
Encoding methods for DNA languages

defined via the subword closure operation

By

Bo Cui

A thesis submitted to

Saint Mary’s University, Halifax, Nova Scotia

in Partial Fulfillment of the Requirements for

the Degree of Master of Applied Science (in Computer Science)

May 2007, Halifax, Nova Scotia

Copyright Bo Cui, 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-35761-3
Our file Notre reference
ISBN: 978-0-494-35761-3

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non­
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Certification

Encoding methods for DNA languages defined via the subword closure operation

by

Bo Cui

A thesis submitted to Saint Mary's University, Halifax, Nova Scotia,
in partial fulfillment of the requirements for the
degree of Master of Science in Applied Science

August 24,2007

Examining Committee:

Approved: Dr. Patricia Evans, External Examiner
Department of Computer Science, University of New Brunswick

Approved: Dr. Stavros Konstantinidis, Senior Supervisor
Department of Mathematics and Computing Science

Approved: Dr. Norma Linney, Supervisory Committee
Department of Mathematics and Computing Science

Approved: Dr. Genlou Sun, Supervisory Committee
Department of Biology

Approved: Dr. Sageev Oore, Program Co-ordinator Representative

Approved: Dr. Kevin Yessey, Dean of Graduate Studies

© Bo Cui 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A bstract

In DNA computing, information is encoded onto DNA sequences. The DNA codes in

the form of single-stranded DNA sequences are not stable. This is because when two

single-stranded DNA sequences, used to carry data, have complement parts on them,

they naturally tend to stick to each other. This is due to the Watson-Crick comple­

mentarity property and causes the problem of undesirable bonds. Some properties

and constraints have been proposed to prevent the problem, but most of them are

local constraints which concentrate on a segment of a DNA word of a certain length.

Therefore, if we concatenate some DNA words satisfying some local constraints, the

resulting words might violate the same constraints. This makes encoding methods for

DNA languages difficult to design. To solve this problem, we investigate some prop­

erties of the subword closure operation that is used for constructing DNA languages

and propose practical encoding methods for such languages. We also implement our

methods using advanced C + + tools for finite automata as well as design a web in­

terface that allows users to obtain a DNA language in response to given values for

certain parameters.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C K N O W L E D G M E N T

Sincere gratitude is given to all the people who made this thesis possible!

It is my pleasure to work with Dr. Stavros Konstantinidis. He is a knowledge­

able and patient supervisor. He helped me to develop my understanding on DNA

computing and taught me how to do research.

Special thank is given to Dr. Patricia Evans (University of New Brunswick) for her

valuable comments. Also, I would like to thank the members on my thesis committee,

Dr. Stravros Konstantinidis, Dr. Norma Linney, and Dr. Genlou Sun for valuable

feed-backs on revising my thesis.

I would like to thank the Department of Mathematics and Computing Science, the

Faculty of Graduate Studies and Research, and the Faculty of Science for providing

me the opportunity to study at Saint Mary’s University and the financial support.

I appreciate the help from people in the Department of Mathematics and Com­

puting Science. The courses offered by Dr. Pawan Lingras, Dr. Paul Muir, and Dr.

Sageev Oore enriched my understanding in more aspects of computer science. Rose

Daurie and Owen Smith helped me a lot on dealing with daily matters and technical

problems.

Last but not least, I would like to thank my parents, to whom I dedicate this

work, for their support and encouragement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction 1

1.1 The structure of D N A .. 1

1.2 The objective of this r e s e a r c h ... 2

1.3 The structure of the th e s is ... 3

2 Definitions, notations, and background inform ation 5

2.1 Basic definitions and notations... 5

2.2 Theory of au tom ata .. 8

2.2.1 Finite au to m ata .. 9

2.2.2 Trie ... 10

2.2.3 Pushdown a u to m a ta .. 10

2.2.4 Intersection of two au to m ata ... 12

3 Literature review 15

3.1 Adleman’s in s ig h t.. 15

3.2 Undesirable bonds .. 18

3.3 DNA-based algorithm design and DNA-based computer design 19

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 DNA-based algorithm design... 19

3.3.2 DNA-based computer design ... 20

3.4 Significance of DNA language d e s ig n .. 21

3.4.1 Code properties of DNA la n g u a g e s .. 22

3.4.2 Properties for generating infinite sets of w o rd s 23

3.4.3 The bond-free p roperty ... 25

3.4.4 Global constraints for DNA languages design.............................. 26

3.5 Local constraints for DNA language d es ig n .. 27

3.6 Construction methods .. 27

3.6.1 Bounds and construction methods for reverse codes and reverse-

complement codes... 28

3.6.2 Template m e th o d .. 29

3.6.3 Stochastic local search algorithm for DNA word design 31

3.6.4 Methods for bond-free languages ... 32

3.7 An experimental construction of DNA databases.................................... 33

4 The subword closure operation 34

4.1 Background in fo rm a tio n .. 34

4.2 The general p ro b le m .. 35

4.3 Generating Z T b locks .. 36

4.4 Calculating the density of S'® .. 40

5 Investigating com m unicating cycles in autom ata 46

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Definitions... 46

5.2 Cycle-intersection n o d e s ... 48

5.3 An algorithm for checking cycle-intersection nodes and the time com­

plexity a n a ly s is .. 51

6 C onstruction m ethods for D N A languages w ith local constraints 55

6.1 An algorithm for generating set S for the bond-free p ro p e r ty 56

6.2 Construction methods for languages satisfying GC-ratio constraints . 58

6.2.1 Construction method for languages with general GG-ratio . . 59

6.2.2 Construction method for GG-ratio of 5 0 % 61

6.3 Construction method for DNA language satisfying continuity constraints 63

6.4 Guidelines for constructing 5-blocks and Encoding methods for bond-

free languages... 65

6.5 Combining local c o n s tra in ts .. 6 8

7 Im plem entation of the code generating system and experim ental re­

sults 70

7.1 The flow of the subword closure operation encoding sy s te m 72

7.2 The algorithms used in the implementation of the subword closure

operation encoding sy s te m .. 78

7.3 Implementation of the direct encoding s y s te m 93

7.4 Experimental results of the subword closure operation encoding system 95

7.5 Experimental results of the direct encoding system 104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 Comparison between the results of the two systems 109

7.7 D iscussion.. I l l

8 Conclusion and future work 113

8.1 Conclusion and d iscu ss io n ... 113

8.2 Future w o rk ... 115

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

1.1 The structure of D N A ... 1

1.2 A structure of DNA with a m ism atch ... 2

2.1 An automaton that accepts (ab)* ... 1 0

2.2 The trie recognizing words are, ark, ear, and e g g 11

2.3 The automata M\ and M 2 .. 14

2.4 The intersection automaton of Mx and M2 14

3.1 A directed graph. The Hamilton path: 0 —->3—> 1 —> 2 —> 4 —> 5 . . . 15

3.2 The DNA structure representing the path from node 0 to node 1. . . 17

3.3 The structures of undesirable b o n d s ... 18

3.4 A structure of DNA with a m ism atch .. 22

3.5 A structure of DNA with a m ism atch .. 25

4.1 The structure of a word w, w € B and \w\ < 2 k 38

4.2 Automaton for generating words in B of length 5, where B is defined

via the set Si and E N in Example 4 .. 41

4.3 The end part of a word in S '® .. 43

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Communicating c y c le s .. 47

5.2 A deterministic automaton that has cycle-intersection n o d e s 49

6.1 The automaton that accepts -Fn ,r2, / .. 59

6.2 The automaton that accepts Lq .. 64

7.1 The web interface for specifying parameters of the DNA computing

related constraints ... 71

7.2 The flow chart of the subword closure operation encoding system . . . 73

7.3 The filter for the G'C'-ratio constraint and the continuity constraint . 78

7.4 A trie for words in B E 2 and State for the other words in S2 8 6

7.5 The automaton for accepting words such that each word begins with

words in B E 2 and ends with words in E N 2, and moreover, any segment

of length k is a word in S2 .. 87

7.6 The linked structure for storing the automaton in Figure 7 . 5 89

7.7 The automaton accepting the language (ab)* ... 91

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 The operations of M\ on a a b b ... 12

3.1 The DNA sequences representing the nodes and edges in graph 3.1. . 16

4.1 word u and corresponding B E U .. 39

6.1 The rules used for accepting gacttagg .. 63

6.2 The comparison of the sizes of B s with different E N s 67

7.1 The auxiliary table for Sz with k — 2, d = 0, w — cc 82

7.2 The outputs of the functions enum erate and enum erateD N A of an

object of class fm with parameter 10 and parameter 3 respectively . . 93

7.3 The sizes of Bs of length 4, 5, and 6 generated with different starting

words w, where k =2 and d = 0... 97

7.4 The sizes of Bs of length 5, 6 , and 7 generated with different starting

words w, where k =3 and d = 0... 98

7.5 The sizes of Bs and the density of S® of different lengths generated

with the parameters k, d, and w, where w only consists of as............... 9 9

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 The sizes of Bs of different lengths generated with the parameters k, d.

and w, where w only consists of as. In addition, all the words satisfy

the GC-ratio constraint, where r\ — 40% and r2 = 60%........................ 100

7.7 The sizes of Bs of different lengths generated with the parameters k, d,

and w , where w only consists of as. In addition, all the words satisfy

the continuity constraint, where q = 5.. 101

7.8 The sizes of Bs of different lengths generated with the parameters k, d,

and w, where w only consists of as. In addition, all the words satisfy

both the G'C-ratio constraint and the continuity constraint, where r\

= 40%, r 2 = 60% and q = 5.. 102

7.9 Sample codes generated with specified p a ram ete rs 103

7.10 The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords only satisfy the bond-free constraint. 105

7.11 The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint and

the G(7-ratio constraint, where 74 = 40% and r 2 = 60%........................ 106

7.12 The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint and

the continuity constraint, where q = 5.. 107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.13 The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint, and

GC'-ratio constraint, and the continuity constraint, where r i = 40%,

r 2 = 60%, and q = 5...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 T he structure o f D N A

y - g g t G c t t - V 5 ^ - g g t c a t

V - c c a g t a - ^ V - c c a g t a

(1) (2)

Figure 1.1: The structure of DNA

DNA (deoxyribonucleic acid) is naturally a double helix structure. It consists of

four distinct nucleotides a [adenine], c [cytosine], g [guanine], and t [thymine]. In

this thesis, we will simply use the letters a, c, g, and t to represent them. Many

nucleotides line up to form a single-stranded DNA sequence. Due to the Watson-Crick

complementarity property - a is the complement of t and c is the complement of g

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- two single-stranded DNA sequences form a double helix by the hydrogen bonding

(the vertical bars in Figure 1.1) between complementary nucleotides on each of the

two strands.

Each single-stranded DNA sequence is oriented. Figure 1.1 depicts that each

single-stranded DNA sequence starts at a 5 ’ end and ends at a S ’ end. So, when

reading the single-stranded DNA sequence that is underneath, we need to read it

from right to left, for example, the one in Figure 1.1(1) is read as 5 ’ - atgacc - S ’.

If one single-stranded DNA sequence is of a sufficient length and contains two parts

that are complementary, it can bend over to bind to itself. Also, in practice, it

is not necessary for all the pairs on the two single-stranded DNA sequences to be

complements. The following structure is possible:

5 ’- a g c t g c - 3 ’

I I I I I
3 ’ - t c g a t g - 5 ’

Figure 1.2: A structure of DNA with a mismatch

1.2 T he ob jective o f th is research

In DNA computing, we apply operations on physical DNA sequences to perform

computations. The power of this kind of computation is that all the DNA operations

work in parallel. However, there might be situations where some DNA operations

will happen unexpectedly, for example, to form undesirable bonds between DNA

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sequences. To avoid the undesirable bonds and improve the accuracy of the compu­

tational results, we have to follow some constraints. More details will be presented in

the literature review chapter. Therefore, in order to apply DNA operations to solve

computational problems, first of all, we have to design DNA sequences that satisfy

important constraints and can be applied to encode data. In this thesis, we investi­

gate methods for designing DNA sequences at the theoretical level. In other words,

we investigate DNA languages that satisfy desirable constraints and can be used for

encoding arbitrary data.

In this research, we investigate some general properties of the subword closure

operation and cycles in automata. Therefore, even though this research is motivated

from the DNA computing point of view, some of the methods are general for encoding

data into languages that satisfy arbitrary local constraints and are defined via the

subword closure operation.

An implementation using advanced C+-1- tools has been developed for producing

desired DNA languages defined by the methods in this thesis.

1.3 T he structure o f th e thesis

Explicit definitions and notations are given in Chapter 2. Some background informa­

tion about theory of computation is also given in Chapter 2 .

In Chapter 3, we briefly review the literature of DNA computing. We present some

global constraints and local constraints that are usually considered in DNA language

design. Also, we present some construction methods for DNA languages satisfying

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

different constraints.

In Chapter 4, we first present the general problem we want to solve, and then,

propose a method, the 5-block method, for solving the problem by using the subword

closure operation. Moreover, we propose a method to calculate the density of S’®,

which is the language defined via the subword closure operation.

Because the method proposed in Chapter 4 is non-deterministic, in Chapter 5, we

investigate the properties of T®, the automata that are used for producing languages

satisfying desired local constraints, and propose a method for checking whether a T®

is able to produce a arbitrarily large set of code words. At last, an algorithm for the

method is introduced.

In Chapter 6 , we first propose some DNA language construction methods for some

constraints that are related to DNA computing. And then, we focus on applying the

methods in Chapter 4 to produce DNA words satisfying these constraints.

In Chapter 7, we describe the implementation of a web system that applies the

methods in Chapter 4, 5, and 6 . Users of the system are able to encode arbitrary

data into DNA languages satisfying either some general constraints or the constraints

related to DNA computing. In addition, a theorem in [28] is included in the web

system to encode arbitrary data into DNA languages satisfying the DNA computing

related constraints. Some tables are obtained in response to certain values of the

parameters involved.

In Chapter 8 , we summarize the important contents of this thesis and discuss

directions for future research.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Definitions, notations, and

background information

2.1 B asic definitions and notations

An alphabet is a finite non-empty set of symbols. For instance, A = {a, b} is an

alphabet with two symbols, a and b, and N — {0,1,2} is another alphabet with three

symbols, 0, 1, and 2 . A word over an alphabet is a finite sequence of symbols such

that each symbol in the sequence is in the alphabet. For example, abaab is a word

over A, but abac is not. The empty word is the word without any symbols. We denote

the empty word by e. The length of a word w is denoted by \w\, i.e., if w = a ia 2 • • • a-n

with each cq being in the alphabet, then |iy| = n. For example, |a6a| = 3 and \e\ = 0.

A language over an alphabet is a set of words over the alphabet. The set of all the

words over A is denoted by A*, and the set of all the words over A of length k is

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

denoted by A k.

The reversal of a word can be obtained by reading the word from right to left.

We denote the reversal of a word w by wR. For example, the reversal of english is

hsilgne.

Hamming distance is a measure of similarity between two words of equal length.

The Hamming distance between two words, x = a ^ a ^ ■ ■ ■ ai and y = b ^ b z • ■ -bi,

denoted by H (x,y), is the number of symbols where a; ^ bi, for 1 < i < I. For

example, the Hamming distance between bread and brood is H(bread, brood) = 2,

because they are different at the third and fourth positions.

The Hamming ball of a word w with a Hamming distance d is denoted by Hd(w).

Given an alphabet, the Hamming ball of w over the alphabet contains all the words

such that the Hamming distance between any word in the Hamming ball and w

is less than or equal to d. For example, over alphabet A = {a,b}, H\(abab) =

{abab,bbab,aaab,abbb,abaa}, because the Hamming distance between any word in

this set and abab is less than or equal to 1. Similarly, the Hamming ball of a set A

with a Hamming distance d contains all the elements in each of the Hamming balls

of the elements in A with Hamming distance d, in symbols, H<i(A) = [jaeA Hd(a).

In mathematical terminology, a set is a collection of elements. The number of the

elements can be finite or infinite. Therefore, a language is a set and a word is an

element in a language. The cardinality of a set A, denoted by |>1|, is the number of

elements in A. if a word w is in a language L, this is denoted by w e L. Operator

fl takes the common elements of two sets. The result set is called the intersection of

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two sets. For example, the intersection of set A = {o, b, c, d} and set B = {c, d, /}

is A fl B = {c, d}. If a set A is a subset of B, in symbols, A C B, each element in

set A is also in set B. For example, {1,2} C {1,2,4}. A pair, denoted by {x ,y}, is

a set with two elements. For any x,y , {x ,y} = {y ,x} . An ordered pair, denoted by

(x, y), means that, if x ^ y , (x, y) ^ (y, x). The Cartesian product of two sets A and

B, denoted by A x B, is the set of all ordered pairs (a, b) with a £ A and b £ B. For

example, {1, 2, 3} x {a, 6 } = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

For a word w in the form of ps, the word p is a prefix of re; we denote the set

of prefixes of w by Pref(rc). Similarly, word s is a suffix of w; we denote the set of

suffixes of w by Suff(w). If we write w in the form of pqs, q is a subword of w; Sub(w)

denotes the set of subwords of w. In addition, we denote the set of prefixes of w of

length k by Pref/C(w), i.e., for the words over alphabet A , Prefk(w)=Akn Pref(w).

The same notation is used for Suffi^a;) and S u b tle)

Definition 1 Let S be a language containing only words of the same length k, for

some positive integer k. The subword closure S ® {<g> is pronounced as o-times) is the

set

{w G E* | |tu | > k, Subk(u>) ^ S'}-

By definition, any subword of length k of a word in S® must be in the set S. For

example, given a set C = {abc,bca,cab}, abcab is a word in C®, but abeb is not,

because the subword beb is not in C.

In [28], the authors define S® (® is pronounced as o-plus) as S®deJS® fl (Efc)+,

which is a restricted version of S®. In addition to the definition of S®, S® requires

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that the length of any word in S ® must be a multiple of the word length in S , so

S ® C 5®.

DNA consists of 4 distinct bases. We consider these 4 DNA bases as 4 symbols.

Therefore, the DNA alphabet, denoted by S, has 4 symbols, a, c, g, and t. As physical

DNA sequences only consist of these 4 bases, we consider them as DNA words. For

example, the physical DNA sequence Z'-agcagtt-Z' is represented by the DNA word

agcagtt, thereby, we can get the concept of DNA languages. They are depicted as sets

of DNA words. Formally, for E = {a,c ,g ,t} , E* denotes the set of all DNA words,

E+ denotes the set of all non-empty DNA words, and Efc denotes the set of all DNA

words of length k.

Due to the Watson-Crick complementarity property where a is the complement of

t and c is the complement of g, we denote the complement of a by r(a), i.e., r(a) = t,

r(c) = g, and vice versa. We can get the complement of a DNA word by switching

each DNA symbol in the word to the complementary symbol and reversing the string.

