
High Order Collocation Software for the Numerical
Solution of Fourth Order Parabolic PDEs

By
Ling Lin

A Thesis Submitted to
Saint Mary's University, Halifax, Nova.Scotia
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

Halifax, Nova Scotia
August, 2009

©Ling Lin, 2009

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-55990-1
Our file Notre reference
ISBN: 978-0-494-55990-1

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Certification

High Order Collocation Software for the Numerical Solution of Fourth

Order Parabolic PDEs

by

Ling Lin

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia,
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Applied Science

August 27, 2009

Examining Committee:

Approved: Dr. Ronald Haynes, External Examiner
Department of Mathematics and Statistics, Acadia University

Approved: Dr. Paul Muir, Co-Senior Supervisor
Department of Math and Computing Science

Approved: Dr. Patrick Keast, Co-Senior Supervisor
Department of Math and Statistics, Dalhousie University

Approved: Dr. Norma Linney, Supervisory Committee
Department of Math and Computing Science

Approved: Dr. Walt Finden, Supervisory Committee

Department of Math and Computing Science

Approved: Dr. Hai Wang, Program Representative

Approved: Dr. Pawan Lingras, Graduate Studies Representative

© Ling Lin 2009

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisors, Dr. Paul Muir and Dr. Patrick

Keast (Dalhousie University) for their patience, suggestions and assistances through

out the whole process of doing the thesis. When I felt depressed because of the

stagnation of the research, they gave me lots of encouragement and help me get out

of the hard time. They showed me how to do a research and what the world of

Numerical Analysis looks like. It is a great pleasure for me to complete this thesis

under their supervision.

I also would like to thank my supervisory committees, Dr. Walt Finden (Saint

Mary's University) and Dr. Norma Linney (Saint Mary's University), for their valu­

able suggestions on my thesis. I would like to thank my external examiner, Dr.

Ronald Haynes (Acadia University), for his useful comments and suggestions.

Finally, I would like to express my appreciation to my father and mother for their

love and encouragement. Except that, a lot of people who have offered help and

support to me are not mentioned here, but I really appreciated them band I will

remember all what you do for me.

1

Contents

1 Introduction 1

2 Review of Applications Involving Fourth order PDEs 9

2.1 Cell Biology Problem 11

2.2 Quantum Drift Diffusion (QDD) Model 14

2.3 Thin Film Equations 16

2.3.1 The Kuramoto-Sivashinsky Equation 16

2.3.2 Droplet Breakup in a Hele-Shaw Cell 18

2.3.3 van der Waals Rupture of a Thin Film 19

2.4 Extended Fisher-Kolmogorov (EFK) Equation 20

2.5 Applications in Image Processing 21

2.6 Cahn-Hilliard Equation 23

2.7 Some Simple Fourth Order PDEs 24

2.7.1 Example One 24

2.7.2 Example Two 25

3 Review of Numerical Methods and Software Packages 27

ii

3.1 Review of Numerical Methods 28

3.1.1 Runge-Kutta Methods 28

3.1.2 Backward Differentiation Formulas 31

3.1.3 B-splines 34

3.1.4 Collocation 35

3.2 Software for ID, Time-Dependent, Second-Order PDEs 36

3.2.1 BACOL/BACOLR 38

3.2.2 HPNEW 40

3.2.3 pdepe 41

3.2.4 MOVCOL 42

3.3 Software for ID, Time-Dependent, Fourth Order PDEs 42

4 Extension of BACOL to Fourth Order Equations 45

4.1 BACOL Applied to the e Version of a Problem 46

4.2 Solving the Converted System 47

4.2.1 Construction of the Newton System 47

4.2.2 Scaling of the Newton System 56

4.3 Summary of Modifications to BACOL 57

5 Numerical Results for BACOL42 60

5.1 Simple Test Problem One 63

5.2 Simple Test Problem Two 68

5.3 Thin Film Equation 73

hi

5.4 Kuramoto-Sivashinsky Equation 76

5.5 Cahn-Hilliard Equation 80

5.6 Conclusion 84

6 Numerical Solution of Fourth Order PDEs with pdepe and MOV-

COL4 86

6.1 Example One 88

6.2 Example Two 89

6.3 Example Three 91

6.4 Example Four 92

6.5 Example Five 94

6.6 Summary 97

7 Conclusions and Future Work 98

7.1 Conclusions 98

7.2 Future work 99

Appendix 102

Bibliography 109

IV

List of Tables

3.1 The Butcher Tableau for the Classical Fourth Order Runge-Kutta

Method [17] 29

3.2 The Butcher Tableau for RADAU IIA [20] 31

3.3 Coefficients of BDF [25] 32

5.1 Performance of BACOL42 with different KCOL and tolerance values

for Example One 65

5.2 L2-Error Norms from BACOL42 for Example One 65

5.3 Performance of BACOL with different KCOL and tolerance values for

Example One 67

5.4 L2-Error Norms from BACOL for Example One 67

5.5 Performance of BACOL42 with different KCOL and tolerance values

for Example Two 70

5.6 L2-Error Norms from BACOL42 for Example Two 70

5.7 Performance of BACOL with different KCOL and tolerance values for

Example Two 72

5.8 L2-Error Norms from BACOL for Example Two 72

v

5.9 Performance of BACOL42 with different KCOL and tolerance values

for Example Three 75

5.10 Performance of BACOL with different KCOL and tolerance values for

Example Three 76

5.11 Performance of BACOL42 with different KCOL and tolerance values

for Example Four 78

5.12 Performance of BACOL with different KCOL and tolerance values for

Example Four 79

5.13 Performance of BACOL42 with different KCOL and tolerance values

for Example Five 82

5.14 Performance of BACOL with different KCOL and tolerance values for

Example Five 83

VI

List of Figures

2.1 The Distribution of SFs in the Nucleus [7] 11

2.2 The Effect of Phosphorylation and Dephosphorylation on the SFs [7]. 13

2.3 a Special Case of the Flow in a Hele-Shaw Cell [9] 18

2.4 The Exact Solution of Equation (2.12) 25

2.5 The Exact Solution of Equation (2.13) 26

5.1 Approximate Solution of Example One from BACOL42 64

5.2 Approximate Solution of Example Two from BACOL42 69

5.3 Approximate Solution of Example Three from BACOL42 74

5.4 Approximate Solution of Example Four from BACOL42 78

5.5 Approximate Solution of Example Five from BACOL42 81

5.6 Approximate Solutions at t = 0.05(top left), 0.1 (top right), 0.3(bottom

left), 0.5(bottom right) from BACOL42 for Example Five 82

6.1 Approximate Solution of Example One from pdepe 88

6.2 Approximate Solution of Example One from MOVCOL4 89

6.3 Approximate Solution of Example Two from pdepe 90

vii

6.4 Approximate Solution of Example Two from MOVCOL4 90

6.5 Approximate Solution of Example Three from pdepe 91

6.6 Approximate Solution of Example Three from MOVCOL4 92

6.7 Approximate Solution of Example Four from pdepe 93

6.8 Approximate Solution of Example Four from MOVCOL4 94

6.9 Approximate Solution of Example Five from MOVCOL4 95

6.10 Approximate Solutions at t = 0.05 (top left), 0.1 (top right), 0.3 (bot­

tom left), 0.5 (bottom right) from MOVCOL4 of Example Five 96

vin

Abstract

High Order Collocation Software for the Numerical

Solution of Fourth Order Parabolic PDEs

By Ling Lin

B ACOL is an efficient software package for solving systems of second order

parabolic PDEs in one space dimension. A significant feature of the package is that it

employs adaptive error control in both time and space. A second order PDE depends

on the solution, u, and its first and second derivatives, ux and uxx. However, many

applications lead to mathematical models which involve fourth order PDEs. Fourth

order PDEs depend on u, ux, uxx, uxxx, and uxxxx. One contribution of the thesis is that

it provides a survey of applications in which fourth order PDEs arise.

The thesis focuses on how to extend BACOL so that it can handle fourth order PDEs.

We have explored a somewhat novel approach that involves converting the fourth

order PDE to a coupled system which contains one second order PDE and one second

order ODE (in space). A careful investigation of the BACOL package is carried out in

order to extend it so that it can treat this coupled PDE/ODE system directly; the new

software is called BACOL42. For comparison purposes we have also considered an

approximate form of the converted system that can be solved using the original

BACOL software. Numerical results are provided to demonstrate the effectiveness of

BACOL42. The thesis also provides a numerical study of two other PDE solvers,

pdepe and MOVCOL4, that can be applied to solve fourth order PDEs.

August 27, 2009

Chapter 1

Introduction

A partial differential equation (PDE) is a type of equation which involves an unknown

function of several independent variables and its partial derivatives with respect to

those variables. It can describe how a physical quantity, e.g. heat, might change with

respect to variables like time and space. PDEs are used to model many applications,

including physical processes such as the diffusion of sound or heat, the growth in a

population, the spread of a virus, etc.

PDE models are usually too complicated to be solved by hand. In most cases PDEs

may not even have a known exact solution. Hence people use computer software to

try to compute an approximate solution. If a software package returns an approximate

solution, it is important that the error in that approximate solution be assessed. An

important feature of some software packages is called adaptive error control. The

concept of adaptive error control is to adapt the computation so that an estimate

of the error of the numerical solution returned by the software is less than a user

1

provided error tolerance.

A common subclass of PDEs is time-dependent parabolic PDEs in one spatial

dimension. Such problems have solutions that depend on time, t, and space, x\ that

is, the solution is typically written as u(x, t). An important class of software packages

for the solution of this class is based on an approach called the method of lines (MOL

[8], [40]). While many software packages for this problem class attempt to control

the error in time, only a few also attempt to control the error in space. Furthermore

almost all available packages are designed for second order parabolic PDEs. A second

order PDE is one in which the highest spatial derivative that appears is the second

derivative, uxx(x,t).

BACOL [36] and BACOLR [37] are efficient software packages for solving systems

of second order parabolic PDEs in one space dimension; a significant feature of these

packages is that they employ adaptive error control in both time and space. For

the test problems in [35], BACOL has been shown to be superior to many currently

available software packages for solving second order PDEs. And in [37], BACOLR

has been shown to be comparable to and in some cases superior to BACOL.

On the other hand, there are many applications in which mathematical models

arise that involve fourth order PDEs, i.e., PDEs in which a uxxxx(x, t) term appears.

BACOL/BACOLR are not designed to handle such problems. To our knowledge,

only MOVCOL4 [33] and HP4 [45] can handle fourth order PDEs. MOVCOL4, to

our knowledge the first MOL package designed to handle fourth order PDEs, is an

extension of the well-known second order PDE solver MOVCOL [21]. MOVCOL4

2

only attempts to control the error in time; there is no attempt to control the error

in space. The package uses a moving mesh approach to adapt the location of a given

number of mesh points to the solution behavior and achieves about as much accuracy

in space as can be obtained using the given number of mesh points. We will discuss

MOVCOL4 later in this thesis. HP4 is a modification of the well-known second order

parabolic PDE solver HPNEW [37]. HP4 attempts to control the spatial and temporal

errors, and thus represents a significant contribution to software for the treatment of

fourth order parabolic PDEs. However, we will not consider HP4 in the thesis as it

was only very recently released.

In this thesis, we focus on solving one single time-dependent, fourth order PDE

which has the general form:

Ut\x,t) = j(x,t,u,ux,uxx,uxxx,uxxxx), a < x < o, t > to, (1-1)

supplemented with the initial conditions

u{x, to) = uo(x), a < x <b,

3

and separated boundary conditions

bL,i(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t > t0,

bLt2(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t > t0,

bRtl(t,u(b,t),ux(b,t),uxx(b,t),uxxx(b,t)) = 0, t > t0,

bR,2{t, u(b, t),ux(b, t),uxx(b, t) (M)) = o, t>t0.

(The above equations specify two boundary conditions at each end point; this

is the most common case and currently the only one the our software can handle;

however, it would require only a minor generalization of the software to handle the

remaining cases which involve one boundary condition at one end point and three at

the other.)

We will assume the initial solution UQ{X) is at least twice differentiable. (The

algorithm we will discuss in this thesis requires that U'Q(X) exist.)

4

Instead of considering the fourth order PDE directly, let ui(x,t)

u2(x,t) = uxx(x,t) and consider the following converted system,

(ui)t = f{x, t, txi, {ur)x, {ui)xx, (u2)x, (u2)xx),
<

0 = {ui)xx - u2,

with the initial conditions

ui(x,to) = UQ(X), a < x <b,

u2(x,to) = U'Q(X), a < x <b,

and separated boundary conditions,

h,i{t, ui(a, t), {ui)x{a, t),u2(a, t), (u2)x(a, i)) = 0 , t > t0,

&i,2(*, ui(a, t), (tti)x(a, t),u2{a, t), {u2)x(a, t)) = 0 , t> t0,

bR,i(t, u^b, t), (ui)x(6, t),u2(b, t), (u2)x(b, t)) = 0, t> t0,

bR,2(t, ui(6, i), (tti)a:(&, t),u2{b, t), {u2)x(b, t)) = 0, t> t0.

The converted system is obviously equivalent to the original fourth order PDE. The

converted system is discussed in [33] but the authors do not consider the idea further

because it leads to complications with the moving mesh approach they are considering.

= u(x,t) and

(1.2)

5

The first equation of the converted system is a second order PDE, but the second

equation of the converted system is a second order ODE (in space). BACOL can

only solve systems of PDEs - not a coupled PDE/ODE system. One of the primary

goals of this thesis is to investigate the possibility of modifying the original BACOL

software in order to allow it to handle the above coupled PDE/ODE system. We will

refer to the resultant software as BACOL42.

The modification of BACOL to allow it to solve a coupled PDE/ODE system

required a very careful and thorough review of the BACOL package, followed by the

application of a small but detailed set of modifications to the source code. (BACOL

consists of approximately 51 subprograms and overall includes approximately 10000

lines of code written in Fortran77.)

During the development of BACOL42, it was useful to be able to compute approx­

imate solutions to the converted PDE/ODE system for comparison purposes, and we

realized that such solutions could be obtained by considering an approximate form of

the converted PDE/ODE system:

(ui)t = f(t, x, ui, (u1)x, {ui)xx, (u2)x, (u2)xx),
(1.3)

e(u2)t = (ui)xx ~ u2, v

with the boundary and initial conditions unchanged. It is clear that in the limit as

e —»• 0, the above problem approaches the converted system, and therefore it would

appear to be the case that the solution of the above system would approach the

solution of the converted system, as e —> 0, except possibly in a boundary layer,

6

assuming / and u and its derivatives are sufficiently well behaved. We will refer to

the above system as the e version of the original converted system and later in the

thesis we will explore the approach of applying the original BACOL software to solve

this system. Rewriting the e version of the original problem as

(Ul)t = f(t, X, Ux, {Ui)x, 0 l) x x , {U2)x, (U2)xx),
<

{u2)t = 7 (Oi)x* - u2),

gives a second order PDE system in standard form and BACOL can therefore be

directly applied to this system.

