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ABSTRACT 

Investigating the effects of modified oil synthesis genes on carbon and nitrogen 
partitioning in Arabidopsis thaliana 

By Christopher Fitzner 

In recent decades, there has been a dramatic shift in the balance of the natural 
carbon cycle brought upon by increased anthropogenic greenhouse gas emissions (GHG); 
most notably, carbon dioxide (CO2). Biofuels may play a significant role in the 
preservation of the environment by providing a means of GHG mitigation, as well as a 
cleaner, renewable energy source. 

In this experiment, knock-down mutants of Arabidopsis thaliana expressing 
reduced seed oil content (S-5 -25.77%; S-6 -24.89%; AS11-31.23%) were used to 
determine whether genetically modified oil synthesis genes affected carbon (C) and 
nitrogen (N) partitioning within the plant. Molecular analyses of bacterial communities in 
the rhizosphere were also conducted. 

Results showed dramatic changes in the progression though specific 
developmental stages among the S-5 and S-6 genotypes, as well some changes in normal 
C and N partitioning. It was also observed that the microbial ecology of the surrounding 
rhizosphere was altered resulting from genetic modification. 

September, 2010 
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1.0 INTRODUCTION 

In recent decades, there has been a dramatic shift in the balance of the natural 

carbon cycle brought upon by increased anthropogenic greenhouse gas emissions (GHG); 

most notably, carbon dioxide (CO2). This has affected our climate and as a result our 

environment. Reported impacts include the sudden loss of habitats and species (Thomas 

et al. 2006), accelerated melting of icecaps at the north and south poles (Overpeck et al. 

2006), as well as many health and food security issues (McMichael, 2001; Parry et al. 

2004). Because of this, it has become increasingly apparent that biofuels may play a 

significant role in the preservation of the environment by providing a means of GHG 

mitigation, as well as a cleaner, renewable energy source. 

Petroleum dependence can be partially offset by the addition of biofuels derived 

from several oilseed species such as soybean (Glycine max), canola (Brassica napus), and 

sunflower (Helianthus annuus) (Yuan et al., 2008). The advantages of utilizing plant 

based fuels stems from their ability to absorb CO2 from the atmosphere, and convert it 

into a source of renewable energy. Since biofuel feedstocks have the ability to capture 

carbon (fossil fuel) from the atmosphere and act as a carbon sink, it can be possible to 

have a carbon neutral (carbon released = carbon absorbed) source of energy (Yuan et al., 

2008). Some biofuels, such as bio-ethanol, require only minor hardware modifications in 

existing engines, making it a convenient alternative to fossil fuel. 

Since 2002, biodiesel production has increased nearly 15-fold in the U.S., and is 

currently driving the prices of soy, canola and sunflower oil up to record high prices 

(Durrett et al. 2008). This has indirectly caused food prices to rise and sparked debate 
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regarding the displacement of land used for food, in exchange for land used for fuel 

(Searchinger, et al. 2008). Research on the combustion of fatty acid methyl esters 

(FAME) biodiesel in northern countries showed many cold-flow problems which caused 

engine failure and poor performance due to solidification (Dunn et al. 1996). Other issues 

with current first-generation biofuels include relatively low yield and high production 

costs that actually result in a net gain of C0 2 into the atmosphere (Mittelbach et al. 1992; 

Canakci and Van Gerpen, 2001; Kazancev, 2006). 

Recent studies (Katavic et al. 1995; Zou et al. 1999; Jako et al. 2001; Cernac & 

Benning, 2004) have focused on improving biofuel feedstock so that these limitations can 

be resolved. Much of this work relies on the genetic modification of oil synthesis, plant 

growth, and development. The majority of this work is conducted on the model species 

Arabidopsis thaliana, which has been highly instrumental in our current understanding of 

seed oil synthesis and the genetic control of such processes. Arabidopsis' role as a model 

organism in biofuel production is related to its high seed oil content (comparable to other 

commercial biofuel feedstocks) and the close genetic relationship to Brassica, a very 

important commercial oil crop used in biofuel production (Baud & Lepiniec, 2009). 

A significant step in genetic research was accomplished in 2000 by fully mapping 

the genome of Arabidopsis (Arabidopsis Genome Initiative, 2000) which has allowed for 

the discovery of dozens of gene functions including oil synthesis, disease resistance, and 

others that code for root growth, chlorophyll production and the development of 

reproductive organs (Bouche et al. 2001). An important study by Katavic et al. (1995) 

created a novel Arabidopsis mutant (AS11) with an average seed oil content o f - 3 1 % -
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approximately 75% of average wild type Arabidopsis (Katavic et al. 1995). These 

"knock-down" mutants have been integral in highlighting important genes involved in 

seed oil synthesis. By identifying and suppressing genes involved in oil production, 

scientists can first observe the effects of reduced oil synthesis before taking the next step 

towards over-expressing these genes in an attempt to increase oil production. 

The intent of the research presented here is to observe the effects of genetic 

modification of oil synthesis genes on three mutant genotypes of Arabidopsis that have 

genetically altered oil content (S-5 -25.77%; S-6 -24.89%; AS11-31.23%) and compare 

the results to a wild type (WT~35-37%) control. The objectives are to observe the effects 

of gene modification on secondary functions such as carbon and nitrogen partitioning; to 

explore the soil microbiology of the rhizosphere of these plants and determine if it is 

altered as a result of the genetic modification. Molecular DNA fingerprinting via terminal 

restriction fragment length polymorphism (T-RFLP) is used to assess whether there are 

changes in rhizosphere microflora resulting from changes in carbon exudation that may 

occur as a result of changes in C and N partitioning caused by genetic modification of oil 

synthesizing genes. 

It is hypothesized that modification of genes involved with seed oil synthesis will 

alter the pattern of C and N partitioning among shoots and roots; and will be most 

pronounced during the seed filling and maturation stages of development. It is during this 

time that triacylglycerol (TAG) synthesis uses carbon from various plant tissues for seed 

filling, therefore, the knock-down mutants may show a significant reduction in carbon 

transfer to the seeds, in comparison to a wild-type control. It is unknown whether there is 
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a change in C/N rhizodeposition as a result of gene modification. Since carbon exudation 

from roots represents a significant factor in microbial proliferation, it is of great 

importance to understand how genetic manipulation could impact the surrounding 

microflora through increased or decreased rhizodeposition. 

The results obtained from this study can be used to assess the potential impacts of 

altering these genes on other biofuel feedstocks such as Brassica. It is also important to 

observe whether there are significant changes in carbon and nitrogen exudation as a result 

of this genetic modification, as it may disrupt the symbiotic relationship with plant 

growth promoting microorganisms in the surrounding soil. Previous research has shown 

that increasing C compounds in the rhizosphere may be an undesirable trait as it can 

enhance competition for nutrients, and likely increase the prevalence of pathogens (Jones 

et al. 2004). In addition, phenotypic alterations resulting from genetic modification could 

affect plant growth and development (Boyes et al. 2001). Reduced root system may 

impede the growth of the plant by restricting the amount of nutrients being taken up 

through the roots, and inhibit the ability to effectively search out sources of water. There 

may also be changes in the progression of growth stages, such as delayed maturation, 

which would be undesirable for biofuel feedstocks. 



5 

2.0 LITERATURE REVIEW 

The following section highlights the issues currently being faced regarding our rapidly 

changing environment, depleting fossil fuel reserves, and the use of biofuel as an 

alternative energy source. All points are considered, including many of the negative 

problems associated with biofuel use, and ways in which scientists are utilizing genetics 

engineering as a means of improving their viability. 

2.1 Global Warming 

According to the Intergovernmental Panel on Climate Change (IPCC, 2007), the 

global atmospheric concentrations of carbon dioxide, methane, and nitrous oxide are at 

their highest since 1750, and far exceed the pre-industrial values determined by ice core 

data from the past several thousand years. These greenhouse gasses absorb outgoing 

infrared radiation, which results in the raising of Earth's temperature; this is more 

commonly known as the greenhouse effect. CO2 remains as the principle anthropogenic 

gas that is thought to affect the Earth's radiative balance, with the combustion of fossil 

fuels as a main contributor (IPCC, 2007). Although there is still some debate whether or 

not human influence can be solely responsible for global warming (Florides & 

Christodoulides, 2009), the effects of increased CO2 should not be ignored. 
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2.1.1 Glacial melting 

Recent studies on the Greenland and Antarctic ice shelves has provided some 

startling results regarding the rate at which they are currently receding (Darnis et al., 

2007; IPCC, 2007; Ramanathan & Feng. 2009). According to the IPCC (2009), average 

arctic temperatures increased at almost twice the global average rate in the past 100 

years. As a result, satellite data since 1978 show that annual average arctic sea ice extent 

has shrunk by 2.7 (2.1 to 3.3) % per decade, with larger decreases in summer of 7.4 (5.0 

to 9.8)% per decade. In addition, global average sea level rose at an average rate of 1.8 

(K3 to 2.3) mm per year over 1961 to 2003. The rate was faster over 1993 to 2003: about 

3.1 (2.4 to 3.8) mm per year (IPCC, 2007). 

Research by Maslanik and colleagues (1996) show a nearly continuous, below 

normal summer sea ice coverage since 1990, with the decrease accelerating over the 

period 1987-1994. The extent of the ice pack was reduced by 9% in 1990-1995 

compared with 1979-1989. In the Antarctic; of the nine ice shelves examined, the five 

most northerly shelves have retreated dramatically between 1945 and 1995 (Vaughan & 

Drake, 1996). Glaciers in the European Alps have lost 30-40% of their surface area and 

approximately half their volume since the mid-1800s, with an additional loss of 10-20% 

of their remaining volume since 1980. Since the late 1980s, warming of alpine permafrost 

indicates acceleration by a factor of five to ten. Melting of ground ice also accelerated 

markedly from 1980-1990 compared with 1970-1980 (Haeberli & Beniston, 1998). 
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2.1.2 Storm severity 

The increase in global temperatures has a wide variety of effects on the weather, 

and has been attributed to the rise in severe storms such as hurricanes, cyclones, and 

typhoons. In a study by Levinson (2005), it was shown that record-breaking numbers of 

hurricanes and cyclones were observed in Florida and Japan recently; almost doubling the 

current Japanese record of 6 to 10 cyclones in a single season. More frequent and severe 

storm surges have been linked to increased sea surface temperatures (SST); warmer 

ocean temperatures essentially fuel the intensity of many ocean borne storms (Arpe & 

Leroy, 2009). As ocean temperatures increase as predicted, there is increased risk of 

hurricane frequency and intensity on a global scale. 

2.1.3 Ecological Implications 

Recent studies on oceanic temperatures have shown that Australians' great coral 

reefs are already suffering permanent damage due to the increase in temperatures. Mass 

bleaching and mortality of corals are directly related to sea surface temperatures, with 

higher SSTs resulting in greater damage (Berkelmans et al, 2004; Goreau et al. 2005). 

The financial loss that can result from the destruction of the coral reefs is enormous, with 

an' annual income of $30 billion each year from tourism alone. But the real loss would be 

25% of the inhabitants of the oceans that spend at least a part of their life cycle in the 

coral reefs, which range from small dinoflagellates to larger predatory fish (Flannery, 

2006; Warner et al. 2006). By removing this integral stage of an organism's life cycle, its 

natural growth and development is interrupted and may lead to its extinction, or the 
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extinction of its primary consumer. One such example of a species facing extinction is 

the Gibiodon species C, a small coral fish native to Papua New Guinea. Mass coral 

bleaching and habitat loss resulted from the 197-98 El Nino, leaving the Gibiodon only a 

small patch of remaining coral to live in (Flannery, 2006; Munday, 2004). 

Among the most sensitive to changing temperatures are amphibians, which have 

already begun to show diminishing numbers as a result of unstable weather conditions 

leading to longer dry periods and sporadic precipitation (Flannery, 2006; Pounds et al., 

2006; Wagner, 1999). The golden toad and the Monteverde harlequin frog are prime 

examples of species that have been mortally affected by the shifts in precipitation and 

temperature (Flannery, 2006; Pounds et al., 2006). Extensive observation by scientists 

(Pounds et al., 2006) in the Monteverde Cloud Forest Preserve in Costa Rica have 

documented a steep decline in the bird, reptile and amphibians inhabiting the preserve, as 

well as the complete disappearance of the golden toad and Monteverde harlequin frog. 

Historical temperature data shows that since the 1970's, average temperatures in the 

region have raised 0.18°C per decade, which is triple the average rate of warming for the 

entire twentieth century (Pounds et al. 2006). 

2.2 Biofuels and the Carbon Debt 

As the price and demand of oil continues to rise, coupled by a limited supply, we 

are faced with a global energy dilemma. Energy derived from biomass carbon in the form 

of.biofuel has an important role to play in both reducing reliance on fossil fuel 

consumption, as well as mitigating CO2 production. The IPCC (IPCC, 2007) maintains 
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that renewable energy such as biodiesel and bio-ethanol will play an integral role in 

overcoming the 'carbon debt' that has been incurred in recent decades. The term 'carbon 

debt' refers to the total amount of carbon (i.e.C02)that has been released as a result of 

human influence, rather than by natural causes. What biofuels aim to do is create a 

carbon balance, which is calculated as carbon dioxide emitted by biomass production and 

usage subtracted from the carbon dioxide fixed in the plant material, both above ground 

and underground (Yuan et al. 2008). 

There are currently three classes of biofuel sources that are being pursued; first, 

second, and third - generation. What we currently recognize as 'biofuel' or plant-based 

fuel derived from fatty acid methyl esters (FAME) or sugars are first-generation. Other 

forms of renewable energy that can be derived from food crops, such as waste biomass 

(lignocellulose) or non-food crops such as switchgrass, are considered second-generation 

biofuels. Third generation biofuels, which will not be fully covered in this review, 

include oils derived from microbes and algae. 

2.3 First-Generation Biofuels 

First generation biofuels, such as bio-ethanol and biodiesel, are made from the 

extracted oils and sugars of several oilseed crops such as sugar cane, sugar beet, 

rapeseed, canola and soy. Combustion of first-generation biofuels does release new CO2 

into the atmosphere; however, it is done so at a rate that is comparable to the amount 

previously absorbed (Peterson & Hustrulid, 1998). 



First-generation biofuels, such as biodiesel and bio-ethanol have been around 

since 1896 when Henry Ford build his first 'quadricycle', and intended it to run on 

ethanol (Schubert, 2006). The use of fossil fuels, however, began to rise with the 

automobile and has soared to unprecedented heights. As supply begins to diminish, 

alternative fuels have become sought after. In 2005, worldwide production of biodiesel 

had increased by 60%, ethanol by 19% and 'flex-fuel' cars (those capable of running on 

petroleum / bioethanol blends) became popular again (Schubert, 2006). 

