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Abstract

Recyclable PaUadiam(0)-Catalyzed Addition of Silylstannanes to Terminal 
Alkynes in Ionic Liquids 

By Ivan W. Hemeon 
April 25, 2003

Ionic liquids have been used as solvents for many diSerent organic reactions, often 
providing rate enhancements, selectivity improvements, and aflbrding better yields 
compared to conventional solvents. In this study, the palladium(0)-catalyzed addition of 
trimethyl(tributylstannyl)silane and diphenylmethyl(tributylstannyl)silane to terminal 
alkynes is investigated using two different ionic liquids, 1 -M-butyl-3-methylimidazolium 
hexaOuorophosphate and 1 -n-butyl-3-methylimidazolium tetrafluoroborate, under 
biphasic conditions using diethyl ether as a co-solvent. Five terminal alkynes were used, 
phenylacetylene, 1-decyne, 5-hexyn-l-ol, 5-hexyn-l-ol THP ether, and 6 -chIorohexyne. 
In general, reactions between the silylstannanes and alkynes proceeded efficiently in both 
ionic liquids to give quantitative or near quantitative yields of their addition products as a 
single isomer.

Ionic liquids have gained much popularity of late due to their ability to immobilize 
transition metal catalysts, allowing them to be recycled due to the nonvolatile nature of 
ionic liquids. The tetrakis(triphenylphosphine)palladium(0) catalyst used in these 
sil)dstannation reactions was immobilized in both ionic liquids and shown to be
extensively recyclable without loss of activity. Ionic liquid/catalyst systems were 
recycled ten times in the reaction of phenylacetylene with 
trimethyl(tributylstannyl)silane.
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Quotations

"Do not worry about tomorrow; for tomorrow will take care of 
itself. Each day has enough trouble of its own."

6.

*The most exciting phrase to hear in science, the one that heralds 
the most discoveries, is not 'Eureka!', but 'That's funny.

"If I lived back in the wild west days, instead of carrying a six-gun 
in my holster. I'd carry a soldering iron. That way, if  some smart- 

aleck cowboy said something like 'Hey, look. He's carrying a 
soldering iron! ' and started laughing, and everybody else started 
laughing, I could just say, 'That's right, it's a soldering iron. The 

soldering iron o f justice.' Then everybody would get real quiet and 
ashamed, because they had made fun of the soldering iron of 
justice, and I could probably hit them up for a free drink."

IV
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1.0 Introduction

1.1 Ionic Liquids

1.1.1 Identifying Ionic Liquids

Ionic liquids are interesting materials due to their uncommon properties. Many 

ionic compounds are solids at room temperature and do not reach their liquid phases untü 

much higher temperatures are reached. Sodium chloride, for example, has a melting 

point of 801 °C.  ̂ Most of the compounds that are liquids at room temperature are of a 

molecular, uncharged nature composed of only one species. As well, compounds that are 

liquids at room temperature have relatively low molecular weights and/or have few 

intermolecular attractions to hold them in a solid phase. Ionic liquids are unique in that 

they are compounds composed of ions, having both cationic and anionic species, and are 

liquids at room temperature despite the fact that they are salts. This is counter-intuitive; 

however, when the relative sizes of the cations and anions of common ionic liquids are 

considered, it can be seen that the cation is often a large organic species while the anion 

is often a non-coordinating species. The charges of both cation and anion are often 

spread out over the species so as not to become a point charge. Coupled with the sizes of 

the ionic species, these facts make it seem more reasonable that ionic liquids are in fact 

liquids at room temperature.

Studies by several groups indicate that packing inefftciency between the cation 

and anion is mainly responsible for the existence of ionic compounds that are hquids at 

room temperature.^ Melting points of ionic compounds are generally governed by 

electrostatic interactions, whereas those of organic compounds are generally influenced



by intermolecular hydrogen bonding. Both of these factors help determine the strength of 

the crystal lattice. Many ionic liquids contain anions that are poorly basic and cannot 

hydrogen bond efGciently, inhibiting crystal lattice formation. However, the cations of 

common ionic liquids are often based on aromatic molecules that can stack to form stable 

lattices.^ All of these factors make it difGcult to predict which combinations of cation 

and anion will lead to ionic compounds that are liquids at room temperature.'*'^

Ionic liquids have been known for many years. One of the Grst ionic liquids, 

discovered in 1914, was ethylammonium nitrate [EtNH3][N0 3 ]. This was found to have 

a melting point of 12 °C.^ This compound was formed by reaction of ethylamine with 

concentrated nitric acid, but its report attracted little interest at the time. It was the salts 

containing chloroalummate anions that first saw extensive use by chemists. Ionic 

compounds such as AlCb-NaCl eutectics and pyridinium hydrochloride were used 

mainly in high temperature electrochemical applications throughout the mid-2 0 * 

century.^ One of the first totally organic ionic compounds used as a solvent for kinetic 

studies and electrochemical reactions was tetra-n-hexylammonium benzoate, which was 

developed in 1967.^ Until the late 1970s, room temperature ionic liquids had not reached 

a general audience. This was remedied when the groups of Osteryoung and Wilkes 

"rediscovered" them. These groups managed to synthesize the first chloroaluminate salts 

that were liquids at room temperature; although, research was still restricted mainly to 

their electrochemical qyphcations.^

In the early 1980's the first A)iV-dialkylimidazolium chloroaluminate salts were 

synthesized and shown to be liquids at room temperature. The groups of Seddon and 

Hussey then began to use room-temperature ionic liquids as solvents finr investigations of



transition metal complexes through electrochemical and spectroscopic methods. These 

ionic liquids proved to be ideal solvents for such investigations due to their abilities to 

stabilize a number of species that normally exist only transiently in such molecular 

solvents as acetonitrile and water in addition to their anhydrous, aprotic natures.

The hrst reaction performed in these chloroaluminate ionic hquids was a Friedel- 

Crafls reaction that used the ionic hquid both as a solvent and a catalyst, taking advantage 

of the Lewis acidic nature of the ionic h q u id .T h is  and other early studies showed that 

ionic hquids could be used as solvents far organic reactions, potenhaUy with novel 

results. Catalytic reactions were also performed in chloroaluminate ionic hquids. 

Chauvin et al. used them to dissolve nickel catalysts and investigated the ionic 

hquid/catalyst solution for the dimerization of propene,^^ while Osteryoung et al. studied 

ethylene polymerization in acidic chloroaluminate ionic hquids using Ziegler-Natta 

catalysts.^^

Although these chloroaluminate-based ionic hquids were useful, they were 

extremely sensitive to water and oxygen, thus limiting their usefulness. In 1992, a major 

breakthrough occurred when Wilkes and Zaworotko synthesized a series of air- and 

moisture-stable ionic hquids containing tetrafluoroborate [BF4 ] and hexafluorophosphate 

[PFe] anions.^^ '^ These ionic hquids tolerated being mixed with a wider variety of 

molecules, being much less acidic than chloroaluminate-based ionic hquids, allowing 

ionic hquid use in a much wider range of apphcations. Based on these studies it was 

apparent that many combinations of cations and anions could potentially afford room 

temperature ionic hquids.



Several cations are available on which to base an ionic liquid. These consist of 

quatemized nitrogen or phosphorus atoms with branched or lengthy alkyl chains to 

prevent close-packing of cation and anion, forcing the compound to remain as a liquid at 

room temperature. Tetraalkylphosphonium and JV-alkylpyridinium cations have been 

used to  synthesize some ionic 1 iquids; however, tetraalkylammonium cations are more 

common and -dialkylimidazolium cations are the most common (Figure 1).̂  ̂ Salts 

of dialkylimidazolium cations have a wide array of physico-chemical properties. They 

are easily prepared and many different groups can be placed on the nitrogen atoms of the 

imidazole ring to afbrd ionic liquids with different properties. They also tend to interact 

weakly with anions and are more thermally stable than tetraalkylammonium cations.

CATIONS )

R'-L'R"
R̂

NI
R

ANIONS )

"AlCL "AlgCI;

"BF* CFgCOz" 
Cr.Br- CFaSOg-

"PFg "NfCFaSOslz 
SbFg "BR^

Fzgwe 7. Ozho/M aW anion.; ihai con^pose com/non ionic ii^aick

Although the length and nature of the alkyl groups on the imidazolium cation 

have some influence over the physical properties of the ionic liquids, the nature of the 

anion has far more. Two main types of anions are available: (1) water- and air-sensitive 

and (2) water-stable. Of the frst kind, the chloroaluminate anions are most widely



known. These anions not only form room-temperature liquids when complexed with 

dialkylimidazolium cations, they af&rd liquids with tunable Lewis acidity. Typically 

Aumed by the reaction of aluminum chloride AICI3 with dialkylimidazolium chloride 

salts, these ionic liquids can be Lewis basic if less than one equivalent of AICI3 is added 

(the predominant species being Lewis basic Cl'), Lewis neutral if exactly one equivalent 

is added (the predominant species being Lewis neutral AlCL"), and Lewis acidic if more 

than one equivalent is added (the predominant species being Lewis acidic AlzCl?").̂  ̂

These liquids can be made mildly acidic by adding a slight excess of AICI3 or strongly 

acidic by adding a two-fold excess of AICI3 . These ionic liquids decompose rapidly in 

the presence of water. As such, they are rather tedious to work with as great care must be 

taken to exclude and water Aom all reagents to be introduced into the ionic liquid, 

including its components.

With the discovery ofthe moisture stable imidazolium-based ionic liquids in 1992 

came die development of many more stable anions. As stated earlier, the anions IBF4  and 

TFô were among the first to be used to generate moisture-stable ionic liquids based on 

imidazolium cations. These two anions are both non-coordinating and are fairly stable 

thermally, but interestingly enough liquids based on TBF4  are miscible with water, while 

those based on TF^ are immiscible with water. This has led to the classiAcation of 

moisture stable ionic liquids into two groups: (1 ) water-soluble ionic liquids and (2 ) so- 

called '"hydrophobic" ionic liquids. It has been shown that the hydrophobic ionic liquids 

are in fact hygroscopic (as are most imidazolium-based salts), having a point at which 

they become saturated with water and form a second phase. These two anions make up 

the most commonly used moisture stable ionic liquids; however, several others exist.



Nitrate, tiifluoroacetate, and triflnorometbanesulfonate (triflate), chloride and bromide 

anions all form water-miscible imidazohum-based ionic liquids. 

Bis(trifluorometbanesulfbnyl)amide (NTfz"), hexafluoroantimonate, and tetraalkylborate 

anions aU form water-immiscible imidazolium-based ionic liquids.

As more studies are published regarding the water solubilities of different ionic 

liquids, it is becoming apparent that there is more to determining water miscibility than 

simple examination of the ionic species present The commonly used ionic liquid 1-n- 

butyl-3 -methylimidazolium tetrafluoroborate [bmim]BF4  is widely thought to be miscible 

with water. Below 0 °C, however, the solubility decreases.^ As well, when the alkyl 

chain on the methylimidazolium ring has more than six carbons, the tetrafluoroborate salt 

becomes water immiscible.^' The commonly used ionic liquid [bmimJPFg is water 

immiscible while the TFg salt of 1,3-dimethylimidazolium is water soluble.'^ It is 

there&re misleading to  classify TFg as a water immiscible anion and 'BF4 as a water 

miscible anion. Ionic 1 iquids should therefbre beelassiSed on thebasis ofindividual 

cation/anion combinations.

Studies by several groups have shown that water hydrogen bonds to the anion, 

existing in a &ee state rather than self-aggregating. This suggests that the '"hydrophobic" 

anions are poorly basic and cannot hydrogen bond to water efGciently, although since 

even '"hydrophobic" ionic liquids are hygroscopic it seems that these anions can hydrogen 

bond to some extent.^ It is also this lack of hydrogen bonding ability that contributes to 

these compounds being hquids at room temperature. As well, cations with large alkyl 

groups such as l-dodecyl-3-methylimidazohum are immiscible with water, likely as a



result of the hydrophobic nature of the long alkyl chains, even when associated with 

anions normally thought to give water miscible ionic liquids such as triflate.^

There also exists a limited number of examples of a unique type of ionic liquid, a 

zwitterionic ionic liquid, in which the cation and anion are part of the same molecule. In 

these species, the counterions are covalently linked and there are no separate counterions. 

One zwitterionic ionic liquid has an alkylsulknate bound to the imidazolium ring, and 

another has a sulfonamide bound to the imidazolium ring (Figure 2).̂ ^

V
R-N^N-CHzCHzCHzSOs" R '.^^j.^-CHzCHzCHz "NCHzCFg 

Ffgwe 2. Zw/fienoMzc rqprayenf zMgzwi Zfenoni c  ionic iigwifk

It may not be proper to call these compounds 'Ionic liquids" as they have relatively high

melting points -  the sulfonate-containing species melts at 150 °C. They do however 

show that it may be possible to synthesize zwitterionic ionic liquids based on such 

structures. These compounds have unique characteristics in that they present very high 

ion densities but their ions cannot migrate and therefore act as excellent ion conductive 

matrices in which only added ions can migrate.^^

1.1.2 Preparation of ImldazoUnm-Based Ionic Liquids

As the use of ionic liquids becomes more widespread, an increasing number of 

chemical companies are selling various commonly used ionic liquids. The commercial



availability of ionic liquids may be attractive to a novice user wishing to accomplish a 

synthetic step using them for one or two steps rather than using a more conventional 

solvent, allowing the chemist to use the ionic liquid without having to become an "ionic 

liquid chemist." However, the high cost of these commercially available ionic liquids is 

likely a deterrent to their more widespread use. For example, 5 g of [bmim]??^ cost $93, 

5 g of [bmimJBF^ cost $95, and 5 g of [bmim]Cl cost $40 6 om Aldrich in the 2003-2004 

catalogue.

The syntheses of most ionic liquids are relatively straightforward and can he 

performed for a signiScantly smaller cost compared to that of purchasing ionic hquids 

directly 6 om a suppher. For example, 1 L of 1 -methylimidazole cost $251, 1 L of 1- 

chlorobutane cost $8 8 , and 500 g of 60% HPFe cost $70 &om Aldrich in the 2003-2004 

catalogue, allowing [bmimjPFe to be synthesized 6 )r less than 5% of the cost of its 

purchase, b ased on raw material price. Imidazolium-based i onic 1 iquids are c ommonly 

generated through metathesis reactions or acid/base reactions between an imidazolium 

halide and a salt or acid that contains the desired anion (Figure 3).



N '^ N  + R -C I
\ = J

reflux.

AICI3

-R
"C l

■N@N

M*(Ar

+ M *cr (ppt) + HCI (aq)

M = LI, Na, K, Ag, NH4 
A = BF4, PFg, SbFg, NO3, CH3CO2

The synthesis of the imidazolium halide simply involves refluxing 1- 

methylimidazole with the ^)propriate alkyl halide such as 1-chlorobutane. The 

imidazolium chloride salt forms a second layer that is easily purified by washing with 

several portions of ethyl acetate.^ If an alkyl group other than methyl is desired in the 1 

position, imidazole can be used as the starting material. This can be deprotonated under a 

variety of conditions, using sodium metal, sodium ethoxide,^ or sodium hydride.^^ The 

resulting anion can then be reacted with two equivalents of the ^ipropriate alkyl halide to 

obtain a symmetrical imidazolium salt. Reaction with one equivalent of one alkyl halide 

Allowed by reflux with a second alkyl halide results in the generation of a 

nonsymmetrical imidazolium salt. Alternative synthetic methods for imidazolium halides 

have been developed that do not entail such long reaction times or such high excesses of 

alkyl hahde in the interests of making ionic liquid syntheses more environmentally 

sound. Varma and Namboodiri have been investigating imidazolium halide synthesis



using sonication at temperatures far lower than reflux^ and using microwaves to generate 

products with reaction times of less than two minutes.^

There are three types o f  reactions that c a n b e p  erfbrmed with the imidazolium 

halide to exchange the halide for another anion: acid/base reactions, metathesis reactions, 

and direct combination. Although the acid/base method was used to generate one of the 

Grst ionic liquids (ethylammonium nitrate 6 om ethylamine and nitric acid^, metatheses 

methods were commonly used to generate ionic liquids during most of their history. 

Only recently have acid/base methods seen increased usage. Direct combination is a 

specialized synthetic pathway used when the imidazolium halide is treated with a Lewis 

acid, generating the ionic liquid as the only product.

Metathesis involves taking two salts and swapping their ionic components. For 

example, a common method for the preparation of [bmim]BF4 is to suspend [bmimjCl 

and NaBF4 in acetone with stirring. AAer an extended reaction period, the ions exchange 

to give NaCl as a precipitate, leaving [bmim]BF4  dissolved in acetone. The inorganic salt 

is ramoved b y filtration and the s olvent e vaporated from the f iltrate, 1 eaving t he ionic 

liquid behind.^ A number of salts have been used in metathesis reactions with 

imidazolium halides, including Li^, N a \ K^, and NH4  ̂salts of "1BF4  and TF^. Silver(I) 

salts o f t  hese anions h ave a Iso b een u sed w ith water as the s olvent. Thep recipitated 

AgCl that forms has an extremely low solubihty in water and can be removed by 

Gltration.^

PuriScation of these ionic liquid products can be difBcult since residual salt by­

product or unreacted imidazolium halide can be present. This can be problematic since 

hee halide anions are known to interfere with transition metal catalyzed reactions and

10



also increase (he viscosity of ionic liquids.'^ The metathesis reactions performed with 

aIWi metal salts often do not go to completion, as evidenced by Seddon et al. in a study 

his group performed to determine which method of preparation yielded the cleanest ionic 

liquid. As determined by ion-selective electrodes, (he chloride content of ionic liquids 

formed by metathesis reactions between imidazolium chlorides and sodium salts was 

high while (he sodium content was very low, indicating that (he chloride was from 

unreacted imidazolium chloride.^^ Removal of (his unreacted starting material is easier to 

accomplish with water immiscible ionic liquids as they can be washed repeatedly with 

water in  attempts to  extract the imidazolium chloride. T his does result in some ionic 

liquid loss as they are slightly soluble in water. PuriGcation of water miscible ionic 

liquids is more difficult. Sometimes they can be dissolved in dichloromethane and 

washed with water, but this also results in some ionic liquid loss. The study by Seddon et 

al. also showed that metathesis reactions involving silver(I) salts provided products with 

the least amount of halide contaminant, likely stemming from the insolubility of silver(I) 

chloride in water, but was also very costly due to the expense of the silver salts.

Acid/base synthesis of ionic liquids is much more simple. It involves the reaction 

of an acid such as HBF4 or HPFe as an anion source with an imidazolium chloride as a 

base. Performed in water, (hese reactions generally proceed to completion with the 

production of HCI. With water miscible ionic liquids, (he HCI is removed by heating 

under vacuum resulting in near quantitative yields of product. These ionic liquids can 

also be dissolved in dichloromethane and washed with water, but this results in loss of 

some yield.^° With water immiscible ionic liquids, the product can be washed 

successively with water until the washings are pH neutral, resulting in a slightly

11



decreased yield.^ With the acid/base method there is no need for tedious hltration of 

hnely-divided metal halide salts and little cause for worry about incomplete reaction. 

The study performed by Seddon et al. showed that this method provided ionic liquids that 

were virtually halide-6 ee, containing similar trace amounts to ionic liquids generated 

hornmetatheses with silver(I) salts.^^ S ince this method is less expensive thanusing 

silver(I) salts, it seems superior.

Direct combination of the imidazolium halide with a Lewis acid results in an ionic 

liquid with no by-products. The Lewis acid abstracts the halide base to form an anionic 

species associating with the imidazolium cation. Drawbacks with these types of ionic 

liquids are that they are often water-sensitive and are often Lewis acidic themselves. The 

best known Lewis acid used to generate ionic liquids 6 om imidazolium chlorides is 

aluminum trichloride AICI3 , generating an 'AICI4  anion. As mentioned earlier, the 

predominant aluminum species in the ionic liquid is dependent on the amount of AICI3 

added. Since "AICI4  is Lewis neutral, if  less than one equivalent of AICI3 is added the 

ionic liquid will be Lewis basic due to excess chloride being present. At exactly one 

equivalent of AICI3 , the ionic liquid will be Lewis neutral. With more than one 

equivalent of AICI3 added, it begins to react with 'AICI4 to produce complex anions such 

as "AI2CI7, which are Lewis acidic. Thus these types of ionic liquids have tunable Lewis 

acidities that can be taken advantage of for various applications. Other less commonly- 

used Lewis acids include BCI3 , CuCl, and SnClz.^
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1.1.3 Novel Properties of Ionic Liquids

Ionic liquids have several unique properties that are absent in conventional 

molecular solvents. Being ionic, they can provide a unique solvent environment that may 

be able to better stabilize transition states or intermediates of reactions compared to 

conventional solvents, thus influencing rate, yield, and selectivity of various reactions. 

