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Abstract 

High Order Collocation Software for the Numerical 

Solution of Fourth Order Parabolic PDEs 

By Ling Lin 

B ACOL is an efficient software package for solving systems of second order 

parabolic PDEs in one space dimension. A significant feature of the package is that it 

employs adaptive error control in both time and space. A second order PDE depends 

on the solution, u, and its first and second derivatives, ux and uxx. However, many 

applications lead to mathematical models which involve fourth order PDEs. Fourth 

order PDEs depend on u, ux, uxx, uxxx, and uxxxx. One contribution of the thesis is that 

it provides a survey of applications in which fourth order PDEs arise. 

The thesis focuses on how to extend BACOL so that it can handle fourth order PDEs. 

We have explored a somewhat novel approach that involves converting the fourth 

order PDE to a coupled system which contains one second order PDE and one second 

order ODE (in space). A careful investigation of the BACOL package is carried out in 

order to extend it so that it can treat this coupled PDE/ODE system directly; the new 

software is called BACOL42. For comparison purposes we have also considered an 

approximate form of the converted system that can be solved using the original 

BACOL software. Numerical results are provided to demonstrate the effectiveness of 

BACOL42. The thesis also provides a numerical study of two other PDE solvers, 

pdepe and MOVCOL4, that can be applied to solve fourth order PDEs. 

August 27, 2009 



Chapter 1 

Introduction 

A partial differential equation (PDE) is a type of equation which involves an unknown 

function of several independent variables and its partial derivatives with respect to 

those variables. It can describe how a physical quantity, e.g. heat, might change with 

respect to variables like time and space. PDEs are used to model many applications, 

including physical processes such as the diffusion of sound or heat, the growth in a 

population, the spread of a virus, etc. 

PDE models are usually too complicated to be solved by hand. In most cases PDEs 

may not even have a known exact solution. Hence people use computer software to 

try to compute an approximate solution. If a software package returns an approximate 

solution, it is important that the error in that approximate solution be assessed. An 

important feature of some software packages is called adaptive error control. The 

concept of adaptive error control is to adapt the computation so that an estimate 

of the error of the numerical solution returned by the software is less than a user 
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provided error tolerance. 

A common subclass of PDEs is time-dependent parabolic PDEs in one spatial 

dimension. Such problems have solutions that depend on time, t, and space, x\ that 

is, the solution is typically written as u(x, t). An important class of software packages 

for the solution of this class is based on an approach called the method of lines (MOL 

[8], [40]). While many software packages for this problem class attempt to control 

the error in time, only a few also attempt to control the error in space. Furthermore 

almost all available packages are designed for second order parabolic PDEs. A second 

order PDE is one in which the highest spatial derivative that appears is the second 

derivative, uxx(x,t). 

BACOL [36] and BACOLR [37] are efficient software packages for solving systems 

of second order parabolic PDEs in one space dimension; a significant feature of these 

packages is that they employ adaptive error control in both time and space. For 

the test problems in [35], BACOL has been shown to be superior to many currently 

available software packages for solving second order PDEs. And in [37], BACOLR 

has been shown to be comparable to and in some cases superior to BACOL. 

On the other hand, there are many applications in which mathematical models 

arise that involve fourth order PDEs, i.e., PDEs in which a uxxxx(x, t) term appears. 

BACOL/BACOLR are not designed to handle such problems. To our knowledge, 

only MOVCOL4 [33] and HP4 [45] can handle fourth order PDEs. MOVCOL4, to 

our knowledge the first MOL package designed to handle fourth order PDEs, is an 

extension of the well-known second order PDE solver MOVCOL [21]. MOVCOL4 
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only attempts to control the error in time; there is no attempt to control the error 

in space. The package uses a moving mesh approach to adapt the location of a given 

number of mesh points to the solution behavior and achieves about as much accuracy 

in space as can be obtained using the given number of mesh points. We will discuss 

MOVCOL4 later in this thesis. HP4 is a modification of the well-known second order 

parabolic PDE solver HPNEW [37]. HP4 attempts to control the spatial and temporal 

errors, and thus represents a significant contribution to software for the treatment of 

fourth order parabolic PDEs. However, we will not consider HP4 in the thesis as it 

was only very recently released. 

In this thesis, we focus on solving one single time-dependent, fourth order PDE 

which has the general form: 

Ut\x,t) = j(x,t,u,ux,uxx,uxxx,uxxxx), a < x < o, t > to, (1-1) 

supplemented with the initial conditions 

u{x, to) = uo(x), a < x <b, 
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and separated boundary conditions 

bL,i(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t > t0, 

bLt2(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t > t0, 

bRtl(t,u(b,t),ux(b,t),uxx(b,t),uxxx(b,t)) = 0, t > t0, 

bR,2{t, u(b, t),ux(b, t),uxx(b, t) (M)) = o, t>t0. 

(The above equations specify two boundary conditions at each end point; this 

is the most common case and currently the only one the our software can handle; 

however, it would require only a minor generalization of the software to handle the 

remaining cases which involve one boundary condition at one end point and three at 

the other.) 

We will assume the initial solution UQ{X) is at least twice differentiable. (The 

algorithm we will discuss in this thesis requires that U'Q(X) exist.) 
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Instead of considering the fourth order PDE directly, let ui(x,t) 

u2(x,t) = uxx(x,t) and consider the following converted system, 

(ui)t = f{x, t, txi, {ur)x, {ui)xx, (u2)x, (u2)xx), 
< 

0 = {ui)xx - u2, 

with the initial conditions 

ui(x,to) = UQ(X), a < x <b, 

u2(x,to) = U'Q(X), a < x <b, 

and separated boundary conditions, 

h,i{t, ui(a, t), {ui)x{a, t),u2(a, t), (u2)x(a, i)) = 0 , t > t0, 

&i,2(*, ui(a, t), (tti)x(a, t),u2{a, t), {u2)x(a, t)) = 0 , t> t0, 

bR,i(t, u^b, t), (ui)x(6, t),u2(b, t), (u2)x(b, t)) = 0, t> t0, 

bR,2(t, ui(6, i), (tti)a:(&, t),u2{b, t), {u2)x(b, t)) = 0, t> t0. 

The converted system is obviously equivalent to the original fourth order PDE. The 

converted system is discussed in [33] but the authors do not consider the idea further 

because it leads to complications with the moving mesh approach they are considering. 

= u(x,t) and 

(1.2) 
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The first equation of the converted system is a second order PDE, but the second 

equation of the converted system is a second order ODE (in space). BACOL can 

only solve systems of PDEs - not a coupled PDE/ODE system. One of the primary 

goals of this thesis is to investigate the possibility of modifying the original BACOL 

software in order to allow it to handle the above coupled PDE/ODE system. We will 

refer to the resultant software as BACOL42. 

The modification of BACOL to allow it to solve a coupled PDE/ODE system 

required a very careful and thorough review of the BACOL package, followed by the 

application of a small but detailed set of modifications to the source code. (BACOL 

consists of approximately 51 subprograms and overall includes approximately 10000 

lines of code written in Fortran77.) 

During the development of BACOL42, it was useful to be able to compute approx­

imate solutions to the converted PDE/ODE system for comparison purposes, and we 

realized that such solutions could be obtained by considering an approximate form of 

the converted PDE/ODE system: 

(ui)t = f(t, x, ui, (u1)x, {ui)xx, (u2)x, (u2)xx), 
(1.3) 

e(u2)t = (ui)xx ~ u2, v 

with the boundary and initial conditions unchanged. It is clear that in the limit as 

e —»• 0, the above problem approaches the converted system, and therefore it would 

appear to be the case that the solution of the above system would approach the 

solution of the converted system, as e —> 0, except possibly in a boundary layer, 
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assuming / and u and its derivatives are sufficiently well behaved. We will refer to 

the above system as the e version of the original converted system and later in the 

thesis we will explore the approach of applying the original BACOL software to solve 

this system. Rewriting the e version of the original problem as 

(Ul)t = f(t, X, Ux, {Ui)x, 0 l ) x x , {U2)x, (U2)xx), 
< 

{u2)t = 7 (Oi)x* - u2), 

gives a second order PDE system in standard form and BACOL can therefore be 

directly applied to this system. 

One contribution of the thesis is to provide a survey of applications in which fourth 

order PDEs arise. In Chapter 2, we discuss several models such as the Kuramoto-

Sivashinsky equation [24], the extended Fisher-Kolmogorov equation [11], and the 

Cahn-Hilliard equation [6]. Also two simple fourth order PDEs with exact solutions 

are presented. 

Chapter 3 provides a review of the underlying algorithms upon which BACOL 

and BACOLR are based; this includes Runge-Kutta methods, Backward Differenti­

ation Formulas, B-splines, and collocation. In this chapter, we also discuss several 

other currently available software packages for second order PDEs, namely, HPNEW, 

pdepe [29], and MOVCOL. In addition, we also discuss MOVCOL4, a package men­

tioned earlier, for the solution of fourth order PDEs. 

In Chapter 4, the modifications of the original BACOL package in order to allow 

it to handle the converted system are described in detail. Another contribution of this 
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thesis is that it explores the initial steps required to construct a version of BACOL 

that can compute numerical solutions to general classes of coupled PDEs and ODEs 

(in space). The development of BACOL42 assumes that the ODE has the form 0 = 

(ui)xx — U2 but the approach considered in this thesis would appear to be applicable 

to more general forms of ODEs. 

We consider five numerical examples and present detailed performance for BA-

COL42 on these problems in Chapter 5. For comparison purposes, we also consider 

the alternative approach, described earlier, of applying the original BACOL software 

to the e version of each problem. Neither pdepe nor MOVCOL4 consider spatial error 

control and the original BACOL software is only applied to an approximate form of 

the given problem; it is only the BACOL42 code (and the recently developed HP4 

code, mentioned earlier) that are able to compute a numerical solution to a fourth 

order PDE, with an attempt to control both the spatial and temporal errors with 

respect to a given user-provided tolerance. 

Another contribution of the thesis comes in Chapter 6, where we provide numerical 

results to explore the effectiveness of two other software packages applied to solve 

fourth order PDEs. We present results with (i) pdepe applied to the converted system 

version of each problem, and (ii) MOVCOL4 applied directly to the original fourth 

order version of the problem. 

In the final chapter, we give our conclusions and also provide some suggestions 

for future work. 
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Chapter 2 

Review of Applications Involving 

Fourth order PDEs 

In this chapter, we provide some examples of fourth order parabolic PDEs. In [33], the 

authors explain that many complex real-world applications require PDE models that 

include fourth order terms in order to better capture the behavior of the quantities 

being modeled. Section 2.1 discusses the first example which is from a cell biology 

application. The Quantum Drift Diffusion model is given in Section 2.2. In Sec­

tion 2.3, we introduce a generalized form of the longwave unstable thin film equation 

and also give three other applications including the Kuramoto-Sivashinsky equation, 

an application describing droplet breakup in a Hele-Shaw cell, and another applica­

tion modeling a van der Waals rupture of a thin film. The fourth application, in 

Section 2.4, is the extended Fisher-Kolmogorov equation. In Section 2.5, we consider 

some equations modeling image denoising and segmentation. Section 2.6 discusses 
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the Cahn-Hilliard equation. Finally, in Section 2.7 we give two simple fourth order 

PDEs with exact solutions that will be employed as test problems later in the thesis. 

Notation 

The following symbols are used when we display the equations associated with the 

applications we considered in this chapter: 

• Let u(x) = u(x\, x2, • • • , xn) be a (four times) differentiable function on a given 

domain; we have u : 3ft™ —• 3ft. 

• Let £(x) = [Fi(x), F2(x), • • • ,Fn(x)]T be a differentiable vector function on a 

given domain; we have F_(x) : 3ftn —• 3ft™. 

du( x i 
• ~ , represents the derivative of u(x) with respect to x*. 

C/X7; 

du(Xi dulXi uxiix i \ 
• S7u(x) = ( o ) o ~ ;' • • > ~ ~ 1 is the gradient of «(x) 1 oxi ox2 axn I 

,. ^ x ^Fi(x) &F2(x) <9F„(x) . i U ,. , „, , 
• mvF_(x) = —0 H h • • • -I ^ is the divergence of Fix). 

OXi OX2 OXn 

E
fj 1] ( T 1 

~̂ is the Laplacian of u(x). 
1=1 l 
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2.1 Cell Biology Problem 

This description is taken from [7]. Within the nucleus of a cell, splicing factors (SFs) 

are nuclear proteins that remove introns (non-coding gene sequences) from precursor 

mRNA molecules to form the mature mRNA molecules that will be transported to 

the cytoplasm - the part of a cell including the region between the cell membrane and 

the nucleus. The SFs are in continuous flux between membraneless clusters known 

as speckles and individual SFs distributed throughout the nucleoplasm region, i.e., 

the nucleus of the cell. The SFs move randomly throughout the cell nucleus. They 

are heterogeneously distributed in the nuclei of eukaryotic cells that are enriched in 

pre-mRNA SFs - see Figure 2.1. This is an indirect immunofluorescence image of the 

speckled distribution of the SFs within the cell nucleus. 

Figure 2.1: The Distribution of SFs in the Nucleus [7]. 
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Phosphorylation is the process of adding phosphate (PO4) groups to a molecule 

or an organic compound while dephosphorylation is the opposite process (see [43, 

44]). p is the rate of phosphorylation while 5 is the rate of dephosphorylation. If 

the distance between SFs is larger than the range of influence of self-interaction, 

a, the above processes will not happen. This model considers u(x,t), the density 

of phosphorylated, i.e., clustered, SFs in the cell nucleus, and v(x,t) the density of 

dephosphorylated, i.e., individual, SFs in the cell nucleus. 