The most popular forms of first-generation biofuels are bio-ethanol and biodiesel. 

Most are derived from food feedstocks (i.e. corn, sugarcane, soy etc.), they offer 

renewable energy, and lower emissions compared to petroleum. They also have several 

significant disadvantages that have lead to increased interest in second-generation 

biofuels, mainly due to the food vs. fuel debate (See section 2.7.2). 

2.3.1 Bio-ethanol 

Bio-ethanol (ethanol) is produced through the fermentation of sugar derived from 

various high-sugar or high starch content feedstocks such as corn, sugarcane, sugar beet, 

and wheat. Production of ethanol is quite simple, requiring few steps to turn sugars and 

starches into ethanol. In the United States, for example, the main feedstock is corn. 

Grains are processed with the assistance of specific enzymes that help convert the starch 

into sugar, and then yeast ferments this sugar into ethanol (Schubert, 2007). Currently, 

90%) of the ethanol used for transportation in the U.S. is obtained from American grown 

corn (Van Gerpen, 2005). In 2003, the United States produced 3 billion gallons of 



ethanol, which approximately made up 1 1% of the total US corn production (Van 

Gerpen, 2005). 

2.3.2 Biodiesel 

Biodiesel is a product of vegetable oil or animal fat that is chemically reacted with 

an alcohol and strong base such as sodium or potassium hydroxide, forming new 

compound called fatty acid methyl esters (FAME) (See figure 1). Current research has 

shown that waste oil from restaurants can even serve as a feedstock for biodiesel 

(Canakci, 2006). Canakci reports that waste cooking oils are an inexpensive alternative to 

conventional biodiesel feedstock (i.e. canola, soy, rapeseed, sunflower, etc.). Evidence 

from this study (Canacki, 2006) supports the notion that most diesel engines can run 

using waste oils, potentially offering a cheap, efficient alternative to feedstocks in direct 

competition with human consumption. 

2.4 Second — Generation Biofuels 

Second-generation biofuels differ from their first-generation counterparts in that 

they are derived from lignocellulosic biomass, a non-edible feedstock for humans, made 

by complicated physical and enzymatic processes. Switchgrass, for example, is a 

lignocellulosic feedstock that is of particular interest to scientists. Recent studies have 

shown that switchgrass can produce 540% more renewable than nonrenewable energy 

consumed, and estimates the GHG emissions from cellulosic ethanol produced by 



switchgrass to be 94% lower than gasoline (Schmer et al. 2007). The technology to break 

down the lignocellulose effectively and efficiently is still being developed. 

2.5 Third-generation Biofuels 

The most recent sources of biological renewable energy are known as third-

generation biofuels. These include algae and cyanobacteria that are genetically 

engineered to produce large quantities of oils. These feedstocks are considered to be far 

superior to first and second- generation biofuels because of their high yield and low land 

use; approximately 0.4% of the earth's arable land devoted to algae / cyanobacteria 

production sites could meet the current world fuel demand (Gressel, 2008). This 

technology is, however, still at the research stage, and far from becoming a viable option 

for fuel production. 
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.1 A: i 

Figure 1: Conversion of source materials into biodiesel or bio-ethanol. 
(Agarwal, 2007) 
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2.6 Advantages of Biofuels 

The advantages of utilizing biofuels for fuel and energy are numerous. Most 

importantly, biofuel is a renewable energy source with the ability to reduce current 

atmospheric CO2 levels and offset some of the reliance on fossil fuels as a universal 

source of energy. Table 1 summarizes some of the most recent discoveries regarding 

biofuel type (platform) and potential ecological benefits, net energy balance, CO2 balance 

and the energy required to harvest biofuel (agricultural practice) (Yuan et al. 2008). The 

study by Yuan et al. (2008) illustrates the importance of biofuels, particularly second-

generation platforms such as lignocellulosic ethanol derived from miscanthus and 

switchgrass. 

2.6.1 Reduced C 0 2 

The advantages of increasing production of biodiesel in the United States and 

Canada include a 78% reduction in CO2 emissions when compared to petroleum-based 

diesel fuel (Coronado et al. 2009; Sheehan et al. 1998). Biofuels also have the ability to 

capture carbon (CO2) from the atmosphere, and act as a carbon sink. A good example of 

this capacity to act as a carbon sink was demonstrated using a Miscanthus x giganteus 

genotype to fix CO2. It was estimated that 5.2 - 7.2 t C/ha/yr was fixed, which results in a 

negative carbon balance in which more carbon was fixed than emitted (Clifton-Brown et 

al.', 2008). 
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I ŝrqhun-
! £ I i I r< r M i l l „L > ' i 1 i f it I if i t t mi 2B| 
'li III . I'CQiiiiva 

t SviiS; Isgrass 'W-508 ' 1 1 " iM H« I i » in Xiiŝ U.i' ifi 
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2.6.2 Increasing automotive efficiency 

In a recent study (Agarwal, 2007) the use of ethanol in conventional compression 

ignition (CI) diesel engines was assessed for its performance, long-term wear on the 

engine, overall emissions, and economic feasibility. Minor hardware modifications in 

existing engines would allow for the combustion of ethanol, which has a higher octane 

level than gasoline, delivering more power efficiently and economically (Agarwal, 2007). 

Ethanol burns cleaner, produces less carbon monoxide / dioxide, and oxides of nitrogen 

(Agarwal, 2007), however, there is a greater prevalence of aldehyde emissions when 

burning ethanol which contributes to the formation of phytochemical smoke (Agarwal, 

2007). 

Ethanol also resulted in an improvement in thermal efficiency and fuel 

consumption and a 20% ethanol-diesel blend was shown to be fully functional in a stock 

engine, and demonstrated a significant reduction in CO2 and NOx emissions as well as an 

increase in fuel efficiency, with some minor problems resulting from viscosity (Harwood, 

1984; Ma, 1999). Long-term endurance tests showed positive results on engine 

performance, condition, and emissions. Significant reductions in harmful green house 

gasses with no decrease in engine power or endurance were observed for both bio-ethanol 

/ diesel and FAME biodiesel / diesel mixtures, and would greatly improve the current 

environmental conditions (global warming, acid rain, smog, etc.) that result from fossil 

fuel powered transportation (Harwood, 1984; Ma, 1999). 
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2.7 Disadvantages of Current Biofuels 

Although the prospect of switching over to ethanol or animal / plant derived 

FAME biodiesel seems ideal, there are some significant drawbacks as well. High 

production costs for relatively low yield, offsetting arable land used for fuel instead of 

food (Mittelbach et al., 1992; Canakci and Van Gerpen, 2001; Kazancev, 2006; 

Searchinger et al., 2008), and the tendency for biodiesel to be problematic when left in 

temperatures colder than -10 °c (Chandler et al. 1992., Dunn et al., 1996., Lewtas et al. 

1991; Kazancev, 2006) have all affected their viability as a replacement for petroleum. 

The study by Yuan et al. (2008) highlights other drawbacks of current first-generation 

biofuels, especially biofuels derived from canola and soy. In their study, some current 

biofuels show a positive CO2 balance, meaning they contribute to atmospheric CO2 rather 

than capture it. This is mainly due to the carbon cost of growing, harvesting, and 

transportation of biofuels (Fargione et al., 2008). 

2.7.1 Cold flow properties 

Factors relating to the poor results found in sub-zero temperatures stem from the 

physical nature of the vegetable derived fatty acid methyl esters (FAME), primarily its 

high viscosity, low cloud point (temperature at which waxy solids first appear during the 

cooling of diesel fuel), and mostly the formation of wax-like crystals in cold 

temperatures. Although not a serious problem to warmer countries, cold-flow 

inefficiencies of FAME biodiesel can be problematic for many northern regions of 

Europe, and North America. Engine failure, poor performance, and the addition of 



chemical additives to allow for winter driving are some drawbacks to 100% biodiesel fuel 

in winter climates (Dunn et al., 1996). 

2.7.2 Food vs. Fuel 

The food vs. fuel debate has greatly impeded political and public support for 

biofuels, and has undermined their importance as a viable alternative energy source 

(Fargione et al., 2008; Koh & Ghazoul, 2008; Searchinger et al., 2008; Srinivasan, 2009). 

The "carbon debt" of land conversion for biofuel crops is the amount of CO2 released 

during the first 50 years of development - it is during this time that biofuels "repay" their 

debt through atmospheric CO2 sequestration and production of oils used as biofuel 

(Fargione et al., 2008). In their study, Fargione (2008) attribute a larger carbon debt to 

biofuels vs. fossil fuels because of factors such as land conversion and crop displacement 

(moving pre-existing crops in order to grow biofuel crops such as corn or sugarcane). 

Since there is only a limited area of arable land, biofuel producers have used a small 

proportion of food grain as biofuel feedstock which has lead to an increase in grain prices 

in recent years (Gressel, 2008). 

The food vs. fuel issue has been the catalyst for much of the research conducted 

on first-generation biofuels, as improving biofuel feedstock efficiency and yield could 

minimize the problems associated with land allocation and food prices (Yuan et al. 2008). 

This issue has also been the driving force behind second-generation biofuel research, by 

offering bioenergy derived from non-food feedstocks (i.e. Miscanthus) thus eliminating 

the food factor all together. 



2.8 Improving Biofuels 

In order to effectively utilize biofuels and other plant-based renewable energy, 

significant changes must be made to improve feedstock yield and problems associated 

with the physical properties of fatty acids in sub-zero temperatures. Cold-flow solutions 

have been made in recent decades, and ongoing genetic research is bringing biofuels 

closer to becoming a viable option for renewable energy. 

2.8.1 Cold-flow Solutions: Winterization 

Two approaches for dealing with cold-flow inefficiencies were aimed at 

increasing the cold point, cold filter plugging point (CFPP), viscosity, and low 

temperature flow (LTF) (Dunn et al., 1996). The first of these approaches conducted by 

Dunn et al. (1996) was filtering off the solids in a large cylinder during an initial cold 

treatment (winterization), thereby refining the FAME before being used as in the engine. 

Results of this preliminary examination showed that winterizing FAME derived biodiesel 

can greatly improve the cold point, CFPP, viscosity and LFT problems allowing for use 

in colder temperatures and greater efficiency (Dunn et al., 1996). The only setback to this 

pretreatment process is the high reduction in yield, with up to 75% less with complete 

removal of the saturated methyl esters. Therefore a more feasible alternative would be a 

semi-filtering routine which would allow for a higher yield and greater ignition quality 

(Dunn et al., 1996). 



2.8.2 Cold-flow solutions: Additives 

The second alternative would be altering the physical chemistry of the FAME 

biodiesel with the application of additives. The role of additives in biodiesel has been 

worked on extensively, with several specific 'combos' demonstrating promising results 

(Dunn et al., 1996; Kazancev, 2006; Agarwal 2007). The function of these additives 

changes the properties of the thick portions of the fuel, co-binding to the sticky paraffin 

molecules that clog filters and plugs in engines at low temperatures (Dunn et al., 1996; 

Kazancev, 2006). The result is a crystallized, increasingly soluble paraffin molecule that 

effectively reduces the effects of low temperature coagulation (Dunn et al., 1996; 

Kazancev, 2006). On a comparative scale, results of winterization verses the application 

of additives shows that additives did not significantly reduce the cloud point or the 

viscosity of the FAME, while filtering greatly altered both (Dunn et al., 1996; Kazancev, 

2006). Additives did, however, significantly reduce the LTF, but not in conditions below 

-5° C. It was concluded by Dunn et al. (1996) that winterization was most effective, but 

the great reduction in yield would be a major obstacle to overcome if applied on a mass 

scale. Also, additives show a great reduction in low temperature flow with an increase 

from 5°C to -5°C, which may be beneficial to areas that rarely dip below that temperature 

(Dunn et al., 1996) 

2.9 Genetic Modification 

There have been significant advances in our understanding of the factors related 

to seed oil synthesis, and ways at improving the viability of biofuels through genetic 



manipulation. Most genetic research is conducted on Arabidopsis thaliana, a good model 

species for biofuel feedstock plants such as Brassica. The focus of this research is mainly 

altering plant growth and development, with an emphasis on increasing seed oil yield and 

land use efficiency. 

2.9.1 The Role of Arabidopsis 

Arabidopsis thaliana has been significant in the pursuit for key genes involved in 

fatty acid synthesis and storage, and has been instrumental in the development of several 

important species (Wallis and Browse, 2002). Arabidopsis's role as a model organism in 

biofuel production is related to its high oil producing seeds (comparable to other 

commercial plants) and close genetic relationship to Brassica, a very important 

commercial oil crop used in biofuel production (Baud & Lepiniec, 2009). Great advances 

in understanding the location and functionality of Arabidopsis genes have been made, 

which is setting the stage for molecular manipulation of a variety of plants (Murphy, 

1996; White et al. 2001). It has several important factors that make it an ideal model 

organism; these include its ease to grow and manipulate in a laboratory setting, a small 

genome amenable to detailed analysis, high mutation rate, versatility (research on 

Arabidopsis spans over several fields including physiology, biochemistry and 

developmental biology), funding (one of the most funded plants to research in the world), 

and a strong community of researchers with a commitment towards free exchange of data 

whenever it becomes available (Meinke, et al. 1998; Meyerowitz, 2001; Leonelli and 

Sabina, 2007). 
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2.9.2 Seed Oil Synthesis 

Triacylglycerol (TAG) is the major lipid reserve in plants and animals. Nearly all 

the commercially important fats and oils of animal and plant origin consist almost 

exclusively of this simple lipid class, with a composition of roughly 95% TAG 

(Buchanan et al. 2000). This includes all the vegetable oils, such as those from corn 

(maize), olive, palm, and sunflower, and animal fats, such as tallow, lard and butter. The 

assembly of TAG occurs in the endoplasmic reticulum (ER), and is also known as the 

Kennedy pathway (Ramli, et al. 2002). Four consecutive reactions are catalyzed by ER 

membrane bound enzymes. The two intermediates, phosphatidate and 1, 2-diacylglycerol, 

are also substrates for the synthesis of membrane lipids glycosylglycerides and 

phosphoglycerides. The third acyltransferase, diacylglycerol acyltransferase (DGAT) 

which esterifies a fatty acid at the sn-3 position, is unique to TAG biosynthesis. 