Many ionic liquids contain non-coordinating anions and as such ionic liquids form a new 

class of solvent: polar, aprotic, and non-coordinating. They can therefore dissolve a wide 

variety of organic, inorganic, and organometallic reagents, bringing together novel 

combinations of reactants in the same phase.^^

Ionic hquids have generally been accepted to be polar in nature simply because 

they are composed of ions, the thinkiag being that if a molecule with a large dipole 

moment (such as dimethylformamide or water) can be polar, then species that actually 

have formal positive and negative charges on them should be extremely polar. This 

claim often attracts debate, especially considering the interesting solvent miscibihty 

properties of ionic hquids. Most, if not all, ionic hquids harm a biphasic mixture with 

non-polar solvents such as hexane and toluene and even shghtly polar solvents such as 

diethyl ether. Solvents of intermediate polarity have interesting solubilihes; ethyl acetate 

forms a second phase when mixed with [bmimJPpG but is miscible with [bmim]BF4  while 

THF has the opposite effect, being miscible with [bmim]PF6 but not with [bmim]BF4 . 

Halogenated solvents such as dichloromethane and chloroform seem to be miscible with 

most ionic hquids, while acetonitrile (a fairly polar solvent) has been used as a 

recrystahizahon solvent for ionic hquids that melt shghtly above room temperature.
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Perhaps unexpectedly, water (the most polar solvent) does not dissolve in [bmim]PF@ and 

is only miscible with [bmim]Bp4  above 5 °C. These diSering solvent miscibilities have 

been described as a useful property of ionic liquids, since reactions can be performed in 

them and the products can be extracted using the appropriate organic solvent. This also 

opens up possibilities for biphasic and even triphasic reactions containing organic, 

aqueous, and ionic liquid phases.^^

Several studies have been undertaken to assess the actual polarity of ionic liquids. 

Most of them have used solvatochromie dyes to measure solvent-solute interactions.^'^^ 

The wavelength absorption bands of these dyes change depending on the magnitude of 

solvent interactions, registering effects from solvent dipolarity, hydrogen bonding, and 

Lewis acidity.’  ̂ These studies have shown that ionic liquids have polarities in the 

vicinity of short-chain primary alcohols, putting them near the top of the solvent polarity 

chart. Studies using the endo/kro ratios of Diels-Alder adducts as a measure of polarity 

conhrm the Endings of the solvatochromie dye studies, as more polar media increase the 

amount of endo product fbrmed.^^

Perhaps the most intriguing property of ionic liquids is that being ionic in nature, 

they possess no measurable v^our pressure. This has many positive implications. This 

means that ionic liquids could be a safe alternative to toxic, noxious, volatile solvents 

used on a regular basis in laboratories worldwide. Coupled with the non-Eammable 

nature of ionic liquids, this makes them a very s afe solvent alternative. This also has 

environmental beneEts. Since ionic liquids don't evaporate, they cannot contaminate the 

atmosphere as o ther m ore v olaEle s olvents do. T his p roperty also a Hows i onic 1 iquid 

usage to have economic and efEciency-oriented beneEts. Since the solvent does not

14



ev!QX)rate, it can simply be Tamshwxi cleam of any contaminants after a reaction has been 

performed in it and re-used. This is an attractive imoperty for many chemists given the 

potential high cost of purchasing ionic liquids. The nonvolatility of ionic liquids coupled 

with their ability to dissolve inorganic and organometallic reagents has made these 

systems extremely useful for catalytic reactions since a potentially expensive catalyst can 

be immobilized/dissolved in the ionic hquid, used for a reaction, and after the products 

are removed 6 om the system the catalyst can often be re-used.^^

Most ionic liquids are also very thermally stable. Most have wide hquid 

temperature ranges; [bmim]BF4  for example melts at "81 "C and doesn't decompose until 

over 300 °C.^ This wide temperature range allows extensive kinetic studies to be 

performed in ionic hquids. The large electrochemical window of ionic hquids coiq)led 

with their wide thermal operating range makes them excellent candidates for 

electrochemical applications.'* It has been suggested that some ionic liquids are less 

stable than others. For example, TFg based ionic hquids have been reported to 

decompose to generate phosphate and HF in the presence of water at elevated 

temperatures below 100 The thermal stabihty of most ionic hquids, along with 

their lack of vapour pressure, allows distihation to be used far isolating relatively volatile 

products of reactions performed in them rather than using volatile solvents for extraction; 

azeotrope formation is not a concern with ionic hquids.^

Gases are very soluble in ionic hquids. This has great implications for reactions 

in which one of the reagents is a gas, such as catalytic hydrogenations, carbonylations, 

hydroformylations, and alkene polymerization involving low molecular weight 

substrates.^' In addition to this, supercritical carbon dioxide is h i ^ y  soluble in many
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ionic liquids but does form a second phase after a certain point. Great attention is being 

paid to the use of siq)ercritical CO2 for extracting products 6 0 m reactions performed in 

ionic liquids as a more environmentally-Mendly alternative to using volatile organic 

solvents 6 )r such purposes.^ '̂^ '̂^ '̂^

Ionic liquids are being included in many lists as possible alternatives to 

conventional organic solvents and as possible components for "greener" chemistry. In 

fact, an entire issue of the journal Green CAemüi/y has been dedicated to articles dealing 

with ionic liquid research (volume 4, issue 2, 2002). There is, however, a great lack of 

knowledge regarding the toxicity of ionic hquids and their potential environmental 

impacts. It is naive to state that, because they are nonvolatile, ionic liquids cannot 

contaminate the environment and can be contained. Invariably they wiU End their way 

into the environment through "mechanical losses" or partial dissolution in an aqueous or 

organic phase during product extraction.^' Work in these areas is now beginning to 

proceed. One study has at last measured LD50 values for the ionic hquid 3- 

hexyloxymethyl-1 -methylimidazolium tetrafluoroborate and found them to be 1400 

mg/kg in male Wistar rats, concluding that these ionic hquids can be safely used."*' Far 

more toxicity studies are required, th o u ^  since LD50 values only describe acute toxicity 

as opposed to chronic toxicity. Work is proceeding on development of ionic hquids that 

contain imidazohum alkyl chains that are potentially easily biodegradable.^^ These 

studies have also shown that [bmimjPFe is also biodegradable to a certain extent, 

measuring the amount of CO2 produced by wastewater microorganisms incubated with 

the compound to be tested in an aerobic aqueous solution. Models are also under 

development to aid in sustainable ionic hquid development.^^ These models are based on
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stmcture-activity relationship studies of various ionic liquids that correlate structure with 

environmental and health concerns such as release, spatiotemporal range, 

bioaccumulation, and biological activity to determine the magnitude of risks involved 

when using ionic liquids. These studies have also led to the proposal of a possible 

metabolic degradation pathway for imidazolium-based ionic liquids involving oxidation 

of the N-alkyl chains by cytochrome P4 50 in the endoplasmic reticulum of any cell. Once 

oxidized to contain a hydroxy functionality, the alkyl chain can be further processed 

metabolically and enter the same degradation pathway as fatty acids, leaving imidazole 

behind.

Ionic liquids have also attracted criticism due to their incorporation of 

halogenated components that are hydrolytically or thermally unstable such as "AICI4 and 

TFe anions that can release toxic and corrosive HF and HCl into the environment. 

Although there are several i onic 1 iquids that do not contain h alogens, t hey often have 

melting points above 40 °C and/or are unstable in aqueous solutions or at higher 

temperatures (e.g. 80 °C). Work is proceeding on the development of halogen-free 

anions such as octylsulfate to generate ionic liquids such as [bmim][M-CgHn0 S0 3 ] that 

are liquids at room temperature and stable at high temperatures. The aforementioned 

ionic liquid has been successftilly used as a solvent for rhodium-catalyzed 

hydroformylations of alkenes.*^ Some have argued that the use of ionic liquids as green 

solvents is somewhat of a paradox since volatile organic solvents are frequently used to 

extract products from them. While it is true that many processes involving ionic liquids 

are not completely "green," in many cases these processes are "greener" than they were. 

The ionic liquid may be replacing an environmentally unacceptable solvent, lowering
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safety risks and environmental concerns. Products of organic reactions could be 

extracted using supercritical CO2 , a more environmentally benign solvent than the 

commonly used volatile organic solvents.^'

1.2 Uses of Ionic Liquids

1.2.1 As Solvents for Non-Transition Metal-Catalyzed Reactions

For many years after their discovery, ionic liquids were used primarily as 

electrolyte sources for batteries and other electrochemical applications. It was the late 

1980s before the potential 6 r use of ionic liquids as solvents for organic reactions was 

realized. It was thought, and later proved true, that ionic liquids could o8 er several 

benefits as solvents. Most notable of these were the potential for rate enhancements by 

stabilizing charged transition states and improving chemo- and regioselectivities in 

comparison with other solvents. In addition, ionic liquids offered the potential to 

increase the “greenness” of chemical reactions by allowing easy solvent recovery and 

reuse due to their nonvolatile nature. Since the late 1980s, many different types of 

organic r eactions h ave b een p er&rmed in i  onic 1 iquids, o ften withb enefits o ver u sing 

conventional solvents, and several reviews have been published on the subject.^ '̂^  ̂'*̂ ''̂

As the most commonly used ionic liquids at the time contained anions based on 

AICI3 , the first applications of ionic liquids as solvents were toward reactions requiring 

Lewis acid catalysis. Since these ionic liquids had tunable Lewis acidities, they were 

perfect solvents for Friedel-Crafts alkylation and acylation reactions. The first alkylation 

reactions were performed with benzene and different alkyl chlorides which gave products
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in good yields, but gave mixtures of many different isomers of Friedel-Crafts products 

containing variable numbers of alkyl groups/^ Acylation reactions on simple aromatic 

compounds with acetyl chloride proceeded with much better results, providing yields 

similar to those reported in the literature with excellent regioselectivities.^^ Acylation 

reactions on ferrocene also proceeded with differing selectivities and yields depending on 

the acid chloride/anhydride used and the amount.^

The Diels-Alder cycloaddition reaction between 1,3-dienes and dienophiles 

(electron-poor alkenes) was also one of the earliest reactions to be performed in ionic 

liquids. They were performed first in chloroaluminate-based ionic liquids since many 

Diels-Alder reactions are Lewis acid-catalyzed. The reaction between cyclopentadiene 

and methyl acrylate proceeded with enhanced rate and ew/o-selectivity compared to 

conventional solvents.^ The same reaction was performed in several air-stable ionic 

liquids, also giving high endb-selectivity. The reason for this increase in ionic liquids has 

been attributed to increased solvation of the transition state leading to the endb isomer

over that leading to the exo isomer (Figure 4).50
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The transitioii state leading to the formation of gTwk isomer has the dipole moments of 

the diene and dienophile aligned, increasing the overall dipole moment of the transition 

state allowing it to be solvated by ionic liquids and thus allowing faster formation of the 

ew/b isomer. The transition state leading to the oco isomer has the dipole moments of the 

reactants pointing in opposite directions, giving the transition state a smaller dipole 

moment.

The Diels-Alder reaction was then per&rmed in a wider array of air-stable ionic 

liquids betweœ various dienes and dienophiles, most of which gave enhanced yields and 

enJb-selectivity, providing a viable alternative to toxic and explosive lithium 

perchlorate/diethyl ether mixtures. In the case of isoprene reacting with but-3-en-2-one 

in [bmimjPFg, a catalytic amount of zinc iodide was added to promote the reaction which 

increased the product yield from 11% to 98%.^' The seldom-used trialkylphosphonium 

tosylate ionic liquid was also used for Diels-Alder reactions of isoprene with various 

dienophiles showing high regioselectivity without Lewis acid addi t ion . Ion i c  liquids 

themselves have also been used as catalysts for Diels-Alder reactions, an air-stable ionic 

liquid being used in dichloromethane in 20 mol%. When performed at low temperatures, 

the reaction did not proceed without the addition of ionic liquid.^^

The Diels-Alder reaction between cyclopentadiene and methyl acrylate has been 

used as a probe to measure the polarity of ionic liquids (as stated earlier) since the 

ewfo/eco ratio of the Diels-Alder adduct increases with increasing polarity of the 

solvent.^^ The ionic liquid [bmimjPFg has also been used as an additive for the Diels- 

Alder reaction conducted using microwave irradiation in 1,2-dichloroethane. Addition of
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the ionic liquid causes an increase in the dielectric constant of the medium over that of 

1,2-dichloroethane, allowing the microwave energy to be efGciently transmitted through 

an ionic conduction mechanism. This solvent system aflbrded a rate enhancement for the 

intra- and intermolecular hetero-Diels-Alder reactions.^ Air-stable ionic liquids have 

also been used as solvents for 1,3-dipolar cycloaddition reactions using different 

dipolarophiles to give rate enhancements and improved yields.^^

Different types of condensation reactions have been performed under different 

conditions in ionic liquids. The benzoin condensation, a self-condensation reaction 

undergone by benzaldehyde to form benzoin, was performed in an N-alkylthiazohum 

tetrafluoroborate ionic liquid (similar to imidazolium in that a sulfur atom replaces one of 

the nitrogen atoms). This was promoted by a catalytic amount of triethylamine, albeit 

very slowly as the reaction proceeded in 80% yield after a week.^ The authors believed 

that the triethylamine removed the weakly acidic proton on the carbon between the 

heteroatoms on the thiazolium ring to give a carbene and that this was the active 

condensation promoter, but provided no evidence to this effect. Other types of 

condensation reactions have given better performances; the condensation of substituted 

benzyl alcohols, generally veratryl alcohol (3,4-dimethoxybenzyl alcohol), was 

performed in a tetraalkylammonium ionic liquid.^ The reaction was catalyzed by 

phosphoric acid to give cyclotriveratrylenes in good yields. The ionic liquid was 

reusable, but after 6ve cycles yield decreases were observed due to buildup of by­

products. The three-component Biginelli condensation between p-dicarbonyl 

compounds, aldehydes, and urea to form 3,4-dihydropyrimidin-2(17f)-ones was 

performed neat with a catalytic amount of [bmimjBF^ or [bmim]PF6. Less than 1 mol%
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of ionic liquid was able to give a rate enhancement and aSbrd products in near 

quantitative yields. The reaction did not proceed without the addition of the ionic liquid, 

but little speculation was made regarding the role of the ionic liquid.^^

Several reactions involving the replacement of the oxygen atom of carbonyl 

compounds have also been performed in ionic liquids. Heterocyclic compounds 

(benzoxazines) have been prepared &om the reaction of benzaldehyde with 2- 

aminobenzyl alcohol in several air-stable ionic liquids.^^ These reactions generate a new 

heterocyclic six-membered ring containing the nitrogen atom of the amino groiq) and an 

oxygen atom, either 6om the benzyl alcohol or the carbonyl of the aldehyde. These 

reactions proceed in quantitative yields and the ionic liquid can be recovered and reused 

with no ill effects. Alkene-generating Wittig reactions between stabilized phosphorane 

ylides and various aldehydes have been performed in [bmim]BF4  with good yields.^ The 

reaction gives an alkene resulting from the exchange of the carbonyl oxygen of the 

aldehyde with the organic group doubly-bound to the phosphorus atom of the ylide, in 

addition to triphenylphosphine oxide PhsPO. The separation of the alkene from the by- 

product has often been troublesome, but the ionic liquid holds the PhsPO by-product 

while allowing the selective extraction of the alkene with diethyl ether. The PhsPO can 

be removed using another solvent such as toluene and the ionic liquid reused. The 

authors demonstrated the utility of ionic liquid recycling by showing that different 

aldehydes could be used in successive ionic liquid cycles without ül effects (most authors 

perform recycling studies using the same reagents successively). Base-promoted 

Knoevenagel and Robinson annulation reactions have also been performed in an air- 

stable ionic 1 iquid. T hesereactionsuse enolate chemistry to  replace carbonyl oxygen
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atoms with carbon atoms and aSbrded products in good yields in the ionic liquid that was 

recyclable.^^

Oxidation reactions have been successfully performed in ionic liquids. The air- 

stable ionic liquid [bmim]BF4 has been used as an extractive aid in the MnOz oxidation 

of the allylic ether moiety of codeine methyl ether to a 1,3-diene system, generating 

thebaine (Figure 5).^^

O Twf I MnOa
[bmimjBF̂ /THF

I J CH3

codeine methyl ether thebaine

Figure J. Oxiduiion q/'codeine meiAyZ eiAer io iAeAaine ufing m ionic Ziquid;

The oxidation generally proceeds to good conversion levels in conventional solvents, but 

separation of the products from the large excess of MnOg and associated impurities is 

extremely difficult. The ionic liquid immobilized the MnOa and impurities after reaction, 

allowing complete and selective extraction of the oxidized product. Another type of 

oxidation performed in [bmimjBF^ and [bmimjPFg is the epoxidation of electrophihc 

alkenes. This reaction proceeds using the hydrogen peroxide oxidant in slight excess to 

give epoxides with a rate enhancement over using water as a solvent. This procedure also 

gave no epoxide hydrolysis products.^^

Reductions of aldehydes and ketones have also been performed in ionic liquids. 

Common aldehydes and ketones have been reduced to alcohols with sodium borohydride
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in [bmimjPFe in good yields and the ionic liquid was recyclable.^ Trialkylboranes have 

also been used for the same purpose in air-stable ionic liquids, although only one alkyl 

group of the trialkylborane was utilized, requiring equimolar quantities of trialkylborane 

and aldehyde.^^ The reactions proceeded at room temperature, but went much faster at 

100 °C. Alcohols were generated in quantitative yields and the ionic liquid was able to 

be recycled. In an interesting application of ionic liquids, ketones were reduced in 

[bmimjPFg using immobilized baker's yeast.^ These reactions proceeded with good 

yields and high enantiomeric excesses, showing the potential for whole-cell 

transArmation reactions in ionic liquids.

Alkylations of carbonyl compounds using relatively non-basic organometallic 

reagents have been performed in ionic liquids. Tetraallylstannane was reacted with 

several aldehydes to prepare homoallylic alcohols in [bmim]BF4  and [bmimjPFg with 

good yields.^^ All four allyl groups from the tin atom were transferred and although the 

yields were not improved over those obtained when using methanol as a solvent, the ionic 

liquid was recycled without loss of activity. The same reagent was added to Weinreb 

amides (Figure 6) and JV-protected a-aminoaldehydes, generating A-protected 

allylketones and iV-protected homoallylic alcohols.^
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As with additions to  simple alkyl or aromatic aldehydes, the yields obtained from the 

ionic hquids showed no improvement over those obtained horn methanol. Allylation of 

aldehydes and ketones was also carried out in air-stable ionic hquids using 

ahyldhsopropoxyborane, generating homoallyhc alcohols in good yields and giving 

greater diastereofacial selectivity than in conventional solvents. The ionic hquid could be 

reused, providing the same product yields and selectivities.^ The Refbrmatsky reaction 

involving the generation of an organozinc reagent horn zinc and an a-halo ester fbhowed 

by addition of the ester to an aldehyde to give an alcohol has been performed in various 

air-stable ionic hquids. As well, the generation of alkynylzinc reagents horn zinc salts 

and terminal alkynes followed by their addition to aldehydes to give propargyhc alcohols 

has been accom plished.In  another type of alkylation reaction, vinylboronic esters and 

acids have been used to transfer substituted vinyl groups to phenylselenyl chloride, 

generating vinylselenides stereospecihcahy; the ionic hquid could be recycled.^'

Rearrangements have been shown to take place in ionic hquids. The Beckmann 

rearrangement of ketoximes to lactams and amides proceeded to good yield in various 

air-stable ionic hquids, enhanced by the addition of PCl;.^^ The Fries rearrangement of
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various phenyl benzoates was accomplished in a chloroaluminate ionic hquid. This 

Lewis acid-catalyzed migration of the benzoyl group to another position on the phenyl 

ring to generate o- and p-hydroxybenzophenones beneSted from a rate enhancement and 

products were obtained in hi^i selectivity (orfAo vs. pom) depending on the substrate.^  ̂

In addition to these types of rearrangements, several studies regarding alkane cracking 

and isomerization in ionic hquids have been undertaken. Isomerization and cracking of 

parrahns, cracking of alkanes and cycloalkanes, catalytic cracking of polyethylene, and 

alkylations of isobutene with olehns have ah been investigated in chloroaluminate ionic 

hquids.^^

Ether cleavages have been performed in ionic hquids, providing a general method 

for the cleavage of both cychc and acychc ethers. Symmetric ethers were acylahvely 

cleaved in a halogenoaluminate ionic hquid derived 6om [emimjI/AlCl]. In the presence 

of benzoyl chloride, acychc ethers were cleaved to give an alkyl benzoate and an alkyl 

iodide while cychc ethers were cleaved to give an co-iodobenzoate e s te r .E th e rs  have 

also been cleaved in a novel ionic hquid generated 6om the reaction of 1- 

methylimidazole and two equivalents of anhydrous HBr, giving a 3 -methylimidazohum 

cation and a mixture of "Br, "HBrz, and UzBrs anions.^^ The cleavage of acychc ethers 

afkrded alcohols and alkyl bromides while the cleavage of cychc ethers afkrded m- 

bromoalcohols with rate aihancements. In some instances, however, dibrominated 

compounds were isolated due to high temperatures used to distill products &om the ionic 

hquid.