The model is based on two hypotheses: (1) that self-organization is responsible for 

the formation and disappearance of speckles, which are modulated by phosphorylation 

and dephosphorylation, and (2) that the existence of an underlying nuclear structure, 

i.e., a nuclear scaffold, is a major factor in the organization of SFs. 

The effect of phosphorylation and dephosphorylation on the SFs can be repre­

sented as in Figure 2.2. In this figure, the thin arrows represent that splicing factors 

are tied to a nuclear scaffold or nuclear matrix. The thick arrows represent that the 

phosphorylation and dephosphorylation processes modulate the continuous flux be­

tween the speckles and the nucleoplasm. Dephosphorylation leads to self-organization 

of the SFs into speckles, whereas phosphorylation leads to the opposite process. 
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Nuclear 
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^ C5'0' 
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Figure 2.2: The Effect of Phosphorylation and Dephosphorylation on the SFs [7]. 

The corresponding model, a fourth order aggregation-diffusion PDE, has the form, 

dv(x,t) __ d2v(x,t) 

dt dx2 

du(x,t) d 

Sv(x,t) + pu(x,t), 

,. , ..du(x,t), d r<r2 . .d2u(x,t), 

+5v(x,t) — pu(x,t), 

(2.1) 

with the no-flux boundary conditions: 

dv . . dv ,„ , du .„ . du,_, . 

( 0 , 0 - ^ 5 ( 1 , 0 = 0, 
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Rewriting Equation (2.1), we get 

vt(x, t) = vxx(x, t) - Sv(x, t) + pu(x, t), 

ut{x, t) = -^(u(x, t)uxxxx{x, t) + 2ux(x, t)uxxx(x, t) + u2
xx(x, t)) 

+(1 — u(x, t))uxx(x, t) — ux(x, t) + 5v(x, t) — pu(x, t), 

(2.2) 

which is a system of PDEs combining one second order PDE and one fourth order 

PDE. Initial conditions are chosen by considering small random perturbations of the 

steady state solution to (2.2). 

2.2 Quan tum Drift Diffusion (QDD) Model 

The second application is the Quantum Drift Diffusion (QDD) model which describes 

the transport of quantum charge-species in strong interaction within a surrounding 

medium at a given temperature. It has been formally derived by Degond, Mehats, 

and Ringhofer [12] from a collisional Wigner equation (see the definition of notation 

on Page 9), 

nt(x, t) + divJ(x, t) = 0, 
(2.3) 

J(x, t) + TVn(x, t) - n(x, t)VV(x, t) - ^n(x, t)v(^S) = 0, 

where 

n(x_, t) is the particle density, 
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J(x, t) is the current density, 

V(x, t) is the electrostrostatic potential, 

e is the scaled Planck constant, and 

T is the scaled temperature. 

After setting the temperature, T, and the electrostrostatic potential, V(x,t), to 

zero, (2.3) can be rewritten as a fourth order parabolic PDE for the particle density, 

n(x,t) [18]: 

nt(x, t) = -dzv (£n(x, t) V ( ^ | = ^ ) ) " ^ 

In one space dimension, a simpler form of this equation is often considered; it is 

e2 

nt{x,t) + — (n(x,t) (log n(x,t))xx)xx = 0. (2.5) 

The paper [22] discusses the analytical solution of (2.5) with Dirichlet and Neu­

mann boundary conditions: 

n(Q,t) = n(l,t) = 1, 

nx{0,t) = nx(l,t) = 0. 
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2.3 Thin Film Equations 

The paper [39] introduces the longwave unstable generalized thin film equation: 

ht(x, t) = -(hm(x, t)hx(x, t))x - (hn(x, t)hxxx(x, t))x, (2.6) 

where 

h(x, t) is the height of the evolving free-surface, 

m is the power of the destabilizing second order diffusive term, 

n is the power of the stabilizing fourth order diffusive term. 

The paper [41] discusses the existence and uniqueness of solutions for (2.6). 

Some special cases of (2.6) are well-known. When n = 0,m = 1, it becomes a 

modified Kuramoto-Sivashinsky equation; when n = l ,m = 1, it describes droplet 

breakup in a Hele-Shaw cell; when n = 3, m = — 1, it gives the van der Waals rupture 

of a thin film. 

2.3.1 The Kuramoto-Sivashinsky Equation 

One form of the Kuramoto-Sivashinsky equation [24] ( (2.6) with n = 0 and m = 1) 

is: 

iT'ty^jt) = llXxxx\Z]<<) "'xxyEit) — HX\X, t), 

where h(x, t) is the position of the interface between the solid and liquid phases. 
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Introducing a periodic boundary condition gives the periodic Kuramoto-Sivashinsky 

equation (the period length is L) 

ht(x, t) = -hxxxx(x, t) - hxx{x, t) + h2
x(x, t), h(x + L) = h(x), 

which arises in modeling the dynamics of a premixed flame (see [15]) and the dynamics 

of solidification (see [16]). 

Another form of the Kuramoto-Sivashinsky equation [1] is 

ut = -uux - uxx - uxxxx, x G [0,327r.] (2.7) 

The initial condition is 

«(x,0) = c o s ( ^ ) ( l + 8 i n ( ^ ) ) . 

The modified Kuramoto-Sivashinsky equation 

ht(x,t) = -hxxxx(x,t) - hxx(x,t) + (1 - X)hx(x,t)2 + Xh2
xx(x,t), 

is studied as a one-dimensional model for the dynamics of a hypercooled melt in [34]. 
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2.3.2 Droplet Breakup in a Hele-Shaw Cell 

This application is from the model of the flow in a Hele-Shaw cell (see [9]). A Hele-

Shaw cell contains two unmixable fluids which are divided by an interface. The paper 

discusses whether a thin neck between two masses of fluid can develop, get thinner, 

and finally break. Figure 2.3 shows a special case of the problem where the neck is 

assumed to be symmetrical. h(x, t) is the neck region, x is the distance along the 

symmetry line and t is the time. L is assumed to be much greater than W. 

H| 
| B . Pressure P 

? ! Water 
" ' " — - * — • — ~ ^ . ' 

Pressure P > L _ | _ 

Figure 2.3: a Special Case of the Flow in a Hele-Shaw Cell [9]. 

Letting L be 2, the equation has the following form: 

ht{x, t) + (h(x, t)hxxx(x, t))x = 0, - 1 < x < 1, (2.8) 

with the initial condition: 

h(x,0) = 1, 

and the boundary conditions: 
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h(±l,t) = l, 

hxx(±l,t) = -p, 

where p is a nonzero pressure. Techniques for the numerical solution of (2.8) are 

discussed in the paper [2]. 

2.3.3 van der Waals Rupture of a Thin Film 

This equation is associated with the modeling of a thin film (see [38]). The model 

represents the process through which a thin liquid film on a solid substrate overcomes 

surface tension and ruptures because of van der Waals forces. 

The non-dimensional form of the model is derived based on the assumption that 

there is no slip at the solid substrate and free slip at the thin surface; the governing 

equation is 

dh(r, t) ld_ 

dt r dr 
rh*(r,t)-

d (I d ( dh(r,t) 

dr \r dr dr + 
dh(r,t) 

h(r, t) dr 
= 0, (2.9) 

with the initial condition: 

h(r,0) 
10 1 (2-Kr\ 
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and the boundary conditions: 

hr(0,t) = 0,hr(^,tj =^, 

/A \ _ A 
nrrT\\), z) — u, nrrr i —, z i -—, 

where h(r, t) is the thickness of the thin liquid, r is the radial coordinate and A is a 

problem dependent parameter.. 

2.4 Extended Fisher-Kolmogorov (EFK) Equation 

This equation is called the extended Fisher-Kolmogorov (EFK) equation which arise 

in the discussion of the propagation of fronts into unstable states of a bistable system; 

it was proposed by Dee and van Saarloos in the paper [11]: 

ut(x, t) = --yuxxxx(x, t) + uxx(x, t) + u(x, t) - u3(x, t), (2.10) 

where —oo < x < oo and 7 > 0. The initial condition is: 

u(x,0) = 0.1e-*2,7 = 0.03, 

and the boundary conditions are: 

lim u(0, x) = 1, 

x—>oo 

lim u(0,x) = —1. 
X—+ — OO 
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At the same time, Coullet, Elphick and Repaux also obtained the EFK equation 

in the study of the spatial complexity of one-dimensional patterns (see [10]). 

2.5 Applications in Image Processing 

Applications involving fourth order PDEs are widely used in image processing. In [4], 

Bertozzi and Greer study a model of image denoising and segmentation; it has the 

form 

ut(x, t) = - V • (g{s) A u(x, t) A y « f e *)) + A(/(x, t) - u{x, t)), (2.11) 

where 

f(x_, t) is a noisy signal, 

u(x_, t) is the image intensity, 

g(s) = k2/(k2 + s2) is a curvature threshold, k, s are parameters, 

A is a fidelity-matching parameter. 

Lysaker et al. [27] also use a fourth order PDE in order to model the removal of 

noise from digital images. The model has the form: 

/ ,\ _ _ / UXX{X,t) \ ^ I UXy [X_, t) \ ^ I Uyx{X_,t) 
Ut^ >- y\D2u(x,t)\)xx \\DMx,t)\)yx \\D2u(x,t)\/xy 

uyy(x,t\_\ _X(u(x,t)-u0(x,t)), 
\D2u(x,t)\ 

yy 
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with the boundary conditions: 

uxx(xL,t) \ ^ + f uyy(xL,t) ]n2 = 0j 

\U-XX\3LLI v l 

^XX\X_RI t) 

^XXXMRI t) I 
Til + 

uyy{xL,t)\ 
uyy{X.R: *) 

\uyy\^-R^)\ 
n2 = 0, 

where 

I r>2 I = n 12 , I 12 , I 12 , I | 2 \ l / 2 

u(x, t) is a digital image measured by the pixel intensity value, x_ = 

Uo(x) is an observation with random noise, 

A is a known parameter, 

n = (ni,ri2)T is the outward normal direction on dQ, 

fl = [a,b] x [c,d], xL = Xn > ±R 
d 

The existence and uniqueness of a solution to the following equation which repre­

sents a noise removal model is discussed in [26]: 

du(x,t) d2 , , fd2u(x,t)\ „ , 2, „ 

u{0, t) = u(l,t) = ux(0, t) = ux{l, t) = 0, te (0, T), 

u(x,0) = u0(x), x € / , 

where i" = (0,1), QT = I x (0,T), u(x,t) is the image intensity, $ : 3? —»• 9£+ is a 

known function which is even, continuous, and convex with $ > 0 for t > 0. 
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2.6 Cahn-Hilliard Equation 

This equation was first introduced by Cahn and Hilliard in 1958 in the paper [6]. 

It describes the process of phase separation in which two immiscible fluids become 

separated as time increases. It is applied in many fields, including material science 

and engineering (see [42]). It has the form: 

ut(x, t) = D(u3(x, t) - u(x, t) - ~/uxx(x, t))xx, 

where 

u(x, t) is the concentration of the fluid, 

D is a diffusion coefficient, 

yfy is the length of the transition regions between the domains. 

In [14], the authors discuss the solution of the convective Cahn-Hilliard (CCH) 

equation with periodic boundary conditions 

ut(x, t) = u(x, t)ux(x, t) - (u(x, t) + u3(x, t) - uxx(x, t))xx, x £ (0, L), t > 0, 

u(x + L,t) = u(x, t), x € K, t > 0, 

u(x,0) = UQ(X), x E 3ft. 
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2.7 Some Simple Fourth Order PDEs 

From the previous sections, we can see that fourth order PDEs arise in many fields. 

However, an exact solution is not usually known. Here we will give two simple fourth-

order PDEs with exact solutions. The exact solution to the first equation is obtained 

by inspection since the equation is very simple. The exact solution to the second 

equation is provided in [33]. These equations have been useful during the development 

and testing of our software. 

2.7.1 Example One 

The first example is a simple Fourth order linear PDE: 

ut(x,i) = -uxxxx(x,t), 0 < x < IT, t > 0, (2.12) 

with the boundary conditions 

u(0,t) = u(ir,t) = 0, t>0, 

uxx(0, t) = UXX(TT, t) = 0, t > 0, 

and the initial condition 

u(x,0) = sinx, 0 < x < IT. 
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The exact solution (see Figure 2.4) is 

u(x,t) = e ' sinx. 

Figure 2.4: The Exact Solution of Equation (2.12) 

2.7.2 Example Two 

The second example is a test problem taken from [33]: 

ut{x,t) = sint 
3 + cos t 

uxxxx(x,t), 0<x<ir, t>0, (2-13) 

with the initial condition 

u(x,0) = 1.2 cos x, 0 < x < ir, 
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and the boundary conditions 

it(0, t) = UXX(TT, t) = 0.3(cos(t) + 3), 

u(n, t) = uxx(0, t) = — 0.3(cos(£) + 3). 

The exact solution (see Figure 2.5) is 

u(x, t) = 0.3(cos t + 3) cos x. 

