COGNITIVE MODEL AND
PROBLEM-SOLVING PROCESSES
OF.COMPUTER PROGRAMMERS

BY

Tle) D.MUBENOIT 1988

a

SUBMITTEDR IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR A DEGREE IN
MASTER OF APPLIED SCIENCE (I/O PSYCHOLOGY)

DEPARTMENT OF PSYCHOLOGY
SAINT MARY'S UNIVERSITY
T HALIFAX, NOVA §COTIA
" MARCH 1988

~

neither

=

1

Permission has been granted
.'to the National Library of-

Canada to microfilm this
thesis and to lend or sell

.coples of the f£ilm.

The apthor (copyright owner)
has Teserved \
publication rights, and
‘the thesis nor
extensive extracts. from it
may be printed or otherwise

" reproduced without ‘“his/her

written permission.

" 13BN

other

" extraits de

0 315.45059. -

L4

L‘autbri;ation\a &té accordée
4 la Bibliothdgue nationale
du Canada de microfilmer

-cette thése et de préter ou

‘de vendre Ades exemplaires ‘du
film. s

L'auteur (titulaire du«droii
d'auteuy) se réaserve 1les

-autres droits de publication;

ni 1la thdse ni de 1longs

celle-ci ne

doivent &%rq imprimés ou
r

autrement produits .sane son

autorisation écrite. .

4

£

COGNITIVE MODEL AND
PROBLEM-SOLVING PR;OCESSES
OF COMPUTER PROGRAMMERS

AN

D.M. BENOIT s \

)
. N
. SUBMITTED IN.PARTIAL FULMILLMENT OF
THE REQUIREMENTS FOR A DEGREE IN
MASTER OF APPLIED SCIENCES (/O PSYCHOLOGY)
‘ SAINT MARY'S UNIVERSITY
»
THESIS ADVISOR
KENHILL .
. COMMITTEE MEMBER
} DY —
s o D.SHERIDAN

h COMMITTEE MEMBER

~March.30..1988
- DATE

Fuor Danicl, who belioved inme,
For Paulette, who taught me courage,
For. Cheryl and J.).,.who helped me see this through, and
Fuor Vie Catano, who made it worth reading, '

e

!

D. M. Benoit

A]ihéugh reseérchers have stértéd concentrating on the bf()gramming
hehavior of ¢()ti1pﬁter ;;rogrammers;the material produced so far has not be\en
merged it;;() a testable t}]eory; each study focuses on a particular prbblem without
\integrating the results into a workable overall model. Tn addx ‘tioh, most studies have

- mnceﬁtrated on ihe meaSyre of programming skills and aptitudes, rather than on
the uﬁder!ying cognitive processes differentiating programmers from
non-programmers. While many studies focus on the human-system interaction, very
little has been attempted to specif)'l which strategies computer pr()grz;mmers use to

,salve problems, how‘ they process and integrate inforr;lation; fvhether these
strategies are specific to a cgrlaiﬁ type of people, or whether these processes can be

,. \

-1=

taught.and improve with experience. Two partial models were examined, the

~ ~ N

syntactic/semantic model of programmer behavior, and the heuristic/algorithmic
problem-solving model, in order to attempt 10 build a stronger base for the
evaluation of programmer aptitudes. .

Two major groups were compared: an Experienced Programmers Group
(n=31) and a General Population Group (n=44), which was further divided into .
three groups, a Control Group (n=23), a Novice Programmers group (n=11), and a

N r . o

- Non-programmers group {(n = 10). Experienced Programmers and General ~

>

Population were compared on two tests, the Semantic Ability Test, and the Master -

Mind Game. The Control Group and the Novice Programmers were retested after *

treatment, which consisted of a PSYCH course for the Controls and a BASIC

programming course for the Novice Programmers.

N

Analyses indicated that: on Master Mind, Experienced Prograimmers

_performed better than the General Population; Novice Programmers performed

’

better than the Control Group; d{d Novice Programmers perfornfance was related
to their grade on the BASIC coursg! On Semantic Ability Test, Experienced -

Programmers performed better/than General Population, although not significantly

7

s0; Novice Programmers performance was related to their grade on the BASIC

course, élfh‘fﬁghf not significantly so.

-ii-

Results are discussed within the context of implications for the measure of
computer programming aptitudes. The Master Mind game seems to tap into the
problem-solving processes, and seem to indicate that the hetristic/algorithmic

problem-solving model may be valid. Q’n\t‘he other hand, the Semantic Ability Test

may have serious procedural limitations, being very sensitive to its manipulation.
A : :

Duéto these difficulties with the Semantic Ability test; results are inconclusive.
. N . . N . v

a

-iii-

¥

ks
Table of Contents -
page

Introduction......c..cce et rereerensans RS 1

Purpose of the Study......coccoivivmnnnnn SRR, i e

Background..... g e .

Problem-solving. Process s arees FUURRROR T USRI
Concept learning......... feaereesnsagaraaess v RO 9
Problem-solving............ S W ettt e bes e n et /f 2

Language............ OO aeasasushadthenat ke st aeR s et w17
Syntactic rules.....covvees e b bt e 19
 SEMANLC THIES....ovreeeerrreereeensrnsessssssesssses s eenssssesssrssssennens, 20« =
Sentence pmcegsmg ceereeveastrenies bbb eeas 22

Cognitive models 6f computer Programmers.. 20

Syntactic/semantic model of programmer o

- BEhaVIOT ... rreeree e e .27
Modal mode! of programmer BERAYOT e 30
Programmer’s internal program............ SR PRI X

Algorithmic vs. Heuristic problem-solving ! -

Strategies.. .. ettt eb b enan ettt e 4)

Statement of the Problem........oinincinns SRR X

-Factors Influencing Programming Aptitude45

Tests of programming aptitude.........ceveeennnenn "

Selection of measures......ovccccvecneenn et vl
Measure of Semantic Ability......coo.cooevececcrennirnnn RO
Measure of Problem-Solving Processes......cnnn, WS T

Research Methodology.......cceeenrcennnese s 39

Method.........ccounnnnnnn. T s e 90
SUbJECtS. v, et D
Materials...... e reesgienssssttarsgnstesaans 60

Test of Semantic AbIY......ooooveiii S 60)
Design and Procedure.. ..o iioieennnnne. v B0)
Scoring Method........... veeersaessess et ss e et eens 63

Master Mind Game......o.ccoeeeninnnen. ettt es 63
i
L-iv- ol

;
p] <\
,
Design and Procedure.....minns wineain, 647
~ Scoring Method......ciineee, v s 66
Experimental Design.....ccinnncnesnn, 67
Coding.....coouvvenne et b s S 69
) ~)
CReSUME e e b e 710
~ Comparison of Major Groups..........cee....ermeee e 70"
- Master Mind.......ocoeeevnnen s ereeaeeeareensereranes 72
Semantic Ability Test w75,
Predictive Potential of Measures........c.oeeeee. et 78
Master Mind.....cccovinine i e bt 1 0
Semantic Ability...oa oo cerrrena 81
Psychometric Properties of Measures......o..ooweeoninnnsen. 82
General Population..........cooeiliereeeesn. et 82
Experienced Programmers......ccoueioicecrenens SOOI . 7.
Discussion....nnne. e s b nens .2)
Comparison of Major Groups........cueee. R
Master Mind....cvvneeeeee. TRV SEOTURRTRRURURRE . 3.
Semantic Ability.....cmie e 86
Psychometric Properties of Measures...........ocvweomnnes 86
Discriminant Validity................ S cemveesasaenen 86
Test-retest Reliability. v iciinennecnnnnnenenn 80
- Semantic Ability Test. o, RPN R— .Y
Overall Discnsgsion..........o.... S SOUOTOUPO |
Implications of Results..................... et ceres e 90
- Semantic Ability.............

Algorithmic Thinking........c........ reertee e e st ees 93

Limitations of the Study.....ccamnnnoanenn 30 -
CONCIUSION. ... siereesessmsssssssssssssssssssnsssssen e 99
References..........eooeun. ettt bRt veeennennne 100
Appendix A....ooiriniinnn, FOTOUUUUTUOTRIOT :

CAMex Lo Proseerserenner e, -

Annex 2........ - cernernns
Appendix B......ccoovicieinnn JRRTR SRR RN 117
Appendix C.......ccceueee veerreenaes RS ISEVOTUIIRPURIPRRITOIG B £ I
Appendix Do e veeerersensenninnedennas 122

+

Lo

-
’ .
Tables and Figures
y page
Table 1 Description of Major Groups.{N =) YL ¥ |
Table 2 Descripation of Sub-groups (N=44)...... et L
G ’ R N
Table 3 Sample Test Set for Semantic Ability Measure ... Ol
Table 4 Experimental DeSigN.. ... ororioorereoeeee oo sesssee e 68
Table § ;"Test Means and Standard Deviations for the Experienced:
Programmers and General Population Groups......oneeceen. 71
) oy) .

Table 6 Semantic Ability Test--Answering Pattern in
PErCeNIAZES. . cvucie et sesesssersamnesss s eve s ssasesennssssoseresns 10

’T‘abls 7 Difference it Answering Pmle‘tn&%xpérienccd

) Programmers vs. General Popukation.......cococcennnnenl e 77
Table 8 Difference in Answering Patterns--Novice ‘
Programmers vs. Control Group... g, 77
Table 9 Test Means and Standard Deviations for the B
Novice Programmers and Control Groups............. UTRUT 78
Table 10 Correlations Between Grade and Measures and
95% Confidence Intervals......... bbb 80
" Table 11. Significance of Differences Between .
. Correlations of TwWo Groups........ccinnc e BT
Table D-1 ANOVA of Rows Performance on Master Mind
_for General Population and Experienced ;
Programmers......... O RS TOR 122

Vvi-

o -

-

N “g * S N
- . e ey s B
veTea e T TEUET TSRS

+
?

" Table D-2 ANOVA of Time Perfnrmance" on Master Mind
for General Population and Experienced
‘ 122

evasesesTeIsetaatrattagusstsTeranrebronabanian 4 dan

Programmers........... e, . i
Table D-3 ANOVA of Overall Performance on Master
Mind for Control and Novice Programmers..........nnn 124
Table D-4. ANOVA of Qverall Performance on Semantic ‘
Ability for Control and Novice Programmers.............. N 124

Figure 1 Average Number of Rows per Trial needed for
MM Solution for Experienced Programmers and

General Population Group......coeevuennnes R 73
. \ o
I’ ig‘urc 2 Average Time per R})vg per. Trial for MM
Solution for Experienced Programmers and
General Population......ons e 14

N L L R

Figure 3 Master Mind De-coding Board.;...n‘... e e 117

-
*

*}

’ : -Vil-

“wy,

Introduction

In the last few years, research has begun to focus on the human factors of

¥ .)e

“computer programming instead of concentrating on the mechanicalaspects of (Hess

discipline, and such human-centered issues as programming skills are heing isolated

from machine-centered issues. This movement has enabled psychologists,

psycholinguists and computer scientists to study programmer behavior separately

from programining procedures.

Weinberg's book "Ps.ychol‘og,ry‘of Programming” (1971) has prompted

. researchers to start concentrating on the cognitive processes of programmers. Thiy ~

N » . . .
type of study has taken the form of examining programming tasks such as

cnmpbsition, comprehension, debugging, and modification; as well as learning of
programming skills {(Shneiderman and Mayer, 1979). The subjects widely range
from naive to highly experienced programmers, and the tasks from simple o |

i

complex, \ ¥
Notwithstanding this shift in interesy, the material produced so far has not
been merged into a testable theory; each paper focuses on a particular problem

-

without integrating the results into a workable overall model. In addition, most

studies have concentrated on the measure of programming skills and aptitudes,
rather than on the underlying cognitive processes differentiating programmers from

-

NON-Programmers,

™

There is no-comprehensive theory or model, at this point, that specifies what
- ' . N -
.strategies programmers use to solve problems and how they process information,

whether these strategids are specific to a certain type of people, or whether these

processes can be taught and improve with practice.

-

+

When writing a computer program, prograxﬁi’ners start from a problem and
attempt to find the best solution. To do so, they use a programming language, and
“apply some f();m of problem solving strategies to shape t}ie_s;)lmion. But how cdn
we determine ifa particular strategy works best? And how is it possible ta find -
whether-the prograrﬁme‘r has been successful in fhi:s process? -

1 ~

Shneiderman (1977) asserts that ﬁ:éaéuring the qualiiy and ease of
cmﬁpréﬁensibn of a computer program is very difficult; he cites Gilb’s de-scriptinn
of "up t0 40 metrics of program ‘qual'it_y such as re]iability, ‘maintainability;
repairzibility, accuracy, generality, portabilit‘y, iogical cbmplgxity, modularity,
efficiency, total system cost, ()p§ratioﬁal cost énd‘stability" (p- 465). Ttis argued that

these measures are faulty through their generality, their lack of validation and their

potential lack of relevance. In addition, some of these measures may be mutually
exclusive: for example, a program that is very complex may be dificult to change or
maintain due to its nature. 'Shneiderman himself found that commenting,

mnemonic variable names and. modular program design had significant impact on

comprehension and program quality (i.e. written code), whereas indentation and

flowcharting did not.

Factors such as programming techniques, the features of the various
. 4 ~ .

programming languages, teaching procedures and difficulty of the problem may
infl'uencg~ an individual’s ability to be successful at programming, both in terms of
program comprehension and program quality. (It is very important that a

rograrnmer be able to understand an already written program, in order to make

jate corrections or modifications).

Even accounting for these differences, the basic principles behind
: - o \ ‘
programming are similar in any programming language. Better ;}crf()rmzmcc may
depend on'the comprehension of these principles; certain individuals may have a
greater ability understanding them, thus making it easier to write good programs

{for example, transfer fmm one programmmg ldngudgito the other would be lesy

dlfflcu]t) On the other hand, the information acquired by computu programmers

_may be more extensive and better organized than the novice’s information, thus

g

making it easer 1o arrive at-an ideal solution (Mayer, 1981).
Sl

Taking for granted that everybody has a certain abi]ity for solving problems,
the focus of this research has been to investigate whether cOmpuUter programmers
need to use a specific type of problem solving strategy in order to write good

programs. Based on what has been discussed previously, two major questions can

he posed:

AN

] * .

1. Can'the processes underlying programming aptitudes be identified?

2. Can the measure of these processes be a good predictor of success in

» A 8
computer programming?

ae
[y

A review }Of the literature indicates that specific abilities are needed to be
‘su‘c‘cessful at cm‘npuler progﬁamming, although t};ere is still contention as to whigh
ones are‘essemial. In addition, cognitive pr(;cesses appear to bea crﬁcial factor in
cnhancing these abilities: If these abilities could be measuréd, it would then
bccug]e pt);siblt; to predict who would be successful at programming, thus cutting
down training and labor costs. Therefaié, the goal of this research is to outline the

design of a better predictive test (or test béttery), by underlining the necessary

.cogiitive processes before the breakdown of the important elements of computer

programmer ability.

* Purpose of the study. The purpose of this study was to verify two partial
models: the syntactic/semantic model of programmer behavior, and the
1

heuristic/algorithmic problem-solving model. By examiming hoth processes in

isolation, the study attempted to build a stronger base for the evaluation of

~

- programmer aptitudes. It must be noted, however, that this can only be part of a
long-term project; consequently, the present study is onsidered exploratory in

B

nature. - - : s

Qackgmu nd research fbr this study indicates that programmers may have
better contrdl ové{semantic ele¥nents in lzangtx;lge ;comprehqnsinn and t‘wer
algofithmic processes in problgm»s‘g)lving. It wa% considered desirable to measure
ghese two procésses Separately,.’l"he ;‘>re§em‘ research has attempted to do so; by

trying to answer two main questions:

1. Are there separate measures that can differentiate the cognitive
processes, such as semantic ability and algorithmic problem-solving, of

programmers and non-programmers? .

2. Can these semantic and algorithmic measures predict, in a general way,

.

success in a programming course?

‘What is needed is an approach starting with an approximation of the way in

~

‘which programmers process information, rather than one which is looking into
v ot \ - :

. - 3
- . special abilities.

-—

d

'I‘his papér has five main sections. In the first, the fundamental ﬁotions_‘
underlying the models are ﬁ_res;e:nted, including the basi(:‘assumpti(;ns for the
informatioﬁ-processing modeis of cognition. The second‘se‘ction\describes the two
partial models, and discusses the.validated measures of programming aptitudes

| a‘vai]a‘b]e as wel] as the theorems suﬁporting this study. In the third section, the
p;*oblem ls st‘ated and ;he measures described. The Research Methodology,
including the discussion of the Results Obtaingd is included in the fourth section.

The fifth'section discusses in detail the,results obtained.

Background

The field of cognition is dedicated to the study of how individuals gather,
store, retrieve, and utilize information (Carroll, 1983). This is done through the
" examination of cognitive processes such as language, perception, retention,

transfer and memory; these processes are interdependent and- are often difficult to

separate of discuss in isolation. To illustrate, it would be impossible to c‘xp]’uin
what is a dog if the concept, the memory of that concept, or the label “dop" were
not available to the individual. Similarly, solving a préhlmx without tiic. use of
concepts and language is difficult tb imagine. This study is concernedwith three
importam processes of cognition: concept fnrmatihm problem solving, and

language. They will be treated separately as much as possible,
>

The study ‘()f cognitive processes is performed us‘ually through cognitive
tasks. A cognitive task is "one that critically requires the processing of information
-- information from the Oiltsi(lt;: world that can be perceived by the individual and
placed in somé kind of memory, and/or information derived from previous
experiences and retrieved from \memory"\(CarroH, 1983, p.3). "l‘hm information
can be processed in many ways: it can be stored, compared with other similar
inforniation, retrieved, modified, or "ma(r\lipulatcd by com.plex pmcedurcs‘m

"algorithms” (Carro]l: 1983, p.3). Cognitive iasks are tailor-made problems that

examine specific areas of a process. They enable the researchers to hreak down

the larger field of cognition,

Two basic classes of theories of concept learning and problem solving have

made use of cognitive tasks to demonstrate their characteristics:

The continuity theory is an associationist model: it attempts to apply
classical and instrumental conditioning principles to concept formation. Associative
psychologists explain‘problem solving in terms of response hierarchy: specific

~

responses become associated with specific stimuli because of repeated pairings or

reinforcement (high strength response). When the previously learned responses are .

. . N - N
inadequate to the situation, a problem is identified, and it stays unsolved until a
- low probability response has been aroused (Lipman, 1979). For example, in a
classic experiment where a pair of scissors had to be used as a balancing weight

instead of what it is normally used for, it took longer for the subjects to arrive at

that solution due to its low association response (Meyer,1979).

. T
“The nﬂnmminuim_thﬁmx‘derives\ from the Gestalt approach. It contends
" that concept learning is a process whergby hypmhésgs are constructed and tested
until the appropriate one is found. The probler‘h solver makes a guess{a
hypothesis) kas"to the solution, in accordance with iht; information available. As
more information is gained, the individuél either cox)firms the hypothesis, or

rejects it and selects a new one. A

The noncontinuity theory also includes the information processing
approach, which defines the existence of a problem when a series of alternatives

exist for the same solution (Meyer, 1979). This approach elaborates the type of

.

strategies or procedures a problem solver chooses while adopting one of the

alternatives to the solution. The development of information-processing theories

-

has led researchers to break down problem-solving operations and write
‘computer programs that mimic human problem-solving strategies.- One of the
most prominent and most quoted attempt to do so is Newell and Simon’s (1972)

General Problem Solver (GPS) program, which uses heuristic-type methods for

solving problems.

+

In this study, the noncontinuity theory and the information processing

approach have been adopted.

: } . ‘ —

-

\ Concept learning. Wheﬁ}ar\x individual responds to several stimuli in the
same way, that persoﬁ:}'{as-mzidé a categorization, and is said to have acquired a
"concept”. For instance, idgﬁtifying animals that have a beak, wings and feathers
- as being birds is to have\a(‘:quired the c.oncept "bird". 'i‘his type of categorization
redu;:es strain on memory (since not every insx;mce of every object has to he kept

in memory) by developing an abstraction independent of any particular object.