Ionic hquids have been used in a number of other reactions commonly performed 

by organic chemists. EsteriGcation reactions between acetic acid and various alcohols
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were performed in chloroaluminate ionic hqnids in order to take advantage of the Lewis 

acidity of the medium/^ Yields of acetate esters were higher than obtained when using 

sulfuric acid as a solvent. As well, the ionic liquid was recycled on several occasions, 

something not normally done with the air- and moisture-sensitive chloroaluminate ionic 

liquids. Air-stable ionic liquids have been used for the generation of tetrahydropyran-2- 

yl (THP) ethers &om alcohols and 3,4-dihydro-2H-pyran with different acid catalysts.^ 

The reactions proceeded to nearly quantitative yields with short reaction times, generally 

less tban tenminutes. The ionic 1 iquidcontaining the acid catalyst was also recycled 

extensively, requiring the addition of 6esh catalyst periodically. Electrophilic nitration 

of aromatic molecules has been achieved in diSerent air-stable ionic liquids with 

diSerent nitrating agents. While some nitrating agents reacted with the ionic liquids, 

others afforded nitrated products in  good yields and the ionic 1 iquids were r ecyclable. 

Bromination reactions of alkenes and alkynes have been shown to proceed 

stereospecifically in various air-stable ionic liquids using only bromine and the 

alkene/alkyne as reactants.^^ These reactions proceed in nearly quantitative yields very 

quickly and the ionic 1 iquid canbe  reused. N ucleophilic displacement reactions were 

performed in [bmimjPFg, generating phenylacetonitrile 6om the reaction between 

cyanide and benzyl chloride. The phenylacetonitrile could then be cycloaUcylated with 

1,4-dibromobutane in the presence of potassium hydroxide, adding a cyclopentyl ring to 

the benzyiic position.^ I ndole and 2 -naphthol were selectively W- and O-alkylated in  

[hmim]PFg and [bmim]BF4  with alkyl halides in the presence of potassium hydroxide, 

comprising another type of nucleophilic displacement reaction.^^ The ionic liquids could 

be recycled simply by Sltering off potassium halides and unreacted potassium hydroxide.
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Since many different types of standard organic reactions can be perfDrmed in 

ionic liquids, often with rate, selectivity, and yield enhancements coupled with solvent 

recyclability, one would expect to see ionic liquid use in more synthetic pathways. It 

seems as though the use of ionic liquids as solvents is still in embryonic stages as most of 

the reactions carried out in them are not for the purpose of obtaining products for 

subsequent u se, but s imply to s e e if th e r  eactions canbe  d one in  i onic 1 iquids and to 

determine their effects. One example of a synthetic route to a pharmaceutical compound 

has been published that uses an ionic liquid as a solvent for both steps of the two-step 

synthesis.^ The synthesis of Pravadohne, a non-steroidal anti-inflammatory drug, was 

synthesized in two steps (Figure 7).
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The synthesis started with an #-alkylation of 2-methylindole with l-(iV-morpholino)-2- 

chloroethane hydrochloride in [bmimjPFg using solid sodium hydroxide as a base, giving 

quantitative yields of the alkylated product; the ionic liquid was recycled. The second 

step involved a Friedel-Crafts acylation at the 3-position of the indole ring using 4- 

methoxybenzoyl chloride. This reaction was performed in a chloroaluminate ionic hquid, 

but resulted in the formation of by-products due to the high acidity. The reaction was 

also performed in [bmimJPFg, giving near quantitative yields of Pravadoline without the 

production of by-products and without the addition of Lewis acid. Pravadoline was 

isolated in 90-94% overall yield and the ionic hquid was recycled, showing the utihty of 

ionic hquids for replacing conventional solvents in many standard synthetic pathwa)^.

1.2.2 As Solvents for Transition Metal-Catalyzed Reactions

Since the discovery that ionic hquids could be used as solvents for organic 

reactions, many have been investigated for rate, yield, and selectivity enhancements. 

Soon after this discovery, it was recognized that ionic hquids could also be used as 

solvents for reactions catalyzed by transition metals. Many reactions mediated by 

transition metal catalysts proceed via mechanisms involving charged active species that 

could be stabilized by the ionic nature of the solvent, enhancing the rate of reaction and 

possibly selectivity. As well, the non-coordinating nature of the anions on which 

common ionic hquids are based allows coordination of unsaturated molecules to active 

metal centers rather than having to compete with solvent molecules.
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In addition to these beneGts, ionic liquids can also be used to recycle catalysts. 

Since ionic liquids are nonvolatile, they themselves can be recovered. In many transition 

metal-catalyzed reactions, it is often the case diat the catalyst remains in the ionic liquid 

phase after product removal and can be reused along with die ionic liquid. Often the 

catalysts are not leached out by non-polar or moderately-polar extractive solvents, 

presumably due to their ionic nature. This allows the dissolution of many metal species 

without necessitating syntheses of specialized ligands. In some cases metal complexes 

are removed by polar reaction products; this can be avoided by using ionic ligands on the 

metal. It has been suggested that ionic liquids would be better thought of as polymeric 

liquid supports rather than solvents, immobilizing catalysts rather than actually dissolving 

them as ionic liquids are believed to be highly ordered liquids.^^ Ionic liquids also 

combine the beneGts of homogeneous and heterogeneous catalyses. They allow 

dissolution/immobilization of many catalysts, giving each metallic center the possibility 

of being catalytically active, increasing catalytic density and turnover frequencies, while 

allowing easy separation of products and catalyst.^^

The Grst reacGon performed in an ionic liquid using a homogeneous transiGon- 

metal catalyst was a plaGnum-catalyzed hydrogenaGon of various alkenes in a 

tetraalkylammonium chlorostannate ionic hquid, [R4N][SnCl3], in 1972.^  ̂ The melting 

point of this ionic hquid was relaGvely high, 78 °C, and the reacGon rate was relaGvely 

low, limiting the utihty of the reacGon. It did, however, show that homogeneous 

transiGon metal catalysis was possible in ionic hquids. These results were largely 

overlooked for the next two decades unGl several groups began invesGgaGng the area in 

the 1990s, made easier by the discovery of air- and moisture-stable ionic hquids.^^ Since
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that time many different transition metals have been immobilized in ionic liquids for 

different purposes and many have been recyclable with little to no loss in activity; several 

recent reviews comprehensively cover many of these.̂ '̂ "̂̂  ̂

Alkene hydrogenation reactions are among the Grst transition-metal catalyzed 

reactions performed in ionic liquids. Rhodium complexes have been dissolved in 

[bmim]Bp4 and [bmim]PF6 for the hydrogenation of cyclohexene, producing cyclohexane 

with large turnover numbers.^^ When products were removed 6om the ionic liquid, 98% 

of the Aodium species remained in the ionic liquid. Rhodium-catalyzed 

hydroformylation of 1-octene was used as a probe to determine the utility of the 

"greener" ionic liquid 1 -»-butyl-3 -methylimidazolium octylsulfate under biphasic 

conditions."^ Although the selectivity of the process for generating n-nonanal vs. 

branched nonanals was relatively low, the activity of the catalyst was higher than in "BF4  

and TFe ionic liquids. Due to its lack of halogens, this ionic liquid is considered to be 

“greener” than other halogen-containing ionic liquids such as [bmim]Bp4 and [bmimjPFg.

Ruthenium complexes are much more commonly employed in ionic liquids for 

hydrogenation reactions. Asymmetric hydrogenation of 2-arylacryhc acids was 

performed with a ruthenium catalyst in [bmim]BF4 to give quantitative conversions to the 

aryd alkane, as was obtained with molecular solvents; however, the enantioselectivity of 

the reaction was higher in the ionic liquid. The products were easily separated 6om the 

ionic liquid/catalyst, which was reused without loss of activity. Studies were undertaken 

to determine the effects of hydrogen concentration in the ionic liquid and concluded that 

hydrogen concentration in the ionic liquid is the important kinetic parameter rather than 

hydrogen pressure in the gas phase for rhodium(I)- and ruthenium(n)-catalyzed
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asymmetric hydrogenations.^^ Studies have also been performed investigating the use of 

supercritical CO; as an extractant to remove products 6om [bmimjPFg after ruthenium- 

catalyzed asymmetric hydrogenation of several substituted acrylic acids. This allowed 

extensive reuse of the ionic hquid/catalyst system to provide quantitative yields of 

hydrogenated product with very high enantioselectivities.^ Biphasic ruthenium- 

catalyzed hydrogenations of 1-hexene were performed in the uncommon ionic liquid 

resulting hom the mixture of [bmim]Cl with zinc chloride, ZnClz.^  ̂ This ionic liquid is 

solid at room temperature, allowing reactions to be performed at higher temperatures then 

cooled and the products can simply be decanted from the solid ionic liquid/catalyst phase 

with no catalyst leaching. These reactions gave similar results to those obtained when 

using [bmim]BF4 as a solvent.

Arenes have also been hydrogenated in ionic liquids with ruthenium catalysts. 

Perhydrogenated alkanes have been isolated from [bmimjBF^ in good yields with good 

turnover numbers; however, these data were no b etter than those obtained when using 

water as a solvent. The advantage of the ionic liquid was that it could be reused 

repeatedly for the catalytic hydrogenation of different arenes.^ Ruthenium catalysts have 

also been used in ionic liquids that selectively hydrogenate the arene moiety of 

compounds containing both arene and alkene functionalities.^^ Olefin metathesis has 

been performed in [bmimjPF^ using Grubb's ruthenium catalyst. Not much yield 

improvement was made using the ionic liquid over using dichloromethane as a solvent, 

however.^ As well, the catalyst successively lost activity on recycling. An interestingly 

different ruthenium-catalyzed reaction performed in various air-stable ionic liquids is the 

selective oxidation of alcohols to aldehydes and ketones.^^ No over-oxidation was
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observed, but yields obtained were similar to those 6om using conventional solvents. It 

was discovered through these studies, however, that bubbling oxygen through the ionic 

liquid was better than using an oxygen blanket due to the low solubility of oxygen in the 

ionic liquid.

Lanthanide catalysts, most commonly scandium trifluoromethanesulfbnate 

Sc(0Tf)3, have seen much use in ionic liquids for different applications. The mild Lewis 

acidity of microencapsulated Sc(0TQ3 was taken advantage of to promote the aza-Diels- 

Alder reaction between imines and Danishefsky's diene (l-methoxy-3- 

(trimethylsilyl)oxybuta-l,3-diene). This reaction was carried out in several air-stable 

ionic liquids, generating the corresponding 5,6-dihydro-4-pyridones (after loss of the 

trimethylsilyl group) in very good yields. Most important, however, is that the reaction 

did not proceed without the Lewis acid catalyst and this was recyclable with excellent 

recovery of the ionic liquid/catalyst system and no loss in activity. The same catalyst 

was used in extremely small amounts by another group for normal Diels-Alder reactions 

between various dienes anddienophiles in  air-stableionic 1 iquids. E ven atO.l  mol% 

Sc(0Tf)3 the system provided excellent rate enhancements in [bmimJPFg compared to 

dichloromethane, often with excellent yields and ewfo-selectivity. The system was also 

extensively recycled without loss of activity.®’

Friedel-Crafts alkylations of aromatics with various alkenes proceeded 

quantitatively in hydrophobic ionic liquids at room temperature in the presence of 

Sc(OTj%.®  ̂ These reactions did not proceed in hydrophilic ionic liquid nor in the 

conventional solvents tested. The authors noted that the catalyst dissolved in the 

hydrophilic ionic liquids but was only suspended in the hydrophobic ionic liquids. The
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system was recyclable without activity loss. Claisen rearrangements followed by 

cyclizations of allyl aryl ethers to give 2-methyl-2,3-dihydrobenzo[6]furan derivatives 

have been performed in air-stable ionic liquids catalyzed by Sc(0Tf)3.^ The system 

provided good yields, was stable at high temperatures (200°C), and was recyclable. The 

reaction did not proceed without the Lewis acid catalyst. The three-component synthesis 

of a-amiuo phosphonate esters (important molecules in the pharmaceutical industry) 

6om aniline, diethyl phosphonate, and various aromatic aldehydes has been 

accomplished in air-stable ionic liquids in the presence of various lanthanide 

trifluoromethanesulfbnate catalysts. This reaction proceeded quantitatively, giving 

better yields in ionic liquid solvents than in dichloromethane, and was recyclable without 

loss of activity. Sc(0Tf)3 has been used in the tin- and indium-mediated allylation of 

aldehydes and ketones in [bmimjPFe and [bmim]BF4 to increase the rate and selectivity 

of the reaction. As with the reaction of tetraallylstannane in ionic liquids without 

Lewis acid catalysts, products were isolated in good yields, giving better 

stereoselectivities over conventional solvents. The catalyst did increase the rate and yield 

of the reaction over the uncatalyzed reaction and the ionic liquid/catalyst system was 

recyclable without activity loss.

Zinc catalysts have been used in ionic liquids for different ^plications. 

Hydroamination reactions involving the zinc(II)-mediated addition of an N-H bond 

across unsaturated systems have been performed in biphasic systems involving air-stable 

ionic liquids to give quantitative yields of products with much higher rates than obtained 

when using a homogeneous toluene solution of the catalyst. Zinc iodide has been used 

in [bmim]BF4  and [bmimjPFg to promote the Diels-Alder reaction between various
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dienophiles and heterocyclic dienes such as furan, thiophene, and t- 

butoxycaibonylpyrrole/^^ This catalyst allowed the reaction to proceed in good yields 

with gwfo-selectivity.

Oxidation reactions have been performed in ionic liquids mediated by diSerent 

catalysts. A cobalt catalyst, Co(acac)2 , was used to oxidize ethylbenzene to 

acetophenone and 1-phenylethanol in 2,3-dimethyl-1 -n-hexylimidazolium

tetrafluoroborate [C6dmim]BF4 to good yields. The expensive and toxic osmium

catalyst OSO4  has been immobilized in ionic liquids for the dihydroxylation of alkenes. 

When used in [emimjBF^, the catalyst provided excellent yields of dihydroxylated 

products and was recyclable without loss of activity. The same reactions were also 

performed in [bmim]BF4 using 4-dimethylaminopyridine DMA? as an agent to form a 

zwitterionic OSO4-DMAP complex, which would likely be less volatile than OSO4 and 

would remain in the ionic liquid during product extraction.^^ It was found that upon 

recycling the ionic liquid/catalyst system without DMAP, activity was successively lost 

suggesting that the catalyst was leaching out after each cycle. Adding DMAP formed a 

more polar complex, preventing leaching and providing an ionic liquid/catalyst system 

that did not lose activity on recycling.

Epoxidation reactions have been carried out in ionic liquids using different 

catalysts. Jacobsen's chiral manganese-based epoxidation catalyst (salen)Mn has been 

immobilized in [bmimjPFg to generate epoxides ftnm alkenes enantioselectively in good 

to excellent yields.^°^ The ionic liquid conferred rate enhancements to the reaction and 

the catalyst system was recyclable; however, yield and enantioselectivity slowly 

decreased. Methyltrioxorhenium was used as a catalyst in [emim]BF4  in the presence of
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urea and hydrogen peroxide to generate epoxides horn a number of alkenes in a highly 

enantioselective fashion in quantitative yields/"^ A chiral chromium catalyst, (salen)Cr, 

similar to Jacobsen's manganese-based epoxidation catalyst, was immobilized in various 

air-stable ionic liquids for asymmetric epoxide ring-openings with trimethylsilylazide 

TMSNs/^ The hydrophobic ionic liquids provided the desired azido silyl ethers in good 

yields and enantioselectivities, comparable to those obtained using conventional solvents, 

but the ionic hquid/catalyst system was recyclable.

Another example of transition metal catalysts immobilized in ionic hquids are 

nickel-based catalysts. Different nickel catalysts have been used for alkene 

oligomerization/dimerization reactions. The dimerization/oligomerization of ethene was 

achieved in chloroaluminate ionic liquids under biphasic conditions, giving mainly but-1- 

ene, but-2-enes, and hexenes.^^° Cationic nickel complexes were used in air-stable 

hexafluorophosphate-based ionic hquids to generate higher a-olefins selectively with 

improved turnover numbers compared to conventional solvents.^Nickel-catalyzed 

hydro vinylation of styrene (dimerization of styrene and ethene) was accomplished in 

several air-stable ionic hquids using high-pressure CO2 to activate the nickel catalyst."^ 

This led to moderate activation of the catalyst, providing good yields of dimerized 

products with g ood s electivity. T he authors found that the c atalyst decomposed upon 

successive recycling; this was avoided if the ionic liquid/catalyst system was employed in 

acontinuous flowreactor. M ichael additionsofacetylacetone to methyl vinylketone 

have been catalyzed by [bmimjBF^-immobilized Ni(acac)2 .̂ ^̂  Better yields of the 1,4- 

addition product were obtained 6 0 m [bmimjBF^ than 6 0 m dioxane or imder solventless 

conditions and the ionic hquid/catalyst system was extensively recycled without loss of
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activity. As well, Ni(acac) 2  was used to catalyze the oxidation of substituted 

benzaldehydes to  benzoic acids in  [bmimjPFo using an oxygenblanket.'^^ T he yields 

were not as high as those obtained from perfluorinated solvents, possibly due to the low 

solubility of oxygen in [bmim]PF6 . The system was recycled without activity loss.

In addition to reactions catalyzed by transition metals, many enzyme-mediated 

reactions have been performed in ionic hquids. Many of the enzymes used in ionic 

hquids were ones known to operate weU under anhydrous conditions. A lthou^ given 

the exceedingly large role that tertiary protein structure plays in the function and activity 

of an enzyme and given the large roles that solvents play in aiding the folding of proteins 

into their active conformations, it is fascinating to see that enzymes work at ah in ionic 

hquids. Many diSerent classes of enzymes have been used successfully in ionic hquids, 

some with rate and selectivity enhancements, including proteases, galactosidases, hpases, 

and esterases. Ionic hquids increase the stabihty of many enzymes and allow their reuse. 

Several reviews have been published regarding the use of enzymes in ionic

1.2.2.1 As Solvents for Palladium-Catalyzed Reactions

As outlined in the above section, many different transition metal catalysts have 

been immobilized in ionic hquids for different purposes. It seems, however, that 

palladium catalysis is the subject of a rather large number of pubhcations regarding their 

use in ionic hquids, perhaps due to their wide array of possible apphcations. Commonly, 

palladium catalysts have been used to mediate coupling reactions between various types
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of onsaturated systems, forming new carbon-carbon bonds. Depending on the type of 

substrate used in the coupling, the reaction generally has a speciGc name. Ionic liquids 

have been used in many palladium-catalyzed reactions, aSbrding the same beneûts as for 

other transition metal-catalyzed reactions; namely, easy catalyst/product separation and 

catalyst recyclability.^^

The Heck reaction is perhaps the most investigated palladium-catalyzed reaction 

in ionic liquids judging ûom the number of publications on the subject. The Heck 

reaction generally involves the palladium-mediated coupling of aryl halides with alkenes 

to yield arylated alkenes. The reaction was performed in several air-stable ionic liquids 

between iodobenzene and ethyl acrylate in the presence of a base (triethylamine or 

sodium bicarbonate) and palladium(n) acetate Pd(0Ac)2 to yield the coupled products in 

quantitative yields (Figure 8).̂ ^̂

Pd(0Ac)2 ^

"OEt ionic liquid 
EtgN + Et3NH I

Hieck reoctron rn ionic iigwirk

Several group 15 ligands were added to the reaction mixture to determine their effects on 

reaction rate and it was found that addition of triphenylphosphine provided a system that 

gave quantitative yields of coupled products in one hour in [bmimjPF^ and was 

extensively recycled. The products were extracted with cyclohexane and the 

triethylammonium iodide byproduct was extracted with water. The Heck reaction was
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also performed with other aryl halides with ethyl acrylate as well as with styrene in 

[bmim]Br and [bmim]BF4 , giving good yields and excellent selectivity toward the irans- 

isomeric products.^^^ Other aryl halides and alkenes have also been used in [bmim]PF6 

giving moderate yields compared to using ^^dimethylfbrmamide DMF as solvent/ 

When Heck reactions were performed in non-imidazolium-based ionic liquids, careful 

drying was necessary as water lowered catalyst turnover numbers. Higher catalytic 

activity was observed in these ionic liquids compared to conventional organic solvents 

but early palladium black precipitation inhibited efBcient catalyst recycling.