We denote the complement of a DNA word w by r(w). For example, the complement

of the word w — agcgcta is t (w) — tagcgct. For a DNA word set S, t (S) denotes the

set in which each word is the reverse-complement of a word in S. The function r is

called the DNA involution.

2.2 T heory o f autom ata

Theory of computation is a fundamental theory in computer science and is one of

the oldest research areas in computer science. It can be applied to many computer

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

science research areas, especially, research areas about sequential language design

and analysis such as natural language processing and DNA language design. In this

thesis, because we want to address problems with the theory of automata, we need

to present some background knowledge about this theory.

2.2.1 F in ite a u tom ata

A deterministic finite automaton is a quintuple M = (K, E, 8, s, F), where K is a

finite set of states, E is an alphabet, s G K is the initial state, F C K is the set

of final states, and 8 is a set of rules. Each rule in 8 is of the form 8(qi,cr) —> g2,

where q\ and g2 are two states in K, and a is a symbol in E. When the current state

of M is <71, if it reads in symbol a, it goes to state g2. If an input word can lead

an automaton to reach an accepting state, we say this automaton accepts the input

word. For convenience, we depict an automaton with a state diagram. For example,

Figure 2.1 depicts an automaton that accepts the language (ab)*. (The initial state

is preceded by the symbol >, and the final state(s) is indicated by double circles.)

In symbols, the above automaton is M — (K , E, 5, s, F), where K — {go, Qi, Q2}, E =

{a, b}, s — q0, F = {g0}, 8 = {8 (q0 ,a) -»• ql t 8 (g0 ,b) -> q2 ,S(qi,a) -> q2 ,S(qu b) ->

go, 8 (q2 , a) —> g2, h(g2, b) —> g2). For example, if the input word is abab, the automaton

goes to states in the order of gi, go, gi, go- As g0 is the accepting state, the automaton

accepts this input words. If the input word is aba, the automaton stops at state gi,

so, aba is not acceptable.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a, b

Figure 2 .1 : An automaton that accepts (ab)*

2.2 .2 Trie

A trie, also called prefix tree, is a finite automaton in the form of a tree structure. It

is used for storing strings over an alphabet. The idea of this string storage is that

all strings sharing a common stem or prefix hang off a common node. For example,

in Figure 2.2, words are and ark share the same stem ar. The data structure for

representing a trie will be depicted explicitly in Chapter 7.

2.2 .3 P u sh d ow n a u tom ata

A pushdown automaton is a sextuple M = (K, E, T, A, s, F), where K is a finite set

of states, E is an alphabet (the input symbols), T is an alphabet (the stack symbols),

s € K is the initial state, F C K is the set of final states, and A, the transition

function, is a finite subset of (K x (EU {e} x T*) x (K x T*). In addition to a finite

automaton, pushdown automata have a stack. Pushdown automata decide the next

state not only based on the symbol just read but also the symbol at the top of the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.2: The trie recognizing words are, ark, ear, and egg

stack. They also operate the stack. The rules of pushdown automata are in the form

of ((p, a, (3), (q, 7)). If the current state is p and the symbol at the top of the stack

is (3, a pushdown automaton may read a from the input word, replace [3 with 7 , and

enter state q. a, (3, and 7 could be the empty word e . The rule ((p, a, e), (q, 7))

pushes 7 (7 could be a word) to the top of the stack; the rule ((p , a, (3), (q, e)) pops a

symbol (3 from the top of the stack. If a — e, a pushdown automaton does not read a

symbol from the input word. A pushdown automaton accepts a word if and only if,

after reading in all the symbols in the word, the pushdown automaton reaches a final

state and the stack is empty.

Exam ple 1

Let us design a pushdown automaton Mi to accept language L — anbn. For example,

aaabbb G L, but aabbb ^ L, and abba ^ L. Mi = (K , E, T, A, s, F), where K = {s, /} ,

E = {a, b}, T = {a, b}, F = {/} , A contains the following rules:

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 . ((s, a, e), (s, a))

2 . ((s, a, a), (s, aa))

3. ((s ,b ,a) , (f ,e))

4. ((/ ,M) ,(/ ,e))

Usually, we use tables such as Table 2.1 to illustrate the procedure of the opera­

tions of pushdown automata. We illustrate the operations of Mi on input string aabb

in Table 2.1.

State Unread Input Stack Rule used

s aabb e -

s abb a 1

s bb aa 2

f b a 3

f e e 4

Table 2.1: The operations of M\ on aabb

2 .2 .4 In tersection o f tw o au to m a ta

The intersection of two sets is the set of common words in the two sets. The lan­

guage accepted by an automaton is the set of all words accepted by this automaton.

Therefore, the intersection of two languages accepted by two finite automata should

be accepted by a finite automaton that accepts exactly the words accepted by both

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the finite automata. If L = L\ fl L2, M\ accepts Li, and M2 accepts L 2 , then the

intersection automaton Mi = Mi fl M 2 accepts L. For M\ = (K\,Y>,8 \ ,s \ ,F \) and

M 2 — (K2, £ , 6 2 , S2 , F2), Mi is defined as follows:

Mi = (Ki x K 2, E, 5, (su s2), Fi x F2)

where 5((p, q), a) = (<$i(p, a), S2(q, a)).

Each state of Mi is a pair in K\ x K 2. The initial state of Mi is the pair (si, s2) such

that si is the initial state of M\ and s2 is the initial state of M2. Since we want to

accept a word if and only if it is accepted by both automata, the accepting states

of Mi are pairs (p, q) such that p is an accepting state of Mi and q is an accepting

state of M2. Each state (p, q) on an input symbol a goes to the state (x, y) such that

5i(p, a) —> x and S2(q, a) -» y.

Exam ple 2

Figure 2.3 shows the automata, Mi and M2, such that, over E = {a, b}, Mi accepts

all the words with at least 1 a and M2 accepts all the words with at least 1 b.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

b

M l

a

M 2

Figure 2.3: The automata M\ and M2

The intersection of My and M2, Mi, accepts all words with at least 1 a and at least

1 b. Mi is depicted in Figure 2.4.

b

Figure 2.4: The intersection automaton of M\ and M2

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Literature review

3.1 A d lem an’s insight

Figure 3.1: A directed graph. The Hamilton path: 0 —> 3 —> 1 —> 2 —> 4 —>5

In 1994, Adleman published his paper [1] on DNA computing which demonstrated

the computational power of physical DNA sequences. He solved an instance of the

directed Hamilton path problem [1, 2], which is an NP-complete problem. The goal

of the directed Hamilton path problem is to find a path to go through a directed

graph that starts and ends at specified nodes such that every node in the graph will

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be visited once and only once.

As single stranded DNA sequences will automatically bind with the complemen­

tary single strands, Adleman used DNA sequences to represent the nodes and edges.

The DNA sequences representing directed edges from node x to node y are designed

to be able to connect the two nodes as xy. In the same way, the DNA sequences will

bind to form longer DNA sequences to represent the paths through the graph. An

example of nodes and edges is given as follows:

nodes node sequences edges edge sequences

0 b'-tactcatatggggttatacg-3' 0 ^ 1 3'-cccaatatgcgaggcggacc-b'

1 5'-ctccgcctgggcttagctta-3' l-^ 2 3'-cgaatcgaatctaggagaca-b'

2 b'-gatcctctgtttcctcagct-3'

3 b'-ggctccacttactctcttgt-3'

4 b'-tatgggctagcggtccggtt-3' 4 -4 5 3'-gccaggccaacgggaacatc-b'

5 b'-gcccttgtagtctcg g gtcc-3'

0 -4 3 3 '-cccaatatgcccgaggtgaa-b'

3 -*• 1 3'-tgagagaacagaggcggacc-b'

3 -4 2 3'-tgagagaactctaggagact-b'

2 -> 4 3'-aaggagtcgaatacccgatc-h'

0 -»• 5 3'-cccaatatgccgggaacatc-b'

4 -»• 1 3’ - gccag gccaagag gcg gacc-b'

Table 3.1: The DNA sequences representing the nodes and edges in graph 3.1.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let us take the sequences representing node 0, node 1 and edge 0 1 for example:

Node 0

r
5 ’-tactcatatg gggttatacg

bind

y\cccaatatgc

r '
ctccgcctgg

bind

gaggcggacc

Node 1

'\
gcttagctta-3 '

Edge 0-M

Figure 3.2: The DNA structure representing the path from node 0 to node 1.

from figure 3.2, we can see that the sequences representing node 0 and node 1 are

concatenated by the sequence representing edge 0 —» 1. The rest of the nodes and

edges work the same way.

During the experiment, a lot of copies (approximately 3 * 103) of each sequence

representing nodes and edges were put together. The binding reaction among those

sequences performed simultaneously and generated all possible paths in the graph. If

there is a solution to the directed Hamilton path problem, the sequence representing

the solution path will be generated during the reaction.

Because the growth rate of the number of strands to encode the data will be

exponential when the number of the nodes that need to be processed increase, we

have to fix an upper bound to the dimension of the input in order to evaluate the

“feasibility” of DNA algorithms: in [5], the authors assume that 1021 is the upper

bound to the number of DNA strands that an algorithm can treat. So, as suggested

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in [16], in molecular computing the exponential barrier is the weight barrier, because

it is the weight that imposes a limit to the volume of a test-tube. Thus, Adleman’s

experiment could theoretically be executed for a graph with up to 70 nodes, but, as

shown in [16], if we have to execute the experiment for a graph with 2 0 0 nodes, we

would need to manipulate DNA molecules for a weight heavier than that of the Earth.

3.2 U ndesirable bonds

Adleman’s experiment is based on the assumption that there is no mismatch between

two DNA sequences or within one DNA sequence. It means that if the edge sequence

from 1 to 2 binds with the nodes 0 and 2 , the resulting sequence representing the

Hamilton path will be incorrect; or if the the sequence representing node 2 bends

over to form the second structure in Figure 1.1, there will be no available node 2 any

more, so that the solution path cannot be generated. These mismatches are caused

by undesirable bonds.

(®) (b)

w <d)

Figure 3.3: The structures of undesirable bonds

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Several types of undesirable bonds may form within the DNA sequences from the

initial data. These undesirable bonds can violate the accuracy of the operations.

Figure 3.3 depicts several situations with undesirable bonds. In this case, the vertical

bars represent the undesirable bonds, and the horizontal lines (including the circulars)

represent the DNA sequences.

Undesirable bonds are a major problem in DNA computing. The goal of DNA

language design is to prevent the occurrence of undesirable bonds in any molecular

operations. We will review the research area of DNA language design in the next

section.

3.3 D N A -b ased algorithm design and D N A -based

com puter design

3.3 .1 D N A -b a sed a lgorith m design

Adleman’s experiment provides researchers with a new possible approach to design

algorithms, parallel algorithms, even though the reliability of this approach is not

sufficent at the current time. Because the DNA-based algorithms can perform tasks

simultaneously, they have potential for much stronger computational efficiency. With

this idea the conventional algorithms can be optimized, or DNA-based algorithms

can be implemented to some problems that are hard for conventional algorithms to

solve. For instance, the DNA-based computation approach to compute Dijkstra’s

algorithm has been studied in [20]. A DNA-based algorithm for solving an NP-

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complete problem (the shortest common superstring problem) has been proposed in

[14]. A DNA-based algorithm for solving image recognition problems for pattern

matching has been proposed in [42].

Since Adleman initiated the research area of DNA computing [1], the contribution

raises the hope to tackle NP-complete problems. However, at the same time, other

researchers argue that NP-complete problems may not be the most suitable for DNA

computing. A better subject for DNA computing could be large-scale evaluation of

parallel computation models [37].

3.3 .2 D N A -b a sed com p uter design

Since DNA sequences have computational ability, they can carry out computations to

replace the silicon circuits. This is the principle of DNA-based computers. The author

of [8] presents a theoretical proof that DNA computing can simulate a universal

Turing machine [44], which is the mathematical abstraction of a sequential computer.

The importance of a DNA-based computer is that it can carry out computa­

tions simultaneously. W ith this feature, artificial intelligence features can be realized

by DNA-based computer [15], since an important requirement for realizing artifi­

cial intelligence is that the external information must be delivered to all computer

devices simultaneously. The procedures for multiple inputs with DNA computing

are proposed in [12]. Since a DNA-based computer can realize artificial intelligence,

researchers proposed DNA-based computers that involve artificial intelligence. For

example, a problem solving method with DNA-typed Semantic Net is proposed in [41]

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to apply DNA computing to artificial intelligence. The authors of [32] present an op­

timal trajectory planning method of mobile robots using DNA computing. Moreover,

this method is especially effective on a DNA-based computer.

DNA-based computers have not been realized, but some fundamental functions of

a DNA-based computer have been studied and realized. At the hardware level, the

authors of [40] find that it is possible to use easily fabricated nanocells as logic devices

by setting the internal molecular switch states after the topological molecular assem­

bly is complete. They simulate some logic devices including an inverter, a NAND

gate, an XOR gate and a 1-bit adder; the simulation of Boolean circuits by finite

splicing is presented in [1 1]; a microreactor with 2 0 nodes has been designed by the

authors of [36], and they also improve the programmability of DNA-based computers.

At the logic and arithmetic operation level, the procedure for logic operations and

their time complexity are proposed in [13]. The algorithm for adding numbers with

DNA is proposed in [46].

3.4 Significance o f D N A language design

As we have presented, undesirable bonds can violate the accuracy of DNA compu­

tations and operations. In order to improve the reliability of DNA-based computers

and DNA-based algorithms, the first thing we have to do is to design DNA languages

of high quality. Those are sets of DNA words that are unlikely to form undesirable

bonds with each other by hybridization. In order to prevent the problem of undesir­

able bonds, we have to investigate what kinds of properties the DNA languages must

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have.

3.4 .1 C ode p rop erties o f D N A languages

-free

Figure 3.4: A structure of DNA with a mismatch

Figure 3.4 depicts the hierarchy of the structures of the undesirable bonds, which

have been defined and analyzed in [29, 27, 19, 25]. The variable 9 denotes a general

involution (which could be the DNA involution). An involution 9 satisfies 9(9(a)) = a

for all letters a. More specifically, languages that are 0-£;-codes, ^-compliant, 9-s-

compliant and 0-p-compliant have been studied in [25]; 0-strictly-free ones have been

studied in [19]; 0-3'-overhang-free, 0-5'-overhang-free and ^-overhang-free ones have

been studied in [29, 27]. Each property can prevent the corresponding structure of

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

undesirable bonds in the same box. For example, a language L is a 9-k-code if, for any

two subwords u and v of L of length k, that is u, v € Sub*.(L), we have that u 6 (v).

Based on these properties, some programs for generating DNA languages satisfying

such properties have been developed in [21, 31]. The 0-s-compliant and d-p-compliant

languages are also called hairpin-free languages, whose elementary properties have

been studied in [30] as well.

The structures of undesirable bonds in Figure 3.4 are related, so that the properties

for preventing these structures are related. For example, if a language is 0-3'-overhang-

free then it is also 0-p-compliant. The relationship among these structures also has

been studied in [29, 27, 19, 25].

The above properties ensure that certain undesirable bonds can not occur when

we construct the DNA language. We call them static properties. In addition, we

also need some other properties such as dynamic properties. They ensure that, after

a permitted bio-operation is applied to the DNA sequences, the resulting sequences

also satisfy the desirable properties. The authors of [26] have studied both static and

dynamic properties. The dynamic properties will be discussed in the next section.

3.4 .2 P ro p ertie s for gen eratin g in fin ite se ts o f w ords

Because none of the ^-compliance and 0-subword compliance are closed under concate­

nation [22], the authors of [22, 19] investigate the properties under which an infinite

set of DNA words can be generated from a finite “good” set of DNA words with the

same “good” properties by concatenating the DNA words in the finite sets. They

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

give some necessary and sufficient propositions by which the generated infinite word

sets are 9(k, mi, m2)-subword compliant, ^-compliant, and 0-free. The authors of [23]

study more conditions under which more kinds of words can preserve their properties

when the words are concatenated. The more general sets of words, 0-&-codes, are

studied in [23].

There are two ways to generate infinite sets of words. The above method concate­

nates words to generate longer words. Another method that generates longer words is

to use a splicing system. Splicing system is considered a computational model. Both

the authors of [22, 19] consider the question that under certain kinds of properties,

DNA words having good properties can keep them. That means that during or after

computations, the DNA words still will not form undesirable bonds.

In [19], the authors propose an additional feature to the initial set of DNA words

for preserving the good encoding properties during any computation. The authors

give two propositions, which state that if the splicing base is strictly 0 -free then all

the words generated by splicing will not violate the property of 0 -freedom.

In [22], the authors define a 0-rule, which defines the properties of splicing base

and splicing rules for a finite subset of E+. With these definitions, the authors give

some propositions which the infinite code sets can be generated from splicing bases

under the splicing rules; the resulting code sets are strictly 0 -compliant, strictly 0 -free,

and 0 (fc, mi, m2)-subword compliant.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 .3 T h e bond-free prop erty

Theoretically, the properties proposed in [29, 27, 19, 25] can prevent many cases of

undesirable bonds; however in the real world, if the language we have constructed

satisfies all the properties, the undesirable bonds can still occur. For example, the

structure in Figure 3.5 can be formed.

y - a g c t g c - V
I I I I I

3’- t c g a t g - 5’

Figure 3.5: A structure of DNA with a mismatch

In order to prevent the occurrence of this kind of situation, DNA languages have

to satisfy more properties, such as the bond-free property. Before we present the

bond-free property, let us consider the following situation. For the words of the same

length, if we pick a DNA word, say aaatcc, to be in a DNA language, due to the

properties presented in Section 3.4.1, we can not have the word ggattt in the same

language. However, because of the possibility of the above structure, words, that are

different from ggattt at one position, such as tgattt and gaattt, can still stick to aaatcc

and form undesirable bonds. These words are in the Hamming ball, Hi(ggattt). So,

it is easy to see that, in order to prevent the undesirable bonds among words, a

DNA language L not only has to satisfy the properties in Section 3.4.1 but also the

(r, Hd,k)~bond-free property [28]: for any two subwords u and v of L of length k, that

is u, v € Subfc(L), t (u) £ Hd(v).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .4 .4 G lobal con stra in ts for D N A languages design

In addition to the presented properties, we need some other constraints to help us

better operate the DNA sequences, such as the GC-ratio constraint which ensures

that all the DNA sequences can melt at the same temperature. We often consider

the following two constraints for DNA languages design.

1 . The GC-ratio constraint: the ratio of the number of occurrences of g and c

bases in a DNA word over the length of the DNA word must he in a certain

range to ensure similar thermodynamic characteristics among DNA words.

2. The continuity constraint: The same base should not appear continuously; oth­

erwise, a reaction will not be well controllable since the structure of DNA will

become unstable. It is not clear from the literature how long a string of equal

bases should be to violate this constraint. In our system implementation, we

let this be a parameter that can be specified by the user.