One contribution of the thesis is to provide a survey of applications in which fourth

order PDEs arise. In Chapter 2, we discuss several models such as the Kuramoto-

Sivashinsky equation [24], the extended Fisher-Kolmogorov equation [11], and the

Cahn-Hilliard equation [6]. Also two simple fourth order PDEs with exact solutions

are presented.

Chapter 3 provides a review of the underlying algorithms upon which BACOL

and BACOLR are based; this includes Runge-Kutta methods, Backward Differenti­

ation Formulas, B-splines, and collocation. In this chapter, we also discuss several

other currently available software packages for second order PDEs, namely, HPNEW,

pdepe [29], and MOVCOL. In addition, we also discuss MOVCOL4, a package men­

tioned earlier, for the solution of fourth order PDEs.

In Chapter 4, the modifications of the original BACOL package in order to allow

it to handle the converted system are described in detail. Another contribution of this

7

thesis is that it explores the initial steps required to construct a version of BACOL

that can compute numerical solutions to general classes of coupled PDEs and ODEs

(in space). The development of BACOL42 assumes that the ODE has the form 0 =

(ui)xx — U2 but the approach considered in this thesis would appear to be applicable

to more general forms of ODEs.

We consider five numerical examples and present detailed performance for BA-

COL42 on these problems in Chapter 5. For comparison purposes, we also consider

the alternative approach, described earlier, of applying the original BACOL software

to the e version of each problem. Neither pdepe nor MOVCOL4 consider spatial error

control and the original BACOL software is only applied to an approximate form of

the given problem; it is only the BACOL42 code (and the recently developed HP4

code, mentioned earlier) that are able to compute a numerical solution to a fourth

order PDE, with an attempt to control both the spatial and temporal errors with

respect to a given user-provided tolerance.

Another contribution of the thesis comes in Chapter 6, where we provide numerical

results to explore the effectiveness of two other software packages applied to solve

fourth order PDEs. We present results with (i) pdepe applied to the converted system

version of each problem, and (ii) MOVCOL4 applied directly to the original fourth

order version of the problem.

In the final chapter, we give our conclusions and also provide some suggestions

for future work.

8

Chapter 2

Review of Applications Involving

Fourth order PDEs

In this chapter, we provide some examples of fourth order parabolic PDEs. In [33], the

authors explain that many complex real-world applications require PDE models that

include fourth order terms in order to better capture the behavior of the quantities

being modeled. Section 2.1 discusses the first example which is from a cell biology

application. The Quantum Drift Diffusion model is given in Section 2.2. In Sec­

tion 2.3, we introduce a generalized form of the longwave unstable thin film equation

and also give three other applications including the Kuramoto-Sivashinsky equation,

an application describing droplet breakup in a Hele-Shaw cell, and another applica­

tion modeling a van der Waals rupture of a thin film. The fourth application, in

Section 2.4, is the extended Fisher-Kolmogorov equation. In Section 2.5, we consider

some equations modeling image denoising and segmentation. Section 2.6 discusses

9

the Cahn-Hilliard equation. Finally, in Section 2.7 we give two simple fourth order

PDEs with exact solutions that will be employed as test problems later in the thesis.

Notation

The following symbols are used when we display the equations associated with the

applications we considered in this chapter:

• Let u(x) = u(x\, x2, • • • , xn) be a (four times) differentiable function on a given

domain; we have u : 3ft™ —• 3ft.

• Let £(x) = [Fi(x), F2(x), • • • ,Fn(x)]T be a differentiable vector function on a

given domain; we have F_(x) : 3ftn —• 3ft™.

du(x i
• ~ , represents the derivative of u(x) with respect to x*.

C/X7;

du(Xi dulXi uxiix i \
• S7u(x) = (o) o ~ ;' • • > ~ ~ 1 is the gradient of «(x) 1 oxi ox2 axn I

,. ^ x ^Fi(x) &F2(x) <9F„(x) . i U ,. , „, ,
• mvF_(x) = —0 H h • • • -I ^ is the divergence of Fix).

OXi OX2 OXn

E
fj 1] (T 1

~̂ is the Laplacian of u(x).
1=1 l

10

2.1 Cell Biology Problem

This description is taken from [7]. Within the nucleus of a cell, splicing factors (SFs)

are nuclear proteins that remove introns (non-coding gene sequences) from precursor

mRNA molecules to form the mature mRNA molecules that will be transported to

the cytoplasm - the part of a cell including the region between the cell membrane and

the nucleus. The SFs are in continuous flux between membraneless clusters known

as speckles and individual SFs distributed throughout the nucleoplasm region, i.e.,

the nucleus of the cell. The SFs move randomly throughout the cell nucleus. They

are heterogeneously distributed in the nuclei of eukaryotic cells that are enriched in

pre-mRNA SFs - see Figure 2.1. This is an indirect immunofluorescence image of the

speckled distribution of the SFs within the cell nucleus.

Figure 2.1: The Distribution of SFs in the Nucleus [7].

11

Phosphorylation is the process of adding phosphate (PO4) groups to a molecule

or an organic compound while dephosphorylation is the opposite process (see [43,

44]). p is the rate of phosphorylation while 5 is the rate of dephosphorylation. If

the distance between SFs is larger than the range of influence of self-interaction,

a, the above processes will not happen. This model considers u(x,t), the density

of phosphorylated, i.e., clustered, SFs in the cell nucleus, and v(x,t) the density of

dephosphorylated, i.e., individual, SFs in the cell nucleus.

The model is based on two hypotheses: (1) that self-organization is responsible for

the formation and disappearance of speckles, which are modulated by phosphorylation

and dephosphorylation, and (2) that the existence of an underlying nuclear structure,

i.e., a nuclear scaffold, is a major factor in the organization of SFs.

The effect of phosphorylation and dephosphorylation on the SFs can be repre­

sented as in Figure 2.2. In this figure, the thin arrows represent that splicing factors

are tied to a nuclear scaffold or nuclear matrix. The thick arrows represent that the

phosphorylation and dephosphorylation processes modulate the continuous flux be­

tween the speckles and the nucleoplasm. Dephosphorylation leads to self-organization

of the SFs into speckles, whereas phosphorylation leads to the opposite process.

12

Phosphorylatiofi

s~%, < r ^ Or

Nuclear
Scaffold

Self-organization

<g»G'
^ C5'0'

Dophosphoi ylation

Figure 2.2: The Effect of Phosphorylation and Dephosphorylation on the SFs [7].

The corresponding model, a fourth order aggregation-diffusion PDE, has the form,

dv(x,t) __ d2v(x,t)

dt dx2

du(x,t) d

Sv(x,t) + pu(x,t),

,. , ..du(x,t), d r<r2 . .d2u(x,t),

+5v(x,t) — pu(x,t),

(2.1)

with the no-flux boundary conditions:

dv . . dv ,„ , du .„ . du,_, .

(0 , 0 - ^ 5 (1 , 0 = 0,

13

Rewriting Equation (2.1), we get

vt(x, t) = vxx(x, t) - Sv(x, t) + pu(x, t),

ut{x, t) = -^(u(x, t)uxxxx{x, t) + 2ux(x, t)uxxx(x, t) + u2
xx(x, t))

+(1 — u(x, t))uxx(x, t) — ux(x, t) + 5v(x, t) — pu(x, t),

(2.2)

which is a system of PDEs combining one second order PDE and one fourth order

PDE. Initial conditions are chosen by considering small random perturbations of the

steady state solution to (2.2).

2.2 Quan tum Drift Diffusion (QDD) Model

The second application is the Quantum Drift Diffusion (QDD) model which describes

the transport of quantum charge-species in strong interaction within a surrounding

medium at a given temperature. It has been formally derived by Degond, Mehats,

and Ringhofer [12] from a collisional Wigner equation (see the definition of notation

on Page 9),

nt(x, t) + divJ(x, t) = 0,
(2.3)

J(x, t) + TVn(x, t) - n(x, t)VV(x, t) - ^n(x, t)v(^S) = 0,

where

n(x_, t) is the particle density,

14

J(x, t) is the current density,

V(x, t) is the electrostrostatic potential,

e is the scaled Planck constant, and

T is the scaled temperature.

After setting the temperature, T, and the electrostrostatic potential, V(x,t), to

zero, (2.3) can be rewritten as a fourth order parabolic PDE for the particle density,

n(x,t) [18]:

nt(x, t) = -dzv (£n(x, t) V (^ | = ^)) " ^

In one space dimension, a simpler form of this equation is often considered; it is

e2

nt{x,t) + — (n(x,t) (log n(x,t))xx)xx = 0. (2.5)

The paper [22] discusses the analytical solution of (2.5) with Dirichlet and Neu­

mann boundary conditions:

n(Q,t) = n(l,t) = 1,

nx{0,t) = nx(l,t) = 0.

15

2.3 Thin Film Equations

The paper [39] introduces the longwave unstable generalized thin film equation:

ht(x, t) = -(hm(x, t)hx(x, t))x - (hn(x, t)hxxx(x, t))x, (2.6)

where

h(x, t) is the height of the evolving free-surface,

m is the power of the destabilizing second order diffusive term,

n is the power of the stabilizing fourth order diffusive term.

The paper [41] discusses the existence and uniqueness of solutions for (2.6).

Some special cases of (2.6) are well-known. When n = 0,m = 1, it becomes a

modified Kuramoto-Sivashinsky equation; when n = l ,m = 1, it describes droplet

breakup in a Hele-Shaw cell; when n = 3, m = — 1, it gives the van der Waals rupture

of a thin film.

2.3.1 The Kuramoto-Sivashinsky Equation

One form of the Kuramoto-Sivashinsky equation [24] ((2.6) with n = 0 and m = 1)

is:

iT'ty^jt) = llXxxx\Z]<<) "'xxyEit) — HX\X, t),

where h(x, t) is the position of the interface between the solid and liquid phases.

16

Introducing a periodic boundary condition gives the periodic Kuramoto-Sivashinsky

equation (the period length is L)

ht(x, t) = -hxxxx(x, t) - hxx{x, t) + h2
x(x, t), h(x + L) = h(x),

which arises in modeling the dynamics of a premixed flame (see [15]) and the dynamics

of solidification (see [16]).

Another form of the Kuramoto-Sivashinsky equation [1] is

ut = -uux - uxx - uxxxx, x G [0,327r.] (2.7)

The initial condition is

«(x,0) = c o s (^) (l + 8 i n (^)) .

The modified Kuramoto-Sivashinsky equation

ht(x,t) = -hxxxx(x,t) - hxx(x,t) + (1 - X)hx(x,t)2 + Xh2
xx(x,t),

is studied as a one-dimensional model for the dynamics of a hypercooled melt in [34].

17

2.3.2 Droplet Breakup in a Hele-Shaw Cell

This application is from the model of the flow in a Hele-Shaw cell (see [9]). A Hele-

Shaw cell contains two unmixable fluids which are divided by an interface. The paper

discusses whether a thin neck between two masses of fluid can develop, get thinner,

and finally break. Figure 2.3 shows a special case of the problem where the neck is

assumed to be symmetrical. h(x, t) is the neck region, x is the distance along the

symmetry line and t is the time. L is assumed to be much greater than W.

H|
| B . Pressure P

? ! Water
" ' " — - * — • — ~ ^ . '

Pressure P > L _ | _

Figure 2.3: a Special Case of the Flow in a Hele-Shaw Cell [9].

Letting L be 2, the equation has the following form:

ht{x, t) + (h(x, t)hxxx(x, t))x = 0, - 1 < x < 1, (2.8)

with the initial condition:

h(x,0) = 1,

and the boundary conditions:

18

Mx.t)

W

h(±l,t) = l,

hxx(±l,t) = -p,

where p is a nonzero pressure. Techniques for the numerical solution of (2.8) are

discussed in the paper [2].

2.3.3 van der Waals Rupture of a Thin Film

This equation is associated with the modeling of a thin film (see [38]). The model

represents the process through which a thin liquid film on a solid substrate overcomes

surface tension and ruptures because of van der Waals forces.

The non-dimensional form of the model is derived based on the assumption that

there is no slip at the solid substrate and free slip at the thin surface; the governing

equation is

dh(r, t) ld_

dt r dr
rh*(r,t)-

d (I d (dh(r,t)

dr \r dr dr +
dh(r,t)

h(r, t) dr
= 0, (2.9)

with the initial condition:

h(r,0)
10 1 (2-Kr\

19

and the boundary conditions:

hr(0,t) = 0,hr(^,tj =^,

/A \ _ A
nrrT\\), z) — u, nrrr i —, z i -—,

where h(r, t) is the thickness of the thin liquid, r is the radial coordinate and A is a

problem dependent parameter..

2.4 Extended Fisher-Kolmogorov (EFK) Equation

This equation is called the extended Fisher-Kolmogorov (EFK) equation which arise

in the discussion of the propagation of fronts into unstable states of a bistable system;

it was proposed by Dee and van Saarloos in the paper [11]:

ut(x, t) = --yuxxxx(x, t) + uxx(x, t) + u(x, t) - u3(x, t), (2.10)

where —oo < x < oo and 7 > 0. The initial condition is:

u(x,0) = 0.1e-*2,7 = 0.03,

and the boundary conditions are:

lim u(0, x) = 1,

x—>oo

lim u(0,x) = —1.
X—+ — OO

20

At the same time, Coullet, Elphick and Repaux also obtained the EFK equation

in the study of the spatial complexity of one-dimensional patterns (see [10]).

2.5 Applications in Image Processing

Applications involving fourth order PDEs are widely used in image processing. In [4],

Bertozzi and Greer study a model of image denoising and segmentation; it has the

form

ut(x, t) = - V • (g{s) A u(x, t) A y « f e *)) + A(/(x, t) - u{x, t)), (2.11)

where

f(x_, t) is a noisy signal,

u(x_, t) is the image intensity,

g(s) = k2/(k2 + s2) is a curvature threshold, k, s are parameters,

A is a fidelity-matching parameter.