Heckreactions wereperfbrmed innon-imidazolium-based ionic 1 iquids using a 

novel palladium-benzothiazole carbene complex to catalyze the coupling of aryl halides 

with a-substituted^^^ and ^-substituted acrylates^^ giving good yields of coupled 

products. The ionic liquid/catalyst system could be recycled but was very limited due to 

buildup of ionic byproducts (e.g. NaBr). Electron-rich oleSns such as butyl vinyl ether 

were coupled with aryl halides under Heck conditions in [bmim]BF4  giving only one of 

two possible products at high rates in near quantitative yields. The product obtained hom 

the reaction in  [bmim]BF4  results from a-arylation of t he  oleEn and is formed via an 

ionic pathway while the other possible (but unobserved) product results hom p-arylation 

of the olehn and is formed via a neutral pathway. Conventional solvents gave mixtures 

of the two products, suggesting that the ionic liquid stabilized the ionic pathway so as to 

provide only one product isomer.

Less c ommonly employed reaction conditions have been investigated regarding 

the Heck reaction in ionic liquids. Ultrasound was used to promote the palladium- 

catalyzed reaction in ionic liquids [bbim]Br and [bbim]BF4  between aryl iodides and
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various acrylates, styrene, and phenylacetylene at sonicator temperatures (generally 45- 

50 °C as sonicationheats the sonicator bath), providing the coupled products in  good 

yields and short reaction times. These reactions did not proceed in conventional 

solvents such as DMF and A^methylpyrrolidinone (NMP) nor in the absence of 

ultrasound at ambient temperatures. Heck reactions in [bmimjPFo have also been 

accelerated using microwave irradiation giving good yields of coupled products in short 

reaction times; the use of microwave irradiation also resulted in high temperatures. The 

ionic liquid/catalyst was recyclable without loss of activity.'^ Heck reactions have also 

been performed in [bmimjPFg using the heterogeneous catalyst Pd/C.^^^ These reactions 

do not require the use of a trialkyl or triarylphosphine and do not produce palladium 

black. Upon filtering the ionic liquid/catalyst mixture after use, no palladium was 

detected in the ionic liquid by inductively-coupled plasma mass spectrometry (ICP-MS), 

indicating no dissolution of the catalyst. The ionic liquid/catalyst system was recyclable 

but required periodic water washes to remove ionic byproducts that slowly decreased 

yields. Heck reactions were also performed in [bmimjPFg using silica-supported 

palladium complex catalysts, displaying higher activities than in DMF.^^ After ûltering 

the silica-supported palladium catalyst 6 om the ionic liquid after use, the ionic liquid was 

able to catalyze the Heck reaction without addition of hresh catalyst, indicating that some 

palladium had dissolved in the ionic liquid.

The Suzuki cross-coupling reaction is similar to the Heck reaction in that it 

involves palladium-catalyzed coupling of an aryl halide to another molecule but uses 

arylboronic acids instead of olehns to generate biaryls. These reactions have been 

accomplished in [bmim]Bp4 between phenylboronic acid and different aryl halides.
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producing biaryls in good yields in only 10 minutes at 110 °C (Figure 9). These reactions 

could be conducted in air and the ionic liquid/catalyst system was recyclable without loss 

of activity.

NagCOa, 1 1 0  °C

Suzuki reactions were performed in [bbim]BF4 with methanol using ultrasound to 

promote the reaction with fast reaction times at ambient temperature.^^ Excellent yields 

were obtained generally in less than one hour. Reactions did not proceed at room 

temperature in the absence of ionic liquid or ultrasound, as when similar techniques were 

employed for the Heck reaction in ionic liquids. As well, by-product formation was 

noted when the reactions were performed in air, which was suppressed by performing the 

reactions under argon. The Suzuki coupling has been performed with the iodoarene 

bound to a solid phase resin in [bmim]BF4/DMF mixtures. The reactions proceeded to 

give good yields at high temperatures, showing that ionic liquids can be used for solid- 

phase reactions. The ionic liquid could be reused; however, the catalyst was not 

recyclable due to palladium black precipitation.

The Stille coupling is another palladium-catalyzed cross coupling reaction that 

has been performed in ionic liquids. This reaction involves coupling of a vinyl- or 

arylstannane with a vinyl or aryl halide (Figure 10).
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PdCl2(PhCN)2

PhgAs, Cul 
[bmlmlBF^, 80 °C
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Studies with difïerent halogenated and tin-containing compounds showed different 

palladium catalyst preferences in [bmim]Bp4 . Aiyl bromides coupled with aryl stannanes 

most efBciently using Pd(PPh3 ) 4  while aryl iodides coupled most e&ciently with 

PdCl2 (PhCN)2 - Both systems were recyclable without loss of activity. The ionic 

liquid/catalyst system could even be reused after being left standing &r weeks without 

special air or moisture exclusion techniques.

Palladium-catalyzed allyhc alkylation reactions have been performed in ionic 

liquids. Soft carbon nucleophiles, stabilized carbanions, generated 6 om compounds 

containing protons that are easily removed to give enolates (such as dimethyl malonate) 

can be added to allylic acetates mediated by palladium. These reactions proceed to good 

yields, but when thphenylphosphine was used to form the catalyst precursor 6 om 

Pd(0 Ac) 2  signihcant leaching of palladium occurred, preventing efBcient recycling of 

the ionic hquid/catalyst system. Using m-sulfbnated triphenylphosphine instead, the 

complex remained in the ionic liquid and was recyclable without loss of activity. 

These reactions have been performed enantioselectively using palladium(0)-ferrocenyl 

complexes in [bmimjPFg, giving higher yields and enantiomeric excesses than THF.^^  ̂

The ionic liquid/catalyst system was cleaned between cycles using a complex procedure
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involving dissolution in ethyl acetate, washing with water, and drying over MgS0 4 . This 

resulted in poorer yields upon recycling but gave similar enantiomeric excesses. The use 

of other palladium(0 )-ferrocenyl complexes provided similar results.^^

Other palladium-catalyzed reactions have been performed in ionic liquids. 

Selective hydrodimerization reactions of 1,3-butadiene have been performed in 

[bmimjBF^ using palladium(II) catalysts to give 1,3,6-octatriene and 2,7-octadien-l-ol 

selectively, depending on the reaction conditions.^^^ The ionic liquid/catalyst system was 

recyclable without loss of activity. Hydroesterifications of styrenes were performed in a 

[bmim]BF4/isopropanol/cyclohexane solvent system using palladium(II) catalysts to give 

the corresponding 2 -arylpropionic esters in good yields with excellent selectivities.^^"  ̂

The catalyst c ould not be recycled, however, due to decomposition. Carbonylation of 

aryl halides and alcohols in the presence of a base to produce aromatic esters has been 

accomplished in [bmim]BF4 and [bmimjPFg with palladium(II) c a t a lys t s .Good yields 

were obtained, but recyclability was limited due to palladium black precipitation. 

Oxidation of styrene to acetophenone has been achieved selectively using PdClz in 

[bm im ]B p4 and [bm im jPFe to give good yields using only a small excess of hydrogen 

peroxide as the o x i d a n t . T h e  reaction did not proceed in the absence of palladium. 

Heterogeneous palladium catalysts have also been used in ionic liquids with D2O to 

replace the protons on the imidazolium ring with deuterium atoms. Using deuterated 

alkyl halides, fully deuterated imidazohum-based ionic hquids can be generated for use 

in various applications.
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1.2.3 For Novel Applications

As ionic liquids have been shown to have great potential to act as solvents for a 

nnmber of organic reactions, both catalyzed and non-catalyzed, they have also been 

investigated for use in a number of applications other than as reaction media. Due to 

their miscibility with some solvents but not with others, ionic liquids have been used in 

several applications acting as selective extractants. As outlined in the above section, 

ionic liquids oAen immobilize transition metal catalysts, allowing easy separation of 

product and catalyst through either distillation or throng extraction with an immiscible 

solvent. They have also been used to remove large excesses of inorganic reagents; for 

example, in the MnOi oxidation of allylic ethers as outlined in Section 1.2.1 and shown 

in Figure 5 [bmim]BF4  was able to immobilize excess MnOz after the oxidation was 

performed in THF, allowing products to be isolated in quantitative yields by extraction 

with diethyl ether. In conventional solvents, MnOa is removed from the reaction mixture 

by filtration but this leaves products adsorbed on the MnOi p articles. Several studies 

have shown ionic liquids to be immiscible with a number of reagents and organic 

solvents, showing the potential for ionic liquids to replace conventional molecular 

solvents in liquid-liquid separations.^ '̂^ '̂ '̂^  ̂ Chloroaluminate ionic liquids have shown 

promise for the extraction of sulfur-containing c ompounds from Diesel fuel, removing 

almost all of the sulfur-containing compounds after five cycles of the fuel through ionic 

hquids. '̂*  ̂ The sulfur-saturated ionic liquid could potentially be regenerated by extracting 

with light alkanes or supercritical COz, allowing the isolation of the sulfur-containing
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compounds for their conversion to more environmentally-Êiendlycompounds, and the 

ionic liquid could then be reused.

Ionic liquids have also been synthesized with cations specially designed to 

remove toxic metal anions 6 om contaminated water samples, hnidazolium-based cations 

have been synthesized with iV^alkyl substituents containing urea and thiourea groups for 

the purpose of binding to and complexing mercury(II) and cadmium(II) ions. These ionic 

liquids have "PF̂  anions and are immiscible with water. They have been shown to be 

capable of removing metal ions, mercury(II) especially, &om contaminated water 

samples (Figure 11).^^ '̂^^

N. .N

Hg^+(aq)

N N

Figure 77. 7(emova7 q / ' w a f e r  sa/?^7es usmg wafgr-fmmMczb/e
yùMcfzoMa/zzed zonzc Zzgwzck

Ionic liquids have also been demonstrated to remove alkali metals horn water samples 

using crown ethers. Various water-immiscible ionic liquids were mixed with water 

samples containing strontium nitrate. With the addition of a crown ether, dicyclohexyl- 

18-crown-6 (known to form a strong complex with Si^^, the concentration of strontium 

was 1 , 0 0 0  to 1 0 ,0 0 0 -fbld higher in the ionic liquid phase than in the aqueous phase 

depending on the ionic liquid used. Without the crown ether the strontium concentration
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was approximately twice as large in the aqueous phase as in the ionic liquid. The same 

results were obtained when toluene and chloroform were used with crown ethers. 

Later studies indicated that a cation exchange process may be responsible for the 

partitioning of the metal-crown ether M CE^  ̂complex wherein the imidazolium cation 

partitions into the aqueous phase as the M complex partitions into the ionic liquid 

phase, eventually causing the ionic liquid to become miscible with water. Another 

study investigated the effects of varying the imidazolium Aralkyl chain length of various 

TFe ionic liquids regarding the partitioning of metal-crown ether complexes. In 

general, extraction efficiency decreased with increasing chain length. The studies also 

showed that potassium was the easiest metal ion to extract, not surprising since it 6 ts best 

into the crown ether used.

The novel properties of ionic liquids have been taken advantage of in other 

applications besides selective extraction, supercritical CO2 has been shown to act as a 

switch to separate ionic liquids from organic compounds with which they are miscible 

under normal circumstances. Methanol/[bmim]PF6 solutions have been induced to 

separate into triphasic mixtures in the presence of supercritical CO2 . The lower layer is 

rich in ionic liquid and the upper methanol-rich phase can be induced to merge with the 

middle supercritical CO2 layer to provide a methanol-rich, ionic liquid-hee phase.^^ The 

phase behaviour in such mixtures is quite complex and is not yet hilly understood, 

although it has been attributed to a lowering of the dielectric constant of the solvent 

mixture when CO2 is added as compared to that of pure methanol, causing it to become 

less soluble in the ionic liquid and more soluble in supercritical CO2 . Ionic liquids, being 

thermally stable, have also been explored as potential stationary phases for gas
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chromatography. The ionic liquids [bmimJPFg and [bmim]Cl were investigated and 

appeared to  h ave a dualn ature, a cting a s n on-polar s tationary p hases w hen s eparating 

non-polar analytes, but acting highly interactively and retentively when used to separate 

molecules with strong proton donor and acceptor groups. The nature of the anion was 

shown to be important as the chloride salt interacted more strongly with proton donor and 

acceptor molecules while the TFe salt interacted more strongly with non-polar substrates. 

Thus, ionic liquids may oSer advantages in separation science. Ionic liquids have been 

used to dissolve large polymeric materials such as cellulose. Cellulose, a linear polymer 

of g lucose m onomers, i s a m zyor r enewable r esource that i s currently p roccssed u sing 

environmentally harsh conditions. Dissolution in an ionic liquid would increase the 

amount o f  control available over theprecessing methodology. T his was shown to be 

possible with several air-stable ionic liquids, those containing coordinating ions such as 

[bmim]Cl proving to be the best; a 25% w/w solution of cellulose was prepared in this 

ionic liquid using microwave pulses.

Ionic liquids have been used in even more unorthodox applications. 

Dialkylimidazolium tetrafluoroborates were examined as potential lubricants for the 

contact of several metals since most of the lubricants used in industries are not applicable 

to a wide variety of materials. Ionic liquids showed excellent 6 iction reduction, antiwear 

performance, and a high load-carrying capacity, performing better than two widely used 

fluorine-containing lubricants phosphazene and perfluoropolyether. Coupled with their 

thermal stabilities and low volatilities, ionic liquids make attractive, although expensive, 

alternatives to conventional liquid lubricants. Ionic liquids have also been tested as 

antimicrobial agents. Studies have shown that ionic liquids have antimicrobial activity.
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which increases in potency as the length of the imidazolium alkyl chains increase (similar 

to the commonly-used antimicrobial agent bcnzalkonium chloride). This has 

implications for whole-cell biotransfbrmations carried out in ionic liquids.^^^

1.3 Silyktannanes

Silylstannanes are highly synthetically useful reagents but are not as common as 

one might expect, given their potential in synthesis. As the name suggests, silylstannanes 

are organometalhc compounds in which a triorganotin moiety is joined to a triorganosilyl 

moiety through a silicon-tin bond. This covalent bond is not very polarized since both tin 

and silicon are in group four on the periodic table, the same group as carbon. The steric 

environment around each metal atom can be varied to determine which would be more 

open to nucleophilic attack.

Silylstannanes were 6 rst prepared in the 1960s but were not used in many 

a p p l i c a t i o n s . I t  was not until the 1980s that silylstannanes saw use in organic 

synthesis where they were shown to be capable of incorporating both the triorganosilyl 

and triorganotin moieties into organic products to afford bifunctional organic dianion 

equivalents.^^'^^ Since that time, silylstannane use has increased in different 

applications, but they are not yet commonplace.

Silylstannanes are relatively easily synthesized. This is generally done by 

generating a triorganotin anion through various methods followed by quenching with a 

chlorotriorganosilane. The products can be puriûed by distillation as they are thermally 

stable and although they have been reported to be air- and moisture-stable they are
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generally handled and stored under inert atmospheres. The toxicity of silylstannanes is 

relatively unexplored. Given the relative toxicity of organotin reagents, however, 

silylstannanes should be used with caution. Triorganotin moieties are known to be rather 

toxic, although as the size of the alkyl group increases the toxicity decreases.

Three methods are commonly employed to generate a triorganotin anion (Figure 

12). The first involves a metal-halogen exchange between a triorganotin chloride and 

lithium metal (or another group 1 metal) to generate a triorganotin lithium species and 

lithium chloride. A problem with this method is that as the triorganotin lithium species is 

generated, it can attack unreacted triorganotin chloride to generate an unreactive 

hexaorganodistannane byproduct. The second involves cleavage of a 

hexaorganodistannane with n-butyllithium, generating the desired triorganotin lithium 

species and a relatively inert tetraorganostannane, or with lithium metal to generate two 

equivalents of triorganotin lithium species. The third method is the highest-yielding, 

involving deprotonation of a triorganotin hydride with a strong base such as lithium 

diisopropylamide (LDA) to generate the lithium triorganotin species along with the 

volatile diisopropylamine byproduct. These reactions are generally performed below 

room temperature, but the quench with a chlorotriorganosilane can be performed near 

room temperature (Figure 12). The reaction then proceeds quickly to give the 

silylstannane product along with precipitated lithium chloride, which can be removed by 

hltration, and the product distilled. As well, trimethyl(tributyl8 tannyl)silane 

(BusSnSiMes) is commercially available.
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RgSnCI + Ll°

RgSnSnRg + Li^ or BuLi — ► RgSn* Li

R gSnH + LDA
R'sSiCI

RgSnSiR'a) + LiCI (s)

PeAaps Ae most useful reaction silylstannanes undergo is Ae palladium- 

catalyzed addition A unsaturated systems. This was Srst accomplished in Ae late 1980s 

when two research groups mvestigated Ae potential to add variably substiAted 

sil)istannanes to a number of terminal alkynes. This resulted m Ae generation of 

terminally-silylated, mtemally-stannylated cw-bismetallated alkenes (Figure 13).^^ '̂^  ̂

Products were generally isolated m good A excellent yields after variable reaction times.

k - c - c h

% %  SiR"

Fzgwe 72 fa/TwfzwM-coATyzezf azMztzon q/"jz7ykZawza/zga A rerzMzzia/ a/tyzza;

These reactions proceeded wiA remarkable regio- and stereoselectivities, always 

aSbrding Ae cü-bismetallated alkene containing Ae triorganosilyl moiety on Ae terminal 

carbon and Ae triorganotin moiety on Ae mtemal carbon. When adAtions were 

attempted wiA mtemal alkynes, however, regiochemical scrambling occurred.^^^'^^
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The palladium-catalyzed addition of silylstannanes across alkenes is rather limited 

in scope with many such reactions being unsuccessful. The reaction has only been 

successfully performed with ethene and bicyclic norbomene systems resulting in 

excellent yields of the silylstannylated alkanes.^^' Silylstannanes have been added across 

aliénés to give very good yields of products in a highly regio- and stereoselective fashion. 

Using a Pd2 (dba) 4  catalyst in toluene at room temperature, variously substituted terminal 

aliénés were inserted into the tin-silicon bond of different silylstannanes to af&rd 1 - 

trioiganostannyl-2-tnorganosilylalk-2-ene products as (Æ)-isomas. Other solvents and 

catalysts provided poorer yields.