Figure 2.5: The Exact Solution of Equation (2.13) 
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Chapter 3 

Review of Numerical Methods and 

Software Packages 

Many software packages for the numerical solution of PDEs are based on an approach 

called the method of lines (MOL). The MOL is one of the most important compu­

tational approaches for solving PDEs. The MOL for solving a PDE proceeds in two 

separate steps: 

• The spatial discretization: This involves partitioning the spatial domain into 

subintervals with a set of mesh points and approximating the spatial derivatives 

on each subinterval in some way, thereby replacing the PDEs by a system of 

ordinary differential equations (ODEs). 
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• The time integration: This involves using a software package to solve the ODEs 

and the boundary conditions. A system of ODEs coupled with a system of 

algebraic equations (in our case, the boundary conditions) is known as a sys­

tem of differential-algebraic equations (DAEs). There are many good quality 

ODE/DAE solvers - we will consider a few later in this chapter. 

3.1 Review of Numerical Methods 

In sections 3.1.1 and 3.1.2 we discuss two numerical methods which provide the basis 

for software for the numerical solution of ODEs and DAEs. Section 3.1.3 introduces 

spline software which is used widely in the representation of numerical solutions. 

In Section 3.1.4, we describe one numerical method which is often employed as the 

spatial discretization process for the numerical solution of PDEs. 

3.1.1 Runge-Kutta Methods 

Runge-Kutta methods are important single-step methods for solving ODEs [17]. 

Single-step means that the current value can be obtained assuming only one previous 

solution approximation is given. The classical fourth order Runge-Kutta method is 

one of the most commonly used Runge-Kutta methods. Let us consider the following 

initial value problem: 

y'= f(t,y), y(t0) = y0. 
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Then, given a solution approximation, yn, at tn, we can obtain an approximation to 

the solution at t n + i , which we call yn+i, using the following equations: 

yn+i = Vn + g (h + 2k2 + 2k3 + k4), 

where 

"• — t n + l ^ni 

k\ = f(tn,yn), 

k2 = f {tn + -h,yn + -k1 | , 

k4 = f (tn + h,yn + k3). 

The coefficients of this method can be written in a table, which is called a Butcher 

tableau. See Table 3.1. 

Table 3.1: The Butcher Tableau for the Classical Fourth Order Runge-Kutta 
Method [17] 

0 
1 
2 
1 
2 

1 

1 
2 

o 
0 
1 
6 

1 
2 

0 
1 
3 

1 
1 
3 

1 
6 

This classical fourth order Runge-Kutta method has many advantages. First, it 
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is explicit. That is, yn+\ can be obtained through an explicit calculation. In addition 

the accuracy of the approximate solution is reasonably high. If we assume that the 

solution at tn is exact then then the local error in the solution at i„+ 1 is 0(h5) for 

this method. The global error is then 0(h4) so the method is fourth order over the 

entire time integration. It is easy to change the step size during the process since 

the Runge-Kutta method is a single-step method. However, each step requires four 

evaluations of / . Because the stability region is limited - see, e.g. [25], a small time 

step h needs to be chosen in order for the method to be stable. (A method is stable 

if the error does not grow as the time stepping proceeds.) 

A modified version of the DAE/ODE solver RADAU5 (see [17, 19]) is employed 

in BACOLR to solve the DAEs that arise. RADAU5 is based on one particular 

Runge-Kutta method, Radau IIA. Using this method, we can obtain an approximate 

solution, yn+i, at tn+\ from the following equations: 

Vn+i = Vn + ^ ((16 - V6>i + (16 + VE)k2 + 4A:3) , 

where 

A* , 4 - V / 6 , , 8 8 - 7 N / 6 . 296-169>/6 ; - 2 + 3 > / 6 |
> 

h = f[tn + ~^h>Vn + -^60~kl + 1800 h + ~ 2 2 5 ~ * 3
y 

J 4 + \ / 6 , 296 + 1 6 9 ^ , 88 + 7V/6; - 2 - 3 ^ / 6 , ^ 
2 J I „ - r 1 Q , y n ~ T l g Q 0 IT 3 6 Q 2T 2 2 5 3^ 

A u 16-V6, 16 + VE. 1. \ 
h = J \tn + h,yn + ———kx + ———k2 + -« 3 I -
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We note that the k\, &2, k% values are defined implicitly (i.e., in terms of each other) 

and when / is nonlinear an iterative technique such as Newton's method must be 

employed to compute these values. On a single step the error is 0(h6). The stability 

region of an implicit Runge-Kutta method is much larger than that of an explicit 

Runge-Kutta method. In fact the stability region typically includes the entire left 

half of the complex plane which implies that the stepsize is not restricted at all by 

stability considerations. 

The coefficients of this method can be written in the form of the Butcher tableau 

given in Table 3.2. 

Table 3.2: The Butcher Tableau for RADAU IIA [20] 

4-76 88-776 296-16976 -2+376 
10 360 1800 225 

4+76 296+16976 88+776 -2-376 
10 1800 360 225 

-i 16-76 16+76 1 
36 36 9 

16-76 16+76 1 
36 36 9 

3.1.2 Backward Differentiation Formulas 

Another DAE/ODE solver commonly employed by software (such as BACOL, HP-

NEW, MOVCOL) for the numerical solution of PDEs is called DASSL (see [32]). 

DASSL is based on a family of numerical methods for the solution of DAEs/ODEs 

known as Backward Differentiation Formulas (BDFs). The BDFs represent one of the 

most useful families of linear multi-step methods; see, e.g., [25]. A multi-step method 
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uses several previous solution values in order to compute the current approximation. 

For the ODE, y'(t) = f{t,y), a fc-step BDF is defined by the formula 

k 

/ jajVn+j — hPkfn+k, 
3=0 

where h is the fixed time step and oij, j = 1, 2, • • • , k and Pk are given coefficients 

and yn+j, j = 0,1,- • • ,k — 1 are known previous solution values; see Table 3.3. It 

is possible to choose the coefficients so that the order of the fc-step BDF is k. The 

sizes of the regions of absolute stability of the BDF are larger than those of the same 

order of explicit Runge-Kutta method, for k = 1, 2,..., 6. Furthermore, when k = 1,2, 

the stability region includes the whole negative half-plane, in which case there are no 

stepsize restriction due to stability. 

Table 3.3: Coefficients of BDF [25] 

k 

1 

2 

3 

4 

5 

6 

a0 

-1 

l 
3 

2 
11 

3 
25 

12 
137 

10 
147 

Oil 

1 

4 
3 

9 
11 

16 
25 

75 
137 

72 
147 

a2 

1 

18 
11 

36 
25 

200 
137 

225 
147 

a3 

1 

48 
25 

300 
137 

400 
147 

Oi± 

1 

300 
137 

450 
147 

a5 

1 

360 
147 

a6 

1 

fa 

1 

2 
3 

6 
11 

12 
25 

60 
137 

60 
147 
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Using the above formula we can obtain the approximate solution at tn+k called 

yn+k- As an example we take k = 5, that is a 5 — step BDF. The formula becomes: 

OioVn + OilVn+l + «22/n+2 + (X3Un+3 + 

ctiVn+i + a5yn+5 = hp5f(xn+5,yn+5). 

Substi tut ing the coefficients for this formula from Table 3.3, we get: 

12 _75_ 200 300 
~-.ry-.yn + ~~zVn+l ~ -J rfjVn+2 ~r -. „_2/n+3 — 

300 , 60 , , 
^ y n + 4 + yn+5 - h—j{xn+5,yn+5) 

We solve this formula for y„+5, assuming previous solution values yn+4, yn+s, Vn+2, 

yn+i and yn. As mentioned earlier, when / is nonlinear, yn+5 must be computed using, 

for example, Newton's method. 

From the above formula, we can see that a multi-step method requires only one 

new function value per step (although more function values may be necessary in the 

Newton iteration). However, it cannot start automatically. That is, the value of yn+5 

cannot be obtained until five initial values are given. For example in the 5 — step BDF, 

yn,yn+i,yn+2,yn+3,Vn+\ must be given in order to calculate yn+5. Changing step size 

is more expensive than for a one-step method. A popular strategy for changing the 

stepsize involves using interpolation to obtain the values at the required past steps. 
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3.1.3 B-splines 

In BACOL and BACOLR, the approximate solution is expressed as a piecewise poly­

nomial in x with time dependent coefficients. The piecewise polynomial can be repre­

sented in terms of a B-spline basis (see [5]). Given NINT + 1 knots, #,, which divide 

the domain into NINT pieces with 

a = XQ < X\ < • • • < XNINT = b, 

we then define a piecewise polynomial of order k (degree k — 1) on each subinterval. 

That is, on each subinterval the segment of the piecewise polynomial has k coefficients. 

There are NINT subintervals in the problem domain, therefore k*NINT coefficients 

in total. The polynomials are C1 — continuous, which means that the B-spline is 

continuous and differentiable at the mesh points Xi, i = 1, • • • , NINT — 1. Imposing 

these conditions leads to 2*(NINT—1) constraints. In order to solve for the k*NINT 

coefficients, 

NC = k* NINT - 2 * (NINT - 1) = NINT *(k-2) + 2 

additional constraints are needed. Here NC is the total number of collocation condi­

tions, including the boundary conditions, that will be applied (We will explain in the 

next subsection what we mean by collocation conditions). These conditions, together 

with the continuity conditions, give a total number of conditions that is equal to 

the number of free coefficients. The PDE solution u(x, t) is approximated by U(x, t) 

34 



which can be expressed in terms of B-splines as: 

JVC 

U(x,t) = ^ryi(t)Bi(x), x e [X0,XNINT], 

i=l 

where yi(t) are unknown time-dependent coefficients and Bi{x) are the B-spline basis 

polynomials. Each Bi(x) will be non-zero only in a relatively small region of the 

problem domain. See [5] for further details about the B-spline basis functions. 

3.1.4 Collocation 

In PDE software packages such as BACOL and BACOLR (as well as PDECOL [28] 

and EPDCOL [23]), that express the approximate solution in terms of B-splines, the 

spatial discretization is performed using a technique known as collocation. Suppose 

that the PDE has the following form: 

ut = f(t, x, u, ux, uxx), a <x <b, 

with boundary conditions 

&!,(£, u, ux) = 0, at x = a, 

bii(t, u, ux) = 0, at x = b. 

The collocation method requires the approximate solution to exactly satisfy the PDE 

at a given set of collocation points, £;, I = 2, • • • , NC — 1, and at the boundary points 
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(£i = a and £NC = b). That is, we require U(x,t) to satisfy 

0 = bL(t,U(0,t),U(0,t)x), 

ut(ti,t) = f(t,x,u(Zi,t)M&t)xMZi,t)xx), I = 2,---,NC-I, 

0 = bR(t,U(l,t),U(l,t)x). 

Substituting for Ut(£i,t) with H^yKt)Bi(x), we then obtain a system of differential 

equations coupled with two algebraic equations. The DAE system has the form, 

bL(t,U(0,t),U(0,t)x) = 0, 

XZ?MZMt) = f(t,x,U(^t),U(Ci,t)x,U(^t)xx), Z = 1,2,-..,JVC, 

bR(t,U(l,t),U{l,t)x) = 0. 

We can determine the coefficients j/j(t) by solving this system of equations using 

a DAE solver and from there we can get the approximate solution, U(x,t). 

3.2 Software for ID, Time-Dependent, Second-Order 

PDEs 

As mentioned earlier in the thesis, an important feature of some of the most recent 

software packages for the numerical solution of PDEs from the problem class con-
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sidered in this thesis is called adaptive error control. Among all available numerical 

software for solving 1-dimensional, second-order, time-dependent parabolic PDEs, 

only HPSIRK [30], HPDASSL [30], HPNEW, BACOL and BACOLR are able to con­

trol the overall error, which has two components, the error in space and the error in 

time. 

Assume a general system of NPDE 1-dimensional, second-order, time-dependent 

PDEs having the general form: 

ut(x,t) = f(x,t,\i,ux,uxx), a<x<b, t>t0, 

supplemented with the initial conditions 

u(x,to) = uo(x), a < x < b, 

and separated boundary conditions 

bL(t,u(a,t),ux(a,t)) = 0, bR(t,u(b,t),ux(b,t)) = 0, t>t0, 
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where 

u = (ui,u2,--- ,uNPDE), 

Qui du2 duNPDE \ 
dt' df'"' ' dt ) ' 

'dux du2 duNPDE\ 

v dx ' dx ' ' dx / 
/9^ui <92n2 d2uNPDE\ 
\ dx2 ' da;2 ' ' 9x2 y 

f = ( / l> /2 i • • • ,fNPDE) • 

In this section, we review the software packages BACOL and BACOLR and three 

other software packages, HPNEW, pdepe and MOVCOL, all of which are able to 

solve PDEs having the general form described above. 

3.2.1 BACOL/BACOLR 

A novel feature of BACOL, designed by Wang, Keast, and Muir, is that it employs 

high order, i.e., high accuracy, adaptive methods in both time and space, controlling 

and balancing both spatial and temporal error estimates. 

For the spatial discretization, BACOL uses B-spline collocation. The resultant 

DAEs are solved using DASSL, which controls an estimate of the temporal error. 

For the spatial error estimate, BACOL computes two solutions, one of order p and 

one of order p + 1, (p is determined from KCOL, the number of collocation points 

per subinterval, provided by the user) and the difference between the two is used to 

estimate the error in the lower order solution. BACOL defines a normalized error 

u t = 

uT 

Ll-roT 
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estimate for each PDE component over the whole problem interval and a normalized 

error estimate for each subinterval over all components. As mentioned earlier, after 

the spatial discretization is performed, BACOL uses DASSL to compute values for 

the B-spline coefficients, yi(t). After each successful time step in DASSL, the spatial 

error is estimated. If the estimated error does not satisfy the tolerance, then BACOL 

adjusts the mesh and repeats the step. The remeshing strategy involves a procedure 

for estimating the optimal number of mesh points, and an algorithm for redistributing 

the mesh points over the problem interval, called an equidistribution algorithm, that 

tries to make the error on each subinterval the same, and also less than the user 

provided tolerance. 

