Figure A-8: NH3 concentration vs. fitted FOV.  
 

Figure A-9: NH3 percent error vs. fitted FOV.  
 

Also worthy of checking was whether overfitting was at play. This was checked 

via Figure A-10. Again it is difficult to identify the line between true optimization and 

overfitting. The points are coloured by the number of parameters fitted (including the 

continuum parameters poly1 (representing the 100% level of the continuum as a 
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horizontal line), poly2 and poly3). Within the cluster of fits that fitted the (necessary) 

shift parameter (cluster on the left, like in Figure 3-3) there is some evidence that more fit 

parameters minimize % Error and RMS, except for one pink point in the cluster with % 

Error > 1000.  

Figure A-10: NH3 % error (as reported by MALT) plotted vs. RMS fit residual only for HITRAN 
NH3. 
 
 

Figure A-11: Same as Figure 3-3 but for PNNL NH3.  
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Figure A-12: Same as Figure 3-4, but for PNNL NH3.  

 

A.3.2 – CO Parameter Space Plots 

Figure A-13 was made to investigate whether the MALT algorithm error is a 

reliable indicator of how well the fit is performing. Interestingly, the points are all 

equivalent within MALT error, and all error bars are similar in size. 
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Figure A-13: CO concentration vs RMS Residual, with error bars from the MALT absolute error. 
Each point is labelled by parameters fit.  
 

 

A.3.3 – CO2 Parameter Space Plots 

Figure A-14 shows a systematic effect in the CO2 percent error and fit RMS due 

to changing the degree of the continuum polynomial from poly2 → poly3, which was not 

seen for CO in Figure 3-6. HITRAN 2020 water spectroscopy is optimal, as seen for CO 

in Figure 3-7. 
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Figure A-14: [CO2] % Error vs. RMS.  

 

Figure A-15 shows the sensitivity of retrieved [CO2] to the parameters fitted. A 

~10 ppm difference is introduced simply from changing poly3 → poly2 for continuum 

fitting. Finally, Figure A-16 was created to determine how different each of these results 

are when considering the retrieval error from MALT. Figure A-15 shows that they all 

overlap within the MALT error, as in Figure A-13. 
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Figure A-15: [CO2] vs. RMS.  

Figure A-16: [CO2] vs. RMS, MALT error as error bars.  
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A.4 – CH3OH Diagnostics 

Since this retrieval was mainly relevant for the identification of ship plumes, the 

diagnostics for the retrieval are stored here instead of section 3.3.  

 

Table A-3: Diagnostics for the Methanol (CH3OH) retrieval. Fitted on 2021 data from 08/07 – 
09/10 and filtered as described in section 2.2. N = 9579 spectra for series 2 and 9575 for series 1. 

Average [CH3OH] S1: 2.29 ppb 
S2: 2.32 ppb 

Average [CH3OH] std deviation S1: 1.44  
S2: 1.29 

Average % Error from MALT on 
[CH3OH] 

S1: 58.7% 
S2: 49.7% 

Average RMS  S1: 0.00219 
S2: 0.00151 

Fitted FOV Value S1: 24.6 ± 1.4 
S2: 25.0 ± 0.6 

 

 

A.5 – Average Correlation Matrices 

An output from each MALT spectral retrieval is a matrix that shows the 

correlations between each fitted parameter, derived from the algorithm itself. To get a 

sense of the interplay between fitted parameters over an entire retrieval ensemble, it is 

useful to create an average correlation matrix. Average correlation matrices for each of 

the retrievals discussed in this work are presented below, with figure captions indicating 

the relevant retrieval. For ease of reading, only the matrices for the series 2 retrievals 

(averaged over 9579 spectra measured between 08/07 and 09/10, 2021) are recorded here.  
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A.5.1 – CO (and CO2) Retrieval Average Correlation Matrices 

 

Figure A-17: CO (FAP and FOV fitted) retrieval.  

 

Figure A-18: CO (FAP fitted) retrieval.  
 

A.5.2 – NH3 Retrieval Average Correlation Matrices 
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Figure A-19: NH3 FOV from CO (fixed FOV) retrieval.  

 

Figure A-20: NH3 FAP and FOV (FOV initialized at 21.739 mrad – theoretical value) fitted 
retrieval. 

 
Figure A-21: NH3 FAP (FOV fixed at 21.739 mrad – theoretical value) fitted retrieval. 
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Figure A-22: NH3 FAP and FOV (FOV initialized at 20.2 mrad – CO retrieval average value) 
fitted retrieval. 
 

A.5.3 – Other Retrieval Average Correlation Matrices 

 

Figure A-23: OCS retrieval average correlation matrix. 
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Figure A-24: HCOOH retrieval average correlation matrix. 
 

 

Figure A-25: CH3OH and O3 retrieval average correlation matrix. 
 

A.6 – CO2 Inter-window Comparison 

For an idea of how the retrieved CO2 concentration varies between spectral 

windows and parameter choices, the time series of CO2 from each window used in this 

thesis that included CO2 as an interfering gas was plotted on the same axis (Figure A-26). 

This shows that CO2 is retrieved with a ~10% lower concentration from the inferior (i.e., 
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for CO2 fitting) CH3OH and NH3 windows. Although the CH3OH and NH3 windows 

(near 1000 cm-1) have decent CO2 features, the absorption of these features is < 6%, 

while in the CO and OCS windows the CO2 absorption reaches ~20% and 25%, 

respectively (see Appendix – A.1 for reference). Figure A-27 shows the concentration 

difference of CO2 as derived from each of these different retrievals and demonstrates how 

much more precise the results from the CO and OCS retrievals are. The concentration 

differences from CO and OCS are much less noisy than the other CO2 results, and one 

can see that there is well-defined variation and a promising amount of information in 

Figure A-28, which even suggests that the CO2 result from the OCS window is superior 

because it is more ‘repeatable’, or precise. This is not a surprise, since the spectral CO2 

absorption feature in the OCS window contains more information as discussed in section 

4.2, while at the same time the SNR is higher near 2000 cm-1 than near 1000 cm-1.  

Figure A-26: CO2 concentration between 08/07 and 09/10, 2021, as retrieved from series 2 data 
(N = 9579) from each of the windows used in this work that fitted CO2. The respective retrieval is 
indicated by the legend.  
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Figure A-27: As for Figure A-26 but showing the CO2 concentration difference (series 2 - series 
1).  

Figure A-28: As for Figure A-27, but only showing the two most precise results; the CO and OCS 
retrievals.  
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