The products resulting from the addition of silylstannanes to terminal alkynes can 

be used in a variety o f  applications given that these silylstannylated alkenes have two 

reactive centers with differing reactivities. These compounds can be selectively 

protodesilylated or protodestannylated by using different reaction conditions. The 

trialkylsilyl group can be replaced with a proton using tetrabutylammonium fluoride 

(TBAF) to generate 2-stannylalkenes (which works especially well with 

dimethylphenylsilyl derivatives). The trialkylstannyl group can be replaced with a 

proton by treating with hydriodic acid to give the corresponding (E)-l-silylalkene (Figure 

14).'(«

R^SnBug 
TBAF j f

H HTHF

SIR'

^  Ytoluene U
H ^SIR 's

160
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The trialkyltm moiety can be replaced with a suitable electrophile via tin-lithium 

exchange. If the silylstannation product is treated with an alkyllithium reagent such as 

BuLi, tin-hthium exchange will occur to generate a p-silylvinyllithium species, which 

can be used to form various substituted vinylsilanes when treated with the appropriate 

electrophile.^^ Since the products of silylstannation reactions are vinyl stannanes, they 

can be used in palladium-catalyzed Stille couplings with aryl and vinyl halides to 

generate 2 -arylated or 2 -vinylated 1 -silylalkenes.^^^

Silylstannanes have seen use in more varied applications as well. They have been 

coupled with vinyl halides using palladium catalysis, generating vinylstannanes that have 

been used in Stille-type intramolecular cyclization reactions with vinyl triflates.'^ 

Silylstannanes have been added to 1,6-enynes (compounds containing an alkyne and an 

alkene moiety in the same molecule), the products of which cyclize to give 5-membered 

rings bearing trialkylstannylmethyl and exo-methylenylsilane m o ie t i e s .Th ey  have also 

been added to internal alkynes (with limited success) that were cyclized to give 5- 

membered 1 actenone products c ontaining triaUcyltin and trialkylsilyl m o ie t ie s .T  hey 

have also been shown to undergo 1,4-addition to a,P-unsaturated carbonyl compounds to 

generate 3-stannylated silyl enol ether products that can be hydrolyzed to give 3- 

stannylated ketones.^^ '̂^^^

Most of the synthetic utility of silylstannanes results from their palladium- 

catalyzed addition to unsaturated systems such as terminal alkynes. M^or drawbacks to 

their more widespread use are the inherent toxicity of the tin-containing compounds and 

the expense of the palladium catalysts.
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1.4 Objectives

Several reactions involving transition metal catalysts have been performed in 

ionic liquids. These catalysts have often contained organic ligands and thus are 

organometallic reagents. Few reactions have been per&rmed in ionic liquids involving 

organometalhc reagents that are not part of a transition metal complex. This may be a 

result of the relatively high basicity of many organometalhc reagents such as alkylhthium 

regents, being problematic due to the relatively high acidity of the proton on carbon 2  of 

the imidazohum ring on which most commonly-used ionic hquids are based. Reagents 

such as tetraaUylstannane have been used to add aUyl groups to carbonyl compounds^^ 

and alkylzinc reagents have also been added to aldehydes in Refbrmatsky reactions, 

although these reactions were performed in non-imidazohum-based ionic hquids for the 

most part.^^

Many palladium-catalyzed reactions have been performed in ionic liquids, some 

of which have proceeded with rate, yield, and selectivity enhancements. In many cases 

the paUadium catalyst was recyclable with httle to no loss in activity. Many of these 

reactions provide similar types of products, couphng aryl hahdes with molecules such as 

acrylates in the Heck reaction, boronic acids in the Suzuki coupling, and vinyl stannanes 

in the Stille couphng.

The objectives of this research focused on successfuUy performing palladium- 

catalyzed addition reactions of silylstannanes to terminal alkynes in imidazohum-based 

air-stable ionic hquids. An array of alkynes, silylstannanes, and ionic hquids were to be 

employed to investigate the scope of the reaction. Investigations focused on yield
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enhancements and the possibility of rate enhancements resulting from the use of ionic 

liquid solvents rather than THF. Another large area of focus was the potential 

recyclability of the ionic liquid/palladium catalyst systems.
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2.0 Results and Discussion

2.1 Silybtannadon Reactions in Ionic Liquids

There are many possibilities when choosing the conditions for any reaction in 

organic chemistry, especially when developing new methodology. For the initial 

attempts at adding silylstannanes to  terminal alkynes in  ionic liquids, optimal reaction 

conditions used in the conventional solvent THF were employed. Phenylacetylene was 

chosen as the first alkyne to use as it has been shown to be particularly active in 

silylstannation reactions, requiring only three hours to react to completion in refluxing 

THF while other alkynes required more than a day.^^  ̂ The silylstannane used was 

trimethyl(tributylstannyl)silane (BusSnSiMea). This is a commonly used silylstannane 

for many ^)plications, being less toxic and volatile and more stable toward hydrolysis 

than the structurally simpler trimetbyl(trimethylstannyl)silane. Its synthesis is relatively 

straightforward using inexpensive chlorotrimethylsilane. It is also the only commercially 

available silylstannane. The catalyst chosen was

tetrakis(triphenylphosphme)palladium(0 ) (Pd(PPh3)4); this catalyst has been shown to be 

the signihcantly more active in the addition of silylstannanes to terminal alkynes when 

tested against several palladium(O) and palladium(II) catalysts as well as molybdenum-, 

rhodium-, and platinum-containing catalysts.^^ '̂^^ The hrst ionic liquid used was 

[bmim]PF6 . This ionic liquid is one of the most (if not the most) commonly used ionic 

liquids. It is commercially available but can easily be prepared and purihed for a much 

smaller cost (Figure 3, Section 1.1.2), is immiscible with a number of organic solvents 

and with w ater, is  r elatively t hermally-stable, and hash  een s hown t o function well in
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other palladium-catalyzed reactions. The [bmimjPFg used in these reactions was 

prepared via the acid/base neutralization method. The precursor [bmim]Cl was prepared 

by refluxing 1 -methylimidazole with excess chlorobutane and was purihed by washing 

repeatedly with ethyl acetate followed by heating under vacuum. This was then dissolved 

in water and stirred with an aqueous solution of HPFg. The ionic liquid product 

precipitated as a second layer and was punhed by repeated water washes followed by 

heating under vacuum.^

The Grst addition of BusSnSiMes to phenylacetylene was carried out under 

nitrogen using the silylstannane in slight excess ( 1 . 2  equivalents) in neat [bmimjPFg (1 

mL) that had been dried by heating under vacuum at 70 °C for 4 h. 5 mol% Pd(PPh3 )4  

had been added to the dry ionic liquid in an argon glove box, providing a yellow 

suspension on stirring. Once the silylstannane and alkyne were irqected vw needles and 

syringes the reaction was heated in a 70 °C oil bath using a temperature-controlled 

hotplate; the reaction proceeded under a stream of nitrogen as the reaction vessel was 

sealed with a rubber septum. Aliquots were periodically removed Aom the reaction and 

analyzed &r the presence of unreacted alkyne using a gas chromatograph equipped with a 

flame ionization detector (GC-FID).

The Srst reaction was devoid of alkyne after 18 h; however, only a 6 6 % isolated 

yield was obtained. It was observed during the reaction (as well as in a second reaction 

being performed using 5-hexyn-l-ol instead of phenylacetylene) that droplets of clear 

liquid were condensing on the walls of the reaction vessel, indicating that the reagents 

were evaporating out of the palladium-containing ionic liquid but were not present in 

large enough quantities to run back down into the ionic liquid. Thus, the reactions
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appeared complete by GC-FID but had not actually proceeded to completion. To combat 

this problem, all subsequent reactions were conducted under biphasic conditions using 

6 eshly dried and distilled diethyl ether Et2 0 . The reaction was repeated under biphasic 

conditions, heating it in a 70 °C oil bath after Stting the flask with a dry reflux condensor 

to provide the product in excellent yield.

Reactions were initially performed with two other alkynes to investigate the scope 

and functional group tolerance of the reaction. 5-Hexyn-l-ol contained a hydroxyl group 

and 1-decyne had a long alkyl chain. Both alkynes were inserted into the tin-silicon bond 

of Bu3SnSiMe3 in the same manner as aromatic phenylacetylene to provide good yields 

of the coupled products.^^ In addition to these alkynes, two others were synthesized 

from 5-hexyn-l-ol to investigate a wider scope of functional groups. The 

tetrahydropyran-2-yl (THP) ether was synthesized from 5-hexyn-l-ol with 3,4-dihydro- 

2/f-pyran and a catalytic amount of /j-toluenesulfonic acid (TsOH) in dichloromethane 

(Figure 15) to generate an alkyne containing an ether/acetal moiety.

TsOH, CHgClz O O

Ffgwre 75. jynrAegü q/"5-Agxyn-7-o7 THP crAcr

5-Hexyn-l-ol was used also to generate 6 -chlorohex-l-yne by refluxing with freshly 

distilled thionyl chloride in dry pyridine overnight, followed by quenching with water,
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extraction with diethyl ether, and pnriGcation via flash chromatography (Figure 16).'^  ̂

This gave an alkyne containing a halogen.

SOCIg, pyridine

reflux

Figure 76. .^iA egü q/"d-cAZoroAex-J-^yneJ-Aexy»-7-oZ

A second ionic liquid, [bmim]BF4 , was investigated as a catalyst immobilization 

agent/solvent for reactions involving BugSnSiMeg. This ionic liquid is water-miscible, 

whereas [bmim]PF6 is immiscible with water. The ionic liquid [bm im ]B F4 was prepared 

in a similar manner as [bmimjPFg, using the acid/base neutralization method. This ionic 

liquid is also commercially available but is much less costly when prepared in the lab. 

An aqueous solution of HBF4 was added to an aqueous solution of [bmim]Cl and stirred 

for 3 d to ensure complete reaction. After this time, the water was removed under 

reduced pressure and the resulting ionic liquid was heated under vacuum.^ A water 

wash was not feasible since the ionic liquid is miscible with water.

Reactions were performed in these two ionic liquids, [bmimjPF^ and [bmim]BF4 , 

under biphasic conditions with EtiO as a co-solvent, heating in a 70 °C oil bath. In 

general, 5 mol% Pd(PPh3 ) 4  was used; however, catalyst loadings of 1 mol% were used on 

occasion to probe the robustness of the system. The results of additions of Bu3SnSiMe3 

to the ftve alkynes, phenylacetylene, 5-hexyn-l-ol, 1-decyne, 5-hexyn-l-ol THP ether.
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and 6 -chlorohex-l-yne, under diSerent conditions are presented in Table 1. The 

reactions were run until the absence of alkyne was determined by GC-FID analysis.

Table 1. Results of the addition of BugSnSiMes to Gve alkynes in 
[bmim]PFg/EtzO and [bmimjBF^/EtzO

R -C = C H

BugSnSIMog 
Pd(PPh3)4  ̂

ionic liquid/EtgO 
70 °C oil bath

R

BusSn

,H

SiMeg

‘I z i t  y ‘M ( % r

1

2

3

4

5

6

7

8

9

10

11

12

[bmimjPFe

[bmimjPFg

[bmim]BF4

[bmimjPFo

[bmimjPFo

[bm im ]B p4

[bmimjPFe

[bm im jPFe

[bmim]BF4

[bmimjPFg

[bmimjPFe

[bmimjPFg

36 100(100)

5

5

1

5

5

1

5

5

1

17

36

15

72

120

18 

24 

24

84

120

144

97 (99)

100 (100)

99 (97)

99 (100)

1 0 0  (82) 

100 (89) 

100(87) 

97 (61)

100 (99)

100 (68) 

90 (22)

Reaction conditions: 1 mmol alkyne, 1.2 mmol Bu3 SnSiMe3 , 1.0 mL ionic liquid, 5.0 mL 
EtgO, 70 "C oUbath
"GC yield based on disappearance of alkyne (isolated yield in brackets)

As can be seen Aom the results presented in Table 1, nearly all of the reactions 

proceeded to give quantitative yields of the addition product as assessed by GC-FID
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analysis for the disappearance of alkyne (assuming only one reaction product). These 

findings were generally supported by high isolated yields. As has been observed in other 

studies where THF was used as a solvent, the addition of silylstannanes to terminal 

alkynes is tolerant of a variety of functional groups. This also appears to be true using 

ionic liquids under biphasic conditions. The use of ionic liquids allowed facile product 

isolation and separation 6 om the catalyst as the upper EtgO layer was decanted, which 

contained the addition product as well as unreacted silylstannane. The lower ionic liquid 

phase, which contained the palladium catalyst, was washed repeatedly with ether (8 x 8  

mL, generally) in o  rder to e nsure c omplete e xtraction o f  a ddition p roducts. T he final 

washings were analyzed by GC-FID and were always devoid of products or starting 

materials, indicating complete extraction. The products were then separated 6 om excess 

silylstannane u sing flash c hromatography to a ffbrd thep  roducts i n yields p resented i n 

brackets in Table 1.

All reactions proceeded to give only a single product isomer. Four isomers are 

possible, one with tin on the terminal carbon and silicon on the internal carbon, another 

with tin on the internal carbon and silicon on the terminal carbon, and each of these could 

be CM or trans alkenes. Each of the regio- and stereoisomers would likely give different 

retention times by GC-FID, different elution rates during flash chromatogr^hy, and 

different response factors (Rg) by thin-layer chromatography (TLC); only one product 

was observed 6 om each of these chromatogrzqihic techniques. With the aid of proton 

nuclear magnetic resonance spectroscopy, NMR, the isomeric form of the products 

were conGrmed to be the cM-bismetallated adducts with the tin on the internal carbon and 

the silicon on the terminal carbon as shown in the Ggure above Table 1. Tin has ten
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naturally occurring isotopes of varying relative abundances, giving tin-containing 

compounds characteristic spectra when analyzed via mass spectrometry. Two isotopes of 

tin have nuclear spin values of % and are present in high enough abundances to be 

suitable for NMR studies, "^Sn and The coupling of the tin atom to the vinylic

proton of the alkyne addition product produces satellites on the 'H NMR spectrum; the 

coupling constants of these satellites indicate the isomeric form of the groups 

contributing to the tin-proton coupling. The value of the coupling constants 6 om the tin 

satellites are known to be around 100 Hz for cw-coupling as well as for geminal coupling. 

Geminalcoupling would result i f  the tin was on the terminal carbon, the same as the 

vinylic proton, while cü-coupling would result if the tin was on the internal carbon but 

the silicon was in the frans position on the alkene. 7raMs-corq)ling between tin and 

vinylic protons is known to occur with coupling constants around 180 Hz, resulting horn 

tin being on the internal carbon and silicon being in the cis position on the a l k e n e . T h e  

tin-vinylic proton coupling constants of all products isolated horn these reactions were 

between 160-184 Hz as measured &om the ^H NMR spectra of the products, indicating 

that the products were cis-bismetallated, intemaUy-stannylated, terminally-silylated 

alkenes. The satellites resulting horn ^̂ ^Sn and ^̂ ^Sn were both observable at 250 MHz 

and even at 60 MHz (Figure 17).
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The isolated yields of adducts horn the five alkynes compared very well to 

literature values 6 om reactions performed in refluxing THF, generally equaling or 

surpassing previously obtained results. The times required for the reaction to proceed are 

rather lengthy; however, this is typical of these types of reactions. A 91% yield of the 

adduct between phenylacetylene and BugSnSiMea had previously been obtained using 

refluxing THF as a s o l v e n t . 99-100% yields o f  the adduct were obtained using the 

ionic liquid/Et^O solvent system (Table 1, Entries 1-3). The reaction performed in 

refluxing THF was complete after 3 hours while that in the ionic liquid required 17 hours 

to proceed to completion, indicating that the reaction proceeds much slower in the ionic 

liquid. It may be, however, that satisfactory amounts of product may be formed in the 

ionic liquid after shorter reaction times to make the process attractive to operators of 

continuous flow systems. Reactions performed with non-aromatic alkynes proceeded 

with somewhat more promising reaction times compared to literature results. The 

coupling of 1-decyne with BusSnSiMes afforded quantitative yields of product aAer 15 

hours in [bmimjPFg/EtiO (Table 1, Entry 4) while the product of 1-hexyne with the same 

silylstannane was obtained in 52% yield after 20 hours when the reaction was performed 

without solvent at 80 An 89% yield of the adduct between 5-hexyn-l-ol and

BusSnSiMes was obtained hom [bmimjPF^/EtzO after 18 hours (Table 1, Entry 7) while 

a comparable yield, 8 8 %, was obtained 6 om the reaction of 4-pentyn-l-ol with the same 

silylstannane after refluxing in THE for 72 h o u r s . T h e  results for the hnal two alkynes 

provided little improvement over literature reports. The adduct of the 5-hexyn-l-ol THP 

ether and BugSnSiMes was obtained in quantitative yield after 84 hours in 

[bmim]PF6/Et2 0  (Table 1, Entry 10) while that of a 3-butyn-l-ol THP ether with the
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same silylstannane was obtained in 91% yield after refluxing in THF for only 48 hours/^^

6 -Chlorohex- 1 -yne afforded its BuaSnSiMes coiqiling product in only 6 8 % yield after 

heating in [bmimjPFg/EtzO k r  120 hours (Table 1, Entry 11) while the adduct horn 5- 

chloropentyne was reported to undergo coupling with the same silylstannane in 80% after 

72 hours in refluxing THF/^^ The result for the chloroalkyne does not appear to be as 

good as those obtained with other alkynes regardless of the solvent system chosen for 

their reaction, indicating that chloroalkynes may be less reactive than other alkynes. This 

is not likely the case since an 87% isolated yield was obtained 6 om the reaction between 

chloropentyne and another silylstannane. It has been shown in this work and previous 

studies that chloride functional groups are tolerated in these reactions despite their 

adducts not being obtained in >90% yields. In addition, 6 -chlorohex-1 -yne was observed 

to be signiûcantly more volatile than the other alkynes used and may have simply 

evaporated during the course of the 5-d reaction.

Reactions between all alkynes except 5-hexyn-l-ol THP ether were performed 

with 5 mol% and 1 mol% Pd(PPh3 ) 4  in [bmimjPFg/EtzO. Using 5 mol% palladium 

became standard procedure for the mzyority of these reactions but results of reactions 

using only 1 mol% palladium were promising. In general, reactions performed using 1 

mol% palladium required longer reaction times to proceed to completion than those using 

5 mol% palladium. These results are not unexpected as it only makes sense that reactions 

proceed slower when smaller amounts of catalysts are used. Interestingly, the reaction of 

phenylacetylene proceeded faster at lower catalyst loadings than at higher, providing 

excellent yields of product after only 17 hours at 1 mol% palladium (Table 1, Entry 2) as 

compared to the 36 hours required with 5 mol% palladium (Table 1, Entry 1). Reactions
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of 1-decyne (Table 1, Entries 5 vs. 4) and 5-hexyn-l-ol (Table 1, Entries 8  vs. 7) required 

longer reaction times at lower catalyst loadings to reach the same yields obtained at 

higher catalyst loadings. The reaction of 6 -chlorohex-1 -yne proceeded very poorly at 1 

mol% palladium when comparing isolated yields (Table 1, Entries 12 vs. 11), perhaps 

resulting ûom the high volatility of the alkyne and having less palladium species in the 

ionic liquid phase. These results show that the addition of alkynes to Bu3SnSiMe3 can be 

performed at lower catalyst loadings but require longer reaction times. It should be noted 

that the ionic liquid/catalyst mixtures were clear yellow solutions with 1 mol% Pd(PPh3 )4  

while those with 5 mol% Pd(PPh3 ) 4  were cloudy yellow suspensions until heated with the 

other reaction components in the 70 °C oil bath and remained clear iqmn cooling. It may 

be that optimal catalyst activity lies somewhere between 1 and 5 mol%.

The results of the palladium-catalyzed addition of dif&rent alkynes to 

BusSnSiMes in two different ionic liquids were promising, showing that not only could 

the reaction proceed in ionic liquids but also that in some cases it proceeded with better 

results than in THF. A second silylstannane was synthesized to further probe the scope 

of these reactions in ionic liquids. Dimethylphenyl(tributylstannyl)silane 

(Bu3SnSiMe2Ph) was synthesized by deprotonating tributyltin hydride with lithium 

diisopropylamide LDA in THF at "10 °C to generate a tributyltin lithium species, which 

was then quenched with chlorodimethylphenylsilane at 0 °C (Figure 18). The resulting 

mixture was stirred at room temperature for an hour, after which time the solvent was 

evaporated and the precipitated lithium chloride was hltered off The silylstannane was 

purihed via vacuum distillation. This dimethylphenylsilylstannane has been used in
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addition reactions with alkynes as the addition products have been shown to be more 

readily protodesilylated than their trimethylsilyl counterparts/^^

BusSnH  B u g S n ^ i  .M ^ P h S iCI^  BugSnSIIVIezPh
T H F ,.1 0 °C  o ° C  +LiC I(s)

Frgwe

Reactions were carried out between BuaSnSlMezPh and the four alkynes that 

provided acceptable results horn studies with BugSnSiMes. 6 -Chlorohex-l-yne was not 

used with the new silylstannane as it was too volatile to provide meaningful results. The 

reactions with BusSnSiMezPh were carried out in the same manner as before, using 1 . 2  

equivalents of silylstannane in a biphasic mixture of ionic liquid and dry EtzO heating in 

a 70 °C oil bath. All reactions with this silylstannane were carried out using 5 mol% 

Pd(PPh3)4 . The results of these reactions are presented in Table 2.
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Table 2. Results of the addition of BuaSnSiMeiPh to four alkynes in 
[bmlmjPFg/EtzO and [bmimjBF^/EtzO in the presence of 5 mol% PdCPPhg)̂

R H
Bu3SnSIM6 2 Ph \— /

P._C=CH .5% Pd(PPh3)4 ^  Bu3Sn SiMez 
ionic llquid/EtgO 

70 °C oil bath

time (h)

1

2

3

4

5

[bmimjPFe 96 100 (98)

[bmim]BF4 96 100(97)

[bmimjPFg 108 100 (78)

[bmim]BF4 144 95 (62)

[bmimjPFg 19 1 0 0  (62)

[bmimjPFe 168 100 (83)
O O

Reaction conditions: 1 mmol alkyne, 1.2 mmol BuaSnSiMezPh, 0.05 mmol Pd(PPh3)4,
1.0 mL ionic liquid, 5.0 mL EtzO, 70 °C oil bath
"GC yield based on dis^ypearance of alkyne (isolated yield in brackets)

The reactions with BugSnSlMezPh were monitored by GC-FID and continued 

until no more alkyne was present. Products were isolated by washing the ionic liquid 

layer repeatedly with EtgO. The hnal washing was always devoid of products and 

starting materials as determined by GC-FID. It can be seen 6 om the results presented in 

Table 2 that the isolated yields generally corresponded with the results of the GC 

analyses showing absence of alkyne, indicating complete reactions. The products all had 

the same regio- and stereochemistries as those obtained 6 om reactions with BusSnSiMes. 