DASSL uses a Newton iteration to compute the yi(t) values, and the Newton 

matrices have a special almost block diagonal (ABD) structure because any B-spline 

basis function is non-zero only in a small region of the problem domain. BACOL 

employs COLROW [13] as a linear system solver to take advantage of this special 

structure. Numerical results [35] show that BACOL is one of the most efficient soft­

ware packages available whether high accuracy or low accuracy is required. In this 

thesis work, we employed a slightly modified version of BACOL1, that replaces COL­

ROW with CONDCOLROW, a package for solving ABD systems that also provides 

an estimate of the condition number of the ABD matrix. We have introduced this 

change because it has turned out to be important in this project to be able to monitor 

the condition numbers of the Newton matrices that arise. One of the modifications 
1 developed by Keast 
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we need to make to BACOL involves the introduction of new scalings for certain rows 

of the Newton matrix in an attempt to improve the conditioning of that matrix. 

BACOLR was developed by Wang, Keast, and Muir, through a substantial mod­

ification of BACOL. For the spatial discretization, BACOL and BACOLR are the 

same. The novel feature is that the time dependent ODEs resulting from the spatial 

discretization are handled by a substantially modified version of the Runge-Kutta 

solver, RADAU5. Numerical results [37] show that the performance of BACOLR is 

generally comparable to that of BACOL and in some cases significantly superior to 

that of BACOL. 

3.2.2 HPNEW 

HPNEW, by Moore, a modification of HPDASSL, is another package with spatial 

and temporal error control. For the spatial discretization, it employs a finite-element 

Galerkin technique. For the time integration, it uses DASSL. The error estimates 

are obtained by a formula which generalizes the traditional formula for the Lagrange 

interpolation error. For the adaptive strategy, HPNEW applies hp-refinement which 

is a combination of h-refinement and p-refinement. h-refinement involves refining 

the mesh and p-refinement involves adaptively choosing the degree of the piecewise 

polynomials used. 
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3.2.3 pdepe 

The MATLAB function pdepe is a PDE initial-boundary value problem solver. It can 

solve coupled systems of parabolic and elliptic PDEs in one dimension. There should 

be at least one parabolic equation in the system. However, it can only control the 

error in time, pdepe solves PDEs of form: 

°<^£)*=*~iH--'-"-£))+*K£) <«> 
with the initial condition 

u(x,t0) = u0(x), 

and the boundary conditions 

p(x, t, u) + q(x, t)f ( x, t, u, — ) = 0 . 

where m can be 0, 1, 2; / and s are given functions of x,t,u, | | ; c (x,t,u, |^) is a 

diagonal matrix with elements either identically zero or positive; p(x, t, u) is a vector 

which can depend on it; q(x,t) is a diagonal matrix with elements that are either 

identically zero or never zero. 

41 



3.2.4 MOVCOL 

MOVCOL, by Huang and Russell, is an example of a moving mesh package. This 

means that the locations of the spatial mesh points move within the spatial domain 

as a function of time to adapt to the way the solution changes. Mesh movement 

is determined through the solution of an auxiliary set of PDEs known as moving 

mesh PDEs. Central finite differences are used for the spatial discretization for these 

PDEs. MOVCOL employs a cubic Hermite spline collocation method for the spatial 

discretization of the physical PDEs. For the time integration, MOVCOL uses DASSL 

to solve the DAEs. While MOVCOL can adapt the locations of the mesh points to 

the solution behavior, it cannot change the number of points and therefore cannot 

control the spatial error. 

3.3 Software for ID, Time-Dependent, Fourth Or­

der PDEs 

A general system of NPDE 1-dimensional, fourth order, time-dependent parabolic 

PDEs that arises in mathematical models has the form: 

ut(x 
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supplemented with the initial conditions 

u(x, to) = uo(x), a < x <b, 

and separated boundary conditions 

bL(t,u(a,t),ux(a,t),uxx(a,t),uxxx(a,t)) = 0, t> t0, 

bR(t,u(b,t),ux(b,t),uxx(b,t),uxxx(b,t)) = 0, t >t0, 

where bL G W, bR € 5RS, and q, s € {1, • • • , 4 x NPDE}, 

U = ( « i , U 2 , - - - ,UNPDE), 

_ fdu^_ du2_ duNPDE \ 
Ut ~ V dt ' dt ' " ' ' at J ' 

_ /d_ui 0^2 duNPDE\ 

\ ax ox ox ) 

- (d2ui d2^2 d2uNPDE\ 
\ dx2 ' dx2 ' ' ax2 y ' 

_ fd^ux d3u2 d3uNPDE\ 
\ OX6 OX6 OX6 J 

_ fd4Ui d4u2 (PUNPDE\ 
*J-.X.Tr7T.T • ~ ~ • ™ ~ • ' * * • - I XXXX \ rs A ; r\ A J ) 

dx4 ' ax4 ' ' dx4 7 ' 

f = ( / l ) / 2 , " " • i fNPDE) • 

MOVCOL4 is a software package that can solve PDEs which depend on the fourth 

spatial derivative. MOVCOL4 is based on MOVCOL. For the spatial discretization, 

MOVCOL4 can employ either collocation or a conservative method. The imple-
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mentation of the collocation method is almost the same as in MOVCOL. The small 

difference is that the degree of the Hermite spline basis in MOVCOL is 3 while in 

MOVCOL4 it is 7. For the time integration, MOVCOL4 applies the same software, 

DASSL, that MOVCOL uses. Like MOVCOL, the MOVCOL4 package can control 

the temporal error but not the spatial error; it is however, to our knowledge, the first 

software package that is able to solve fourth order PDES. 
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Chapter 4 

Extension of BACOL to Fourth 

Order Equations 

As mentioned previously, for the test problems in [35], BACOL has been shown to 

be superior to many currently available software packages for solving second order 

parabolic PDEs. Furthermore BACOL employs adaptive error control in both time 

and space. However it was not designed to handle fourth order PDEs. The package 

MOVCOL4, which handles fourth order equations, does not have error control in 

space. Therefore our research has focused on how to adapt BACOL to handle PDEs 

in which ux, uxx, uxxx, and uxxxx appear, so that we can solve fourth order parabolic 

PDEs with spatial and temporal error control. 

We consider a single fourth order PDE (1.1). As mentioned earlier, the authors 

of the paper [33] point out that converting the fourth order PDE to a system of 

one second order PDE and one second order ODE(in space) gives a mathematically 
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equivalent problem. For example, Equation (1.1) can be converted into Equation 

(1.2). In Section 4.1 we will discuss how to employ the original BACOL to handle 

the e version of (1.2) - (1.3). In Section 4.2 we will discuss how to adapt and extend 

BACOL to handle equations of the form (1.2). This new software is called BACOL42. 

4.1 BACOL Applied to the e Version of a Problem 

During the development of BACOL42 we found that it was useful, for comparison 

purposes, to be able to compute approximate solutions to (1.2). Since the original 

BACOL package is able to treat systems of second order PDEs, we observed that a 

small perturbation of (1.2) could lead to a problem (a) whose solution would hopefully 

be close to that of (1.2) and (b) that could be treated directly by the original BACOL 

code. We modified (1.2) to get (1.3). 

For sufficiently small e, the perturbed problem (1.3) is obviously close to the 

converted system (1.2). If e is small enough, then we can therefore expect that the 

solution of (1.3) is a reasonable approximation to the solution of (1.2). 

Thus solving (1.3) with BACOL provides a simple way to obtain an approximation 

to the solution of a fourth order PDE. Using a version of BACOL modified to provide 

an estimate of the condition numbers of linear systems that arise, we have seen from 

our numerical experiments that e cannot be set too small or the Newton iteration 

matrix will become numerically singular, since we have observed from our numerical 

experiments that the condition number grows inversely proportional to e. 

For each test problem we consider, we will use the original BACOL to solve the 
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e version of the problem (1.2), i.e., (1.3). The main purpose of this approach is to 

provide numerical results to compare with the results of the BACOL42. 

4.2 Solving the Converted System 

4 . 2 . 1 C o n s t r u c t i o n o f t h e N e w t o n S y s t e m 

In (1.2), let 

/ = 
A 

h 

f(x, t, UU (UX)X, (Ui)xx, (U2)x, (U2)a 

(ui)xx -u2 

and 

u(x,i) = 
E t i v i j (*)**(*) 

Y,?=iy2j(t)Bj(x) 

ui(x,t) 

u2(x,t) 

where NC = NINT * KCOL + 4, Bj(x) are the B-spline basis functions, and yij(t) 

and y2:j(t) are the time-dependent B-spline coefficients of ui(x,t) and u2(x,t) respec­

tively. Then: 

NC 

NC 

ux(x,t) = J^yj(t)B'J(x) 

NC 

uxx(x,t) = Yty.(t)B'!(x), 
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where y. (t) = 
—3 

3/ij(*) 
and y'it) 

—3 

wk(*) 
The converted system with boundary conditions is 

0 = bL(t, u(a,t),ux(a,t),uxx(a, t) (a,t)) 

(ui)t = f{x, t, ui, (ui)x, {ui)xx, {u2)x, (u2)xx) 

0 = (ui)xx - u2 

0 = bR(t, u(b, t),ux(b, t),uxx(b, t) (M)) 

We first rewrite it by subtracting the right hand side of the system from the left hand 

side of the system. Collocation then gives a system of ODEs, which together with 

boundary conditions, gives the DAE system 

G(t,y(t),y'(t)) = 0, 
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where 

1/(0 = 

( yiAt) X 

V2,l(t) 

2/1,2, (t) 

2/2,2 (*) 

yi,7VC-l(0 

U2,NC-l{t) 

Vl,Nc(t) 

y V2,Nc{t) j 

G has three parts: 

1. The first 2 components are 

-&L,i (i, a, iti(a, t), («i)x(a, t),u2(a, t), (u2)x(a, t)) , 

-6L,2 (*, a, ui(a, t), (-ui)x(a, t),u2(a, t), {u2)x(a, t)), 

or, 

JVC JVC NC NC 

-bL,1[t,a,Y,yiAt)B3(a),Y/y^)B-(a),Y/y2At)BJ(a),Y/y2At)B'J(
a) , 

.7 = 1 .7 = 1 i = i . 7 = 1 

JVC NC NC NC 

-bL,2 t,a, ^2yid(t)Bj(a), ^ ^ ( ^ ( a ) , ^ ^ ( ^ ( a ) , £ > , ; ( * ) £ » 
J '=I J '=I J '= I J '=I 
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2. The last 2 components are 

- 6 f l a (t, b, ux{b, t), (ui)x(b, t),u2{b, t), (u2)x(b, t)), 

-bRt2 (t, b, Ui(b, t), {ui)x{b, t),u2(b, t), {u2)x{b, t)), 

or, 

( NC NC NC NC \ 

3 = 1 3 = 1 3=1 3 = 1 ) 

( NC NC NC NC \ 

3 = 1 3 = 1 3 = 1 3 = 1 J 

3. The remaining middle components are of the form (these are the collocation 

equations) 

(«i)t(6»*) - / (*>6, «i(6> *), (ui)x(&, t), (w2)x(6,*)> («i W&> *)> (u2)xx(£,i,t)), 

"2(6, *) - (ui)xx{£i,t), 
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or, 

JVC NC NC 

£y;mte) - /(^EM*w&),EM*)3(6: 
3 = 1 

NC NC NC 

NC NC 

E2/2J(^(*) - El^W*). 
3 = 1 j=l 

where & is one of the (p—l) collocation points associated with the ith subinterval 

(p is the degree of the piecewise polynomials). There are NINT x (p — l) pairs 

of such equations, where NINT is the number of subintervals. 

We can rewrite the DAE system as 

G(t,y(t),i/(t)) = Ay;(t)-F(t,y(t)) = 0. (4.1) 

Here the matrix A represents the terms of the collocation equations that depend on 

y'(t). The top and bottom parts of F correspond to the boundary conditions and the 

middle part of F_ corresponds to the terms of the collocation equations that do not 

depend on y'(t). 

Application of a BDF as the time-stepping formula for the treatment of the above 

DAE system (4.1) gives a nonlinear system for which the corresponding Newton 

iteration is 

PD • Ayim\ = -
2-71+1 

AhtA^)-t{tn+^] (4.2) 
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where y(m+1) = y(m\ + /\y(m\ a is the coefficient of y in the BDF, hn+\ is the 
2-rc+l 2 - n + l 2-71+1' 2-n+l ' n + 1 

current timestep, and @ represents the part of the BDF that depends on known 

solution information from previous timesteps. PD, the Newton matrix, is 

^2 dg_ ^G__^t_ 4-^fi 
j dy' dy 3 dy' dy j dy' 

where c,- = -r^—. 
J "n + l 

The rows of the matrix A corresponding to the collocation equations that depend 

on components of y'{t) have the form: 

Bi&)I B2&)I ••• BNC(^)I 

where Bj(£i)I is a 2 by 2 diagonal matrix associated with the j th B-spline basis poly­

nomial evaluated at the Zth collocation point. The remainder of A has the following 

structure: 

1. The elements of the first two rows and the last two rows are zero (corresponding 

to the left boundary and right boundary conditions); 

2. Since the B-spline basis functions have small compact support, the A matrix 

has an ABD structure, as mentioned earlier. Every second row of each block in 
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the middle part of matrix A is filled with zeros, i.e., each block has the form: 

x 0 x 0 • • • x 0 

0 0 0 0 

V 0 0 0 0 

0 0 

x 0 x 0 • • • x 0 

0 0 
/ 

where the elements labeled x are usually non-zero values of the B-spline basis 

functions, and the zero rows correspond to collocating to the second equation 

(the ODE) of (1.2). 