»

Four basic factors affect concept learning:

a. Number of atiributes. The more attributes (or aspects, facets) a concept

has, the more difficult itis to learn (Bulgarella and Archer, 1962). ‘

> -
b. Positive and negative instances. Learning is easier if only positive

instances are encountered. However, in order to rule out irrelevant attributes,

negative instances are essential {(Johnson, 1971).
*

¢..Cue salience. The salience of an attribute (or how much it stands out
compa‘red to.others) also éffects concept 1eamipg. The more different attributes
are, the easier théy are to learn (Trabassc;, 1963). For instance, it is easier to A
differentiate between a circle and a square, than between an hexagon and’an
;)ctzlg()n< |

-

d. Feedback. Learning is easier if it is accompanied by confirmation or
1:|1f irmation of the relevancy of an attribute (Bourne and Pendleton, 1958);
: R
feedback also helps in the formulation of hypotheses. Hypotheses "represent
systematic attempts 10 eliminate or confirm the role of the many varying

~ dimensions in a situation” (Meyer, 1979).

-10-

L

The most often cited research in the-area of concept tearning and

~hypothesis testing was done by Bruner, Goodnow and Austin (1956). In their

experiment, they used aset of 81 stimuli, consisting of four dimensions with three
attributes per dimension (e.g., a card with two borders and three black crosses in

the center). They presented one card at a time; their subjects had to decide on

* which attribute was the correct concept (selected by 1}'wéxperimemers). The

experimenters then told the subjects if the card was a "positive instance” (a card
. N * Y

representing the concept) ora "negative instance" (a card without the concept).

- By observing their subjects, Bruner et al. (1956)- arrived at two major types

* of selection strategies for concept learning: scanning, where every instance is

‘ a T e ~\ ‘ > s)
examined and kept in memory, and focusing, where one instance is examined and
dlscarded if found unsmtah]e They found that the focusing sirdtegles were more
eff1c1ent because scarining relies too heavﬂy on memory. The more attributes there
are, the more camplex thc probl‘em becomes. For example, while a threc-attribute
problem has seven possible positive concepts, a six-attribute problem has 63
concepts. - Consequently, it "is quite evident that the task of keeping track of
possible hypotheses increases considerably in difficulty with an increase in the
number of attributes in the array” (Bruner et al,, 1956). The focusing strategies can

- . M ‘* '
be divided in two: ”

!

o~

-11-

1

a. Conservative focusing, where an individual picks one concept then
changes one attribute of that concept ata time, thus eliminating unusable
attributes directly. With this strategy..the subject would always arrive at the right

. answer;

r

~ b, Eocus gambling, where an individual picks one good concept, then

changes several attributes at a time, thus trying to "guess” the right attributes.

a

Conservative focusing was the best strategy to use in solving a problem: the
information was more easily monitored, and it minimized the amount of risk
involved. ‘However, thé more attributes there were, the more costly it wasin

terms of time since only one attribute is changed at. a time.

8 .
On the other hand, focus gambl‘ing "provides a way of attaining the concept

. infewer trials" (Bruner etal., 1956). The individual is taking chances by changing
several attributes at a time, and may "get licky". Bruner et al. found that most

people used focus gambling as a strategy.

As discussed, concept learning is based on hypothesis testing, whichis an

essential process in problem solving.
.. : .

Problem solving. What is a problem? Glass et al. (1979) define a problem

*

-12-

.
A

»

as something which has no immediate solution. They identify three basic
components to a meiein: availubility of specific information, the use of a series

_ \ .
of operations by the problem solver to arrive at 3 snlmiun‘. and the deﬁniti(jn of the
solution to the problem, or the "g()z;l". Prior learning, the l‘mnplcxity of lhe; "
problem, and the cmheddedncssnf clues (l‘.x'pm:m, 1979) -- as - opposed to thewr
salience -- can all affect problem solving. Ina gene-ml way, there are four major
steps 1p the prnbiexn-&ﬂviné prbcess (Polya, ‘]>()57): undeal&nding the ;')robl‘cm.

v ' v :
searching for a solution, implementing the solution, and checking the. results.

-
When an individual is faced with a pmblexﬁ, 1h?ﬁrst step ls w0 ;mcm;ﬂﬁJ

understand that pfobleni.' One way to attempt this is to arrive at an im\crmil
representation of the problem. Thus an algebraic expression may take the form of
- more con‘c‘r‘ete objects such as apples and oranges (Luria, 1968). ()f course, as a
problem becomes more coniplcx, it also becomes more difficult o represent it
concretely; ‘similarly,' Pellegrino (1985) found that "the more e«lemems‘ and the
more transformations, the longer it will take to solve the problem" (p.51). In
add‘it_ioh, "a problem may have more than one represenli:niun...{ and] smﬁc
problemé canbe solved much more easily with one form-m; representation than
.another” (Glélss étal., 1979, p.400). Therefore, "understanding the nature of the

task and defining whatis necessary for a solution is vsually a major step toward

\

o il

finding a representation that can be used effectively 1o solve the problem” (Glass et

al, 1979, p.403). .

Planning the solution, implementing it and verifying the results often
]

operate simultaneously. In order to arrive at a solution, the problem solver can use

»

two very different slriﬂcgies or procedures: Heuristics or Algorithms.

‘ Heuristic reasoning 1s "reasoning not re‘ga‘rded as final and strict but as ‘
meisional and plausible only, whose puijpose is to discover th(;. solgti()‘i] of the |
present problem” {Neweil and Simon, 1957), whergas algorithmic thinking is "a
search méthdd which, with certainty, will produce the correct response for any
stimulus in the set of possible stimuli" (Hunt, 1962). "An algorithm is "an infallible,
step-by-step recipe for obtaining a prespecified result. ‘Infallible” rﬁeans the
érncedure is—guaraméed to succeed »positiVely in a finite number of steps..."

(Haugeland, 1985); thus, an algorithmic strategy requires that every hypotheses be

tested until the best solution is found. This strategy can be costly in terms of time,

although it was found that "the hest reasoners are often slower at encoding than are

tess skilled reasoners...slower, more accurate encoding of information at the outset .
)

*

speeds up subsequent processes” (Pellegrino, 1985, p.52). However, "solvers

Zworked faster than nonsolvers" (Rowe, 1985, p.335), suggesting that because

solvers are more careful at understanding the problem, they arrive at a solution

18- - -

-

-

]

more quickly. The algorithm which works best at problem solving s the "branched

schedule” (or primitive) algorithm, because it works by arriving at the solution

: : A ‘
based on conditional branches (or answering yes/no questions). TRis means thar:

an entire primitive algorithm could legitimately serve as a single
"primitive” instruction. in a more sophisticated algorithm. In other
words, if we think of primitive algorithms as ground level, then .
second-level algorithms can use simple operations and directives that
are actually defined by whole ground-level algorithms; and third-level
algorithms could use second-level algorithms as their primitives, and
so forth...using these bricks, and algorithmic glue, there’s no limit o
_ how high we can build (Haugeland, 1985, p.70-71),

This precess, albeit slow, cnal\)les‘thc problem solver to salve a problem
more quickly than\ if a "straight schedule” algorithm were used, where ev‘éry
instance of a solution, regardiess of its us;efulhess, is considered one after the '
other.

. . A

-

A heuristic strategy will usually find good, aithough ot necessarily

‘optimum solutions; the individual is willing to accept any nontrivial approximate

solution that can be obtained in a reasonable amount of time,

Newell and Simon (1972) give a larger definition to the heuristic strategy
through the means-end analysis method of problem-solving. This method requires
the problem solver to determine the goal or the solution; then to decide on the

means to reach that solution. This is done through estah\is};jsag subgoals, which
L

\

-15-

provide the information ‘necessary.to reach the final solution. The heuristic
. T s a : 1

L4

. component is the fact that the problem solver does not start to generate

A

hypmhescsj which are testetl one after the cther; rather, the problem solver starts
- by applyingthe "problem-reduction” approach (Nilsson, 1971), eliminating the'

P il

> . N . [Xi .
hypotheses which are obviously wrong or useless. The formation and testing of

subgoals, however, has a definite algorithmic component.
< o .

'I‘h;s is best (_j‘emonstramd\ t.hmugh ‘Egan and Greeno’s (1974) experimen
with the ‘lhree-(lisk Tr)\;zer of Hanoi, })rob}em, v‘lher-e‘ it waé dem(mstratéd t‘hat ‘
.) ‘ MR
" planning and setting 1;1.;)' subgoals ﬁgfé extreme‘ly impostant; in addition, the more
: g()mplex the problem, the more possibility of er-ror; Thisis because some su_béoz;ﬁ
often bring tf;e problem solver a&ay from the final goal (Thm;nzis, 19:\74‘). -Gla,ss et
e . ‘ \
al. (1(?79, p 326) gafirm t‘his by Stati;;g that "...people rely'on a limited number of°
| ﬁcu ristigprinciplgs which reducé*the cox;'xplex task of assessing probabi]itiesimd :
prediéting ?alue‘s to sirﬁp]e; judgemental qperati()ns. In general, these hglxristicé

are quite useful, but sometimes they lead to severe and systematic errors”.

~
1

Newell and Sim?n concentrated on the problem-solving search, rather
than the actual solving of the problem; that s, they argued that the method for
oo N
solving a problem was “Aftjved at heuristically -- the actual solution was most often

done algorithmicaily.
‘ \

6

H‘augehm‘d (1985) argues ti;zlt GPS was based Qﬁ two mui;x assumptions
- which proved to I;e false. :Fir‘st‘ means-end analysis turned out to be mnrf‘:t effective
- for a‘ very specialized form of pfohlem-solving (ie. for‘ very m\r.li‘efns).' -
rathér than ‘ha‘ving a single‘ ap;A)licati‘()}n for a wide f:mge oft prob,lem types. See;nmi‘
‘the~ ".‘..second unfulfilled assumpti(in‘under“miucs not oaly GPS, but h;:ﬁristic search
in gene;a] {...) Tt is That "formulating" a. ;‘m)b!e‘m is the smaller jJob, cnmpﬁ:yt‘d tw -
solving it once formulated” (Haugé]and, p.183).\. . |

1y

Therefore, it can be advanced that although people use hcuris(jcs‘m

décide how a problem is going 1o be solved, algorithmic procedures could be used

~

to apply the solution. Ina sense, Newell and Simon’s argument is more on the

P

definition of an algorithm (an infallible, time-consuming, non-economic
procedure). However, when distinctions are mhde between types of algorithms,
‘such as what Haugeland (1985) has done, it becomes possiblé to apply a

*conditional’ algorithm to GPS procedures. This approach is the understructure in

.ihe development of a model of cognitive processes of computer programmers.
L

H

o

One of thevery complex and most controversial - proeesses of cognition is |

. language, or more specifically language- comprehension. How do people

v

-
comprehend iaﬁguage, and in this ca!‘é, ;he Bngiish langﬁagé? Becal\lse 'i’spt‘atnach\
.‘acts exbrcs:{ ‘tﬁ()ughts...near]y all speech acts expté&s' cdrrespond\ing cogﬁitivé states
or events..." {Haugeland, 1985, b.SQ). Nevertheless, speech mugt not only be
uttered, ig must also be unde}rs‘toodi\"(}rder is tﬁe (;pp()site of cliaos. An ordered
text must have a systemnatic internal structure that is not accidental” (Haugeland,
' 1985, p; 94), thus delivering an internal represcnta;i(;n'(qf the concept 0 be
expressed. |

L)
B

© A major linguistic breakthrough was the developmeni of the theory'(;f
- transformational grammar by Noam Chomsky in- 1957. Although Chomsky’s
theories no longer ;jomfnatg ling{)iétics, he revolusionized the field by develéping a
generative grammar. ‘This grammar contains a set of rules for the forméti'on of aﬁy
g‘rammatical éent‘ence:in a language; 1t tgkés the study of languége away from a
_ descriptive gramr‘nart,k that is,‘the study of -hi)w sounds are ﬁnderstood to form -
© words. C‘homsky‘s focus:, was the total competence,\ or the pu‘re syntactic
formulation ‘of Ianggzigc; without due concern aboni the meaning of texts (i.é_‘

’ : - . . ‘ ©y
Scma‘mics), or individual differences such as motivational leve‘ls, short= term and ’

long-term memory or information retrieval capzibi]itiés (Kintsch, 1977).

3

Today, linguists realize that 1solating language competence from

performance is unrealistic, and current theories include both syntactic and
N »

- 0 _18_

semantic elements. - Marks and Miller (1964), for example, through scrambled and
unscrambled sentences, demonstrated that language processes were dependent on

both syntactic and semantic rules.
; y ~

» ' - *

- Syntactic ryles. In Chomsky's theory, there are two types of syntactic rules:

phrase structure rules and transformational rules (Kintsch, 1977).

v i »

The phrase stmcturé rules group (or chun‘l‘():sgmemcs into phrases and
dctermh‘}e the relmionsr;ips betwéen these phrases. For example, the sentence
"The small boy ate the. red apple” consists of a nﬁun phrase (The small boy) and a
verb phrase (ate the red apple) which ‘also contains another noun phrase (the red

. ‘.. \ _

¥ . : : : .
apple). These rules are the basis for perception and memory of the sentence, since

they break it down into manageable components.

Transformational rules enable relationships between syntactically related |
sentences; for example, the active ' transformation "The boy ate the red apple” can

be changed to the passive transformation "The red apple was caten by the boy™.

2

ry

These rules assume that-a sentence has "an abstract underlying phrase
structure...the deep structure of the- sentence” (Kintsch, 1977, p311). 'This deep

structure "determines the semantic interpretation of the sentence” (Paivio, 1971,

=19

P.399). Thus, transfoﬂrmational rules are mainly used to "co}nvért“ihe,deep st‘ruc_tur.e L
into the m‘dre concrete surfa‘cé étructuré that describes the form of the sentence"
{Paivio, 1971, p.400). It was therefore argued that sy‘mactic {both structure and
1rafysfr)rmati()n)‘ru]es were essential to sentence comprehension. In other words,
whi]c‘scmamics were 2 cnmplemint to syntax for lénéllage ‘competence, syntactic

clements formed the basis of expression.

Further study, however, shuwedglhe converse: meaning \takes“preceden‘ce to
sentence ()rganis;ati()ﬁ. For example; Aaronson and Séarborough (1976) foun(i that
se’rﬁamics. rather than the syma‘ctic stru_ctuté, affected reading time when ‘ . |
comprehensi(;n was required of their éubj\ects.‘ Béver (1970) pointed oﬁt thét_
syntactic organisation was less important to people than sémamic representation,

~and that syntax was \use'd merely ‘as a support to help determ?ne the meaning of a

sentence.

Semantic rules. Exp'erimgnts by Gough (1965) and Slobin (1966)
dem()ngtrated that semantic elements were the most important for sentence
comprehension, st)metim\‘es even suppressing syntactic rules. Grammar, or syntax,
does x_mi address meaﬁing for Ieini'ca‘l units of sentences. C(msequemly:"two‘ ‘
syntactically identical sentences, such as "The boy Ritthe gif]" and "The girl it the

boy", have different meanings (Gough, 1965). The words themselves, or the way

20-

they are cnmbined in text, can fa‘cilitme or himviei' comprehension. Semantic cues

: (or rulés) establiéh a basis forunderst'andiné. For instance 'all wnr.d\; are not
Sernantically equal; some are more complex than others, and affect 'comprchensinn
and mer%ory. For example, the words "short", ”ligici"‘ "narrow” {as oppased to "long”
~"good", and‘ "widé"‘) cannot be used\m ask a neutral yuestion; ‘in addition, the

"marked” word is part of a pair whose other member is always "unmarked”

(Kintsch, 1977).

Asa résuh, one can ask "How good is t‘he meal?" v(/ilhﬂﬁt assuming l‘hm H 1\
bad or good; the 0ppn§ite; ‘however,‘ "How bad is the meal?" assumes a degree of
_badness rather than a neutral ‘qual_it);. élark (1969) demonstrated that the
11ﬁm§rkéd words are easier to comprehend and remember, and tb{ll"l‘clric;ﬁ“ is
mbfe rapid if the qﬁestion is congruent wi.tix the statement in word problems (e g.
"If John is better than Pete, then who is best?” as opposed to "If John is better

than Pete, then who is worse?")

Most studies on comprehension confirm the importance of grammar in
language. More importantly, hawever, they show "that word meaning plays a
crucial role in comprehension...a role that overrides syntactical information unless

N 3
careis taken to suppress relevant semantic cues” (Paivio, 1971, p.47).°

=21-

" Sentence processing. The main pﬁrbésé of syntactic aﬁd semantic ru‘]és is.m ‘
assist compréhensinn of language. - Researchers hgve been inferested in o
determining hbw péo;;]e. prﬁcess seniténces for compréhénsion, and how lgng:-tern1'
and short-term memo;}y play a role in sentence processing. Begg and Wicke]gferl

| (1974) established that se?nantic.infofmati()ll was learﬁed and1 rétainéd better by ‘
. i
their subjects than syntgctic or lexical information. Sachs (193’)7) tes!ed‘
| synta‘clic,{se‘manticrecdgniiion‘of semenbce\s‘in text. Subjects listened to sectioﬁs of
text; immediafely aftc;r each \sec\tion, a\sen‘tence from the text was repeated. The
repeated sentence w‘as identical or changed s]igﬁtly. The changes were either
symacli.é. or semantic in nature, and the subjects héd t(')‘decide whéthér the
_ sentence ;vas "changed” or "identical’. If the Sehtepce appeared early ir; the te>‘<t,
on]y\ its semanti} aspect (itsfmeanihgj"could be rémemberéd, and semantic changes -

were detected better than syntactic changes.

Sachs conc:lu‘d‘ed\ that, wl;en delayed recall was required, the subjects
trans'f()rmed‘ the sentences into an ipte‘nia\lized semantic interpretation, while the
syntactic form was forgot;en. As recall operated, recon;tructibn was done
through the remembered meaning. As the repééted sentences approached the end
of the text, the accuracy of recall inereased. One way to determine if iang-taage |
compreh;nsion is an \ability which can be develbped is to study individual

Y

-22- *

-

differences in the utilization of language. Perfetti (1983) notes differences in

* language ability:

Some pGOp]e read well have large V()Cabuldne\ and score high on
verbal intelligence tests. Others read with difficulty, have smaller
vocabularies, and score lower on verbal intelligence tests. What
processes underlie such pervasive differences in verbal dhu]uy?

(p-65).
Perfetti advances that the differentiation between good aud poor verb: Wi
ability comes fr()m the ab:hty to retrieve information efflcu,m]y Studies by

Jackson and Maclelland (1979) and Jackmy) 980) mnﬁi‘m thm name retrieval is
a major factorin adult verbal ab_ility." Most studies, however, have heen done with -

e et g

simple verbal processes, proce%ses which require only one step in the retrieval

process. They occur when semantic e]emen\ts associated to a word are activated in

memory.

Complex verbal processes are components of verbal ability and are more
p
~ difficult to evaluate. A complex verbal process is "one which requires multiple
" memory access and manipulations of accessed units...decoding maysometimes be-

complex and ébmprehension may sometimes be simple” (Perfetti_; 1983, p.66).

Most studies, such as Perfetti and Goldman (1976), Lesgold and Perfeui

(1978), and Jackson and McLelland (1979) (cited in Perfetti, 1983), have,

\

concentrated on the study of simple verbal processes. However, Perfetti (1983)
claims that, since language is not unidimensional, complex processes reflect verbal

-

processing more accurately.