Lysaker et al. [27] also use a fourth order PDE in order to model the removal of

noise from digital images. The model has the form:

/ ,\ _ _ / UXX{X,t) \ ^ I UXy [X_, t) \ ^ I Uyx{X_,t)
Ut^ >- y\D2u(x,t)\)xx \\DMx,t)\)yx \\D2u(x,t)\/xy

uyy(x,t_\ _X(u(x,t)-u0(x,t)),
\D2u(x,t)\

yy

21

with the boundary conditions:

uxx(xL,t) \ ^ + f uyy(xL,t)]n2 = 0j

\U-XX\3LLI v l

^XX\X_RI t)

^XXXMRI t) I
Til +

uyy{xL,t)\
uyy{X.R: *)

\uyy\^-R^)\
n2 = 0,

where

I r>2 I = n 12 , I 12 , I 12 , I | 2 \ l / 2

u(x, t) is a digital image measured by the pixel intensity value, x_ =

Uo(x) is an observation with random noise,

A is a known parameter,

n = (ni,ri2)T is the outward normal direction on dQ,

fl = [a,b] x [c,d], xL = Xn > ±R
d

The existence and uniqueness of a solution to the following equation which repre­

sents a noise removal model is discussed in [26]:

du(x,t) d2 , , fd2u(x,t)\ „ , 2, „

u{0, t) = u(l,t) = ux(0, t) = ux{l, t) = 0, te (0, T),

u(x,0) = u0(x), x € / ,

where i" = (0,1), QT = I x (0,T), u(x,t) is the image intensity, $: 3? —»• 9£+ is a

known function which is even, continuous, and convex with $ > 0 for t > 0.

22

file:///U-xx/3Lli

2.6 Cahn-Hilliard Equation

This equation was first introduced by Cahn and Hilliard in 1958 in the paper [6].

It describes the process of phase separation in which two immiscible fluids become

separated as time increases. It is applied in many fields, including material science

and engineering (see [42]). It has the form:

ut(x, t) = D(u3(x, t) - u(x, t) - ~/uxx(x, t))xx,

where

u(x, t) is the concentration of the fluid,

D is a diffusion coefficient,

yfy is the length of the transition regions between the domains.

In [14], the authors discuss the solution of the convective Cahn-Hilliard (CCH)

equation with periodic boundary conditions

ut(x, t) = u(x, t)ux(x, t) - (u(x, t) + u3(x, t) - uxx(x, t))xx, x £ (0, L), t > 0,

u(x + L,t) = u(x, t), x € K, t > 0,

u(x,0) = UQ(X), x E 3ft.

23

2.7 Some Simple Fourth Order PDEs

From the previous sections, we can see that fourth order PDEs arise in many fields.

However, an exact solution is not usually known. Here we will give two simple fourth-

order PDEs with exact solutions. The exact solution to the first equation is obtained

by inspection since the equation is very simple. The exact solution to the second

equation is provided in [33]. These equations have been useful during the development

and testing of our software.

2.7.1 Example One

The first example is a simple Fourth order linear PDE:

ut(x,i) = -uxxxx(x,t), 0 < x < IT, t > 0, (2.12)

with the boundary conditions

u(0,t) = u(ir,t) = 0, t>0,

uxx(0, t) = UXX(TT, t) = 0, t > 0,

and the initial condition

u(x,0) = sinx, 0 < x < IT.

24

The exact solution (see Figure 2.4) is

u(x,t) = e ' sinx.

Figure 2.4: The Exact Solution of Equation (2.12)

2.7.2 Example Two

The second example is a test problem taken from [33]:

ut{x,t) = sint
3 + cos t

uxxxx(x,t), 0<x<ir, t>0, (2-13)

with the initial condition

u(x,0) = 1.2 cos x, 0 < x < ir,

25

and the boundary conditions

it(0, t) = UXX(TT, t) = 0.3(cos(t) + 3),

u(n, t) = uxx(0, t) = — 0.3(cos(£) + 3).

The exact solution (see Figure 2.5) is

u(x, t) = 0.3(cos t + 3) cos x.

Figure 2.5: The Exact Solution of Equation (2.13)

26

Chapter 3

Review of Numerical Methods and

Software Packages

Many software packages for the numerical solution of PDEs are based on an approach

called the method of lines (MOL). The MOL is one of the most important compu­

tational approaches for solving PDEs. The MOL for solving a PDE proceeds in two

separate steps:

• The spatial discretization: This involves partitioning the spatial domain into

subintervals with a set of mesh points and approximating the spatial derivatives

on each subinterval in some way, thereby replacing the PDEs by a system of

ordinary differential equations (ODEs).

27

• The time integration: This involves using a software package to solve the ODEs

and the boundary conditions. A system of ODEs coupled with a system of

algebraic equations (in our case, the boundary conditions) is known as a sys­

tem of differential-algebraic equations (DAEs). There are many good quality

ODE/DAE solvers - we will consider a few later in this chapter.

3.1 Review of Numerical Methods

In sections 3.1.1 and 3.1.2 we discuss two numerical methods which provide the basis

for software for the numerical solution of ODEs and DAEs. Section 3.1.3 introduces

spline software which is used widely in the representation of numerical solutions.

In Section 3.1.4, we describe one numerical method which is often employed as the

spatial discretization process for the numerical solution of PDEs.

3.1.1 Runge-Kutta Methods

Runge-Kutta methods are important single-step methods for solving ODEs [17].

Single-step means that the current value can be obtained assuming only one previous

solution approximation is given. The classical fourth order Runge-Kutta method is

one of the most commonly used Runge-Kutta methods. Let us consider the following

initial value problem:

y'= f(t,y), y(t0) = y0.

28

Then, given a solution approximation, yn, at tn, we can obtain an approximation to

the solution at t n + i , which we call yn+i, using the following equations:

yn+i = Vn + g (h + 2k2 + 2k3 + k4),

where

"• — t n + l ^ni

k\ = f(tn,yn),

k2 = f {tn + -h,yn + -k1 | ,

k4 = f (tn + h,yn + k3).

The coefficients of this method can be written in a table, which is called a Butcher

tableau. See Table 3.1.

Table 3.1: The Butcher Tableau for the Classical Fourth Order Runge-Kutta
Method [17]

0
1
2
1
2

1

1
2

o
0
1
6

1
2

0
1
3

1
1
3

1
6

This classical fourth order Runge-Kutta method has many advantages. First, it

29

is explicit. That is, yn+\ can be obtained through an explicit calculation. In addition

the accuracy of the approximate solution is reasonably high. If we assume that the

solution at tn is exact then then the local error in the solution at i„+ 1 is 0(h5) for

this method. The global error is then 0(h4) so the method is fourth order over the

entire time integration. It is easy to change the step size during the process since

the Runge-Kutta method is a single-step method. However, each step requires four

evaluations of / . Because the stability region is limited - see, e.g. [25], a small time

step h needs to be chosen in order for the method to be stable. (A method is stable

if the error does not grow as the time stepping proceeds.)

A modified version of the DAE/ODE solver RADAU5 (see [17, 19]) is employed

in BACOLR to solve the DAEs that arise. RADAU5 is based on one particular

Runge-Kutta method, Radau IIA. Using this method, we can obtain an approximate

solution, yn+i, at tn+\ from the following equations:

Vn+i = Vn + ^ ((16 - V6>i + (16 + VE)k2 + 4A:3) ,

where

A* , 4 - V / 6 , , 8 8 - 7 N / 6 . 296-169>/6 ; - 2 + 3 > / 6 |
>

h = f[tn + ~^h>Vn + -^60~kl + 1800 h + ~ 2 2 5 ~ * 3
y

J 4 + \ / 6 , 296 + 1 6 9 ^ , 88 + 7V/6; - 2 - 3 ^ / 6 , ^
2 J I „ - r 1 Q , y n ~ T l g Q 0 IT 3 6 Q 2T 2 2 5 3^

A u 16-V6, 16 + VE. 1. \
h = J \tn + h,yn + ———kx + ———k2 + -« 3 I -

30

We note that the k\, &2, k% values are defined implicitly (i.e., in terms of each other)

and when / is nonlinear an iterative technique such as Newton's method must be

employed to compute these values. On a single step the error is 0(h6). The stability

region of an implicit Runge-Kutta method is much larger than that of an explicit

Runge-Kutta method. In fact the stability region typically includes the entire left

half of the complex plane which implies that the stepsize is not restricted at all by

stability considerations.

The coefficients of this method can be written in the form of the Butcher tableau

given in Table 3.2.

Table 3.2: The Butcher Tableau for RADAU IIA [20]

4-76 88-776 296-16976 -2+376
10 360 1800 225

4+76 296+16976 88+776 -2-376
10 1800 360 225

-i 16-76 16+76 1
36 36 9

16-76 16+76 1
36 36 9

3.1.2 Backward Differentiation Formulas

Another DAE/ODE solver commonly employed by software (such as BACOL, HP-

NEW, MOVCOL) for the numerical solution of PDEs is called DASSL (see [32]).

DASSL is based on a family of numerical methods for the solution of DAEs/ODEs

known as Backward Differentiation Formulas (BDFs). The BDFs represent one of the

most useful families of linear multi-step methods; see, e.g., [25]. A multi-step method

31

uses several previous solution values in order to compute the current approximation.

For the ODE, y'(t) = f{t,y), a fc-step BDF is defined by the formula

k

/ jajVn+j — hPkfn+k,
3=0

where h is the fixed time step and oij, j = 1, 2, • • • , k and Pk are given coefficients

and yn+j, j = 0,1,- • • ,k — 1 are known previous solution values; see Table 3.3. It

is possible to choose the coefficients so that the order of the fc-step BDF is k. The

sizes of the regions of absolute stability of the BDF are larger than those of the same

order of explicit Runge-Kutta method, for k = 1, 2,..., 6. Furthermore, when k = 1,2,

the stability region includes the whole negative half-plane, in which case there are no

stepsize restriction due to stability.

Table 3.3: Coefficients of BDF [25]

k

1

2

3

4

5

6

a0

-1

l
3

2
11

3
25

12
137

10
147

Oil

1

4
3

9
11

16
25

75
137

72
147

a2

1

18
11

36
25

200
137

225
147

a3

1

48
25

300
137

400
147

Oi±

1

300
137

450
147

a5

1

360
147

a6

1

fa

1

2
3

6
11

12
25

60
137

60
147

32

Using the above formula we can obtain the approximate solution at tn+k called

yn+k- As an example we take k = 5, that is a 5 — step BDF. The formula becomes:

OioVn + OilVn+l + «22/n+2 + (X3Un+3 +

ctiVn+i + a5yn+5 = hp5f(xn+5,yn+5).

Substi tut ing the coefficients for this formula from Table 3.3, we get:

12 _75_ 200 300
~-.ry-.yn + ~~zVn+l ~ -J rfjVn+2 ~r -. „_2/n+3 —

300 , 60 , ,
^ y n + 4 + yn+5 - h—j{xn+5,yn+5)

We solve this formula for y„+5, assuming previous solution values yn+4, yn+s, Vn+2,

yn+i and yn. As mentioned earlier, when / is nonlinear, yn+5 must be computed using,

for example, Newton's method.

From the above formula, we can see that a multi-step method requires only one

new function value per step (although more function values may be necessary in the

Newton iteration). However, it cannot start automatically. That is, the value of yn+5

cannot be obtained until five initial values are given. For example in the 5 — step BDF,

yn,yn+i,yn+2,yn+3,Vn+\ must be given in order to calculate yn+5. Changing step size

is more expensive than for a one-step method. A popular strategy for changing the

stepsize involves using interpolation to obtain the values at the required past steps.

33

http://~-.ry-.yn

3.1.3 B-splines

In BACOL and BACOLR, the approximate solution is expressed as a piecewise poly­

nomial in x with time dependent coefficients. The piecewise polynomial can be repre­

sented in terms of a B-spline basis (see [5]). Given NINT + 1 knots, #,, which divide

the domain into NINT pieces with

a = XQ < X\ < • • • < XNINT = b,

we then define a piecewise polynomial of order k (degree k — 1) on each subinterval.

That is, on each subinterval the segment of the piecewise polynomial has k coefficients.

There are NINT subintervals in the problem domain, therefore k*NINT coefficients

in total. The polynomials are C1 — continuous, which means that the B-spline is

continuous and differentiable at the mesh points Xi, i = 1, • • • , NINT — 1. Imposing

these conditions leads to 2*(NINT—1) constraints. In order to solve for the k*NINT

coefficients,

NC = k* NINT - 2 * (NINT - 1) = NINT *(k-2) + 2

additional constraints are needed. Here NC is the total number of collocation condi­

tions, including the boundary conditions, that will be applied (We will explain in the

next subsection what we mean by collocation conditions). These conditions, together

with the continuity conditions, give a total number of conditions that is equal to

the number of free coefficients. The PDE solution u(x, t) is approximated by U(x, t)

34

which can be expressed in terms of B-splines as:

JVC

U(x,t) = ^ryi(t)Bi(x), x e [X0,XNINT],

i=l

where yi(t) are unknown time-dependent coefficients and Bi{x) are the B-spline basis

polynomials. Each Bi(x) will be non-zero only in a relatively small region of the

problem domain. See [5] for further details about the B-spline basis functions.

3.1.4 Collocation

In PDE software packages such as BACOL and BACOLR (as well as PDECOL [28]

and EPDCOL [23]), that express the approximate solution in terms of B-splines, the

spatial discretization is performed using a technique known as collocation. Suppose

that the PDE has the following form:

ut = f(t, x, u, ux, uxx), a <x <b,

with boundary conditions

&!,(£, u, ux) = 0, at x = a,

bii(t, u, ux) = 0, at x = b.

The collocation method requires the approximate solution to exactly satisfy the PDE

at a given set of collocation points, £;, I = 2, • • • , NC — 1, and at the boundary points

35

(£i = a and £NC = b). That is, we require U(x,t) to satisfy

0 = bL(t,U(0,t),U(0,t)x),

ut(ti,t) = f(t,x,u(Zi,t)M&t)xMZi,t)xx), I = 2,---,NC-I,

0 = bR(t,U(l,t),U(l,t)x).

Substituting for Ut(£i,t) with H^yKt)Bi(x), we then obtain a system of differential

equations coupled with two algebraic equations. The DAE system has the form,

bL(t,U(0,t),U(0,t)x) = 0,

XZ?MZMt) = f(t,x,U(^t),U(Ci,t)x,U(^t)xx), Z = 1,2,-..,JVC,

bR(t,U(l,t),U{l,t)x) = 0.