Therefore, the last step in the pathway is the only dedicated step in triacylglycerol 

synthesis (Buchanan et al. 2000). 
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Figure 2: TAG biosyntheis via the Kennedy pathway (Ramli et al. 2002). Most lipids 
are produced by the Kennedy pathway, however, only the final step is unique to TAG 
biosynthesis. 
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2.9.3 FAD genes 

Specific locations such as the fatty acid elongation gene (FAD 2 and FAD 3) loci 

were shown to play a significant role in the production of fatty acids. It was observed that 

genetic modification of specific genes (FAD 1, 2) in Arabidopsis resulted in significantly 

altered seed oil composition, and several mutants containing a range of seed oil have 

been produced (Arondel et al. 1992; Okuley et al. 1994; James et al.1995). 

2.9.4 Seed Oil modification 

Katavic et al. (1995) demonstrate the importance of diacylglycerol acyltransferase 

(DGAT) in seed development and the pattern of fatty acid biosynthesis of Arabidopsis. A 

novel Arabidopsis mutant (AS11) was created via EMS mutation at a locus on 

chromosome II designated as Taglwhich altered DGAT activity and caused delayed seed 

development, reduced triacylglycerol (TAG) content, as well as a repressed very long 

chain fatty acid (VLCFA) biosynthesis resulting in an average seed oil content o f - 3 1 % -

approximately 75% of average wild type Arabidopsis (Katavic et al. 1995). The results 

therefore indicate that an overexpression of DGAT activity could significantly increase 

seed oil content by increasing VLCFAs and TAGs and may also have important 

implications for biotechnology through the use of DGAT manipulation in oilseed crops 

such as Brassica (Katavic et al. 1995). 



2.9.5 wrinkledX Genotype 

To further explore oil deposition in developing seeds of Arabidopsis, Focks 

(Focks & Benning, 1998), engineered a novel Arabidopsis mutant with 80% reduction in 

seed oil content named wrinkledX. This mutant was successful at identifying a genetic 

locus (wri 1) that is either responsible for encoding a regulatory protein which governs 

carbohydrate metabolism during seed development, or controls activity / expression of 

other glycolytic enzymes by a novel hexokinase acting as a sugar sensor (Focks & 

Benning, 1998). These gene knockout mutants have been integral in understanding TAG 

biosynthesis and the regulatory genes responsible for oil concentration and content 

(Bouche and Bouchez, 2001). 

2.9.6 Identification of the QTL 

Work done by Hobbs et al. (2004), located multiple quantitative trait loci (QTL) 

which are stretches of DNA that are closely linked to genes responsible for the 

inheritance of phenotypic characteristics, that are thought to control both seed oil and 

fatty acid composition, and that accounts for 43% of the variation in oil content in the 

population. It was shown that several QTL, two major and two minor, each individually 

control the production of linoleic and linolenic acids, oleic acid, stearic and palmitic 

acids. The most significant QTL was identified at the bottom of chromosome 2 

accounting for 17% of the genetic variation, as well as two important QTL located on the 

upper and lower arms of chromosome 1 accounting for an additional 19% of the 

variation. This work has highlighted the most significant regions of the genome 



responsible for fatty acid synthesis, and allowed scientists to mark these particular genes 

enabling geneticists to breed new crops that have enhanced traits (i.e. increased seed oil 

content, drought resistance). 

2.10 Carbon and Nitrogen Partitioning 

The effect of genetic modification of oil synthesis genes on C and N partitioning 

has not been fully explored. Throughout normal plant development, C and N are 

transported throughout the plant based on many factors (i.e. plant age, growth stage, 

nutrient abundance / deficiency), but the effects of genetic modification on this process 

are not fully understood. Nitrogen is mostly transported to areas that are undergoing 

growth and development, and may also act as a signaling molecule throughout the plant 

(Ford, 2002). Carbon is also utilized throughout the plant, and is the building block for 

many carbohydrates, lipids and carboxylic acids. For example, the developing embryos of 

Arabidopsis accumulate lipids in the form of triacylglycerols as the major carbon and 

energy reserves, which are then used for germination and growth of the young seedling. 

The triacylglycerols are stored in oil bodies that occupy close to 60% of the cell volume 

of the cotyledons in mature embryos (Focks and Benning, 1998). 

2.10.1 The Rhizosphere and Carbon Efflux 

The rhizosphere is nutrient rich region surrounding the roots of a plant. This area 

contains a high density of microbial biomass that feeds on various root exudates, 

comprised mainly of carbohydrates, carboxylic acids and amino acids (Baudoin et al., 
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2005). Plants normally release root exudates during growth and development, and have 

been shown to play a significant role in many plant - plant, plant - microbe interactions 

(Bais et al., 2006). Organic carbon is considered as the limiting factor for microbial 

d&nsity and activity (Bowen and Rovira, 1999; Lugtenberg and Dekkers, 1999), and 

factors such as plant genotype, age and nutrition level can all affect carbon rich root 

exudation, thereby altering microbial populations (Marschner and Timonen, 2005). 

Genetic manipulation of oil synthesizing genes may play a role in altering the soil 

carbon levels and thereby affecting neighboring microbial populations. Because root 

exudation is a determining factor for microbial density, it is of great interest to investigate 

how altered carbon and nitrogen partitioning may affect this balance. 

2.11 The use of T-RFLP Analysis 

Recent advances in the methods used to identify microbial communities, such as 

Polymerase Chain Reaction (PCR), Amplified Ribosomal DNA Restriction Analysis 

(ARDRA), Thermal / Denaturing Gradient Gel Electrophoresis (TGGE / DGGE) and 

Terminal Restriction Fragment Length Polymorphism (T-RFLP), have been showing 

great promise in the detection of novel soil microorganisms. The most recent of these 

methods, T-RFLP, has been particularly useful in identifying microbial communities in 

the soil, and has been utilized in several laboratories (Chin et al., 1999; Fey et al., 2000; 

Lueders et al., 2000) since its discovery a decade ago. T-RFLP differs from other 

methods of soil microbial analysis by avoiding some of their inherent limitations (i.e. 

limited resolution, detection of only dominant bacteria species, etc). It utilizes the same 



principles as RFLP (Restriction Fragment Length Polymorphism), by identifying changes 

in the 16s rRNA gene fragment common to all bacteria; however, it simplifies complex 

community analysis through the addition of a fluorescently labeled PCR primer. Because 

of the complexity of RFLP profiling of diverse communities, the development of 

terminally labeled PCR products enables for a robust, yet simplified method for 

investigating changes in the quality and quantity of microbial populations (Liu et al., 

1997). The greatest advantage of utilizing T-RFLP for community profiling of bacteria 

stems from its ability to be fully automated, and could lead to significant advances in our 

understanding of soil microbes (Liu et al., 1997). 

2.11.1 Minimizing Bias and Other TRFL-P Hazards 

Although the method provides a reliable means of assessing bacterial presence in 

soil samples, several important disadvantages can often skew results. PCR bias may 

occur, providing inaccurate estimates of organism abundance due to differences in gene 

copy number (Kitts, 2001). It is important to pool samples and maintain 10-lOOng of 

template DNA at 30 PCR cycles to minimize PCR bias and obtain the most accurate 

depiction of microbial populations in each sample (Kitts, 2001). Another potential hazard 

while using the T-RFLP method arises with restriction enzyme use. It is maintained in the 

literature that 4-6 restriction enzymes are sufficient to obtain good resolution (detection 

of separate bacterial populations in a sample) (Kitts, 2000). While it is possible to use a 

greater number of enzymes, therefore increasing resolution, it is not advisable to use any 

less than four. Finally, analyses of T-RFLP peaks are subjective. There are many pitfalls 



that must be taken into account during data analysis, as several interpretations of a single 

peak may be made. The contribution of a single peak may be from several bacterial 

species, or a single dominant species (Kitts, 2000). Therefore, it is essential to remove 

excess 'noise' from peak charts, so that analysis errors can be minimized. The most 

frequently used method is by establishing a variable threshold, which standardizes the 

results and eliminates peaks that fall below a particular percent area of the chart. 



3.0 MATERIALS AND METHODS 

3.1 Experimental Design 

Four genotypes of ecotype Columbia Arabidopsis thaliana were used to observe 

the effects of genetic modification of oil synthesizing genes on C and N partitioning at 

specific growth stages. 13C and 15N isotope labeling was used to trace the flow of C and N 

through various regions of the plant, and rhizosphere. Molecular analysis of the 

rhizosphere via T-RFLP was conducted at final harvest to explore whether any changes 

in C and N partitioning altered the bacterial microflora resulting from increased or 

decreased root exudation. 

A total of 160 pots (experimental units) consisting of 7 plants per pot were used 

for this experiment. The experimental group consisted of 100 total pots (n= 100), that was 

then divided into 5 sampling periods (n=20 per sampling period), and 4 genotypes (see 

section 3.2) (n=5 per genotype). The experimental group was given both l3C02 and 15N 

isotope labeling, and sampled at specific growth stages (see section 3.5.1 - 3.6). The 

control group of 60 pots (n=60) served as an environmental control (no isotope labeling) 

and was also subdivided by 5 sampling periods (n=12 per sampling period) and 4 

genotypes (n=3 per genotype). Additionally, two spare pots of each genotype were grown 

(unlabeled) to be used for T-RFLP analysis of the rhizosphere soil. 
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3.2 Arabidopsis Genotypes 

Three knock-down Arabidopsis thaliana (ecotype Columbia) mutants expressing 

reduced seed oil content were used in comparison to a wild-type control. S-5 and S-6 are 

T-DNA insertion mutants expressing 25.77% (SE +/- 0.84) and 24.89% (SE +/-0.84) seed 

oil, respectively. Insertions were made by the Salk institute in the LACS4 gene, thereby 

disrupting the LACS4 enzyme involved in activation of fatty acids to coenzyme-A (CoA) 

during lipid metabolism (Chong et al. 2008).The mutants also possess a speckled seed 

coat phenotype, that accompanies the reduction in seed oil. Katavic suggests that the 

decrease in seed oil content and speckled seed coat may be caused by an unknown 

gene(s), designated as "Gene-X", because during reciprocal crosses with the mutants and 

wild-type, the co-segregation of the two phenotypes yielded progeny that still contained 

the T-DNA insertion yet did not display the phenotypic characteristics of reduced oil 

content and a specked coat (Katavic, personal communication). The loci of the gene(s) 

are currently being pursued by Dr. Katavic at UBC. 

The AS11 genotype is an EMS (ethyl methanesulfonate) induced mutant 

containing 31.23% (SE +/- 1.48) seed oil. The use of EMS is regarded as a 'shotgun' 

approach to molecular research, as it produces random mutations in genetic material, 

often leading to a variety of genotypes (Mayer et al. 1991). In this case, the AS11 

genotype has been characterized as having TAG and VLCFA deficiencies resulting from 

EMS mutations on a region of chromosome II designated as Tag1 caused by disruptions 

in DGAT activity (Katavic et al. 1995). These were then compared to a wild-type control 



(ecotype Columbia), which normally contains 35-37% seed oil content. All Genotypes 

were provided by Dr. Kunst at the University of British Columbia. 

3.3 Soil 

Soil used for this experiment was obtained in the summer of 2007 and 2008 from 

a private farm in Wolfville, Nova Scotia, Canada. The soil was manually excavated and 

transported to the greenhouse at Saint Mary's University where it was spread out thinly 

on a tarp and dried naturally in the sun for several days. The dried soil was then sieved to 

2mm and mixed (50/50) with coarse sand for improved drainage. An analysis of the soil 

constituents including nutrients and physical / aggregate properties was conducted by 

Bodycote Testing Group ® (see appendix 7.1) 

3.4 Growth Conditions 

All genotypes of Arabidopsis were grown in the Saint Mary's University (SMU) 

greenhouse for the entirety of the experiment, only to be removed momentarily for l3C 

labeling. One liter pots were filled with 1570g's soil, watered and Arabidopsis seeds were 

then added to the surface of the soil to germinate. Shortly after germination, pots were 

thinned to contain only seven plants that were evenly spaced (2-3 inches apart). In early 

stages of development, plants were given approximately 100 ml of 50% Hoagland's 

solution when needed (2-3 times per week). At 50% dilution, the Hoagland's solution 

contains sufficient nutrient content to maintain healthy growth and development, without 

the risk of toxicity sometimes occurring without dilution (Leggett, 1971). At later stages 
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of development plants were supplied with 100 ml Hoagland's solution every day. 

Photoperiod of supplemental lighting was set to 16 hours on and 8 hours off at an 

intensity of 200-340 fimol/m^/s"1. Once a week, pots were randomly rearranged to ensure 

even light distribution. 

3.5 Isotope Labeling 

3.5.1 13COz Labeling 

1 ̂  

Pulse-chase C0 2 labeling was conducted at principal growth stage 5.1 (day 27) 

(See Figure 4). This stage is characterized by completion of rosette growth, and the 

concurrent development of a bud at the apical meristem. Once the plants were situated 

within the labeling chamber, the internal C0 2 was measured by a gas analyzer and 

allowed to lower to the predetermined compensation point. The ambient C0 2 was -485 

ppm. The C0 2 compensation point was identified in an earlier experiment to be 155 ppm. 

Once the chamber reached this 155 ppm, 1 M Na2
l3C03 was applied into 200 ml of 3 M 

H2SO4 solution in the chamber by a peristaltic pump to bring the C0 2 concentration back 

up to -500 ppm. After the C0 2 in the chamber declined to the compensation point, 

additional Na2
13C03was added. This continued until 100 ml of 13Cwas absorbed. 

3.5.2 I 3 C0 2 labeling chamber 

The labeling of plants with 13C02 took place in a specially constructed labeling 

chamber (see Figure 3). The light source was supplied by two 1000 W high pressure 

sodium (HPS) lights situated above the chamber. This provided a light intensity of 350-
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370 umol/m" s" . The temperature within the labeling chamber was controlled by a 

cooling system and was maintained at 30-32° C. The relative humidity within the 

chamber was approximately 85%. See Figure 3 for detailed schematics of labeling 

chamber. 

3.5.3 1 5N0 3 labeling 

l 5 N0 3 labeling was conducted in the SMU greenhouse one week prior to the 

13C02 labeling. Thirteen liters of 15% 15N03 labeling solution was created by adding 

11.05 g of KN0 3 and 1.95 g K1 5N03 to 13 L of water Each plant was given 100 ml of the 

solution in the morning and was not watered again until the following day. Watering 

resumed the next day, but only 50 ml of Hoagland's solution was used to ensure watering 

would not wash out the labeling solution. Careful attention was made to ensure no water 

flowed out the bottom of the pots. 