These two constraints require each entire DNA word to have certain properties, no

matter how long the DNA words are. The bond-free property has no requirement

for the word length as well. In general, we call them global constraints. In the next

section, we are going to present some constraints that focus on each segment of DNA

words of certain fixed length.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Local constraints for D N A language design

In the literature, the proposed methods for designing DNA languages usually require

that each word w of the DNA language is made of shorter words, that is, w =

wiW2 ---wn, with each Wi being of some fixed length k. When we design a DNA

language, we first need to design a set S, say, of these shorter words that satisfy

some local constraints, and then construct the desired DNA language by combining

the words in S. We shall use two major operations for combining the words in S:

the concatenation closure, S +, and the subword closure, S®. The following local

constraints for S are often used in DNA word design:

1. The Hamming constraint with distance parameter d means that any two words

w, x in S satisfy H(w, x) > d.

2. The reverse-complement constraint with parameter d means that for all pairs

of words w ,x in S (where w may be the same as x), H (r(w) ,x) > d. This

constraint is also expressed using the equation t (S) fl Hd(S) = 0.

3. The reverse constraint with parameter d means that for all pairs of words w ,x

in S, H(w, x R) > d.

3.6 C onstruction m ethods

We have presented some properties and local constraints for DNA language design.

We present some construction methods for DNA languages satisfying different prop­

erties and local constraints in this section.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 .1 B ou n d s and con stru ction m eth o d s for reverse cod es

and reverse-com plem en t codes

In [35], the authors define reverse codes to satisfy the Hamming constraint and the

reverse constraint, and define reverse-complement codes to satisfy the Hamming con­

straint and the reverse-complement constraint. They denote the maximum sizes of

reverse codes by A^(n, d). and denote the maximum sizes of reverse-complement codes

by A ^c (n, d), where n is the length of the words in the codes. They present a close

relationship between A f(n , d) and A f ° (n , d):

A f c (n ,d) = A f { n, d) when n is even, and

A f(n , d + 1) < A f c (n, d) < A f(n , d — 1) when n is odd.

In the paper, the authors propose some lower and upper bounds on reverse codes

and reverse-complement codes.

T h eo rem 1 [35], For n > 4,

9[„/2l E l»/21(l„f ,) (? - 1)i
A q (n ,3) <

2(1+ 4(9 - 2) + (n - 4) (9 - I)) '

where q is the size of alphabet, in [35], q G {2, 4}.

For a specific condition, d = 1, the authors of [35] give a construction method for

reverse code that is optimal for even n, and close to optimal for odd n. The upper

bounds for this kind of codes are as follows:

T h eo rem 2 [35] (d=l Construction)

Aq(n, 2) = qn~l/2 when n is even and a G {2,4}, and
qn~ i — L̂n/2J

A q (n , 2) > -------------- when n is odd and q G {2,4}.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The construction method for reverse codes, where d = 1 and n is even, is as follows:

First partition the base case (E2) into four parts: Sf — {aa, cc, gg, tt}, S i ={ac, ca,

gt, tg}, S i = {ag, ga, ct, tc}, Sl={at, ta, eg, gc}.

For the induction case, S'” contains all of the palindromes, which are words in the

form of w = x x R.

g n + 2 = S n . g 2 y g n . g 2 y g n . g 2 y g n . g ^

c n -h 2 o n c 2 i i O n Q2 i i O n 0 2 \ \ O n 0 2
o 2 — *_/̂ * ^2 2 * 3 3 * 4 4 * 1 *

Q n - \-2 Q n q 2 i i Q n q 2 \ \ Q n q 2 \ \ Q n q 2
O g — * O g k j * 0>2 5

Q n + 2 Q n q 2 \ \ Q n q 2 i i Q n q 2 \ \ Q n q 2o 4 — • o^ Og • o 2 ^ 0 4 * ^ 3 5

where A ■ B = {pwq \ w G A,pq E B,\p\ = \q\ = 1}. By first removing these

palindromes from each subset and then dropping half of the remaining words (either

a word or its reversal), we can obtain four reverse codes with d = 1. If we complement

the second half of each word, we can obtain four reverse-complement codes with d — 1 .

In [35], the construction methods for reverse codes and reverse-complement codes

for odd n are similar to the methods for even n.

3.6 .2 T em p late m eth od

Because different experiments require different kinds of DNA languages, it seems im­

possible to design a DNA language that can be used as an all-purpose library of DNA

words. The authors of [4] propose the template method that systematically generates

a set of words of length k. This method is a trade-off between the tightness of those

constraints and the number of words, which means that the word sets generated by

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the template method are not all the words satisfying one experimental requirement

but satisfy several different experimental requirements.

In [4], the authors denote by (x) the subword of x without a terminal symbol

at either end. For example, {x) = S2S3 ■ ■ ■ Sk-i, when x — si«2 s 3 • • • They de­

note by Hm{x,u) the minimum Hamming distance between x and the \y\ — |x| + 1

subwords of length |x| in y. They use ||x || to denote the minimal number among

H(x, x R), H m { x , (x x)) , and H m (x , (x Rx R)).

They define a template as follows:

D efin ition 2 [f], A template is a binary word of certain length k. Each bit of

the template indicates a possible symbol of the DNA alphabet. More specifically, 1

indicates either a or t, and 0 indicates either c or g.

The problem they want to solve is as follows:

P ro b lem 1 [f], Design a set S of DNA words of length k such that any word x € S

or its reverse complement mismatches in at least d positions from any other word

y G S (x y) or the overlap region of two words, i.e. (yz)(y ,z G S). Moreover, all

words must share the same GC content.

Problem 1 can be decomposed into two subproblems:

1. Find a single template x satisfying ||x || = d,

2. F i n d a n e r r o r - c o r r e c t i n g b i n a r y c o d e E o f m in i m u m d i s t a n c e d.

The purpose for using an error-correcting code is to choose either a ox t for the

template position X{ — 1, and either c ox g for position x* = 0 (1 < i < k). The

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DNA words can be derived as a product S — {x • y \ y € E} with the encoding rule,

{ 1 1 —> a, 1 0 —> t, 0 1 —> g, and 0 0 —> c}.

The second subproblem has been studied in coding theory [34], and several kinds

of codes can be used, so the authors concentrate on the first subproblem. Because

searching good templates of length k from 0 (2 k) candidates is time consuming, the

authors propose a upper bound for finding templates of ||x || > d, which is much less

than 0 (2 k). Therefore, it is feasible to use an exhaustive method to search good

templates.

3.6 .3 S toch astic local search a lgorith m for D N A w ord design

Stochastic search algorithms [10] have been used successfully to construct binary codes

for more than 10 years. In order to extract the most effective general principle on

the design of stochastic algorithms for DNA or RNA in the application of stochastic

local search, the authors of [43] design a stochastic algorithm for generating DNA

words. The authors use an empirical methodology based on run-time distribution [17]

to analyze simple stochastic local search algorithm. They use their algorithm to

design DNA words satisfying GC'-ratio constraint, Hamming constraint and reverse-

complement constraint. Their algorithm is able to find a word set whose size matches

or exceeds the theoretical results of [35]. The algorithm has been proven to generate

high-quality sets of DNA words that can satisfy various combinations of combinatorial

constraints, but it is not accurate enough.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 .6 .4 M eth o d s for bond-free languages

The authors of [28] use the reverse-complement local constraint to construct bond-free

languages:

T h eo rem 3 [28] Let S be a set of words of fixed length k, then each of the languages

S® and 5® is (t , Hd,k)-bond-free iff

t (S) fl H fiS) — 0.

The DNA languages generated by the methods in the previous sections are not

necessarily maximal. When a set S, S C Efc, is maximal satisfying t (S) fl H fiS) = 0,

then S® is a maximal bond-free language.

The significance of a maximal language lies in our ability to use words with the

same length to represent more information than that of those non-maximal languages.

In addition, the same properties that the non-maximal languages have can still be

kept.

In [28], the authors also introduce some other methods that we can use in this

thesis, such as

T h eo rem 4 [28], Let j and q be positive integers and let L be a subset of E-^E*.

I f L is (t ,Httq)-bond-free, for some integer t > 0, then it is also (t , Hd,k)-bond-free,

where, d=j(t+l)-l and k=jq.

For example, let j = 4 and q = 5 and let L be a subset of E 20E*. If L is a

(r, # 2,5)-bond-free language, it is also a (r, fAi,2o)-bond-frec language.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.7 A n experim ental construction o f D N A databases

The authors of [38] construct experimental large-scale DNA databases with associative

search capability. The purpose of the experiment is to measure rates of various search

errors, such as false positives from near-neighbor mismatches, partial matches, non­

specific binding and false negatives from limit-of-detection problems. They generate a

set of DNA words that satisfy some of the constraints introduced above and generate

a set of testing data by connecting those DNA words to form longer data elements.

However, those DNA words used in the experimental DNA database do not carry any

information at all, because there is no efficient encoding method.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

The subword closure operation

Given a set S of words of a fixed length k representing some desired local constraints,

the language S'® is the set of words in which each segment of a word of length k is

in S so that the desired local constraints can be preserved within the words in S'®.

Because, in this thesis, we will design data encoding methods for DNA languages

generated by the subword closure operation <2), we will first investigate some general

properties of languages generated by the subword closure operation in this chapter.

4.1 Background inform ation

The properties of subword closure operation are described explicitly by the following

two lemmas in [28].

L em m a 1 [28], Let S be a language containing only words of the same length k, for

some positive integer k. The following statements hold true.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. S = Snhk(S®).

2. Let Si be a language containing only words of the same length k. Then S\ C S

iff S f Q S®. This implies that, if S\ S then S f ^ S®.

3. I f S = Subfc(L), for some language L, then L C S®.

L em m a 2 [28]. Let T be a trie accepting only words of the same length. There

is a DFA T® of size 0(\T\) accepting the language L(T)®. Moreover, T® can be

constructed from T in time 0(\T\).

4.2 T he general problem

In the need of encoding methods for a language S®, where words in S are of a fixed

length k and S represents a desired local constraint, we want to be able to encode

arbitrary input words. However, it might not be practical to encode all the words in

an input language directly into S®. For example, if we use the English alphabet E

as the input alphabet and want to encode all the English words into S®, we must

have more than \En\ words in S®, where n is the maximal length of English words

that we will potentially use. Even though we probably will not use all of them, we

still have to have all the words in S® for each of the possible combinations of the

English symbols, such as the meaningless combination ttwss. Since there is no limit

for n, the number of words in S® could be infinite. Therefore, the typical approach

is that, when we want to encode a word z E E + into S®, we define blocks of length

m of the input language E +, for some m < n, and encode each successive block of

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

length m into a word in S® and then concatenate the encoded words. In this way, we

only have to pre-define and construct \Em\ words in S®. On the other hand, for the

convenience for decoding, we need to design the words in S® to be of a fixed length

I, for some I > k , because, when we decode words in S®, we cut the concatenated

words into the pre-defined words that express each input block of length to. If the

lengths of these pre-defined words are not equal, it is hard to know how to cut the

concatenated words. The procedures for encoding and decoding are as follows:

Encoding procedure:

z = Z\Z2 ' ■ ■ zx, w ith \Zi\ = TO,

then encode^ h— > w ,̂ Wi G S® and |wj| = I.

Decoding procedure:

w = W\W2 • • • wx, with |u>j| = I,

then decode Wi i— > z%

But the problem is that, in general, the concatenation W1W2 ■ ■ ■ wn is not in S®. (We

will explain the problem explicitly in the following sections.) In this thesis, we propose

a solution to this problem.

4.3 G enerating B-blocks

As we have presented, if we concatenate two words in S®, the resulting word might

n o t b e in t h e s a m e s e t S'®.

Exam ple 3

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Let Si = {aaa, aac, aag, aca, acc, acg, aga, age, agg, caa, cac, gaa}.

Obviously, the words aacg and gaaa are in S f . But, the concatenation of the two

words aacg gaaa is not in S f , because not all the subwords of length 3 are in Si, for

example, the subword egg is not in <5i.

In order to encode data into S'®, with the procedure of the previous section, first

of all, we need to solve this problem. The reason why the resulting word is not in

S'® is as follows: When we concatenate two words, w\ and w2, in S®, and the length

of words in S is k, each subword W3 of the resulting word of length 2k, with IC3 G

Sufffc(u;i)Preffc(u;2), is an element of the concatenation of S and S. By definition, S S

contains all the combinations of words in S including all the words in 5® of length 2k.

Therefore, Subfc(S'S') contains all the words such as W3 . Some words in SS, however,

are not in S'®. These words cause the problem presented above.

We propose the concept of a 5-block, B, to solve this problem. Each word in B

is of a fixed length I > k and belongs to S'®. Moreover, the concatenation of any two

words in B is still in the set S®.

We need to define two new sets, E N and B E U. For each word u in the set S, we

denote by B E U the words 2 of S such that uz is in S’®. E N denotes a subset of S.

Given a set S in which the length of words is k, we pick any subset E N of S and

define, for each u G E N , the set B E U = {z G S | uz G S'®}. And then, we can define

the 5-block in which all the words are of length I, I > k, as follows:

D efin ition 3 A B-block is a set B satisfying

B = S® n BET}~k n E l~kEN , where B E = f] B E U
u e E N

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note that any two words in B can be concatenated freely and the resulting word is

ensured to be in S®. Indeed, any two words w\, w2 in B can be written as wi = v\U\

with u\ G E N , and w2 = z2y2 with z2 G B E U1, which implies that ViUiZ2y2 is in S'®.

We wish B to be as large as possible. Note also that if E N is large then B E is small,

and vice versa.

It is not necessary for I to be greater than 2k, so we can have the following

structure.

aag}. Table 4.1 shows, for each word it in Si, the words of B E U, that is all 2 in S

such that uz is in S f.

A w o rd in B

A w o rd in EN

Figure 4.1: The structure of a word w, w G B and \w\ < 2k

Exam ple 4

We still use the same set, Si = { aaa, caa, gaa, aca, cca, gca, aga, cga, gga, aac, cac,

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

u B E U

aaa { aaa, caa, gaa, aca, aga, aac, aag, cac }

caa { aaa, caa, gaa, aca, aga, aac, aag, cac }

gaa { aaa, caa, gaa, aca, aga, aac, aag, cac }

aca { aaa, caa, aca, aga, aac, aag, cac }

cca { aaa, caa, aca, aga, aac, aag, cac }

gca { aaa, caa, aca, aga, aac, aag, cac }

aga { aaa, aca, aga, aac, aag, }

cga { aaa, aca, aga, aac, aag, }

99a { aaa, aca, aga, aac, aag, }

aac { aaa, aca, aac, aag, }

cac { aaa, aca, aac, aag, }

aag { aaa, aac, aag, }

Table 4.1: word u and corresponding B E U

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We choose a subset E N of Si, say E N — {aoa, aca, cac}. Then

B E = p | B E U
u e E N

= B E aaa n B E aca n B E cac

— {aaa, caa, gaa, aca, aga, aac, aag, cac} D {aaa, caa, aca, aga, aac,

aag, cac} Pi {aaa, aca, aac, aag}

= {aaa, aca, aac, aag}

By definition of S-block, we ensure that any words beginning with words in B E can

be concatenated to any words ending with word in EN.

The definition of B-block contains the following requirements about its words:

1 . Are of length I and in S®,

2. Begin with words in B E , and

3. End with words in EN .

We can generate B satisfying the three requirements using a finite automaton.

Figure 4.2 depicts the automaton for generating B in the above example, where

I = 5.

4.4 C alculating th e density o f 5®

Since <2 > is a useful operation, it is nice to know some properties of this operation,

such as the density of S'®. The density of S® is the function that returns the size of

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aagaa
aaga

aag
aaag

aaa aaaaaa aaaac

aaac '.aaci
aac

aacaa
ac aaca

aacac
aca '.caa<acaa

acac

Figure 4.2: Automaton for generating words in B of length 5, where B is defined via

the set Si and E N in Example 4

S® f lE 1, for each I > k. where k is the length of words in S. For example, given an

encoding need, we need to know how many words we can generate so that we can

cover the input set. In this section, we obtain an exact recursive formula for the

density of S®.

In this section, we need some notations to describe some subsets of S®. We denote

by S®(1) the set in which all the words are in S® and of certain fixed length I, i.e.,

S®(1) — S® fl Til . We denote by S®(1) the set in which all the words are in S'®and of

length I and have suffix w, i.e., S®(1) — S®(1) fl E*w.

T(l) denotes the number of words in S® of length I, i.e., T(l) — |S® fl Ez|. Tw(l)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

denotes the number of words in S® of length I whose suffix is w, i.e., Tw(l) = |S'® fl

S znS*u;|.

We let Q denote the set consisting of all the suffixes of length k — 1 of set S, i.e.

Q = E ^ n Suff(S).

Given a word w G S®, by the definition of S®, we know that Subfc(rw) C S. If we

want to concatenate a symbol s G E to w, we have to check the suffix of w of length

k — 1 to make sure that the concatenation of this suffix and s is in S. By checking the

suffix of length k — 1 of w of length I, we can know the number of words of length I + 1

that are generated by concatenating symbols to w and whose suffix of length k are

in the set S. This procedure is independent of the entire word, as it only depends on

the suffix of words of length k — 1 . Therefore, we can apply this method recursively

to generate words of desired length or of desired amount.

Exam ple 5

Let Si = {aaa, caa, gaa, aca, cca, gca, aga, cga, gga, aac, cac, aag }, so that we

obtain Q i = {aa, ca, ga, ac, ag}. Given a word, caaa in S f , Suff2 (caaa)= aa,

because aaa, aac, and aag are in Si, we can concatenate a, c, and g to caaa to form

caaaa, caaac, and caaag. The generated words are in S f .

Since for any word w in S®, Sufffc(w) C S, Sufffc_i(w) C Q holds., we can classify

the words in S® of certain length with the suffix of length k — 1. For instance, when

I — 4, we can partition the set <Sf(4) = {aaaa, aaac, aaag, caaa, caac, caag, gaaa,

gaac, gaag, acaa, acac, agaa, aaca, aaga, caca} into S'®(4) = {aaaa, caaa, gaaa, agaa,

acaa} U {aaca, caca} U {aaga} U {aaac, caac, gaac, acac} U {aaag, caag, gaag}.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i.e., S f (4) - Sf„„(4) U S f„(4) U Sf,„(4) U S®^(4) U S fOJ(4), Also the cardinality of

S'f (4) equals to the summation of Tv(4), v £ Q, i.e., T (4) = Taa{4) + T ca(4) +Tga(4) +

Tac(4)+ T afl(4).

a word in S

Figure 4.3: The end part of a word in S'®

For each word in S®, its structure must be in the form of Yfbv2 , where b £ E, bv2 €

Q (Figure 4.3). If we want to concatenate another symbol s to the end of this word,

bv2S must be an element of S so that v^s must be in Q. Therefore, words whose suffix

of length A: — 1 is bv2 can yield words whose suffix of length k are luqs e S. We define

a set T,V2S = {b e £ | bv2S € S'}. Then, the following holds:

S%.(1)= (J
2 s

T„Jl)= J2 W ' - u
b^^y<2 s

By the definitions in this section:

S®(Z) = (J Sf(Z), and
v € Q

t(0 = X>(0,
v € Q

given a set S' in which the word length is k and a length I, I > k, we can calculate

the cardinality of S'® (Z) recursively.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Exam ple 6

Let Si = { aaa, caa, gaa, aca, cca, gca, aga, cga, gga, aac, cac, aag}. For instance,

if we want to calculate Taa(l), we first need to find to the set Eaa. By definition of

£„2a, because s = a a , we can find symbols b such that bv2 G Q and bv2S G S.