We can determine the coefficients j/j(t) by solving this system of equations using

a DAE solver and from there we can get the approximate solution, U(x,t).

3.2 Software for ID, Time-Dependent, Second-Order

PDEs

As mentioned earlier in the thesis, an important feature of some of the most recent

software packages for the numerical solution of PDEs from the problem class con-

36

sidered in this thesis is called adaptive error control. Among all available numerical

software for solving 1-dimensional, second-order, time-dependent parabolic PDEs,

only HPSIRK [30], HPDASSL [30], HPNEW, BACOL and BACOLR are able to con­

trol the overall error, which has two components, the error in space and the error in

time.

Assume a general system of NPDE 1-dimensional, second-order, time-dependent

PDEs having the general form:

ut(x,t) = f(x,t,\i,ux,uxx), a<x<b, t>t0,

supplemented with the initial conditions

u(x,to) = uo(x), a < x < b,

and separated boundary conditions

bL(t,u(a,t),ux(a,t)) = 0, bR(t,u(b,t),ux(b,t)) = 0, t>t0,

37

where

u = (ui,u2,--- ,uNPDE),

Qui du2 duNPDE \
dt' df'"' ' dt) '

'dux du2 duNPDE\

v dx ' dx ' ' dx /
/9^ui <92n2 d2uNPDE\
\ dx2 ' da;2 ' ' 9x2 y

f = (/ l> /2 i • • • ,fNPDE) •

In this section, we review the software packages BACOL and BACOLR and three

other software packages, HPNEW, pdepe and MOVCOL, all of which are able to

solve PDEs having the general form described above.

3.2.1 BACOL/BACOLR

A novel feature of BACOL, designed by Wang, Keast, and Muir, is that it employs

high order, i.e., high accuracy, adaptive methods in both time and space, controlling

and balancing both spatial and temporal error estimates.

For the spatial discretization, BACOL uses B-spline collocation. The resultant

DAEs are solved using DASSL, which controls an estimate of the temporal error.

For the spatial error estimate, BACOL computes two solutions, one of order p and

one of order p + 1, (p is determined from KCOL, the number of collocation points

per subinterval, provided by the user) and the difference between the two is used to

estimate the error in the lower order solution. BACOL defines a normalized error

u t =

uT

Ll-roT

38

estimate for each PDE component over the whole problem interval and a normalized

error estimate for each subinterval over all components. As mentioned earlier, after

the spatial discretization is performed, BACOL uses DASSL to compute values for

the B-spline coefficients, yi(t). After each successful time step in DASSL, the spatial

error is estimated. If the estimated error does not satisfy the tolerance, then BACOL

adjusts the mesh and repeats the step. The remeshing strategy involves a procedure

for estimating the optimal number of mesh points, and an algorithm for redistributing

the mesh points over the problem interval, called an equidistribution algorithm, that

tries to make the error on each subinterval the same, and also less than the user

provided tolerance.

DASSL uses a Newton iteration to compute the yi(t) values, and the Newton

matrices have a special almost block diagonal (ABD) structure because any B-spline

basis function is non-zero only in a small region of the problem domain. BACOL

employs COLROW [13] as a linear system solver to take advantage of this special

structure. Numerical results [35] show that BACOL is one of the most efficient soft­

ware packages available whether high accuracy or low accuracy is required. In this

thesis work, we employed a slightly modified version of BACOL1, that replaces COL­

ROW with CONDCOLROW, a package for solving ABD systems that also provides

an estimate of the condition number of the ABD matrix. We have introduced this

change because it has turned out to be important in this project to be able to monitor

the condition numbers of the Newton matrices that arise. One of the modifications
1 developed by Keast

39

we need to make to BACOL involves the introduction of new scalings for certain rows

of the Newton matrix in an attempt to improve the conditioning of that matrix.

BACOLR was developed by Wang, Keast, and Muir, through a substantial mod­

ification of BACOL. For the spatial discretization, BACOL and BACOLR are the

same. The novel feature is that the time dependent ODEs resulting from the spatial

discretization are handled by a substantially modified version of the Runge-Kutta

solver, RADAU5. Numerical results [37] show that the performance of BACOLR is

generally comparable to that of BACOL and in some cases significantly superior to

that of BACOL.

3.2.2 HPNEW

HPNEW, by Moore, a modification of HPDASSL, is another package with spatial

and temporal error control. For the spatial discretization, it employs a finite-element

Galerkin technique. For the time integration, it uses DASSL. The error estimates

are obtained by a formula which generalizes the traditional formula for the Lagrange

interpolation error. For the adaptive strategy, HPNEW applies hp-refinement which

is a combination of h-refinement and p-refinement. h-refinement involves refining

the mesh and p-refinement involves adaptively choosing the degree of the piecewise

polynomials used.

40

3.2.3 pdepe

The MATLAB function pdepe is a PDE initial-boundary value problem solver. It can

solve coupled systems of parabolic and elliptic PDEs in one dimension. There should

be at least one parabolic equation in the system. However, it can only control the

error in time, pdepe solves PDEs of form:

°<^£)*=*~iH--'-"-£))+*K£) <«>
with the initial condition

u(x,t0) = u0(x),

and the boundary conditions

p(x, t, u) + q(x, t)f (x, t, u, —) = 0 .

where m can be 0, 1, 2; / and s are given functions of x,t,u, | | ; c (x,t,u, |^) is a

diagonal matrix with elements either identically zero or positive; p(x, t, u) is a vector

which can depend on it; q(x,t) is a diagonal matrix with elements that are either

identically zero or never zero.

41

3.2.4 MOVCOL

MOVCOL, by Huang and Russell, is an example of a moving mesh package. This

means that the locations of the spatial mesh points move within the spatial domain

as a function of time to adapt to the way the solution changes. Mesh movement

is determined through the solution of an auxiliary set of PDEs known as moving

mesh PDEs. Central finite differences are used for the spatial discretization for these

PDEs. MOVCOL employs a cubic Hermite spline collocation method for the spatial

discretization of the physical PDEs. For the time integration, MOVCOL uses DASSL

to solve the DAEs. While MOVCOL can adapt the locations of the mesh points to

the solution behavior, it cannot change the number of points and therefore cannot

control the spatial error.

3.3 Software for ID, Time-Dependent, Fourth Or­

der PDEs

A general system of NPDE 1-dimensional, fourth order, time-dependent parabolic

PDEs that arises in mathematical models has the form:

ut(x

42

supplemented with the initial conditions

u(x, to) = uo(x), a < x <b,

and separated boundary conditions

bL(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t> t0,

bR(t,u(b,t),ux(b,t),uxx(b,t),uxxx(b,t)) = 0, t >t0,

where bL G W, bR € 5RS, and q, s € {1, • • • , 4 x NPDE},

U = (« i , U 2 , - - - ,UNPDE),

_ fdu^_ du2_ duNPDE \
Ut ~ V dt ' dt ' " ' ' at J '

_ /d_ui 0^2 duNPDE\

\ ax ox ox)

- (d2ui d2^2 d2uNPDE\
\ dx2 ' dx2 ' ' ax2 y '

_ fd^ux d3u2 d3uNPDE\
\ OX6 OX6 OX6 J

_ fd4Ui d4u2 (PUNPDE\
*J-.X.Tr7T.T • ~ ~ • ™ ~ • ' * * • - I XXXX \ rs A ; r\ A J)

dx4 ' ax4 ' ' dx4 7 '

f = (/ l) / 2 , " " • i fNPDE) •

MOVCOL4 is a software package that can solve PDEs which depend on the fourth

spatial derivative. MOVCOL4 is based on MOVCOL. For the spatial discretization,

MOVCOL4 can employ either collocation or a conservative method. The imple-

43

mentation of the collocation method is almost the same as in MOVCOL. The small

difference is that the degree of the Hermite spline basis in MOVCOL is 3 while in

MOVCOL4 it is 7. For the time integration, MOVCOL4 applies the same software,

DASSL, that MOVCOL uses. Like MOVCOL, the MOVCOL4 package can control

the temporal error but not the spatial error; it is however, to our knowledge, the first

software package that is able to solve fourth order PDES.

44

Chapter 4

Extension of BACOL to Fourth

Order Equations

As mentioned previously, for the test problems in [35], BACOL has been shown to

be superior to many currently available software packages for solving second order

parabolic PDEs. Furthermore BACOL employs adaptive error control in both time

and space. However it was not designed to handle fourth order PDEs. The package

MOVCOL4, which handles fourth order equations, does not have error control in

space. Therefore our research has focused on how to adapt BACOL to handle PDEs

in which ux, uxx, uxxx, and uxxxx appear, so that we can solve fourth order parabolic

PDEs with spatial and temporal error control.

We consider a single fourth order PDE (1.1). As mentioned earlier, the authors

of the paper [33] point out that converting the fourth order PDE to a system of

one second order PDE and one second order ODE(in space) gives a mathematically

45

equivalent problem. For example, Equation (1.1) can be converted into Equation

(1.2). In Section 4.1 we will discuss how to employ the original BACOL to handle

the e version of (1.2) - (1.3). In Section 4.2 we will discuss how to adapt and extend

BACOL to handle equations of the form (1.2). This new software is called BACOL42.

4.1 BACOL Applied to the e Version of a Problem

During the development of BACOL42 we found that it was useful, for comparison

purposes, to be able to compute approximate solutions to (1.2). Since the original

BACOL package is able to treat systems of second order PDEs, we observed that a

small perturbation of (1.2) could lead to a problem (a) whose solution would hopefully

be close to that of (1.2) and (b) that could be treated directly by the original BACOL

code. We modified (1.2) to get (1.3).

For sufficiently small e, the perturbed problem (1.3) is obviously close to the

converted system (1.2). If e is small enough, then we can therefore expect that the

solution of (1.3) is a reasonable approximation to the solution of (1.2).

Thus solving (1.3) with BACOL provides a simple way to obtain an approximation

to the solution of a fourth order PDE. Using a version of BACOL modified to provide

an estimate of the condition numbers of linear systems that arise, we have seen from

our numerical experiments that e cannot be set too small or the Newton iteration

matrix will become numerically singular, since we have observed from our numerical

experiments that the condition number grows inversely proportional to e.

For each test problem we consider, we will use the original BACOL to solve the

46

e version of the problem (1.2), i.e., (1.3). The main purpose of this approach is to

provide numerical results to compare with the results of the BACOL42.

4.2 Solving the Converted System

4 . 2 . 1 C o n s t r u c t i o n o f t h e N e w t o n S y s t e m

In (1.2), let

/ =
A

h

f(x, t, UU (UX)X, (Ui)xx, (U2)x, (U2)a

(ui)xx -u2

and

u(x,i) =
E t i v i j (*)**(*)

Y,?=iy2j(t)Bj(x)

ui(x,t)

u2(x,t)

where NC = NINT * KCOL + 4, Bj(x) are the B-spline basis functions, and yij(t)

and y2:j(t) are the time-dependent B-spline coefficients of ui(x,t) and u2(x,t) respec­

tively. Then:

NC

NC

ux(x,t) = J^yj(t)B'J(x)

NC

uxx(x,t) = Yty.(t)B'!(x),

47

where y. (t) =
—3

3/ij(*)
and y'it)

—3

wk(*)
The converted system with boundary conditions is

0 = bL(t, u(a,t),ux(a,t),uxx(a, t) (a,t))

(ui)t = f{x, t, ui, (ui)x, {ui)xx, {u2)x, (u2)xx)

0 = (ui)xx - u2

0 = bR(t, u(b, t),ux(b, t),uxx(b, t) (M))

We first rewrite it by subtracting the right hand side of the system from the left hand

side of the system. Collocation then gives a system of ODEs, which together with

boundary conditions, gives the DAE system

G(t,y(t),y'(t)) = 0,

48

where

1/(0 =

(yiAt) X

V2,l(t)

2/1,2, (t)

2/2,2 (*)

yi,7VC-l(0

U2,NC-l{t)

Vl,Nc(t)

y V2,Nc{t) j

G has three parts:

1. The first 2 components are

-&L,i (i, a, iti(a, t), («i)x(a, t),u2(a, t), (u2)x(a, t)) ,

-6L,2 (*, a, ui(a, t), (-ui)x(a, t),u2(a, t), {u2)x(a, t)),

or,

JVC JVC NC NC

-bL,1[t,a,Y,yiAt)B3(a),Y/y^)B-(a),Y/y2At)BJ(a),Y/y2At)B'J(
a) ,

.7 = 1 .7 = 1 i = i . 7 = 1

JVC NC NC NC

-bL,2 t,a, ^2yid(t)Bj(a), ^ ^ (^ (a) , ^ ^ (^ (a) , £ > , ; (*) £ »
J '=I J '=I J '= I J '=I

49

2. The last 2 components are

- 6 f l a (t, b, ux{b, t), (ui)x(b, t),u2{b, t), (u2)x(b, t)),

-bRt2 (t, b, Ui(b, t), {ui)x{b, t),u2(b, t), {u2)x{b, t)),

or,

(NC NC NC NC \

3 = 1 3 = 1 3=1 3 = 1)

(NC NC NC NC \

3 = 1 3 = 1 3 = 1 3 = 1 J

3. The remaining middle components are of the form (these are the collocation

equations)

(«i)t(6»*) - / (*>6, «i(6> *), (ui)x(&, t), (w2)x(6,*)> («i W&> *)> (u2)xx(£,i,t)),

"2(6, *) - (ui)xx{£i,t),

50

or,

JVC NC NC

£y;mte) - /(^EM*w&),EM*)3(6:
3 = 1

NC NC NC

NC NC

E2/2J(^(*) - El^W*).
3 = 1 j=l

where & is one of the (p—l) collocation points associated with the ith subinterval

(p is the degree of the piecewise polynomials). There are NINT x (p — l) pairs

of such equations, where NINT is the number of subintervals.

We can rewrite the DAE system as

G(t,y(t),i/(t)) = Ay;(t)-F(t,y(t)) = 0. (4.1)

Here the matrix A represents the terms of the collocation equations that depend on

y'(t). The top and bottom parts of F correspond to the boundary conditions and the

middle part of F_ corresponds to the terms of the collocation equations that do not

depend on y'(t).