The V alues o f  the t in-vinylic p roton coupling constants w ere all b etween 156-185 Hz,
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verifying that the products were cü-bismetallated containing the tin on the internal 

carbon atom and the silicon on the terminal carbon atom of the alkene, as depicted in the 

Ggure above Table 2.̂ ^̂  This indicates that increasing the steric bulk around the silicon 

atom has no effect on the regio- or stereochemistry of the reaction.

As with results obtained &om the coupling of the trimethylsilylstannane with 

various alkynes, the results obtained &om the coupling of Bu3 SnSi\ie2Ph with various 

alkynes gave similar results as reactions performed in refluxing THF as reported in the 

literature. When using phenylacetylene as the alkyne, an excellent yield (98%) was 

obtained after 96 hours of heating in [bmimjPFe/EtaO in a 70 °C oil bath (Table 2, Entry 

1). In refluxing THF, the same alkyne gave a 95% yield after only three hours, not unlike 

the reaction performed with the same alkyne and the trimethylsilylstannane in refluxing 

THF. Again, other alkynes proceeded to completion with much longer reaction times in 

refluxing THF. From [bmimjPFg/EtzO, 1-decyne aftbrded a 78% yield of coupled 

product after 108 hours (Table 2, Entry 3) which compares very well to the 80% yield 

afforded by 1-hexyne after 120 hours in refluxing THF. 5-Hexyn-l-ol provided the poor 

isolated yield o f  62%, but showed no more alkyne by GC-FID after only 19 hours in  

[bmimjPFg/EtzO (Table 2, Entry 5). An 81% yield of the adduct ftom 4-butyn-l-ol was 

obtained after 120 hours in refluxing THF. It may be that the GC-FID was not as 

responsive to 5-hexyn-l-ol as to other alkynes, showing complete absence of alkyne 

prematurely; thus, the reaction in the ionic liquid may have provided a higher isolated 

yield if allowed to proceed longer. The 5-hexyn-l-ol THP ether provided more 

acceptable results, giving its adduct in 83% yield after the lengthy 168 hour reaction time, 

similar to the 82% yield obtained ftom 4-butyn-l-ol THP ether ftom refluxing THF after
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120 hours. When the reaction times and yields of adducts obtained using BugSnSiMe^Ph 

are comparedto those fromusing thetrimethylsilylstannane, i t c a n b e  seen that these 

reaction times are longer and the isolated yields are slightly lower. This is a trend 

observed when using refluxing THF as a solvent and thus is not attributable to the ionic 

liquids. The reactions involving the larger, bulkier BusSnSiMeiPh simply require more 

time to proceed. It can be assumed then that if lower catalyst loadings were used that the 

reactions would proceed even slower.

Comparing results from the same reaction performed in different ionic liquids, it 

can be seen that [bmimjBF^ generally provides products in lower yields with longer 

reaction times over those performed in [bmimjPFe. Phenylacetylene coupled with both 

silylstannanes equally well in both ionic liquids but is uniquely reactive^^^ and thus no 

conclusions can be drawn &om reactions performed with this alkyne regarding activity in 

different ionic liquids. 1-Decyne coupled with BugSnSiMes much faster and in higher 

yield in [bmimjPFg/EtzO, giving a 97% isolated yield after 15 hours (Table 1, Entry 4) 

compared to the 82% isolated yield obtained after 120 hours in [bmimjBFii/EtzO (Table 

1 , Entry 6 ). Similar results were obtained with BusSnSiMezPh as 1-decyne gave a 78% 

isolated yield after 108 hours in [bmim]PF6/Et2 0  (Table 2, Entry 3) but gave only a 62% 

isolated yield after 144 hours in [bmim]BF4/Et2 0  (Table 2, Entry 4). 5-Hexyn-l-ol also 

gave lower a yield in [bmim]BF4/Et2 0 , giving a 61% isolated yield after 24 hours of 

coupling with BusSnSiMeg as compared with the 89% isolated yield obtained after 18 

hours in [bmim]PF6/Et2 0 . It appears by these results that the reaction in [bmim]BF4 

occurs at a slower rate than in [bmimjPFg. It also seems as though [bniim]BF4 may be
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giving problems regarding product isolation, since GC-FID analyses show absence of 

alkyne yet isolated yields are still lower than those horn [bmim]PF6 .

The reasons for slower reaction rates in [bmim]BF4 do not immediately present 

themselves. The only obvious difference between the two ionic liquids is the miscibility 

of [bmim]BF4  with water. On the surface the lower reaction rates may be due to the 

increased viscosity of the ionic liquids. While this may be a reason for the lower reaction 

rates of some alkynes compared to their rates in THF, it is likely not a contributing factor 

in the explanation of the lower reaction rates in [bmim]BF4 . It is known that residual 

chloride i mpurities i n ionic 1 iquids r esulting from t heir i nefGcient p reparation i ncrease 

their viscosities. Some transition metal-catalyzed reactions are also inhibited by excess 

halide present as the halide coordinates to the metal center, generally lowering the rate of 

reaction. Studies have been performed on the different methods commonly used to 

prepare ionic liquids, analyzing the products for halide content, described earlier in 

Section 1.1.2. Although metathesis with a silver(I) salt affords the cleanest ionic liquids 

(i.e. most halide-free), the much cheaper acid/base neutralization method affords ionic 

liquids with halide levels almost as low.^ As the methods used to generate the ionic 

liquids employed in these studies involved acid/base neutralization, it is unlikely that the 

viscosity of [bmim]BF4  has been so increased over that of [bmimjPFe to cause it to afford 

slower reaction rates in these silylstannations. As well, it is known that viscosities of 

ionic liquids are markedly decreased when almost any organic substrate is added to them, 

including reagents and co-solvents. In addition, the viscosities of several ionic liquids 

have been measured by different research groups and although they do not all agree on an 

exact value, they show that the viscosity of [bmimjPFe ranges from being twice as high
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as that o f [bmim]BF4 to having equal value.^ It is thus unlikely that viscosity plays a 

role in the different rates of silylstannation reactions observed in these two ionic liquids.

It may be that the "hydrophobic" nature of [bmim]PF6 allows it to support the 

palladium-catalyzed addition of silylstannanes to alkynes with a higher rate than the 

hydrophilic [bmim]BF4 . Being hydrophobic, it is intuitive that [bmimjPFg would have a 

lower water content than [bmim]BF4 . Although the ionic liquids were dried by heating 

under vacuum 6 )r several hours prior to use, studies have shown that this cannot remove 

all water from ionic liquids. As described in Section 1.1.1, all imidazolium-based ionic 

liquids are in fact hygroscopic, absorbing a certain amount of water &om the atmosphere 

which hydrogen bonds to the anion of the ionic liquid. The so-called "hydrophobic" 

ionic liquids simply do not absorb as much moisture as the hydrophilic ionic liquids and 

form a second phase with excess water. Thus, [bmimjPFe contains a certain amount of 

bound water even after heating under vacuum for several hours. It has been shown, 

however, that [bmim]BF4  contains significantly more water than [bmimjPFe. Rogers et 

al. have shown that after heating under vacuum at 70 °C for 4 hours [bmimjPFe contained 

590 ppm water while [bmimjBF4 contained 4530 ppm water, about 7.5 times the 

amount.^° It is  impossible to  determine howmuch water ispresent in  [bmimjBF4 b y 

simple visual inspection since it is miscible with water. Thus, if the [bmimjBF4  to be 

used contains a large amount of water it will require longer to dry under vacuum. When 

THF is dried using potassium metal it is nearly devoid of water; thus, the presence of 

bound water in both ionic liquids could be responsible for the longer reaction times 

necessary compared to those observed in THF. The higher water content of [bmimjBF4 

could also be responsible for its lower rate of reaction compared to [bmimjPFg. The

71



presence of water in ionic liquids has been known to impede the progress of some 

palladium-catalyzed reactions/^ '̂^^^ Indeed, the initial reaction performed in [bmim]BF4 

had been done after the ionic liquid was heating under vacuum for only 3 hours. This 

reaction showed mainly decomposition products of BugSnSiNtes, which has been 

reported as being moisture-sensitive.

It may also be that the products of silylstannation reactions are more soluble in 

[bmim]BF4 than in [bmim]PF6 . The reaction cycle under biphasic conditions is 

envisioned to be one involving starting materials, silylstannane and alkyne, dissolved in 

the upper Et^O phase 6 om which they dissolve into the lower palladium-containing ionic 

liquid pbase. H ere they undergo coupling to give the s üylstannylated aIkene product, 

which then moves into the upper EtzO phase, driving the reaction 6 )rward (Figure 19). °̂̂  

This forward drive of the reaction may give rise to slightly higher isolated yields in some 

cases over reactions performed in THF. On the other hand, if the products are more 

soluble in [bmim]BF4 than in [bmimjPFe or if the starting materials are not as soluble in 

[bmim]BF4 as compared to [bmimjPFe, then the reaction would proceed slower in 

[bmimJBF4 as it would take longer for products to leave the ionic liquid phase and/or for 

starting materials to enter the same phase as the palladium catalyst. The starting 

materials and products are all quite soluble in Et^O as evidenced by their easy separation 

6 om the ionic liquids and the palladium catalyst remains immobilized in the ionic liquid 

phase and is likely not leached into the EtgO phase during product extraction, evidenced 

by several researchers. The most likely possibility of these is that the reaction 

products are more soluble in the [bmim]BF4  layer and reside in this phase longer,
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impeding higgler reaction rates. It is likely that the catalytic reaction occurs in the ionic 

liquid layer itself since the palladium catalyst resides there.

E t2 0

RC-CH

-2L
SIR

HC-!CR
+2L
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The mechanism of the catalytic cycle shown in Figure 19 is based on 

experimental evidence, on the proposed mechanism of the closely related bis-silylation of 

unsaturated molecules,'^ and on a theoretical study using ah initio Hartree-Fock 

calculations to determine energies of steps involved in the reaction between a 

hypothetical silylstannane H3SnSiH3 catalyzed by the hypothetical catalyst Pd(PH3)2 .^^ 

After dissolution of the alkyne and silylstannane into the ionic liquid phase, the Grst step 

in the reaction is oxidative addition of the silylstannane across palladium(O) in the form 

of PdLz. Coordination of the alkyne follows next (not competed for by the ionic liquid 

due to its non-coordinating nature), the internal end of which is inserted into the
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palladium-tin bond; this is presumed to be the rate determining step based on 

calculations. Reductive elimination then follows to generate the cis-bismetallated, 

terminally silylated, internally stannylated alkene and regenerate the palladium(O) 

catalyst. The product then dissolves into the upper EtgO phase.

The reactivities of different alkynes used toward insertion into sil)dstannanes 

generally follow trends already outlined in studies performed in THF. Chenard et al. 

have concluded that efGcient addition of alkynes to silylstannanes is limited to terminal 

alkynes with smaller substituents due to steric considerations. This group states that 

unreactive alkynes are generally those that are poor ligands for palladium due to steric 

bulk.^^  ̂ This may explain the lower yields obtained when using 5-hexyn-l-ol and 6 - 

chlorohex-l-yne. Phenylacetylene provided excellent yields in relatively short reaction 

times under many different conditions, but this is known to be a particularly active alkyne 

toward silylstannation reactions, possibly stemming from the aromaticity of its 

substituent. Relatively high yields were obtained from using the 5-hexyn-l-ol THP ether 

and 1-decyne, both of which contain the largest substituents. It may be that these alkynes 

were the least volatile and provided higher yields, as it was observed that 6 -chlorohex-1 - 

yne possessed a relatively high volatility. Steric bulk may explain the sli^ tly  lower 

yields and longer reaction times observed when using the bulkier BusSnSiMeiPh as 

opposed to the smaller BuaSnSiMeg. All frve alkynes did, however, yield their coupling 

products, showing a small cross-section of the functional group tolerance of this reaction.

As mentioned earlier, studies had previously been perfr)imed regarding the choice 

of catalyst for these reactions. The paUadium(0) catalyst Pd(PPh3 ) 4  had been shown to 

provide signifrcantly better yields than all other catalysts tried in THF.^^ '̂^^ It was
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decided to investigate the use of a palladium(II) catalyst in a [bmimjPFg/EtzO system to 

determine if catalyst selectivity were different in ionic liquids. 

Bis(acetonitrile)palladium(II) chloride, (CH3CN)2PdCl2 , was used in 5 mol% for the 

coupling of phenylacetylene with BugSnSiMes. After 24 hours at room temperature in 

[bmimjPFg/EtzO, very little reaction had occurred. The reaction was then heated to 70 °C 

for 48 hours, which also resulted in very little product formation. A fair amount of 

unreacted silylstannane was present as was a large amount of hexabutylditin 

BugSnSnBU]. This by-product has been observed by other researchers when using 

unreactive alkynes. The silylstannane MegSnSiNies is known to undergo a palladium- 

catalyzed disproportionation reaction when attempts are made to couple it with 

unreactive alkynes. The products of the disproportionation of MegSnSiMeg are the 

hexamethyldistannane MeaSnSnMea and the hexamethyldisilane MegSiSiMes.^^  ̂ Thus 

we were unable to improve on the original catalyst selection of Pd(PPh3)4 .

The reactions between Bu3SnSiMe3 and various alkynes were investigated for 

possible rate enhancements resulting from the use of ionic liquids. Many transition 

metal-catalyzed and uncatalyzed reactions report rate enhancements due to the use of 

ionic liquids. From simple observations of the long reaction times required in ionic 

liquids it is apparent that there is no rate enhancement resulting from the use of ionic 

liquids; in fact, there is likely a rate decrease when compared to reactions performed in 

THF. The Pd(PPh3)4-catalyzed reaction between phenylacetylene and Bu3 SnSiMe3 has 

been shown to proceed in THF at room temperature to quantitative y i e l d s . W h e n  the 

same reaction was allowed to proceed in [bmimjPFe without any EtgO, no reaction had 

occurred after 18 h. After the addition of EtzO the reaction was heated in a 70 °C oil
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bath, after which time complete reaction was observed overnight, showing that the 

catalyst had not decomposed but that the reaction required heating to proceed in the ionic 

liquid. The ionic liquid was light yellow in colour after the reaction was complete with 

no precipitation of palladium black, indicating no decomposition of the catalyst. The 

same reaction was performed in refluxing THF and this was complete after 3 hours In 

THF at room temperature the reaction ran to completion overnight. Although the 

reactions proceeded at higher rates in THF as compared to ionic liquids, the colour of the 

solvent in both cases (refluxing and at room temperature) quickly changed 6 om the 

initial orange colour to black, indicating that palladium black had precipitated. Thus, the 

reactions per&rmed in ionic liquids may have lower rates, but the catalyst appears to be 

much more stable and amenable to potential reuse. In addition, the reactions performed 

in ionic liquid/EtzO biphasic systems were placed in a 70 °C oil bath but may not have 

actually reached this temperature. 70 °C was chosen as the bath temperature because the 

boiling point of THF is 66-69 °C and comparison was desired; however, the boiling point 

of EtaO (35 °C ) is much lower. The lower ionic liquid phase may have reached slightly 

higher temperatures, but would have been regulated somewhat by the low boiling point of 

EtzO which would lower the rates of reactions performed in these systems when 

compared to those performed in refluxing THF.

2.2 Recyclability Studies

Ionic liquids provide several benehts as solvents &r transition metal-catalyzed 

reactions compared to other molecular solvents, including facilitating product isolation.
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separation of catalyst, and potentially increasing reaction rate. Their most important 

beneSt, however, may be the potential to recycle the catalyst. This is especially attractive 

for reactions that use expensive c atalysts, such as the p alladium-catalyzed coupling o f  

silylstannanes with alkynes.

As ionic liquids are being touted as "greener solvents" for doing chemistry with 

less negative environmental impact, it is important to show that they can be reused 

without loss of activity for the reactions they support. The silylstannation of alkynes is 

an excellent example of a "greener" reaction as it proceeds with total "atom economy" in 

that every atom of the starting materials is incorporated into the product with no by­

product or waste formation. If the ionic liquid/catalyst support system can be recycled, 

this would enhance the “green” potential of this reaction.

Many groups have successfully recycled catalysts contained in ionic liquids 

without activity losses while others have had less promising results. In some cases, the 

ionic liquid/catalyst system was puriSed between reaction cycles using complex 

extraction/washing procedures. In the enantioselective allylation of carbonyl compounds 

with palladium(0 ) complexes the ionic liquid was dissolved in ethyl acetate, washed with 

water, and dried over magnesium sulfate, after which the ethyl acetate was evaporated. 

Although the recovered ionic liquid still contained the catalyst, activity decreases were 

large. Other groups noticed that the presence of water lowered the activity of 

palladium catalysts and extremely careful drying procedures were necessary in order to 

avoid catalyst activity loss, noting as well that added water severely detracted from the 

catalyst's turnover number.^^° Other groiq)s found that the presence of water had little to 

no eSect on the efSciency and recyclability of their ionic liquid/palladium catalyst
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systems. Suzuki coiq)Iings have been performed without precautions to exclude air and 

water with no loss o f  catalytic activity/^ although i t  was observed that the use o f  an 

argon atmosphere decreased by-product formation. One group found it necessary to 

wash their ionic liquid/Pd/C catalyst systems with water during successive Heck 

reactions to remove ionic by-products that lowered activity, after which activity returned 

to noimal.^^ Most groups found, however, that simply washing the ionic hquid/catalyst 

system repeatedly with an extractive solvent such as Et%0 to remove products allowed 

recyclability without leaching of the palladium catalyst.̂ ^̂ '̂ ^̂ '̂ ^̂ '̂ ^̂ '

The method used in these recyclability studies of the ionic liquid/Pd(PPh3 )4  

systems 6 )r the addition of silylstannanes to alkynes was relatively simple. After the Grst 

reaction was performed, the products were extracted using dry EtzO (8 x 8  mL) vio 

needle and syringe under nitrogen to exclude moisture due to the possibility of catalyst 

deactivation and/or silylstannane hydrolysis in subsequent reactions. After the final 

washing, Aesh silylstannane, alkyne, and EtgO were injected and the reaction was 

allowed to proceed again (Figure 20).
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Many studies were per&rmed regarding the recyclability o f the ionic 

liquid/catalyst system. The most extensive studies used phenylacetylene as the alkyne 

with BusSnSiMe]. These reactions were performed in both [bmimjPFg and [bmimjBF# 

ionic liquids containing 5 mol% Pd(PPh3)4 . Reactions were generally run Ar 48 hours 

under biphasic conditions heating in a 70 °C oil bath; all reactions proceeded to 

completion by GC-FID (100% disappearance of alkyne). We have reported that this 

reaction in [bmim]PFo was able to be performed four times in the same system without 

loss of activity.^^ These ionic liquid/catalyst systems were then shown to be recyclable 

ten times without loss o f activity, the results o f which are presented in Figure 21.
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Recyclability studies were also performed in both ionic liquids for the coupling of 

BuaSnSiMezPh and phenylacetylene in the presence of 5 mol% Pd(PPh3)4 . The reactions 

were performed in the same manner as those using the trimethylsilylstannane except that 

reactions were generally performed for 72 hours as opposed to 48 hours due to the lower 

reaction rate of the dimethylphenylsilylstannane. All reactions were monitored by GC- 

FID and were complete before products were isolated (100% dis^zpearance of alkyne). 