One of the main modifications that needed to be made to BACOL was associated 

with handling the presence of these zero rows in the A matrix. 

The middle part of F_(t, y) has (NC — 2) x 2 components; the (21 + l)th and 

(21 + 2)th vector components (where I = 1, 2, • • • , NC — 2) are the right hand side of 

the Ith collocation equations, 

f(^i,t,u(^i,t),ux(^i,t),uxx(^,t)) 
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or 

Arc Arc NC 

\ i i i / 

(Note that here we are referring to the vector / tha t includes both the P D E and the 

ODE of the converted system.) 

Similarly the boundary condition components of F_{t, y) have the form 

Arc Arc 

M'.&i(*)B'(°)'E^*)B*(a) 

and 
JVC AfC 

ht U££(*)B«(6)'E^*W) 

..: dF The components of the matr ix -g= are obtained by differentiating the components 

of F_ with respect to the components of y. Therefore the top part of the Newton 

system (4.2) corresponding to the left boundary condition has the form: 

~1T (^ dv V - " 
m) 
+1 -h, 

where 

where 

dy 
9 h d h 

d 
dy 

NC 

8 r) ( NC NG ^ 

dy. dy. . , 
-3 -3 \ i = l ! = 1 
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becomes 

^BAa) + ^B'Aa), {a 2x2 matrix), 
ou oux

 J 

Since the B-splines have small compact support most of the top row of -g= consists 

of zero blocks except for the first few positions and most of the last block row of -g= 

is zero except for the last few positions. The bottom part corresponding to the right 

boundary condition is similar to the top part, shown above. 

The remaining rows of -7= are obtained by considering the derivative of the right 

hand side of the Zth pair of collocation equations with respect to y. The Zth block 

c OF • 

row of -̂ 7 is 

'—f ~f •• —f 
% - dy2- dy_NC-1 

and, in detail, the j t h component of the above block row is 

~ / JVC JVC JVC \ 

V-j V i=l i=l «=1 / 

Again since the B-splines have small compact support most of the entries in the 

Zth block row are zero except for those corresponding to B-spline functions that are 

non-zero near the collocation point £/. 
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4.2.2 Scaling of the Newton System 

When we try to solve the converted system, the Newton matrix, PD, turns out to be 

poorly conditioned. (We have observed this from our numerical experiments in which 

the condition number of the Newton matrix is reported.) We can see that in the 

DAE system (4.1) there are 4 algebraic constraints coming from boundary conditions 

together with NINT x (k — 2) algebraic constraints corresponding to collocation of 

the second equation in (1.2). From the paper [36], we know that if we do not scale the 

equations of the DAE system that correspond to the boundary conditions, i.e., if we 

do not scale the the algebraic equations of the DAE system, large condition numbers 

arise and BACOL fails due to the ill-conditioning of the corresponding Newton matrix. 

See [36] and references within for further discussion of this issue. 

Therefore our modified version of BACOL employs the technique discussed in [32] 

of scaling the Jacobian subblocks and right hand side elements corresponding to the 

algebraic constraints from the ODE and the boundary conditions by Cj. (Previously 

we defined as Cj = ^-9L-). Consider the top part of the Newton system corresponding 

to the left boundary condition as an example; recall that it has the form 

- 1 K:D - -*, 

We will replace this part of the Newton system by the scaled form 

-«t(A£0 - -<*• 
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The bottom part of the Newton system is treated in the same way; we get: 

- ^ f e ) ) = -c3bR. 
dy 

Every second component of the middle part of the Newton system corresponding to 

algebraic constraints from the ODE should be scaled by Cj as well. 

The general form of the Newton system is: 

3 dy V-n+1 ^(^-\^)-m+lJZ\) (4.3) 

As we know, every second row of the middle part of A is zero. Therefore the (2Z + 2)th 

row corresponding to the Ith collocation point £z is 

9/2(0) 
dy 

A y ^ ) = -/2(fi) 

becomes 

3 dy 
( A y W ) = -c,-/2(fi). (4.4) 

4.3 Summary of Modifications to BACOL 

From the discussion in the previous section, the efficient treatment of the converted 

system, (1.2), by BACOL requires that we handle two issues: (i) we have to deal with 

the fact that the equations arising from the application of collocation to the ODE 
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components of the converted system do not depend on the time derivative of the 

solution to the DAE system (and this means that every second row of the A matrix 

arising in (4.3) should consist of zero entries), and (ii) because of the absence of the 

time derivative in these equations, within the DAE system they represent algebraic 

equations, and it is well-known that the algebraic equations in a DAE system to be 

treated by DASSL must be scaled appropriately (this scaling was already present in 

BACOL for the boundary conditions). 

In order to modify BACOL to deal with these issues, an extensive study of the 

source code of the BACOL package was required. At the end of this analysis, it 

was found that a small but subtle set of modifications could be introduced to han­

dle the above issues. An important subtlety, that became apparent only after much 

careful investigation, is that the matrix A, actually plays two roles within BACOL. 

In addition to contributing to the Newton system - see (4.3) - it also plays the role 

of a projection matrix within the routine which performs an important initialization 

calculation at the beginning of the computation and an important reinitialization 

calculation after each remeshing performed by BACOL. The initialization involves 

projecting the initial solution onto the B-spline basis space to obtain the B-spline co­

efficients for the solution. The reinitialization involves projecting the current solution 

onto the B-spline basis associated with the new mesh so that the B-spline coefficients 

of the current solution can be obtained. An essential observation is that even for 

the converted system, the use of the matrix A in the initialization and reinitialization 

computations must be the same as it is in BACOL, whereas in the computation of the 
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Newton system (4-3), the A matrix arising there must have zero rows in certain loca­

tions, as explained in the previous subsection. Based on this observation, we realized 

that the A matrix should not be altered but rather the contribution to the Newton 

system from the A matrix needed to be modified so that the effect would be the same 

as if the A matrix did in fact have zero rows. 

Based on the analysis from the previous section and our careful investigation of 

the BACOL source code, we found there are two types of modifications involving 

three subroutines in the BACOL source code which needed to be changed to handle 

the second order mixed PDE/ODE system (1.2). 

The first modification is associated with the extra zero rows of the matrix A 

corresponding to the ODE. The purpose of this change is to handle calculations 

associated with the zeros in the matrix A. This modification involves two subroutines: 

CALJAC and CALRES, which interface with DASSL to handle the treatment of 

the Newton systems associated with the discretization of the converted PDE/ODE 

system. 

The second type of modification is associated with scaling the additional algebraic 

constraints arising from collocating the ODE part of the converted system. Two 

subroutines are required to be changed: CALJAC which scales the left hand side of 

the equation (4.4) and DDASLV which handles the scaling of the right hand side of 

the equation (4.4). 

We give detailed descriptions of the modifications in the Appendix. 
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Chapter 5 

Numerical Results for BACOL42 

In this chapter we present numerical results to explore the effectiveness of the modified 

version of BACOL, called BACOL42, that we described in the previous chapter. For 

comparison purposes we also provide results obtained by applying the original BACOL 

to the e version of each problem. 

We will consider five different time-dependent ID fourth order PDEs. We use GNU 

Fortran77 (GCC) 3.4.6 under the linux operation system (ubuntu 8.04) running on 

an HP 380DL G5 (processor speed 2.33 GHz). Section 5.1 discusses the simple test 

equation (2.12). In Section 5.2, we consider the numerical results for equation (2.13). 

The problem in Section 5.3 comes from thin film liquids (5.5). In Section 5.4, we apply 

the software to the Kuramoto-Sivashinsky Equation (2.7). Finally, in Section 5.5, we 

consider the Cahn-Hilliard Equation (5.10). For each of these problems, we first 

convert the fourth order PDE to a system of second order equations; that is, one 

second order PDE and one second order ODE as in (1.2); we also consider the e 
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version of each converted system as in (1.3). Second, we use BACOL42 and BACOL 

to solve the problem and plot the solution using MATLAB. Finally, we provide tables 

displaying the performance of both BACOL42 and BACOL for different values of 

KCOL and tolerance. In addition, for various tolerances and KCOL values, we give 

tables showing the L2-norm errors for both BACOL42 and BACOL for the first two 

problems, where we know the exact solution. The L2-norm errors are defined as 

V NINT +1 ' 

where uexact(x, t) is the exact solution at time t and uapprox(x, t) is the approximation 

solution at time t, and Xi is the ith mesh point. At the end of this chapter we discuss 

the results to compare the performances of BACOL42 and BACOL. 
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Note: 

In each section, we give a table showing how BACOL42 or BACOL (applied to the 

e version of the converted system) performs. In these tables we use the following 

symbols. 

• 1: BACOL42 or BACOL returns with the DASSL error condition 8: the itera­

tion matrix is numerically singular; 

• 2: BACOL42 or BACOL returns with the error message that the code has 

remeshed 20 times at t = 0 and failed to start; 

• 3: BACOL42 or BACOL returns with the DASSL error condition 7: the cor­

rector failed to converge repeatedly or the stepsize has been reduced to a set 

minimun, HMIN; 

• / : BACOL42 or BACOL returns and reports that it has solved the problem to 

within the requested tolerance; 

• —: BACOL42 or BACOL is unable to make a successful start at t = 0 but 

does not return with an error message as in 2 above. Rather the code continues 

to compute (for many hours) without making any progress. It appears that 

DASSL is making slow but sufficient progress that it does not encounter an error 

condition; however the computation proceeds very slowly despite not triggering 

an error condition. A closer examination of the detailed computations being 

performed would have to be undertaken to better understand what is happening 

in this case. 
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Also, atol is the absolute tolerance, rtol is the relative tolerance, and computations 

were done in double precision. 

5.1 Simple Test Problem One 

The first test problem, (2.12)), is the simple Fourth order linear PDE discussed in 

Section 2.7.1. The exact solution (see Figure 2.4) is 

u(x, t) = e~*sinx. 

Letting u\{x, t) = u(x, t) and U2(x, t) = (ui)xx(x, t), we convert the above equation 

to the following system: 

("l)t = -(U2)xx, 0 < X < 7T, t > 0, 

0 = (ui)xx — u2, 0 < x < IT, t > 0, 

u1(0,t) = u1(ir,t) = 0, t>0, 

U2(0,t)=U2(TT,t) = Q, t>0, 

Ui(x,0) = sinx, 0 < x < 7r, 

U2{x,0) = — sins, 0 < x < IT. 

(5.1) 

If we let KCOL = 2 and atol = rtol = 10 6, we can obtain the approximate 

solution in Figure 5.1 for 0 < x < IT and 0 < t < 1. 
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Figure 5.1: Approximate Solution of Example One from BACOL42 

BACOL42 can solve this equation for KCOL in the range from 2 to 10 (the 

maximum allowed in BACOL42) and for tolerances from 1CT3 to 10~7. When atol = 

rtol = 10~8, the condition number of the Newton iteration matrix becomes too large 

(as large as 1022) and BACOL42 reports that the iteration matrix is numerically 

singular. Further investigation would be required in order to better understand this 

issue. Sharper tolerances lead to meshes with many more subintervals which in turn 

leads to larger matrices; it may be the case that the condition numbers of these 

matrices grow with the number of subintervals. Table 5.1 displays how BACOL42 

works with the different values of KCOL and tolerance for Example One. From 

Table 5.2 we can see the relationship between the tolerance and the global error for 

BACOL for Example One. 
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Table 5.1: Performance of BACOL42 with different KCOL and tolerance values for 
Example One 

TOL 

1CT4 

10"5 

10"6 

lO"7 

10"8 

lO"9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

/ 

1 

1 

1 

3 

/ 

/ 

/ 

/ 

1 

1 

1 

4 

/ 

/ 

/ 

/ 

1 

1 

1 

5 

/ 

/ 

/ 

/ 

1 

1 

1 

6 

/ 

/ 

/ 

/ 

1 

1 

1 

7 

/ 

/ 

/ 

/ 

1 

1 

1 

8 

/ 

/ 

/ 

/ 

1 

1 

1 

9 

/ 

/ 

/ 

/ 

1 

1 

1 

10 

/ 

/ 

/ 

/ 

1 

1 

1 

Table 5.2: L2-Error Norms from BACOL42 for Example One 

TOL 

10"4 

i(r5 

1CT6 

lO"7 

KCOL 

2 

1.56E-04 

1.60E-05 

8.97E-07 

1.43E-07 

4 

1.58E-04 

1.34E-05 

1.03E-06 

1.55E-07 

6 

1.64E-04 

1.40E-05 

3.40E-06 

1.23E-07 

8 

1.57E-04 

1.60E-05 

1.42E-06 

3.55E-07 

10 

1.57E-04 

1.60E-05 

1.47E-06 

1.83E-07 
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In order to apply the original BACOL, we consider the approximate form of the 

system (5.1) 

(Ul)t = -(U2)xx, 0 < X < 7T, t>0, 

t(u2)t = (ui)xx -u2, 0 < x < ir, t>0, 

(5.2) 
ui(0,t) = «i(7r,i) = 0, t > 0, 

U2{Q,t) = U2{TT,t) = 0, t > 0 , 

«i(x, 0) = sinx, 0 < x < 7r, 

U2(x,0) = — sin:r, 0 < x < -n. 