Application of a BDF as the time-stepping formula for the treatment of the above

DAE system (4.1) gives a nonlinear system for which the corresponding Newton

iteration is

PD • Ayim\ = -
2-71+1

AhtA^)-t{tn+^] (4.2)

51

where y(m+1) = y(m\ + /\y(m\ a is the coefficient of y in the BDF, hn+\ is the
2-rc+l 2 - n + l 2-71+1' 2-n+l ' n + 1

current timestep, and @ represents the part of the BDF that depends on known

solution information from previous timesteps. PD, the Newton matrix, is

^2 dg_ ^G__^t_ 4-^fi
j dy' dy 3 dy' dy j dy'

where c,- = -r^—.
J "n + l

The rows of the matrix A corresponding to the collocation equations that depend

on components of y'{t) have the form:

Bi&)I B2&)I ••• BNC(^)I

where Bj(£i)I is a 2 by 2 diagonal matrix associated with the j th B-spline basis poly­

nomial evaluated at the Zth collocation point. The remainder of A has the following

structure:

1. The elements of the first two rows and the last two rows are zero (corresponding

to the left boundary and right boundary conditions);

2. Since the B-spline basis functions have small compact support, the A matrix

has an ABD structure, as mentioned earlier. Every second row of each block in

52

the middle part of matrix A is filled with zeros, i.e., each block has the form:

x 0 x 0 • • • x 0

0 0 0 0

V 0 0 0 0

0 0

x 0 x 0 • • • x 0

0 0
/

where the elements labeled x are usually non-zero values of the B-spline basis

functions, and the zero rows correspond to collocating to the second equation

(the ODE) of (1.2).

One of the main modifications that needed to be made to BACOL was associated

with handling the presence of these zero rows in the A matrix.

The middle part of F_(t, y) has (NC — 2) x 2 components; the (21 + l)th and

(21 + 2)th vector components (where I = 1, 2, • • • , NC — 2) are the right hand side of

the Ith collocation equations,

f(^i,t,u(^i,t),ux(^i,t),uxx(^,t))

53

or

Arc Arc NC

\ i i i /

(Note that here we are referring to the vector / tha t includes both the P D E and the

ODE of the converted system.)

Similarly the boundary condition components of F_{t, y) have the form

Arc Arc

M'.&i(*)B'(°)'E^*)B*(a)

and
JVC AfC

ht U££(*)B«(6)'E^*W)

..: dF The components of the matr ix -g= are obtained by differentiating the components

of F_ with respect to the components of y. Therefore the top part of the Newton

system (4.2) corresponding to the left boundary condition has the form:

~1T (^ dv V - "
m)
+1 -h,

where

where

dy
9 h d h

d
dy

NC

8 r) (NC NG ^

dy. dy. . ,
-3 -3 \ i = l ! = 1

54

becomes

^BAa) + ^B'Aa), {a 2x2 matrix),
ou oux

 J

Since the B-splines have small compact support most of the top row of -g= consists

of zero blocks except for the first few positions and most of the last block row of -g=

is zero except for the last few positions. The bottom part corresponding to the right

boundary condition is similar to the top part, shown above.

The remaining rows of -7= are obtained by considering the derivative of the right

hand side of the Zth pair of collocation equations with respect to y. The Zth block

c OF •

row of -̂ 7 is

'—f ~f •• —f
% - dy2- dy_NC-1

and, in detail, the j t h component of the above block row is

~ / JVC JVC JVC \

V-j V i=l i=l «=1 /

Again since the B-splines have small compact support most of the entries in the

Zth block row are zero except for those corresponding to B-spline functions that are

non-zero near the collocation point £/.

55

4.2.2 Scaling of the Newton System

When we try to solve the converted system, the Newton matrix, PD, turns out to be

poorly conditioned. (We have observed this from our numerical experiments in which

the condition number of the Newton matrix is reported.) We can see that in the

DAE system (4.1) there are 4 algebraic constraints coming from boundary conditions

together with NINT x (k — 2) algebraic constraints corresponding to collocation of

the second equation in (1.2). From the paper [36], we know that if we do not scale the

equations of the DAE system that correspond to the boundary conditions, i.e., if we

do not scale the the algebraic equations of the DAE system, large condition numbers

arise and BACOL fails due to the ill-conditioning of the corresponding Newton matrix.

See [36] and references within for further discussion of this issue.

Therefore our modified version of BACOL employs the technique discussed in [32]

of scaling the Jacobian subblocks and right hand side elements corresponding to the

algebraic constraints from the ODE and the boundary conditions by Cj. (Previously

we defined as Cj = ^-9L-). Consider the top part of the Newton system corresponding

to the left boundary condition as an example; recall that it has the form

- 1 K:D - -*,

We will replace this part of the Newton system by the scaled form

-«t(A£0 - -<*•

56

The bottom part of the Newton system is treated in the same way; we get:

- ^ f e)) = -c3bR.
dy

Every second component of the middle part of the Newton system corresponding to

algebraic constraints from the ODE should be scaled by Cj as well.

The general form of the Newton system is:

3 dy V-n+1 ^(^-\^)-m+lJZ\) (4.3)

As we know, every second row of the middle part of A is zero. Therefore the (2Z + 2)th

row corresponding to the Ith collocation point £z is

9/2(0)
dy

A y ^) = -/2(fi)

becomes

3 dy
(A y W) = -c,-/2(fi). (4.4)

4.3 Summary of Modifications to BACOL

From the discussion in the previous section, the efficient treatment of the converted

system, (1.2), by BACOL requires that we handle two issues: (i) we have to deal with

the fact that the equations arising from the application of collocation to the ODE

57

components of the converted system do not depend on the time derivative of the

solution to the DAE system (and this means that every second row of the A matrix

arising in (4.3) should consist of zero entries), and (ii) because of the absence of the

time derivative in these equations, within the DAE system they represent algebraic

equations, and it is well-known that the algebraic equations in a DAE system to be

treated by DASSL must be scaled appropriately (this scaling was already present in

BACOL for the boundary conditions).

In order to modify BACOL to deal with these issues, an extensive study of the

source code of the BACOL package was required. At the end of this analysis, it

was found that a small but subtle set of modifications could be introduced to han­

dle the above issues. An important subtlety, that became apparent only after much

careful investigation, is that the matrix A, actually plays two roles within BACOL.

In addition to contributing to the Newton system - see (4.3) - it also plays the role

of a projection matrix within the routine which performs an important initialization

calculation at the beginning of the computation and an important reinitialization

calculation after each remeshing performed by BACOL. The initialization involves

projecting the initial solution onto the B-spline basis space to obtain the B-spline co­

efficients for the solution. The reinitialization involves projecting the current solution

onto the B-spline basis associated with the new mesh so that the B-spline coefficients

of the current solution can be obtained. An essential observation is that even for

the converted system, the use of the matrix A in the initialization and reinitialization

computations must be the same as it is in BACOL, whereas in the computation of the

58

Newton system (4-3), the A matrix arising there must have zero rows in certain loca­

tions, as explained in the previous subsection. Based on this observation, we realized

that the A matrix should not be altered but rather the contribution to the Newton

system from the A matrix needed to be modified so that the effect would be the same

as if the A matrix did in fact have zero rows.

Based on the analysis from the previous section and our careful investigation of

the BACOL source code, we found there are two types of modifications involving

three subroutines in the BACOL source code which needed to be changed to handle

the second order mixed PDE/ODE system (1.2).

The first modification is associated with the extra zero rows of the matrix A

corresponding to the ODE. The purpose of this change is to handle calculations

associated with the zeros in the matrix A. This modification involves two subroutines:

CALJAC and CALRES, which interface with DASSL to handle the treatment of

the Newton systems associated with the discretization of the converted PDE/ODE

system.

The second type of modification is associated with scaling the additional algebraic

constraints arising from collocating the ODE part of the converted system. Two

subroutines are required to be changed: CALJAC which scales the left hand side of

the equation (4.4) and DDASLV which handles the scaling of the right hand side of

the equation (4.4).

We give detailed descriptions of the modifications in the Appendix.

59

Chapter 5

Numerical Results for BACOL42

In this chapter we present numerical results to explore the effectiveness of the modified

version of BACOL, called BACOL42, that we described in the previous chapter. For

comparison purposes we also provide results obtained by applying the original BACOL

to the e version of each problem.

We will consider five different time-dependent ID fourth order PDEs. We use GNU

Fortran77 (GCC) 3.4.6 under the linux operation system (ubuntu 8.04) running on

an HP 380DL G5 (processor speed 2.33 GHz). Section 5.1 discusses the simple test

equation (2.12). In Section 5.2, we consider the numerical results for equation (2.13).

The problem in Section 5.3 comes from thin film liquids (5.5). In Section 5.4, we apply

the software to the Kuramoto-Sivashinsky Equation (2.7). Finally, in Section 5.5, we

consider the Cahn-Hilliard Equation (5.10). For each of these problems, we first

convert the fourth order PDE to a system of second order equations; that is, one

second order PDE and one second order ODE as in (1.2); we also consider the e

60

version of each converted system as in (1.3). Second, we use BACOL42 and BACOL

to solve the problem and plot the solution using MATLAB. Finally, we provide tables

displaying the performance of both BACOL42 and BACOL for different values of

KCOL and tolerance. In addition, for various tolerances and KCOL values, we give

tables showing the L2-norm errors for both BACOL42 and BACOL for the first two

problems, where we know the exact solution. The L2-norm errors are defined as

V NINT +1 '

where uexact(x, t) is the exact solution at time t and uapprox(x, t) is the approximation

solution at time t, and Xi is the ith mesh point. At the end of this chapter we discuss

the results to compare the performances of BACOL42 and BACOL.

61

Note:

In each section, we give a table showing how BACOL42 or BACOL (applied to the

e version of the converted system) performs. In these tables we use the following

symbols.

• 1: BACOL42 or BACOL returns with the DASSL error condition 8: the itera­

tion matrix is numerically singular;

• 2: BACOL42 or BACOL returns with the error message that the code has

remeshed 20 times at t = 0 and failed to start;

• 3: BACOL42 or BACOL returns with the DASSL error condition 7: the cor­

rector failed to converge repeatedly or the stepsize has been reduced to a set

minimun, HMIN;

• / : BACOL42 or BACOL returns and reports that it has solved the problem to

within the requested tolerance;

• —: BACOL42 or BACOL is unable to make a successful start at t = 0 but

does not return with an error message as in 2 above. Rather the code continues

to compute (for many hours) without making any progress. It appears that

DASSL is making slow but sufficient progress that it does not encounter an error

condition; however the computation proceeds very slowly despite not triggering

an error condition. A closer examination of the detailed computations being

performed would have to be undertaken to better understand what is happening

in this case.

62

Also, atol is the absolute tolerance, rtol is the relative tolerance, and computations

were done in double precision.

5.1 Simple Test Problem One

The first test problem, (2.12)), is the simple Fourth order linear PDE discussed in

Section 2.7.1. The exact solution (see Figure 2.4) is

u(x, t) = e~*sinx.

Letting u\{x, t) = u(x, t) and U2(x, t) = (ui)xx(x, t), we convert the above equation

to the following system:

("l)t = -(U2)xx, 0 < X < 7T, t > 0,

0 = (ui)xx — u2, 0 < x < IT, t > 0,

u1(0,t) = u1(ir,t) = 0, t>0,

U2(0,t)=U2(TT,t) = Q, t>0,

Ui(x,0) = sinx, 0 < x < 7r,

U2{x,0) = — sins, 0 < x < IT.

(5.1)

If we let KCOL = 2 and atol = rtol = 10 6, we can obtain the approximate

solution in Figure 5.1 for 0 < x < IT and 0 < t < 1.

63

Figure 5.1: Approximate Solution of Example One from BACOL42

BACOL42 can solve this equation for KCOL in the range from 2 to 10 (the

maximum allowed in BACOL42) and for tolerances from 1CT3 to 10~7. When atol =

rtol = 10~8, the condition number of the Newton iteration matrix becomes too large

(as large as 1022) and BACOL42 reports that the iteration matrix is numerically

singular. Further investigation would be required in order to better understand this

issue. Sharper tolerances lead to meshes with many more subintervals which in turn

leads to larger matrices; it may be the case that the condition numbers of these

matrices grow with the number of subintervals. Table 5.1 displays how BACOL42

works with the different values of KCOL and tolerance for Example One. From

Table 5.2 we can see the relationship between the tolerance and the global error for

BACOL for Example One.

64

Table 5.1: Performance of BACOL42 with different KCOL and tolerance values for
Example One

TOL

1CT4

10"5

10"6

lO"7

10"8

lO"9

1 0 - i o

KCOL

2

/

/

/

/

1

1

1

3

/

/

/

/

1

1

1

4

/

/

/

/

1

1

1

5

/

/

/

/

1

1

1

6

/

/

/

/

1

1

1

7

/

/

/

/

1

1

1

8

/

/

/

/

1

1

1

9

/

/

/

/

1

1

1

10

/

/

/

/

1

1

1

Table 5.2: L2-Error Norms from BACOL42 for Example One

TOL

10"4

i(r5

1CT6

lO"7

KCOL

2

1.56E-04

1.60E-05

8.97E-07

1.43E-07

4

1.58E-04

1.34E-05

1.03E-06

1.55E-07

6

1.64E-04

1.40E-05

3.40E-06

1.23E-07

8

1.57E-04

1.60E-05

1.42E-06

3.55E-07

10

1.57E-04

1.60E-05

1.47E-06

1.83E-07

65

In order to apply the original BACOL, we consider the approximate form of the

system (5.1)

(Ul)t = -(U2)xx, 0 < X < 7T, t>0,

t(u2)t = (ui)xx -u2, 0 < x < ir, t>0,

(5.2)
ui(0,t) = «i(7r,i) = 0, t > 0,

U2{Q,t) = U2{TT,t) = 0, t > 0 ,

«i(x, 0) = sinx, 0 < x < 7r,

U2(x,0) = — sin:r, 0 < x < -n.

We will choose e to have the same value as the tolerance for every case. (It is not

clear how to choose e. It would appear that it should be chosen to be less than or

equal to the tolerance but without knowing the exact relationship between the value

of e and the difference between the solution to the original converted system and the e

approximation to the converted system, it is hard to know how to choose e.) BACOL

can solve (5.2) for KCOL in the range from 2 to 10 and for tolerances from 10~3 to

10~6. Table 5.3 displays how BACOL works with the different values of KCOL and

tolerance for Example One. Table 5.4 shows the relationship between the tolerance

and the global error for BACOL for Example One.