3.6 Sampling for C/N partitioning 

Sampling was conducted at five times, which represented distinct growth stages 

reported by Boyes (Boyes et al. 2001). Plants were sampled at day 27 (stage 5.1), day 36 

(stage 6.0), day 43 (stage 6.5), day 50 (stage 6.9) and day 65 (stage 9.7) (See Figure 4). 

These sampling times were selected to encompass the late vegetative - fully mature 

stages of development of wild-type Arabidopsis plants, and therefore serves as a template 

to compare affects of genetic modification on phenotype growth and development. Plants 

were harvested at each sampling time and prepared for analysis. On day 27, the plants 
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were harvested immediately after 13CC>2 labeling. All dried, crushed and weighted 

samples were sent to the Stable Isotope Facility at the University of Saskatoon 

(Saskatchewan, Canada) for analysis. 

3.6.1 Shoots 

The entire shoot was cut from plant, dried in an oven at 80°C for 3 days, then 

ground into a fine powder using a mortar and pedestal. A conventional coffee grinder 

(Lancaster® Coffee Grinder) was used to grind shoots of plants during sampling periods 

3-5 to compensate for the larger, tougher stems at these growth stages. A subsample of 50 

mg was then sent for analysis. 

3.6.2 Roots 

The pots containing the roots and soil were immersed in 2 L of water, gently 

isolating the root system. The roots were then rinsed twice more in 0.5 L of clean water. 

The cleaned roots were dried in the oven at 80°C for 3 days, and then ground into a fine 

powder using a mortar and pedestal. The dried matter was weighed and a 50 mg 

subsample was sent for analysis. 

3.6.3 Soil 

After teasing away the roots, the soil (1570g's) and 3 L of water remaining, were 

put into 8 L carboys, shaken for - 1 0 minutes then filtered with Whatman® #1 filter 

paper. A volume of 100 ml of the filtrate was collected and dried in the oven at 80°C. The 



dried matter containing exuded water-soluble and microbial C and N was washed out 

with 5 ml distilled water and centrifuged at 1,000 rpm for 5 minutes. To prepare for 

analysis, 125 |il of the supernatant was pipetted into small tin cups and placed into the 

oven at 50°C until evaporated. This continued until 1.4 ml of supernatant was evaporated, 

leaving residual C and N in the cups. The tin cups were then folded closed, and put into 

an Elisa plate and sent for analysis. 

3.6.4 Seeds 

The seeds were carefully collected by placing the cut shoots into a paper bag and 

shaking them loose from the siliques. They were then put through a mesh screen and 

collected in a container. At this point they were weighed and stored. For analysis of C 

and N content, the seeds were placed in a chilled mortar containing a small amount of 

liquid nitrogen. Once completely frozen, they were crushed into a fine powder using a 

pedestal and a 2 mg subsample was sent for analysis. 
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MJV\ 

Figure 3: Diagram of 13C labeling system. A: HPS lights (1000 W each), B: 
peristaltic pump, C: Na2l3CC>3 solution, D: temperature and relative humidity 
indicator, E: acrylic labeling chamber, F: circulation fans, G: H2SO4 solution, H: 
cooling system, I: condenser, J: air pump, K: C0 2 monitor, L: air pump, M: 
computer. 
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Figure 4: Growth stages of Arabidopsis thaliana (Boyes et al. 2001). 
Sampling periods were selected at growth stages 5.10, 6.00, 6.50, 6.9 and 9.7 



3.7 Molecular Methods for T-RFLP Analysis 

3.7.1 DNA extraction 

Five 1 g rhizosphere soil samples (randomly selected from pots of each genotype, 

and unpotted bulk soil) were carefully collected by exposing the roots and gently teasing 

away the thin layer of soil adhering to the roots. This soil was then treated with the 

UltraClean® Soil DNA Isolation Kit (Mo Bio Laboratories, Inc., Solana Beach, CA) to 

isolate the bacterial DNA from the soil samples. The Alternative Protocol was followed 

in accordance to Mo Bio Laboratories, Inc. for maximum yields. To ensure DNA purity 

and record nucleic acid concentration, 1.0 of the extract was analyzed by a NanoDrop 

20.00 spectrophotometer (Thermo Fisher Scientific Inc). Purity can be affected by RNA 

contamination and residual salts / solutes from the DNA extraction process. A 260/280 

reading of 1.8 +/- 0.1 indicates a relatively pure sample. See table 3 of results of 

NanoDrop. 

3.7.2 Amplification of 16S rRNA genes 

A segment of the 16S rRNA gene with an approximate length of 527 base pairs 

(bp) was amplified using a pair of universal bacteria primers; a fluorescently labeled 

forward primer, BSF 8/20 (6-FAM-5' - AGAGTTTGATCCTGGCTCAG - 3') and 

unlabelled reverse primer, BSR 534/18 (5' - ATTACCGCGGCTGCTGGC -3'). Each 

25(al reaction mixture contained 17.1 ml of ultra purified water treated with 0.1% DEPC 

(Diethylpyrocarbonate), 2.5 |il 2 mM dNTP (Qiagen, Mississauga, Ont., CA), 2.0 fxl 

Magnesium, 2.5 ju.i buffer, 0.2 \i\ Taq DNA polymerase (Fermentas Life Sciences, 
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Burlington, Ont., CA), and 0.5 |il of each aforementioned primers (New England Biolabs 

Ltd., Pickering Ont., CA). 

Amplified reactions were carried out in a Bio-Rad My-Cycler thermal cycler 

(Bio-Rad Laboratories, Inc., Hercules CA) using the following protocol: three minutes of 

initial denaturation at 95°C, 40 cycles of 30 seconds at 95°C for denaturation, 30 seconds 

at 56.8°C for annealing, and 45 seconds at 72°C for extension, followed by a final 10 

minute primer extension at 72°C. Seven PCR reactions from each sample were pooled 

together to minimize PCR-induced random biases and then purified using the QIAquick 

purification kit (Qiagen, Mississauga, Ont., CA). 

3.7.3 Restriction endonucleases and TRF peaks 

Four restriction endonucleases (REs), BstUI, Haelll, Hinfl, and Mspl (New 

England Biolabs Ltd., Pickering, Ont., CA), were selected due to their success in 

previous experiments used isolating bacterial populations in soil samples (Zhang et al, 

2009). To obtain four different terminal restriction fragment (TRF) profiles for each 

sample, 10 (il of purified PCR product from each sample was treated with 1 (il of each 

RE, 34ml of dH20, and 5 of #2 buffer (provided with REs). Each 50^1 reaction mixture 

was then incubated overnight; BstUI at 60°C and the rest at 37°C. For each reaction, three 

replicates were made and pooled together to minimize artificial bias. To stop the enzyme 

digestion, all samples were then put through the QIAquick Nucleotide Removal Kit 

(QIAGEN Inc., Mississauga, Ont., CA). Finally, 6-FAM-TRFs (6-FAM labeled terminal 

restriction fragments) in digested amplicons were separated and recorded by a model 
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ABI3730 DNA sequencer (Applied Biosystems, Foster City, CA) at the University of 

Calgary Core DNA Services lab (Calgary, AB, Canada). 

3.7.4 TRF Peak Generation 

Gene Marker software was used to generate the TRF profiles, which showed both 

the fragment length in base pairs, and the peak height or intensity (see section 7.2 in 

appendix). Gene Marker also provided a partially completed allele report, a binary grid of 

Is, Os, and question marks indicative of the presence or absence of peaks at specific base 

pairs (bps). Several steps are required to complete the allele report; normalization of TRF 

profiles helps eliminate false positives, and a variable percentage threshold is used to 

complete the identity of the question marks. 

3.7.5 Standardization of TRF Profiles 

After TRF peak generation, the data was standardize using a percentage threshold 

limit in order to eliminate some of the background 'noise'; insignificant peaks that do not 

contribute significantly to the overall TRF profile. As reported by Osborne et al. (2006), a 

variable percentage threshold effectively sets a limit unique to each TRF profile, thereby 

minimizing error caused by noise. Establishing a threshold was done by using a divisor 

to divide the total area of each profile. The divisor was calculated using a custom Matlab 

program called TRFLPdemo, written by F. Lou (M.Sc. Computer Science student, SMU) 

and Zhang, Y.(M.Sc. Applied Science, student SMU). Total size and area of each TRF 

profile was loaded into the program, and created a curve with the R square (R2) value. In 
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order to obtain the best divisor containing the most random distribution of all points 

illustrated by a straight line across the grid, divisor (set at lOOx the mean total area of all 

profiles) and interval (set at 1.00*106) values were adjusted. The best threshold (see table 

2) was then generated using this method, and used as the divisor for normalizing each 

TRF profile. 

3.7.6 Establishing VPT for TRF peaks 

Results of the normalization of TRF peak data allowed for the generation of a 

variable percentage threshold (VPT), which is used to minimize the prevalence of false 

peaks and reduce background noise. The VPT was then calculated using the following 

formula: 

VPT = Total Area / Optimal Divisor * 100 

This calculation provided unique cut-off points for each TRF profile, and allowed 

for completion of the binary grid (allele report). First, the total area of each TRF profile 

was calculated, and then the percent area of each peak was calculated. By using the VPT 

calculation, a threshold % was established and any peak area % under this threshold % 

was considered insignificant and removed. 
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3.7.7 Generation of Dendrograms 

The following commands were used in Matlab to create the dendrograms: 

S = { ' A S 1 1 ' S 5 \ ' S6 \ 'Wild', 'Bulk soil'} 
datal=data'; 

Dist= pdist(datal ,'jaccard'); 
link = linkage(Dist,'average'); 
c = cophenet(link,Dist); 
[H,T] = Dendrograms(link,'colorthreshold','default','orientation','left', 'labels', S) 

3.8 Statistical Analysis 

Statistical analysis was conducted using GraphPad PRISM® software (version 

5.0). A two-way repeated measures ANOVA was used to test for differences in carbon 

and nitrogen partitioning between genotype, as well as the sampling period. When 

significant differences were found, a Bonferroni post-test test was used to determine the 

location of the differences. Results were considered significant at a P value <0.05. 



Table 2: Optimal divisors generated by Matlab used to normalize data 

Data Set BstUI Haelll Hinfl Mspl 

Optimal Divisor 5.08*10' 2.18*10' 3.36*10' 6.28*10' 

R2 6.6*10~J 2.1 *10"j 7.2*10"° 2.9* 10"6 



Table 3: NanoDrop Results. Samples used for T-RFLP appear in bold. 
A 260/280 at 1.8 +/- 0.1 is considered pure and was therefore used for 
subsequent PCR reactions 

Sample Nucleic Acid Unit A260 A280 260/ 260/ 
ID Concentration 280 230 
al 66.6 ng/jil 1.332 0.736 1.81 0.65 
al 54.0 ng/nl 1.080 0.578 1.87 0.56 
a2 48.4 ng/jil 0.968 0.591 1.64 1.00 
a2 46.6 ng/\i\ 0.933- 0.543 1.72 0.97 
a3 39.8 ng/nl 0.797 0.452 1.76 1.13 
a3 40.1 ng/jil 0.803 0.459 1.75 0.89 
blank 1 0.6 ng/jil 0.011 0.007 1.48 1.77 
b2 57.8 ng/^il 1.156 0.638 1.81 0.93 
b2 57.2 ng/jil 1.143 0.665 1.72 0.90 
b3 25.0 ng/ftl 0.500 0.292 1.71 0.63 
b3 32.8 ng/^1 0.656 0.383 • 1.71 0.75 
blank2 0.3 ng/|al 0.007 0.014 0.47 0.52 
c2 40.3 ng/^1 0.805 0.424 1.90 0.49 
c2 52.0 ng/jil 1.039 0.600 1.81 0.78 
c3 78.3 ng/p-l 1.566 0.859 1.82 0.96 
c3 78.3 ng/jal 1.565 0.869 1.80 0.97 
c4 23.4 ng/nl 0.468 0.277 1.69 0.63 
c4 23.2 ng/fJ.1 0.465 0.280 1.66 0.63 
Bulk 1 26.4 ng/ul 0.528 0.284 1.86 0.53 
Bulk 2 26.3 ng/|il 0.509 0.298 1.76 0.51 
Bulk 3 30 ng/fil 0.6 0.315 1.9 0.47 
dl 48.7 ng/ul 0.975 0.549 1.78 0.89 
dl 39.4 ng/ul 0.789 0.446 1.77 0.83 
d3 58.9 ng/ul 1.178 0.655 1.80 0.62 
d3 53.8 ng/fJ.1 1.075 0.598 1.80 0.59 



4.0 RESULTS 

4.1 Growth and Development 

Although no quantitative data was recorded, it was observed that the development 

of Arabidopsis genotypes were significantly different. Upon germination, the Arabidopsis 

mutants AS11, S-5, and S-6 appeared to display higher seedling mortality rates, in 

comparison to the wild type control. This was accompanied by an apparent decreased 

resistance to environmental stressors (drought, heat), which was shown by an increased 

prevalence of purpling plants amongst the S-5 and S-6 genotypes. 

Progression through specific life stages were also significantly different based on 

genotype. The S-5 and S-6 genotypes exhibited delayed vegetative growth prior to the 

first sampling period (late vegetative / early reproductive), and were shown to reach the 

budding / bolting stage before rosette growth was complete. This was further verified 

upon analysis of shoot dry weight (see section 4.1.1). These plants, however, appeared to 

catch up to the wild type /AS11 genotypes and progress to the fourth growth stage (late 

reproductive) at a similar rate. Upon entering final harvest (fully mature), it was clear that 

the S-5 and S-6 genotypes had not yet fully matured, and still contained many developing 

siliques. Meanwhile, the AS11 and wild type genotypes had completely matured and all 

siliques were brown / rupturing. However, it was also observed that the AS11 had 

reached full maturity approximately 1 week after the wild type. 
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4.1.1 Shoots 

The total dry weight (Figure 5) of Arabidopsis shoots was not significantly 

different based on genotype (F (3,64) = 0.40, P=0.7574); however, AS11 and S-5 were 

found to have significantly different final harvest (Growth stage 5) mass (p<0.05). 

Overall, genotype did not significantly affect shoot mass (F (3,64) = 0.86, P=0.4807); 

however there were significant differences in final harvest (Growth stage 5) dry weight 

between AS11 and wild type (p<0.05); S-5 and wild type (p<0.001); S-6 and wild type 

(p<0.01) (Figure 6). 