These studies were not as extensive as those performed with the trimethylsilylstannane 

due to the limited availability of the dimethylphenylsil)dstannane but were extensive 

enough to demonstrate that the catalytic system is likely as recyclable with either 

silylstannane. The results of these studies are presented in Figure 22.

80



^  50

-3 20

[bmim]PF6
[bmim]BF4

Ffgwre 22. /(e(ycZo6;/f(y q/"J% m fAe reaction
q//?Ae»}'/ace(y/e/ze ywfA

It can be seen 6om the results presented in Figures 21 and 22 that the ionic 

liquid/catalyst systems are very amenable to recycling. Reactions performed with 

Bu3SnSiMe3 were repeated ten times in the same ionic liquid/catalyst system, generally 

affording isolated yields above 90% regardless of the identity of the ionic liquid. 

Reactions performed with Bu3SnSiMe2Ph were also recyclable as the 

[bmimjPFg/palladium system was recycled four times and the [bmimJBpypalladium 

system was recycled hve times, producing isolated yields above 80% in all cases. It is 

likely that the ionic hquid/catalyst systems used with Bu3SnSlMe2Ph would be as 

extensively recyclable as those used with Bu3SnSiMe3 as there is httle difference in the 

reactivities of these two silylstannanes. There was no obvious evidence of palladium 

leaching during product extraction, although neither the ionic liquids nor their extracts 

were analyzed for palladium content between cycles.
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The ionic liquid/catalyst systems q)pear to be very robust systems, being 

amenable to recycling even with less reactive alkynes. Recycling of ionic bquid/catalyst 

systems using 1-decyne and 5-bexyn-l-ol were also accompbsbed without loss of catalyst 

activity i n  b otb i onic 1 iquids. R eactions p erfbrmed with 1 mol% P d(PPb3 ) 4  w ere a Iso 

shown to be recyclable, supporting the possibibty that palladium leaching is not 

occurring during product isolation. In fact, many combinations of ionic bquid, alkyne, 

silylstannane, and palladium content were shown to be recyclable (Table 3).

Table 3. Results of recyclability studies on various alkyne/iomlc liquid/palladium
content reactions

Cyc/e (mo/ ^ /bn/c /rgun/
React/on 
time (^ Fie/if

1 Phenylacetylene R]=Me3 1 [bmimjPFe 20 100 (78)
2 Phenylacetylene R3=Me3 1 [bmimjPF^ 17 99 (99)
1 1-Decyne R3=Me3 5 [bmimjPFg 15 99(97)
2 1-Decyne R3=MC3 5 [bmimjPFe 72 100 (>95)
1 1-Decyne R3=MC3 1 [bmimjPFe 72 99 (99)
2 1-Decyne R3=MC3 1 [bmimjPFe 336 100 (>95)
1 1-Decyne R3=MezPh 5 ^mim]BF4 144 95 (62)
2 1-Decyne R3=Mc2Ph 5 [bmim]BF4 144 85(44)
1 5-Hexyn-l-ol R3=Me3 5 [bmimjPFe 18 100 (89)
2 5-Hexyn-l-ol R3=MC3 5 [bmimjPFe 16 100 (46)
1 1-Decyne R3=Me2?h 5 [bmimjPFe 108 100 (78)
2 5-Hexyn-l-ol'’ R3=Mc2Ph 5 [bmimjPFe 24 100 (38)
1 5-Hexyn-l-ol R3=Mc2Ph 5 [bmimjPFe 19 100 (62)
2 1-Decyne^ R3=Mc2Ph 5 [bmimjPFe 120 100 (43)

Reaction conditions: 1 mmol alkyne, 1.2 mmol BusSnSiM^Ph, 0.05/0.01 mmol 
Pd(PPh3)4 , 1.0 mL ionic liquid, 5.0 mL Et^O, 70 °C oü bath 
^GC-FID yield based on disappearance of alkyne (isolated yield in brackets) 
^-Hexyn-l-ol used in [bmimjPFe previously used with 1-decyne 
"^1-Decyne used in [bmimjPFg previously used with 5-hexyn-l-ol

In general, successive reactions performed using the same ionic hquid/catalyst system 

were performed immediately after workup of the previous reaction. On occasion, 

however, subsequent reactions were not performed until the next day. In one instance.
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the subsequent reaction was not performed until 10 d after products 6om the previous 

reaction were isolated. The flask containing the ionic hquid/catalyst system was sealed 

with a septum but no other moisture or atmoqihere exclusion techniques were employed. 

When the subsequent reaction was performed, no loss in catalytic activity was observed. 

Many studies investigating recyclabhity of transition metal catalysts examine the ionic 

hquid/catalyst systems using only the same reaction performed in them previously, as 

most of our studies have done. Few researchers perform reactions in recycled ionic 

hquid/catalyst systems using different reagents than had been used in previous 

reactions.^^ On several occasions, ionic hquid/catalyst systems that had been used for 

reactions involving 1-decyne or 5-hexyn-l-ol were reused in subsequent reactions with 

the opposite alkyne. No loss in catalytic activity was observed, suggesting that these 

ionic hquid/catalyst systems are not just reusable for reactions that had previously been 

per&rmed in them but that they can be used for a number of applications.

An interesting result obtained from these studies is the lag time required for the 

first reaction to proceed. For most of the recyclability studies, the first reaction generally 

required a longer reaction time to proceed to completion than did subsequent reactions 

performed in the same ionic hquid/catalyst system. This effect is most pronounced in the 

very low isolated yield (<60%) from the reaction between phenylacetylene and 

Bu3 SnSiMe3 in [bmimjBF^/EtaO system as compared to the quantitative yields isolated 

friom subsequent reactions. After 144 hours in the 70 °C oil bath, only -85% of the 

phenylacetylene had been reacted as measured by GC-FID and the reaction was worked 

iq) at that point to afford a 58% isolated yield. On the subsequent reaction, however, 

quantitative GC and isolated yields were obtained after only 36 hours. This lag time may
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indicate that Pd(PPh3 ) 4  is not the active palladium species during catalysis and that the 

active species requires time to be generated.

Other groups working with palladium-catalyzed reactions in imidazolium-based 

ionic liquids have observed lag times. These groups often pre-heat the ionic 

liquid/catalyst system with only some or none of the reagents present for a "catalyst 

activation period" during which time the active species is presumably generated,^^ '̂^^^^^ 

some noticing a drop in initial rate if the reagents were preheated without the ionic 

liquid. These effects were often ascribed to the generation of some other active 

palladium species, most probably an imidazolylidene carbene complex. The proton on 

caitmn 2 of the imidazolium ring is mildly acidic and can be removed under the right 

conditions to generate a carbene. hideed, palladium-imidazolylidene complexes have 

been prepared independently from research c oncemed with ionic liquids and are quite 

active in many palladium-catalyzed reactions, including Heck reactions^^^’'̂  ̂ as well as 

many o t h e r s . T h e s e  complexes show excellent stabilities and turnover numbers 

compared to other palladium catalysts, acting as non-participative ligands in catalytic 

processes. The donation of electron density from the imidazolium nitrogen atoms to the 

carbene carbon enhances its nucleophilicity and compensates for electron flow to the 

metal. Imidazolylidene ligands are described as pure donor ligands and appear to 

coordinate more strongly to metal centers than tertiary phosphines, undergoing little or no 

dissociation from the metal in solution.

Experimental studies have confrrmed a density functional theory analysis done on 

the oxidative addition of the C-H bond of ^JV-dimethyhmidazolium across the 

platinum(0) complex Pt(PPh3)4 . These studies have shown that this reaction is

84



exothermic, resulting in the isolation of a platinum-iniidazolylidene complex, although 

calculations showed that the same reaction across Pd(PPh3 ) 4  was slightly endothermie. 

However, palladium-imidazolylidene complexes have been observed, isolated, and 

characterized from Suzuki^^'^^ and Heck'^^ reactions per&rmed in imidazolium-based 

ionic liquids.

During investigations into the Heck reaction in imidazohum-based ionic liquids, 

Xu et al. observed that the reaction proceeded much faster in [bmim]Br than in 

[bmim]BF4 ."^ When palladium(n) acetate Pd(0Ac)2 was heated in [bmim]Br, the ionic 

liquid changed colour hom brown to red to yellow within a few minutes, a similar colour 

observed in ionic liquid systems used in these silylstannation studies. Other groups 

investigating palladium catalysis in ionic liquids have also observed yellow catalytically 

active solutions. Extraction of the ionic liquid resulted in the isolation of a mixture of 

palladium-imidazolylidene complexes. When examined by NMR, some of these 

complexes appeared to be dimeric while most were monomeric isomers containing two 

bromide ligands and two imidazolylidene carbene ligands. The formation of these 

complexes was not observed under similar conditions in [bmim]BF4 , indicating that the 

halide was necessary to deprotonate the imidazolium species and generate the carbene. 

Since these types of palladium-carbene complexes were known to be very active in Heck 

reactions, it was presumed that their formation in [bmim]Br was responsible for its higher 

activity. When these isolated catalysts were used instead of Pd(0Ac)2 for Heck 

reactions, they showed h i ^  activity in [bmim]Br but not in [bmim]BF4 , indicating their 

transformation into some less active species in this ionic liquid.
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When i nvestigating t he Suzuki c oupling c atalyzed by  P d(PPh3 ) 4  i n [bmimjBF^, 

Mathews et al. added halide anions via NaCl to their ionic liquid in an attempt to prevent 

catalyst decomposition.'^ When it was observed that the catalyst did not decompose 

after the addition of halide, the system was further investigated and it was discovered that 

a palladium-imidazolylidene complex was forming (Figure 23). This complex was even 

observed in some samples of [bmim]BF4  without added halide. It was later determined 

that residual halide 6om the preparation of the ionic liquid via metathesis reaction with 

NaBF4  was causing the carbene to form and after further puiiGcation the ionic liquid 

ceased to aSbrd the caibene complex without added halide. The palladium- 

imidazolylidene complex was isolated and characterized and was shown to be extremely 

active and recyclable in  subsequent Suzuki reactions.

r ) - p d " - x

1  - 3

BF,

f  Aj)4 -cataZyze(Z 5'wzwA; reactions in impure /hmin^BF^

Another possible active palladium species may be palladium nanoclusters. 

Deshmukh et al. observed the formation of and isolated a bis-(imidazolylidene)- 

paUadium complex 6om Heck catalysts Pd(0Ac)2 and PdClg/NaOAc in [bbim]Br and 

[bbim]BF4 under sonicating conditions.'^ After a Heck reaction was performed in 

[bbim]BF4 under sonicating conditions, however, the remaining ionic liquid/catalyst 

mixture was analyzed by transmission electron microscopy (TEM), which showed the
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presence of palladium nanocliisters (Figure 24). These clusters were stable even after 

storage for a week.

F Y g w r e  2 ^ .  i m a g e  n a n o c / K y r e r y  y b r m e i /  ( A i n m g  a  Æ e e ^  r e a c ^ a / z  m

A study performed during the Heck reaction in different imidazolium-based ionic 

liquids used X-ray absorption 6ne structure (XAFS) analysis to characterize the 

palladium species present.^^  ̂ This study showed that bis-(carbene) complexes formed in 

ionic liquids with halide anions such as [bmhn]Cl, but in tetrafluoroborate-based ionic 

liquids palladium nanoclusters were the predominant species. The study showed that the 

addition of triphenylphosphine increased the induction time of the reaction while the 

active palladium species formed and also decreased the rate, but increased the stability of 

the palladium catalyst with respect to palladium black formation, showing higher 

recyclability. In addition, neither palladium-carbene complexes nor palladium
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nanoclusters were observed to form in non-imidazolium based ionic liquid or in C2- 

substituted imidazolium-based ionic liquids.

It appears as though more investigations are necessary to determine the active 

palladium species present in such reactions in imidazolium-based ionic liquids. It is 

possible that a caibene complex forms during silylstannane reactions, generated &om 

anions 6om HF resultmg hom the thermal decomposition of the hexahuorophosphate 

anion and giving rise to the higher activity of [bmimjPFe over [bmim]BF4 . It could also 

be that palladium nanoclusters are the active catalysts. Whatever it is, it seems clear that 

it is not Pd(PPh3 ) 4  and that imidazolium-based ionic liquids stabilize it more toward 

recyclability as palladium black precipitation is often observed from such reactions in 

non-imidazolium-based i onic 1 iquids. T hese findings a iso s upport c omments m ade b y 

many researchers regarding the not-so-benign nature of ionic hquids in the reactions they 

support."»''::''"'''»^'

2.3 Attempted Tandem SOylstannatlon-Stille Coupling Reactions

Vinylstannanes have been shown to be active in palladium-catalyzed Stille 

coupling reactions with diSerent hahde-containing unsaturated systems such as 

haloarenes and vinyl hahdes. Since the addition of silylstannanes to alkynes yield 

vinylstannanes, it was conceivable that tandem silylstannation-Stille coupling reactions 

could be perfrmned, generating the vinylstannane from a palladium-catalyzed 

silylstannation reaction followed by addition of a haloarene to generate the Stille product 

in one pot. Although Stille couplings have already been shown to proceed in ionic
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liquids under difkrent conditions/^^ the in siAi generation of the vinylstannane may 

provide a beneSt for the reaction.

The Srst part of the tandem silylstannation-Stille reaction was a coupling of an 

equimolar amount of phenylacetylene with BusSnSiMeg under biphasic conditions in 

[bmimjPFg/EtzO in the presence of 1 mol% Pd(PPh3)4 , heated in a 70 °C oil bath. This 

afforded the normal silylstannylated product in quantitative yield by GC-FID after 1 d 

(evidenced by the disappearance of the phenylacetylene peak). An equimolar amount of 

keshly distilled bromobenzene was injected into the reaction, which continued to heat 

under nitrogen in the 70 °C oil bath. Bromobenzene was chosen as the aryl halide based 

on the previous study of Stille reactions in ionic liquids that suggested bromobenzene to 

be the aryl halide of choice when using Pd(PPh3 ) 4  as a catalyst. The reaction was 

monitored by GC-FID and after 14 d there speared to be no remaining vinylstannane. 

The products were extracted with EtzO as normal and puriSed via flash chromatogr^hy 

to yield the Stille product in 29% yield (Figure 25).

PhBr

Figure 25. 7bwie/?i fiiyüiwmaüo7i-i9iiiie co&pÜMg meiiidieif in

This reaction was repeated with 5 mol% Pd(PPh3 ) 4  and provided a similarly low 

yield of 34% after 51 d heating in the 70 °C oil bath. In order to determine if the reaction
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would proceed better in a conventional solvent or if  an unreactive combination of 

reagents was chosen, these reactions were performed in refluxing THF. The 

vinylstannane was generated in quantitative yield by GC-FID after only 3 hours; it was 

observed that the THF was black at this point, indicating the precipitation of large 

amounts of palladium black. After die addition of bromobenzene, however, the reaction 

failed to provide better yields of the Stille product than the ionic liquid. The reactions 

were also per&rmed in THF at room temperature, the vinylstannane being quantitatively 

generated overnight. This temperature also failed to afBird improved yields of the Stille 

product. These results indicate that the slow rate of Stille coupling and the poor yields 

obtained are not due to the use of the ionic liquid but are more than likely due to the use 

of an unreacdve combination of reagents.

Although the previous study performed on the Stille reaction in ionic liquids 

showed that bromobenzene was the aryl halide of choice when using Pd(PPh3)4 , the study 

also showed that vinylstannanes do not proceed to give good yields using this palladium 

catalyst.'Arylstannanes such as PhSnBus provide far better yields with bromobenzene 

and Pd(PPh3 ) 4  than vinylstannanes and are much more widely used for such applications. 

The study showed that vinylstannanes may react better with palladium(n) catalysts such 

as PdClzCPhCN): and with iodoarenes. Since palladium(II) catalysts did not afford 

vinylstannanes 6om the reaction between phenylacetylene and BusSnSiMes, it was 

unavoidable to use an unreactive combination of reagents that did not provide Stille 

products in high rates or yields.

Mitchell et al. have succeeded in performing Stille couplings with the 

vinylstannanes generated from additions of alkynes to silylstannanes.'^ They use
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palladium(n) catalysts for the Stille coupling that are known to better catalyze such 

reactions, however. The use of a palladium(n) catalyst &r the tandem silylstannation- 

Stille reactions in ionic liquids is not feasible since it will not yield the vinylstannane in 

the Erst place. As well, Mitchell et al. have not performed tandem silylstannation-Stille 

reactions. They have avoided the catalyst selection problem by isolating the 

vinylstannane from one reaction and performing the Stille coupling in a separate reaction 

vessel. This is there&re an avenue that could be open to further exploration, perhaps 

using different sources of palladium.
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3.0 Conclusions

Ionic liquids have been known for a long period of time, but have only recently 

been explored regarding their p lications as solvents for organic transformations. In the 

early investigations of the potential utility of ionic liquids as solvents, they were often 

regarded as curiosities, interesting solvents composed entirely of ions that happen to give 

rate, selectivity, and yield enhancements when compared to conventional molecular 

solvents. Since that time, the use of ionic liquids appears to be growing exponentially 

since it was demonstrated that transition metal catalysts could be immobilized in ionic 

liquids and recycled, often providing some kind of enhancement over conventional 

solvents.

Ionic liquids have emerged along with a select few other classes of compounds as 

potential " green solvents" in  which more environmentally friendly chemistry could b e 

conducted. This is due in large part to their nonvolatility and their ability to be recycled, 

especially when containing expensive, rare, or toxic catalysts. It is important not to get 

caught up in their potential applications as green solvents too early. Many fundamental 

facts about ionic liquids and their behaviour are still missing &om the literature, such as 

how they can be disposed of if need be and what will happen if they somehow escape 

into the ecosystem. There is still a large amount of basic hrontline research that must be 

conducted on ionic liquids if they are to be adopted worldwide as an environmentally 

Aiendly solvent alternative. Part of this basic research is to determine the limits to which 

reactions can be pushed in ionic liquids.
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This woik has shown that silylstamnanes can be used efBciently in ionic liquids. 

It has added to the growing number of palladium-catalyzed reactions shown to be 

possible in ionic liquids. The atom-economical addition of silylstannanes to terminal 

alkynes has been shown to proceed cleanly in ionic liquids, providing good to excellent 

yields in acceptable reaction times. Two different silylstannanes were used, 

trimethyl(tributylstannyl)silane and dimethylphenyl(tributylstannyl)silane. Five different 

terminal alkynes were used, phenylacetylene (the most reactive), 1-decyne, 5-hexyn-l-ol, 

5-hexyn-l-ol THP ether, and 6-chlorohex-1 -yne. Two different ionic liquids were used, 

1 -M-butyl-3-methylimidazolium hexafluorophosphate and l-n-hutyl-3- 

methylimidazolium tetrafluoroborate, which were shown to provide better product yields 

under biphasic conditions with diethyl ether as a co-solvent. The reactions were shown 

to be best catalyzed by tetraki8(triphenylphosphine)palladium(0), affording little to no 

yield with a palladium(II) catalyst. Although no rate enhancement was observed in ionic 

liquids as compared to using tetrahydrofuran as a solvent, the reactions still proceeded to 

give only one out of a possible four product isomers. These reactions have been shown 

to proceed in the presence of 5 mol% palladium and also in the presence of 1 mol% 

palladium (albeit slightly slower at this catalyst loading).

The ionic liquid/catalyst systems were also shown to be considerably recyclable, 

both afkrding quantitative yields of the addition product between phenylacetylene and 

BusSnSihiea after ten cycles. All of the other alkynes and silylstannanes were shown to 

be recyclable, as well.

There are many future directions for this project. The ionic liquid/catalyst 

mixtures were shown to be recyclable and it was assumed that no palladium was being
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leached into the ether extracts during product isolation between cycles; however, studies 

could be  done to  determine whether this i s actually true. T he ether extracts could b e 

analyzed for palladium content by inductively coupled plasma mass spectrometry 

between cycles. In addition, it appears as though Pd(PPh3 ) 4  is not the active catalyst 

species during these reactions. It is possible that the actual catalytic species is a 

palladium-imidazolyhdene caibene complex, or it could be in the form of palladium 

nanoclusters. X-ray absorption fme structure analysis of silylstannation reactions 

performed in ionic liquids could be undertaken to identify the active palladium species. 