66

Table 5.3: Performance of BACOL with different KCOL and tolerance values for
Example One

TOL

10"4

10"5

10"6

10-7

10"8

10-9

1 0 - i o

KCOL

2

/

/

/

3

/

/

/

4

/

/

/

5

/

/

/

6

/

/

/

7

/

/

/

8

/

/

/

9

/

/

/

10

/

/

/

Table 5.4: L2-Error Norms from BACOL for Example One

TOL

1CT4

1(T5

10"6

KCOL

2

1.79E-04

9.59E-06

3.51E-06

4

1.75E-04

1.27E-05

3.86E-06

6

1.84E-04

1.47E-05

4.43E-06

8

1.84E-04

1.46E-05

2.03E-06

10

1.80E-04

1.40E-05

2.92E-06

67

5.2 Simple Test Prob lem Two

The second example, (2.13), was introduced in Section 2.7.2. When 0 < x < n and

0 < t < 0.6, the exact solution (see Figure 2.5) is

u(x, t) = 0.3(cos(£) + 3) cos x.

Here t is restricted to be less than -n. If this restriction is not met, then the coeffi-

sini U~ cient, — co
s
s'"^3, will be positive (Recall that the PDE has the form ut = — (^fcostj ^xxxx)

Then the PDE will become unstable and thus difficult for any numerical software

package to solve.

We convert equation (2.13) into the following system:

Mt = -^aMxx, 0<X<TT, t>Q,

0 = (ui)xx - (u2), 0 < x < n, t>0,

ui(x,0) = 1.2cos(x), 0 < x < IT,

U2{x,0) = —1.2cos(x), 0 < x < IT,

ui(0, t) = U2(TT, t) = 0.3(cos(t) + 3), t>0,

ui(7T, t) = u2(0, t) = -0.3(cos(t) + 3), t > 0.

(5.3)

When KCOL = 2 and atol = rtol = 10 6, the approximate solution (0 < x < tr

and 0 < t < 0.6) is plotted in Figure 5.2.

68

1.5

1

0.5

0

-0.5

-1

-1.5
0

Figure 5.2: Approximate Solution of Example Two from BACOL42

Here we also provide Table 5.5 that displays how BACOL42 works with the dif­

ferent values of KCOL and tolerance for Example Two. We can see BACOL42 can

solve this equation for KCOL in the range from 2 to 10 and for tolerances from 10~4

to 10~9 (in some cases). From Table 5.6 we can see the relationship between the

tolerance and the global error for BACOL42 for Example Two. ("NA" means that

BACOL42 reports an error message and no solution is available.)

69

Table 5.5: Performance of BACOL42 with different KCOL and tolerance values for
Example Two

TOL

10~5

10"6

10-7

10"8

10-9

1 0 - i o

KCOL

2

/

/

/

/

1

1

3

/

/

/

/

/

1

4

/

/

/

/

/

1

5

/

/

/

/

/

1

6

/

/

/

/

/

1

7

/

/

/

/

3

1

8

/

/

/

/

3

3

9

/

/

/

/

3

3

10

/

/

/

/

3

1

Table 5.6: L2-Error Norms from BACOL42 for Example Two

TOL

10"5

i(r6

10-7

10"8

10-9

KCOL

2

1.98E-06

8.53E-07

2.29E-07

4.82E-08

NA

4

2.14E-06

7.83E-07

1.96E-07

4.82E-08

1.15E-08

6

1.38E-06

7.28E-07

1.80E-07

4.08E-08

9.63E-09

8

1.43E-06

7.41E-07

2.06E-07

4.68E-08

NA

10

2.33E-06

8.55E-07

2.12E-07

4.95E-08

NA

In order to apply BACOL, we consider the following approximate form of the

system (5.3)

Mt = s'mt
cos t+3 Mxx, 0 < X < IT, t > 0,

(5.4)

e(«2)t = (Ul)xx - (t i2) , 0 < X < 7T, t > 0,

Ui(x,0) = 1.2cos(x), 0 < x < ir,

U2(x,0) = —1.2cos(x), 0 < x < -K,

ux(0, t) = U2(-K, t) = 0.3(cos(£) + 3), t > 0,

ui(ir, t) = u2(0, t) = -0.3(cos(i) + 3), t > 0.

We let e be the same value as the tolerance for every case. BACOL can solve (5.4)

for KCOL in the range from 2 to 10 and for tolerances from 10~3 to 10"9. Table 5.7

displays how BACOL works with the different values of KCOL and tolerance for

Example Two. Table 5.8 displays the relationship between the tolerance and the

global error for BACOL for Example Two.

71

Table 5.7: Performance of BACOL with different KCOL and tolerance values for
Example Two

TOL

1CT5

icr6

10-7

lO"8

10-9

1 0 - i o

KCOL

2

/

/

/

/

1

1

3

/

/

/

/

/

4

/

/

/

/

/

5

/

/

/

/

/

6

/

/

/

/

/

7

/

/

/

/

/

8

/

/

/

/

/

9

/

/

/

/

/

10

/

/

/

/

/

Table 5.8: L2-Error Norms from BACOL for Example Two

TOL

10~5

1CT6

io-7

io-8

10~9

KCOL

2

4.21E-05

2.03E-05

5.26E-06

1.33E-06

NA

4

4.90E-05

1.85E-05

4.81E-06

1.18E-06

2.96E-07

6

3.18E-05

1.71E-05

4.23E-06

9.90E-07

2.15E-07

8

3.13E-05

1.74E-05

4.85E-06

1.10E-06

2.31E-07

10

5.38E-05

2.01E-05

4.98E-06

1.06E-06

2.41E-07

5.3 Thin Film Equation

This problem [3] comes from modeling thin film liquids. We discussed different

types of thin-film equations in Section 2.3. The equation we selected, (2.6), has the

following form,

ut = -(u2uxxx)x, - 1 < x < 1, t > 0, (5.5)

with the initial condition

u{x, 0) = 0.8 - COS(TTX) + 0.25 COS(2TT:T), - 1 < x < 1,

and the boundary conditions

Mx(- l , i) = u I (l , t) = 0, t > 0 ,

uxxx(-l, t) = uxxx(l,t) = 0, t > 0.

The exact solution is not known for this equation. However, from [33] we know that

when t approaches 0.0007302 the solution ceases to exist.

73

We convert Equation (5.5) to the following system:

(Ul)t = -{(Ui)*(u2)x)x, - 1 < X < 1 , t > 0 ,

0=(ul)xx-U2, - 1 < X < 1, t > 0,

(Ul)x(- l ,*) = (Ul)x(M) = 0. * > 0 ,

(« 2) x (- l , «) = (W2)x(l ,«)=0, « > 0 ,

ui(x,0) = 0.8 - COS(TTX) + 0.25COS(2TTX), - 1 < x < 1,

U2(x, 0) = IT2 C0S(7TX) — 7T2 COs(27Tx), —1 < X < 1.

(5.6)

With XCOL = 4 and atoi = rtol = 10"7, BACOL42 was used to solve the

equation. The approximate solution is plotted in Figure 5.3 when 0 < t < 0.00073

and 0 < x < 1.

Figure 5.3: Approximate Solution of Example Three from BACOL42

Table 5.9 displays how BACOL42 works with the different values of KCOL and

tolerance for Example Three.

74

Table 5.9: Performance of BACOL42 with different KCOL and tolerance values for
Example Three

TOL

10"5

10"6

lO"7

10"8

10"9

1 0 - i o

KCOL

2

/

/

/

1

3

3

3

/

/

/

/

3

3

4

/

/

/

/

/

3

5

/

/

/

/

/

3

6

/

/

/

/

/

/

7

/

/

/

/

/

/

8

/

/

/

/

/

/

9

/

/

/

/

/

/

10

/

/

/

/

/

/

Application of BACOL requires the e version of (5.6)

(Ui)t = -{[Ui)2{u2)x)x, -\<x<\, t>0,

e(u2)t = Oi)xx - u2, - 1 < x < 1, t > 0,

(u1)x(-l,t) = (ul)x(l,t) = 0, t>0,

(u2)x{~l,t) = (u2)x{l,t) = 0, t>0,

Ui(x,0) = 0.8 — cos(7rx) + 0.25cos(27rx), -Kx < 1,

U2(:C, 0) = 7T2COs(7rx) — 7T2COs(27Tx), — 1 < X < 1.

(5.7)

75

As before, we choose e = TOL. Table 5.10 displays how BACOL works with the

different values of KCOL and tolerance for Example Three. It is interesting that

BACOL can solve this problem with KCOL from 2 to 10 and tolerance from 10 - 5 to

lO"10.

Table 5.10: Performance of BACOL with different KCOL and tolerance values for
Example Three

TOL

10"5

10~6

io-7

lO"8

IO"9

1 0 - i o

KCOL

2

/

/

/

/

/

/

3

/

/

/

/

/

/

4

/

/

/

/

/

/

5

/

/

/

/

/

/

6

/

/

/

/

/

/

7

/

/

/

/

/

/

8

/

/

/

/

/

/

9

/

/

/

/

/

/

10

/

/

/

/

/

/

5.4 Kuramoto-Sivashinsky Equation

In section 2.3.1, we introduced the Kuramoto-Sivashinsky Equation (2.7). Recall this

equation has the form:

Ut = ~UUX - Uxx - Uxxxx, X € [0, 327T.]

76

The initial condition is

«(s,0) = c o s (^) (l + s i n (^)) .

The boundary conditions are

u(0,t) = u{32-K,t) = l, t>0,

uxx{0, t) = UXX(32TT, t) = -jp, t>0.

We convert this fourth order problem to the following system:

(ui)t = - u i O i) x - {ui)xx - {u2)xx, 0 < x < 327r, t > 0,

0 = (Ui)xx — U2, 0 < X < 327T, t > 0,

u1(0,t) = (ul)(32Tr,t) = l, t>0,
<

u2(0,t) = (u2)(32ir,t) = - ^ , t>0,

t*i(x, 0) = cos(^)(l + sin(§)), 0 < x < 32vr,

u2(x, 0) = - ^ (c o s (^) + 2sin(f)), 0 < x < 32TT.

Using KCOL = 2 and atol = rtol = 10"6, when 0 < t < 1 and 0 < x < 32

approximate solution is plotted in Figure 5.4.

77

Figure 5.4: Approximate Solution of Example Four from BACOL42

We also considered different KCOL values (from 2 to 10) and tolerance values

(from 10"5 to 10"10). Table 5.11 displays how BACOL42 works with the different

values of KCOL and tolerance for Example Four.

Table 5.11: Performance of BACOL42 with different KCOL and tolerance values for
Example Four

TOL

icr5

10"6

lO"7

lO"8

lO"9

1 0 - i o

KCOL

2

/

/

/

1

1

1

3

/

/

/

1

1

1

4

/

/

/

1

1

1

5

/

/

/

1

1

1

6

/

/

/

1

1

1

7

/

/

/

1

1

1

8

/

/

/

1

1

1

9

/

/

/

1

1

1

10

/

/

-

1

1

1

78

We then applied BACOL to the e version of (5.8)

(5.9)

(iti)t = -ui{ul)x - (ui)xx - {u2)xx, 0 < x < 327T, t > 0,

e(u2)t = {u\)xx -u2, 0 < x < 327T. t > 0,

Ml(0, t) = (Ul)(327T, t) = 1, t > 0,

U2(0,t) = (w2)(327r,t) = - i ^ , ^ > 0 ,

iti(x, 0) = cos(^)(l + sin(^)) , 0 < x < 32TT,

u2(x,0) = - I i T (cos (^) + 2sin(|))) 0 < X < 3 2 T T .

When e = TOL, Table 5.12 displays how BACOL works with the different values

of KCOL and tolerance for Example Four.

Table 5.12: Performance of BACOL with different KCOL and tolerance values for
Example Four

TOL

10"5

10"6

lO"7

10"8

10"9

1 0 - i o

KCOL

2

/

-

1

1

1

3

/

1

1

1

1

4

/

1

1

1

1

5

/

1

1

1

1

6

/

1

1

1

1

7

/

1

1

1

1

8

/

1

1

1

1

9

/

1

1

1

1

10

/

1

1

1

1

79

5.5 Cahn-Hilliard Equation

The fifth problem [33] is the Cahn-Hilliard equation (2.6); we considered it in Sec­

tion 2.6:

ut = -(0.001uxx + u - u3)xx, - 1 < x < 1, t > 0, (5.10)

with the initial condition

u(x, 0) = 0.1 COS(2TTX) + 0.02COS(IOTTX), - 1 < x < 1,

and the boundary conditions

ux(-l,t) = uxxx{-l,t) = 0, t > 0,

Ux(l,i) = l ia^l,*) = 0, t > 0.

80

The converted system is:

(iti)t = -lCr3(ii2)xx - {ui)xx + 6(«i)2ui + 3(«i)2(ui)a;a:, - 1 < x < 1, i > 0,

0 = (^ l) x x - « 2 , - 1 < X < 1, i > 0,

Mx(-i,t) = Mx(i,t) = o, <>o,

(«2)«(-M) = W»(M) = o, *>o,

ui(x,0) = 0.1cos(27rx) + 0.02cos(107rx), - 1 < x < 1,

u2(a;, 0) = -0.47T2 cos(27r.x) - 27r2cos(107rx), -1 < x < 1.

(5.11)

The approximate solution (0 < £ < 2.5 and — 1 < x < 1) is plotted in Figure 5.5

when KCOL = 2 and atol = rtol = 10~6.

Figure 5.5: Approximate Solution of Example Five from BACOL42

In Figure 5.6, we can see the approximate solutions at t = 0.05,0.1,0.3,0.5.

Table 5.13 displays how BACOL42 works with the different values of KCOL (from

2 to 10) and tolerance (from 10~5 to 10^10) for Example Five.

81

Figure 5.6: Approximate Solutions at t = 0.05(top left), 0.1 (top right), 0.3(bottom
left), 0.5(bottom right) from BACOL42 for Example Five

Table 5.13: Performance of BACOL42 with different KCOL and tolerance values for
Example Five

TOL

1CT5

10"6

io-7

10"8

i(r9

1 0 - i o

KCOL

2

/

/

2

1

1

1

3

/

/

/

1

1

1

4

/

/

/

/

1

1

5

/

/

/

/

1

1

6

/

/

/

/

1

1

7

/

/

/

/

1

1

8

/

/

/

/

1

1

9

/

/

/

/

1

1

10

/

/

/

/

1

1

82

The e version of (5.11) is

(ui) t = - 1 0 3(u2)xx - (ui)xx + 6(ui)2ui + 3(«i)2(ui)x:c, - 1 < x < 1, t > 0,

e(«2)t = ('Wl)xx - ^ 2 , -1 < x < 1, £ > 0,

(u i)x (-M) = (ui)*(M) = 0. t > 0 ,

M x (- l , t) = («2)i(l,t) = 0, t>0,

Ul(x, 0) = 0.1 COS(2TTX) + 0.02 COS(IOTTX), -1 < x < 1,

•u2(z, 0) = -0.47T2 cos(27rx) - 2ir2 cos(107rx), - 1 < x < 1.