Because aaa, caa, gaa G S\ and a a , c a ,g a G Q 1 , then Eaa = { a , c , g } . Therefore

Si,aa{l) = Si'Oa(l - l)a U S ljCa(l - l)a U S i i8a{l - l)a and Taa(l) = Taa{l - 1) + Tca(l -

l) + T ga(l - l) . W ith the same method, Tca(l) = Tac(Z -l); Tga(l) = Tag(l - 1); Tac(l) =

Tca(l - 1) + Taa{l - 1); Tag(l) = Taa(l - 1),

1 = 3 : Taa{3) = 3, Tca(3) = 3, Tga{3) = 3, Tac(3) = 2, Tag(3) = 1

Z = 4 : Taa(4) = 9, Tca(4) = 2, Tffa(4) = 1, Tac(4) = 6 , Tos(4) = 3

1 = 5 : Toa(5) = 12, Tca(5) = 6 , Tga{5) = 3, Tac(5) = 11, Tag(5) = 9

, the size of S'f (5) is T(5) = 41.

In this thesis, we are concerned more with B, which is a subset of 5®. We want

to apply the recursive formula to calculate the size of B. However, because B is

not only defined via S but also EN , we find that, if we randomly pick a subset

of S as E N , it is difficult to calculate the size of B. The reason is as follows: we

take the sets in Example 4 and the resulting formulas in Example 6 for example,

where B E = {aaa, aca, aac, aag} and E N = {aaa, aca, cac}. We can have Taa(3) =

l ,T ca(3) = l ,T pa(3) = 0, Tac(3) = 1, and Tag(3) = 1, and then apply the recursive

formulas to calculate the size of B of a length I. We can use the same recursive

formulas, because they are fixed for a particular set S and they are independent of

EN. However, we have a problem in the last iteration. When we calculate Taa{l), we

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only know how many words end with suffix aa. but, this information is not enough,

because there two kinds of words that end with aa: words that end with aaa and

words that end with gaa or caa, and we only want words that end with aaa to be

in B. Therefore, we have to distinguish the two kinds of words from each other. It

seems it is difficult to do so. Fortunately, if we choose E N with the guidelines in

Section 6.4, we not only can calculate the size of B but also can have a larger set of

B, which is what we wish to have.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Investigating com m unicating cycles

in autom ata

In Chapter 4, The method for producing the set of blocks B is non-deterministic.

After obtaining a deterministic automaton for B, we do not know if the size of B is

large enough to encode words in a data set. In this chapter, we propose a method for

investigating if a given deterministic automaton can produce an arbitrarily large B.

5.1 D efin itions

A deterministic automaton has a finite set of states K and an alphabet E. A path in

a deterministic automaton is denoted as \px, vx,p2, ^2 > • • • ,Pn, vn,pn+i], where pt is a

state in K and vx is a word that consist of symbols in E. In deterministic automata, a

path denoted by [px, v ,p2] is unique. If in the above path pn+x = p x, the path is called

a cycle. If in a cycle every state is unique, this path is call a simple cycle. For example,

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path \pi ,x i ,pi ,X 2 ,pi\ is a cycle, but it is not a simple cycle. Two cycles \puvhPi\

and [p‘2 ,V‘2 ,P‘2] are equivalent if they can be written in the form \pi,wi,P2 ,W2 ,Pi\ and

\p2 ,w 2 ,p i ,w i ,p2\ respectively.

If a deterministic automaton has two non-equivalent simple cycles \ p i ,w i ,p \] and

[p2, ^ 2 ,^ 2] and a path [pi, these two cycles are called a pair of communicating

cycles. Moreover, if there is no path such as [p2,U2,Pi], the two cycles are called a

pair of 1-way communicating cycles; if there exists a path \p2 ,U2 ,Pi], the two cycles

are called a pair of 2 way-communicating cycles. For example, in Figure 5.1, cycles

\pi)viiPi] and [p2 ,n2 ,p2] are a pair of 2-way communicating cycles; cycles [P2 ,r ’2 , 7̂ 2]

and [p3 , Vs.ps] are a pair of 1-way communicating cycles.

Uj

Figure 5.1: Communicating cycles

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 C ycle-in tersection nodes

Prom Chapter 4, we know that B is a subset of S® with a fixed word length. Let us

consider the following theorem.

Theorem 5 [7] I f the automaton T ® has a pair of 2-way communicating cycles then

the set B of a certain length can be chosen to be arbitrarily large, where T is a trie

and accepts a set of words of a fixed length and satisfying a desired constraint.

The problems we are going to investigate are the following: 1) given an automaton

T®, how can we know whether the automaton has a pair of 2-way communicating

cycles? 2) if an automaton T® has a pair of 1-way communicating cycles or no

communicating cycles at all, can we produce a B of a fixed length with an arbitrarily

large size?

We propose a method for finding pairs of 2-way communicating cycles in a deter­

ministic automaton as follows:

First, we define cycle-intersection nodes as follows:

Definition 4 A cycle-intersection node is a node such that there are at least two

non-equivalent s imple cycles start ing at the node.

For example, in Figure 5.2, nodes p i , p 2, and p 4 are cycle-intersection nodes; p3

and p^ are not. This is because, for instance, there are two non-equivalent simple

cycles starting at p u \ p i , v 1, p 2, v 2, p 3, v 3, p 4, v 6,pi] and \ p i , v 1, p 2, v 5, p 5, v A, p 4, v 6,pi}.

Therefore, pi is a cycle-intersection node.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.2: A deterministic automaton that has cycle-intersection nodes

Then, we can use the following theorem to check if a deterministic automaton

contains a pair of 2 -way communicating cycles.

Theorem 6 A determinist ic automaton contains a pair of 2-way communicating cy­

cles, i f and only i f it has at least one cycle-intersection node.

Proof:

The if part follows easily from the definition of the cycle-intersection node.

For the only if part, consider a pair of 2-way communicating cycles [P , w, P] and

[Q, x, Q\. There are two cases.

Case 1 : The two cycles have no common state. Let [P,u,Q,v, P] be a shortest

cycle from P to P that passes via Q. If this cycle is simple then P is a cycle-

intersection node, (as Q is not in [P, w, P]). If the cycle is not simple there is a state

R such that the cycle is of the form

[P , u i , R , u2, Q , vu R, v2,P) .

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We choose R to be the first state from left to right with this property. Then

[P,ui ,R,v< 2 ,P] is a simple cycle. Let [R , z i , Q , z % R \ be a simple cycle involving

R and Q — this exists as [R, u 2, Q , v i , R] is a cycle involving R and Q. Then R is a

cycle-intersection node.

Case 2: The two cycles have at least one common state. Let R be such a state.

Then [P , w , P] can be written as [P, w x, R, w 2, P] and [Q,x, Q] as [Q, x \ , R, x 2, Q\.

Also, these cycles are equivalent, respectively, to [R, w 2, P, w x, R] and [R, x 2, Q, x \ , P].

Then R is a cycle-intersection node. □

We will provide an algorithm for checking if a deterministic automaton has at

least one cycle-intersection node in Section 5.3 with the time complexity analysis.

The next problem we want to consider is that, if a deterministic automaton does

not contain any pair of 2 -way communicating cycles, whether we can produce an

arbitrarily large B. We conjecture that the following statement is true, but the proof

is incomplete at this point.

Statem ent 1 The set B of a certain length can be chosen to be arbitrarily large, i f

and only i f the automaton T ® has a pair of 2-way communicating cycles, where T is

the trie accepting the set of words S representing a desired constraint.

If a T® contains a pair of 2 -way communicating cycles and the cycle-intersection

node P of these two cycles is an accepting state, the following lemma ensures that

we can produce an arbitrarily large B.

Lemma 3 Let A be a determinist ic automaton and n be a posit ive integer. I f A has

a pair of 2-way communicating cycles in the fo rm of [P1; v, Pi] and [Pi, u, Pi], then

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

f rom the state P x to P x, n words that are of the same length and pairwise different

can be produced.

Proof:

Follows easily from the following lemma. □

Lemma 4 [7], Let A be a determinist ic automaton and n be a posit ive integer. If A

has a pair of communicating cycles, then these cycles can be chosen to have the fo rm

[Pi, ui, Pi] and [P2 , V2 , P 2], and satisfy the following property: There are n paths in A

of the form

[P i , v r1iu u P 2,v l i , P 2],

fo r i = 0, ■ ■ ■, n-1, such that the n words formed along these paths have the same

length and are pairwise different.

Indeed, the words produced by Lemma 3 from T ® are in B, since they are recog­

nized by T® and of the same length. Moreover, the concatenation of any two resulting

words, w x and w 2, is in the form of [P, w x, P, w 2, P] where w x and w 2 start at the cycle-

intersection node P and P is an accepting state. As a result, this concatenation will

also be recognized by T®.

5.3 A n algorithm for checking cycle-in tersection

nodes and th e tim e com plexity analysis

In this section, we provide an algorithm for checking if there is at least one cycle-

intersection node in a given deterministic automaton. The correctness of the algo-

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rithm depends on the following lemma.

Lemma 5 I f a determinis tic automaton has two different s imple paths that s tar t at

the same state, then there is an edge that occurs in one of these paths but not in the

other.

Proof:

Let P = [poj Q>uPu • • • j ak,Pk] and P' = \p'0, a'^Pi, • • • , a{,p{] be two different simple

paths with p0 = p'0. As the paths are simple, each edge \jh-\ , a,;, p,;] of P is unique,

and similarly for P ' . If k I then one of the paths is longer and the statement is true.

So assume that k = I, but suppose that the two paths consist of the same edges. Let

i be the first index with [p,_i, a^p*] ^ \p'i-i-:aiiP'i\- The edge \p[_i, aj,pj] must appear

as [pj-i, a>j,Pj\ in P, for some index j > i. Then the two paths can be written as

P = [p0, £ ,Pi-i, <Xi,pi, • ■ • ,P j- i , aj,Pj,y,Pk] an d P' = \p’0 , x ' , p ' k],

such that x = x' andpi_i = p_x — otherwise, i > 1 and [p;_2, ai_i,pi_i] ^ [p'_2; a'i-nP'i-

But then pi_i = pj_i, which contradicts the fact that P is simple. □

The algorithm is as follows:

Input: a deterministic automaton A.

Output: Yes, if there is at least one cycle-intersection node; No, there is no cycle-

intersection node.

for each node n in the automaton do

make a copy of A and call it A'

add a new node n' to A' and re-direct all the incoming labels of n to n! in A 1

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

apply a search algorithm (e.g. breadth-first or depth-first) to find a path from n

to n'

if there is no such a path

there is no cycle containing n

continue

for each edge in the resulting path do

make a copy of A/ and call it A'

remove e* from A[and apply the search algorithm to find a path from n to n'

if there is a path from n to n'

n is a cycle-intersection node

return Yes

return No

We provide a time complexity analysis of the above algorithm based on the

Breadth-first search algorithm. The time complexity of the Breadth-first search algo­

rithm is 0 (N + E) [6], where N is the number of nodes in the deterministic automaton

and E is the number of edges in the automaton. However, the time comlexity of the

algorithm, in our case, is 0(E) , since the automaton in this research will always be

connected.

In the algorithm, we check to see if there is at least a cycle-intersection node. We

have to check all the nodes in a deterministic automaton. For each node n in the

automaton, we first try to find a path going from node n to node n' . The length of this

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

path is no greater than N, since this path should be a simple path. If there is such

a path, we temporarily remove each edge e; from the automaton in a for-loop, and

then, apply Breadth-first search again to find another path going from node n to node

n'. Therefore, the time complexity of the algorithm is 0 (N (E + N E)) — 0 (N 2E).

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Construction m ethods for D N A

languages w ith local constraints

Theory of automata is a powerful tool for sequential language design. In the literature

review section, we reviewed some theoretical designs and construction methods for

DNA languages. There are many valuable methods and ideas. However, few of them

address problems using the theory of automata. In this chapter, we will address

problems using the theory of automata and demonstrate the significance of theory of

automata in DNA language designs and constructions. We will propose some methods

for constructing DNA languages that can be used for encoding purposes.

Using the subword closure operation, we can construct a DNA language satisfying

a local constraint that is expressed by a set of words of a fixed length. In order to

construct these DNA languages, we need to construct these sets for different local

constraints. Moreover, suppose we want a language L that should satisfy the local

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constraints expressed in sets Si and S 2 , that is, L should be a subset of S'f and Sf-

If L\ is a subset of Sf (resulting from some construction methods) and L 2 is subset

of S®, then the desired language L is L\ fl L^. Since, in this chapter, all the sets that

express local constraints can be accepted by finite automata, L can be accepted by

the intersection automaton of the finite automata accepting L\ and L 2 (referring to

Section 2.2.4).

In this chapter, all the languages are over the DNA alphabet.

6.1 A n algorithm for generating set S for th e bond-

free property

Since we consider the bond-free property in this section, S has to satisfy t (S) fl

Hd(S) = 0, so that S'® is the desired DNA language. We propose the following

algorithm to generate S satisfying r(S) fl Hd(S) = 0. When the algorithm initializes

DNA words, for word length in S being k, it needs to keep all the words in in

the memory. There are 4fc DNA words, so we can create an array with 4fc elements

and use the index number of the array to represent each DNA word, since each index

number has 2k binary bits. The method is as follows: we use 2 bits of binary codes

to represent 1 DNA symbol, such as 00 —> a, 01 —> c, 10 —> g, and 11 —► t.

Exam ple 7

Let k — 2, the index numbers (binary code) and the DNA words are:

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Index

number

DNA

word

Index

number

DNA

word

Index

number

DNA

word

Index

number

DNA

word

0 0 0 0 aa 0 1 0 0 ca 1 0 0 0 ga 1 1 0 0 ta

0 0 0 1 ac 0 1 0 1 cc 1 0 0 1 gc 1 1 0 1 tc

0 0 1 0 ag 0 1 1 0 eg 1 0 1 0 99 1 1 1 0 tg

0 0 1 1 at 0 1 1 1 ct 1 0 1 1 gt 1 1 1 1 tt

This method consumes the minimal memory space and has a very good memory

access efficiency. The algorithm is as follows:

Procedure: generate a set S satisfying r (S) fl Hd(S) = 0

Input: the length of words (k), the Hamming distance of any two words in S (d),

a start word (w).

Output: all the elements in S

K := Efe

Break the array into two parts; w is at the beginning of the second part, exchange

the two parts

for i := 1 to \K\ do

if the word[z] is not flagged then

generate all the words whose Hamming distance is less than or equal

to d from word[i].

complement these words and reverse them

compare the complemented and reversed words with words in K, flag the

words in K that are the same as the complemented and reversed words

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end if

end for

return S, the non-flagged words

Note: for the same parameters: the word length k and the Hamming distance d, if

we begin with different words in the set to generate the first Hamming ball, the

resulting sets and the cardinalities of these sets will be different.

Remark:

The set Si used in Chapter 4 is generated by the above algorithm with parameters:

k = 3, d = 1, and w = aaa.

6.2 C onstruction m ethods for languages satisfy ing

GC-ratio constraints

The GG-ratio constraint is that, the ratio of the summation of occurrences of gs and

cs in a DNA word over the length of the DNA word must lie in a certain range to

ensure similar thermodynamic characteristics among DNA words. We denote the

number of gs and cs over a DNA word w by N(w)gjC\ similarly, the number of as and

ts over a DNA word w is denoted by N(w)aj. Thereby, the GG-ratio constraints are

N(w)g>c , ,r\ < ---- < r 2, tor any word w
It

where r\ and r 2 are the lower bound and upper bound of the required GC-ratio, and

|w| = I.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 .1 C on stru ction m eth od for languages w ith general GC-

ratio

Generally, we want a G'C'-ratio to be in a certain range from rx to r 2. We propose the

following method to construct languages with a GG-ratio in the range from rx to r 2.

(1-rjl states

(l-2r,)l accepting states

a,ta,t a,t a,t a,t

a,t a,t

(2r2-l)I accepting states

a,t a,ta,t

r7l states

Figure 6.1: The automaton that accepts Fr i n i

First, we define a finite automaton (Figure 6.1) that accepts the language Tn ,r2,/ =

{w | —(1 — 2rx)l < N(w)gtC — N(w)att < (2r 2 — 1)/}. Fr^T2j contains all the words

w with the property that the difference between N(w)g,c and N(w)att is in the range

from —(1 — 2rx)l to (2 r 2 — 1)/. The word lengths are not necessarily the same. We

define a set R r i ,r2,i — ^ Fl FriiT2ii. Then

Proposition 1 R n ,r2,i satisfies the GC-ratio constraint.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof:

For GG-ratio constraint, we want rq < N (w) giC/ l < r 2, where \w\ = I. That is

i'll < N{w)gtC < r 2l, where |u>| = I.

From the left part, we have

r i l < N (w) g>c (1),

As N (w) a>t = I — N (w) gtC, we have

N (w) a,t < l - n l (2).

By adding (1) and (2), we get r\ l + N (w) ait < N (w) 9tC + 1 — r\ l , that is —(1 — 2ri)Z <

N (w) g,c - N (w) att.

From the right part,

N { w) g>c < r 2l (3),

As N (w) att = I — N (w) g tC, we have

l - r 2l < N (w) ait (4).

By adding (3) and (4), we get N (w) g ĉ + I — r 2l < r 2l + N (w) aj , that is N (w) gtC —

N (w) ait < (2 r2 - 1)1

Therefore, the condition that all the words in R r i ,r2,i satisfy is the same as the con­

dition required by the GG'-ratio constraint. So, words in R r i ,r2,i are ah the desired

words that are of length I and whose GC-ratio lies in the desired range. □

In Figure 6.1, we use (1 — r{) l states in the top branch and use r 2l states in the

bottom branch. The reason is as follows: for a word of length /, when the lower

bound of the GG-ratio is ri, the maximal number of as or ts is (1 — r{) l. There could

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be (1 — r\)l continuous as and ts. They will take (1 — r\)l states. If a word satisfies

the GG-ratio constraint, the following symbols must be either cs or gs so that, in the

automaton, these symbols can make the finite automaton go back to an accepting

state. This is also the reason why, after the (1 — ri)/th state, if we read one more a or

t , we will get into the sink state. Similarly, we need states in the bottom branch.