4.1.2 Roots 

Root mass was shown to be significantly different based on growth stage (F (4,64) 

= 0.86, P0 .0001) , and genotype was found to be an insignificant factor (p=0.0620). 

Bonferroni post-tests showed significantly different root mass (p<0.05) in sample period 

3 between AS11 and S-5; AS11 and S-6 (p<0.01); in growth stage 2 and 5 between AS11 

and wild type (p<0.05; p<0.01); and finally at growth stage 5 between S-6 and wild type 

(p<0.05) (Figure 7). 

4.1.3 Seed Yield 

There were no significant differences (P=0.3916) in seed yield based on genotype 

(Figure 8). 
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4.2 13C excess 

13C excess (mg) was used to identify the flow of I3C isotopes throughout the plant 

at any given sampling period. This was calculated by first subtracting the 13C percentage 

found in the labeled samples by the unlabeled control samples (i.e. natural abundance of 

13C in the sample). This gave the percentage of 13C in excess of that found in unlabeled 

samples at each growth stage (shown as At excess %). To trace the content rather than the 

concentration, the following calculation was used: 

13C excess (mg) = (dry weight * elemental C %) / At excess % *10 

To further explain this formula, the dry weight of each sample is multiplied by its 

measured carbon content and then divided by the percentage of l3C (At excess %) and 

multiplied by 10, to give it a measurement in milligrams. The resulting number is the 

amount of 13C labeling (mg) that is present, above the natural abundance (control). 

4.2.1 Shoots 

There were significant differences in the mean l3C content of the shoots of 

Arabidopsis based on genotype and growth stage. Growth stage accounted for 77.32% of 

the total variance (F = 83.34, PO.OOOl). Genotype was found to account for 2.10% 

of the total variance, and significantly affected carbon levels (F (3 i6) = 4.65, P<0.0160). 

Bonferroni post-tests showed significantly different carbon content (p<0.05) in growth 

stage 1 between AS11 and wild type; S-5 and wild type (p<0.01); as well as S-6 and wild 

type (p<0.001) (see Figure 9). 
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4.2.2 Roots 

There were significant differences in the mean 13C content of the roots of 

Arabidopsis based on genotype and growth stage. Growth stage accounted for 26.05% of 

the total variance (F (4,64) = 9.97, PO.OOOl). Genotype was found to account for 11.43% 

of the total variance, and significantly affected 13C levels (F (3j64) = 6.36, P<0.0048). 

Bonferroni post-tests showed significantly less labeled carbon (p<0.05) in S-5 and S-6 

genotypes during growth stage 1, and significantly less 13C in growth stage 5 for the S-6 

genotype (see Figure 10). 

4.2.3 Seeds 

There were no significant differences (P=0.3916) in 13C content based on 

genotype (Figure 11). 

4.2.4 Soil 

Significant differences in the mean 13C content of the soil were observed based on 

growth stage, and genotype. Growth stage accounted for 7.54% of the total variance (F (4, 

64) = 2.51 P=0.05). Genotype was found to account for 5.31% of the total variance, and 

did not significantly affect soil l3C levels (F (3;64) = 2.46, P=0.1003). A Bonferroni post-

test revealed significant differences in 13C content (p<0.05) in growth stage 1 between S-

6 and the wild-type control; as well as in growth stage 5 (p<0.01) between S-6 and the 

wild-type, and AS11 and the wild-type (see Figure 12). 
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4.3 15N excess 

excess was determined by using the same formula as C (see section 4.2) 

4.3.1 Shoots 

There were significant differences in the mean l5N content of the shoots of 

Arabidopsis based on growth stage, but not genotype (see Figure 13). Sample period 

accounted for 50.97% of the total variance (F (4;64) = 22.45, P0.0001) . Genotype was 

found to account for 1.01% of the total variance, and did not significantly affect 15N 

levels (F (3j64) = .88, P=0.4729) 

4.3.2 Roots 

There were no significant differences in the mean !5~N content of the roots of 

Arabidopsis based on growth stage or genotype (see Figure 14). Sample period accounted 

for 7.16% of the total variance (F (4> 64) = 2.25, P=0.731) and the effect is considered not 

quite significant. Genotype was found to account for 5.74% of the total variance, and did 

not significantly affect 15N levels (F (3>64) - 1.42, P=0.2740). 

4.3.3 Seeds 

There were no significant differences (P=0.3916) in 15N content based on 

genotype (Figure 15). 
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4.3.4 Soil 

There were significant differences in the mean 15N content of the soil based on 

growth stage and genotype. Growth stage accounted for 90.86% of the total variance (F 

(4>64) = 256.66, PO.OOOl). Genotype was found to account for 0.44% of the total 

variance, and did not significantly affect 15N levels (F (3;64) = 1.42, P=0.2229). A 

Bonferroni post-test revealed a significant difference in 15N (p<0.01) in growth stage 1 

between AS11 and S-5; and between S-5 and S-6 (see Figure 16 - 18). 
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Figure 5: Total plant growth (root and shoot combined) of Arabidopsis 
genotypes at each growth stage. Significant differences (p<0.05) in total dry 
weight were observed in growth stage 5, between the AS11 and S-5 genotypes. 
Bars indicate standard error of the mean (SEM). 
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Figure 6: Shoot dry weight (g) of Arabidopsis genotypes at each growth stage. 
Shoot dry weight was found to be significantly different between the wild-type 
genotype and S-5 & S-6 genotypes at growth stage 5. Bars indicate standard error 
of the mean (SEM). 
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Figure 7: Root dry weight (g) of Arabidopsis genotypes at each growth stage. 
There were significant differences in root mass at growth stage 2 between AS11 
and wild-type genotypes; growth stage 3 between AS11 and S-5 & S-6 genotypes; 
and growth stage 5 between AS11 and wild-type, and S-6 and wild-type. Bars 
indicate standard error of the mean (SEM). 
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Figure 8: Total seed yield of Arabidopsis genotypes. There were no significant 
differences in yield based on genotype. Bars indicate standard error of the mean 
(SEM) 
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Figure 9: 13C excess in shoots of Arabidopsis genotypes at each growth stage. 
In growth stage 1, significantly less C was observed in AS11, S-5, S-6 
genotypes, in comparison to the wild-type control. Bars indicate standard error of 
the mean (SEM) 
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Figure 10: 13C excess in roots of Arabidopsis genotypes at each growth stage. 
There were significant differences in 13C content during growth stages 1 and 5. 
Bars indicate standard error of the mean (SEM) 
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Figure 11: C excess in seeds of Arabidopsis genotypes at final harvest. 
Genotype did not significantly affect 13C content of seeds. Bars indicate standard 
error of the mean (SEM) 
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Figure 12: l 3C excess in soil of Arabidopsis genotypes at each growth stage. 
Significant l3C differences were observed in growth stages 1 and 5. Wild type 
Arabidopsis displayed significantly higher 13C than S-6 in growth stage 1, as well 
as AS11, and S-6 in growth stage 5. Bars indicate standard error of the mean 
(SEM). 
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Figure 13: ISN excess in shoots of Arabidopsis genotypes at each growth 
stage. N content of the shoots was significantly different (p<0.001) based on 
growth stage, but was not significantly different based on genotype. Bars indicate 
standard error of the mean (SEM) 
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Figure 14: 15N excess in roots of Arabidopsis genotypes at each growth stage. 
No significant differences in l5N content in roots were observed. Bars indicate 
standard error of the mean (SEM) 
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Figure 15: 1SN excess in seeds of Arabidopsis genotypes at final harvest. 
Genotype did not significantly affect l5N content of seeds. Bars indicate standard 
error of the mean (SEM) 
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Growth stage 

Figure 16: 1SN excess in soil of Arabidopsis genotypes at growth stage 1. N 
content was significantly different (p<0.05) based on genotype, with S-5 
displaying the highest amount of l5N, followed by wild-type, AS11 and S-6. Bars 
indicate standard error of the mean (SEM). 
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Figure 17: ISN excess in soil of Arabidopsis at growth stage 2. There were no 
significant differences in l5N content among the genotypes during growth stage 2. 
Bars indicate standard error of the mean (SEM) 
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Figure 18: 15N excess in soil of Arabidopsis genotypes at growth stages 3, 4 
and 5. There were no significant differences in 15N content among the genotypes 
during growth stages 3 - 5 . Bars indicate standard error of the mean (SEM) 
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4.4 Results of T-RFLP Analyses 

4.4.1 Normalization and Generation of VPT 

Optimal divisors were obtained (see table 2) using the size and area data provided 

by the peak chart made by Gene Marker. The curves of the size and area data were 

optimized in Matlab to become horizontal lines, with R2 linear power curves as close to 

zero as possible. Each restriction endonuclease was calculated separately, and generated 

unique percentage thresholds and graphs (see figures 19 - 22). 

4.4.2 TRF Peak analysis 

After normalization of peak charts based on the establishment of the variable 

percentage threshold, allele reports were corrected to contain the appropriate binary 

scores for each peak. Question marks were either replaced by a positive peak (1) or a 

negative peak (0), and some false positives were removed according to the threshold. A 

full report on the peaks generated by Gene marker software can be reviewed in section 

7.3 of the appendix. 

4.4.3 Genetic Similarity 

Dendrograms were created using Matlab software illustrating the genetic 

relationships of each TRF profile (see figures 23 - 27). 
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Figure 19: BstuI optimal divisor estimation. The curve of the R square is 
closest to zero when shown as a straight line. The X axis represents the total area 
of each BstuI T-RFLP profile, while the Y axis illustrates the number of peak 
remaining. 
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Figure 20: Hinfl optimal divisor estimation. The curve of the R square is 
closest to zero when shown as a straight line. The X axis represents the total area 
of each Hinfl T-RFLP profile, while the Y axis illustrates the number of peak 
remaining. 
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Figure 21: Haelll optimal divisor estimation. The curve of the R square is 
closest to zero when shown as a straight line. The X axis represents the total area 
of each Haelll T-RFLP profile, while the Y axis illustrates the number of peak 
remaining. 
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Figure 22: Mspl optimal divisor estimation. The curve of the R square is closest 
to zero when shown as a straight line. The X axis represents the total area of each 
Mspl T-RFLP profile, while the Y axis illustrates the number of peak remaining. 
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Figure 23: Dendrogram of BstuI data set. Copehentic correlation coefficient = 
0.86. 



Figure 24: Dendrogram of Hinfldata set. Copehentic correlation coefficient 
0.85. 
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Figure 25: Dendrogram of Haelll data set. Copehentic correlation coefficient 
0.86. 
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Figure 26: Dendrogram of Mspl data set. Copehentic correlation coefficient = 
0.85. 
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Figure 27: Dendrogram of combined RE data set. Copehentic correlation 
coefficient = 0.82. 



5.0 DISCUSSION 

5.1 Growth and development 

The results show that genetic manipulation of "Gene-X" (S-5 / S-6) and Tag1 

genes (AS11) had a significant growth effect resulting in a delayed onset of senescence, 

which explains the differences in shoot mass at growth stage 5 (Figure 6, and section 

4.1). The lack of silique shattering and delayed seed maturation at day 65 of genotype S-5 

and S-6 was in sharp contrast to the wild type control, which at the same time, had fully 

matured. Altered developmental timing was observed among all experimental genotypes 

(AS11, S-5, and S-6) compared to the wild-type control during the first and final 

sampling periods, however, AS11 appeared to catch up quicker to the wild-type and seed 

maturation was only delayed by about a week; S-5 and S-6 genotypes did not reach full 

maturation by day 65. Similar findings were reported by Boyes et al. (2001), in which an 

Arabidopsis mutant designated as fael-1, a seed-specific LCFA deficient genotype, 

showed delayed rosette leaf production and prolonged flowering period. 

The relationship between genetic modification of oil synthesis genes and plant 

development is still not fully understood, however several papers (Lock et al. 2009; Lu 

and Hills, 2002; Routaboul et al. 1999; Katavic et al. 1995) report developmental 

abnormalities and sensitivities in Arabidopsis mutants with modified oil content. It was 

observed that manipulating DGAT activity causes delayed seedling growth and disrupted 

development in Arabidopsis mutant AS11 (Katavic et al. 1995), and our results confirm 

these observations. Other research (Lock et al. 2009) revealed developmental 

abnormalities in DGAT deficient Brassica. The plants produced fewer siliques, some of 



which failed to fully develop or had phenotypic alterations such as thicker, hollow 

siliques and orange secretions on the stem during flowering (Lock et al. 2009). These 

results highlight a fundamental misunderstanding of the complexity of genes involved in 

oil synthesis, as evidence begins to mount regarding the role of DGAT and other 

enzymes in normal plant development. It is important to note that these effects are not 

present in all plants, the aforementioned morphological changes were not observed in 

tobacco lines with suppressed DGAT activity (Zhang et al. 2005). Lock et al. (2009) 

suggests that such reports might indicate that some plants may have a different preference 

for the last step in TAG biosynthesis, and that the effects of DGAT1 enzyme in TAG 

biosynthesis could be masked by the expression of different genes with overlapping 

functions. 

In regards to total seed yield reported in this study, we did not find any significant 

differences in overall yield at the time of harvest. There were, however, notably lower 

values for seed yield among the S-5 and S-6 genotypes. This can be explained by the rate 

at which these genotypes produced seed, and matured, in comparison to the AS11 and 

wild type genotypes. It was observed that at growth stage 4 (late reproductive), the AS 11 

and wild type plants had already begun silique shattering, a process that occurs once the 

seeds within the siliques have fully matured. It was estimated that approximately 10% -

20% of the AS11 and wild type plants had begun this process, yet the S-5 and S-6 

genotypes were still green and undeveloped. By final harvest (growth stage 5), the AS11 

and wild type genotypes were fully mature and many of the siliques were rupturing or 

had already ruptured. At the same time, the S-5 and S-6 lines maintained many 
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undeveloped siliques; and did not appear to be at the same developmental stage as the 

AS11 and wild type genotypes. 

5.2 Carbon partitioning 

Carbon is a significant component in the production of triacylglycerol (TAG) in 

seed oil. This experiment was designed to observe how limiting seed oil synthesis could 

disrupt the natural flow of carbon throughout the plant, at many stages of growth and 

development. We had selected a broad range of developmental stages to encompass the 

majority of Arabidopsis' life cycle, with a focus on the reproductive and seed maturation 

stages of development. It was at these stages that we suspect large fluctuations in carbon 

partitioning would occur, especially during seed filling. Since seed filling requires a large 

quantity of fixed carbon from the plant, the genotypes used in this study that have been 

shown to be oil deficient (through various genetic modification) should exhibit decreased 

carbon partitioning - especially to the seeds. 