(5.12)

Table 5.14 displays how BACOL works with the different values of KCOL (from

2 to 10) and tolerance (from 10 - 5 to 10~10) for Example Five.

Table 5.14: Performance of BACOL with different KCOL and tolerance values for
Example Five

TOL

10"5

io-6

lO"7

10"8

10"9

1 0 - i o

KCOL

2

/

/

1

3

3

/

/

/

-

4

/

/

/

/

5

/

/

1

-

6

/

1

1

-

7

/

1

1

/

8

/

1

/

/

9

/

1

/

/

10

/

1

/

/

83

5.6 Conclusion

From Table 5.1, Table 5.5, Table 5.9, Table 5.11, and Table 5.13, we can see that

BACOL42 can solve the problems with tolerances greater than or equal to 10~7, and

for some problems, the tolerance can be smaller than 10~7. The range of the value of

KCOL is from 2 to 10. From Table 5.3, 5.7, 5.10, 5.12, 5.14, we can conclude that

BACOL can solve these five examples with tolerances greater than or equal to 10~5

with the range of KCOL from 2 to 10.

In Table 5.2 and Table 5.4, almost all the values of the global errors are a little

greater than tolerance, but they are the same order of magnitude. The errors in

the first two rows of Table 5.6 corresponding to TOL = 10~5 and TOL = 10~6

are less than the tolerance. When the tolerance is greater than TOL = 10~6, the

global errors become a little greater than the tolerances but is the same order of

magnitude. All the error values in Table 5.8 are greater than the tolerances. We

can conclude that BACOL42 is comparatively better than BACOL applied to the e

version of the problem. (We acknowledge that the appropriate choice of e requires

further investigation.)

Comparing Table 5.1, 5.5, 5.9, 5.11, 5.13 with Table 5.3, 5.7, 5.10, 5.12, 5.14,

generally we can see that BACOL42 can solve problems to higher accuracy than

BACOL can. For some cases, BACOL can solve the problem for a greater range of

KCOL values. These conclusions depend on how the value of e affects the solution

of the e form of the converted system. We acknowledge that further analysis of this

question is required before we can make more concrete comparisons between these

84

two approaches.

For each test problem, we provided a uniform initial mesh with NINT = 10.

BACOL42 and BACOL then attempt to adapt the number of subintervals to meet

the requested tolerances using as few subintervals as possible. The values of NINT

vary for different values of KCOL and tolerance. The range of NINT values we

have seen varies from less than 10 to several hundred. Usually when the requested

tolerance is smaller, NINT will be relatively large. And NINT values for larger

KCOL values (greater than 5) are usually smaller than for smaller KCOL values.

Also the difficulty of the problem can lead to the larger NINT values.

For example, the following NINT values were used for the final meshes (atol =

rtol = 10-6, KCOL = 6).

Problem Number

Final NINT

1

10

2

10

3

12

4

16

5

84

85

Chapte r 6

Numerical Solution of Four th

Order P D E s with pdepe and

MOVCOL4

The codes pdepe and M0VC0L4 do not have spatial error control and thus cannot be

compared directly with codes that do provide spatial error control, such as BACOL42.

A fundamental issue with pdepe and MOVCOL4 is that it is essentially impossible to

know how many mesh points should be provided in order to obtain a desired accuracy.

In the case of pdepe it is also impossible to know where the mesh points should be

located; in fact it is likely that the locations of the mesh points would need to change

with time, and pdepe is incapable of doing this, so in general one would need to

provide an initial mesh that is as fine as it will need to be for the entire time interval.

A detailed comparison of BACOL42 with pdepe or MOVCOL4 is therefore beyond

86

the scope of this thesis.

In this chapter, we provide numerical results for pdepe and MOVCOL4 to ex­

plore their use in the numerical solution of some fourth order PDEs. For pdepe and

MOVCOL4, we choose the initial uniform mesh to have at least as many points as

BACOL42 required to solve the same problem. After meeting this constraint, the

choice of NINT for pdepe and MOVCOL4 was made some what arbitrarily. (Since

neither code performs spatial error control, the determinination of an optimal value

of mesh points is actually somewhat difficult and such an investigation is beyond

the scope of the thesis.) We will expect to see only approximate agreement with

the error controlled results from BACOL42. The primary point of this chapter is to

demonstrate the use of these other packages on some of the standard test problems.

We recall that MOVCOL4 can be applied directly to fourth order PDEs but that

pdepe is designed to handle coupled systems of second order time-dependent PDEs

and elliptic problems in 1-dimension. The converted system form (1.2) that we have

employed for BACOL42 can also be described in this way. That is the equation

(ui)xx — U2 = 0 that we have called an ODE in space can also be called a ID elliptic

problem.

87

6.1 Example One

In this section, we apply pdepe and MOVCOL4 to Equation (2.12) discussed in Sec­

tion 2.7.1. Recall that the PDE has the form

l^t ^XXXX'

• pdepe

The converted system form (5.1) we used for BACOL42 is the form that must be

provided to pdepe. We chose the number of initial mesh points to be 21; when

atol = rtol = 10"6, 0 < x < ir and 0 < t < 1, the approximate solution is plotted in

Figure 6.1.

Figure 6.1: Approximate Solution of Example One from pdepe

• MOVCOL4

MOVCOL4 can solve equation (2.12) directly with 21 mesh points and the ap­

proximate solution is plotted in Figure 6.2 when 0 < x < 7r, 0 < £ < 1, and

88

atol = rtol = 10"6.

Figure 6.2: Approximate Solution of Example One from MOVCOL4

6.2 Example Two

This example (see Section 2.7.2) has the form

ut

sint
3 + cos t ur

pdepe

We must use the converted system (5.3) in order to use the solver pdepe. When

atol = rtol = 10~6, 0 < x < n and 0 < t < 0.6, 51 mesh points are employed to solve

the problem. The approximate solution is plotted as Figure 6.3.

89

Figure 6.3: Approximate Solution of Example Two from pdepe

• MOVCOL4

With atol = rtol = 10 - 6 , we applied MOVCOL4 using 10 mesh points and the

approximate solution (0 < x < ir and 0 < t < 0.6) obtained is plotted in Figure 6.4.

Figure 6.4: Approximate Solution of Example Two from MOVCOL4

90

6.3 Example Three

The third problem was introduced in Section 5.3. The equation has the following

form,

Ut = —{u^uxxx)x.

• pdepe

The converted system of (5.5) is required in order to use the solver pdepe. When

atol = rtol = 10~6, — 1 < x < 1, and 0 < t < 0.0007, the approximate solution

obtained is plotted in Figure 6.5. 101 mesh points were used.

Figure 6.5: Approximate Solution of Example Three from pdepe

91

• M0VC0L4

We have atol and rtol both equal to 10~6. We use the sample driver program provided

with M0VC0L4 to solve the PDE starting with 257 uniformly spaced mesh points

(This number of the mesh points is set in the driver program provided by the authors).

The approximate solution we obtain is plotted in Figure 6.6 when — 1 < x < 1 and

0 < t < 0.0007.

Figure 6.6: Approximate Solution of Example Three from MOVCOL4

6.4 Example Four

This example (see Section 5.4) has the form

t — x xx xxxx'

92

• pdepe

We rewrite the equation in the converted system form (5.8) in order to use the solver

pdepe. When atol = rtol = 10~6, 0 < x < 32TT and 0 < t < 1, 51 mesh points are

employed to solve the problem. The approximate solution is plotted in Figure 6.7.

. : • " > *

i /#OrV

^-.V.-O-C."^^

Figure 6.7: Approximate Solution of Example Four from pdepe

• MOVCOL4

With atol = rtol = 10 6, we applied 51 mesh points to MOVCOL4, the approximate

solution (0 < x < 32TT and 0 < t < 1) obtained is plotted in Figure 6.8.

93

Figure 6.8: Approximate Solution of Example Four from MOVCOL4

6.5 Example Five

The fourth example which was described in Section 5.5 has the form

ut = -(O.OOlu^ + u- v?)xx.

When we tried to apply pdepe to solve this problem with several different choices for

the initial number of (uniformly spaced) mesh points, such as 21, 51, 101 and 501, an

error message was returned: "Warning: Failure at t=8.324973e-003. Unable to meet

integration tolerances without reducing the step size below the smallest value allowed

. MOVCOL4

For this problem, a uniform initial mesh of 50 subintervals was employed; the nu­

merical solution remains almost the same when the number of the mesh points is

94

increased from 21 to 101 [33]; the absolute tolerance and the relative tolerance both

are 10~6; the approximate solution is plotted in Figure 6.9 for t = 1.

Figure 6.9: Approximate Solution of Example Five from MOVCOL4

In Figure 6.10, we can see the approximate solutions at t = 0.05,0.1,0.3,0.5 more

clearly.

95

Figure 6.10: Approximate Solutions at t = 0.05 (top left), 0.1 (top right), 0.3 (bottom
left), 0.5 (bottom right) from MOVCOL4 of Example Five

96

6.6 Summary

In this chapter, we have applied both pdepe and M0VC0L4 to solve five problems

which were already solved by BACOL42 in Chapter 5. From Figure 6.1, Figure 6.2,

and Figure 5.1, we can see that all three solutions are in close agreement. Similar

comments hold for the second example as seen in Figure 6.3, Figure 6.4, and Fig­

ure 5.2, for the third example as seen in Figure 6.5, Figure 6.6, and Figure 5.3, and

for the fourth example as seen in Figure 6.7, Figure 6.8 and Figure 5.4. Although

pdepe cannot solve (5.10), Figure 6.9, 6.10, and Figure 5.5, Figure 5.6 of the fifth

example show that MOVCOL4 and BACOL42 are in close agreement.

97

Chapter 7

Conclusions and Future Work

7.1 Conclusions

The thesis makes a number of contributions:

• We have provided a review of applications in which fourth order PDEs arise.

• We have reviewed standard algorithms for solving PDEs and surveyed a number

of current popular PDE solvers.

• We have explored an approach that involves converting the fourth order PDE

to a coupled system which contains one second order PDE and one second or­

der ODE (in space). Two different treatments are discussed in the thesis: One

approach involves the solution, using standard software (BACOL), of an approx­

imate form of the converted system (the e-version of the problem). The second

approach treats the converted system directly and involved the development of

BACOL42, an extension of BACOL that can solve fourth order parabolic PDEs

98

with adaptive error control. This approach also represents a first attempt at

the development of a version of BACOL that can handle coupled PDE/ODE

systems. We have considered five different test problems. The numerical results

illustrate that BACOL42 can solve all test problems to tolerances greater than

or equal to 10~7, and the global error results show that BACOL42 does control

the spatial error well.

• This thesis also provides a brief investigation of the application of four software

packages (using three different approaches: the direct treatment of the fourth

order problem, the direct treatment of the converted system, and the treatment

of the approximate form of the converted system - the e version of the converted

system) for the numerical solution of several fourth order PDE test problems.

7.2 Future work

Three possible projects for future study are as follows:

• In some of the numerical results, we observed that BACOL42 can only solve

problems to within a tolerance of 10~7. We have not been able to get BACOL42

to work with very sharp tolerances. Despite the scaling we have introduced, it

appears that there is still a conditioning issue. Future work involves further

investigation of this issue.

• The current version of BACOL42 can only handle one fourth order parabolic

PDE. However, some PDE models involve systems of fourth order PDEs or

99

fourth order PDEs coupled with second order PDEs. In addition, we also as­

sume that there are two left boundary conditions and two right boundary con­

ditions. When the number of boundary conditions is not the same at each end,

BACOL42 cannot handle the problem. Therefore another example of future

work is to extend the software to handle systems of fourth order PDEs without

this restriction on the boundary conditions.

• Instead of solving the converted system, it would be interesting to see if one

could develop a version of BACOL that can handle fourth order PDEs directly.

The difficulty will be how to handle uxxx and uxxxx. The continuity of the

B-spline representation of the approximate solution will have to increase from

C2 to C4. This will change how the B-spline basis represents the approximate

solution and it may impact on the ABD structure of the Newton matrices that

arise.

• We use the approximate solution of the e version of the converted system for

comparison purposes, but we do not have a result relating the solution of the

e version of the converted system and to that of the original converted system.

Thus another area for further investigation might be conduct an analysis to

establish the relationship, as a function of e, between

(ui)t = f(x, t, uu (ui)x, {ui)xx, (u2)x, {u2)xx),

I 0 = {ui)xx ~u2,

100

and

(Ul)t = f(t, X, Ui, (Ui)x, (Ui)xx, (U2)x, (U2)xx),

<

e(u2)t = (ui)xx - u2,

including any possible boundary layers.

101

Appendix
In the appendix, we will give the detailed information about the modifications in

the three subroutines: CALJAC, CALRES, and DDASLV.

l. CALJAC

The subroutine CALJAC computes the Jacobian matrix for the Newton iter­

ation at the current time; that is, it computes PD= [CjA — -§=), the matrix

appearing in the left hand side of (4.3).

The first modification in CALJAC involves scaling the algebraic equations aris­

ing from collocating the ODE part of the converted system (1.2). The following

code segment computes one npde x npde block of PD, corresponding to the

collocation equations in one subinterval.

The original code which computes the values of — -g= for one subinterval is

do 40 m = 1, npde

do 30 n = 1, npde

c nn is the pointer to the (n, m) element of the

c npde by npde submatrix.

nn = kk + (m-l)*npde*kcol + n

c mn is the pointer to the (n, m) element of dfdu.

mn = idfdu - l + (m - l) * npde + n

c mn2 is the pointer to the (n, m) element of dfdux.

mn2 = mn + npde * npde

c mn3 is the pointer to the (n, m) element of dfduxx.

mn3 = mn2 + npde * npde

102

c now set up the derivative of F with respect to

c y at nn.

pd(nn) = - work(mn) * fbas i s (jk)
& - work(mn2) * fbas is (jk2)
& - work(mn3) * fbas is (jk3)

30 continue
40 continue

kk + 1 is the pointer to the first element of one of the npde by npde subma-

trixes of PD. idfdu is a pointer to the work array where the ^ , ^ - , and -^f-

values are stored, f basis is an array where values of the B-spline functions

(stored beginning at fbasis(jk)) and their first derivatives (stored beginning

at fbasis(jk2)) and second derivatives (stored beginning at fbasis(jk3)) are

stored.