We will choose e to have the same value as the tolerance for every case. (It is not 

clear how to choose e. It would appear that it should be chosen to be less than or 

equal to the tolerance but without knowing the exact relationship between the value 

of e and the difference between the solution to the original converted system and the e 

approximation to the converted system, it is hard to know how to choose e.) BACOL 

can solve (5.2) for KCOL in the range from 2 to 10 and for tolerances from 10~3 to 

10~6. Table 5.3 displays how BACOL works with the different values of KCOL and 

tolerance for Example One. Table 5.4 shows the relationship between the tolerance 

and the global error for BACOL for Example One. 
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Table 5.3: Performance of BACOL with different KCOL and tolerance values for 
Example One 

TOL 

10"4 

10"5 

10"6 

10-7 

10"8 

10-9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

3 

/ 

/ 

/ 

4 

/ 

/ 

/ 

5 

/ 

/ 

/ 

6 

/ 

/ 

/ 

7 

/ 

/ 

/ 

8 

/ 

/ 

/ 

9 

/ 

/ 

/ 

10 

/ 

/ 

/ 

Table 5.4: L2-Error Norms from BACOL for Example One 

TOL 

1CT4 

1(T5 

10"6 

KCOL 

2 

1.79E-04 

9.59E-06 

3.51E-06 

4 

1.75E-04 

1.27E-05 

3.86E-06 

6 

1.84E-04 

1.47E-05 

4.43E-06 

8 

1.84E-04 

1.46E-05 

2.03E-06 

10 

1.80E-04 

1.40E-05 

2.92E-06 
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5.2 Simple Test Prob lem Two 

The second example, (2.13), was introduced in Section 2.7.2. When 0 < x < n and 

0 < t < 0.6, the exact solution (see Figure 2.5) is 

u(x, t) = 0.3(cos(£) + 3) cos x. 

Here t is restricted to be less than -n. If this restriction is not met, then the coeffi-

sini U~ cient, — co
s
s'"^3, will be positive (Recall that the PDE has the form ut = — (^fcostj ^xxxx) 

Then the PDE will become unstable and thus difficult for any numerical software 

package to solve. 

We convert equation (2.13) into the following system: 

Mt = -^aMxx, 0<X<TT, t>Q, 

0 = (ui)xx - (u2), 0 < x < n, t>0, 

ui(x,0) = 1.2cos(x), 0 < x < IT, 

U2{x,0) = —1.2cos(x), 0 < x < IT, 

ui(0, t) = U2(TT, t) = 0.3(cos(t) + 3), t>0, 

ui(7T, t) = u2(0, t) = -0.3(cos(t) + 3), t > 0. 

(5.3) 

When KCOL = 2 and atol = rtol = 10 6, the approximate solution (0 < x < tr 

and 0 < t < 0.6) is plotted in Figure 5.2. 
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1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 
0 

Figure 5.2: Approximate Solution of Example Two from BACOL42 

Here we also provide Table 5.5 that displays how BACOL42 works with the dif­

ferent values of KCOL and tolerance for Example Two. We can see BACOL42 can 

solve this equation for KCOL in the range from 2 to 10 and for tolerances from 10~4 

to 10~9 (in some cases). From Table 5.6 we can see the relationship between the 

tolerance and the global error for BACOL42 for Example Two. ("NA" means that 

BACOL42 reports an error message and no solution is available.) 
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Table 5.5: Performance of BACOL42 with different KCOL and tolerance values for 
Example Two 

TOL 

10~5 

10"6 

10-7 

10"8 

10-9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

/ 

1 

1 

3 

/ 

/ 

/ 

/ 

/ 

1 

4 

/ 

/ 

/ 

/ 

/ 

1 

5 

/ 

/ 

/ 

/ 

/ 

1 

6 

/ 

/ 

/ 

/ 

/ 

1 

7 

/ 

/ 

/ 

/ 

3 

1 

8 

/ 

/ 

/ 

/ 

3 

3 

9 

/ 

/ 

/ 

/ 

3 

3 

10 

/ 

/ 

/ 

/ 

3 

1 

Table 5.6: L2-Error Norms from BACOL42 for Example Two 

TOL 

10"5 

i(r6 

10-7 

10"8 

10-9 

KCOL 

2 

1.98E-06 

8.53E-07 

2.29E-07 

4.82E-08 

NA 

4 

2.14E-06 

7.83E-07 

1.96E-07 

4.82E-08 

1.15E-08 

6 

1.38E-06 

7.28E-07 

1.80E-07 

4.08E-08 

9.63E-09 

8 

1.43E-06 

7.41E-07 

2.06E-07 

4.68E-08 

NA 

10 

2.33E-06 

8.55E-07 

2.12E-07 

4.95E-08 

NA 



In order to apply BACOL, we consider the following approximate form of the 

system (5.3) 

Mt = s'mt 
cos t+3 Mxx, 0 < X < IT, t > 0, 

(5.4) 

e(«2)t = (Ul)xx - ( t i2) , 0 < X < 7T, t > 0, 

Ui(x,0) = 1.2cos(x), 0 < x < ir, 

U2(x,0) = —1.2cos(x), 0 < x < -K, 

ux(0, t) = U2(-K, t) = 0.3(cos(£) + 3), t > 0, 

ui(ir, t) = u2(0, t) = -0.3(cos(i) + 3), t > 0. 

We let e be the same value as the tolerance for every case. BACOL can solve (5.4) 

for KCOL in the range from 2 to 10 and for tolerances from 10~3 to 10"9. Table 5.7 

displays how BACOL works with the different values of KCOL and tolerance for 

Example Two. Table 5.8 displays the relationship between the tolerance and the 

global error for BACOL for Example Two. 

71 



Table 5.7: Performance of BACOL with different KCOL and tolerance values for 
Example Two 

TOL 

1CT5 

icr6 

10-7 

lO"8 

10-9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

/ 

1 

1 

3 

/ 

/ 

/ 

/ 

/ 

4 

/ 

/ 

/ 

/ 

/ 

5 

/ 

/ 

/ 

/ 

/ 

6 

/ 

/ 

/ 

/ 

/ 

7 

/ 

/ 

/ 

/ 

/ 

8 

/ 

/ 

/ 

/ 

/ 

9 

/ 

/ 

/ 

/ 

/ 

10 

/ 

/ 

/ 

/ 

/ 

Table 5.8: L2-Error Norms from BACOL for Example Two 

TOL 

10~5 

1CT6 

io-7 

io-8 

10~9 

KCOL 

2 

4.21E-05 

2.03E-05 

5.26E-06 

1.33E-06 

NA 

4 

4.90E-05 

1.85E-05 

4.81E-06 

1.18E-06 

2.96E-07 

6 

3.18E-05 

1.71E-05 

4.23E-06 

9.90E-07 

2.15E-07 

8 

3.13E-05 

1.74E-05 

4.85E-06 

1.10E-06 

2.31E-07 

10 

5.38E-05 

2.01E-05 

4.98E-06 

1.06E-06 

2.41E-07 



5.3 Thin Film Equation 

This problem [3] comes from modeling thin film liquids. We discussed different 

types of thin-film equations in Section 2.3. The equation we selected, (2.6), has the 

following form, 

ut = -(u2uxxx)x, - 1 < x < 1, t > 0, (5.5) 

with the initial condition 

u{x, 0) = 0.8 - COS(TTX) + 0.25 COS(2TT:T), - 1 < x < 1, 

and the boundary conditions 

Mx(- l , i ) = u I ( l , t ) = 0, t > 0 , 

uxxx(-l, t) = uxxx(l,t) = 0, t > 0. 

The exact solution is not known for this equation. However, from [33] we know that 

when t approaches 0.0007302 the solution ceases to exist. 
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We convert Equation (5.5) to the following system: 

(Ul)t = -{(Ui)*(u2)x)x, - 1 < X < 1 , t > 0 , 

0=(ul)xx-U2, - 1 < X < 1, t > 0, 

(Ul)x( - l ,* ) = (Ul)x(M) = 0. * > 0 , 

( « 2 ) x ( - l , « ) = (W2)x( l ,«)=0, « > 0 , 

ui(x,0) = 0.8 - COS(TTX) + 0.25COS(2TTX), - 1 < x < 1, 

U2(x, 0) = IT2 C0S(7TX) — 7T2 COs(27Tx), —1 < X < 1. 

(5.6) 

With XCOL = 4 and atoi = rtol = 10"7, BACOL42 was used to solve the 

equation. The approximate solution is plotted in Figure 5.3 when 0 < t < 0.00073 

and 0 < x < 1. 

Figure 5.3: Approximate Solution of Example Three from BACOL42 

Table 5.9 displays how BACOL42 works with the different values of KCOL and 

tolerance for Example Three. 
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Table 5.9: Performance of BACOL42 with different KCOL and tolerance values for 
Example Three 

TOL 

10"5 

10"6 

lO"7 

10"8 

10"9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

1 

3 

3 

3 

/ 

/ 

/ 

/ 

3 

3 

4 

/ 

/ 

/ 

/ 

/ 

3 

5 

/ 

/ 

/ 

/ 

/ 

3 

6 

/ 

/ 

/ 

/ 

/ 

/ 

7 

/ 

/ 

/ 

/ 

/ 

/ 

8 

/ 

/ 

/ 

/ 

/ 

/ 

9 

/ 

/ 

/ 

/ 

/ 

/ 

10 

/ 

/ 

/ 

/ 

/ 

/ 

Application of BACOL requires the e version of (5.6) 

(Ui)t = -{[Ui)2{u2)x)x, -\<x<\, t>0, 

e(u2)t = Oi)xx - u2, - 1 < x < 1, t > 0, 

(u1)x(-l,t) = (ul)x(l,t) = 0, t>0, 

(u2)x{~l,t) = (u2)x{l,t) = 0, t>0, 

Ui(x,0) = 0.8 — cos(7rx) + 0.25cos(27rx), -Kx < 1, 

U2(:C, 0 ) = 7T2COs(7rx) — 7T2COs(27Tx), — 1 < X < 1. 

(5.7) 
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As before, we choose e = TOL. Table 5.10 displays how BACOL works with the 

different values of KCOL and tolerance for Example Three. It is interesting that 

BACOL can solve this problem with KCOL from 2 to 10 and tolerance from 10 - 5 to 

lO"10. 

Table 5.10: Performance of BACOL with different KCOL and tolerance values for 
Example Three 

TOL 

10"5 

10~6 

io-7 

lO"8 

IO"9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

/ 

/ 

/ 

3 

/ 

/ 

/ 

/ 

/ 

/ 

4 

/ 

/ 

/ 

/ 

/ 

/ 

5 

/ 

/ 

/ 

/ 

/ 

/ 

6 

/ 

/ 

/ 

/ 

/ 

/ 

7 

/ 

/ 

/ 

/ 

/ 

/ 

8 

/ 

/ 

/ 

/ 

/ 

/ 

9 

/ 

/ 

/ 

/ 

/ 

/ 

10 

/ 

/ 

/ 

/ 

/ 

/ 

5.4 Kuramoto-Sivashinsky Equation 

In section 2.3.1, we introduced the Kuramoto-Sivashinsky Equation (2.7). Recall this 

equation has the form: 

Ut = ~UUX - Uxx - Uxxxx, X € [0, 327T.] 
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The initial condition is 

«(s,0) = c o s ( ^ ) ( l + s i n ( ^ ) ) . 

The boundary conditions are 

u(0,t) = u{32-K,t) = l, t>0, 

uxx{0, t) = UXX(32TT, t) = -jp, t>0. 

We convert this fourth order problem to the following system: 

(ui)t = - u i O i ) x - {ui)xx - {u2)xx, 0 < x < 327r, t > 0, 

0 = (Ui)xx — U2, 0 < X < 327T, t > 0, 

u1(0,t) = (ul)(32Tr,t) = l, t>0, 
< 

u2(0,t) = (u2)(32ir,t) = - ^ , t>0, 

t*i(x, 0) = cos(^)( l + sin(§)), 0 < x < 32vr, 

u2(x, 0) = - ^ ( c o s ( ^ ) + 2sin(f)), 0 < x < 32TT. 

Using KCOL = 2 and atol = rtol = 10"6, when 0 < t < 1 and 0 < x < 32 

approximate solution is plotted in Figure 5.4. 
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Figure 5.4: Approximate Solution of Example Four from BACOL42 

We also considered different KCOL values (from 2 to 10) and tolerance values 

(from 10"5 to 10"10). Table 5.11 displays how BACOL42 works with the different 

values of KCOL and tolerance for Example Four. 

Table 5.11: Performance of BACOL42 with different KCOL and tolerance values for 
Example Four 

TOL 

icr5 

10"6 

lO"7 

lO"8 

lO"9 

1 0 - i o 

KCOL 

2 

/ 

/ 

/ 

1 

1 

1 

3 

/ 

/ 

/ 

1 

1 

1 

4 

/ 

/ 

/ 

1 

1 

1 

5 

/ 

/ 

/ 

1 

1 

1 

6 

/ 

/ 

/ 

1 

1 

1 

7 

/ 

/ 

/ 

1 

1 

1 

8 

/ 

/ 

/ 

1 

1 

1 

9 

/ 

/ 

/ 

1 

1 

1 

10 

/ 

/ 

-

1 

1 

1 
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We then applied BACOL to the e version of (5.8) 

(5.9) 

(iti)t = -ui{ul)x - (ui)xx - {u2)xx, 0 < x < 327T, t > 0, 

e(u2)t = {u\)xx -u2, 0 < x < 327T. t > 0, 

Ml(0, t) = (Ul)(327T, t) = 1, t > 0, 

U2(0,t) = (w2)(327r,t) = - i ^ , ^ > 0 , 

iti(x, 0) = cos(^)(l + sin(^)) , 0 < x < 32TT, 

u2(x,0) = - I i T ( cos (^ ) + 2sin( |)) ) 0 < X < 3 2 T T . 