After constructing Rri,r2,i, we can simply generate languages satisfying the GG-

ratio constraint with ® operation, i?® r2 x is the language that we want. By definition

of ® operation, every segment of length I of a word in Rfir2i is in Rri,r2,i■ For

convenience, let us take a word in i?® r2 (of length m l for example. We can break it

into m segments, each of which is in i?ri]7.2);. Each segment has at most S'S and cs

and has at least r \ l gs and cs. Therefore, these m segments have at most mr^l gs and

cs and at least m r \ l gs and cs. The GG-ratio of this word in A!® r 2 1 is from m r \ l / m l

to m r^ l /m l , that is from r\ to therefore, all the words in R f1T2i satisfy GG-ratio

constraint.

6.2 .2 C on stru ction m eth o d for G C -ratio o f 50%

Sometimes, in practice, we want DNA languages of GG-ratio of exact by 50%. That

will have N(w)giC = N(w)a>t ; since, when regarding the GG-ratio constraint, we con­

sider g and c to be the same and a and t to be the same. In this case, pushdown

automata are more convenient than finite automata for constructing DNA languages

with a GG-ratio of 50%. The automaton that accepts languages such that the GG-

ratio of any word is 50% is defined as follows:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M2 = (K, E, r, A, s, F), where K = {s, g, /} , E = {a, c, g, t}, T = {(3, A}, F = {/},

A contains the following rules.

1. ((s, c, e), (q, (3)) 2 - ((s,g,e),(q,p)) 3. ((s, a, e), (g, A))

4. ((s,t ,e),(q, A)) 5. ((g,c,/3),(g,/?/?)) 6 . ((q,g,P),(q,PP))

7- ((g,a,/?),(g,e)) 8 . ((g,t,/?),(g,e)) 9. ((g, a, e), (g, A))

10. ((g,f,e),(g, A)) 1 1 . ((g,c,e), (g,/?)) 1 2 . ((g,g,e), (g,/?))

13. ((g,c, A),(g, e)) 14- ((g,g,A), (g,e)) 15. ((g,a, A), (g,AA))

16. ((g,t,A),(g,AA)) 17. ((g, e, e), (/, e))

The language accepted by M2 is L50% = {w \ N(w)g!C = N(w)aj}- For example,

agtccgt L50%, agttcg E L50%. The set of words of a required length I in this language

is Rm%,i = Ez fi £ 50%.

Exam ple 8

Let us use a word gcattagg to illustrate how the above pushdown automaton works

(Table 6.1).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State Unread Input Stack Rule used

s gacttagg e -

Q acttagg 0 2

Q cttagg e 7

Q ttagg 0 11

q tagg e 8

q agg A 1 0

q gg AA 15

q g A 14

q e e 14

f e e 17

Table 6.1: The rules used for accepting gacttagg

6.3 C onstruction m ethod for D N A language sa tis­

fying continuity constraints

The continuity constraint is that, the same base should not appear continuously, oth­

erwise, a reaction will not be well controllable since the structure of DNA will become

unstable [39]. It is convenient to again use the theory of automata to construct these

kind of languages, because, in the theory of automata, if we have an automaton to ac­

cept a language with a certain property, when we complement the automaton, we can

obtain the automaton that rejects the language with the property. Complementing a

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deterministic automaton is done by switching the accepting states into non-accepting

states and the non-accepting states into accepting states. We omit the construction

for an automaton that accepts the language in which each word contains as least one

segment of q continuous same symbols. The complemented automaton is depicted in

Figure 6.2, which accepts languages Lq = {w \ w does not contain q continuous same

symbols}.

..............q states-----

q-1 accep t in g states

a, c, g, t

a, c, g, ta, g, t

a, c, g, t

% c, g, t

a, c ,g

a, c ,g

Figure 6.2: The automaton that accepts Lq

All words of length I that do not contain q continuous same symbols are in set

X qj = D Lq. So, any word in X®t satisfies the continuity constraint.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 G uidelines for constructing B -blocks and En­

coding m ethods for bond-free languages

As we have mentioned, if E N is large, B E is small, and vice versa. If we pick an

arbitrary subset of S to be E N , it is difficult to calculate the size of B and the size

of B might not be large enough. Since E N is a subset of S, which is an element of

the power set 2s , we have 2 ^ — 1 choices (excluding 0). However, in order to find a

large set B generated from S, only a few E N s are appropriate.

If we look at the pairs of E N and B E s in detail, we can find that it is the

suffixes of words in E N that decide the words in BE. Let us use the set generated

in Section 4.3, S\ — {aaa, aac, aag, aca, acc, acg, aga, age, agg, caa, cac, gaa},

and the corresponding Table 4.1 to explain this. If we pick the word aac, B E aac =

{w | Suffi(aca)Pref2 (u>) G S and Suff2 (aca)Prefi(u>) G S, w G S}, i.e., B E aac =

{aaa, aca, aac, aag}. We can find that when we construct B E Us, we do not refer to

the first symbol of u. Therefore, B E Us where us have the same suffix of length k — 1

should be the same. We can see this result from Table 4.1. So, the first guideline is

that,

I f we pick a word u to be in EN, we also pick other words whose suffix

of length k-1 is the same as Sufffe-i('u),

so that we can have larger size of B. For example, if we only pick the word u = aac

to be in E N , the set B E = {aaa, aca, aac, aag}. This implies any word in B should

begin with words in {aaa, aca, aac, aag} and end with aac. If we add word cac into

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

EN, we will not delete any existing words. In addition, we can have words that begin

with words in {aaa, aca, aac, aag} and end with cac.

Another useful guideline needs to refer to Table 4.1:

A fter sorting the sets by the size o f BEus, it is recommended to choose

continuous words from the top to the bottom in the f irs t column in tables

such as Table 4-1 ■

Exam ple 9

The words from the top to the bottom in the first column of Table 4.1 are {aaa, caa,

gaa, aca, cca, gca, aga, cga, gga, aac, cac, aag}. When we pick words for E N , using

the first guideline, it is better to choose words such as E N = {aaa, caa, gaa}, EN =

{aaa, caa, gaa, aca, cca, gca}, or EN = {aaa, caa, gaa, aca, cca, gca, aga,cga, gga}.

The reason is as follows. If we pick E N such as E N = {aaa, caa, gaa, aag}, we add

one more word in E N and lose 5 possible words in BE. If we roughly calculate the

sizes of the two different B s, we can find that the second guideline provides us more

words in B. (We compare the sizes of Bs with different choices of E N in Table 6.2).

Note: when we construct the sets E N s and BEs, we can not always obtain tables as

Table 4.1, in which each B E U is a subset of the B E us above it.

With the first guideline, we have already solved the problem in Section 4.4. The

problem was that it is hard to calculate the size of B, because we can decide whether

a suffix belongs to an acceptable word. In Section 4.4, we classify B into several

disjointed partitions by the suffix of length k — 1. The first guideline suggests that, if

we pick a word u to be in E N , we also pick other words whose suffix of length k — 1

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are the same as Sufffc_i(w). Thereby, we pick all the words in one partition. So, when

we calculate the size of B with the two guidelines, we start with words in BE, and,

at the end, we simply sum up the size of partitions in which words in E N are.

Pairs E N B E T(10)

Pair 1 {aaa, caa, gaa, aca, cca, gca,

aga, cga, gga, aac, cac, aag}

{aaa, aac, aag} 150

Pair 2 {aaa, caa, gaa, aca, cca, gca,

aga, cga, gga, aac, cac}

{aaa, aca, aac, aag} 180

Pair 3 {aaa, caa, gaa, aca, cca,

gca, aga, cga, gga}

{aaa, aca, aga, aac, aag} 150

Pair 4 {aaa, caa, gaa, aca, cca, gca} {aaa, caa, aca, aga,

aac, aag, cac}

180

Pair 5 {aaa, caa, gaa} {aaa, caa, gaa, aca,

aga, aac, aag, cac}

150

Pair 6 * {aaa, caa, gaa, aga, cga, gga} {aaa, aca, aga, aac, aag} 1 1 1

Table 6.2: The comparison of the sizes of B s with different E N s

★: Pairs 6 does not follow the second guideline, so the size of B of this pair is

much smaller than the other pairs.

With the two guidelines, we have a few choices of pairs of E N and BE. For

each pair, we can calculate the size of B of desired length. One of the results is the

maximal size of a desired length.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

At last, we complete our encoding method for bond-free languages. Given an

encoding need, such as the number of input words, n, and the Hamming distance

d. We can construct a 5-block with equal word length satisfying |5 | > n and the

Hamming constraint. Then, for each input segment of certain length, x, we can

set a one-to-one encoding rule: / : x »—>■ w, w € B, such that f { x \ x 2 • • ■ xn) =

f (x i) f (x 2) ■ ■ ■ f { x n) = •••wn, then f { x xx 2 •••xn) e S®. Indeed, if f(x i x 2 ■ ■ ■

Xi-i) 6 S®, then f (x i x 2 • ■ • Xj_i)/(xj) € S®, because f (x \ x 2 • • • aq_i) ends with some

u G E N and f (x i) starts with some z in BE, which implies that uz €E S®.

Since all the words in B are of a fixed length k and the encoding rules are one-

to-one, when we decode the words in S®, we cut the words in S® into segments of

length k and decode each segment into an input segment.

Also, we can combine other constraints into our design. We summarize the general

methods in the next section.

6.5 C om bining local constraints

In this chapter, we have proposed several methods for constructing DNA languages

satisfying different constraints. We should have already noticed that we can clearly

express properties of DNA languages with the ® operator. For instance, DNA lan­

guages with the bond-free property can easily be denoted by S® with S satisfying

t (S) n Hd(S) = 0; DNA languages satisfying the GC-ratio constraint can be denoted

as Rf1>r2 i with three parameters: the lower bound for the GG-ratio, the upper bound

for the GG-ratio, and the length of words in R; also, we can easily construct DNA

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

languages satisfying continuity constraint, which is with the maximal number of

the continuous same symbols, q. When we want a language satisfying a combination

of constraints, we don’t have to reconstruct any new languages. We just take the in­

tersection of some existing languages. For example, if we want a language satisfying

bond-free property and also satisfying GC-ratio constraint, conceptually, we can have

a language such as L = S® fl R® r2 v But, this method might not be very efficient,

since the intersection automaton of two finite automata with K\ and states has

1 * 1 1 x \K2\ states. When K\ and K 2 are large, the intersection automaton is even

larger. So, we need to implement this language in an indirect way, which is guided

by L = S® fl R® T21. For example, when we construct languages satisfying bond-free

property and GC-ratio constraint, we first take the intersection of S and R ri,r2,i and

then construct the language with <g> operation, that is (S fl Rri>r2i/)®.

In this thesis, we address problems using the theory of automata. Because DNA

languages are sets satisfying different combinations of constraints, it is very convenient

to use operations in the theory of computation to manipulate words and languages.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Im plem entation of the code

generating system and

experim ental results

In this thesis, we design a websystem that produces DNA words satisfying desirable

constraints. We have two implementations that produce DNA words. One applies the

methods proposed in this thesis. We call it the subword closure operation encoding

system. The other one applies Theorem 9 in [28]. We call it the direct encoding

system.

Because the methods proposed in Chapter 4 are general and can be used for many

kinds of local constraints, in the system, users are allowed to specify a set of fixed

length DNA words representing a desired local constraint. The set can be specified

in two ways. The first one is that users can upload a file containing the set of DNA

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

words. The second one is that users can produce the set by specifying parameters

of constraints. As, in this thesis, we focus on the code design for DNA computing,

we only provide an interface for specifying parameters of the DNA computing related

constraints: the bond-free constraint, the G'C'-ratio constraint, and the continuity

constraint. If the users want languages satisfying constraints other than these ones,

they can write the local constraint set in a file and use the first approach to produce

DNA words. Figure 7.1 depicts the interface for specifying the parameters of the

DNA computing related constraints.

Bon«l-free constraint:
The length of words in set S (k).

The Hamming distance in set S (d) and d k.
The starting w ord (w) that only consists o f a , c, g, t and is of length k. e.g. acc.
It is recommended to use default words, which only consist o f a 's

3' q
0 v]

aa.. by default

GC ra tio constraint: 0 Lower bound [To7*,j%
Upper bound [60 ’ v >

Continuity constraint: 0 Limit length [~5 S]

The desired num ber of words: 100 by default

Leave the text box blank to use the default values
[Submit 1 [Reset |

Figure 7.1: The web interface for specifying parameters of the DNA computing related

constraints

As Theorem 9 in [28] works only for the DNA computing related constraints, the

interface for the direct encoding system is similar with the above one.

In this chapter, we will present how the system works and the algorithms we use

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in the system in detail. The URL of the system is http://cs.sm u.ca/~b_cui/Thesis.

7.1 T he flow o f th e subword closure operation en­

coding system

In our websystem, words representing arbitrary data are called data words, and the

DNA words used for encoding data words are called codewords, or blocks. We use the

symbol B for the set of these blocks. As we solve problems by using the theory of

automata, in the implementation of the subword closure operation encoding system,

we need to use systems that enable us to manipulate automata. Grail1 is a well

designed system and can perform almost all the manipulations on finite automata.

Therefore, we want to integrate Grail into our system. Because Grail is implemented

in C + + and it can be used as a library, we need to implement our system in C + + as

well. Also, we want to have a web interface to allow users access our system through

Internet. The architecture of our system, therefore, consists of two parts, a PHP

implementation and a C + + implementation.

Since PHP provides us with a method to invoke executables, we can let the PHP

implementation read parameters from users and pass the parameters to the C + +

implementation, which does all the computations. Figure 7.2 depicts the flow chart

of the subword closure operation encoding system.

1 G rail is designed by th e D e p a rtm e n t of C o m p u te r Science, U n iversity of W este rn O n ta rio

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://cs.smu.ca/~b_cui/Thesis

No

■Yes

No

■Yes Either constraint
is selected?

■Yes

No
No

If the num ber of the
rem aining blocks is

not g rea te r than the
desired num ber of

blocks , in c rease / by

If either the GC -ratio constraint
or the continuity constraint

or both a re se lec ted
■Yes —

If the num ber of the rem aining blocks is
g rea te r than the desired num ber of blocks

If the two
constra in ts are

not selected

/ Can both o f \
/ t h e cycles pass t h e \

GC-ratio constraint filter
or the continuity ,

N y constraint /
'v filter? /

Apply the algorithm in —
chapter 5 to check if there is at least one
■— ^cycle-intersection node in A ^ - - '- '

Apply the algorithm in
chapter 5 to check if there is at least one
-~-'~^cycle-intersection node in A ——

Quit
Apply Lemma 3
in Chapter 5 to

produce |B|
blocks.

The two guidelines fail to
find a proper BE

Output the produced blocks and
A, in the form of Grail transitions

We can not produce a sufficiently
large B. Notify users and quit.

The GC-ratio constraint filter and the
continuity constraint filter

Based on S and the pair of BE and EN,
calculate the length / such that the number of

blocks of this length is greater than |B| by
using the recursive formula in Chapter 4.

Convert A; into an object o f the class fm of
Grail, and then use the member function in

fm to produce blocks of length/ that are
accepted byA ;

Apply the two guidelines in Chapter 6 to find a good£7V and the corresponding BE, and then, produce an
automaton A; that accepts languages such that every word satisfies the definition of B-block with S, BE, and EN.

Produce an automatonA that accepts the language produced from S by the subword closure operation.

Produce set S by using die subword constraint file or the parameters specified by users via the PHP
implementation. The options of parameters are the following: the word length of words in S (k), the

desired Hamming distance (d), the starting word (w) (optional), the desired number of blocks (|B|), the
GC-ratio constraint with parameters (optional), and the continuity constraint with parameters (optional).

73

Figure 7.2: The flow chart of the subword closure operation encoding system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PHP implementation simply provides some options for users to specify the

parameters. After users have entered the values for the parameters, the PHP im­

plementation passes the parameters to the C + + implementation by using the ‘ ‘

operator. If we write a command in between the two quotes of this operator, PHP

will execute the command and assign the output of the command to a variable in PHP

code as a string. For example, if we have the following files in the current directory

in a Linux system,

a. out backup process, php project.html

the statement $result = ‘Is1; in process.php assigns the string a. out backup process.php

project.html to the variable $result. Then, we can simply write the statement echo

$result; to display the output of the Linux command to a web page.

In the C + + implementation, we first need to generate a set S, which can be

specified in two ways. The first way is that we simply initialize S by using the words

in the file that is provided by users as a local constraint set. The second way is that

we initialize S to satisfy the bond-free constraint by using the parameters specified

by users. In this way, we use the algorithm in Section 6.1 to generate the set.

After producing S, we construct a T® for accepting 5® according to Lemma 2 ,

and then, apply the method in Chapter 5 to check if there is a cycle-intersection node

in T®. If there is no cycle-intersection node at all, we can not produce an arbitrarily

large DNA word set to encode data words. In such a case, we will notify the user and

quit from the system. If there is at least one cycle-intersection node, we will apply

the two guidelines in Chapter 6 to produce DNA blocks. However, the guidelines

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

might not work all the times. If there is at least one cycle-intersection and the two

guidelines fail, we will produce DNA words by using the pair of 2-way communicating

cycles that contain the cycle-intersection node. In this way, according to Lemma 3 in

Chapter 5, we will be able to produce an arbitrarily large B. However, this only works

for the bond-free constraint. If the users require any additional constraint, we have

to make sure that all the DNA words produced by Lemma 3 satisfy the additional

constraints. In such a case, we know that all the words produced by Lemma 3 come

from two words, u and v, that are recognized by the cycles in the pair of 2 -way

communicating cycles respectively. If the continuity constraint with a parameter q

is required by the users, we know that, if either u or v or both do not satisfy the

continuity constraint, all the DNA words produced by Lemma 3 will not satisfy the

continuity constraint, since u and v will be segments of these DNA words. Also, we

know the fact that any concatenation of two words satisfying the GC-ratio constraint

with two parameters rq and r 2 will satisfy the same GC-ratio constraint. Therefore,

if the GC-ratio constraint with parameters is required by the users, we have to pass

u and v into the GG-ratio constraint filter. If either u or v or both do not satisfy

the desired GG-ratio constraint, all the DNA words produced by Lemma 3 will not

satisfy the desired GG-ratio constraint. This is why in the flow chart, if the users

require any additional constraint, both u and v have to pass the filters, otherwise, we

quit from the system.

When we produce a pair of B E and E N based on S, we refer to the two guidelines

in Chapter 6 . In this step, we need an auxiliary table that is similar with Table 4.1.

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In theory, we can evaluate all the possible pairs of B E and E N s and pick the pair

that provides the maximum number of blocks. However, this takes a huge amount of

computations and might not be practical when the size of S is large. Therefore, we

only evaluate some pairs of B E and ENs. The algorithm for picking up pairs of B E

and E N s will be introduced later on.

In Figure 7.2, the fourth input parameter is the desired number of blocks, because

this parameter is straightforward to users. We could set the parameter to be a desired

length of DNA words, which makes the system much easier to implement and reduces

the amount of computation significantly. However, this is not convenient for users,

because the users, obviously, do not like to try many lengths until they find a length

such that the number of DNA words of this length is greater than what they want.