In the new code, we need to perform the scaling indicated on the left hand side

of (4.4). We are assuming npde = 2 and will treat the two inner loop iterates

separately.

do 40 m = 1, npde

c no need to use the inner loop, treat n=l and n=2

c separately

c update of PD stays the same for

n=l

c nn is the pointer to the (n, m) element of the

c npde by npde submatrix.

nn = kk + (m-l)*npde*kcol + n

c mn is the pointer to the (n, m) element of dfdu.

mn = idfdu - 1 + (m - 1) * npde + n

103

c mn2 is the pointer to the (n, m) element of dfdux.

mn2 = mn + npde * npde

c mn3 is the pointer to the (n, m) element of dfduxx.

mn3 = mn2 + npde * npde

c now set up the derivative of F with respect to

c y at nn.

pd(nn) = - work(mn) * fbasis(jk)

& - work(mn2) * fbasis(jk2)

& - work(mn3) * fbasis(jk3)

c scale the left hand side by cj for

n=2

c nn is the pointer to the (n, m) element of the

c npde by npde submatrix.

nn = kk + (m-l)*npde*kcol + n

c mn is the pointer to the (n, m) element of dfdu.

mn = idfdu - 1 + (m - 1) * npde + n

c mn2 i s the po in te r to the (n, m) element of dfdux.
mn2 = mn + npde * npde

c mn3 i s the poin ter to the (n, m) element of dfduxx.
mn3 = mn2 + npde * npde

c now sca le the de r iva t ive of F with respect to
c y by cj at nn.

pd(nn) = - cj*(work(mn) * fbas i s (jk)
& + work(mn2) * fbas is (jk2)
& + work(mn3) * fbas i s (jk3))

40 continue

The second modification of CALJAC is associated with the presence of zeros

in the subblocks of the A matrix, corresponding to the ODE part of (1.2). We

skip even rows in the update of PD.

The original code which adds CjA to — -g= is

104

call daxpy(nint*nsizbk, cj, abdblk, 1, pd(ipdblk), 1)

In the new CALJAC we must not add CjA to — -g= for the even rows of A. The

modification is

c skip every second row, because we must not add on cj*A

call daxpy(nint*nsizbk/2, cj, abdblk, 2, pd(ipdblk), 2)

Note here that 2 is the increment (the last argument to DAXPY), so every

second row in the update of PD is skipped.

2. CALRES

The subroutine CALRES generates the residual

G(t,y(t),i/(t)) = Ay[{t) - F(t,y(t)) = 0,

at the current time, t. As indicated earlier, the general form of the Newton

system is:

cA_?f)Ay(m)
3 dy J -n+1

A{l^«lt +/?)-£('»+•,«)

In CALRES the residual is stored in the array delta and CALRES must com­

pute the right hand side of the above equation. The original code to calculate

delta is

105

do 70 i = 1, nint

do 60 j = 1, kcol + nconti

do 50 k = 1, kcol

kk = l+(i-l)*npde*npde*kcol*(kcol+nconti)

& +(j-1)*npde*npde*kcol+(k-1)*npde

do 40 i = 1, npde

ii = npde+(i-l)*npde*kcol+(k-l)*npde+m

mm = (i-l)*kcol*npde+(j-l)*npde+m

delta(ii) = delta(ii) + abdblk(kk) * yprime(mm)

40 continue

50 continue

60 continue

70 continue

Note that before the calculation, delta contains evaluations of the function / at

the collocation points; after the calculation, delta contains the residual of the

DAE system; i.e., the right hand side of the Newton system given above. The

array abdblk stores the elements of the nint blocks in the middle of the ABD

collocation matrix, yprime is the derivative of y with respect to time at the

current time, y is the vector of B-spline coefficients at the current time, and

nconti = 2 is the number of continuity conditions at each internal mesh point.

Because every second row of the middle part of matrix A is zero, we need to

skip those lines when updating the residual. In BACOL42, we only consider

one single fourth order PDE (npde=2), so we change the loop

do 40 m = 1, npde

to

do 40 i = 1, 1

so that only the first element in each subvector of delta is updated.

106

3. DDASLV

The subroutine DDASLV is part of the DDASSL package; it handles the linear

systems arising in the Newton iteration performed by DDASSL. We perform

the scaling on the left hand size of Equation (4.4) in CALJAC. In DDASLV we

need to scale the right hand side of equation (4.4) by Cj, i.e., scale the residual

corresponding to the ODE in order to improve the conditioning. The compo­

nents of the residual corresponding to the boundary conditions were already

scaled in the original BACOL.

This is the original code

c kcol (numerical solution)

c scale the right hand side of the Newton system corresponding

c to the left boundary conditions

call dscaKnpde, c j , delta, 1)

c scale the right hand side of the Newton system corresponding

c to the right boundary conditions

c a l l dscaKnpde, cj , del ta(neql-npde+l) , 1)

c solving the linear system

call crslve(wm(npd), npde, 2*npde, wm(npdbkl), kcol*npde,

& (kcol+nconti)*npde, nint, wm(npdbtl), npde,

& iwm(lipvt), delta, 0)

c

c kcol+1 (compute the e r ro r est imate)

c a l l dscaKnpde, cj , de l t a (neq l+ l) , 1)
c a l l dscaKnpde, cj , delta(neq-npde+1), 1)

c a l l crslve(wm(npdtp2), npde, 2*npde, wm(npdbk2),
& (kcol+1)*npde, (kcol+l+nconti)*npde, n i n t ,
& wm(npdbt2), npde, iwm(lipvt2), d e l t a (n e q l + l) , 0)

107

and after introducing scaling of the ODE collocation equations, we get

c kcol (numerical solution)

c scale the right hand side of the Newton system corresponding

c to the left boundary conditions

call dscal(npde, cj, delta, 1)

c scale the right hand side of the Newton system corresponding

c to the second equation

call dscal(npde*kcol*nint/2, cj, delta(npde+2), 2)

call dscal(npde, cj, delta(neql-npde+l), 1)

c solving the linear system

call crslve(wm(npd), npde, 2*npde, wm(npdbkl), kcol*npde,

& (kcol+nconti)*npde, nint, wm(npdbtl), npde,

& iwm(lipvt), delta, 0)

c

c kcol+1 (compute the error estimate)

call dscal(npde, cj, delta(neql+l), 1)

c scale the right hand side of the Newton system corresponding

c to the second equation

call dscal(npde*(kcol+1)*nint/2, cj, delta(neql+4), 2)

call dscal(npde, cj, delta(neq-npde+l), 1)

call crslve(wm(npdtp2), npde, 2*npde, wm(npdbk2),

& (kcol+1)*npde, (kcol+l+nconti)*npde, nint,

& wm(npdbt2), npde, iwm(lipvt2), delta(neql+l), 0)

Note that subroutine dscal scales delta by a constant cj. The last argument is

the increment; it is 2 because we apply the scaling only to the even components

of delta. The first and the last calls to dscal in both kcol case and kcol + 1 case

represent scaling of boundary conditions, and are unchanged.

108

Bibliography

[1] A. Kassam, L. N.Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J.

Sci. Comput. 26 (2005), pp. 1214-1233

[2] E. Beretta, M. Bertsch, and R. Dal Passo, Nonnegative solutions of a fourth-

order nonlinear degenerate parabolic equation, Arch. Rat. Mech. Anal. 129 (1995),

175-200

[3] A. L. Bertozzi, The mathematics of moving contact lines in thin liquid films,

Notices Amer. Math. Soc. 45 (1998), 689-697

[4] A. L. Bertozzi and J. B. Greer, Low-curvature image simpliGers: global regularity

of smooth solutions and laplacian limiting schemes, Comm. Pure Appl. Math. 57

(2004) 764-790

[5] C. de Boor, A Practical Guide to Splines, Springer-Verlag, New York (1978)

[6] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. interfacial

free energy, J. Chem. Phys. 28 (1958), 258-267

109

[7] G. Carrero, M. J. Hendzel and G. de Vries, Modelling the compartmentalization

of splicing factors, J. Theor. Biol. 239 (2006), 298-312

[8] W. Cheney and D. Kincaid, Numerical Mathematics and Computing (Fifth Edi­

tion), Brooks/Cole, Pacific Grove, CA, (2004)

[9] P. Constantin, T. F. Dupont, R. E. Goldstein, L. P. Kadanoff, M. J. Shelley, and

S. Zhou, Droplet breakup in a model of the Hele-Shaw cell, Phys. Rev. E 47 (1993),

4169-4181

[10] P. Coullet, C. Elphick, and D. Repaux, Nature of spatial chaos, Phys. Rev. Lett.

58 (1987), 431-434

[11] G. T. Dee and W. van Saarloos, Bistable systems with propagating fronts leading

to pattern formation, Phys. Rev. Lett. 60 (1988), 2641-2644

[12] P. Degond, F. Mehats, and C. Ringhofer, Quantum energy-transport and drift-

diffusion models, J. Stat. Phys. 118 (2005), 625-665

[13] J.C. Diaz, G. Fairweather and P. Keast, FORTRAN packages for solving cer­

tain almost block diagonal linear systems by modified alternate row and column

elimination, ACM Trans. Math. Softw. 9 (1983), 358-375

[14] A. Edena and V. K. Kalantarov, The convective Cahn-Hilliard equation, Appl.

Math. Lett. 20 (2007), 455-461

[15] M. L. Frankel, On the equation of a curved flame frone, Physica D 30 (1988),

28-42

110

[16] M. L. Frankel, On the nonlinear evolution of a solid-liquid interface, Phys. Lett.

A 128 (1988), 57-60

[17] C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (Sixth Edition),

Addision-Wesley, New York (1999)

[18] M. P. Gualdani, Quantum models for semiconductors and nonlinear diffusion

equations of fourth order, Proceedings of the MSRJ Workshop, Women in Mathe­

matics (2006), 143-148

[19] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and

Differential-Algebraic Problems, Berlin, Heidelberg, New York, Tokyo, Springer-

Verlag (1991), 550-555, http : //www.unige.ch/ hairer /prog /'stif//radaub.f

[20] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and

Differential-Algebraic Problems, Springer-Verlag, New York (1991)

[21] W. Huang and R. D. Russell, A moving collocation method for solving time

dependent partial differential equations, Appl. Num. Math. 20 (1996), 101-116

[22] A. Jiingel and S. Tang, Global nonnegative solutions of a nonlinear fourth-order

parabolic equation for quantum systems, SIAM J. Math. Anal. 32 (2000), 760-777

[23] P. Keast and P. H. Muir, Algorithm 688 EPDCOL: A more efficient PDECOL

code, ACM Trans. Math. Softw. 17 (1991), 153-166

[24] Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in

dissipative media far from equilibrium, Progr. Theoret. Phys. 55 (1976), 356-369

111

http://www.unige.ch/

[25] J. D. Lambert, Numerical Methods for Ordinary Differential Systems: The Initial

Value Problem, John Wiley & Sons, New York (1991)

[26] Q. Liu, Z. Yao and Y. Ke, Solutions of fourth-order partial differential equations

in a noise removal model, J. Differential Equations (2007), 1-11

[27] M. Lysaker, A. Lundervold and X. C. Tai, Noise removal using fourth-order

partial differential equation with applications to medical magnetic resonance images

in space and time, IEEE Trans. Image Process. 12 (2003), 1579-1590

[28] N. K. Madsen and R. F. Sincovec, Algorithm 540 PDECOL: General collocation

software for partial differential equations, ACM Trans. Math. Softw. 5 (1979), 326-

351

[29] C. B. Moler, Numerical Computing with MATLAB, SIAM, Philadelphia, (2004)

[30] P. K. Moore, Comparison of adaptive methods for one dimensional parabolic

systems, Appl. Num. Math. 16 (1995), 471-488

[31] P. K. Moore, Interpolation error-based a posteriori error estimation for two-point

boundary value problems and parabolic equations in one space dimension, Numer.

Math. 90 (2001), 149-177

[32] L. R. Petzold, A Description of DASSL: A Differential/Algebraic System Solver,

Tech. Rep., Sandia Labs, Livermore, CA (1986)

112

[33] R. D. Russell, J. F. Williams and X. Xu, M0VC0L4: A moving mesh code for

fourth-order time-dependent partial differential equations, SI AM J. Sci. Comput.

29 (2007), 197-220

[34] D. C. Sarocka and A. J. Bernoff, An intrinsic equation of interfacial motion for

the solidification of a pure hypercooled melt, Physica D 85 (1995), 348-374

[35] R. Wang, P. Keast and P. Muir, A comparison of adaptive software for ID

parabolic PDEs, J. Comp. Appl. Math. 169 (2004), 127-150

[36] R. Wang, P. Keast and P. Muir, BACOL: B-Spline Adaptive COLlocation Soft­

ware for 1-D Parabolic PDEs, ACM Trans. Math. Softw. 30 (2004), 454-470

[37] R. Wang, P. Keast and P. Muir, Algorithm 874: BACOLR: Spatial and temporal

error control software for PDEs based on high order adaptive collocation, ACM

Trans. Math. Softw. 34, (2008), 15:1-15:28

[38] W. W. Wang and J. R. Lister, Similarity solutions for van der Waals rupture of

a thin films on a solid substrate, Phys. Fluids 11 (1999), 2454-2462

[39] T. P. Witelski, A. J. Bernoff and A. L.Bertozzi, Blow-up and dissipation in a

critical-case unstable thin film equation, Euro. J. Appl. Math. 15 (2004), 223-256

[40] A. Vande Wouwer, P. Saucez and W. E. Schiesser, Adaptive Method of Lines,

CRC Press, Boca Raton, (2001)

[41] M. Xu and S. L. Zhou, Existence and uniqueness of weak solutions for a gener­

alized thin film equation, Nonlinear Anal. 60 (2005), 755-774

113

[42] M. Xu and S. L. Zhou, Existence and uniqueness of weak solutions for a fourth-

order nonlinear parabolic equation, J. Math. Anal. Appl. 325 (2007), 636-654

[43] http://en.wikipedia.org/wiki/Phosphorylation

[44] http://en.wikipedia.org/wiki/Dephosphorylation

[45] http://faculty, smu. edu/pmoore/hp4/hp4. html

114

http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Dephosphorylation
http://faculty