When e = TOL, Table 5.12 displays how BACOL works with the different values 

of KCOL and tolerance for Example Four. 

Table 5.12: Performance of BACOL with different KCOL and tolerance values for 
Example Four 

TOL 

10"5 

10"6 

lO"7 

10"8 

10"9 

1 0 - i o 

KCOL 

2 

/ 

-

1 

1 

1 

3 

/ 

1 

1 

1 

1 

4 

/ 

1 

1 

1 

1 

5 

/ 

1 

1 

1 

1 

6 

/ 

1 

1 

1 

1 

7 

/ 

1 

1 

1 

1 

8 

/ 

1 

1 

1 

1 

9 

/ 

1 

1 

1 

1 

10 

/ 

1 

1 

1 

1 
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5.5 Cahn-Hilliard Equation 

The fifth problem [33] is the Cahn-Hilliard equation (2.6); we considered it in Sec­

tion 2.6: 

ut = -(0.001uxx + u - u3)xx, - 1 < x < 1, t > 0, (5.10) 

with the initial condition 

u(x, 0) = 0.1 COS(2TTX) + 0.02COS(IOTTX), - 1 < x < 1, 

and the boundary conditions 

ux(-l,t) = uxxx{-l,t) = 0, t > 0, 

Ux(l,i) = l ia^l,*) = 0, t > 0. 
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The converted system is: 

(iti)t = -lCr3(ii2)xx - {ui)xx + 6(«i)2ui + 3(«i)2(ui)a;a:, - 1 < x < 1, i > 0, 

0 = ( ^ l ) x x - « 2 , - 1 < X < 1, i > 0, 

Mx(-i,t) = Mx(i,t) = o, <>o, 

(«2)«(-M) = W»(M) = o, *>o, 

ui(x,0) = 0.1cos(27rx) + 0.02cos(107rx), - 1 < x < 1, 

u2(a;, 0) = -0.47T2 cos(27r.x) - 27r2cos(107rx), -1 < x < 1. 

(5.11) 

The approximate solution (0 < £ < 2.5 and — 1 < x < 1) is plotted in Figure 5.5 

when KCOL = 2 and atol = rtol = 10~6. 

Figure 5.5: Approximate Solution of Example Five from BACOL42 

In Figure 5.6, we can see the approximate solutions at t = 0.05,0.1,0.3,0.5. 

Table 5.13 displays how BACOL42 works with the different values of KCOL (from 

2 to 10) and tolerance (from 10~5 to 10^10) for Example Five. 

81 



Figure 5.6: Approximate Solutions at t = 0.05(top left), 0.1 (top right), 0.3(bottom 
left), 0.5(bottom right) from BACOL42 for Example Five 

Table 5.13: Performance of BACOL42 with different KCOL and tolerance values for 
Example Five 

TOL 

1CT5 

10"6 

io-7 

10"8 

i(r9 

1 0 - i o 

KCOL 

2 

/ 

/ 

2 

1 

1 

1 

3 

/ 

/ 

/ 

1 

1 

1 

4 

/ 

/ 

/ 

/ 

1 

1 

5 

/ 

/ 

/ 

/ 

1 

1 

6 

/ 

/ 

/ 

/ 

1 

1 

7 

/ 

/ 

/ 

/ 

1 

1 

8 

/ 

/ 

/ 

/ 

1 

1 

9 

/ 

/ 

/ 

/ 

1 

1 

10 

/ 

/ 

/ 

/ 

1 

1 

82 



The e version of (5.11) is 

(ui) t = - 1 0 3(u2)xx - (ui)xx + 6(ui)2ui + 3(«i)2(ui)x:c, - 1 < x < 1, t > 0, 

e(«2)t = ('Wl)xx - ^ 2 , -1 < x < 1, £ > 0, 

(u i )x ( -M) = (ui)*(M) = 0. t > 0 , 

M x ( - l , t ) = («2)i(l,t) = 0, t>0, 

Ul(x, 0) = 0.1 COS(2TTX) + 0.02 COS(IOTTX), -1 < x < 1, 

•u2(z, 0) = -0.47T2 cos(27rx) - 2ir2 cos(107rx), - 1 < x < 1. 

(5.12) 

Table 5.14 displays how BACOL works with the different values of KCOL (from 

2 to 10) and tolerance (from 10 - 5 to 10~10) for Example Five. 

Table 5.14: Performance of BACOL with different KCOL and tolerance values for 
Example Five 

TOL 

10"5 

io-6 

lO"7 

10"8 

10"9 

1 0 - i o 

KCOL 

2 

/ 

/ 

1 

3 

3 

/ 

/ 

/ 

-

4 

/ 

/ 

/ 

/ 

5 

/ 

/ 

1 

-

6 

/ 

1 

1 

-

7 

/ 

1 

1 

/ 

8 

/ 

1 

/ 

/ 

9 

/ 

1 

/ 

/ 

10 

/ 

1 

/ 

/ 
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5.6 Conclusion 

From Table 5.1, Table 5.5, Table 5.9, Table 5.11, and Table 5.13, we can see that 

BACOL42 can solve the problems with tolerances greater than or equal to 10~7, and 

for some problems, the tolerance can be smaller than 10~7. The range of the value of 

KCOL is from 2 to 10. From Table 5.3, 5.7, 5.10, 5.12, 5.14, we can conclude that 

BACOL can solve these five examples with tolerances greater than or equal to 10~5 

with the range of KCOL from 2 to 10. 

In Table 5.2 and Table 5.4, almost all the values of the global errors are a little 

greater than tolerance, but they are the same order of magnitude. The errors in 

the first two rows of Table 5.6 corresponding to TOL = 10~5 and TOL = 10~6 

are less than the tolerance. When the tolerance is greater than TOL = 10~6, the 

global errors become a little greater than the tolerances but is the same order of 

magnitude. All the error values in Table 5.8 are greater than the tolerances. We 

can conclude that BACOL42 is comparatively better than BACOL applied to the e 

version of the problem. (We acknowledge that the appropriate choice of e requires 

further investigation.) 

Comparing Table 5.1, 5.5, 5.9, 5.11, 5.13 with Table 5.3, 5.7, 5.10, 5.12, 5.14, 

generally we can see that BACOL42 can solve problems to higher accuracy than 

BACOL can. For some cases, BACOL can solve the problem for a greater range of 

KCOL values. These conclusions depend on how the value of e affects the solution 

of the e form of the converted system. We acknowledge that further analysis of this 

question is required before we can make more concrete comparisons between these 
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two approaches. 

For each test problem, we provided a uniform initial mesh with NINT = 10. 

BACOL42 and BACOL then attempt to adapt the number of subintervals to meet 

the requested tolerances using as few subintervals as possible. The values of NINT 

vary for different values of KCOL and tolerance. The range of NINT values we 

have seen varies from less than 10 to several hundred. Usually when the requested 

tolerance is smaller, NINT will be relatively large. And NINT values for larger 

KCOL values (greater than 5) are usually smaller than for smaller KCOL values. 

Also the difficulty of the problem can lead to the larger NINT values. 

For example, the following NINT values were used for the final meshes (atol = 

rtol = 10-6, KCOL = 6). 

Problem Number 

Final NINT 

1 

10 

2 

10 

3 

12 

4 

16 

5 

84 

85 



Chapte r 6 

Numerical Solution of Four th 

Order P D E s with pdepe and 

MOVCOL4 

The codes pdepe and M0VC0L4 do not have spatial error control and thus cannot be 

compared directly with codes that do provide spatial error control, such as BACOL42. 

A fundamental issue with pdepe and MOVCOL4 is that it is essentially impossible to 

know how many mesh points should be provided in order to obtain a desired accuracy. 

In the case of pdepe it is also impossible to know where the mesh points should be 

located; in fact it is likely that the locations of the mesh points would need to change 

with time, and pdepe is incapable of doing this, so in general one would need to 

provide an initial mesh that is as fine as it will need to be for the entire time interval. 

A detailed comparison of BACOL42 with pdepe or MOVCOL4 is therefore beyond 
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the scope of this thesis. 

In this chapter, we provide numerical results for pdepe and MOVCOL4 to ex­

plore their use in the numerical solution of some fourth order PDEs. For pdepe and 

MOVCOL4, we choose the initial uniform mesh to have at least as many points as 

BACOL42 required to solve the same problem. After meeting this constraint, the 

choice of NINT for pdepe and MOVCOL4 was made some what arbitrarily. (Since 

neither code performs spatial error control, the determinination of an optimal value 

of mesh points is actually somewhat difficult and such an investigation is beyond 

the scope of the thesis.) We will expect to see only approximate agreement with 

the error controlled results from BACOL42. The primary point of this chapter is to 

demonstrate the use of these other packages on some of the standard test problems. 

We recall that MOVCOL4 can be applied directly to fourth order PDEs but that 

pdepe is designed to handle coupled systems of second order time-dependent PDEs 

and elliptic problems in 1-dimension. The converted system form (1.2) that we have 

employed for BACOL42 can also be described in this way. That is the equation 

(ui)xx — U2 = 0 that we have called an ODE in space can also be called a ID elliptic 

problem. 
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6.1 Example One 

In this section, we apply pdepe and MOVCOL4 to Equation (2.12) discussed in Sec­

tion 2.7.1. Recall that the PDE has the form 

l^t ^XXXX' 

• pdepe 

The converted system form (5.1) we used for BACOL42 is the form that must be 

provided to pdepe. We chose the number of initial mesh points to be 21; when 

atol = rtol = 10"6, 0 < x < ir and 0 < t < 1, the approximate solution is plotted in 

Figure 6.1. 

Figure 6.1: Approximate Solution of Example One from pdepe 

• MOVCOL4 

MOVCOL4 can solve equation (2.12) directly with 21 mesh points and the ap­

proximate solution is plotted in Figure 6.2 when 0 < x < 7r, 0 < £ < 1, and 
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atol = rtol = 10"6. 

Figure 6.2: Approximate Solution of Example One from MOVCOL4 

6.2 Example Two 

This example (see Section 2.7.2) has the form 

ut 

sint 
3 + cos t ur 

pdepe 

We must use the converted system (5.3) in order to use the solver pdepe. When 

atol = rtol = 10~6, 0 < x < n and 0 < t < 0.6, 51 mesh points are employed to solve 

the problem. The approximate solution is plotted as Figure 6.3. 
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Figure 6.3: Approximate Solution of Example Two from pdepe 

• MOVCOL4 

With atol = rtol = 10 - 6 , we applied MOVCOL4 using 10 mesh points and the 

approximate solution (0 < x < ir and 0 < t < 0.6) obtained is plotted in Figure 6.4. 

Figure 6.4: Approximate Solution of Example Two from MOVCOL4 
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6.3 Example Three 

The third problem was introduced in Section 5.3. The equation has the following 

form, 

Ut = —{u^uxxx)x. 

• pdepe 

The converted system of (5.5) is required in order to use the solver pdepe. When 

atol = rtol = 10~6, — 1 < x < 1, and 0 < t < 0.0007, the approximate solution 

obtained is plotted in Figure 6.5. 101 mesh points were used. 

Figure 6.5: Approximate Solution of Example Three from pdepe 
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• M0VC0L4 

We have atol and rtol both equal to 10~6. We use the sample driver program provided 

with M0VC0L4 to solve the PDE starting with 257 uniformly spaced mesh points 

(This number of the mesh points is set in the driver program provided by the authors). 

The approximate solution we obtain is plotted in Figure 6.6 when — 1 < x < 1 and 

0 < t < 0.0007. 

Figure 6.6: Approximate Solution of Example Three from MOVCOL4 

6.4 Example Four 

This example (see Section 5.4) has the form 

t — x xx xxxx' 
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• pdepe 

We rewrite the equation in the converted system form (5.8) in order to use the solver 

pdepe. When atol = rtol = 10~6, 0 < x < 32TT and 0 < t < 1, 51 mesh points are 

employed to solve the problem. The approximate solution is plotted in Figure 6.7. 

. : • " > * 
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Figure 6.7: Approximate Solution of Example Four from pdepe 

• MOVCOL4 

With atol = rtol = 10 6, we applied 51 mesh points to MOVCOL4, the approximate 

solution (0 < x < 32TT and 0 < t < 1) obtained is plotted in Figure 6.8. 
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Figure 6.8: Approximate Solution of Example Four from MOVCOL4 

6.5 Example Five 

The fourth example which was described in Section 5.5 has the form 

ut = -(O.OOlu^ + u- v?)xx. 

When we tried to apply pdepe to solve this problem with several different choices for 

the initial number of (uniformly spaced) mesh points, such as 21, 51, 101 and 501, an 

error message was returned: "Warning: Failure at t=8.324973e-003. Unable to meet 

integration tolerances without reducing the step size below the smallest value allowed 

. MOVCOL4 

For this problem, a uniform initial mesh of 50 subintervals was employed; the nu­

merical solution remains almost the same when the number of the mesh points is 
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increased from 21 to 101 [33]; the absolute tolerance and the relative tolerance both 

are 10~6; the approximate solution is plotted in Figure 6.9 for t = 1. 