Therefore, after the users entered a desired number of blocks, we need to find a

suitable length for them. As we have presented, if we select the pairs of B E and

EN s following the two guidelines in Section 6.4, we can apply the recursive formula

in Section 4.4 to calculate the size of B. And, thereby, we can know the suitable

length I for the desired number of words.

In order to generate DNA words in B , we need to generate an automaton that

accepts DNA words satisfying the definition of A-block. The algorithm for generating

the automaton is described in the next section.

Once we obtain the automaton, we can convert it into an object of the class fm

of Grail. We can use the functions in the class to generate DNA words of length I.

As a result, these resulting DNA words satisfy the definition of S-block and are of

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the same length I. Moreover, the number of these DNA blocks is greater than the

desired number \B\.

Up to this point, the DNA words generated by the system only satisfy the initial

local constraint S. If the users do not require the GC-ratio constraint and the con­

tinuity constraint, the system will display all the resulting DNA words on the web

interface. However, since the GC-ratio constraint is a very important constraint in

DNA language design, and the continuity constraint, sometimes, is also taken into

the language designers’ consideration, we need to be able to generate DNA words sat­

isfying the two constraints. We design a filter for the two constraints. In Figure 7.2,

we can see that, if either constraint or both constraints are required by the users,

we need to pass the resulting DNA words of the previous steps through the filter.

Figure 7.3 depicts how the filter works for the two constraints.

As we can see, there are two sub filters. The GG-ratio constraint filter simply

removes all the DNA words that do not satisfy the GG-ratio constraint with the

parameters specified by the users. Because all the DNA words passed into the filter

are of the same length I, when we apply the method in Section 6.2.1, we only need two

parameters, the lower bound rq and the upper bound r 2. The continuity constraint

filter applies the method in Section 6.2. It generates a finite deterministic automaton

to check if a DNA word satisfies the continuity constraint with the parameter specified

by the users. If not, we remove the DNA word from the word set.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If either constraint or both a re seleced

 1
If the G C-ratio

constraint is selected

±
The GC-ratio

If the continuity constraint is

se lec ted and the num ber of the
If the G C -ratio

constraint
is not se lec ted

constraint filter remaining blocks is less than the
desired num ber

Increase I by 1

If the continuity
constraint is se lec ted If the continuity constraint

is not se lec ted and the
num ber of the remaining

blocks is equal to or
g rea ter than the desired num ber

The continuity
constraint filter

If the num ber of the
remaining blocks is less
than the desired num ber

I
P a ss the remaining blocks to the w eb interface

Figure 7.3: The filter for the GC-ratio constraint and the continuity constraint

7.2 T he algorithm s used in th e im plem entation o f

th e subword closure operation encoding sys-

In the C + + implementation of the system, we define the following classes, S, Table,

Pairs, A utom aton, Continuity, and GCratio, and integrate the following classes

in Grail to our implementation, state and template classes: array, String, inst,

list, set and fm. In this section, we are going to present and explain the algorithms

in these classes.

Class S uses the algorithm in Section 6.1 to produce S and provides some accessors

tern

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for us to get the DNA words in the set. The algorithm for checking a cycle-intersection

node is implemented as a member function of Class S. The data structure for holding

a T® is a linked list structure, which will be introduced later on.

Class Table maintains tables in the same format as Table 4.1. If we concatenate a

word in a B E U in the second column to the word in front of the set, the resulting word

is in S'®. The algorithm is simply the following: for each word u in S , we concatenate

each word v in S to u. If all the segments of length k of the resulting word uv are in

S®, we put v into B E U. We sort the B E Us in the second column in the tables by the

sizes of the sets.

After we obtain a table for S with specified parameters, in class Pairs, we pick

pairs of B E and E N s according to the two guidelines in Section 6.4. Then, we

evaluate the pairs to choose the one that can generate the largest set of words of a

certain fixed length. Let us recall the guidelines for choosing pairs of B E and ENs.

The first one is that, if we pick a word u to be in E N , we also pick other words whose

suffix of length k-1 is the same as Sufi^-i(u). The second guideline is that, after

sorting the sets in tables such as Table 4.1 by the size of B E Us, it is recommended

to choose continuous words from the top to the bottom in the first column. As we

can see, the two guidelines are only for choosing ENs, because once we have a E N ,

the corresponding B E can be simply obtained by intersecting all the B E Us where

u € EN . Because the auxiliary table of S has as many columns as the size of S,

when the size of S is large, the table has many columns as well. Therefore, even

though we follow the two guidelines, the number of choices of possible E N s will still

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be large. In order to improve the efficiency of our system, we do not generate all

the possible pairs of B E and E N s based on the two guidelines. Instead, we use the

following algorithm to generate a portion of them.

Procedure: based on S, select a pair of B E and E N that gives us a relatively large

set B

Input: the auxiliary table generated based on S

Output: a pair of B E and E N

index = 0

curren t — 0

b e s t B E and b e s t E N are two empty sets

r is the number of rows

k is the length of words in S

if the size of B E U in the first row is empty

exit

else

push the word in the first column in curren t row into E N

push all the words in B E U in curren t row into B E

index — c u r r e n t + +

while the index < = r and the word in index row has the same suffix as the suffix

of the word in curren t row

push the word in the first column in index row into E N

i n d e x + +

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assign B E and E N to the b e s tB E and b e s tE N , respectively

while index < — r and B E U in in dex row is not empty

while index < = r and B E U in index row is not a subset of B E

i n d e x + +

if index < = r and B E U in index row is not empty

curren t = index

push the word in the first column in curren t row into E N

clear B E and push all the words in B E U in c urren t row into B E

while the index < = r and the word in index row has the same suffix as

the suffix of the word in curren t row

push the word in the first column in index row into E N

i n d e x + +

evaluate the pair of B E and E N by using the recursive formula in

Section 4.4, If the current pair of B E and E N can produce a larger set of

B with a fixed word length than the size of B with the same word length

produced by B e s t B E and B e s t E N , assign B E and E N to be B e s t B E

and B e s t E N

In this algorithm, we only use each word in the first column of the auxiliary table

once. As we go through all the words, we keep pushing qualified words into E N . A

qualified word must satisfy the following requirement: in the table, the B E U after it

must be a subset of all the B E Us of all the qualified words above it except for the

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

pair in the first row. In this way, we will lose some good choices of B E and E N s .

We use the following example to describe the situations where the above algorithm

misses good choices of B E and E N s .

Exam ple 10

u B E U The size of B E U

cc { cc, ct, tg, t t , } 4

ct { ga, gt, tg, t t , } 4

gt { ga, gt, tg, t t , } 4

t t { ga, gt, tg, t t , } 4

tg { tg, tt , } 2

ga { } 0

Table 7.1: The auxiliary table for S 3 with k = 2, d = 0, w = cc

First, we generate a set S with the following parameters: k = 2 , d = 0, and the

start word w = cc. We obtain S 3 = {cc, ct, gt, t t , tg, ga} . Based on S 3 , we obtain

the auxiliary table in Table 7.1.

The above algorithm first pushes cc into E N and put cc, ct, tg, and t t into B E .

Then, the algorithm evaluates the pair by using the recursive formula in Section 4.4.

The result of the calculation shows that the size of B with a word length 10 is 1.

Since, the B E Us in the Row 2, Row 3, and Row 4 are not subsets of the first B E U,

the algorithm skips the us in Row 2, Row 3, and Row 4. The B E U in Row 5, { tg ,

t t } , is a subset of {cc, ct, tg, t t } , therefore, the u in Row 5, tg, is a qualified word.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The algorithm pushes tg into E N and updates B E to be {tg, tt}. The algorithm

evaluates the new pair of B E and EN. The result of the calculation shows that the

size of the new B with a word length 10 is 34. The B E U in Row 6 is empty, therefore

the algorithm is terminated. Between the two pairs of B E and ENs, the algorithm

returns the second pair, because it can produce a larger B. However, if we follow the

two guidelines, we can have a larger B. Because the B E Us in Rows 2, 3, and 4 are

not subsets of the B E U in Row 1, the algorithm simply skipped the us in these rows.

But, if we refer to the two guidelines, we need to push the us in Rows 2, 3, and 4 into

E N and intersect the B E Us in the first 4 rows. As a result, we will have the following

two sets: B E = {tg, tt} and E N = {cc, ct, gt, tt}. Because S 3 = {cc, ct, gt, tt, tg,

ga}, we can get the following recursive formulas: Ta(l) = Tg(l — 1); Tg{l) = Tt(l — 1);

Tc(l) = TC{1 — 1); Tt (l) = TC{1 — 1) + Tt(l — 1) + Tg(l — 1). The following example

calculates the size of B with a word length 10, that is produced with B E = {tg, tt}

and E N = {cc, ct, gt, tt}.

1 = 2: Ta{ 2) = 0, Tt (2) = l, Tg(2) = 1, Tc(2) = 0

1 = 3: Ta(3) = 1, Tt (3) = 2 , Tg(3) = 1, Tc(3) = 0

1 = 4: Ta(4) = 1, Tt(4) = 3, Tg(4) = 2, Tc(4) = 0

I = 10 : T„(10) = 21, Tf(10) = 55, Tg(10) = 34, Tc(10) = 0

Since E N = {cc, ct, gt, tt}, it is clear that, among all the words in S3 , we only want

DNA words ending with cs and ts. Therefore, we have Ti(10) + Tc(10) = 55 DNA

words of length 10 in B. The size of this B is greater than the best B generated by

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the above algorithm. Therefore, sometimes, the above algorithm misses some good

choices of pairs of B E and E N s .

Actually, if we do not follow the two guidelines, we could have some even larger B

with certain word lengths. We still use S 3 and pick {ct , gt, t t } to be E N . Thereby,

B N = {ga, gt, tg, t t } . Since we are using the same S3, the recursive formulas remain

the same. We can calculate the size of B with a word length 10 as follows:

1 = 2: Ta{ 2) = 1, Tt{ 2) = 2 , Tg{ 2) = 1, Tc{ 2) = 0

1 = 3: Ta{ 3) = 1, Tt (3) = 3, Tg(3) = 2, Tc(3) = 0

Z = 4 : Ta(4) = 2, Tt (4) = 5, Tg(4) = 3, Tc(4) = 0

Z = 10: Ta(10) = 34, Tt (10) = 89, T9 (10) = 55, Tc(10) = 0

Since E N = {ct , gt, t t } , we want words ending with t in S 3 . Therefore, the size of

B with a word length 10 is 11(10) = 89. From this example, we can see that the two

guidelines and the algorithm can not always provide us with the largest B, however,

in most of the cases, the pairs of B E and E N s generated by the two guidelines and

the algorithm do provide the largest B. The algorithm is a tradeoff between the

optimal size of B and the ability to systematically and efficiently generate pairs of

B E and E N s .

After obtaining a pair of B E and E N , class A utom aton generates a deterministic

automaton accepting words beginning with words in the B E and ending with words in

the E N . Moreover, any segment of length k of the words accepted by the automaton

is in the S that corresponds to the B E and E N . We should notice that, if T® contains

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

at least one cycle-intersection node, but this automaton generated from B E and E N

can not produce an arbitrarily large B, then this implies that the two guidelines failed

to find a proper EN . We need to explain why we need to define a class that generates

and stores deterministic automata as opposed to using the class fm of Grail. That

is because we need to dynamically build up automata from B E and ENs. During

the construction, we need more information about each state of automata than what

class fm can provide. For example, as we will see in the next example, when we

construct an automaton, we create some states of the automaton, construct a trie of

the DNA words in BE, and then add links among the states that contain the words in

S. In order to add the links, we need to store a DNA word in each state temporarily.

But the states in Grail are only numbers. They can not hold any information about

DNA words. This is why we need to define the class A utom aton to help us construct

automata. We can easily convert the automata stored in objects of class A utom aton

into objects of class fm afterwards.

We use the following example to explain how we construct an automaton from a

set S and a pair of B E and E N and provide the algorithm for doing the construction

later on.

Exam ple 11

We generate S 2 = {aa, ca, ga, ac, cc, ag} with the following parameters: k — 2,

d = 0, and w = aa. We apply the algorithm for selecting a good pair B E 2 and E N 2

on S2: B E 2 = {aa, ac, ag, ca, cc} and E N 2 — {aa, ac, ga, ca, cc}. Since it is required

that all the words accepted by the deterministic automaton must start with words in

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ac

ag

Figure 7.4: A trie for words in B E 2 and State for the other words in S2

B E 2 , we construct a trie with words in B E 2 and make the initial state of the trie to

be the only initial state of the desired deterministic automaton. The next step is to

make all the words in S 2 , except for the words in B E 2 , to be states in the automaton.

In this case, we only have one word ga. The result of the above two steps is depicted

in Figure 7.4.

The words in the states indicate that, if a word or a prefix of a word accepted by

the automaton can reach a state, it must end with the word in the state. Since all

the leaf states of the trie and the states with no link are words in S 2 , if we link these

states with proper labels, the result will be that any segment of length 2 of the words

accepted by the automaton is in set S'2. The principle for adding links and labels

is the following: we concatenate a symbol s in DNA alphabet to the word w in one

state St\. If Sufffc(ros) is the word in another state St 2 , we add a link from St\ to

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.5: The automaton for accepting words such that each word begins with

words in B E 2 and ends with words in E N 2, and moreover, any segment of length k

is a word in S2

S t 2 with label s. For example, in Figure 7.4, we concatenate symbol c to the word

aa in one of the states. Because Suff2 (aac) = ac is the word in another state, we add

a link from the state with aa to the state with ac and put label c on the link. After

adding links, we make states containing words in E N 2 to be accepting states. As a

result, any word accepted by the automaton ends with a word in EN . The resulting

automaton for S2, B E 2, and E N 2 is shown in Figure 7.5.

Before we introduce the algorithm following the above method for constructing

automata, we need to introduce the data structure for storing automata. In this

project, we use a linked structure for storing automata. There are two kinds of

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes: state nodes and link nodes. State nodes are used for storing information

about the states in automata. The data structure of state nodes is the following:

struct statenode

{

int index;

string word;

bool initialstate;

bool acceptingstate;

linknode* nextlink;

statenode* nextstate;

}
Link nodes are used for storing information of links from one state to another one.

The data structure of link nodes is the following:

struct linknode

{

char label;

int index;

linknode* nextlink;

}

Note: in the above figure, the first boolean variable in the state nodes is for the initial

state, and the second boolean variable is for the accepting states.

In each state node, there are two node pointers. Nextstate is used for linking all

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

State
nodes

Link ̂
nodes

ag
false
false

ac
false
true

aa
false
true

false
false

false
false

ga
false
true

ca
false
true

cc
false
true

true
false

Figure 7.6: The linked structure for storing the automaton in Figure 7.5

the states together, so that we can easily go through all the states and quickly find

a specific state. Nextlink maintains a list of link nodes that represent outgoing links

from a state. For example, in Figure 7.6, we have a state node with index number 0

and two link nodes that represent the outgoing links from State 0. In the first link

node, letter a and number 1 represent that there is an outgoing link from State 0 to

State 1.

In the implementation, we use the following algorithm to construct a deterministic

automaton from a set S and a pair of B E and EN.

Procedure: given a set S, and a pair of B E and EN, generate a deterministic

automaton for accepting words such that each word begins with words in B E and

ends with words in E N , and, moreover, any segment of length k is a word in S

Input: S, BE , and E N

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Output: a deterministic automaton in a linked structure that represents the desired

automaton

create state nodes for each word in S, and make the state an accepting state if the

word in the state is in E N

we now construct a trie for the words in BE. At first, we put the prefixes of length

k — 1 of words in B E into a vector. In the vector, each word has to be unique,

while the length of the words in the vector is greater than 0

create state nodes for the words in the vector and link the newly created state

nodes in front of the existing linked list of state nodes.

clear the vector and put the prefixes of length length — 1 of the newly created

state nodes into the vector, each word in the vector has to be unique.

length -----

add the unique initial node, because each trie only has one initial node, and link it

in front of the existing linked list of state nodes

add links among the states, if there is one outgoing link from a state represented by

a state node, we add a link node to the linked list of link nodes maintained by the

state node.

Reminder: recall that automaton T® for recognizing words in S'® is also of a linked

list structure, but the algorithm for constructing T® from a set S is much simpler.

We just construct a trie from S and add links among the leaf states. The algorithm

is similar with the above one and is omitted.

Because we want to apply the existing functions in Grail to manipulate automata,

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we need to convert the automata obtained from the above process into an object

of class fm. In Grail, a deterministic automaton is stored as three sets: a set of

initial states, a set of accepting states, and a set of instructions. An instruction is a

transition from one state to another state on an input letter. States and instructions

of an automaton are objects of class state and class inst respectively. Class set

is a subclass of class array, which is a dynamic array template class and allows an

unlimited number of items to be added. For example,

a

a, b

Figure 7.7: The automaton accepting the language (ab)*

the automaton in Figure 7.7 is stored as follows:

initial state set = {State 1}

Accepting state set = {State 1 , State 2 }

Instruction set = {1 a 2, 1 b 3, 2 a 3, 2 b 1, 3 a 3, 3 b 3}

Converting a deterministic automaton from a linked structure to an object of class

fm can be easily done, so we are not going to go into the details. The next step is

to generate DNA words that are accepted by a deterministic automaton and of a

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

desired length. Class fm provides a member function, enum erate, to enumerate

words accepted by the automaton stored in an object of the class. Each word is an

object of class String. The words are sorted by the lengths of the words and the

quantity of the resulting words is specified by one of the parameters of the function.

In our project, we need words of a certain fixed length, therefore, we add a new

member function, enum erateD N A , to enumerate DNA words of the certain fixed

length. The length is specified by one of the parameters. We use the automaton in

Figure 7.5 as an example to compare the difference between the two functions. We

convert the automaton in the format shown in Figure 7.6 into an object of class fm.

The results of the function calls with different parameters are shown in Table 7.2.

Up to this point, the words generated by function enum erateD N A of an ob­

ject of class fm are words in B. They only satisfy the bond-free property. As we

have presented, to enable words generated by our system to meet more experimental

requirements, we design two filters for the GC-ratio constraint and the continuity

constraint. In the GG-ratio constraint filter, we apply the method in Section 6.2.1.

We construct deterministic automata with three parameters, ri, r2 , and I, to remove

words that do not satisfy the GC-ratio constraint from B. Similarly, in the continu­

ity constraint filter, we apply the method in Section 6 .2 . We construct deterministic

automata with two parameters, q and I, to remove words that do not satisfy the

continuity constraint from B.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Function enumerate enumerateDNA

Parameter 1 0 3

aa caa

ac cac

ca cca

cc ccc

Resulting words aaa &cLcL

aac aac

aca aca

acc acc

aga aga

caa

Table 7.2: The outputs of the functions enum erate and enum erateD N A of an

object of class fm with parameter 10 and parameter 3 respectively

7.3 Im plem entation o f th e direct encoding system

In this method, we apply Theorem 9 in [28] (shown further below) to produce DNA

codewords (because both the input and the output are DNA words, we call the input

DNA words the data words and call output DNA words the DNA codewords). Since

the DNA codewords produced by this theorem only satisfy the bond-free constraint,

in addition, we will pass the produced DNA codewords into the GC-ratio constraint

filter and the continuity constraint filter depending on whether users want the DNA

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

codewords to satisfy these constraints.