Perfeiti’s discussion fdncurs with'Paivio’s'argumgnt that current linguistic ‘
theories are incomp]c_te; Paivio has attempted to diséuss psychol\ir‘\guistics "with
special emphésis on the mediational role of imagery" (Paivio, 1971,‘];.394). H\c
‘dcveloped the dugal-co'diné model of psycholinguistics, in which concrete sentences
are stored in mgnl(i;y’ verbally and m the form of nonverbal imagery, whereas
abstract sentences aré stored in vgrba] form:on]y: He cri~ticizes cpmpre}iension
studies uéing test senteﬁces by stating that "the sehtenées, wh\en i:ohqrete, may be .
dc«.‘nded instead mm\nonverlml xmagery and the information in the 1mage
cnmpdred with'the mf()rmdtmn in the referem plcture or sentence" {p. 417) the
measure bemg corrupte_d by an additional process. He adds that in language, the

more abstract the concept, the less nonverbal imagery plays a role:

..verbal descriptions of concrete situations and events from memory
‘and’ verbal expressions of the manipulation of spatial concepts are
likely to be mediated efficiently by nonverbal imagery, whereas
abstract discourse and verbal expressions of abstract reasoning are |
more hkely to be mediated entirely by the verbal system (p.434).

-24-

¥

Pdmo theory 18 b'ised in part on a :smdy bv Begg and P.uvm(i‘)h‘)) in
which they mvesnéated the relationship hetwecn concreteness and nmg,c,rv. and
sentence meaning. Based on Sachs’ findings (1967), they arrived at two major

hypotheses:

1. Sachs found that the majority of her suhjccls.could recognize semantic

changes more easily than syntactic changes, Begb and P nvmﬁum

because her texts were concrete, thus creating an image which waf disturbed when
the semantics were transformed. Therefore, by using concrete sentences, they.

would be able to replicate Sachs’ findings.

»
'2. By testing subjects with abstract sentences, they would find a greater
difference among subjects. The more abstract the sentence, the lower the semantic

recognition.

Both hypotheses were confirmed, through a ‘modific;uion of Sachs'
procedure. Bégg and Paivié tested subjects with cither concrete or abstract
sentences, modifying them semantically or 'syntactiballj They found that suhjz\:cts\ ‘
were able to recogni‘ze semantic changes easily in the concrete sentences (e.g., The
sharp arrow pierced a frantic bird), but had more diff icuhy with the abstract

sentences (e.g., The arbitrary regulation provoked a civil complaint). They

e

concluded that imagery was used to understand meaning in concrete sentences, but

that the ahstract sen!epce§ were mediated mainly by verbal processes.

13

Paivio’s duz;l-coding rr;odel has been sﬁpported by research. It makes sense
“in that it relies "on ;'knt)wledge of the world" as a crucial substrate of]anguage
performance Aimagery plays an important role in n the comprehemmn retention,
and production ()f cnncreie (deﬂcnptwe) language in part;cular whereas the
. processing of abstract language is assumed to be tied more closely to -the]inguisn’c
represem ational system a]one (p.476). The model can be used to test language

acquisition, as well as language ability, which is of concern in thns present smdy

»

: ..‘ .]]\[.‘ i i

' The literature rev:ewed above forms the bam for the study Gf the cogmtwe
processes specific to computer prograrﬁmers Although a substamial body of
research relates to the use of application programs as t()()ls,-onl’y a_small portion

h
of n has consldered the cogmnve processes requ:red tobea good programmer Ax .
with the previous xecnon t}ns review is divided in two parts, based jn two pamal \
models: (a) the symacnc/semanuc mode] of programn;er behavior (Shnerdcrman

and Mayer, 1977), and (b) the heuristic/algorithmic model of computer

programming behavior. * The present study is based on these two models.

26-

According to Shneiderman and Mayer (1979), a model of _cognitive
pmcess'es' for programmers must address five main programming tasks: composition
(how-to write a program), mmprehensibn (how to undérst:\nd a problem to
translate it intoa progr'am), debugging (how ‘lo‘ find errors inan ul-re:}iiy written:
program), and lear-ning.(hnw 10 acquire 116;\; programming skills) (p.221). The

model must account for the strategies and procesges used to acquire, retain,

retrieve, and integrate the information necessary to perform

rramming tasks

AS

ay

effectively. The following literature review summarizes the ré®arch done to date

on the cognitive processes of computer programmers.
Syntactic/semantic model of programmer behavior

‘Shneiderman and Mayér(1977) praposed the synvtacl‘ic/scrml‘mic model
when thgy studied the recall sgnres{ of experienced and novice programmers with
two types of programs: one executable program and .one shymed ;;ro‘gram. They
fmma that, as the experience level of the programmers in;reiased, there w:§s al‘;\’() an
increase in the ability to remembq the executable program, the‘rc wis miﬁimaf
change for the shuffled prograin. Duri\ng the recail phase, the experienced
subjects would tend to retain the semantics of the program while writing a |
syntactically diffe;ent p‘r(;grar‘n }han the original, whereas novices tricd‘m

remember the exact lines of the program. That behavior led 1o the

¥

27-

A

syntactic/semantic maodel of programmer behavior.
\\
Shneiderman and Mayer hypothesized that as programmers become
experienced, their capacity to recognize programming structures increases; this.

ability helps them to recode the syntax of the program into.a more abstract level of

internal * semantic structure. . -
A4

In the fase of pmgran‘lmi‘ng, symtactic knowledge s language dependent and
is acquired 'by rote meinorization, whereas semantic knowledge depends on the °
ﬁnderstandir;g of gen‘erz‘al concepts that are not related to any specific
pf()gramming language. The knowledge is organizéd hierarchiéally from low ievél
constructs to a highér level problem domain. Kahney (1983) has ‘fbund evider;ce
that " ‘average’ noyices _s;ﬁend considerable time‘ trying to come 'to‘grips. with
concepts like recursion ... the average. novice 6ommit:§ a Segmem'pf code to ‘mémorsi
with .tﬁe rule that the segmém Has a particular effect wjtl;()pt having a model of: the ‘
way the effect is achieved” (p-127). So while a more "talented” programmer can
manipulate the recursion concept 10 write a program. and aetermine its outpm,‘ the
average programmer "...writes recursion procedurés without ~a m(jdél of the Behavior
of the program, and therefgre needs to use the computer {0 evaluate code’;"(p.IZ‘))‘ .

Without understanding the structure, or the semantics, of the program, the code, or

syntax, is simply copied and less easily adaptable to more complex pioblems.

28-

L.

Shneiderman and Mayer's study relies on Feigenbaum's (1970).
.)

"Information processing theory of memory”. Feigenbaum asserts that information

is channelled from short-term and long-term memaory into "working memuory';
; Hong) 8 ¥

where . it is integrated before it is used. As anexample, an individual would
extract (from short-term memory) the information necessary about a problem and
from long-term memory the strategies to solve-it, transfer the two in - working

. . -
memory and arrive at a solution. This process describes program composition, and

“the five programming tasks mentioned above can also be described through the

working memory process. According to Shneiderman, the best definition of
program comprehension is "the recognition of the nveran function of the prugmm.
an understandmg of intermediate level processes mcludmg, pmg,mm orbmuxmmn

and comprehexm(m of the function of each statement in a i)rot.,r.lm ‘ -

Thus the semantic and syntactic information is stored in long-term memory,

albeit differently. Shneiderman and Mayer (1979) desgribe syntacuic knowledge as

~ being "More precise, detailed and arbitrary” (p.222), with some points in common

but generally unique to each programming language. Semamtic language, on the
other hand, is stacked in memory, the low level details being readily accessible, and

high level concepts requiring a more abstract undemandiﬁg of programming

principles. Semantic knowledge can cut across several programming languages,

29.

and is independent of syntactic knowledge. Thcpyntactic/serhamic model proposes
that once semantics have been app]ied to the problem, the use of syntactic
clements to write the probmm becomes xlmple the languages to be used

n'erch.mgedb]v ' -

ln pm;,mm u)mprehensmn‘ %ynmx and semantics are used in the :ame way
Coasin 1hc mmprehemmn uf English text, the semammemems bemg m(;re
important for C()mprehensi(m ~than(5ymax (see Gough (1965) m prevm‘us secti()nj.
Shnciderm‘an‘and Mayer (1979).add that "the 'programmer; with the dld of his or

her syntactic knowledge of the langnage, constructs a mﬁ]tiléveled internal

semantic structure to repreSent__thé prograin” (p.226). They parallelled their

“findings on recall of progfams with Sachs’ study §1967) of sfntaétic/semémit
récx)gnition of sentences in text' experienced pr rz{mmers rétaihed semantic :

mfmmau(m better than syntactic elements, which is u)mslslentwnh Sachs (1967)

and Be,g,g and Paivio’s (1%0) studies. Shnelderman and Mayer (1969) further

\tressed theif hellef "that ab!llty to memorize and recall a program isa s!rong

u)rreldie of program comprehensmn {p. 235).

Mﬂdﬁl_Mmiﬂ_Qf_PmEmmmﬂBLhMI thney(l983) Qtudled how novice

- programmers transform thefverbal statement of a problem into a program. He

3

_ describes the "modal model of problem snlving" which has three phases:

-30-

,
]

1 Aph#se i)fpﬂlbmndﬂmndmz. Usually, a ;-)r(‘)gr“amming prablem is
not well def inéd, and some \;;lrizll;les might be missing.: Nogr;nnﬁwrs have 40 be
able to recoénize the important a‘spcg‘ﬁ of the‘prtvwhlem sm@mcnt Kahney :m;s
that the res;olution of the problem starts \'vith\ the understanding of the pmb?gn‘L |

" sinoe a specific tactical plan must be adopted.

2. A phase somewhere between problem understanding and the running ol

"solution’ processes, usually called "method finding". Chi, Feltoviteh and Glaser

(cited in Kahney, 1983) “found that novices are "stimulus bound”; their problem

solving strategies are influenced more by each text than by the géneral principles

-underlying all similar problems, while the experts are capable to extraet these

general principles from the problem. The ordered collection of information into

structured knowledge is esséntial to the . derivation of these general principles, and
is the first step toward .s:()lvihg the problem. Kahney adds that to solve “the’

problem, it is essential that they develop "a mental model of a problem” (p.oI2n.

Kahney implies here that .certain novice programmers develop a model usable in -

more than one situation, while others commit-a segment of code to memory

without understanding its underlying principles. He further says that-programming
; c . : . o

and experience "interact to direct and constrain the mental models that are

i
constructed”. This mental model.is obviow

J

Jy very similar to Shneiderman and

~31-

-2

Mayer's (1979) model of higrarchical “sem‘amic knowledge.

A bgluj.umphgsg This phase is often séen asa "soiutinﬁ framewbrk into
wﬁich clements‘()f tbe problem are slotted" (K:;hr‘ley, 19‘83, p- 123). Kaﬁnéy found
ﬁmt novices did not experien}ce a.ny difficul;y‘ wi{h writing code, iahhduéh they had..
diﬂ:icully undersl‘:mding code that was ;.vriu'cn‘bf someone else. In the-case of the
Writteg} code the problem is révgrsecﬂ because the no;'i;ce has the solution “and
must determine the pm:blcn.l. Novices fail to react to the wr'itten.code in the
appropriate way (i.e. by stating the purpose of {he program), which rﬁay‘indicate

that a different type of problem-solving behavior may be required for solving

" maore complex problems. g

In aniother experiment by Kahney (1983), talented-and average novices were
given a sample program to study, and, then had to write a similar but more difficult

program. . Kahriey found that talented novices worked problems the same way as

the experiénced programmers. They developed amenta! model of how the

‘ prjnciple of the sample pr(‘)gram worked, generalized its applicationi;Nen solved
the more difficult ;;rogiam. Mést of the dverage novices-were not ablefto writé |
‘th'e more difﬁcuh ﬁrogfam.yyhich m;ﬂd indicaie that there m\ay . <Crtain "natural”
abilities, aptitudes or skills influencing a programmer’s ability to transfer a problem

into workable code.

. =32-

!

!
Kahney's modal model of problem solving is similay' to - Bresnan's madel
(1981) in which she equated cognitive processes ik the mental representatian of

. e - : ‘

. : . . - R '
language to the solution of a problem of ngtural tmnrmutxmfﬁmvcsmng, where -
computational theory (which establishes the constraints or limits imposet! on the
representation), alporithm (which properly interprets the information abtained),
and process (in which the mental representtidn iy compared with the "processes of
the natural system” (p.46-4 1) are integrated.

In both madels, before starting on the solution, the individual has () to
identifythe problem and its elements, (b) compare these elements to already >

acquired knowledge, then (c) code the answer. ’
1 4

These models, however, do not mention how these processes are
"internalized”, how this knowledge is structured within the individual, and how it iy

retrieved. © R . ‘ .

Programmer’s Internal Program. Sengler (1983) proposed a model of
program understanding which is also concurrent with Shneiderman and Mayer’s
madel. He states that understanding a program requires two general capabilities:

e individual mustktz‘e able to predict what the program will do, and must be able

to recognize that a certain part of the effectis caysed by a certain part of the

9

-

" program. The latter is especially necessary for modification purposes and

. debugging.

When an individual is reading text, not every character 1s considered
separately: grouped together, they are seen as words; as groups of words are
formed into sentences, the reader makes assumptions about what should follow.
The individual goes through the process of "mapping the text into a new structure

| s sccumes 1o B 5
..-that represents all aspects bf the text the reader assumes to He essential”

(Sengler, 1943, p. 93). The sarﬁe type of structufe seems to be f’prrﬁed when 2
program is read 'hy the éxpe‘riencéd programmer. Se;lgler\ calls it the, “.ime‘rnal
program” and the components of this intema] prograrﬁ are the semantic units of
_the programming lan'guage.‘ Sengler’s descript‘io;lvcould be_mﬁre a‘ccu‘rat'ely termed
as an "abstracted” program, since he is talking more about extracting general

principles from what is learned than about an internal process which may be

difficult to measure.

If we account for individual differences, it cannot he assumed that each

programmer ends up with exactly the same mapping of the internal program.

I

Similar to differences in the reader’s selection_of salient points from the text, itis
more likely that there would be a variety of similar mappings, possibly due to a

different repertoire of programming experiences.

b

In order 10 understand a program, Sengler proposes five . negessary abilities.

These are the abilities to () find, (b) associate. (c) recall, (d) s:).dm..us: and

(¢) abstract. .

Because most programs are-lnng and cump]ex,‘lha pmgmmimr must
sc‘pa‘rate them im(; portions and then link \thcm togeﬂ_lcr in order to be able to
underst‘an.d what effect has the whole. The pmérumm;:r portions oul scctinnS of
the program thr(;ugh its:syr;tudic;al separm\inns (e.g. blocks 51:&1 as "hegin...end”)
which are arranged into a hierarchy, thus simplifyingthc pr\ncess‘ 'l‘hisfhiemrch‘y is

whatthe programmer calls the "structure” of the program.

In order to portion out the program, the programmer first has to find the

ele

ts of t_he p{)rtifm. These elements are its "compopénts [the semantic units x)f\'
the ‘pf‘o.gra nming language] and relation; [the sgm’am‘ic relations bet@écn those
semantic units].as well as its inner portions [pﬁrtions insivlle the currently analysed
porﬁon] an>d its . outer rélatimxs {elements affécting the interface between

portions]” (Sengler, 1983, p. 95).

After this is accomplished, the programmer can gssociate (or conneet) the”

. semantics of components and relations (from a knowledge of the language and the

———

system),

" Thenthe programmer can recall the previously understood and memorized
semantics of inner portions and outer ‘relations, and "¢yaluate the resulting
semantics of the portion [which includes) an imagining of the effect of the portion

on the program’s state space” (Sengler, 1983, p. 95).

. N ~ <) - -))
Because the semantics derived from this general evaluation are very
complex and are difficult to process, the programmer has to develop a concept of

the portion in order 1o be able to "fit" it into the overall image of the whole

program, therefore ahstracting the semantics. This whole process would be -

imp(‘)ssibl‘e if the programmer attempted to recall portions of the syntax only.

W@&Q&Mﬂd&xﬂnﬁlﬂﬁ&&ﬂﬁs Séngler (1983) purports
" thatalthough every expeiiezaéed programmer iniem;alizes pr:ogra‘mming concep;s, "
there are individual differeﬁces in how the internal program is mapped.
(‘(mm.lrre.ntly: van der Veer and van de Wolde (1983) giudied individual

dif l;erc nces in the as;ieéts of control flow nota!iéﬁs‘. ‘They started from the premis;: _
(derived from their own research ()bser\vat‘ions).that stux_jen‘ls who had avoided
math ‘:13 a subjéct were more likely to use fal§e'0r distorted irﬁagery to S()lyé -
alg()riﬂ?ms than lil()§e Siudemsi wt‘) enj:{)yed and were goo‘d‘at math (they "created

maximum semantic transparency in the code”, p.109).

36

V——. ~

Van der Veer and van de Wolde determined four factors alfecting the

‘ }e;arn? ng process: : :
a. learner ch‘a.raciu‘érist?’csl
b chara;:tgrist‘ics of the pmh]ém S{)Illii()ll, |
¢. features of the pmé@mming language.
d. didactics. _

. This study concentrated on learner characteristics only. Van der Veer and
van de Wolde distinguished three sources of variability in the learning of computer
programming.

1. general abjlities (suchas intelligence) which are considered 10 be fairly

stable over time, .

-

2. educational background, for example extensive training in math,

3. cognitive style, or an individual’s typical problem-solving approach, that.is,
. f . R N N N

the way a person approaches a problem,

1

-

They stressed three important factors that enable ‘;he individual to acquire,
store and retrieve inf()rmaii()n‘: \ : ‘) .

-factor I: tendency to memorize (rote mgmory). This factor reflects a skill -

rather than an ability.

-factor IT: "operationlearning”. Tendency to derivé "specifit rules and

procedural details"(‘p.lll). - SR , s ‘

factor lIl: "comprehensionlearning”. Tendency 1o derive "general rules |
and descriptions, and to record relations betwéen different or even remote parts of

the domain” (p. 111).

As we cap see, these factors are congruent with Shneiderman and Mayer’s
maodel: operation and comprehension learning can be equated to acquiring
semantics or conceptual - levels, whereas only syntax can be acquired through rote

memory,

Soloway, Ehrlich, Bonal and‘Greepspan\(l()82). paralle]ieﬂ the above
. models in their study of programming proficiency in novices. They had novice and -
intermediate programmers write three programs in PASCAL, each problem

requiring a specific looping construct; these constructs were not a matter of

“
»

individual taste, but were required Ioé_icaﬂyu Suluway etal. started \vil‘l‘l the premise
that experts use a hiéh»"leve]plan knowledge {or again high-level concepts) 1o
manage their proéramining structure. Soloway usés Minsk_v‘s dét‘ipitinn ofaplan
as an "encoded framé". A frame répresems "a !enﬁplnte‘;\which is customized o the
\pariiétllar features of the concept bci‘ng‘rcpiresemcd‘f {p. 2‘7‘): The plans :u‘c\lh}‘kcél

together, forming specific relationships; reflecting a hierarchy of ardered relations.
. v) .

The basic questions about the problem are asked through the Strategic

- plans, The programmer will (a) describe what the program should do,

(b) determine the \)ariéhles, (¢) decide what the pmg\ram will do, (d) decide what i

to be tested, (¢) determine the setup, (f) determine the aélionin the b()dy of the

program and (g) decide on the conclusion. The ¢ode itself is written through the ‘

v

Implementation plans; the specific iechniqxie used (regardless of the code) is

Qe]ected and developed during the Strategic plans.

Soloway et al. found that choosing the appropriate looping construct was
L ‘ N
not a predictor of success in writing the program, but choosing the appropriate -

looping strategy was. The looping strategy is a type of strategic plan whereusa
: . - \ ‘
looping construct specifies an implementation plan, %
« R N
This means that the technique must be not only used but umlmlgmﬁ.\!n L
O) . ? - S

N 4
. S

-39

”e

At

ml?cr words, one cannot on]&r use the ,s:yntzlx properly and be guurameed‘a cdrr_cct‘
program. If the programmer knows why a ceri;in technique is used and how it can
be applied in different situations, there is discrimination between different
concepts or, in this &use, the strategic plans. The present research attempted _i()
dcmohxt‘ratc that computer programmers use s;rﬁaﬁiic& rﬁore‘ e‘fﬁciem]y\ than
n‘t‘)r':—;_)mgr‘ammer‘s.