Figure 6.9: Approximate Solution of Example Five from MOVCOL4 

In Figure 6.10, we can see the approximate solutions at t = 0.05,0.1,0.3,0.5 more 

clearly. 
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Figure 6.10: Approximate Solutions at t = 0.05 (top left), 0.1 (top right), 0.3 (bottom 
left), 0.5 (bottom right) from MOVCOL4 of Example Five 
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6.6 Summary 

In this chapter, we have applied both pdepe and M0VC0L4 to solve five problems 

which were already solved by BACOL42 in Chapter 5. From Figure 6.1, Figure 6.2, 

and Figure 5.1, we can see that all three solutions are in close agreement. Similar 

comments hold for the second example as seen in Figure 6.3, Figure 6.4, and Fig­

ure 5.2, for the third example as seen in Figure 6.5, Figure 6.6, and Figure 5.3, and 

for the fourth example as seen in Figure 6.7, Figure 6.8 and Figure 5.4. Although 

pdepe cannot solve (5.10), Figure 6.9, 6.10, and Figure 5.5, Figure 5.6 of the fifth 

example show that MOVCOL4 and BACOL42 are in close agreement. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The thesis makes a number of contributions: 

• We have provided a review of applications in which fourth order PDEs arise. 

• We have reviewed standard algorithms for solving PDEs and surveyed a number 

of current popular PDE solvers. 

• We have explored an approach that involves converting the fourth order PDE 

to a coupled system which contains one second order PDE and one second or­

der ODE (in space). Two different treatments are discussed in the thesis: One 

approach involves the solution, using standard software (BACOL), of an approx­

imate form of the converted system (the e-version of the problem). The second 

approach treats the converted system directly and involved the development of 

BACOL42, an extension of BACOL that can solve fourth order parabolic PDEs 
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with adaptive error control. This approach also represents a first attempt at 

the development of a version of BACOL that can handle coupled PDE/ODE 

systems. We have considered five different test problems. The numerical results 

illustrate that BACOL42 can solve all test problems to tolerances greater than 

or equal to 10~7, and the global error results show that BACOL42 does control 

the spatial error well. 

• This thesis also provides a brief investigation of the application of four software 

packages (using three different approaches: the direct treatment of the fourth 

order problem, the direct treatment of the converted system, and the treatment 

of the approximate form of the converted system - the e version of the converted 

system) for the numerical solution of several fourth order PDE test problems. 

7.2 Future work 

Three possible projects for future study are as follows: 

• In some of the numerical results, we observed that BACOL42 can only solve 

problems to within a tolerance of 10~7. We have not been able to get BACOL42 

to work with very sharp tolerances. Despite the scaling we have introduced, it 

appears that there is still a conditioning issue. Future work involves further 

investigation of this issue. 

• The current version of BACOL42 can only handle one fourth order parabolic 

PDE. However, some PDE models involve systems of fourth order PDEs or 
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fourth order PDEs coupled with second order PDEs. In addition, we also as­

sume that there are two left boundary conditions and two right boundary con­

ditions. When the number of boundary conditions is not the same at each end, 

BACOL42 cannot handle the problem. Therefore another example of future 

work is to extend the software to handle systems of fourth order PDEs without 

this restriction on the boundary conditions. 

• Instead of solving the converted system, it would be interesting to see if one 

could develop a version of BACOL that can handle fourth order PDEs directly. 

The difficulty will be how to handle uxxx and uxxxx. The continuity of the 

B-spline representation of the approximate solution will have to increase from 

C2 to C4. This will change how the B-spline basis represents the approximate 

solution and it may impact on the ABD structure of the Newton matrices that 

arise. 

• We use the approximate solution of the e version of the converted system for 

comparison purposes, but we do not have a result relating the solution of the 

e version of the converted system and to that of the original converted system. 

Thus another area for further investigation might be conduct an analysis to 

establish the relationship, as a function of e, between 

(ui)t = f(x, t, uu (ui)x, {ui)xx, (u2)x, {u2)xx), 

I 0 = {ui)xx ~u2, 
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and 

(Ul)t = f(t, X, Ui, (Ui)x, (Ui)xx, (U2)x, (U2)xx), 

< 

e(u2)t = (ui)xx - u2, 

including any possible boundary layers. 
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Appendix 
In the appendix, we will give the detailed information about the modifications in 

the three subroutines: CALJAC, CALRES, and DDASLV. 

l. CALJAC 

The subroutine CALJAC computes the Jacobian matrix for the Newton iter­

ation at the current time; that is, it computes PD= [CjA — -§=), the matrix 

appearing in the left hand side of (4.3). 

The first modification in CALJAC involves scaling the algebraic equations aris­

ing from collocating the ODE part of the converted system (1.2). The following 

code segment computes one npde x npde block of PD, corresponding to the 

collocation equations in one subinterval. 

The original code which computes the values of — -g= for one subinterval is 

do 40 m = 1, npde 

do 30 n = 1, npde 

c nn is the pointer to the (n, m) element of the 

c npde by npde submatrix. 

nn = kk + (m-l)*npde*kcol + n 

c mn is the pointer to the (n, m) element of dfdu. 

mn = idfdu - l + ( m - l ) * npde + n 

c mn2 is the pointer to the (n, m) element of dfdux. 

mn2 = mn + npde * npde 

c mn3 is the pointer to the (n, m) element of dfduxx. 

mn3 = mn2 + npde * npde 
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c now set up the derivative of F with respect to 

c y at nn. 

pd(nn) = - work(mn) * fbas i s ( jk ) 
& - work(mn2) * fbas is ( jk2) 
& - work(mn3) * fbas is ( jk3) 

30 continue 
40 continue 

kk + 1 is the pointer to the first element of one of the npde by npde subma-

trixes of PD. idfdu is a pointer to the work array where the ^ , ^ - , and -^f-

values are stored, f basis is an array where values of the B-spline functions 

(stored beginning at fbasis(jk)) and their first derivatives (stored beginning 

at fbasis(jk2)) and second derivatives (stored beginning at fbasis(jk3)) are 

stored. 

In the new code, we need to perform the scaling indicated on the left hand side 

of (4.4). We are assuming npde = 2 and will treat the two inner loop iterates 

separately. 

do 40 m = 1, npde 

c no need to use the inner loop, treat n=l and n=2 

c separately 

c update of PD stays the same for 

n=l 

c nn is the pointer to the (n, m) element of the 

c npde by npde submatrix. 

nn = kk + (m-l)*npde*kcol + n 

c mn is the pointer to the (n, m) element of dfdu. 

mn = idfdu - 1 + (m - 1) * npde + n 
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c mn2 is the pointer to the (n, m) element of dfdux. 

mn2 = mn + npde * npde 

c mn3 is the pointer to the (n, m) element of dfduxx. 

mn3 = mn2 + npde * npde 

c now set up the derivative of F with respect to 

c y at nn. 

pd(nn) = - work(mn) * fbasis(jk) 

& - work(mn2) * fbasis(jk2) 

& - work(mn3) * fbasis(jk3) 

c scale the left hand side by cj for 

n=2 

c nn is the pointer to the (n, m) element of the 

c npde by npde submatrix. 

nn = kk + (m-l)*npde*kcol + n 

c mn is the pointer to the (n, m) element of dfdu. 

mn = idfdu - 1 + (m - 1) * npde + n 

c mn2 i s the po in te r to the (n, m) element of dfdux. 
mn2 = mn + npde * npde 

c mn3 i s the poin ter to the (n, m) element of dfduxx. 
mn3 = mn2 + npde * npde 

c now sca le the de r iva t ive of F with respect to 
c y by cj at nn. 

pd(nn) = - cj*(work(mn) * fbas i s ( jk ) 
& + work(mn2) * fbas is ( jk2) 
& + work(mn3) * fbas i s ( jk3) ) 

40 continue 

The second modification of CALJAC is associated with the presence of zeros 

in the subblocks of the A matrix, corresponding to the ODE part of (1.2). We 

skip even rows in the update of PD. 

The original code which adds CjA to — -g= is 
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call daxpy(nint*nsizbk, cj, abdblk, 1, pd(ipdblk), 1) 

In the new CALJAC we must not add CjA to — -g= for the even rows of A. The 

modification is 

c skip every second row, because we must not add on cj*A 

call daxpy(nint*nsizbk/2, cj, abdblk, 2, pd(ipdblk), 2) 

Note here that 2 is the increment (the last argument to DAXPY), so every 

second row in the update of PD is skipped. 

2. CALRES 

The subroutine CALRES generates the residual 

G(t,y(t),i/(t)) = Ay[{t) - F(t,y(t)) = 0, 

at the current time, t. As indicated earlier, the general form of the Newton 

system is: 

cA_?f)Ay(m) 
3 dy J -n+1 

A{l^«lt +/?)-£('»+•,«) 

In CALRES the residual is stored in the array delta and CALRES must com­

pute the right hand side of the above equation. The original code to calculate 

delta is 
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do 70 i = 1, nint 

do 60 j = 1, kcol + nconti 

do 50 k = 1, kcol 

kk = l+(i-l)*npde*npde*kcol*(kcol+nconti) 

& +(j-1)*npde*npde*kcol+(k-1)*npde 

do 40 i = 1, npde 

ii = npde+(i-l)*npde*kcol+(k-l)*npde+m 

mm = (i-l)*kcol*npde+(j-l)*npde+m 

delta(ii) = delta(ii) + abdblk(kk) * yprime(mm) 

40 continue 

50 continue 

60 continue 

70 continue 

Note that before the calculation, delta contains evaluations of the function / at 

the collocation points; after the calculation, delta contains the residual of the 

DAE system; i.e., the right hand side of the Newton system given above. The 

array abdblk stores the elements of the nint blocks in the middle of the ABD 

collocation matrix, yprime is the derivative of y with respect to time at the 

current time, y is the vector of B-spline coefficients at the current time, and 

nconti = 2 is the number of continuity conditions at each internal mesh point. 

Because every second row of the middle part of matrix A is zero, we need to 

skip those lines when updating the residual. In BACOL42, we only consider 

one single fourth order PDE (npde=2), so we change the loop 

do 40 m = 1, npde 

to 

do 40 i = 1, 1 

so that only the first element in each subvector of delta is updated. 
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3. DDASLV 

The subroutine DDASLV is part of the DDASSL package; it handles the linear 

systems arising in the Newton iteration performed by DDASSL. We perform 

the scaling on the left hand size of Equation (4.4) in CALJAC. In DDASLV we 

need to scale the right hand side of equation (4.4) by Cj, i.e., scale the residual 

corresponding to the ODE in order to improve the conditioning. The compo­

nents of the residual corresponding to the boundary conditions were already 

scaled in the original BACOL. 

This is the original code 

c kcol (numerical solution) 

c scale the right hand side of the Newton system corresponding 

c to the left boundary conditions 

call dscaKnpde, c j , delta, 1) 

c scale the right hand side of the Newton system corresponding 

c to the right boundary conditions 

c a l l dscaKnpde, cj , del ta(neql-npde+l) , 1) 

c solving the linear system 

call crslve(wm(npd), npde, 2*npde, wm(npdbkl), kcol*npde, 

& (kcol+nconti)*npde, nint, wm(npdbtl), npde, 

& iwm(lipvt), delta, 0) 

c 

c kcol+1 (compute the e r ro r est imate) 

c a l l dscaKnpde, cj , de l t a (neq l+ l ) , 1) 
c a l l dscaKnpde, cj , delta(neq-npde+1), 1) 

c a l l crslve(wm(npdtp2), npde, 2*npde, wm(npdbk2), 
& (kcol+1)*npde, (kcol+l+nconti)*npde, n i n t , 
& wm(npdbt2), npde, iwm(lipvt2), d e l t a ( n e q l + l ) , 0) 
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and after introducing scaling of the ODE collocation equations, we get 

c kcol (numerical solution) 

c scale the right hand side of the Newton system corresponding 

c to the left boundary conditions 

call dscal(npde, cj, delta, 1) 

c scale the right hand side of the Newton system corresponding 

c to the second equation 

call dscal(npde*kcol*nint/2, cj, delta(npde+2), 2) 

call dscal(npde, cj, delta(neql-npde+l), 1) 

c solving the linear system 

call crslve(wm(npd), npde, 2*npde, wm(npdbkl), kcol*npde, 

& (kcol+nconti)*npde, nint, wm(npdbtl), npde, 

& iwm(lipvt), delta, 0) 

c 

c kcol+1 (compute the error estimate) 

call dscal(npde, cj, delta(neql+l), 1) 

c scale the right hand side of the Newton system corresponding 

c to the second equation 

call dscal(npde*(kcol+1)*nint/2, cj, delta(neql+4), 2) 

call dscal(npde, cj, delta(neq-npde+l), 1) 

call crslve(wm(npdtp2), npde, 2*npde, wm(npdbk2), 

& (kcol+1)*npde, (kcol+l+nconti)*npde, nint, 

& wm(npdbt2), npde, iwm(lipvt2), delta(neql+l), 0) 

Note that subroutine dscal scales delta by a constant cj. The last argument is 

the increment; it is 2 because we apply the scaling only to the even components 

of delta. The first and the last calls to dscal in both kcol case and kcol + 1 case 

represent scaling of boundary conditions, and are unchanged. 
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