I3C content was shown to be significantly different at specific growth stages, 

particularly growth stages 1 and 5 (late vegetative and fully mature). There are several 

factors which may be responsible for these differences in 13C content amongst each 

Arabidopsis genotype. Throughout the experiment, several observations were made 

regarding the developmental timing of each genotype. Although no measurements were 

taken, it was apparent that a significant delay in rosette growth was occurring amongst 

the S-5 and S-6 genotypes. Much like the oil deficient fael-1 mutant reported by Boyes 

(Boyes et al. 2001), S-5 and S-6 genotypes reached stage 5.1 (budding) before 



completing stage 1.10 (rosette growth). The resulting lack of vegetative growth and shoot 

biomass could explain the significant differences in 13C content during growth stage 1. 

The larger vegetative biomass of the wild type genotype (see Figure 6), would likely have 

an increased capacity to absorb l3CC>2 from the labeling chamber, and possibly absorbed 

more 13C, as was demonstrated by Butler et al. (Butler et al. 2004) during a 13C pulse-

chase labeling experiment on recently fixed photosynthate in ryegrass. 

During growth stages 2-4, there were no significant differences in 13C content of 

the roots, shoots or rhizosphere. This could be explained by a few different factors. 

Because it is during these stages that extensive growth and development of reproductive 

13 

organs is taking place (Boyes et al. 2001), a dilution effect of C labeling could be 

responsible. Over time, the initial dose of l3C labeling is likely to be replaced by unfixed 

carbon fixed during respiration, and it is expected that a percentage may be lost during 

respiration as well (Butler et al. 2004). There may be significant partitioning of recently 

fixed unlabeled CO2 that was not measured, possibly confounding the true flow of carbon 

to the shoots during these developmental stages. This was not, however, observed in the 13 

roots or soil samples, as they maintained a relatively stable level of C throughout the 

experiment. It is during the first and final sampling periods that significant C 

mobilization was observed; with the S-6 and wild genotypes showing increased disparity 

(Figures 10 and 12). Although each genotype demonstrated initial peaks and subsequent 

stabilization over time (caused by the initial pulse of 13C labeling), the S-6 genotype was 

quite variable in its allocation of 13C to the roots and soil, ending up with a significant 

drop in 13C at final harvest (Figures 10 and 12). It is unclear why this was not also 
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observed in the sibling line, S-5, however it may simply be due to increased plant or 

microbial respiration of 13C02 causing a dilution effect over time. 

13C flow to the seeds was expected to be significantly different depending on 

Arabidopsis genotype. It was hypothesized that the experimental genotypes (AS11, S-5 

and S-6) selected for oil deficiency would contain significantly less l3C than the wild type 

control. This, however, was not shown to be true. S-5 and S-6 genotypes did have less 

13C than the wild type, but AS 11 had the same amount of l3C as the wild type (Figure 

11). It is likely that at this stage of development (day 60), much of the I3C labeling had 

either been partitioned to the soil via rhizodeposition, or more likely, respired. Therefore, 

there wasn't sufficient 13C labeling remaining in the plant to accurately represent the total 

flow of carbon to the seeds. The raw data (not presented in this thesis) also shows 

significant differences in elemental C (unlabeled carbon) between the wild type and 

knock-down mutants. For example, there is nearly a 10% reduction in total elemental C 

present in the seeds of the S-5 genotype vs. the wild type; with numbers ranging from 

64% (wild type) to 55% (S-5 genotypes). These numbers suggest that there are in fact 

significant oil deficiencies in the experimental genotypes, however, the lack of remaining 

l3C labeling by the end of the experiment do not accurately demonstrate this. 

5.3 Nitrogen Partitioning 

Nitrogen partitioning remained relatively unchanged as a result of genetic 

modification of oil synthesis genes. There were no significant changes in I5N content of 

the roots and shoots based on genotype. Growth stage showed mobility of l5N to the 
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shoots during flower production (growth stages 2 - 4 ) which represented itself as a 

typical bell curve (see Figure 13), meanwhile the 15N content of the roots maintained a 

near constant level (see Figure 14). There were some significant differences in l5N among 

genotypes at growth stage 1, with S-5 having significantly higher 15N content than AS11 

and S-6 (Figure 16). This can be explained by looking at the 15N content in the shoots and 

roots of each genotype during this stage. It appears that 15N was actively partitioned to 

the roots (Figure 14) and shoots (Figure 13) by the AS11 and wild type genotypes, 

causing a significant reduction in soil 15N. It was also observed that each genotype had 

slightly different partitioning patterns, illustrated by peaks and dips of 15N content at 

various developmental stages. 

Because nitrogen is not a major component of seed oil, we had been correct in 

assuming that there would be no significant change in N partitioning resulting from the 

genetic manipulation of genes involved in this process. It was interesting to observe some 

changes in N partitioning between genotypes at specific growth stages, illustrating subtle 

changes in growth patterns resulting from gene modification; however, it did not appear 

that N partitioning was significantly affected, overall. 

5.4 Effects on soil microflora 

The rhizosphere is a dynamic environment surrounding the roots of plants, where 

biologically and chemically diverse interactions take place between the plant roots, and 

soil biota (Hartmann et al. 2009). It is known that organic carbon is considered the 

limiting factor for microbial density and activity (Bowen and Rovira, 1999; Lugtenberg 



and Dekkers, 1999), therefore, plant genotypes which mobilize a greater proportion of 

their organic C to the roots and surrounding rhizosphere may trigger the proliferation of 

microbial communities in response to the increased carbon influx. 

The amount of bacterial DNA isolated from the lg rhizosphere samples ranged 

from 52 - 58.9 ng/(il (see table 3). As expected, the bulk soil did not contain as much 

bacterial DNA as the rhizosphere samples, and contained approximately 26 ng / jj.1. After 

the application of several restriction endonucleases (RE) (Hinf l , Haelll, BstuI, Mspl), an 

interesting correlation was observed. The genetic composition of bacterial DNA of the 

rhizosphere was most similar between S-5 and S-6 genotypes, in all RE profiles except 

Haelll. Because these two genotypes are more closely related than the other genotypes 

tested, it was surprising to find that the bacterial communities were also so closely 

related, with distinct peaks at around 500bp not found in other TRF profiles. The wild 

type genotype was shown to share some genetic similarities to the S-6 line when cut with 

Haelll, however, overall it appears to be distinctly separated from the S-5 / S-6 lines as 

well as the AS11 genotype. The AS11 genotype had little relationship to any other 

genotype, and was found to either branch off independently from the group (see Hinfi and 

BstuI data sets, figures 23 / 24), or share a distant connection to bulk soil (figure 27). 

Based on Nanodrop results (see Table 3), the total extracted bacterial DNA was 

not significantly different based on genotype. Bulk soil showed the least amount of 

extracted DNA, however, this was expected as bacteria abundance is significantly higher 

within the rhizosphere (Bais et al. 2006; Jones et al. 2004). This could explain why bulk 

soil was the least related among the 5 soil samples tested. Based upon this 13C data, the 



wild type genotype had shown significantly higher l3C excess in the soil at various stages 

of development (see Figure 12), in comparison to AS 11 and S-6. Dendrograms also 

showed the wild type as being distinctly different from the other groups, perhaps as a 

result of increased C content found in the soil. Since the molecular analysis of 

rhizosphere soil was conducted at the final sampling period (day 65), and carbon / 

nitrogen content in the soil is in a constant state of flux, the results of this experiment 

only show the similarities at the time of harvest. It could be that as plants age, and 

conditions change, so to do the bacterial communities that colonize the rhizosphere. 

By the second - third growth stage, we began noticing some stress related 

purpling of the leaves, and discovered these plants were infected with insects believed to 

be thrips (Thysanoptera thripidae). This was most apparent in the AS11 and wild-type 

genotypes; however, S-5 and S-6 genotypes were also affected. The infestation did not 

progress beyond these stages, due to the lack of a food source caused by the senescing 

leaves. It is known that plants can release root exudates that induce a defense response in 

neighboring plants during an herbivore attack (Bais et al., 2006), therefore it is 

conceivable that during this time an influx of these plant-plant signaling molecules were 

present in the soil. Because plant roots initiate cross talk with soil microbes by producing 

signals that are recognized by the microbes, which in turn produce signals that initiate 

colonization (Bais et al., 2006); distress signals sent by plants may also affect colonized 

bacteria. It is unclear how soil microbes react to plant-plant signals, as more research in 

this area is needed. 
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It is well known that bacteria and plants can form both positive relationships, in 

the case of plant growth promotion rhizobacteria (PGPR); and negative relationships, 

observed during continuous attacks from pathogenic microbial infection. Plants, such as 

Arabidopsis, rice, corn, soybean, and the model legume Medicago truncatula, have been 

studied extensively for their antimicrobial defense mechanisms which include 

antimicrobial indole, terpenoid, benzoxazinone, and flavonoid/isoflavonoid natural 

products (Bais et al. 2006). Because the soil used for this experiment was taken from a 

farm and was not sterilized, it is possible that pathogenic bacteria were present in the soil 

causing the release of antimicrobial root exudates in the case of an infection. The effects 

of genetic modification of oil synthesizing genes on the production of these secondary 

root exudates has not been studied, and the role of these genes on normal plant 

development is still not fully understood. It has been suggested that DGAT, an enzyme 

once believed to be involved solely on TAG synthesis, actually plays a significant role in 

plant development, and excessive accumulation of DAG and/or its precursors in 

developing seeds deficient in DGAT activity could lead to disturbances in signaling 

pathways (Lock et al., 2009). The resulting differences in microbial populations may be 

contributed to the impaired ability to produce antimicrobials, which could be an unknown 

byproduct of genetic manipulation of "Gene-X". 

Another factor that may explain the differences in bacterial communities is plant 

age. According to Baudoin et al (2003), research conducted on maize showed bacterial 

community structure differed quantitatively (densities) and qualitatively (metabolic 

potentialities, genetic structure), with plant developmental stage. This research suggested 



that exudate diversity and availability changes in response to plant age (Baudoin et al. 

2003). Also in this study, variations in C/N ratios did not affect bacterial proliferation, 

and increased C content influenced bacterial densities and genetic structure significantly 

(Baudoin et al. 2003). Considering the evidence provided above, it is likely that plant age 

may have played a significant role in altering the genetic profile of the rhizosphere. It is 

unknown whether modification of the "Gene-X" has secondary effects on root exudates, 

however, it was obvious that normal growth rates were delayed resulting in a prolonged 

flowering period / incomplete seed maturation at the time of harvest. Since the soil 

collected for T-RFLP analysis was taken at the end of the experiment, only bacteria that 

had either established a competitive advantage throughout the experiment, or those of 

which were present at full maturity vs. early - mid seed maturation stages, were 

observed. 

5.5 Limitations and Directions for Future Studies 

The goals of these experiments were to monitor changes in C and N partitioning 

resulting from genetic modification of oil synthesis genes resulting in reduced TAG 

content, and to characterize microbial populations of the rhizosphere. The scope of this 

microbial characterization is quite broad, and is limited to the genetic similarity / 

dissimilarity of each sample. This, although an important first step in observing changes 

in microbial populations due to manipulated oil synthesis genes, paints an incomplete 

picture. It is of great interest to continue onto the next steps and sequence the peaks 

urfique and conserved to the S-5 and S-6 genotypes, to better understand what types of 



bacteria are taking advantage of the apparently altered growth conditions offered by these 

mutants. An analysis of the rhizosphere soil could also yield results pertaining to why 

specific bacteria were found in some soil samples, but not others. It is also of interest to 

observe changes in bacterial community structures at each growth stage, rather than at the 

end of the experiment. Research by Baudoin et al. (2003) show plant age significantly 

affects bacterial density and genetic diversity due to fluctuations in root exudation. By 

sampling at each growth stage, we might observe significantly different bacterial 

communities depending on the rate of exudation at that specific growth stage. 

The S-5 and S-6 mutants used in this study have genetic manipulation in unknown 

regions of the genome. At the start of this experiment, it was believed that the LACS4 T-

DNA insertions were causing the speckled coat and reduced seed oil phenotypes. 

However, recent evidence suggests that an unknown gene(s), "Gene-X", may be 

responsible (Katavic, personal communication). Because of the mysterious nature of this 

discovery, it is difficult to pin-point the exact mechanisms behind the developmental 

abnormalities and altered rhizosphere ecology resulting in significantly different bacterial 

populations. It is a logical assumption that the gene(s) affected are important in seed oil 

synthesis, but beyond that there is only speculation. Continued research on the exact 

location of these genes is imperative. 

Because this experiment used knock-down mutants, results only indicate changes 

resulting from decreased TAG synthesis. It would be ideal to test for C and N partitioning 

changes resulting from over-expressing these genes in Arabidopsis mutants as well. 

Considering the effects on growth and development observed in S-5 / S-6, it would be 



interesting to observe whether such changes are present after over-expressing this gene. 

Similarly, it is unknown how other plant species may react to genetic manipulation of 

"Gene-X", therefore continued research using other species such as Brassica would be an 

important step in identifying the actions of this gene on other species. 

There were also some difficulties in sampling the extensive root systems of 

Arabidopsis, especially in a soil medium where they must be gently teased away from 

soil particles they are clinging to. It was quite difficult to isolate the entire root system 

from the soil; therefore a small amount of variability resulting from sampling error could 

not be avoided. Although the majority of the tap root system was successfully collected, a 

small percentage of the fibrous roots may have broken up in the process, unable to be 

retrieved. We had conducted several experiments prior to this one, testing different sand / 

soil compositions in order to minimize root loss through sampling, and it was found that 

the 50% sand 50% soil mix provided the best growth, and root retrieval in comparison to 

using a potting soil mix (unable to retrieve roots, although excellent growth), or pure sand 

medium (poor growth, excellent root retrieval). 

Finally, because this experiment could not be duplicated due to time constraints, 

our study is limited to one growth season. A second and perhaps third trial would 

establish more robust and compelling evidence regarding the C/N partitioning, 

developmental abnormalities, and bacterial communities affected by the modification of 

oil synthesis genes. 



6.0 CONCLUSION 

Biofuels may play a significant role in the conversion from fossil to renewable 

energy, as well as help mitigate CO2 emissions; however continued research on 

improving biofuel feedstocks is imperative. Our current research was aimed at exploring 

the unknown physiological effects of genetic modification of oil synthesis genes on 

carbon and nitrogen partitioning, as well as the interactions between these genotypes and 

the surrounding bacterial microflora. The implications of this study offer novel insights 

of the effects of gene modification on the whole plant, and highlight some important side 

effects. 