‘ N

‘“. I n] - . ll ‘- .]] -] . " 0-

'l‘hmughﬂuf the studies reviewed so far, the heuristic/algorithmic
prohlem-xo]w% hehdvmr mode] has been taking shape along with the
symacnc/seman_uc mndel. Akmg wnh the semantic mterpretanon of concepts the
"appr(mch to pmblem solution has been addres&ed But how is knowledge tapped

R into andm% ’I he themy of hypothesxs temng by Bruner er al. (1957) becomes

the cornerstone ()f the dl},()mhmlc/heumnc model

As discussed in a‘:pr‘eviqus section, Bruner et al. (1957) found that the
efficient problem-solver used-tﬁe focusing strategies rather»‘!‘ﬁan the scanning
strategies. C(Snsgwative focusing, where the individ{;al changes (3ne‘ \atiribute ata
time, can be equated to the use of an alg()\rjthm for problem-solving; the al‘gurit\hni

methodicilly considers every possible solution and always arrives at the right

v

-4(0-

answer. Focus gambling, where the individual changes' several attributes at a time,

can be equated to heuristic strategies: heuristics usually provide a nontrivial

approximate solution in a reasonable amount of time,

Following up on Brune@ al.'s.eibe‘rim“ém, Wickens and me‘;il”d '(1971)
tested s‘ubjevcts nn'a concept-learning task, after gi‘ving them large amounts of
practice. Théy Toﬁnd that as a rule ";sutijects tend tu‘énnsidcr a small number of

' v) N
dimensions simuhaneously, that a dimension paired inconsistently with the correct
response is eliminated, and that when all the qi:ﬁcﬂsi(ms in aset are eliminated the
sﬁbj‘ed samples a new set” (Mayé._f, 1983)‘. "'Thi:.\.s. behavior is very similar to focus
‘gam‘bling, or heuristic pr<>b1ein—sn]ving, and supports the belief lhai most people

solve problems through heurisitics.

Computers work on algorithmic principles, and even “heuristic
programming" is based on algorithms, such as the trial and error algorithm, where
“the amount by ghich the current approximation fails to satisfy the problem is used
to determine the next approximation” (Gear, 1978, p.6).

Several studies not only corroborate Shneiderman and Mayer’s

syntactic/semantic model of programmer behavior, but also go further in asserting

that experienced programmers have acquired a specific cognitive "set” with which

41-

)

1 91

‘they solve problems: Soloway etal (1'981) have found that the uhders‘tanding and
judicious use of pr(ygrarr;ming princip]es ' (or semantics) increase program quality; .
Kahney (11)83) developed a modal model of problem solving processes, where tiae
programmer builds a "solution framework into which the elemen*s of the problem
are slotted"; Sengler (1983) described the building of an "intérnal program”, a
‘method of - breﬁlé‘ing‘d‘(‘)wn a problem into smaller pieces t(>-méke it- easier to -
manipulate, 11nﬁerstand and remembe}: and van de\ “Veer and van de\Wol;jér(1983)
idémified a speciﬁc cognitive style wheresop-érat‘ions ieaming (the derivation of

rules and procedures) is one of the necessary abilities to the programmer.

From these studies, there is evidence that programmérs operate in a manner
consistent with Shneiderman and Mayer’s syntactic/semantic model. This partial
model of programmer behavior explains how knowledge is generalized or
" structured, but does not address its retrieval or utilization. The
algorithmie/heuristic problem-solving behavior model provides some answers to

- |)
the latter concern. Most of the studies discussed in this paper, however, have
. addressed these concepts in.an isolated fashion, and several questions have

remained unanswered. The nextsection discusses these problem areas, and

_elaborates the statement of the problem.

-42-

Among the Vli(\eramre on pmgrammers' abilities reviewed above, none of the
studies have tried to determine the ;ﬁagnitivc mmiel of their subjeets pri()l:!;) the‘h‘
first acquisition of a prograinming Tanguage, or tried to w:um;ﬁrc heuristically Wrsux
algorithmically oriented indiyiduals. In addition, no baseline has been obtained in
order to compare the general population w_it!i bmgramn{e s to dﬁtcrming i -1 here

18 a difference in their cognitive functioning.

Comparing novice and exbper\‘ienccd programmers is a good way 1O examine
" the structure of the cogﬁitive broces&ing. However, ‘therg has not been a (:ims%sléin
measure of differemiatéon between levels of ability. Kahney's discrimination
bet»\‘ve;enaverage\and ta]em;e‘d students is vagixe, and there are no :d‘eu‘:‘ils ()n‘how 10
me‘aSure‘these‘ differehcés‘. 'Van der Veer and van de Wolde (]kJR;%) discﬂmin:uc
between the alphas and the bctas; the alphas being poor at math ahd;lisliking it,
and the betas being the cdnverse. They determined the profile of ‘a programmer
thrdugh the three learner characteristic (abiiities, éduéan:ion, and cognitive style),

the emphasis being on educational background, intelligence and a score on the

three learning style factors. Unfortunately, itis difficult to see how these scores

) 2
were imcgr;;tcd together to fonﬁ one of three categories, alphas, betas, and"?" (a
-category where students were good at math but disliked it). ‘Alihough t‘hese make
ihktui‘tivc SEINE, th(. measure (;f leatner characteristics is still unceﬁain.
Most studies were done with people that already knew pfogramming.
Shneiderman’s reseéjréh determined that recall pefformance increased with
experience, but no evidence was presented to verify if praclica has an equzi!

“positive influence onevery programmer or if it only. enhances already present
A . . N . . . ‘_ ‘)
abilities. Studies should also be conducted using naive individuals (i.e.

non-programmers) in-order to be ablg to predict performance prior 10 any training -

in programming.

Another difficulty encountered in these studies is the determination of the

programmer’s lgvelof expertise. There are no established rules as to whatis a .
‘ o :

- novice, an intermediate or an experienced programrer. Although deciding on this
issue is heyond the scope 6f this paper, itis important 10 keep in-mind that any
- reserach will be - influenced by the definitions given to the level of experience of

programmers. As with all other studies the definitions used to describe novice and
experienced programmers for this research are purely subjective,

- .]

1

In addition to a lack of definition for levels of experience, the studies have -

.

-44-

",

o

not used the same programming languages, thus complicating the judgement as to
what exactly is an experienced programmer. There is also no indicatipn as 1o how

many languages a programmer knows or has worked with, and whether this factor
A . ‘ S
influences the programmers expertise.
: - ~ s

EamlnﬂumngkmgmnmApnmd_c Several studies have been

_performed attemptmg to find fattors influencing pmgmmmm& upmnde Petersen

and Howe (1979) found tha{ college GPA and general mtdhhence explained less
-
than 40% of the variance in a pr()gr_ammiqg course grade.. Kurtz (1980) "has found

little correlation bet:uveen-tﬁaj()r. class level, and previous college courses ... and
()\i_e‘rall course performance” (p.ll(i). He found that :xnezgsu resof uhstrépt ‘
; ‘reasoning ability were a good predictor of low and high échicvcra, but could not
predict well the average score. Kurtz's test was based on Piaget’s theory of

; ‘ .

intellectual development, and tests items were all verbal in .nature, although they

~ tested ébsgract reasoning-.
Cheney ‘(1980) examined the "relationship hbetween ™ cognitive style and
student programming ability". He defined cognitive style as "the problem-solving
.methodology employed by an individual in a decision situation" (;;. 285). Cheney
distingtiishes between two different types of cognitive styles: (1) analylic, where a

»

structured approach isused tosolve a problem, and (2) heurisiic, where intuition

-45.

and grbitr.aryjudgemem is used to reach a decision. He found that students with
an an’z‘ilyt‘ic cognitive style tended to score higher on pf()gramrning tests, Cheney
struscs that "cognitive style does not depend on the r)bp(qrti!nity for education and
thus is not biased i nafavior of those applicahts with an educational advantage in
‘ math” (p-287). Cheney’s définiti(m bf amilyticéi gognitive style isvery Sir;ﬁléi‘ to
\ﬁMnili(m of ﬁlgmithmic thiﬁking used in this Sttlay. : Q |
T : .
‘ Konvalina, Stebhens and Wileman ("1983) found that th§ best predictoré“of
success in a programming course were high school performance (209 of vananée
‘ ‘cxpldmed) and hl5h school mdthemdtlcs (23% ()f variance explmned) Except for
?

Cheney’s study, these results are‘hlghly unsansfactory and demonstrate that such .

actors-are minimally useful in predicting success in programming.

\ Jests of Programming Aptitude. tSeveral tests “attempting to measure
aptitude for cnmpu‘ter pr(f)grz;mming hz;ve be‘;e‘n developed through the years.-

‘ Hnwever none has satisfactorily pred;cted success consistently. McNamara and
Hughes (1%1) found that the Programmer Apnmde Test (PAT) was & good
mgasure of r€asoning ahi]ity; the PAT is composed of three subtests: (1) Numl;er
Séries, (2) Eigure Analbgie's, and (3) Arithmetic Réasqning. Howell, Vincent,

Cand ??y (1967) f(‘)urid,ihOWev‘er, that the PAT was significantly correlated with
ednf:ation\ level, indicating a "corruption” of the measure. | Wileman, K»ovnvaliﬁa,

k] -

46

and Stephens (1981) found that mathematical reasoning ability was an inportant
factor in successful programming. The PAT might then measure mathematical

¥

“knowledge rather than programming aptitude,

The "Aptitude Assessment Bni\ery: Programming” was developed in 1909,
It purports to measure the ahilities necessary for pmg‘rumming in T}u.xiﬁc.xx such an
“accuracy, deductive ability‘vreading qpmpmhchsinn of a C()mpliculed and
éxlénded explanation of a kind fnun:d in‘émgranuning‘ referc.hcc manuals, ability to
grasp ncw and difficult concepts from a written expl:ﬁnnhni, and ability o reason
with symbols" (Wolfe, 196§). The ‘x:z\mple used for validation ~w:n:;‘nm
representative of the geﬁeml ;1(>p1}laii()n, since it came from a scl;:ci::d few
cormpanies. The test was developed in order to help c<)11‘1;);1nics. .\iclccl people in
their own organisation for training in programming. Those who scored the
highest on'the test were p{()fe&sional eng;nécrs and ;-)r‘ofcs.s‘i(;ﬂai m;uhcnu_niciuns{
and those who‘scoréd the lowest were cleri‘cal and secretarial workers, This
indicates that the test is highly dcpéndéﬁt on ¢duca:kin; it possibly measn&s
fact{)rs such as alevel of knowledge in math, géneral intelligence, or again a
combination of factors, rather than programming ;lpliil:dt: By‘i!sclf. o

One of the best and most used test of programming ability is the Computer

e

Programming Aptitude Battery (CPAB), The CPAB was developed in 1964 as a

?

-47-

selection tool for computer programmers and systéms analysts, 1g be used by
managers of data<processing and computer pmgramming .s‘ecti()nsl Compared to
nthc"r t<;sts, 'Ifhé CPAB Was assessed a‘s being t‘he (;nly one of "suffi;::icnt quatity for
use in 'scr‘e(:‘ning ci;mputér pr()grammer:% for trm"ning;' (Bur;)s, 1978). Prédictiv¢
\}zll.idily for j(ﬂ) peljfnrmance is low. Cronbach (197()) also argues that the validity
of the CPAB is questi(.mahle.‘ ‘He siates that ‘t‘he samplf; used for validation may
not he generalizahlfz. that cotnput& iraininé may inﬂuen'ce:‘th.e test scores of the
Subjccts, and that the rating crit'eria were affected by ‘in‘terveningvériables Sucil as
age or experience. In addition, the test has not been rev‘alida‘te‘(.l sir;ce its inception ‘

in 1964,

Several reasons can be proposed for the deficiencies of these tests. First, it

is difficult to develop accurate tests when the underlying cognitive processes have

- not been examined properly. Before one can develop an appropriate’ measure, it
is necessary to understand the constructs on - which these aptitudes are based. In

. ‘ \ » PR ‘ RO) ‘

the programmers case, the research done to date indicates that the programmer
must know how to utilize information in order to solve the problem, before that
_problem is translatéd into a program. Nevertheless, there has been limited work

done on individual differences between programmers and non-programmers in

relation to their cognitive processes.

-48-

Second, the low predictive validity of maost programming tests seé_m_\{ to he
due toithc fz;qt that two concepts are measured at the same timAe: verbal
‘comprehension {or syntgctic/senﬁntic ability) and re:\snhing abality (or ;
heuristic/a!gqrithmic ability). Ahhnu.g]; it can ‘he argued that ﬁn‘xest‘ of rc:nsbnihg ;
ability é:m be completely devoid of verbal cmﬁpnpcms,~it\wduld be useful to test
each ability separately as much as pdsSible in order to establish - their sepdrate :\‘.\
well as their é()ln})iéled;iflﬁuence: At this time, m; test is available to measurc_(hcéc
. "twi)‘proce‘sses independently. .li;w;is th‘ercfnrg:‘ng?cessary‘m ::‘clec: néw m;j:usures
in order 10~attem’pt to separate the verbal compm‘mcms from the reasoning

components when the cognitive processes of computer programmers are éxamined.

In other words, it was necessary, using new tests, to. determine if gmup
differences exmed in mder to establish a lmqeime for hmh non- pmbmmmcn and
programiners, and to verify if the te%ts selectcd had some pn,dulwe vahdny lhrcc

main theorems were derived from these arguments.

~

First, tt was believed that, a]thbugh each cognitive sct. may not he mum‘:xl]y
‘excluswe* one or the ()ther (symiactic or semantic, and heumuc or dlgmthmn) 1'~.
‘ more prommem in a‘p‘er*;on s cognmve style Semnd it was assumt.d 1hdl although
practice may influence programmmg efficiency, the m&wdual s cognmvc set would

have precedence Hence, experienced pmgrammers would &olve problems

-49.

through algn_rithmi‘c procedures rather than ljelxristics;‘ but an individual whose
main cogniti‘ve setis based on alguriﬁthmi‘c“problem—so]ving strategies may be a

better com‘p'uter‘ programmer than the individual whose xﬁain cognitive set is based

on heutistic pmbkm-si(vpl\-/ing strategies. T’hird; anl individual who uses semantic and

algorithmic problem-solving strategies, rather than syntactic and heuristic

strategies, would learn computer programming more easily.
Selecti measures

As discussed. above, the existing measures of programming ability are either
inadequate or defective. It was therefore necessary to select two tests which coutd

replace these teasures, by separating verbal and logical reasoning elements.

M_c,xsum_QLS_cm.mnc_Abﬂny In order to measure whether programmers -
and future programmers have better control over semantic elements (i.e. can
understand meaning better), Begg and Paivio’s (1969) test of concretenui and .

imagery in sentence meaning was selected. (Appendix A presents the test

sentences used in the experiment).

- Begg and Paivio used this test to demonstrate that subjects noticed semantic
_ & .

changes better in concrete sentences, because it disturbed the image they had

50

+ formed when they internalized the sentence. This effect, however, was weaker
_with abstract sentences, which led them to believe that abstract toxt was more

dependent on verbal components only,

In the context of thlq study, it was(mnje‘éturéd that their test couldProvide
the p()ssibiiity of differemia(ing between\pmgranﬂnwrs and i1<)11~‘])r1)gr§‘1&w11ers on |
semantic zispects, by‘ determining.the difference between the two populations on
semantic cqx‘m)reheﬁsi(m, and by determining xhé differences wilhi. hthe |
pmgr~ammer populziti(m (due‘m experience, as in the Shneiderman and Mayer
model).’ If a_subjeq can determine whether a sentence is changed or idt.‘nﬂGﬂ‘ in
hoth abstract and concreie aspects, then h;z/shc has semantic ‘cm‘uml. This

rationale leads to the first two hypotheses of this research:

1. Experienced programmers will have more correct answers on the

semantic ability test than non-programmers.

2. Novice programmers who score high on the semantic ability test will
have a high grade on a BASIC programming course, and those who score low on

the test will have alow grade.

Measure of Problem-Solving Processes. Inorder to measure algorithmice

R

h

thinking, it was necessary to separate, as much as possible, non-verhal and verbal .

" elements in the pmh]em-so]\;ing process: Johnson-Laird (1977) describes a study

by Whitfield {1951), who whas examining the effect of negative information on
problem-solving, Johnson-Laird indicated that a "variant of this task is a recently
- ' : ¥ . T
available game known as ‘Master Mind™ (p.172). The game of Master Mind;
Yy o B ~ e . s . R 3

developed by parker Bros,, is a color coded equipment in which the subject must

+

" "guess” a secret code of four different colors.”

In his study on mediétjng processes during discrimination learning, Marvin

Levine (1963) developed a “formula 1o predict the minimum number of correct

N v .

| responses a subject could make to u-rriye at-the right ans\\\)ver. “This for-m‘ula is based -
" on the "Win-sta);'-l_,(‘)se-slﬁ»ft"‘ principle, where a sﬁbject stays‘whh an attffhute if
‘he/;shé is told it was correct but phanges‘attributes if i‘nid it was incorré‘ct; With
'alg(l)ri‘thm'ic thinking, since only one attribute is changed at a tiipe,\t‘he (;mswér
.sh(mlq,he §1r§ivcd"ﬁt in mi‘nimu m number ;)f trials. Th;ercforc, Levine’s formula
can be used to calculate the minitnum amount of azfsWerS asubject would have t‘n‘
make iﬁ order 10 get the right answer: if only one dimension is manipulated, but all

athers are presented, then each dimension is added together then divided by two: ™~

(a+b+c+d)2

-52-

In the case of Master Mind, two dimensions are manipulated, thit is, color

and position, among b colors * (white, black, green, blue, red, yellow), 4 positions (1,

N .

2, 3, 4) and 3 attributes (right color, right color and position; wrong color and

position). Thus, we can calculate the average minimum of answers required:
%

| \(6+4+3)f3;—-d;3‘
The dimensions are divide@hy three, because the subject has one chance in
three to be right every time. Therefore, it would take (in :;Vekmgc- 4’% ;mswérs for
. k] . .
the subjects using a perfect algorithmic prolﬂenysnlving steategy to arrive at the

hidden code, while the subjects using heuristic problen-solving strategies would -

tidke more answers.

N,

The game of Master M\ind appeared 1o he a good test of the algorithntic

problem-solving strategy, since the problem includes a minimum of verbal .

~

elements. Using this measure, tWo additional hypotheses can be formulated:

A

1. Experienced*brogrammers will solve the hidden code in fewer answers

than non-programmers.

2. Novice programmers who have i low score in the game will have a'high
grade on a BASIC programming course, and those who score high in the game will

have a low grade.

e

D

Ekd

Research Methodology o

Method
Table 1 gives a description of the two major groups used in the study.

Subjects were divided as follows:

’ (1) Exp_engncgﬂ_l{mgmmmﬂh this group of 31 subjects was composed 61‘
12 males aﬁd 19 females who were between 19 and 35 years of age. ~I§xpcricncc in
progra:fix;iing was Vdefined as having worked for at least one year in programming
and/qr having a working Rnowlédge of three or mi)ré prgigrzﬁnnin@l:‘lnguaugcsg ‘i‘i ve
had worked as a programmer for less than one year, one for one year, four for tw{y
to three yeérs\ and 22 for four or more years; two imcw only one langu\agc, Six knf.w :
two languages, and 24 knew three or more langlxziggs‘ All subjects had a (“nmpﬂlcf
Science-related degrt;e or.diploma, and vi)lumeeréd for the cx;)erimen‘l.
Twenty-three of the subjects came from two software firms in Halifax; the other
eight subjects were programmers working at Saint Mary’s University, in l:lalifax,

Nova Scotia.