Theorem 7 in [28], Let I be a nonempty subset of {1, . . . , k} of cardinality [k / 2j +

1 + L(d + k %2)/2j. Then the language B + is (t, Hd,k)-bond-free, where

B = {v G S fe | if i G / then u[«] G {a, c}}.

The advantage of some codes defined by this theorem is that they can be used for

encoding and decoding data in linear time. The authors of [28] provide an instance

of the code B as follows:

B = Ek~l{a, c} 1

such that I is even, where I = [k/2\ + 1 + [(d + k%2)/2j. For example, this is true

when d and k are even and k + d + 2 is a multiple of 4. Let n be the quantity k — 1/2.

Every word aq • • • an in En can be encoded with a codeword in B as follows. Each

symbol a* is encoded as a*, for i = 1 , . . . , k — I, and each symbol aj is encoded as

aa, if Oj = a;

ac, if aj — c;

ca, if aj = g;

cc, if aj — t,

for j = k — I + 1 , . . . , n. For example, if k = 10 and d = 4 then I = 8 and n = 6 . This

way the word acctga will be encoded as acaccccaaa.

Since, in the web system, users might select a pair of k and d such that k + d + 2

is not a multiple of 4. In this case, the value of I will not be an even number. As a

result, the quantity of n will not be an integer. To avoid this kind of situation, when

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculating I, we will round it up to the nearest even number. This rounding will

affect the number of the positions where the symbols remain the same, especially for

small ks. For instance, if k = 3 and d = 1, then I = |_3/2J + 1 + [(■*■ + 3%2)/2j =

|_1.5j + 1 + [(1 + l) /2 j = 1 + 1 + 1 = 3, which is not an even number. If we round

it up to the nearest even number 4, the number of the positions where the symbols

remain the same will be k — I — 3 — 4 — —1. For this reason, in the implementation,

we exclude k = 3 from the options of the value for k.

After users specified the values for k and d, we will calculate I and n. If the users

do not require any additional constraints, we will simply follow the encoding/decoding

rules presented above. If the users require the GC-ratio constraint or the continuity

constraint, we produce all the words in En as data words, apply the encoding rules to

produce the encoded DNA codewords, pass the DNA codewords through the filters,

and then, list the remaining data words and DNA codewords in a look-up table.

The users will only be allowed to enter combinations of the data words or the DNA

codewords in the look-up table to perform encoding or decoding.

7.4 E xperim ental results o f th e subword closure

operation encoding system

In this section, we will make use of our system with values of parameters and collect

some data from the results.

To generate 5-blocks for DNA computing related constraints, we need to construct

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a set S. When we construct S, we need three parameters: the word length k, the

Hamming distance d, and the starting word w, which is required by the algorithm in

Section 6.1. In the algorithm, we generate all the DNA words of a fixed length and

list them alphabetically. For example, all the words of length 2 are listed as follows:

aa, ac, ag, at, ca, cc, eg, ct, ga, gc, gg, gt, ta, tc, tg, tt.

Here, we need to notice two things. The first one is that the starting word affects

the resulting set. Let us explain the reason with the above example. If the starting

word is aa, and the Hamming distance is set to be 0, we have to remove tt from the

list, because r(tt) — aa. As a result, t t would not appear in S. Obviously, if the

starting word is set to be tt, we will not have aa in S, for the same reason. The other

thing we need to notice is that the order of removing words that violate the bond-free

property affects the resulting set. The reason is almost the same as the reason for

the starting word. When we construct S, we keep removing DNA words from the list

that contains all the DNA words of a fixed length. If we have two words w and v and

the Hamming distance between wR and v is less than d, if we remove w first, v might

appear in S'; in the opposite way, if we remove v first, w might appear in S.

In the implementation of the algorithm in Section 6.1, we pick words sequentially

from the beginning of lists as shown above, generate Hamming balls of the words,

complement and reverse words in the Hamming balls, and remove the complemented

and reversed words from the lists. After the procedure, it is very possible that the

words in the front of the list stay in set S. They are the words that contain one

or more as. For this reason, we suggest to use words that only consist of as as the

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

starting words. We also can see that words consisting of only as can provide larger

sets of Bs — see Table 7.3 and Table 7.4.

w 4 5 6 w 4 5 6 w 4 5 6 w 4 5 6

aa 2 0 45 1 0 1 ca 1 1 1 ga 2 0 45 1 0 1 ta 1 1 1

ac 6 10 19 cc 2 3 5 ge 16 32 64 tc 1 1 1

ag 1 1 1 eg 16 32 64 gg 16 32 64 tg 1 1 1

at 1 1 1 ct 16 32 64 gt 5 8 13 tt 6 1 0 19

Table 7.3: The sizes of Bs of length 4, 5, and 6 generated with different starting

words w, where k = 2 and d = 0 .

In Table 7.5, we compare the sizes of B and the densities of S® of different lengths

produced from different S s satisfying values of parameters.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

w 5 6 7 w 5 6 7 w 5 6 7 w 5 6 7

aaa 55 148 412 caa 4 6 9 gaa 28 60 136 taa 4 6 9

aac 2 1 64 172 cac 4 6 9 gac 26 57 129 tac 4 6 9

aag 29 70 172 cag 4 6 9 gag 27 59 134 tag 4 6 9

aat 26 60 139 cat 3 5 8 gat 17 38 87 tat 0 6 0

aca 26 59 136 cca 4 7 1 2 gca 17 37 83 tea 2 3 5

acc 15 34 81 ccc 3 1 4 gcc 17 37 83 tcc 2 3 5

acg 9 18 39 ccg 26 58 127 geg 17 37 83 teg 1 1 1

act 7 13 24 cct 26 58 127 get 17 37 83 tct 1 1 1

aga 7 13 23 cga 26 58 127 gga 17 37 83 tga 1 1 1

age 7 13 23 ege 17 37 83 ggc 17 37 83 tgc 0 1 2

agg 4 6 9 egg 17 37 83 ggg 17 37 83 tgg 0 1 3

agt 4 6 9 cgt 26 58 127 ggt 14 28 59 tgt 15 34 81

ata 4 6 9 eta 26 58 127 gta 8 14 24 tta 29 59 136

ate 4 6 9 etc 27 61 136 gtc 8 13 2 1 ttc 26 60 139

atg 4 6 9 ctg 27 59 134 gtg 8 13 2 1 ttg 29 70 172

att 4 6 9 ctt 26 57 129 gtt 4 6 9 ttt 2 1 64 172

Table 7.4: The sizes of J5s of length 5, 6 , and 7 generated with different starting

words w, where k =3 and d = 0.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Sizes \ Lengths 3 4 5 6 7 8 9 10 11 12

k=2 1*1 9 20 45 101 227 510 1146 2575 5786 13001

oII |5»(Z)| 14 31 70 157 353 793 1782 4004 8997 20216

k=3 1*1 8 21 55 148 412 1125 3057 8346 22820 62285

oII |S®(0I 32 80 232 640 1706 4654 12786 34869 95022 259573

k=3 1*1 3 6 10 18 32 57 101 180 320 569

d= 1 |5® (0| 12 21 41 71 124 224 398 705 1256 2235

k=A 1*1 9 26 88 225 577 1563 4369 11988 32854

oIÎ3 |5®(/)| 120 270 695 2032 5692 15588 41388 112205 306605

k=A |S | 12 23 50 101 213 438 914 1891 3932

d= 1 |s®(OI 69 159 312 672 1365 2868 5910 12318 25503

II 1̂ 1 3 5 8 12 19 31 49 77 122

CMII |5®(Z)| 21 30 54 92 140 215 343 554 879

k= 5 |5 | 10 30 88 303 778 2095 5374 15060

d=0 |s®(OI 512 1200 2920 7588 22794 66504 192132 543506

k=b \B\ 22 51 118 299 728 1800 4407 10798

d= 1 |5® (0| 276 669 1662 4169 10271 24967 61026 149807

5 \B\ 14 26 49 93 175 331 625 1180

d=2 \S®{1)\ 156 309 588 1101 2100 3945 7455 14088

k=5 \B\ 3 5 7 10 14 21 32 48

d=3 |5®(0I 39 48 75 135 209 293 407 590

Table 7.5: The sizes of Bs and the density of S ® of different lengths generated with

the parameters k, d, and w, where w only.(Consists of as.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P aram eters\ Lengths 3 4 5 6 7 8 9 1 0 11 1 2

k= 2 , d= 0 7 8 30 83 133 384 603 1790 4691 8406

k—3, d= 0 6 9 36 116 226 798 1486 5385 17356 37210

k=3, d= 1 2 1 3 9 4 14 5 2 0 64 27

k—4, d= 0 3 17 70 1 2 1 403 766 2854 9220 19882

k= 4, d= 1 1 9 23 2 0 6 6 44 176 536 448

k—4, d—2 0 0 1 0 0 0 0 0 0

k= 5, d= 0 5 2 2 47 2 1 2 352 1248 3867 8568

k= 5, d= 1 14 38 6 6 2 0 2 342 1071 3065 5683

k= 5, d— 2 5 14 7 26 9 42 140 62

k= 5, d= 3 0 0 0 0 0 0 0 0

Table 7.6: The sizes of Bs of different lengths generated with the parameters k, d ,

and w, where w only consists of as. In addition, all the words satisfy the GC-ratio

constraint, where r% — 40% and r2 — 60%.

In Table 7.6, we list the sizes of Bs of different lengths produced from different

pairs of k and ds and satisfying only the GC-ratio constraint. The lower bound and

the upper bound of the GC-ratio are 40% and 60%.

Note that all DNA words in Bs in Table 7.6, 7.7, and 7.8 satisfy the bond-free

constraint by default.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameters \ Lengths 3 4 5 6 7 8 9 1 0 11 1 2

k= 2 , d= 0 9 2 0 43 95 209 460 1 0 1 1 2224 4891 10757

k= 3, d= 0 8 21 54 145 398 1073 2890 7808 21113 57027

k= 3, d= 1 3 6 9 16 27 46 78 132 225 382

k—4, d—0 9 25 84 2 1 2 530 1423 3950 10753 29071

k= 4, d= 1 9 19 36 76 147 308 612 1247 2509

k ~ 4, d= 2 3 4 6 8 1 2 18 25 35 51

k= 5, d= 0 9 28 82 284 697 1823 4553 12641

k= 5, d= 1 2 1 48 1 1 0 274 653 1602 3865 9331

k= 5, d— 2 13 24 42 77 137 248 447 802

&=5, d=3 2 3 3 4 5 6 8 9

Table 7.7: The sizes of Bs of different lengths generated with the parameters k, d,

and w, where w only consists of as. In addition, all the words satisfy the continuity

constraint, where q = 5.

In Table 7.7, we list the sizes of Bs of different lengths produced from different

pairs of k and ds and satisfying only the continuity constraint. The length limit of

the continuity constraint is 5.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameters \ Lengths 3 4 5 6 7 8 9 1 0 11 1 2

k= 2 , d= 0 7 8 30 83 133 376 593 1710 4315 7812

k= 3, d= 0 6 9 36 116 226 790 1474 5266 16683 35846

k= 3, d= 1 2 1 3 9 4 14 5 2 0 64 27

k=4, d= 0 3 17 70 1 2 1 392 756 2760 8730 18896

k= 4, 1 1 9 23 2 0 6 6 44 176 536 448

k=4, d= 2 0 0 1 0 0 0 0 0 0

k= 5, d—0 5 2 2 47 207 342 1173 3531 7923

k= 5, d= 1 14 38 6 6 2 0 2 342 1063 2973 5614

k= 5, d= 2 5 14 7 26 9 42 140 62

k= 5, d= 3 0 0 0 0 0 0 0 0

Table 7.8: The sizes of Bs of different lengths generated with the parameters k, d, and

w, where w only consists of as. In addition, all the words satisfy both the GC-ratio

constraint and the continuity constraint, where r\ — 40%, r 2 = 60% and q = 5.

In Table 7.8, we list the sizes of Bs of different lengths produced from different

pairs of k and ds and satisfying both the GC-ratio constraint and the continuity

constraint. The lower bound and the upper bound of the GC-ratio are 40% and 60%.

The length limit of the continuity constraint is 5.

In Table 7.9, we can see that the third set of parameters is k — 4, d = 0, r\ =

40%, r 2 = 60%, and q = 5, which are the same as the parameters in the fourth row in

Table 7.8. This is the reason that, when we want 50 DNA words, the system generates

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameters Sample codes

k = 3, d = 0, q =3

n = 50%, r2= 50%

Desired number = 40

aacagc aaccga aacgca aagcca acaagc acacca acacga acagca

acagga accaca accaga accgaa acgaca acgcaa agaagc agacca

agacga agcaca agcaga agccaa aggaca caacca caacga caagca

caagga cacaca cacaga caccaa cacgaa cactca cagaca cagcaa

ccaaca ccaaga ccacaa ccagaa cgaaca cgaaga cgacaa caggaa

fc = 4, d = 0, g = 3

n = 50%, r2 = 50%

Desired number = 20

aacacca aacgcaa aacgcca aactcca aagacca aagccaa aaggcaa

acaacca acaccaa acagcaa acagcca acatcca accacaa accacca

accgcaa acctcaa acctcca acgacaa acgacca acgccaa

A: = 4, d = 0, q — 5

n = 40%, r2 = 60%

Desired number = 50

aaacca aaccaa aaccca aagcaa aagcca aatcca acacaa acacca

accaaa acccaa acccca acgaaa acgcaa acgcca actcaa actcca

agacaa agcaaa agccaa agccca aggaaa aggcaa agtcaa caacaa

cagcca catcaa catcca ccaaaa ccccaa cctaaa cctcaa cctcca

(a portion of words in the resulting set)

k = 4, d = 1 , q — 5

n = 40%, r 2 = 60%

Desired number = 50

aacacaca aagacaca acaacaca acacaaca acacaaga acacacaa

acacagaa acagaaca acagaaga acagacaa acagagaa agaacaca

agacaaca agacaaga agacacaa agacagaa agagaaca agagaaga

agagacaa caaacaca caacaaca caacaaga caacacaa caacagaa

caagaaca caagaaga caagacaa caagagaa cacaaaca cacaaaga

(a portion of words in the resulting set)

Table 7.9: Sample codes generated with specified parameters

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

words of length 6 , since the number of the words of length 6 covers the number of the

range from 18 to 70. The fourth set of parameters in Table 7.9 is another example,

which refers to the fifth row in Table 7.8.

7.5 E xperim ental results o f th e direct encoding

system

In this section, we produce DNA codewords — because both the data words and the

codewords are DNA words, we use the terms DNA datawords and DNA codewords to

make a distinction — by using the same parameters as what are used in the last sec­

tion. In the direct encoding method, if we consider only the bond-free constraint, we

actually encode each symbol in the DNA datawords. The number of DNA datawords

depends on the parameters that the users want the DNA codewords to satisfy. We

have already presented this fact in Section 7.3. Therefore, given a fixed pair of k (the

length of codewords) and d (the Hamming distance), the number of DNA datawords

(say |AT|, where N = En) can be calculated by using the methods in Section 7.3.

However, if we want to encode more DNA datawords into DNA codewords produced

with the same k and d, we can use DNA codewords in N l, where i > 2. Similarly,

when considering additional constraints, we still can use DNA codewords in N \ where

* > 2 and N C En.

In the following tables, we obtain the sizes of some DNA codeword sets satisfying

different constraints, and using values of parameters.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k \ d 0 1 2 3 4 5 6 7

4 42 42 42

5 43 43 43

6 44 44 43 4 3

7 45 44 44 44

8 45 4 5 4 5 45 44

9 46 46 46 45 45

10 47 47 4 6 46 46 46

11 48 47 47 47 47 46

12 48 48 48 48 47 47 47

13 49 4 9 4 9 48 48 48 48

14 410 410 4 9 49 49 4 9 48 48

Table 7.10: The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords only satisfy the bond-free constraint.

In Table 7.10, we list the sizes of DNA codeword sets produced from different

pairs of k and ds and only satisfying the bond-free constraint.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k \ d 0 1 2 3 4 5 6 7

4 6 6 6

5 40 40 40

6 2 0 0 2 0 0 50 50

7 560 140 140 140

8 728 728 728 728 182

9 2016 2016 2016 504 504

10 10752 10752 2688 2688 2688 2688

11 50688 12672 12672 12672 12672 3168

1 2 40128 40128 40128 40128 10032 10032 10032

13 192192 192192 192192 48048 48048 48048 48048

14 604032 604032 151008 151008 151008 151008 37752 37752

Table 7.11: The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint and the GC-ratio

constraint, where ri = 40% and r 2 = 60%.

In Table 7.11, we list the sizes of DNA codeword sets produced from different

pairs of k and ds and satisfying the bond-free constraint and the GC-ratio constraint,

where ri = 40% and r 2 = 60%.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k \ d 0 1 2 3 4 5 6 7

4 16 16 16

5 62 62 62

6 246 246 58 58

7 980 228 228 228

8 904 904 904 904 216

9 3600 3600 3600 848 848

10 14370 14370 3362 3362 3362 3362

11 57306 13390 13390 13390 13390 3150

12 53448 53448 53448 53448 12488 12488 12488

13 213144 213144 213144 49736 49736 49736 49736

14 850032 850032 198528 198528 198528 198528 46400 46400

Table 7.12: The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint and the continuity

constraint, where q — 5.

In Table 7.12, we list the sizes of DNA codeword sets produced from different pairs

of k and ds and satisfying the bond-free constraint and the continuity constraint,

where q = 5.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

k \ d 0 1 2 3 4 5 6 7

4 6 6 6

5 40 40 40

6 2 0 0 2 0 0 50 50

7 560 140 140 140

8 706 706 706 706 174

9 1970 1970 1970 486 486

1 0 10252 10252 2492 2492 2492 2492

11 47238 11340 11340 11340 11340 2740

1 2 36486 36486 36486 36486 8846 8846 8846

13 170094 170094 170094 40800 40800 40800 40800

14 540672 540672 130356 130356 130356 130356 31524 31524

Table 7.13: The sizes of DNA codeword sets calculated in response to different pairs

of k and ds. The DNA codewords satisfy the bond-free constraint, and GC-ratio

constraint, and the continuity constraint, where r\ = 40%, r2 = 60%, and q = 5.