The results of the carbon / nitrogen partitioning experiment indicate that genetic 

modification of these specific oil synthesis genes resulted in reduced TAG content and 

significant changes in developmental timing, but did not significantly affect the normal 

flow of carbon or nitrogen. Significant delays in seedling growth and seed maturation 

were observed in S-5 and S-6 genotypes, and AS11 showed slight delays (~1 week) in 

seed maturation as well. 

In regards to the T-RFLP analysis, there are several things to consider when 

interpreting TRF peaks. It has been suggested that that a single gram of soil may contain 

over 4000 bacterial species (Kirk et al., 2004) and most of these have not yet been 

identified (Singh et al., 2006). In order to help illustrate the diversity of bacteria in the 

soil, 4 RE's were used to help eliminate the possibility of several species comprising the 

same length in profiles of each soil sample, a problem commonly observed when using 

fewer than 4 RE's (Kitts et al., 2003). Although this method helps in distinguishing 



between groups of bacteria, it is still likely that more than one group of bacteria comprise 

a single peak (Kitts et al., 2003). However, it is impossible to know what groups of 

bacteria are present without further studies such as sequencing the 16s rRNA. 

There is an interesting correlation between genotype and bacterial composition in the 

rhizosphere. It was shown that up to 80% of the microbial DNA found in the S-5 

rhizosphere was also found in the S-6 rhizosphere (See Figure 24). AS11 on the other 

hand, merely shared 20-30% of the DNA found in the S-5 / S-6 rhizosphere, and the wild 

type shared -50%. It is unclear what the exact reasons for this relationship are. It has 

been shown that carbon availability in the rhizosphere is a limiting factor for bacterial 

colonization and proliferation (Bais et al. 2006; Jones et al. 2004; Baudoin et al. 2003), 

however, 13C content in the soil and roots were significantly different between S-5 and S-

6, suggesting other factors were involved. 

Seed oil synthesis is a complex and relatively misunderstood phenomenon. Once 

believed to be a linear process, we are only recently discovering its truly dynamic nature 

involving a variety of genes with multiple functionalities. To our knowledge, this is the 

first study to explore the physiological effects of "Gene-X" modification. Because of the 

significant reduction in seed oil content (-10%), we speculate that the gene(s) involved 

are highly important in seed oil synthesis, and also play a role in normal plant 

development. It could be a possible candidate gene for increasing oil yield via over-

expression; however, the prolonged seed maturation observed in the knocked-down 

mutants would not be a desirable trait for commercial oilseed crops. 
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7.1: Analytical report of soil used for experiment 

Analyte Units Results 
Organic Matter % weight 2.4 

Available Nutrients 
Nitrate - N Farmsoil ppm 14 

Phosphorus Farmsoil ppm >60 
Potassium Farmsoil ppm 106 
Sulfate - S Farmsoil ppm 3 

Copper FS micro-nutrients ppm 24.7 
Iron FS micro-nutrients ppm 55.4 
Manganese FS micro-nutrients ppm 5.86 
Zinc FS micro-nutrients ppm 5.50 

Base Saturation FS Base-Saturation % 91.2 
Calcium FS Base-Saturation % 66.0 
Magnesium FS Base-Saturation % 21.4 
Sodium FS Base-Saturation % 0.8 

Calcium FS macro-nutrients ppm 1200 
Magnesium FS macro-nutrients ppm 236 
Sodium FS macro-nutrients ppm 16 
Boron FS macro-nutrients ppm 0.4 

Physical and Aggregate Properties 
Silt Soil Texture % 23.4 
Clay Soil Texture % 8.6 
Sand Soil Texture % 68.0 
Texture Sandy Loam 

Soil Acidity 
PH 1:2 Soil:Water PH 6.9 



7.2.1 Electropherograms of RE derived TRF profiles from AS11 soil sample. Al 
digested by BstUI, A2 digested by Hinfl, A3 digested by Haelll, and A4 digested by 
Mspl. 





1 0 6 

7.2.2 Electropherograms of RE derived TRF profiles from S-5 soil sample. B1 
digested by BstUI, B2 digested by Hinfl, B3 digested by Haelll, and B4 digested by 
Mspl. Size (bp) and area of the peaks shown by the X and Y axis. 
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7.2.3 Electropherograms of RE derived TRF profiles from S-6 soil 
sample. CI digested by BstUI, C2 digested by Hinfl, C3 digested by Haelll, and C4 
digested by Mspl. Size (bp) and area of the peaks shown by the X and Y axis 
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7.2.4 Electropherograms of RE derived TRF profiles from Wild-type soil sample. Dl 
digested by BstUI, D2 digested by Hinfl, D3 digested by Haelll, and D4 digested by 
Mspl. Size (bp) and area of the peaks shown by the X and Y axis 
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7.2.5 Electropherograms of RE derived TRF profiles from bulk soil sample. Bulkl 
digested by BstUI, Bulk2 digested by Hinfl, Bulk3 digested by Haelll, and Bulk4 
digested by Mspl. Size (bp) and area of the peaks shown by the X and Y axis 
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7.3 Original data of RE derived TRF profiles. 



BstUI digested TRF profiles. AS11 genotype. 

Size (bp) Area Size (bp) Area 
52.8 4983 100.9 2786 
54.3 12875 106 1703 
55.6 4956 108.2 1057 
56.3 5882 109.2 1776 
58.2 6948 111 1051 
59.9 7217 118.2 792 
62 7466 120.2 862 

64.7 7275 123.9 477 
66.7 10090 128.8 431 
69 5073 129.9 1196 

70.2 4424 133.2 349 
73.3 5881 134.5 522 
75.2 7536 138.4 479 
78.2 4756 153.1 187 
81.9 3153 156.2 201 
85.3 5000 195.5 i_ 522 
87.8 3325 197 302 
90.8 4472 214.3 133 
93 3055 224.8 78 

93.9 1823 384.2 259 
94.9 3149 392.9 169 
96.3 2540 403.5 102 
99.4 1898 459.5 138 



Haelll digested TRF profiles. Wild genotype. 

Size Area Size Area 
54.2 1736 187.5 109 
56.5 3145 189 136 
58.5 1830 191.2 396 
62.6 3673 192 1035 
64.6 137 193.5 818 
66.5 257 195.6 3145 
68.3 202 196.9 1370 
73.1 125 199.7 563 
74.6 324 202.9 615 
75.9 219 208 370 
81.1 155 214.4 1331 
82.6 434 221.3 581 
83.7 422 223.1 1340 
85.9 346 224.8 678 
87.6 178 239.9 715 
90.3 1808 241.1 177 
91.6 776 242.7 197 

93 4970 247 535 
95.1 1394 291.9 47 
96.3 630 293.9 26 

100.3 124 301.9 31 
101.8 1656 312.1 120 
103.6 1012 318.4 369 
108.4 175 320.4 50 
109.6 141 325.3 70 

111 380 331.6 151 
111.7 487 334 35 
118.2 84 361.1 3015 
124.1 179 382.2 3083 
128.7 174 384.2 4167 
129.8 418 386.2 5121 
132.7 382 391.3 2941 
136.4 290 392.9 1807 
138.2 505 394.9 2630 
145.4 119 403.5 863 
147.7 120 459.9 3970 
149.7 234 465.4 1679 

153 190 467.5 5575 
175.7 385 484 2075 

186 75 486.5 2220 



Haelll digested TRF profiles. AS11 genotype. 

Size (bp) Area Size (bp) Area 
54.4 3117 168.2 117 
56.5 3661 186.1 114 
58.5 2832 187.4 118 
59.9 1070 191.1 448 
62.3 5276 192 1329 
64.7 524 193.7 1336 
72.1 799 195.6 3764 
73.3 543 197.1 1492 
75.1 1929 199.6 945 
81.8 2425 202.9 780 
84 948 208.1 207 
85.6 1330 214.3 1350 
87.5 1379 219.8 654 
90.2 3569 223.2 1342 
92.9 9738 225 431 
95.1 2173 239.9 702 
99.5 1197 241 87 
101.7 1994 247 508 
103.3 2504 292 87 
104.3 2189 293.1 166 
106.1 1876 294.8 179 
108.3 882 318.4 281 
111.7 2053 357.5 1517 
118 654 361.1 3545 
123.9 620 381.9 3109 
127.8 449 384.1 3940 
128.7 447 386.2 3737 
129.9 1539 390.9 4908 
131.1 397 392.7 3652 
132.6 1331 394.7 3227 
138.4 723 403.4 1202 
145.6 339 410.2 123 
153.1 364 459.2 4106 
156.1 193 483.9 641 
162.2 155 



BstUI digested TRF profile. Wild genotype. 

Size (bp) Area Size (bp) Area 
53 9324 138.6 1476 
56.5 3995 143.9 2286 
58.6 4039 153.2 918 
59.9 2780 161.8 1186 
62.4 8614 182.5 733 

. 67 4011 187.5 809 
71.4 2058 192.2 1831 
74.7 2281 193.7 1462 
81.2 3888 195.7 3027 
85.6 2155 197.1 2226 
87.6 2526 199.7 1536 
90.9 35634 203 1243 
93 8143 214.3 1150 
95.1 3145 223.1 1157 
101.7 6241 240.1 749 
106.3 2540 242.8 284 
108.4 2172 275.9 359 
109.5 2027 318.5 234 
111.2 2806 357.6 1544 
118.1 3454 361.1 2728 
127.5 2486 382.2 2911 
129.9 2351 384.3 4034 
133.2 1698 390.9 3121 
134.5 3751 393 1746 
135.9 2013 



BstUI digested TRF profiles. Bulk soil. 

Size (bp) Area Size (bp) Area 
54:5 10081 186 924 
56.5 17669 188.9 833 
58.3 5713 191.2 2023 
62.2 6300 192.1 4030 
64.7 3045 195.6 6589 
66.5 3819 196.3 3601 
69 4097 197.1 6562 
70.4 4820 203.2 2445 
73.3 2657 209.7 2283 
74.7 4224 214.4 8331 
81.8 2528 215.7 1298 
85.7 3427 222.9 7194 
90.7 6089 226.1 2017 
92.9 5527 227.1 1888 
95.1 4378 231.9 3866 
103.6 2551 233.6 2427 
104.3 3341 234.5 1578 
106.2 3670 235.6 6115 
108.4 2262 237.9 2887 
111 4021 240.1 3623 
115.5 1145 241.4 513 
118.2 961 242.6 1218 
123.8 1073 247.1 1800 
127.4 1177 261.7 549 
128.6 1174 378.3 3838 
129.9 1154 381.8 1719 
134.1 1256 391 9217 
137.7 1080 392.7 4548 
145.9 1192 394.6 6615 
153.1 839 397.1 4862 
159.1 1524 403.1 5246 
162.2 1542 467.6 3140 
168 1568 486 3025 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
54.3 17200 111 1576 
55.6 6654 118.2 2638 
56.8 10588 124.1 1828 
60.9 14261 127.7 1215 
62.5 12822 128.8 1347 
66.7 5389 130.8 1605 
68.5 5891 132.7 1463 
70.5 8626 134.2 1028 
71.7 7163 136.4 1234 
73.2 6182 138.5 1294 
74.4 5811 145.8 695 
77.3 6607 147.7 689 
81.9 4961 149.5 527 
83.9 4246 155.9 427 
91.6 4465 162.2 259 
93.9 4043 293.5 217 
94.9 3378 294.3 212 
96.5 3592 296.3 721 
99.4 5950 297.4 599 
102.4 2472 314.4 272 
104.3 2783 318.1 314 
106.2 2898 320.6 704 
108.2 2412 322.1 674 
109 3796 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
54.5 2429 197.5 359 
56.9 836 214.7 900 
58.2 223 216.6 181 
63.3 211 224.5 218 
64.8 106 228.1 702 
66.6 138 232.5 65 
68.6 251 253.6 518 
69.3 170 260.8 144 
70.5 1545 262.5 84 
71.5 392 264.4 66 
74.7 314 293.5 2752 
77.3 432 294.4 2624 
81.1 174 296.3 9468 
83.8 576 297.8 4522 
87.6 157 301.9 558 
97.1 1960 306.3 1678 
100 6231 308.2 1367 
102.5 696 312.2 1942 
104.3 342 314.3 5115 
109.3 708 318.3 9021 
110.1 1913 320.6 11244 
111.1 689 321.8 20825 
112.2 1551 325 4246 
114.1 1265 326.7 4507 
118.2 1153 327.6 4140 
123.8 377 329.5 8239 
127.8 304 331.6 6300 
129 469 333.4 3368 
129.8 204 335.7 4178 
133 516 338.5 2319 
134 597 341.2 3246 
138.4 1659 397.7 1189 
143.7 246 403 60 
145.9 211 459.4 246 
150 226 462.7 1425 
153.1 476 465.6 9466 
182.2 652 467.5 15614 
186.4 136 484 2407 
187.6 254 486.5 4223 
189 574 492.7 3386 
190.9 301 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
54.4 3398 146 294 
55.7 100 147.7 240 
56.9 637 150 324 
62.5 419 153.1 856 
63.3 445 167.6 249 
64.8 127 187.6 153 
68.6 388 189.2 406 
69.6 126 191.4 323 
70.6 742 195.6 80 
71.8 528 208.1 80 
74.5 348 214.4 597 
77.3 880 216.7 88 
80.9 342 224.5 289 
81.9 260 293.6 4940 
84 582 294.5 2868 
86.8 576 296.3 9634 
91.5 476 297.8 3439 
95.1 326 301.8 399 
96.3 1286 306.4 1054 
97.1 1822 312.2 2147 
100 8305 314.3 4054 
101.5 610 318.2 9938 
104.4 606 320.7 12779 
106.1 698 322.4 6849 
108.3 377 327.6 4108 
110 1054 329.4 8425 
111.2 273 331.5 5276 
118.1 1441 333.5 1886 
123.9 465 335.4 3413 
127.6 300 340.9 2377 
128.9 454 390.7 131 
129.8 246 409.9 196 
131 246 459.1 136 
132.8 737 465.3 5247 
136.4 634 467.4 10855 
138.5 2561 484 772 
143.7 211 



Haelll digested TRF profiles. AS11 genotype. 