(2) ngmimmuﬁmm_gump this group of 44 subjects was composed

of 28 females and 16 males who ranged from 19 years to over 35 years of age. Their

~
-55.

w

involvement with computers was minimal: 20 subjects had never used a comipaier,
ten were strictly system users {e.g. for word pmc&ssingx nine had done

. .
programming as an accessory to another task (e.g. writing a program for trend
analysis), and S had done some programming as a major task, but had not actively
programmed for more than six ‘months. All subjects were of university level,
ranging from first year to graduate school; they were. all volunteers for the

i

experiment.

56-

Table |
Description of Major Groups (N = 75)
: - .
Demographic variables. & of sample N
Gender . female 61.3 19
male 87 12
_ Education graduate . 323 10
. undergraduate 29:0 9
diploma S 387 R
Age 19-24 2.6 7
25-34 67.8 21
.35 orolder 9.7 3
Demographic variables % of sample N
Gender female 63.6 28
male ’ 364 16
Education graduate - 90 4 .
undergraduate oo 4y . e
‘ diploma 0.0 0 '
Age 19-24 ~ o713 34 ~
o 25-34 C 208 9 -~
35 or oldér 22 1

The General Population group was separated into three sub-groups (see

57

1

Table 2):) g

S

o a. Control Group: Thg 23 subjedts in this sub-group were students emo]!ed
at Saint Mary's university, and were about to start an Introduction to Psychology

“course. There were 17 Jemales and six males, between 19 and 25 years old. They
N i - *

-

were all vohinteers, and wgreed to be retested after their course. They received one

credit for each testing session.

¥

v b, Novice Programmer group: The 11 subjects in‘this sub-group were
students enrolled at Saint Mary’s or Dalhousie universities,.and were about ® start.

‘their first computer programming course (in this cage, with the programming

- language BASIC). "There were eight males and three females, between 19 and 25

. LY . T)
years old. None of the subjects had undergone a selection or programming aptitude

test.prior to théir enrolment into the BASIC course. Subjects received $5 for their
participation, and all-voluntarily agreed to be retested after their course. None were

in a computer science program.
L4

. Non-Programmers. Ten remaining subjects from the General Population

Group M;re added to the Control Group (to make up a group of 33 subjects) and

used in analyses against the Experienced Programmers Group. They were not given
a treatment, thus were not retested. In addition, they were never used in isolation. &

Fd

Téble 2 .
Description of Sub-groups (N = 44)

" Demographic variables % of sample N
Gender female 273 3
- male - 727 8
Education Graduate 0.0 0
Undergraduate 00 -
Diploma ' 0.0 0
Age 19-24 818" - 9
o 25-34 182 2
35 or older - 00 - t
Gender female - 79 .17 ’
: "male ‘ : 261. 6
Education graduate . . _ 0.0 0
undergraduate - 1000 23
“diploma L 0.0]
Age - 19-24 R 78.3 18
- 25-34 : ‘ ‘ 174 4.
\ 35 or older] 43 1
Non-Programmers . ,
Gender female S 800 i T
male ; 20,0 2
Education graduate o 40.0 4
undergraduate - 60.0 6 -
. diploma IR 1 1) 0
Age 19-24 © 700 7
: ‘ 25-34 3040 kK
35 or older ‘ 0.0 0

-59-

“—ry

Materials

Test of Semantic Ability. In or‘der‘io test semantic abi];ty, Begg and Pai‘vlio’;
(1969) tes‘t' of concreteriés‘s and imagery‘in sentence meaning was selected. This test .
appéurcd to-provide the pbssibility of differentiating between prbgrammers and
li()n-pr()grammiers on semantic aspects, by detefminﬁng the d‘ifﬁerenc;‘: between the.
two po;iulmions on sei’nimtié comprehension, and by détermihiné ih‘e differences

within the programimer population (due to experience, as in _the Shneiderman and

Mayer model).
~ . Demnd_mmlxm Begg and Paivio's design and procedure was

followed, for the most part, with some slight modifications.

-2
Each subject heard 2§ sets of sentgncé;s wiih five ‘s¢n~tences iﬁ each set; the
25 sets were divided into sixteeﬁ test siét‘s and nine fil}ef".se\ts‘. There were two ;ypes
of sentences (cohcrete and abstract) and .two types of changes (non-semantic change
| and semantic change).ﬂ,After eacil set of fivg sentences was presenfed,-énother
sentence was given to the subj‘ecti;.. This sentence xi‘/as one 6f the 61:iginal fivé‘in the
set, or one that was ‘similar to it Subje;:ts‘ judged \yh‘ether the test sentence was

either changed from, or identical to the original séntence. Table 3 presents a sample

-60-

test set and i1s repeated sentence.

Table 3 - :
- Sample Test Set for Semantic Ability Measure .
(Concrete Non-Semantic Change, Changed Sentence) " ‘

a. The vicious holind chased a wild animal*

b. The tortured slave uttered a deafening shriek

¢. The destructive army pillaged a prosperous village .
d. The talkative admiral attended i costume party
Test: The vicious dog chased a wild animal

9

| The test seﬁ«tence was either the first or secbﬁd sentence (to :§vnid l‘ccv.'al(“y S @
effects) in the set. in the filler sets; the sentences Lo be played back for njmﬁpu‘rimn
were the ‘th‘i.rd,‘fourth or {ifth sentence in the set, selected in r:mdﬁm fashion. The
sentence that was ﬁlay‘et;l back was i(ientiéa] to the original in cigm sets and changed ‘
f“rom the original‘ in eight seis. More explicitly, there were two changed and two
identical cnx;creie "non-semantic chimge" sentences, two,changed and two identical
COncrete ;’semantic change” sentences; the design was the samc‘fnr the‘ abstract

sentences. Sentences were not changed in the nine filler sets.

-Once they heard each set of sentences, the subjects had M) seconds to

’ respond by marking the answer sheet, following each’ playbéck. The subjects were

N

-61-

given the following instructions: ~ : ,

*"The purpase of this experiment is to find out how well people can

- remember what they have just listened to. The experiment will take
about one half hour. You will hear on tape 25 sets of sentences,
with five sentences in each set. At the end of each set ‘of five, you

“will hear the word-‘test’, and then one sentence from the set will be
repeated. Ten seconds will separate each set of sentences, giving.
you time to write your answer.

_ Sometimes the test sentence will be repeated with exactly the same
words as the original. Butsometimes it will be changed in some
small way. In some instances, the meaning of the sentence will be °
changed. For example, if you had heard ‘The whiskered priest
entered an ornate temple’, and then ‘The bearded pnest entered an
ornate temple’, this would be a change, but not in meaning, since
whiskered and bearded mean the same thing. If you had heard
“The innocent occasion promoted a useless illusion’, and then ‘“The

. useless occasion promoted an innocent illusion’, thls would be a
change in meaning.
\‘l
If the words are just as they were in the original sentence from the
set, put a check mark beside "Identical” on your answer sheet. (The
experimenter points to the sheet). If there is a change, but the
meaning is the same, check "Changed-Same Meaning". If there is a
change, but the meaning is different, ¢check "Changed-Different
Meaning". Listen normally to the sentences They go too fast to
memorize anything, and anyway, you must attend to the meaning
fully, as well as to the words used. Remember to pay close
attention to both the mea.mng of the sentences and the words used
in the sentenceés. Any of the five sentences in a set may be the test
sentence, and any words in that sentence may be changed. Do not
~ take notes, ?ust listen carefully. 1 will play two examples to help you
- familiarize yourself with the format. (The experimenter plays the
two sets of sentences, and the subject attempts to find the answer.)

Are there any quéstions?”

-62-

To summarize, the subjects had to contend with five elements in the test:
whether the sentences were concrete or abstract, and whether the test senience was
cither identical, changed semantically or non-semantically, The following are

examples of changes in test sentences:

¥

1. Non-semantic change (Concrete): “The whiskered priest entered an ornaie

temple’, changed.to ‘The bearded priest entered an ornate temple”.

2. Semantic change (Abstract): “The innocent occasion promoted a useless

illusion’, changed to ‘The useless occasion ‘promntéd anannocent illusion’.

The original sentences were obtained from Dr, Begg, and are included in
Appendix A, which presents 1he‘-t‘est sentences and their code. Ten filler semences
were constructed to camplémem the actual test sentences given by Dr. Begg.

-

Scoring Method: The scores obtained from both types of changes from both
: ’ _ . :
types of sentences were added together, giving ang overall score of semantic ability.

A perfect score was 16, since there were 16 test séts, corresponding to the number of

"hits" or correct responses of semantic similarity or semantic change.

- Master Mind Game. In order to measure algorithmic thinking, it was

necessary to separate, as much as possible, non-verbal and verbal elemehts in the

problem-solving process. The game of Master Mind appeared to have the potential

=63~

N

A

to meet this requirement. In the game of "Master Mind", one of the two players must
- “guess” a secret code of four different colors that has been selected by the other

player. Itis composed of: -

1. ade-coding board, with ten rows of large holes {Code Peg hol»es), and ten
~ groups of small holes (Key Peg holes), and four shielded holes (for the hidden

+ code),
2. ashield: to hide the hidden code,

3. code pegs, round-headed, of six different colors (twelve éach): white,
black, blue, red, green, yellow,

¥

4. key pegs, 40 thin fla;»héaded pegs»(Z()‘e‘ach black and v)hite).
Appendix B shows the organisation of the dc-coi!ing board.

Design and Procedure. 'The‘experimenter eiplained the rationale behind .
the experiment to the subject, then explained the rules of the game, by giving the

following instructions:

¥
¥

"The purpose of this game is for you to duplicate the secret code
of colored pegs behind this shield. Any combination of six colors
“{blue, yellow, white, black, green and red) can be used, although
no color can be repeated twice in the sécret code. You must
duplicate the exact color and position of each colored peg.

-64-

e

To begin, you place any combination of pegs you want in the
first row close to the shield. Each time you will place.a row of code
pegs, 1 will give you the following information beside that row lw
placing whue or black key pegs for a hi, or nmhm;,

¥

R a. whne key pegs mean thm you have a right color but it is nm in
. the right position; »

b. black key pegs mean that you have a right color and a right
- position;

[nothmg means that you donot have the right color or right
position. .

For example, if the sécret combination was blue, red, yellow and

green, and you placed blue, black, green, and yeHow, I would leave

one whole empty (for-the black peg), give you two white key pegs

(for the misplaced yellow and green) and one black key peg. You-

can then use the colored pegs, which stay on the board and the-
feedback I gave you to place your second row.of colored pegs, .and #
SO On. .

Your answers will be timed, but there is no penalty for the time
you take. Therefore, take as much time as you néed 1o .select your
colored pegs after you have had feedback from me. The maximum
number of rows you can fill is ten. If you have not found the
solution by then, I will reveal to you the secret code.

You y;riil attempt to d\uplicatev four different secret codes. This
should take approximately one half houk, but do not worry if you
take longer,

Are thére any questions?"

After the experimenter selected a combination of four colors for the hidden
code (from a set of four combinations, used in a counterbalanced fashion) the

* subject was told to start "guessing” the right combination of colors. Immediately

-65-

after the subject had décided on four colors for a row, he/she was'given feedback

through white and black key pegsas gfutlined in the instructions.

I“he %&‘nmemer rcpcatcd thxs procedure until the xub;ecl had guessed
the right combination of colors, and the expenmenter revealed the hx‘dden code.
Subject’s reaction time was timed Betwegn feedbixck periods, and the number of

“rows it took to arfiiz‘e at ih(:. combina‘ta:m; was reC()rdéd.. F he "game" w;i‘s.repeated

‘
i

four times for each subject, each time with a different combination of colors.

S_cmmg_Mmmm Two dependent measures were obtained from the

“Master Mind Game:

(a) Nnmb_e,mﬂgm The number of Tows 1t toék each subject to solve the
code on each trial, and the ;nean ‘num‘ber of rows i)ver‘ the four trials were recorded.
) . . L N
The average scores were compared over groups to determine differences in overall
performance; th_e’scores. for each trial we:re glsbﬁused in a repeméd‘measuire analysis
to determine if the‘r:e was an interaction Setwegn experience level and/or practice. If

practice played a role in solving the problem, then the subjects would take less rows

to arrive at the solution at the end of the four games:

b) | s¢ Time. The mean response time per "game” (each trial time
P per'g

~ divided by the number of rows) and the average time it took 10 respond for each

N

-66-

subject (total time divided by four) was also measured. Repeated measures analyses.
a . . . T
were performed on time in order to determine whether the time taken to arrive at o

» * l‘ N
solution changed with experience and/or practice.

. Experimental Design

As was mentioned in the statement of the prblem in ihe previous seetion,

the aim of the present study was twofold: first, 1o gétermine whether experienced

progiammers would perform better than the nondprogrammers on the Master Mind

F i
game and the Semantic Ability test; second, to de
N ’ T \ :) » -
predict success on a BASIC programming courge.

ermine if those two tests could

To achieve this, the experiment was divided into two sections; comparisons
were made first between the General Population and the Experienced Programmers

Groups, then between the Novice Programmers and the Control Groups.

Both the General Population and the Experienced Programmers were
administered the Master Mind Game (MM} and the Semantic Ability Test

(SEMAB). The Novice Programmers and Control sub-groups were retested after

-67-

»

“treatment, which was either & course in BASIC programming language for the
Naovice-Programmers, or in Introduction to Psychology for the Controls. Table 4
presents the design of the experiment.

Table 4
Experimental Design

Group N Tes ‘ Treament . Retest
Genera] Pop. 44 MM/SEMAB

a. Novice 11 Crse in BASI.CV " MM/SEMAB -

b. Control 23 - . CrseinPSYCH MM/SEMAB
c. Non-progr. 10 R : ‘ o

Exper, Progr. 31" MM/SEMAB

!

Fhe first part of the experiment compared the General Population 1d the
Experienced Programmers to determine if their performance differed on the two
measures; the Novice Prqgrarhmer and Control sub-groups were then used to

\ \ ' . o
attempt.to predict success in a Computer Programming course. The Novice
Programmers were therefore tested after having taken a course in BASIC, and the

-

Controls after-a course in Psychology. In addition to test scores, academic grades

-68-

were obtained for the subjects course performance. The methodology also permitted
a pariia;l énalysis of the validity and reliahili@ of the two test measures. In ~additiu‘n
to the Master Mind game and the Semantic ability test, a B;rékg,mund ﬁfnrmaﬁnn :
questionnaire (included at Appendix C) was filled ;m by anl. subjectsy it consisted of

seventeen guestions on demographics, education and computer experience.

- Coding. There were three dependent variables in this experiment: Semantiv
A'l;i!ity Scores. Master Minﬁ Game ‘Sc‘urcs. and Course (;‘rudc. Semantic Ability m‘x
scores ranged from 1to 16, in intrénzcnts of one integer, 16 being the maximum |
number of correct ansv;'ers possible. Master Mind g:dme lestseores Vr;mgcd from | to

10, for the number of rows it took to solve the })rdhlem, 10 l?pihg the worst seore,

" Test scores were an average of the sum of ﬂw ‘nu mber of rows per trial for four -
trig}&\for a m\ziximmn of 10. Grades were coded from [to (‘s’ I Bcing equivalent lran
"A", 810 an "F". Thus, grade and Master Mind scores went in 1hc‘su‘mc direction,
and Semantic Ability scores ran corﬁrary to gmdé. Grades from the wao cnn‘r\cx

“were considered equivalent.

-HY. \

This results seetion is divided into three parts. The first analysis compares
Experienced ngrammer_s‘a‘ﬁd General Population gr(mps and examines t.}{e
Tesponse patterns of the major groups on the two performance measures. The

“second parl examings the 'two measures f(’;r their pred‘iciive potemiaj -aémeasures of
-computer pmgrarhming;ﬂ\iﬂi%‘. The third analysis evalua\!es the psych;)metric

‘girtipcrtics of-the tests (reliability and validity).
: ; [EI!"S \‘

Based ()n‘ an analysis of demogr:‘xplé:ics. the Gegera] Populgtion and
‘E.\{p‘\c!ricgced Programmers groups wete él(.)nsidi:red acccptablc samples. Thc
nu mlg‘pr' of fémle'e and maie-:%ubjects: in b(itﬁ gr()t)bs was ‘e.ssenti:illy the s\amé' (X% =
~042, p. > 25) although the Experienced ngri;mmers group was generally older than
" the General Population C)f“()up (X2‘= 19.3, p. < 001); cogcurrent]‘y, there were ﬁmre
subjects having completed a degree (i.e..holding a dip‘lorna or attending graduate
school) in the Experienced Programmers Group (X2 = 2591, p< 001). -However,
because of the nature’of the experiment, where experiencé was a differentiating

factor, it was decided that the differences were inherent to the groups studied.

{Results were tested for gender differences which were all non significant.)

-70-

TN

Test means shdwn m Table S indicate that the l-ixpcr@ngcc‘l Programmers

' peff(;rmed better on both tests tﬁzm the Gieneral Population, as the‘!'ir\\“t:t\\'o
hypotheses predicted‘ ‘SEMAB rgsulis for the Experienced Programmers group
were not significantly differem from those of the General Pw;‘)ulu‘li.nﬁ ((73) = -1.10,

p.>16). "
- @ ’
Table 5 .

Test Means and Standard Deviations for the Experienced Programmers and
General Population Groups \ ‘

N Mean - sD
- <. dP o s 31 \F ‘
MM | C5168 862
SEMAB } 7855 2241
General Population 44
MM 5743 L1
SEMAB : 7330 r930 &

oo . ———————— et £ e ek e . ,---;-;-_-_,_,-u,___;“_,‘_;-_;_-_ ¢

-71-

AN()VAS with rc‘peated measures were used o compare the performance of

“the (;eneml Pﬂpuldtr(m and the !:xpenenced Progrclmmers (All ANOVA tabies

are mcludc,d in Appendix D). Sepdmte analyses were performed for the number of

rows per frial.and for the avérage time per trial to solveghe color code problém.

These analyses revealed that although there was a significant difference hetween

their pcrforrﬁancc (F(1,74) = 942, p< ;()(iB), both groups performed similarly from

one trial to another in the number of rows they took to solve the problem (F(3,219)

= .06, pS.‘)S) and their performance remained the same between triaks, 'regafdless T

T oof expenence (F(@3, 219) = 82, p> 49). Notwnhstandmg these reeuhs MM mean

scores, were sr&mﬁcanlly different fr{)m the prolected 4, 3 dlscussed in the luerature

(Expenenccd Programmers: 1(3()) 55,pi< ()1 General Pr)puldnon t(43) = 852 |

‘ p.<01).F igure_ 1 shows the.average number of rows needed r‘for the solutioy for

each trial; The average !ime per row per trial was the samé fa(r each group‘(Fil 74) :

9{) p %4) The average Hime per rt)w per trial decreased over successrve tnals

ﬂ(P(3 219) = 2.53, p.<06): However the decrease in average time per row per trial

was not the same for each gmup The Experrenced Programmers remarned more
constant across trials, while the General Populanon decreased (F('% 219) = 2.63,

p. < 05). Figure 2 represents the average time per row per trial needed forthe

&
-
~

solution,

4

T,

Aversase no. of Rows

General Population

A Experienced Programmers

9

Trial Numbear

)

 Figure 1. Average Numbemf Rows Per Trial needed
for MM Solution for Expenenced Programmers
and General Populatmn Groups.