In Table 7.13, we list the sizes of DNA codeword sets produced from different

pairs of k and ds and satisfying the bond-free constraint, the GC-ratio constraint,

and the continuity constraint, where r\ — 40%, r% = 60%, and q — 5.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 C om parison betw een th e results o f th e tw o

system s

We have two implementations that produce words for desired constraints. The advan­

tage of the subword closure operation encoding system is that the method is general

enough for arbitrary local constraints. Users can provide a set S in which the words

are of a fixed length and preserve a certain property. The method applied in the

subword closure operation encoding system are able to produce words in S'®. As a

result, the property will be kept within words whose lengths are longer than the word

length in S. This system can also be used for producing DNA words satisfying the

DNA computing related constraints. The drawback of this system is the efficiency.

However, it is possible to improve the efficiency by improving the methods for pro­

ducing E N . We discuss this in the next chapter as a possible future work of this

research. The direct encoding system can only produce DNA codewords satisfying

the DNA computing related constraints, but the advantage of this system is that it

can perform encoding and decoding in linear time. A drawback of this method is

that, when considering either the GC-ratio constraint or the continuity constraint or

both, we can not encode arbitrary data. Here, the arbitrary data really means all the

DNA datawords of a certain length.

From the results in the previous two sections, we can see that the direct encoding

system produces better results when producing DNA words satisfying the DNA com­

puting related constraints. For example, in Table 7.6 and Table 7.11, when k = 4 and

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

d — 0 and the length of the DNA codewords is 4, the direct encoding system allows us

to encode 6 datawords as opposed to encoding 3 datawords that is allowed by the sub­

word closure operation encoding system. However, if we want to encode more than 6

datawords into a language satisfying the same constraints with the same parameters,

the subword closure operation encoding system might provide a better information

ratio. For example, if we want to encode 10 datawords into a language that satisfies

the bond-free constraint with k = 4 and d = 0 and the GC-ratio constraint with

r\ = 40% and r2 = 60%, we still have to look at Table 7.6 and Table 7.11. This time,

the subword closure operation encoding system allows us to use DNA codewords of

length 5 to encode the 10 datawords, but we have to use DNA codewords of length

8 to encode these 10 datawords, since \N\ < 10 < IN’2!, where N contains the 6

datawords shown in Table 7.11.

In another case, in Table 7.6 and Table 7.11, if we use the same constraints with

the same parameters, the subword closure operation encoding system allows us to

encode up to 403 datawords when the codeword length is 8 ; the direct encoding

method allows us to encode up to 36 words when the codeword length is 8 , since

|Ar2| = 36. It seems that, in this case, the subword closure operation encoding system

provides a better result. However, by using Theorem 4 in Section 3.6.4, we know

that (r, T/o,4)-bond-free is the same as (r, # i ;g)-bond-free. Therefore, if we look at

Table 7.11, we can encode up to 728 datawords into the language satisfying the same

constraints with the same parameters.

In all, the two systems provide us many ways to produce DNA codewords satisfying

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

desirable constraints. That which method can provide a better result really depends

on what kind of codeword set the users want to produce.

7.7 D iscussion

In the subword closure operation encoding system, we apply the two guidelines in

Chapter 6 and the recursive formula in Chapter 4 to choose an E N and apply the

5-block method to produce DNA words. The two guidelines are non-deterministic

and might not always work. The reason we still use them is that, if they work,

this method produces more codewords than or at least equal to the result produced

by Lemma 3. We say this because the method for checking if the two guidelines

worked is to check if there is at least one cycle-intersection node in the deterministic

automaton produced from the E N and the corresponding B E produced by the two

guidelines. The worst case that the two guidelines succeeded is that there is only one

cycle-intersection node. Therefore, the result obtained by using the two guidelines

will be better or at least equal to the result produced by Lemma 3, since there may

be other cycles that are involved to produce DNA words.

Actually, the two guidelines worked very well when we tested the system by using

many different sets of parameters. We have used 336 different sets of parameters: all

the DNA words of length 2 as the starting word and d = 0 (16 sets of parameters), all

the DNA words of length 3 as the starting word and d — 0 (64 sets of parameters), and

all the DNA words of length 4 as the starting word and d = 0 (256 sets of parameters).

The T®s produced for accepting S ®s do not contain any cycle-intersection node when

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S s are produced with the following parameters: k = 2, d = 0, and w G {ag, at, ca,

fa, tc, tg}. In the remaining 330 cases, the T®s contain cycle-intersection nodes and

the automata produced from E N s and the corresponding B E s produced by the two

guidelines also contain cycle-intersection nodes.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Conclusion and future work

8.1 C onclusion and discussion

In this thesis, we introduced a method for encoding arbitrary data into DNA languages

that satisfy important constraints in DNA computing. Moreover, this method can be

applied to encode arbitrary data into languages produced by the subword operation

applied on a word set satisfying any arbitrary local constraint.

Along with the research, we investigated properties of the subword closure op­

eration and proposed the concept of 5-block to address the problem that not any

concatenation of two words in A® is in the same S®. Moreover, we introduced a re­

cursive formula to calculate the density of languages produced by the subword closure

operation.

To answer the question of whether we can produce an arbitrarily large B of a fixed

length or not, in Chapter 5, we investigated the properties of cycles in automata and

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

introduced methods for checking if an automaton T® can produce an arbitrarily large

B, where T® is the automaton for accepting S'®.

We apply the subword closure operation to construct languages from word sets

satisfying desirable local constraints. In Chapter 6 , we proposed some construction

methods for producing word sets that satisfy the desirable local constraints. We

should notice that we convert the GC-ratio constraint from a global constraint to a

local constraint, since any concatenation of any DNA words that are of a fixed length

and satisfy a GG-ratio constraint satisfies the same GG-ratio constraint in which

the two parameters r\ and r2 remain the same. We proved this in Section 6.2.1.

After obtaining a set S representing an individual local constraint, we can produce

a language S'®. Also, we can produce a B of a fixed length that is a subset of

S'®. However, sometimes, we need a B in which all the words satisfy more than

one local constraint. Theoretically, we can construct several languages each of which

satisfies one desired local constraint, for example S'® fl S'® fl ■ • • fl S'®, where each S'*

represents one desired local constraint. However, this might not be practical, since

every time we intersect two languages, the number of states of the automaton for

accepting the intersection language is the product of the numbers of the states of

the two automata that accept the two languages. In this thesis, automata used for

accepting S'®s can be large, and automata for accepting intersection languages can be

even larger. Therefore, we used a trade-off method to make sure that the produced

languages satisfy the bond-free constraint and the system can work efficiently, since

the bond-free constraint is the major concern in DNA computing. The definition

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of 5-block ensures that B + C S'®, so we first produce a B satisfying the bond-

free constraint, and then, if additional constraints are required by users, pass all the

words in B through additional filters. As a result, the remaining words will satisfy

the desired constraints. However, if the continuity constraint is required by the users

and we concatenate two words among the remaining words, not every concatenation

will satisfy the same continuity constraint.

In Chapter 7, we implemented a system to produce DNA languages satisfying

desirable constraints for encoding arbitrary data. Some experimental results were

obtained in response to values of parameters. Also, we briefly compared some results

obtained from the two subsystems.

8.2 Future work

As we are gaining more understanding about the properties of cycles in automata, we

realize that there is a lot more that can be done to improve the methods proposed in

this thesis. In this section, we present a few ideas for future research.

One aspect that we can improve is the algorithm for choosing E N in Section 7.2.

As we see in Example 10, the algorithm introduced in that section does not directly

follow the two guidelines proposed in Chapter 6 and can not always provide the best

choice of E N . In the further discussion in the same example, we see that, even if we

follow the two guidelines, we still might not be able to obtain the best choice of E N .

The reason we use this algorithm in the system is that it works efficiently and provide

good choices of E N in most of the times. On the other hand, we believe there is more

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that can be done to improve both the accuracy and the efficiency of this algorithm.

In this thesis, to be able to produce larger B from the same S, we use the two

guidelines in Chapter 6 and the recursive formula in Chapter 4 to evaluate some

possible EN s. However, this method might not always give us the best choice. As

we see in Chapter 5, the real property that allows us to produce longer words and

arbitrarily large Bs is the communicating cycles in deterministic automata. Currently,

we have the concept of 2 -way communicating cycles and cycle-intersection nodes to

make sure that can we produce arbitrarily large Bs. But this is not enough. So

another research direction is to investigate the properties of n-way communicating

cycles and n-cycle-intersection nodes that allow us to improve the information ratio

of Bs and improve the efficiency of the system. It is possible that the higher the n

is, the larger B we can produce, which is produced from the n cycles starting from

the n-cycle-intersection node. If we are able to evaluate the complexity of cycles in

deterministic automata, we do not need the two guidelines any more, because the

evaluation will be deterministic and we will be able to know which E N is the best

choice.

As stated in the previous section, we use a trade-off method to produce DNA

languages. We not only make sure that the resulting languages satisfy the bond-free

constraint, the major constraint in DNA computing, but also make sure the system

works efficiently. However, the continuity constraint sometimes will be violated in the

concatenations of the DNA words in B that passed through the continuity constraint

filter. This is a problem we can address in the future.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When we test the effectiveness of the two guidelines, we used 336 different sets

of parameters. We did not find a case such that a T® contains at least one cycle-

intersection node and the two guidelines fail to find a proper E N . To cover a wide

range of situations, it is necessary to test more data sets in the future research.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] L. M. Adleman, “Molecular Computation of Solutions to Combinatorial Prob­

lem” Science Vol. 226 (Nov. 1994), pp. 1021-1024.

[2] L. M. Adleman, “Computing with DNA” Scientific American 279(2) (August

1998), pp.54-61.

[3] M. Amos, G. Paun, G. Rozenberg, A. Salomaa, “Topics in the theory of DNA

computing” Theoretical Computer Science 287 (2002), pp.3-38.

[4] M. Arita, S. Kobayashi, “DNA Sequence Design Using Templates” New Gener­

ation Computing 20 (2 0 0 2), pp. 263-277.

[5] D. Boneh, C. Dunworth, R. Lipton, J. Sgall, “On the Computational Power of

DNA” Technical Report TR-499-95, Princeton University, USA, October 1995.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein Introduction to Algorithms,

MIT Press and McGraw-Hill, Second Edition, 2001.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[7] B. Cui, S. Konstantinidis, “DNA Coding Using the Subword Closure Operation”

The 13th International Meeting on DNA Computing, Memphis, Tennessee, USA,

June 4-8, 2007 .

[8] J. H. M. Dassen, “DNA Computing: Promises, Problems and Perspective” IEEE

Potentials Vol. 16 (1997-1998), pp. 27-28.

[9] R. Deaton, M. Garzon, J. Rose, D.R. Franceschetti, S.E. Stevens, Jr., “DNA

Computing: A Review” Fundamenta Informaticae Vol.30 (1997), pp.23-41.

[10] A. A. El Gamal, L. A. Hemachandra, I. Shperling, V. K. Wei, “Using Simulated

Annealing to Design Good Codes” IEEE Transactions on Information Theory

Vol. IT-33, No. l(January 1987), pp. 116-123.

[11] K. Erk, “Simulating Boolean Circuits by Finite Splicing” Proc. of Congress on

Evolutionary Computation, 1999, pp. 1279-1285.

[12] A. Fujiwara, S. Kamio, “Procedures for Multiple Input Functions with DNA

Strands” Proc. of the 18th International Parallel and Distributed Processing

Symposium, 26-30 April 2004, pp.173-181.

[13] A. Fujiwara, K.Matsumoto, W. Chen, “Addressable Procedures for Logic and

Arithmetic Operations with DNA Strands” Proc. of the International Parallel

and Distributed Processing Symposium, 2003, pp. 162-170.

[14] G. Gloor, L. Kari, M. Gaasenbeek, S. Yu, “Towards a DNA Solution to the

Shortest Common Superstring Problem” Proc. of 1998 IEEE International Joint

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symposia on Intelligence and Systems, Rockville, Maryland, May 1998, pp. 111-

116.

[15] 0 . N. Oranichin, S. S. Sysoev, “About Some Characteristics of Computers of

New Generation” Proc. of the International Conference on Physics and Control,

St. Petersburg, Russia, 2003, Vol. 3, pp. 804-807.

[16] J. Hartmanis, “On the Weight of Computation” Bullettin of the European Asso­

ciation for Theoretical Computer Science Vol. 55 (Feb 1995), pp. 136-138.

[17] H. H. Hoos, T. Stiitzle, “Evaluating Las Vegas Algorithms - Pitfalls and Reme­

dies” Proc. of the fth Conference on Uncertainty in Artificial Intelligence UAI-

98, 1998, pp. 238-245.

[18] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata The­

ory, Languages, and Computation, Addison Wesley, Second Edition, Toronto,

Canada, 2001.

[19] S. Hussini, L. Kari, S. Konstantinidis, “Coding Properties of DNA Languages”

Theoretical Computer Science 290 (2003) pp. 1557-1579.

[20] Z. Ibrahim, Y. Tsuboi, O. Ono, M. Khalid, “Molecular Computation Approach to

Compete Dijkstra’s Algorithm” The 5th Asian Control Conference, 20-23 June

2004, Vol.l, pp. 635-642.

[21] N. Jonoska, D. Kephart, K. Mahalingam, “Generating DNA Code Words” Con-

gressus Numerantium Vol. 156 (2002), pp. 99-110.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[22] N. Jonoska, K. Mahalingam, “Languages of DNA Based Code Words” Pre-proc.

of DNA, Madison, Wisconsin, 9 June 2003, pp.58-68.

[23] N. Jonoska, K. Mahalingam, J. Chen, “Involution Codes: W ith Application to

DNA Coded Languages” Natural Computing: An International Journal Vol. 4,

No. 2 (June 2005), pp. 141-162.

[24] H. Jurgensen, S. Konstantinidis, N. H. Lam “Asymptotically Optimal Low-Cost

Solid Codes” Technical Report No. 2002-7, Saint Mary’s University, Halifax, NS,

Canada,April, 2 0 0 2 .

[25] L. Kari, R. Kitto, G. Thierrin, “Codes, Involutions and DNA encoding” W.

Bauer, H. Ehrig, J. Karhumaki, A. Salomaa (Eds.), Formal and Natural Com­

puting LNCS 2300 (2002) pp. 376-339.

[26] L. Kari, S. Konstantinidis, “Static and Dynamic Properties of DNA Languages”

Proc. of the 25th Annual International Conference of the IEEE EMBS, Cancun,

Mexico, September 17-21, 2003, pp. 3846-3849.

[27] L. Kari, S. Konstantinidis, E. Losseva, G. Wozniak, “Sticky-free and Overhang-

free DNA Languages” Acta Informatica 40 (2003), pp. 119-157.

[28] L. Kari, S. Konstantinidis, P. Sosfk, “Bond-Free Languages: Formalizations,

Maximality, and Construction Methods” International Journal of Foundations

of Computer Science Vol.16 (2005), pp.1039-1070.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[29] L. Kari, S. Konstantinidis, P. Sosik, “On Properties of Bond-free DNA Lan­

guages” Theoretical Computer Science Vol.334 (2005), pp. 131-159.

[30] L. Kari, S. Konstantinidis, P. Sosik, G. Thierrin, “On Hairpin-free Words and

Languages” Proc. of the 9th International Conference on Developments in Lan­

guage Ttheory, Palermo, Italy, 4-8 July 2005, LNCS 3572, pp.296-307.

[31] D. Kephart, J. Lefevre, “Codegen: The Generation and Testing of DNA Code

Words” Proc. of the 2004 IEEE Congress on Evolutionary Computation, Hon­

olulu, Hawaii, 2002, pp. 1865-1873.

[32] K. Kiguchi, K. Watanabe, T. Fukuda, “Trajectory Planning of Mobile Robots

Using DNA Computing” Proc. of 2001 IEEE International Symposium on Com­

putational Intelligence in Robotics and Automation, Banff, Alberta, Canada, 29

July-1 August, 2001, pp.380-385.

[33] H. R. Lewis, C. H. Papadimitriou, Elements of the Theory of Computation,

Prentice-Hall, Second Edition, Upper Saddle River, New Jersey, August 7, 1997.

[34] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes,

North-Holland, 1978.

[35] A. Marathe, A. E. Condon, R. M. Corn, “On Combinatorial DNA Word Design”

Journal Computational Biology Vol.8 (2001), pp. 201-220.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[36] D. V. Noort, F. U. Gast, J. S. McCaskill, “DNA Computing in Microreac­

tors” The 7th International Workshop on DNA-based Computer, Tampa, Florida,

2001, LNCS 2340, pp.33-46.

[37] M. Ogihara, A. Ray, “Executing Parallel Logical Operations with DNA” Proc.

of IEEE Congress On Evolutionary Computation, Piscataway, NJ, 1999, pp.

972-979.

[38] J. H. Reif, T. H. LaBean, M. Pirrung, V. S. Rana, B. Guo, C. Kingsford, G. S.

Wichham, “Experimental Construction of Very Large Scale DNA Databases with

Associative Search Capability” . Proc. 7th Workshop on DNA-Based Computers,

Tampa, Florida, 2002. LNCS 2340, pp.231-247.

[39] F. Tanaka, M. Nakatsugawa, M. Yamamoto, T. Shiba, A.Ohuchi, “Developing

Support System for Sequence Design in DNA Computing” Proc. 7th Workshop

on DNA-Based Computers, Tampa, Florida, 2002. LNCS 2340, pp. 129-137.

[40] J. M. Tour, W. L. V. Zandt, C. P. Husband, S. M. Husband, L. S. Wilson, P.

D. Franzon, D. P. Nackashi, “Nanocell Logic Gates for Molecular Computing”

IEEE Transactions on Nanotechnology Vol. 1, No. 2 (June 2002), pp. 100-109.

[41] Y. Tsuboi, Z. Ibrahim, O. Ono, “Problem solving Method with Semantic Net

Based on DNA Computing in Artificial Intelligence” The 5th Asian Control Con­

ference, Melbourne, Australia, 20-23 July, 2004, PP- 652-657.

[42] Y. Tsuboi, O. Ono, “Pattern Matching Algorithm for Engineering Problems

by Using DNA Computing” Proc. of the 2003 IEEE/ASM E International Con-

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ference on Advanced Intelligent Mechatronics, Kobe, Japan, 20-24 July 2003,

pp. 1005-1008.

[43] D. Tulpan, H. Hoos, A. E. Condon, “Stochastic Local Dearch Algorithms for

DNA Word Design” Proc. 8 th Workshop on DNA-based Computers, Saeporo,

Japan, 2002. LNCS 2568.2002.

[44] A. M. Turing, “On Computable Numbers, with an Application to the Entchei-

dungproblem” Proc. of the London Mathematical Society, 1936, II Ser.42, pp.

230-265.

[45] J, Xu, “Formalizations of Error Models W ith Applications to Spelling Error

Correction” , MASc Thesis, Saint Mary’s University, Halifax, NS, Canada, 2004.

[46] P. Wasiewicz, J. J. Mulawka, W. R. Rudnicki, B. Lesyng, “Adding Numbers with

DNA” 2000 IEEE International Conference on System, Man, and Cybernetics,

2000, Vol.l, pp.265-270.

[47] M. Watson, “Practical Artificial Intelligence Programming in Java” ,

www. markwat son. com.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