The ionic liquid could be heated with diethyl ether and Pd(PPh3 ) 4  without the addition of 

alkyne or silylstannane to determine if preactivation is necessary or if it provides better 

yields. The ionic liquid could also be extracted in attempts to isolate the active palladium 

catalyst.

These reactions could be performed with a wider array of silylstannanes and 

alkynes. Internal alkynes could be used to assess any possible selectivity influences of

the ionic liquid on the regiochemical outcome of the reactions. Different catalysts could 

be used to develop the not-so-successful tandem silylstaimation-Stille coupling. Other 

"hydrophobic" and non-imidazolium based ionic liquids could also be used to determine 

their effects on these reactions.
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4.0 Experimental 

General

Synthesis andreactions ofsilylstannanes wereperfbrmedinoven-dried glasswarethat 

was cooled under vacnnm and released to a nitrogen atmosphere. THF and EtzO that 

were used in the synthesis and reactions of silylstannanes were dried and distilled &om 

potassinm/benzophenone immediately prior to use. Dichloromethane was dried and 

distilled over calcium hydride. Pyridine and diisopropylamine were dried over and 

distilled onto potassium hydroxide pellets. Thionyl chloride was distilled &om quinoline. 

Ionic liquids,BusSnSiMezPh,^^^^^^ 6 -chlorohex-1 -yne,^^ and 5-hexyn-l-ol THP 

ether^^ were synthesized and purihed before use. All other reagents were used as 

received. Column chromatogrqrhy was per&rmed using Kieselgel 60, 230-400 mesh 

silica gel. Thin-layer chromatography was performed using aluminium-backed plates 

coated with Kieselgel 60 F254; plates were visualized under ultraviolet lamp and/or using 

5% phospbomolybdic acid in ethanol. Silylstannation reactions were heated on a Mirak 

Thermolyne temperature controlled hotplate. Low temperatures for silylstannane 

syntheses were maintained by an FTS Systems cooling apparatus. Gas chromatography 

was performed using a Varian 3800 gas chromatogr^h equipped with a flame ionization 

detector. Nuclear magnetic resonance spectra were recorded on a Bruker 250 MHz 

spectrometer at the Atlantic Regional Magnetic Resonance Centre; spectra were recorded 

using CDCI3 solutions and chemical shifts are reported in ppm referenced to 

tetramethylsilane unless otherwise stated. The 60 MHz spectrum shown in Figure 17a 

was recorded on a Varian EM360L spectrometer equipped with an Anasazi FT-NMR 

probe, recorded using a CDCI3 solution and referenced to tetramethylsilane.
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7 WM cA/omTe." 1-Methylimidazole (40

mL, 0.50 mol) and 1-cblorobntane (90 mL, 0.86 mol) were

refluxed for 18 h, after which time excess 1 -chlorobutane was decanted off of the newly- 

formed viscous tan-coloured lower layer. This lower layer was washed with ethyl acetate 

(EtOAc, 3 X 100 mL) then heated under vacuum at 80 °C for 6  h. An ofTwhite solid 

formed upon cooling (81.43 g, 0.466 mol, 93%). AMR.- 6  0.75 (t, 3H, N- 

CHzCHzCHzCTfs, W . 3  Hz), 1.17 (sextet, 2H, N-CHzCHzCTTzCHs, " .̂^7.3 Hz), 1.70 

(quintet, 2 H, N-CHz%CHzCH3 , W .3  Hz), 3.93 (s, 3H, N-C%), 4.14 (t, 2 H, N- 

CTfzCHzCHzCHs, ^.^7.3 Hz), 7.41 (hr s, IH, H4/H5), 7.58 (hr s, IH, H4/H5), 10.36 (s, 

IH, H2). AMR.' 6  13.3, 19.3, 32.0, 36.4,49.5,122.0,123.7, 137.5.

7 -n-B«ry^-3 -7Me7Ay/zmiddzo/;mM [bmim]Cl

(87.95 g, 0.504 mol) was dissolved in water (150 mL) and cooled

in an ice bath. A 60% aqueous solution of HPF^ (74.5 mL, 0.506 mol) was added 

dropwise over 20 min as a lower tan-coloured layer formed exothermically. The mixture 

was stirred for 24 h, after which time the upper aqueous phase was decanted. The lower 

ionic liquid phase was washed with water (10 x 100 mL) after which the washings were 

pH neutral. After heating under vacuum at 70 °C for 6  h the ionic liquid was obtained as 

a clear tan oil (96.26 g, 0.339 mol, 67%). AMR 6  0.94 (t, 3H, N-

CHzCHzCHzCAs, ^J^7.3 Hz), 1.38 (sextet, 2H, N-CHzCHzCAzCH], W .3  Hz), 1.92 

(quintet, 2H, N-CHzCA^CHzCHg, W . 3  Hz), 4.03 (s, 3H, N-Cj%), 4.34 (t, 2H, N-
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C^zCHzCHzCHs, W . 3  Hz), 7.67 (br s, IH, H4/H5), 7.72 (br s, IH, H4/H5), 8.91 (s, 

IH, H2). Ô 13.7,19.9, 32.7, 36.6, 50.2,123.4, 124.8,137.3.

[bmim]Cl

(30.76 g, 0.176 mol) was dissolved in water (150 mL) to which a

48% aqueous solution of HBF4 (23.0 mL, 0.176 mol) was added. The solution stirred for 

72 h aAer which time the water was evaporated under reduced pressure. Heating under 

vacuum at 70 °C for 6  h afkrded the ionic liquid as a clear tan oil (38.87 g, 0.172 mol, 

98%). 8  0.93 (t, 3H, N-CHzCHzCHz%, W .3  Hz), 1.37

(sextet, 2H, N-CHzCHzC^zCHs, W . 3  Hz), 1.91 (quintet, 2H, N-CHzCTfzCHzCHz, 

W .3 2  Hz), 4.03 (s, 3H, N - % ) ,  4.34 (t, 2H, N-%CHzCHzCH 3 , W . 3  Hz), 7.69 (br 

s, IH, H4/H5), 7.75 (br s, IH, H4/H5), 9.01 (s, IH, H2). Ô 13.7,

19.9,32.8,36.5, 50.1,123.4,124.7,137.6.

Dry THF (50 mL) was injected into a dry flask 

Allowed by Aeshly distilled diisopropylamine (3.08 mL, 22.0 mmol). This was cooled A 

TO °C and a 1.6 M hexanes solution ofbutyllithium (13.75 mL, 22.0 mmol) was injected 

dropwise. After stirring Ar 10 min, BusSnH (5.38 mL, 20.0 mmol) was iiyected 

dropwise. This stirred at 0 °C Ar 45 min., after which time chlorodimethylphenylsilane 

(3.69 mL, 22.0 mmol) was injected dropwise. The solution was allowed to warm to room 

temperature and stir A r 1 h, after which time GC-FTD analysis of a water-quenched 

aliquot showed almost complete reaction. The solvent was evaporated under reduced 

pressure and Ae resulting cloudy white oil was filtered through celite and washed wiA
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Et2 0 . After evaporating the Et2 0  under reduced pressure, the yellow oil was purified via 

short-path distillation under vacuum, the product coming over at 160-165 °C as a clear 

colourless oil (5.93 g, 13.9 mmol, 70%). 5 0.54 (s, 6 H, Si(C^3)z), 0.85-0.92

(m, 15H, Sn(CB2 CH2CH2% ) 3), 1.23-1.49 (m, 12H, Sn(CH2CH2 % C H 3)3), 7.34-7.51 

(m, 5H, ArH). AMR. Ô 0.2, 8.3,13.8,27.7,30.3,128.0,128.5,133.7, 141.5.

5-Hexyn-l-ol (1.00 mL, 9.1 mmol) was 

injected into a flask containing dry Et2 Û (15 mL) fbUowed by dry 

pyridine (0.74 mL, 9.1 mmol) and stirred in an ice bath for 30 min. Thionyl chloride 

(0.80 mL, 11.0 mmol) was injected dropwise; the flask was Stted with a dry condenser 

and the cloudy white mixture heated to reflux under nitrogen overnight. GC-FID analysis 

conhrmed complete reaction, at which time the brown solution was poured into water (50 

mL). The mixture was extracted with Et2 0  (30 mL) . The Et2 0  layer was washed with 

water (2 x 50 mL), dried over anhydrous MgS0 4 , Sltered and concentrated to aSbrd a 

dark oil. This was purified via flash chromatography (10:1 hexanes/EtOAc) to afford the 

product as a volatile clear light brown oil (0.436 g, 3.7 mmol, 41%). AMR.- Ô 1.68 

(quintet, 2H, H4/H5, .̂/=6.5 Hz), 1.91 (quintet, 2H, H4/H5, .̂A=6.5 Hz), 1.97 (t, IH, HI, 

^J^2.6 Hz), 2.25 (dt, 2H, H3, .̂A4i.5 Hz, ''./=2.6 Hz), 3.57 (t, 2H, H6 , ^J^ .5  Hz). 

AMR.- 6  17.7,25.6,31.4,44.5,68.9, 83.7.

77ZP eZAer.- p-Toluenesulfbnic acid 

(0.13 g, 0.68 mmol) was dissolved in dry dichloromethane 

(10 mL). 5-Hexyn-l-ol (1.50 mL, 13.6 mmol) was injected to the solution, followed by
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3,4-dihydro-2H-pyran (2.50 mL, 27.4 mmol). The pink solution was stirred at room 

temperature and turned dark green aAer 10 min. W hen thereactionwascompleteby 

TLC analysis, the solvent was evaporated and the resulting dark green oil was puriGed 

via Gash chromatogr^hy (10:1 hexanes/EtOAc), affording die product as a clear 

colourless oil (2.10 g, 11.5 mmol, 85%). AMR; 6  1.48-1.80 (m, lOH, Hy, He, Ha, Hg, 

Hh), 1.91 (s, IH, Hj), 2.23 (t, 2H, Hi), 3.37-3.51, 3.71-3.87 (m, 4H, H., Hf), 4.56 (t, IH, 

He). ^^CAMR: Ô 18.4,19.8,25.6,25.7,29.0, 30.9,62.5,67.1,68.6, 84.6,99.0.

procédure ybr s;(yktaM7%atzon q/" rermznaZ 

aZtynea;); Ionic liquid (1.0 mL) was heated in  a dry flask 

under vacuum at 70 °C for 4 h. After releasing the vacuum to nitrogen, the flask was 

transferred to an argon glove box where Pd(PPh3 )4  (0.058 g, 0.05 mmol 6 r 5%, 0.012 g, 

0.01 mmol for 1%) was weighed and added. After stirring to suspend the palladium, the 

reaction vessel was removed &om the glove box. BugSnSiMes (0.42 mL, 1.2 mmol) was 

izyected vza needle and syringe, followed by phenylacetylene (0.11 mL, 1.0 mmol) and 

dry EtzO (5.0 mL). A dry reGux condensor was connected and the reaction was heated 

under nitrogen in a 70 °C oil bath Ar 36 h. Once the reaction was complete by GC-FID, 

the reaction was cooled and the upper EtgO phase was removed vza needle and syringe. 

The ionic liquid was washed with dry EtiO (8 x 8  mL) under nitrogen using needles and 

syringes. The EtzO extracts were combined and solvent was evaporated under reduced 

pressure. The resulting oil was puriGed vza flash chromatogr^hy (hexanes) A afford the 

product as a clear colourless oG (0.46 g, 0.99 mmol, 99%). ZYMR; 6  0.32 (s, 9H,
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S i(% ) 3), 0.98-1.10 (m, 15H, Sn(C%CH2CH2% ) 3), 1.34-1.65 (m, 12H,

Sn(CH2 C%C%CH3)3), 6.71 (s, IH, C=C-ff, "^.W=160, 168 Hz), 7.13-7.16 (m, 2H, 

ArH), 7.26-7.32 (m, IH, ArH), 7.38-7.41 (m, 2H, ArH). S 0.3, 12.1, 13.8,

27.5.29.2.125.6.126.0.128.0.148.5.152.0.166.2.

Prepared as above, clear yellow oil (0.484 g, 0.97 

mmol, 97%). 8  0.09 (s, 9H, S i (% ) 3), 0.79-1.58 (m, 42H, SnBu3 , C77fi5CH2-

C=C), 2.20-2.33 (m, 2H, C7H 15CA2-D C ), 6.32 (s, IH, C=C-^, " ^ J ^ 1 7 6 ,184 Hz). 

mfR." 8  0.4, 8.0, 11.4, 13.8, 14.3, 22.8, 27.7, 29.4, 29.7, 30.2, 30.5, 32.1, 47.8, 143.3,

166.0.

QSn SI(CH3 ) 3

3 8 0  81(0143)3

Prepared as above, cloudy white oil (0.412 g, 0.89 mmol,

89%). 8  0.09(s,9H,Si(C773)3), 0.87-0.99 (m,

15H, S n (% C H 2CH2C7 7 3 )3), 1.25-1.68 (m, 17H, Sn(CH2% C 7 f2CH3)3 ,

7 fOCH2C % % C H 2-C=C), 2.30 (t, 2H, H0 CH2CHzCH2% -C = C ), 3.64 (m, 2H, 

H0 C%CH2 CH2CH2 -C=C), 6.34 (s, IH, C=C-^, " " J ^ 1 7 2 ,  180 Hz). ^̂ CiVMR.- 8  0.2, 

11.2,13.6,25.9,27.5,29.2,32.3,47.1,62.9,143.7,165.1.

(3^-(^-5-(7n6»(ykraMMy()-6-(rnmerAykz(yOAe%-5- 

en-7-oZ, THP gfAgr." Prepared as above, clear 

colourless oil (0.538 g, 0.99 mmol, 99%). ^TTiYMR;

;S n  Si(CH3 ) 3
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8 0.08 (s, 9H, Si(C^3)3), 0.86-0.95 (m, 15H, Sn(C%CH2CH2% ) 3), 1.27-1.65 (m, 22H, 

Sn(CH2C%%CH3)3, Hb, Ha, Hg, Hh), 2.29 (t, 2H, H{), 3.30-3.90 (m, 4H, H,, Hf),

4.58 (t, IH, He), 6.33 (s, IH, C=C-/f, " % ^ 1 7 5 ,183 Hz). 8 0.22,11.2,13.6,

19.6,25.5,26.6, 27.5,29.2,29.3,30.8,47.5, 62.3, 67.6, 98.9, 143.7, 165.5.

.Si(CH3)3

H
Prepared as above, clear colourless oil (0.327 g, 0.68 

mmol, 68%). 8 0.09 (s, 9H,Si(C773)3), 0.86-

0.96 (m, 15H, S n(% C H 2CH2 % ) 3), 1.24-1.50, 1.71-1.77 (m, 16H,

Sn(CH2%C%CH3)3, ClCH2%C7f2CH2-C=C), 2.28 (t, 2H, C1CH2CH2CH2C%-C=C, 

^ .^ .7  Hz), 3.52 (t, 2H, C1C^2CH2CH2CH2-C=C, ^ .^ .7  Hz), 6.33 (s, IH, C=C-7f, 

'°% url72 ,180H z). 8 0 .2 ,11.2 ,13.7 ,27.0 ,27.5 ,2  9.2, 3 2.1,45.0,46.6,

144.1,164.8.

( L ) - 2 - ( D i m e t h y l p h e n y l s i l y l ) - l - p h e n y l - l -

Prepared as above using 

Bu3 SnSiM%Ph (0.510 g, 1.2 mmol) instead of Bu3SnSiMe3 , 

product obtained as a clear colourless oil (0.516 g, 0.98

........... .................  — ........ . '

0  1

) =

1

S I ( C H 3 ) 2

mmol, 98%). 7̂7 7VMR.- 8 0.11 (s, 6H, Si(CH3)2), 0.33-0.50 (m, 15H,

Sn(CH2CH2CH2CH3)3), 0.78-0.99 (m, 12H, Sn(CH2% C H 2CH3)3), 6.41 (s, IH, C=C-H, 

"^Js,:o=156, 164 Hz), 6.70-7.04, 7.24-7.28 (m, lOH, ArH). 8 0.5, 12.0, 13.7,

27.4,29.1,125.8,126.0,127.9,128.1,129.1,134.2,139.6,146.0,152.0,169.0.

101



^Sn Si(CHg)2
ene. Prepared as above, clear colourless oil (0.439 g,

0.78 mmol, 78%). 7̂7 mfR.- 6  0.34 (s, 6 H,

S i(% ) 2), 0.73-0.88, 1.18-1.41 (m, 42H, SnBus, C7^ i 5CH2-C=C), 2.29-2.35 (m, 2H, 

C7HisC%-C=C), 6.50 (s, IH, C=C-H, ^ ^ J ^ 1 7 0 , 176 Hz), 7.30-7.35 (m, 3H, ArH), 

7.49-7.54 (m, 2H, ArH). S -0.6, 11.1, 13.7,14.2, 22.7, 27.5, 28.0, 29.2, 29.4,

29.6,31.0,31.9,47.8,127.7,128.8,134.0,140.1,140.7,168.9.

HO

o/. Prepared as above, cloudy oil (0.325 g, 0.62 mmol,

62%). Ô 0.36 (s, 6 H, 8 1 (0 ^ 3)2), 0.81-0.90 (m,

15H, S n (% C H 2CH2CH3)3), 1.19-1.64 (m, 17H,

Sn(CH2C%CH2CH3)3), HOCH2CH2CH2CH2-C C ), 2.37 (t, 2H, HOCH2CH2CH2C%- 

C=C), 3.65-3.67 (m, 2H, HOCH2 CH2CH2CH2-C C ), 6 .53 (s, 1H, C=C-77, " ^ J ^ 1 7 0 ,  

178 Hz), 7.31-7.55 (m, 5H, ArH). ^̂ CTVMR.- Ô -0.4, 11.4, 13.8, 26.2, 27.6, 29.5, 32.6, 

47.4, 63.0,127.9,129.0,134.4,139.6,141.5,168.4.

THP efAer."

Prepared as above, clear colourless oil (0.492 g,

0.83 mmol, 83%). 7YMP; 5 0.36 (s, 6 H,

Si(CH))2), 0.77-0.93 (m, 15H, Sn(CH2CH2CH2 CH3)3), 1.18-1.72 (m, 22H,

Sn(CH2 CH2% C H 3)3 , % , He, % , Hg, % ), 2.37 (t, 2H, Hi), 3.38-3.90 (m, 4H, H,, Hf),

jSn Si(CHg)2
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4.58 (t, IH, He), 6.53 (s, IH, C=C-H, 185 Hz), 7.26-7.55 (m, 5H, ArH).

AMR: Ô 0.5, 11.2, 13.8, 19.8, 25.7, 26.7, 27.6, 29.3, 29.5, 30.9, 47.6, 62.3, 67.5, 98.9,

127.8,128.9,134.1,140.0,141.2,168.6.

7 , [bmi mj PFe (1.0 mL) was 

heated under vacuum at 65 °C for 5 h. After cooling and releasing to 

a nitrogen atmosphere, the ionic liquid was placed in an argon glove 

box where Pd(PPh3 ) 4  (0.012 g, 0.01 mmol, 1%) was weighed and 

added. AAer stirring to dissolve the catalyst, the reaction vessel was sealed with a 

septum and removed Aom the glove box. Phenylacetylene (0.11 mL, 1.0 mmol) was 

injected, Allowed by BugSnSiMes (0.35 mL, 1.0 mmol) and dry Et^O (5.0 mL). After 

Atting with a dry reAux condensor, the reacAon was placed in a 70 °C oil bath and heated 

under nitrogen. AAer 1 d, GC-FID analysis indicated complete reacAon to the 

vinylstannane. Freshly distilled bromobenzene (0.105 mL, 1.0 mmol) was h^ected and 

heating of the mixture was continued. AAer 14 d, no vinylstannane was observed by GC- 

FID. The reacAon was cooled and the iqiper EtzO phase decanted. The ionic hquid was 

washed with EtiO (7 x 10 mL); the GC-FTD trace of the last extract was devoid of signals 

attributable to products or starting matenals. The solvent was evaporated under reduced 

pressure to give a dark oil which was puriAed via Aash chromatography (hexanes), 

affording the product as a clear colourless oA (0.073 g, 0.29 mmol, 29%). AMR: Ô 

0.12 (s, 9H, Si(CH3)3), 6.52 (s, IH, C=C-H), 7.40-7.60 (m, lOH, ArH). AMR: Ô -0.4, 

127.2, 127.3, 127.6, 127.9, 128.0, 129.7 (insufAcient number of scans).
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