73

A Experienced Programners
B General Poyulation

Tine

‘Aversye

: : Y - =
 p— . '

. Trisd ‘Nunhpr

a

- . Figure 2. Kverage Time per Row per Trial for MM
~ - Solution for Experienced Programmers and General Population

" -74-

Answering patterns on the Semantic ahtlity test were ~examined.
Ll

. . 1 '
Crosstabulations on every question for the entire group (n = 74) were performed

to determine the most difficult questions in the questionnaire, and to establish -
T ‘ b i \
whether answering patterns existq

jotwithstanding the lack of significant

differgr.xce between the groups. Séi'e- (mi ufthc 16 test sentences were missed by
over 60% of the\vimle group. Five\veféﬂfmm identical sets and one wuxln semantic
change., Three were concrete and four wc‘n':kabstru’ct. (.ﬁﬁiy-two sentenees we n‘,
ans.wered .correctly' by over 60% of th“e group. Both sentences were-conerete

semar;lic changes. A summary of these results is shown'in Table 6.

.o 75

Table 6

~

Semantic Ability Test--Answering Pattern (Flllcr Sentences Excluded) in

Percentages (n = 74)

~ Question no. 'fype

1)
13
16
17
19
20
21
23
- 24
25

»

Abstmct non- semamlc chang,e ‘

Concrete identical
Goncrete semantic change

. Abstract non-semantic change

Abstract identical

Abstract semantic change
Concrete non- semantlc change
Concrete identical ‘

* Abstract identichl

Abstract identical

~ Concrete semantic change

Concrete identical .
Concrete non-semantic change
‘Abstract semantic change
Concrete identical

Apstract identical

» Miss Hit

55 .45
65* 35

T 19 81

45 55
66* 34
61* 39
53 47 '
61* 39
74% 26
55 45
24 76*
69* * 31
42 58
41 59
56 44

66* .34

* indicates percentage of answers 60% or higher

In addition, differences in success of responses (i.e. how many hits) were

examined by group. The Experienced Programmers and General Population groﬁﬁé' \

differed significantly on three questions; each involved 4 concrete test sentence. In

two cases, the Experienced Programmers performed better, Table 7 describes the

findings for these groups. -

-76-

»

Table 7
. . s . . » <
- Difference in Answering Patterns--Experienced Programmers vs. General
. Population. . - ‘ '

‘Question np. Type \ T t-test
4 . Concrete semantic change . -1R2
19 Concrete semantic change 2,59 .
21 ~ Concrete non-semantic change ~ 2.22**

*.05 l'e.vel, ** 01 level, *>* 001 level of significance
PN . Tl;he respOl?se‘pa»t(erns Wéré alsdk explored f(l)gthﬁ Novice l%ogmmmcrs and -
the Control Groups. There wer;: three sentences on which these two gn‘m‘ps differed
sigﬁiﬁcantlyr 'i‘wo abstract identical sentences we.re answered bcuer~ by ﬂ;c Control
‘gro‘tip;and one concrete\n()n-semamic‘(fhange was zm.sw;ercd correctly more often

by the Novice programmers. Table 8 describes the findings for this group.

. N

Tabie 8

‘Difference in Answering Patterns--Novice Programmers vs. Control Groups
- Question no. Type © o t-test
16 - Abstract identital - 197
17 “Abstract identical \ 2.87**
21 Concrete non-semantic change -4.11***

* 05 level, ** 01 level, *** 001 level-of significance

77-

" - Table9

The second part of the study attempted to show that a grade ina computer
programming course could be predicted by the MM and SEMARB tests. The two
Sub-groups from the Generai‘l"o.pnlati()n, the Novice ngrammerg and the Control

Groups, were used for these specific analyses.

’IZable‘ Y represents test means ahd standard deviations for test (MM],
SEMABI) and retest (MM2, SEMAB2).

Y

4

Test Means and Standard Deviations for the Novice' Programmers and Control
Groups ‘ :

N Mean "SD

Naovice Programmers 11 “
MM1 - 5705 1224

MM2 B 5068 936
- SEMABI . _ 7.545 © 2.115
' SEMAB2 : : 7.091 831

GRADE (GPA). - : 5273 1737

Control Group; 23 :
.MM1 . 5717 945
- MM2 = 5728 86

SEMABI . 7.000 2.000
" SEMAB2 - 7937 1522
" GRADE (GPA) 3.7826 1.6776

eems 5

L -

78

\

ANOVAs with repeated measures were used to compare the performance of
N : N o
~ the Novice Prog’rammers and Comrol Group. Sepurme univariate unalvscs were:

carried out for thc MM an@l SFMAB datd 'Ihcse an:ﬂv':es rwealcd tlmt lh:. Novic i\ }

..

Programmers performed ata mguflcanﬂy better level on the MM test tlmmlhn

Control Group (F(1.33) = 1548 9, p< 0()1) W\th rcgaxd to ?i MAB dam the
Control group performed ata hnghe;‘]evel on dver‘ag,t. (F(l "H) = 017 87.p< ‘U‘()I Y :
however in this case, whr]; 'hoth gmUps Stdﬂed at ahmn thc xmm lwd thc umlmlw
h group 1mproved whx}e the Novme progmmmers dld not (F(l,3’3) = 1 l)b p < (R)\

-

For both mteracuons compa'.;nom showed that the dxfftarences thween g,roup\ nn

Y - .

‘ MM] and SEMABl we*ne not sxgmflcant (t(32)== 03 p> 48 t(!Z)— -T% fr> 2%) N

~

but WeTE0n MM2 and SEMAB?. (t(?@) 2. 0‘3 p< 0 5 i("92) = 1 7‘6 p< 04)
J B Mastcr Mmd A sagmfwam relauonshrp wals found bctwaen lhe seumd M M

s

L,r- ’.

score and the fma.l course grade for the Novnce Pro‘grammem (r = 71 p < m)
. N

- Novice Progrdmmers who performed well on MMZ also did wen in thc BASI(* s
‘prograrnmmg coume N‘o other reiatlonshlps mcludmg those 1aken at t’nc ;,eg“mm&

of the. course, were qrgmﬁcam Slmllarly, this. correiduon was the only dne whmc

- 95% «conﬁdenct_mterva] did not include zgm. K
Inspecnon of Tab]c 10 also shows th.«n the magmmde of Lhe. wrrciamms fm:\
‘\
the Novice Programmcrs Group were greater rhan those for 1he C ontml (xr‘oup, -

‘ ‘ reachmg an acceptablc level r= 30 in the fase of MM]

T
v N - ~ . N : . * N >

9.7

¥
N

Table 10 ‘
Correlations Between Grade and Measures

~and 95% Confidence Intervals ,
“““““““““ i : . - e
. Measures
Groups - : e
Master Mind - Semantic Ability
_pre post pre. post ;
. i : ‘ "
Novice v 5
Progr. r=30 r=.71* r=-26 r=-23
(36,777 (19,.92) (-.74,40) (-42,72) .
. s : . A
Controlr=20 r=-13 r=-11 r=-09 ‘
‘ (~-24,55) -(-.51,29) (-.50,31) (-48,33) - \ -
* indicates significance at the .05 level :
intervals are separated by a comma
»

2

Fisher z” transformations (Table 11) were used to comipare the difference

between the Novice and Gontrol groups for each correlation. The only significant

difference between correlations for the two groups was found for MM2 scores.

-80-

J -

Table 11
S1gmf1czmce of Differences Between Correlations of T wo Gmupx
‘Measures
Groups coL i
* Master Mind Semantic Ability
: pre - post pre post
\ Fisher z’.
‘Novice
programmers : :
with, . . o 61 97 64 63 ’
Control \ o '

* indicates significance at the .05 level

Further‘analysis. revealed tﬁat 1he Novice P;t)grzlxa’ulners improved their

":f ~perf0rmance from X = 'i JtoX = 3 , on the second Mastt_r Mind msk (t{ 1) —.

1 89 p< 04} but that the Control group did not Jmprove (1(22) = -.06, p> 48).
: ‘The scores for both groups at the begmnmg of the smdy on MM1 were

. »apprommately the same, This interaction can be seen in T;lb}e 9.

; ngaﬁic Ability. Although none of the correlation coefficients were significant,

» Table 10 shows that thé rélz;tionéhip betweén grade and SEMAE was stronger for

) jihe Novice Programmers (r = -23) than for thc Control grm]p‘ (r=-09).In
»comparmg pre- and post-test dlfferences the Comrol Group s SEMAB scorey

improved (t(22) = -2.33, p< .01), whlle those for the- Nov:ce ng,rammcrx Group ‘
o .

did not (1(10) =81, p< .21).

-81-

A stcpwasc mu]nple regression analym was perf(;med using MM1,
SEMABI, age, performdnce in high schuo] performance in university, number of
“math courses in high s¢hool, and num_be‘r of math courses at university as predictors
of éuu‘rse performance. None of the ‘vlariables gmfsred' in the equation predicted

grade in either the Novice Programmers or the Control groups.

This section ()f the sm‘dy attempted to assess whether the two test% doin fact - Ny

o ﬁmasure ‘dif ferent constructs (a piartiéal discriminam va]id;ation')'and whether they are | n\
| reliable. Some of these analyses t%av.e been performed on data olvtai;aed from all |

tﬁe subjécts 1xs¢d in this stu{iy, that is, allxof th§ groups from the two\axperinientxs

(n=75). -

" General Population. There were no.gender différences in MM perforfnancé
(1(31) = -1.03,p> 3l)or in‘SEMAB results (t(31) = .44, p> .67) for the General
Popu}atibn* group. However, those who were in graduate school (n =4) scored

better on MM (t(31) = -2.52, p> .04) butnot on SEMAB (1(31) = 2.48,p> .07). .

E\(pummcd Programmers. Although males were sxgmflcam]y older than females
(X% =932 p< OS) both genders performed equa]]y well on MM (t(29) = -1.19, -

p >.24)and on SEMAB (t(29) = -.86, p> A43). Subjects wuhout a degree or with a

-82- ’ o ‘ a

diploma in computer programming (n=12) performed as well as subjects holding a
“university degree (n=19) on hoth MM (1{29) = -74, p> 47) and SEMAB (1(29) -

64, p> 53)

\

There was no significmﬁ relationship between MMi and SEMABI (r = JA158
p> .20) over allthe szﬁ)jects or for each of .th.e\F,,*fperignced ngrmmncrs and
General Population groups ;()nsidergzd sépamt_ely (lix;‘)cﬁen‘ced\pmgrummg,js: K
072, p> :35: Generél Population: T = -.257, p> .()7):111 addition, 1herev«¥m no ‘
r‘e]aripnﬁhip_betyugen .th'e _MM;Z and SE-M‘ABB scores ol;tuixied for the Control
Group (r = 0.1984, p>'182) for dmtmls, or for the Navice ‘l’r;e;g‘,ra‘xﬁmers gmﬁp .

(r= .0876, p> .40).

The re]iébility coefficiem, r= .40,»between pre- and pkost-test (n=33)on
.MM was significant. (p < 001); as was that, r = ’%(x, on the SEMAB test (p< 018).
When the data was analysed separately for Controls and Novice ngrammers the -
relxahllxty of both tests remained ﬁlgmﬂcam for the Control gmup (Master Mind:
= 487, p< .009; Semantic ability: 1 = 40”-5 p< .03). Alihnugh the ma;,mmdc
of the reliability coefficients for both tests for the Novice P;()grarnmers remained
constant, the significance of the cééfficigms\was only margi‘na! (p> Dband p< 07

respectively). N . .

’ -83-

Discussion

The first part of t.héjexpcriﬁem attempted to show that Expe-;ienéed | :
ﬁrngrarﬁmers would perform better {.h;n the General Po;;ulafion on;tl‘v:;. MM and
SEMARB tests. This fgigtionship was found for MM but not"fof SEMARB. Ahhbugh
tiié Experienced Pr{)grar‘nme_rs sﬁlved the problem in rr.l.ore rows than jh_e. rﬁiniﬁ%u m

. numb‘er 4i3 that was neéded‘, their overall éoore on MM was higher than ﬂie General
} P(‘)pulx;t on’s score. Howevér, ‘the‘z Experienced Prbérammers ook lofiger on aver:;ge
to solve the problem than ihe General P()pu\lation. These results confirm
| Pellegrino;s a}gumeni (1985) about \individuais using algor{thmic thinking to solve a

problem: "..the best reasoners are often slower at encoding,. slower, more accurate.

-

en,coding\ Q{ information at the outset speeds up subsequen;t processes” (p.52). 'I‘hg ~
zliwsz‘:nce of Qarigtior; betwge;l the average numbéAr of rows per §ri;11 and betweeﬁ the
| average time per ro;v per trial indicates that the test‘_was not affacted‘by intervening
variables, ‘If iﬁe ‘nu(riber of rows had decreased, or if it ha:d taken le:&q tirﬁé‘per ToW
“for the subjects to solve the problem from one trial to the ne);t, practic:e would have
inﬂuepced the fésuits. If the number of rows per trial had ﬂﬁctuated, orif theit‘im‘e:

.. pestgw had increased, results could have been influenced by fatigue or boredom.
AN ¥ -;‘, . ~

»

-84

‘ [N N
. . . o .
However, scores from one trial to the next were simtlar enough 10 show that the test

may not be sensitive to external or internal factors,

On the other hand, Semantic Ability test results were inconclusive; both

- major groups performed similarly.

The second part attempted to determine if a grade in a computer
programming course could'be predicted by the. MM and SEMAB tests. Although

some of the results were encouraging, the relationsh ip coukd not be fully éstabhshed.
. * N 7

. - . '
- Master Mind. Novice Programmiers performed better on MM than the

Controls, alihough it is their improvement on the second 1esiing.0{ MM (MM2) -

A

Maich‘détermined their better perforinante. This s%ems to.indicate that the
' treatment given to the Novice Programmers (the BASIC prograniming language
cowrse), may have had an effect on MM scores. It.could also be conjectured that the

Novice Programm§r§ used the problem-solvilfg strategies acquired through
programming in BASIC and transferred them to the Master Mind problem. The

interaction supports this argument by showing a significant treatment effect for thfz

*

Novice Programmers.

Thereforé, although.the MM1 score did not predi.c't grade, a definite

relationship between the MM score aidhe type of coursé was established. It

¥

-5«

S

-2

four groups are all below 30 percent and are not significant. .

X

v

appears that learnmg how to program could have helped the Novice Programmers tw

solve alogical reasomng problem such as Master Mmd The instruction in

" Introduction to Psychology appareﬁ’ﬂy had no effect on MM pertommnce l‘hcxc ’

results are in agreemem ‘with Mayer, Dyck and Vllbe rg, { 1986) who fmmd that

“there.is an 1mpormnt relationship hetween a person’s lhmkmg, skills .md ability to

learn Basic” (p.610). - ‘
‘ .

Sc antic Ability. Test results indicate thdl althoug,h the C‘ontml youp S MM

Fa

scores sta ed the same, their SEMAB scores improved. h could be argued that

-

Imroducnon to Psychok)gy leads to improvement in verbal Skl“\ while a course in -

BASIC-does not. HOWever, this interaction could be an artifacx due to the nature of

the test, o .
ij ;k v

4

-

Discriminant vahdlty Fhe MM game and SEMAB tests show g good discriminant
valldity data analysis seems to indicate that two dxfferent pmcesses arc lextcd since

the correlatimi coefficients between the two tests ateither testing session for the

Test-retest Reliability. Both measures have good test-retest reliability: 49 per

cent for MM and and between 36 and 48 per cent for SEMAB. These rei‘iabilixy.

-86-

measures are applicable td all groups. These results are encouraging, because

. although-treatment may have caused an increase in results, this increas€ was similar
L] . N .
* for each individual in the group, rather than being haphazard. Thus, it supports the

discriminant validity data by suggesting that a particular process is measured through

»

- each test, éhhough in the case of the SEMARB test these results are more doubtful.*

The results obtained in this studyrcontradict Begg and Paivio’s results who

had found that subjects have more difficulty detecting semantic changes in abstract

scnfenccs thdn in concrete sentences. These f'indings}wg;re not duplicated: subjects

were equally successful with both types of sentences, although théy generally all
performed poorly. The results also seem to indicate that this test is difficult (group
X = 7.5), less sensitive 1o change, and less able to differentiate between individuals

a

than the Master Mind game.

Three main arguments can be proposed for the results obtained with this

kS R . \

test. First, the test may not be able to discriminate betweerf levels of ability because
the subjects used for the study "may essentially represent the upper ranges..." of

language ability (Dillon, p.91), and they may have already mastered the processes

implied in the différentimion of levels of language comprehension. Dillon states:
o . \ X

-8§7-

-

]

Those whose only ormam problem in elementary school was
“decoding are either not in the college population or they have
mastered decoding-related processes to an extent that the limiting
‘ performance factor lies elsewhere...in a sense, their reading ability -
'. matches their general intellectual abil\ity and within the latter, there
" isa fairly narrow range--above average to'superior... Studies of

adult readers have seldom used quffxmently difficult decoding tasks.
The sensitivity of the tasks thus are in question {(p.87). Considering
the above, the Semantic Ability Test may nm be sensitive ennugh
totap into distinet abilities.

- w3

A second argument could be that the test is a good test, and that the Control -
Group s language ablhty dxd in fact i 1mpmve u may be that by le.lrnmg,

psychologxcal concepts, ‘the subjects remforced thelr ability to d:fferentmte cnncu,u,

sentences from abstract sentences: Clark (1974) states that "concepts are organized

into semantic fields that have a "conceptual core”. A conceptual core is "an-abstract

v

- entity thatin reflecting a deeper conceptualisation of the world integrates the -

different concepts within the semnantic fields" (p.183). The subjects may therefore

S

* have acquired experience in using semantics to understand concepts, thus heing able

to irausfe'r t}‘ﬁs experience to the SEMAB test. This argument,however, does not
explain why the Novice Programmefs group did not improve, since they were also

. 1
learning concepts, albeit of anether nature. \

0

. R A N
A third argument seems to explain somewhat better the results that were

obtained. In this study, Begg and Paivio’s test was adapted to the purpose of this

K3

-88-

RN

L

* recognize lexical changes. In this case, however, recognizing a change as

particular. research. Similar instructions as in Begg and Paivio’s experiment were

.
-

used, but instead of being askegddf the sentences had been changed in terms of words

or of meaning, the subjects were asked to indicate if the sentence" was changed

from the original. If the subjects answered yes, then they were required to indicate

if it was a change in meaning. Begg and Paivio also asked their subjects to

s

non-semantic was considered identical as recognizing semantical similarity

~ through the change. ‘Therefdre, recognizing that difference was also tonsidered a

test of semantic recognition and ability.
AR |

~, 7

The format of the test was also modified slightly. In Begg and Paivio’s
R U O . a .
experiment, subjects were tested separately on concrete and abstrgct sentences; that

is, one group listened to changgs in concrete sentenceés &sly, and another group
) 1

listened to changes in abstract sentences only. In this experiment, thefwo types of _

sentence sets were combined and mixed in a random fashion.

By modifying the test in this fashion, the results were not duplicated in either .

testing session; they also seemed to be affected by the type of treatment applied to
the subjects. These results are confusing, since it seems difficult to imagine that
language ability would significantly improve in a short time, especially at the age

level of the subjects. A more plausible ‘explana‘tion could be that the Semantic

Ability Test suffers from impohant procedural limitations, and that the apparent

’ | g _ .

~
Y -

¥

effects are due simply to the manipulation of the test, that is, the combination of
concrete and gbstract set of $€ntences into one test. The test then becomes

L 9 ' £ - N ‘)) ‘)

unreliable in testing the syntactic/semantic behavior of subjects, although to

_determine whether it still can test concrete imagery wolild be the subject of another-

s_tudy -

vaeral} Discussion .
Only one of the four hypotheses has beenfconfirmed through this study;

however, the results obtained are considered encouraging.

o SRS
II]U.IG“:E.I‘E : fB.E]hS
‘ 7

Part of Shneiderman and Mayer’s resuits have ‘b‘een.confirmed: Experienced
Progrémmefs did perform bet;er than Novices, albeit not in their ability to recognize
semantic changes. It may be that semantic elements -and their comprehensiém

_ have less importance than their.\hieréréhical organisation. The results raise the
possibility that, as programmers gain e;tperjéncé, their capacity to reorganize
programming structures also increases. Consecjugmly, experienced pmgran)rﬁers
may be i)etter able to recognize the .need for an dlgorithm in spl\}ing problems. (In
fact, it may bé ihteresting to research whether experienced programmers approach

-

all problen‘?s in the same manner, or whether they choose an~alg0fithmic‘strategy

only for specific problems.)