Size Area Size Area 
54.4 6830 153.1 2060 

156.8 2194 156 1632 
62.4 2446 182.1 1597 
67.8 1911 186.3 963 
70.5 2812 187.5 1219 
71.6 1641 189 1726 
74.3 4292 190.8 1137 
77.2 3623 195.6 1633 

81 1955 197.5 1683 
83.9 2409 217.7 780 
91.5 1368 224.2 884 
93.4 4095 232.1 645 

97 7509 236.3 1119 
98.5 2787 293.5 2589 
99.9 7516 294.4 2424 

102.5 2767 296.2 9012 
104.4 2378 297.8 2878 
105.5 2318 301.9 1141 
108.2 1979 306.3 1406 

110 1918 312.3 2271 
111.1 1735 314.3 3838 
118.2 3357 318.3 12875 
121.5 1789 320.9 14437 
123.9 1922 323.5 4846 
127.7 1703 325 2301 
128.9 1380 326.9 7437 
130.8 1939 329.8 5399 
132.8 2846 331.6 3689 
136.4 1755 333.6 1406 
138.4 3705 335.1 2938 
143.4 6363 341.2 2354 
145.9 2367 465.3 1837 

150 1953 467.5 3505 



Hinfl digested TRF profiles. Bulk soil. 

Size (bp) Area Size (bp) Area 
54.5 12162 136.3 1518 
55.6 3199 138.6 2436 
57.4 2753 143.3 1413 
60.9 2544 149.6 1502 
63.6 2598 152.9 1227 
64.7 2108 156.1 1022 
66.7 5078 179.5 1263 
67.6 2107 182.1 1703 
68.6 3083 186.2 1115 
70.5 21318 187.2 1009 
71.7 3586 189.3 901 
73.2 3578 191.9 1034 
74.6 2538 195.7 2542 
75.6 3162 217.7 768 
77.7 6024 223.9 812 
78.8 3583 225 519 
81.9 3198 236.5 435 
84 2485 239.7 515 
91.6 3876 240.7 616 
93.9 2356 292.4 2456 
95.1 1494 293.4 2433 
96.7 3139 296.2 7589 
100 6484 297.6 14563 
101.8 2860 306.2 2147 
104.2 1574 314.2 10423 
106.1 1778 317.8 5025 
108.2 4111 322.4 9385 
109.3 1536 323.5 9732 
113.5 2103 327.5 7010 
118 2109 329.4 7598 
121.4 1517 331.4 12516 
124.2 1869 333.5 7438 
127.7 1363 335.3 6028 
128.8 1878 339.2 2167 
131.1 1331 341 7694 
134.1 1451 



Haelll digested TRF profiles. AS11 genotype. 

Size (bp) Area Size (bp) Area 
54.1 14120 109.1 1740 
55.5 6892 111.1 1526 
56.2 7499 118.2 1551 
61 14530 122 1437 
62.4 4672 123.7 993 
63.6 5505 128.5 762 
66.3 4416 134.2 569 
67.6 2853 136.4 658 
68.6 5047 138.5 1110 
70.5 8837 146.1 615 
74.9 5658 153.1 363 
77.3 4209 189 195 
81.2 3621 193.4 376 
82 3529 195.6 194 
83.8 3606 197.3 125 
85.8 2943 214.5 189 
86.8 2534 216.6 381 
91.4 3295 217.7 252 
93.8 5587 219.3 162 
95.2 1885 222.5 83 
96.4 4636 224.1 175 
99.4 4826 291.7 579 
106.3 1860 296.2 211 
108.3 2087 320.8 125 



Haelll digested TRF profiles. AS11 genotype. 

Size (bp) Area Size (bp) Area 
54.3 4299 192.1 3586 
60 3661 193.4 3691 
62.3 1026 195.5 3142 
63.5 3020 216.6 4886 
68.6 979 218.2 6566 
70.6 2100 232.4 6902 
71.8 1429 240.7 1418 
73 1805 260.2 1138 
75.1 1377 262.2 2389 
76.6 1263 264.3 753 
84 1808 272.1 315 
91.1 9617 291.7 6827 
97 2165 293.3 1558 
99.9 2024 296.4 3132 
111.2 938 306.4 455 
121.8 1154 313.6 1301 
124.1 1145 322 1854 
129 2214 325.9 1943 
131.2 3138 327.9 2508 
132.8 1182 329.7 1839 
136.2 948 376.2 2563 
137.7 1724 465.5 1730 
143.5 756 467.5 3202 
153.2 2850 483.9 578 
156.1 676 486.5 996 



Haelll digested profile. S-6 genotype. 

Size (bp) Area Size (bp) Area 
54.3 4747 182.5 1491 
57.1 2331 187.7 3762 
58 1723 192.1 5948 
59.9 4786 193.3 4023 
62.4 1999 194 5550 
63.4 3061 195.5 2838 
68.7 1936 196.5 3248 
70.5 2383 207.6 2490 
71.7 1878 214.4 11101 
72.9 2389 216.5 7675 
74.9 1536 217.8 8923 
77.3 1580 224.1 4261 
84 2854 232 3698 
85.9 1479 240.8 1782 
92 2166 242.7 1486 
93.2 2666 260.2 1982 
95.1 1538 262.1 3286 
96.4 4155 263.5 1202 
99.9 4359 272.4 125 
101.6 1784 287.7 2351 
104.5 1357 291.7 11384 
106.2 2000 293.3 2167 
108.3 1738 296.3 2175 
109.2 1364 306 490 
111.1 1643 313.3 2075 
118.3 1526 320.9 1508 
121.9 952 323.3 2929 
123.9 1701 325.7 1845 
128.9 1723 327.9 2530 
131 4457 329.6 1901 
132.9 1939 334 167 
134.2 1514 375.9 2668 
136.5 1553 378.5 124 
138.5 4589 383.9 79 
143.3 1238 392.5 119 
145.9 1023 410.1 346 
147.7 1036 465.4 2405 
150.1 1179 467.6 5344 
153.1 1992 486.2 302 
156.2 996 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
50.1 1743 193.3 2769 
54.4 6469 194.1 3004 
57.3 4576 195.6 2413 
58.3 3232 196.6 1827 
60 4198 207.5 2890 
62.5 2349 214.5 13659 
63.5 2610 216.4 6809 
69.4 5686 218.2 6661 
70.5 4479 219.7 4811 
71.6 3403 222.9 2491 
74.9 3105 224.2 2857 
77.4 5891 225.1 2604 
81.1 3116 232.1 4787 
83.9 4152 240.9 1808 
85.8 1882 242.7 1620 
86.8 3337 260.5 1307 
93.4 3125 262.3 2284 
96.3 5570 263.7 1040 
99.9 4930 272.4 965 
104.5 1972 285.6 925 
105.6 2033 291.7 6907 
108.4 2252 293.3 1465 
109.3 2129 296.2 2006 
111.2 2222 302 574 
118.2 3000 306.1 562 
123.8 1969 313.4 1949 
131.1 4438 318.1 973 
132.8 3366 320.9 4180 
136 3713 323.3 1989 
138.3 4519 325 657 
143.5 7576 327.8 1775 
150 2719 329.5 1434 
153 2195 331.3 456 
156.1 2210 341.4 186 
168.2 1476 376 909 
187.7 3764 410.2 237 
189.1 2112 467.6 1869 
192.1 4909 



Haelll digested TRF profiles. Bulk soil. 

Size (bp) Area Size (bp) Area 
54.6 17165 134.7 2006 
55.6 3602 135.6 2882 
56.7 7018 138.2 6977 
62.6 5198 141.9 3685 
63.7 2599 143.3 2697 
64.7 2357 147.9 10286 
66.3 3346 149.6 8151 
67.5 3316 153 854 
68.5 4523 158.1 2031 
69.6 4895 168 2530 
70.5 19485 182.2 773 
71.7 4772 187.4 884 
73.3 7397 189 368 
75.7 3165 193 841 
77.2 4942 195.6 1078 
78.7 3232 197.4 1964 
81 2927 198.1 2940 
82 3027 200.7 1123 
83.9 2476 207.7 886 
87.2 4692 281.2 1642 
91.7 79306 288.1 2494 
95.1 1918 293.6 3434 
96.7 1549 296.3 1155 
99.9 3512 297.8 1236 
101.6 1659 314.2 805 
104.2 1347 322.4 2270 
106.3 1601 327.5 994 
108.3 3764 329.1 940 
109.3 1816 333.5 917 
111.2 2259 335.4 1157 
116.7 2070 340.9 1358 
118.1 1138 467.1 532 
127.7 5345 483.5 524 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
54.4 23363 106.3 2574 
55.6 7345 108.2 2687 
62.4 13652 109.2 2156 
66.8 5814 111.1 1677 
68.6 6009 124 1423 
70.6 9365 127.9 1240 
71.7 7734 128.9 1172 
73.3 6207 130.1 714 
74.5 6282 131 683 
77.4 5500 132.9 1197 
82 5907 134.2 1219 
84.1 4719 136.4 1100 
86.8 4300 138.5 1540 
88.2 2749 143.8 870 
91.6 5047 145.8 485 
93.9 4240 148 1213 
94.9 4012 149.7 743 
96.4 4656 153.1 692 
99.5 4204 296.3 310 
102.5 2633 320.5 228 
104.3 2620 322.2 303 



Mspl digested TRF profiles. S-5 genotype. 
Size (bp) Area Size (bp) Area 
54.7 2447 182 373 
56.9 292 186.2 1326 
62.9 1977 189.1 110 
65.1 259 192.1 107 
66.4 216 193 245 
68.3 999 195.4 376 
69.4 650 197.3 1020 
70.6 2238 203.2 134 
72.2 1054 207.6 642 
73.4 1593 214.1 206 
74.4 1188 216.3 1319 
75.7 430 222.9 435 
77.4 549 224.1 496 
81.3 3395 241.1 104 
87.4 2839 268.7 420 
89.2 2275 272.1 52 
91.6 3638 274.2 441 
93.5 1061 293.6 2231 
99.9 2104 296.2 2987 
104.4 287 301.7 183 
107.9 419 306.3 398 
109.4 1491 314.4 473 
118.1 779 318.2 1821 
121.7 891 320.6 4158 
124.5 1077 322.4 5903 
127.7 3075 325 623 
132.8 228 327.9 752 
134.6 1912 331.8 58 
136.3 6296 333.6 268 
138.2 4115 335.3 236 
145.8 2769 376.3 66 
148 8321 381.5 179 
149.8 4483 397.3 774 
153 280 465.4 1773 
158 1494 467 6051 
158.9 771 483.7 5456 
160 1570 486.2 5935 
167.9 947 



Haelll digested TRF profiles. Wild genotype. 

Size (bp) Area Size (bp) Area 
54.4 3312 156 580 
56.8 568 157.8 1154 
62.7 1679 159.9 1277 
64.4 192 167.7 572 
68.2 1007 182 153 
70.5 1340 185.8 326 
71.9 1115 188.9 129 
73.2 1419 192.3 57 
74.2 1209 193.1 109 
75.4 374 207.7 346 
77.2 843 217.8 42 
81 1358 224.2 294 
82.7 1159 240.2 83 
83.9 492 261.7 50 
87.2 2343 264.1 192 
89.1 2063 288 283 
91.6 3909 293.3 1359 
93.3 1068 294.4 554 
94.9 312 296.1 2659 
96.3 959 297.9 387 
99.9 3005 306.3 278 
104.3 561 312.2 70 
106.2 530 314.2 319 
108.1 672 318.1 1212 
109.2 639 320.6 2479 
109.9 498 322.2 3597 
118 902 327.8 860 
121.7 1084 333.4 165 
123.8 914 341.4 332 
127.6 2873 384.3 82 
130.7 259 393 39 
132.7 639 397.3 437 
134.5 1494 400.5 1404 
136.2 6976 433.9 1341 
138.3 4253 436.2 2233 
145.6 2172 465.4 1315 
147.9 6016 466.9 5222 
149.6 3341 483.6 2319 
152.9 875 486.1 2344 



Haelll digested TRF profiles. AS11 genotype. 

Size (bp) Area Size (bp) Area 
52.4 4534 156.1 2268 
54.5 9453 162.3 1113 
56.9 2248 167.8 2076 
62.7 4611 169.7 1615 
67.9 5144 181.9 924 
70.4 4906 189 1060 
72 3593 191 992 
73.1 3640 192.2 900 
74.3 3615 193 898 
77.3 3514 195.7 1316 
81 9799 216.3 971 
84 3391 219 340 
87.3 7326 224.1 840 
89 4593 236.4 283 
91.5 6836 240.9 145 
93.5 3748 245.3 724 
98.5 2487 246.7 181 
99.9 5097 264.4 227 
102.5 3324 293.5 1203 
104.3 2264 296.2 2775 
108.2 3211 297.8 643 
109.3 4088 301.9 391 
118.1 3489 314.3 457 
121.7 3556 318.2 1633 
123.8 2417 320.8 2760 
127.5 4248 322.4 1699 
128.7 2105 323.4 1393 
132.6 3477 324.9 552 
134.6 3250 327.7 480 
136.2 13987 335.3 191 
138.4 6501 341 332 
140.7 2847 397.4 252 
143.4 8468 465.5 398 
145.7 5771 467.2 1769 
147.9 8615 483.8 1364 
149.8 6581 486.1 889 
153 1685 



Mspl digested TRF profiles. Bulk soil. 

Size (bp) Area Size (bp) Area 
54.4 9186 191.1 2384 
55.6 2767 193.3 10124 
56.3 2977 195.5 1767 
58 2422 196.6 3391 
59.9 10100 198.2 2356 
61.1 2280 199.8 1955 
62.3 2177 202.7 4324 
63.5 5797 207.7 3687 
64.7 1998 214.3 2777 
67.6 1882 219.4 5452 
68.6 2428 220.6 4940 
70.5 22189 222.5 3140 
71.7 3521 224.1 3134 
72.8 3501 225 2719 
74.8 2193 232.1 9724 
75.7 2258 236 3280 
82 2353 236.7 3908 
83.8 2170 241 2221 
91.5 3500 242.7 5043 
93.9 1824 247 655 
95.3 1125 255 1553 
96.7 1134 257.9 2686 
99.9 4859 258.6 1811 
101.7 1101 260.4 2306 
104.1 1847 262.1 5353 
106.3 1531 264.4 2739 
108.2 4213 271 1433 
109.3 1262 291.7 5345 
111 3118 293.3 4325 
118.3 828 296.3 5662 
121.4 1611 298.8 1013 
130.6 6108 301.7 788 
134.2 1390 306.3 394 
137.6 2549 313.1 1876 
147.6 1566 321.1 1068 
153.1 1283 322.4 524 
168.5 1896 329.6 1864 
182.3 1908 333.5 606 
187.5 1815 341.3 828 
188.2 2162 410 3121 