. C e Ed Bd v
. .
Semantic Ability .

- 2 K .o o

Begg and Paivio’s (1969) test‘ of concretenés§ and imagefy in sentence

‘ me,dnmg did not provnde an adequate measure of verbal ablhty This problem does -
: not negate the necegsny to f nd or develop a test which measures this ab:hty (to
w‘hlch we mtumvely can agree), perhaps through the use of complex processes for
- which Perfetti (1983) ﬁas_arguetj. T’he complex processes would t'ap into the .~
Adiffereﬁt levels of language ability aﬁd confim'Shne‘iderman and Mayer’s‘
hlerarchlcal orgamsatlon from low level constructs to a hlgher]evel dor;l‘a;ﬁ ‘
Abstracts comtructs vary in dlffxculty, and although most people can understand
some of them, others are more subtle and mmcate to grasp: accordmgly, mdmdua]s

with superior verbal ablhty would be able to better manipulate and understand the:

' more complex concepts.

»
.

- Thi§ research into complex processes raises anpther question: Can a F’
measure of verbal ability be separated from problem-solving processes? Once
: ianguage becomes more complex, its‘comprehension may always involve a form of

problem-solvmg, with the mfi)rmatnon gathered and mtegrated into the "working

memory' (Fexgenbaum 197()) The quahty of the i mtegranon may be what should be

-91-

(-

«

»

~

~

measured; it may be an elém»ental‘pr.ocess; underlying both verbal and

*

problem-solving abilities. In other words, a problem may not be understable - N

without the integration and redé?irfitioh ofits semantics. 'fhe hieréfchical
organiéation of sqmaptics may mean that existing V:rb;l abiiity tests thp the low level
det‘ails, bu£ ﬁever touch the hbigh level concepts which require a more abstract
understaknding. “This could mean that the imegfation of the semantics is moré
important for language manipulation than the imagery or cnﬁcret.eness a.s‘pects_of
language. |

Throughout the literature review, it was stressed that understanding (and in

N e . !

- this case integration of information) is crucial to the cognitivc process. When the

4

argument of hierarchical organisation is taken into account, results on SEMAB -
could be interpreted two additional ways: either the abstract level was low enough
that it did not need to be understood to be remebered, or the sentences were easy

to understand and were measuring a low level of integration, a level which would

" have been attained by all subjects in the study simply because of'the pre-selection

(university) they had gone through (Dillon, 1983). Either way, itis difficult t reject

the hypotheses formulated on language ability on the basis of this test, although it is

also impossible to confirm them.

* Inshort, it cannot be established whether the Semantic Ability Test is an
accurate measure, whetheg it is too sensitive, or whether it is not discriminative

; ;
-92.

{

enough due et(‘S the Ianguage sophistication of the subjects. The results are intriguing:

-

t2

cnbugh, however, to \yarrant further examination. -

-) \ X

!l .l ‘13‘].
.

The integration of information has noi been t;sted adequa‘teiy, but its
retrieval ‘and ut}ilisation‘ was nieasu;fed fairly well @rough MN. -Another }esearch‘
Ejuéstion raised by MM rgsults stém§ froql observa;tiohswmé;de by the expefir‘xaente.r o
while subjects were solving thé color code. k . “

: . ‘

-

- Bruner et al.’s findinés fhgt ﬁoét ;Seéple use focus "gaml?ling (or heuristics) to
" solve aproblem were confirmed. Most subjects had no discernible ﬁethﬁd, a&d '
werey taking chancés in chahging several attributes at a tim;e, ‘someti mes w?thoﬁt
using ‘the feedback givén by the ekpefixhenter. 'I’hxs resulted oft;h in“ref)ééting
wrong color combinations, aithough, fn génera]‘ subjects succeeded in 7‘gues$ing" the‘ |

code.

-

Those who used a method used an approach clgser to conservative focusing.

However, although they did use some type of method, they did so with various
; . \ :

degrees of efficiency. For example, instead of starting with four different colors
(which s the best way to start), some subjects would start with four pegs of the same

_ color, or two pegs of one color and two pegs of another color. By process of

~

~

93-

-

s

N R .\ o .\ - \
, . e - : 8

elimination, they would knbw which colors were not included in the code; this did
not ehmihate posmon at the same time as cnlor hawevbr These pr()ccdures wml\

-and Qne can arrive at the soluuon more e:mly than with no method, but thcy .m:

costly in terms of rows; «they seem to be non-‘opinma] algorithms: combined with
heuristic‘ihinking, because th‘ey are mdre dependént on chance for arriving‘at‘the‘

olutmn in the mxmmum number of Tows #.3). They used the feedback given to

£y

them to change attrnbutes methodlcally, and geneml]yt ok]ecs rows to solve thc

) problem. From a quahtatwe and observational point of view, it was plezir that

i

certain subjects attempted to find the secref code in a methodical -even if imperfect-

”

way, whereas others just tried out some combinations until they "happened" on the

right one. The use of a method, rather than guessing, would also explain why the

experienced programmers took longer on average to solve the problem: the method -

. in itself is time-cgnsuming but more accurate, which is the way they may have

learned to work in order to wilte computer programs..

0 i

The Master Mind Ga:ine\ seems to méasur“e a process \related to the
p;oblem-r;ol;'ing“str‘gtégies required to program:.;he Novice Prégrarnmers did better
- on that test after iearm’ng how to program in BASIC, and thé Experienced
Programmers did better than the Genera Pdpu]atibh. Mast‘ér Mind 1s reliable;
howéver, ;vhethef it can predict success in a programming course has not beén

possible to establish.

94-

“

'y

4y

L

These observaliohs raise other questions worthy of study: Can the use of any

algonthm to solve a problem determme an ability in comput@r programming, or

must the subject use the optimal algenthm'? Is the use of non—opumal VS, opumal

algonthms an indication of leve]s of programm‘mg ab:hty? If the first questmn can
: .

be ¢ amwere& by statmg that the use of any algonthm can predlct computer

programmmg ablhty, then Master nd is pot a good test since it does not

d]fferentnate between the types of ?@m:thms used. However an observanon on

how people phy the game may glve md:catmm as to the types of algorlthﬁn the
.

subjccls use. This could also be obtamed by having the subjects think aloud while

thay are sa]vmg the problem.

»

One way of alleviating these problems would be to raise the difficuﬁy level of

‘the ‘task. By having a six-color instead of a four-color code (with ten colors to chose

fi rom) the problem becomes more comp]ex in the same way the Towers of Hanoi

prob]em becomes more dnffacult by the addition of rings.. Glass (1979) mdlcates that

the more complex the probiem, the more difficult it is to solve because of the
"backtracking” (that is, the algorithm requiring an apParenueVersal of the steps

going towards solving the problem) necessary to arrive at the soltion. -
g _

Using a more difficult problem may better separate the heuristically- vs.
algorithmically- oriented individuals by temoving the element of chance.

Nevertheless, an important advantage to the MM game as a measure of algorithmic

-95- . - i

\ | /

3

© process is that it takes only approximately 30 minutes l)md,miniswr (Tor 4 trials). In

_game is considered 10 be a worthwile tapl for measuring algorithmic

addition, it has proven to be resistant to practice effects; it is alse an interesting test

1

for the subject because it gives immediate feedback, and is fun to play.

Finally, although results have been somewhat inconclusive, the Master Mind F

L1

problem-solving processes, and merits further study.

-

]\ . - [S]‘

<hnaal
v B a

The major limitation of this study was the small number of subjects ubtained
- N - . S

~ for the various groups, and especially for the Novice Programniers group. Because

-

of this, it was not possible to determine if the tests selected could predict computer

programming, It was also imppsgil;le to determine if practice had an equal influence
on every subject m either group, or if it only enha;mced already present abiliii.es;
because tﬁere were &)0 few people to b.e: able to berform solid comnaﬁsons. Since
there seems to be a connection f)et\yeen progrén;;ﬁng a;ad Ni M, further study

N . . X

L

should be conducted with larger groups of Novice Programmers to attempt to

- determine if MM can predict programming ability, In this :_smdy, it was felt thauthe

- groups were 100 small to obtain predictive data on either test,

]

A second difficulty was the lack of control over what was being taught in the

-

-96-

., ®
S,

N

a

‘this study and who used a programming course as treatment have this same’

N { > 7:3?' N
BE SRS

e e e 8T t
x ~ N
. ;

BASIC course, for example, which principles and concepts, or which

problem-solving procedures or techniques were given in order to transfer a problem

into code. Because the course was not tightly controlled ¢and the same can be said

-

for the Introduction to Psychology course), it is difficult to replicate results based on
similar treatments. It cannot be taken for granted that all BASIC or Psycholo

.

courses are the same. ‘However, all studies that were reviewed for the Se of
FaaN

deficiency.

 For the purpose of further research, the content of a programming course

should be controlled in order to establish what concepts are taught, and to

- determine if teaching these coricepts improve algorithmic thinking. If this were the

case, the implications for teaching computer programming are great, since it could
- . . 4

)

be argued that if the proper problem-solving strategies and concepts were taug}lt, |

-) . . - M) .‘\
then programming could be learned by anybody who has the intellectual capacity to)
understand these concepts.

A third limit®ion wa&lhe lack of commonality between the treatment for
.) {‘g
. . N . A R
Novice Programmers and the treatment for the Controls. Treatment for the controls - ¢

should have been a computer-related but non-programming course, such as learning
how to use a word-processing program. Tying the Control treatment to a

computer-related task would eliminate the intervening variables of learning how to

97

N

;!
use a computer system.-

Another deficiency which has been experienced throughout the literature as

well as in this study is the lack of more solid definitions for the levels of experience

for programmer, which make it difficult to classify subjects as well as 1eplicate

-

studies. The definitions given to the xpericngg levels of the subjects in this study

may have influenced, since the differences between experience levels were

»

sometimes obscure or very slim.

The modifications made 10 Begg and Paivio's test of concreteness and
imagery in sentence meaning have had drastic effects on thé results expected. Itis

H

difficult to determine at this point whether the data obtained were an accurate:

reflection of the groups and the effects of the treatment, or.whether they are due

solely 10 the changes in the test. Before this measure is used again, an attempt to .

-replicate Begg and Paivio’s results with the original test should be made. The two
. ‘ ~ * ~

N i -) »
test versions (one abstract and one concrete) should then be mixed together: similar

results should be obtained, if the tests are not sensitive to procedural manipulation.
‘These studies would establithen baseline and give credence --or infirm-- the
hypothesis that semantic ability, and this test in particular,’can help predict

programming ability. In fact, a preliminary study should have examined this point

before the test was used in its present form,

98-

E

4

serious study on the validity of the test must be performed.

Conclusion
The @sﬁhs of this study havé‘sb‘mwn that the Master Mind g.an;e‘
difféfénti‘ates Experienced Programr;lers fmm the General Population, and that it \
seems to measure dlg()mhmlc thinking, dlben lmperfectly Itis therefore c0n51dered
a prommng meas’ure, that should be used in further studies on the cognmve mode]

of computer programmers.

The Semantic Ability tesi, on the other hand, has pro?ided doubtful results.

It is felt that the hypotheses based on that test have not been disproved, and that ‘a

N [
»

-

Although {he siudy ‘has Jimitations in s.eve'ral fesﬁects, it is felt that it«gewed
to reinforce the ne'ékd io.explore' the processes undérlying the computer | N |
pmgrémmers a'bili\tjies to pmgrafn. If these proéesses 'are esse;;‘tiél, then the need for
solid, reliable tests of programming abilities is imperative. Butif these procésses
ca‘n be taught,:the measure of ‘computer programming ability becomes >redum;am.
The impiicéiions are great andefar reaclliﬁg, and the consequehces would affecta

‘ N

« -
great number of domains.

-99_ B - N +

Referenees

S

Aaronson, D. and Scarborough H.S. (1976) Performance theories for

sentence coding: some quantitative evidence. lmmahiﬁxpcnm:m,tsxchmm
Human.E;rmannm&rmmam 2,56-70

~ Adelson ‘Beth (1981). Probiemmg and the developmem of abstract
N X categones in programming langnages Memory and Cognition, 9(4), 422- 4’%1

\‘.‘
-y
v

Allen, Robert B. (1982). Cogmtwe actors in human mteractmn with
computers. In Badre, Alber}. and Shneiderman, Ben (Eds.). Directionsin.

hnmammpujgunmmm (pp.1-24) Norwood, New Jersey Ablex Puhlnhmg

‘Corporatlon

R

© ° Badre, Albert and Shnelderman Ben (Edq)(1982) Dm:mm
HumanLCnmpum_lm:mmm Norwood NJ: Ablex Publ. Corp.

Begg, Ian and Paivio, Allan (1969) Concreteness and lmagery in sentence
3 87 821 ’827~

Wickelgren, W. A (1974) Retenuon functions for syntacticand

lexical versus semannc information in recogmnon membry. Mﬁmm,dnd_Cngmuuu,
i 2,353-359. ‘

Benbasat, Isak, Dexter, ‘Albert S. and Masuhi Paul S. (1981 Novegber). .
-An experimental study of the human/computer mterface Qnmmumgdug_xmng
. ACM, 24, 752-762 T \ . :

Bever, T.G. (1970) The cogmuve basis for lmgulsuc structures. In J R.

Hayes (Ed) Cngmnmmndihcmnlﬂpm:nmﬁangum New York, Wiley.

Bourne LE.Jr. (1975) Hnman_CQnmpnmLBchamu, B(}ston Mds\ Allyn
and Baron, 175, 213, 513.

Bresnan, J. (1981) An approach to universal grammar arid the mental
representation of language. Cogaition, 10, 39-52

J

Briars, Diane J. (1988). An information-processing analysis of mathematical
ability, 181:204. In Dillon, Ronna R. and Schmeck, Ronald R. (1983). Indmdual

Dlﬁmm_m_c_ggnnm Vol 1, New York: Academic Press.

. Brooks, R. (1977). Towards a theory of the cogmtwe processes in computer

programming. lnmnalmnaLJ.Qumah)fMan_Macm:m.Smdm 9,737-751.

Bruner, Jerome S., Goodnow Jacqueline J. and Amnn GeorgeA (1956)

Ahmﬂy,_uﬁhmkma New York: Wlley& Sons.
‘Buros, O.K. (19’78) Ih:_BxghLMmm.Mﬁaaumnsm_Y.aa:bmk (VOIE)

New Jersey:* Gryph(m Press, 1690-1695

Card, StuartK Moran ThomasP and Newell, Allen. (1983). The

m:mzkwf_ummn;gmuummmnm Hillsdale, NJ: Lawrence Erlbaum
. Assocmte‘; 469p) S .

Carroll, John B. (1983) Studying 3 individual dlfferences in cogmnve abilities:
"through and beyond factor analysis, 1-35. In Dillon, Ronna R. and Schmeck, Ronald’

R (1983). lmhudnaLDJffnmnmangnanoll New York: Academlc Press.

Cheney, Paul. (1980). Cognitive style and student pmgrammmg ability: an

_investigation. AEDS, 285-291.

Clark H.H. (1969). ngulsnc processes in deductive redsoning, from:
Psychological Review, vol, 76, 387-404. In Johnson-Laird, P.N. (1977), Thinking:

Rcad.mam.Cngnnmc.Scmm:. Cambridge: Cambridge University Press.

Cook, 'ﬁmmas D., Campbell Donald T. (1976). The designand _ conduct
of quasi-experiments and true experimentsin field settings. In Dunnette, Marvin D.

(Ed)HandhmknhndnmundmmmamSthIm New York: John

Wnley and Sons. (pp.223-326).

Cronbach, Lee J. (1970). Essentials of Psychological Testing. New York:
*Harper and | Row 417-421

Dlllon Ronna R. and Schmeck, Ronald R. (1983). IndmduaLlefgmngg_mn
Cognition, Vol 1, New York: ~Academic Press

-

-101-

-~

Di Persio, 'I om, Isb:ster Dan and Shneide rman, Ben. (1980). An
experiment-using memor:z&tmn/recomtructmn as a measure of - pmgmmmt r ability,

Imgmamual_lnumal_of_Man;Machins_Smm:m 13, 339-354.

~ Doyle; Lauren B. (1975). Infﬂzmmwnm:xmundnmmm Los
Angeles, Ca.: Melvﬂle Puhlu;hmg Co.

)

. Feigenbaum, Edward A. and Feldman, Julian (I dx;)‘(i%.@). Computers and
~ thought. New York MecGraw-Hill, 257p. ‘

Femgenbaum EdwardA (1970) Informdtmn procesmn;, and memory,

{451-468). In Norman, Donald A. Mmlelsnf.ﬂumammgmnm New York:
Academic press 537 p.

Glass, Arnold Lewis, Holyoak Keith James and Sant, John Lutu(l 'ds.)
(1979). Cognition. Readmg, Mass:: Addison: Wesley, 391-433,

Garrettéid and Fodor,J A (1968) Psychnlngmdl theories and linguistic
constructs. In Dixon, T.R. and Horton, D.L. {Eds.). Mezh.dﬂchamumnﬂmm

B_eh%lbgm Englewood CliffsNJ:: Prenice-Hall, 451.

Gear, William C. (1978). p 3
Module A. Chicago: Science Research Associates Inc,, 179 p.

chgh P.B. (1965). Grammdtxcal transfmmdtmns and specd of

uhderstandmg loucnalof Verbal Leaming and Verbal Behavior. 4, 107-111. '

Greeno James G. (1974). Hobbits and Orcs: dcqumnon of a sequuuul

concept. Coguitive Psychology, 5, 270-292

Gregg, Lee W. (1974) KnQMﬁﬂgﬁ_anﬂLngmnnn ‘New York: John
leey and Sons. -

_ - Johnson-Laird, P.N; (1977),‘
Cambridge: Cambridge University Press.

| Johnson-Laird, PN (1975). Reasoning ‘with quantifiers, In Johnson-Laird,

PN (1977), Ihmkmg._R.cadmgm_Cannmtﬁm:ncﬁ. Cambridge: Cambridge
University Press, -

Y

-102-.

Johnson-Laird, P N. (1977). A theoretical analysis of mslght intoa reasomng

task. 150-153. In Johnson-Laird, P.N. (1977), Ihmkmg._Rc_admg_mEngm
Sﬁlﬂ]ﬁﬁ. Cambridge: Cambridge University Press.

Howe]l Margaret A., Vincent, John W, and Gay, Richard A. (1967).
Testing aptitude for computer programmmg BsxcholqgmalRﬂmm 20, 1251-1256.

Kahney, H. (1983). Problem solving by novice programmers. In Rsyghgkzgy
- of Computer Use. (pp- 121- 141) London: Academic Press.

. ‘Kintsch, Wa)ter (1977). Mnmmand_ﬂognmnn New York: John Wﬂey and
S()ns 490 p..
»

Kdtivalina, John, Stephens, Larry J. and Wileman, Stanley A. (1983).
Identifying factors influencing computer sc1ence aptitude and achlevement AEDS

. lourhal, 16(2), 106-112.

Konvalina, John, Wileman, StahleyA and Stephens, LarryJ (Méy 1983) ‘
Math proficiency: a key to success for computer science students Cammumgmm
of the ACM, 2ﬁ(5) 377-382. ‘

; Kurtz, Barry L. (1980) Investigating the relationship between the
development.of abstract reasoning and performance in an mtroductory

programming class. Cgmmnmgammﬁhg_AQM, 110-117.°

Larkin, Jill, McDermott, John, Simon, Dorothéa P. and Simon Herbert A,
{Jun 1980). -Expert and novice performance in solving physics problems Science,
208, 1335-1342. ~

. Levine, Marvin (1963). Mediating processes in humans at the outset of
discrimination learning. Esy_chn_lpgma]_ém 20(3), 254-276. - .

. Levme Marvin (1975).
prm.bgm:[gmng Hillsdale, NJ; Erlbaum. 175-260.

Markq, L E. and Miller, G.A. (1964). The role of semantic and syntactic

conhstraints'in the memorization of Engh%h séntences, Journal of Verbal Learning
nnd.\l:zbaLBshnmz,a, 1-5.

-103-

- Mayer, Richard E., Dyck, Jennifer L. and Vilberg, William (1986, Jul).
Learning to program and learning to think: What's the connection?

Communications of the ACM, 29(7), 605-610.

McNaméra W.J. and Hughes, J.L. (1961). A review of research on the
selecnon of computer programmers B:mnnmLBay::hnmgy 14(1), 39:51.

Ncwell Allen and Simon, HerbertA (1972). Hnman_Bnﬂzlcm_SmxmL.
Englewood Cliffs, New Jeney Prennce-}-lall

. Norman, Donald A. {]970) MQdﬁlS_OLHuman.eQO New York:
Acadermc Press, 537p

Paivio, Allan (1})‘71) Imaggmammmgsm New York: Holt,
Rlnehart and Winston, 596 p. .

Pask G (1976) Styles and strategies of learning. BnnstLJgumdl_of
Educational Psychology, 46, 128-148. .

Perfetti, Charles A. (1983). Individual differences in verbal processes,t5-104
*In Dillon, Ronna R. .and Schmeck, Ronald R. (1983). lndmdual_lefgm:mgg,_m
QanﬂmVoll New York: Academlc Press.

Petersen, Charles G. and Howe, Trevor G. (1979). Predicting dcadem;c
~ successin introduction to computers AEDS 183- 191

Reed Stephen K., Ernst, George W., and Banerp Ranan (1974). The role

of analogy in transfer between similar problem states. Loznnmc_ﬂsxchulugx 6,
436-450.

- ‘Rowe, Helga AH. (1985) EmblﬁmSﬂlmngﬂndlmdhgcm Imlsda]c NI
Lawrence Erlbaum, 392p. -

Sachs, J. (1967). Recognmon memory for syntactic and semanlic aspects of

connected discourse. Perception and Psychophysics, 2, 437-442,

Sengler, H.E, (1983).‘ A model of the understanding of a program and its
impact on the design of the programming language Grade. In Psychology of
computer use (91-106). London: Academic Press.

-104-

Shneiderman, B. (1977). Measuring computer program quality and

comprehensnon lmgmaumxal.lmunauiMan_Machmﬂ_Smdm 9,465-478.

Shneiderman, Ben. (1980). .)

Sofnmmmmm_ﬂnmanfmm
;:nmpmer_andlnfmmanmSymms Cambndge Mass.: Winthrop Publishers, Il«;./

Shnelderman. Ben and Mayer, Rlchard (1979) Syntactic/Serhantic
interactions in programmer behavior: a model and experimental results.

LmnmannnaummaLQLComnmLandlnfmmaImnSsmm 8(3) 219-238.

Slobin, D.L (1966) Grammatical transformanons and sentence

comprehcmmn in chxldhood and adulthood. mnmﬂmlcxhall&armngﬂndlenbal
. Behavior, 5, 219-227.

Soloway, Elliot (1986, Sep). Learmng to program = 1earnin’g to constnic;

o , mechanisms and explananons Communications of thé ACM, 29(9), 850-858.

Snluway, Elhot Ehrlich, Kate Bonal Jeffrey, and GreenSpan Jud]th (1982).
" What do novices know about programming? in Badre, Albert and Shneirderman, -

B. (Eds.),Dmmnnsm_HnmanzCompmar_lmmmwn (27-54) Nnrwood New

~Jersey: Ablex Publishing Corparatmn

!
1,

Thomas, John C. Jr., (1974). An an,alysxs of behavu)r in the Hobblts Orcs
pmblem Cognitive Psychology, 6, 257-269.

- Van der Veer, Gerrit C., and van de Wolde Jan E. (1983) Individual -
differences and aspects of control flow notations. In Esxchnlng!_uf_mmnumr_m

Y (107-120). London: Academic Press.

* Vassiliou, Yannm (Ed) (1984)
Systems. Norwood NJ: Ablex Publ. Corp 287p -

Wemberg.GM (197). chhn]mnf_cnnmnm_hogmmmmg New

York: Van Nostrand Rheinhold.

Whitfield, JW. (1978). An expenment in p;roblem solving, Qnangﬂy

Journal of Experimental Psychology, 3, 172, 184-97.
| B

-105-

chkens T.D., and Millward, R.B. (1971). Attribute elimination era!cgle\

for concept identification with practiced subjects, ,lqumamf_Mmh:mauml
Psychology, 8, 453-480. “

Wolfe Jack M. (Apr 1969) Testmg for pmgmmmmg aptitude.
Dammanon 4, 67-72.

Appendix A

Annex 1

(ANSC-C) ‘
1, a. The ad«ﬁtional_fact settled a major disagreement
b. The arbitrary regulation provoked acivil complaint*
c. The remaining duty involved a standard payment
d. The impartial source identified a hidden fault
. The national election indicated a secure future
T: The arbitrary regulation provoked a civil grievance
(CNSC-I)
2. a. The wonderful gift preceded an exciting kiss*
b. The raging fire gutted a condemned building
‘¢. The'young singer carressed a pretty girl ‘
d. The enthusiastic painter sketched an ancient temple
e. The polite child presented an aromatic bouguet
T: The wonderful gift pregeded an exciting kiss

(F-C)
3. a. The incredible machine produced a screeching noise
b. The playful kittens shredded a new slipper -
¢. The dying man blessed a mournful daughter
- d. The thunderous explosion shook a fragile hut*
e. The ferocious dog devoured.a meaty bone
T: The thunderous explosion shook a fragile hut

-+

(CSC-C)
4. a. The cheerful artist entertained a lonely damsel*
b. The stubborn proprietor opened an expensive restaurant
c.- The poor musician played a rusty trumpet
d. The grgedy attendant devoured a soft pudding
e. The old professor occupied a comfortable seat
T: The cheerfiil damsel entertained a lonely artist

-107- .

N3

(F-A)

S.-a. The revised procedure facilitated an expected outcome
b. The latest evidence suggested an alternative version
¢. The minor change modified a basic measure
d. The final decision nullified a prior commitment’
e. The current effort coricluded a productive program*

"T: The current effort concluded a productive program

(ANSC—C) *

6. a. The dull description constituted a boring chapter*
b. The advanced technology obtained a respectable reputation
¢. The main assembly noticed an unnatural pause .
d. The solemn creed encouraged an excessive devotion
e. The awkward incident prevented a possible agreement

N The dull account constituted a boring chapter

(AN SC-I) :
7. a. The limited text explained a comphcated fnrmuld
b. The plausible address answered a contradictory reply
¢. The mediocre demonstration inspired a select few
d. The annual report recommended a complete renovation -
e. The tentative reason supplied an adequate exp]andm)n
T: The plau«;:ble address answered a contradictory reply

(ASC-C)
8. a. The entire episode prefaced a foreign affair*
" b. The strange mistake altered an established conclusion
c. The recent speculation provided an acceptable solution
d. The careful study resolved an open guestion
- €. The constant hope endured an attempted extinction
T: The entire affair prefaced a foreign episode

(F-A)

- 9. a. The indecisive argument depressed a waiting group

b. The analytic review maintained an objective position
¢. The early civilization originated a feudal system*

d. The habitual-behavior acquired a noble guality

e. The popular view raised a considerable discrepancy

T: The carly cmhzanon originated a feudal system

]

-108-

(LNSC—C)
10. a. The rich physman carried a hhick umbrella
b. The pompous monarch married a mumphant queen”®
_¢. The skillful doctor3oothed a flaming sunburn
d. The sharp arrow pierced a frantic bird
e, The rickety stagecoach crossed a winding river
T: The pompous sovereign married a triumphant queen

- (F-A) ‘
11. a. The inital attempt provoked a genera] enthusiasm’
_ b. The shameful event induced a subtle change
c The mcrcdnble exhilaration created a considerable mcennve*
- 4. Thes vereign authdrity rejected a civil exchange
-e. The fbrceful declaration inspired a renewed interest
T: The unnatural exhilaration created a formidable incentive

X

(F-C) :
_12. a. The marching company amacted a nonsy crowd
b. The thirsty traveler noticed a remote inn
¢. The exhausted boxer administered a decisive hlow*
d. The elegant gentleman cut a fine figare
¢. The shining water reflected an early sunlight
T: The exhausted boxer administered a decisive blow

(C NSC—!) -
" 13. a. The strong policeman ousted a seedy beggar
b. The loving mother served and excellent family*
c. The impulsive builder decorated a stylish cottage
d. The active volcano destroyed a majestic forest
. e. The aggressive settler felled an immense tree
T: The loving mother served and excellent family

(F-C)
14. a. The tired passenger lifted a heavy suitcase
b. The small band played a colorful tune
. ¢.. The commanding beauty ignored an elegant dandy
d. The tall girl wore a green dress*
e. Thebrutal policemen arrested a drunk sailor
* T: The tall girl wore a green dress

. -109-

Y

ry

(F-A) - - '

15. a. The foreign custom elicited a strained contct
b. The uncertain eventuality unnerved a selected few
¢. Thelegitimateconcernsindicatedarespectable intellect
d. The impartial judgemem avoided a disloyal solution* ‘ .
e. The upstanding citizens eliminated a troublesome altern: ative -
T: The impartial judgement avoided a disloyal solution

(ANSC-I) :

16. a. The absolute faith aroused an enduring interest*
b. The previous calculation contributed a significant result -
¢. The extensive investigation furnished a reasonable criticism
d. The vague notion survived a renewed concern
e. The original location fulfilled a customary requirement

T: The absolute faith aroused an enduring interest

A (ASC—I)

17. a..The passive majority defeated a listless opposition*
b. The unfair attitude destroyed a promising idea
¢. The free country organized a-private venture
. d. The actual quotation lacked a rational foundation
e. The unpleasant atmosphgre replaced a dismal silence
T: The passive majority defeated a listless opposnmn

(F-C)
18. a. The arrogant gentleman smoked a rancid cigar
b. The buoyant steamer sailed a tossing ocean
c. The carefree student climbed a high tower
d. The dynamic lecturer captivated an energetic committee
€. The noisy priest amused a lively infant*
T: The noisy priest amused a lively infant

Y

(CSC-C)
19. a. The hollow tomb housed 4 decaymg corpse’
b. The rolling hillside surrounded a muddy valley*
c. The reckless baron flicked a shining coin
d. The caystic prosecutor accused a frightened prisoner -
e. The rampaging caravan trampled an orderly caravan
T: The rolling valley surrounded a muddy hillside

“ S o10-

»

(CSC-1)
20. a. The fat woman pohshed ared apple .
b. The offensive performer cheered a zealous speaker?*
“¢. The crippled juggler sported a gaudy costume
d. The fidgety wife folded a crinkled newspaper
Q e. The alert fisherman swatted 2 buzzing mosquito
: The offensive performer cheered a zealous speaker «

(CNSC-C)
21. a. The vicious hound chased a wild animal*
h. Thetortured slave uttered a deafening shriek
" ¢. The destructive army pillaged-a prosperous village
d. The colorful snake crushed a screaming beast
e. The talkative admiral attended a costume party
T: The vicious dog chased a wild animal

(F-C) '
.22, a. The friendly banker purchased a blue automobile
b. The savage storm flattened abeautiful flower !
c. The bright headlight illumined a gloomy street
d. The falling rock killed a sinful captive ;
e. The muscular blacksmith lifted a bulky hammer*
"T: The musculardﬂacksmnth lifted a bulky hammer

NN

(ASC-C)

23. a. The plain alteration introduced an essennal balance
b. The mistaken assumption preserved a naive rationale®’
¢. The thrifty business registered an average profit

d. The preliminary hypothesis predicted an unstable relationship

¢. The available literature cited a useful article
T: The mistaken rationale preserved a naive assumption
cscny *?
24. a. The spirited leader siapped a mournful hostage*
“b. The white foam topped a restless sea
c. The jagged stone shattcrc?a clear window
d. The brutal officer snapped an abrupt salute
¢. The delicate maiden watched a golden sunset
T: The spirited leader slapped a mournful hostage

111-

(ASC-I)
25. a. The former custom abused a moral principle ¢
b. The introductory Statement promised a lng:mﬂrmtmem
- ¢. The rural community ensured a deprived childhood
d. The last crisis created a real necessity
) e. The close supervision guaranteed a strict obedience
T The, introductory statement-promised a logical treatment

Codes for Test Sets

. CNSC-C: Concrete, Non-semantic Change, Concrete
- CSC-C: Concrete, Semantic Change, Changed * '
CNSC-I: Concrete, Non-semantic Change, Identical
~ CSC-I: Concrete, Semantic Change, Identical -

" ANSC-I: Abstract, Non-semantic Change, Identical
ASC-I: Abstract, Semantic change, Identical
ASC-C: Abstract, Semantic Change, Changed @
ANSC-C: Abstract, Non-semantic. Clmn&,e Ch.mged
F-C: - Filler, Concrete
F-A: Filler, Abstract

-112-

0.

'Chknged Different Meaning

.

SEMANTIC ABILITY TEST--ANS%:R SHEET.

>

o
Identical,

Changed-Same Meaning
Changed-Different Meaning

Idemtical
Changed-Same Meamng
(.hanghd-leferem Meanmg

-~ Identical
* Changed-Same Meani#®

Changed- leferent Meamng S

Identical

- Changed-Same Mednmg

Changed-Different Me;mmg

o -
. AN

Identical - -
Changed-Same. Meamng

a—
v

Identical .
Changed-Same Meaning

- Chadged-Different Meaning

-3

Anﬁex 2

24

7.

9.

10.

11

Identical

. Changed-Same Meani ng

Changed-Different Meaning

TIdentical N

. Changed-Same Meaning -
Changed-Different Meaning

Identical ‘ }
Changed-Same Meaning -
Changed-Different Meaning

Identical
Changed-Same Meaning

Changed-Different Meaning ‘

Identical _
Changég-Same Meaning

- . Changed-Different Meaning

12,

Identical -
hanged-Same Meaning

Chwnged-Different Mianing

Identical o
Changed-Same Meaning

* Changed-Different Meaning

" Identical : :
Changed-Same Meuning
Changed-Different Meaning

BN

-114-

15, ldcnncal
Changed-Same Meamng

Changed-Different Meaning

16. Identical
~ Changed-Same Meamng
Changed Different Meanmg

17. Identical)
- Changed-Same Meaning
_.Changed-Different Meaning

I8. ldenhcal ~
\ Changed-Same Meanmg

Chaniged-Different Meaning

19, Identical
Changed-Same Meaning :

Changed-Different Meaning .

‘I‘»Z(}.‘ Identical _
Changed-Same Meaning
Changed-Different Meaning

21, Identical
Changed-Same Medning

Changed- leferent Meaning ‘

-~

22, 3‘;Idé_nt‘ic‘él
" Changed-Same Meaning
Changed-Different Meaning

23 Identical '
Changed-Same Mﬁaﬁing
? Changed-DifferentMeaning

—

N

-115-

2. ldentical
Changed-Same Meaning ‘
.Changed-Different Meaning -
A

25, ldentical
Changed-Same Meaning
Changed-Different Meaning

)

-

b

RS

-116-

‘?

Appendix B .

Figure 3 shows the b_rgar;isatios of the de~coding board.

Y
om0 0 0 Gfme
BRI 0 O 0O O

22l 0 o O O
2o 0 0 0
clo 0.0 0Of
o \O‘ O O 0O
el ©O O O O

a2l O O 0 ©

e O O O O]
PO O O O-frwees

Figure 3. Master Mind De-coding Board.

N

-117-

Appendix C

I l »] ‘-«: - ~ ” >
1. What is your gender?

a)Male
b)Fema]e

2. What is your age?
a)19 or younger
b)2010 24

" ©)25t029

d)30to 34

. e)35orolder

3. Rate your hlgh sch(m] performance using the following
categories:
a)A (86-100%)
b)B (76-85%)
)C (66-75%) .
d)D (65% orbelow).

N

‘ 4. V\Q]at 15 your current mnverslty level?-
a)First.year
b)Second year
¢)Third year.
d)Honors year -
¢)Graduate School |
f)Graduated
g)No Degree (give education level)

-118-

. S. What is your degree ma;or" (please write down major beside
main area)

a)Arts
b)Science_
c)Cogpmerce____ >

6. 'If you are still in university, rate your current academic
performance using the f()ll()wmg categories:
a)A (86-100%) . :
b)B (76-85%)
c)C (66-75%)
d)D (65% or below)

7. Have youleve'r used a computer?
‘a)Yes
b)No

- *If you have answered yes to question 7, please go on to question
8. If you have answered no, please go to question 14.

8. What type of expenence do you have'>
. a)user only
b)programming as.an accessory to other tasks -
c)programming as a major task and/or as a job

] w

Y. What type of computer do you usually use?
a)a mainframe computer (such as VAX or CYBER)-
b)a mini or mi¢crocomputer
c)both types

10. How much | prmr education have you had in computer
programming?
~a)None
bil to 2 courses o
¢)3 to S courses
d)degree in computer science

-119-

11 How many programnnng language can you use?
a)None
b)One

. ¢)Two
d)Three or more

12. Please name the programming language(s) you know and can use:

13. How much work experlence have you had lhdt mvolved .
programming a%pects of computers?
a)None ~
_b)A few months -
- ¢)One year :
d)Two to three years
e)Four years or more

14. How many years of high school math have you had?
a)0 :
b)1
.C)2
d)3
)4 or more

15. How many math courses have you had at the collq,e or
umver51ty level?

a)0

b)1

)2’
d)3

e)d or more

- ~120-

16. Have you ever played the game of Master Mind before?
a)Yes ‘ :
b)No

17. What is your mother tongue?
a)English
b)French
¢)Other (Please Specify)

(Adapted from Konvalina et al., 1983)

-121-

Appendix D

Table D-1 T S 3 _ »
ANOVA of Rows Performance on Master Mind for General Population and
Experienced Programmers

- Source o df ' 58{ ‘ . Mez_m\Sqnar‘e : l*:h_ S
. Group U s) --44.49_ gaae
i Ermr R 465 AR
Trigs 3 63 Y S
-Trialé'x . \ :
Group 3 T 798 2:65 - B2
Emor. . 219 7137 o260

P e e

. * _05) ‘b‘.Ol,;*** .{)()] .

-122-

Table D-2

ANOVA of Time Performance on Master Mind for General Population and

Experienced Programmers

Source

df

* Mean Square

s 001

$S F

Group 1 19232 19232 9

Rrror 73 1554913 21300

' Trials 3 ES676 284225 2.53*

Triaisx ' ‘ o

Group 3 8847.31 2949.10" 2.63*

Error 29 2es6086 112147
05, f'; o1,

Table D-3
ANOVA of Overall Performance on. M.Ncr Mind for Corkrol and Novice
Programmers

__

Group S B 2143.13 214313 154893

Error 33 4427 1.38 ~.§

Experience x
Performance 1 ‘ b7 07 1.38

Error B 15.49 a8

* 08, ¢ .01, x> 001

T\]ble D 4 .
ANOVA of Overall Performance on Semannc Ability]ut for(nmml mui Novice.
Programmers :

e e et 2 T e 0 e ot M B 8 A e i e Y e R L A A e e T e A R e e v

Source df S8 Mean SqnarL I

Group \] ‘ 375037 ” 3750.37 Y1780 *
. Error o 33 130.75 40 | ‘

Expérience X \

Performance 1 425 - 425 227

Error ‘ 33 o 59.84 1.87

e I A e e e e e B R E M e e o m e = e

£ 05, % 01, *** 001

-124-

