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Late Paleozoic Felsic Volcanic Rocks in Southern New Brunswick and Related Uranium
Mineralization

by Taryn Rosemary Gray Hons. B. Sc.

Abstract

Three units of Late Paleozoic felsic volcanics within southern New Brunswick were

examined geochemically and petrographically to determine their genetic history and

economic potential. The Late Devonian Harvey and Piskahegan Groups are

predominantly composed of peraluminous volcanics, and were previously considered

coeval since they contain similar stratigraphy, and formed during the same pulse of

igneous activity. The younger, Visean aged Cumberland Hill formation is characterized

by peralkaline trachytes and rhyolites, forming through extensive fractional crystallization

of alkali basaltic magma, likely derived from a mantle plume. The Harvey, and to a lesser

extent, Piskahegan Group display excellent economic potential, enriched in uranium and

rare earth elements. Cumberland Hill exhibited significantly lower concentrations of

economic elements, slightly elevated in incompatible trace elements, including uranium.

This study determined Harvey and Piskahegan are not genetically related, it also refined

the genetic history and economic potential of southern New Brunswick.

August 4, 2010
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Chapter 1: Introduction

1.1. Introduction to the Problem
The Maritimes Basin of southern New Brunswick is known to contain felsic volcanic

and volcaniclastic rocks, resulting from a period of intense tectonic activity during the

Mid-Devonian to Late Permian (Belt, 1968; Kuan, 1970; Pajari, 1973; Bradley, 1982;

Beuthin; 1994). This area has been continually investigated for its economically viable

ore deposits throughout much of the last century creating profitable mining industries

harvesting tin, indium, tungsten, molybdenum and gold (Pouliot et al, 1978; Yang et al.,

2003; Sinclair et al., 2006). Although uranium mineralization was discovered during

historic metal exploration, only recently has it become economically viable with the

expansion of nuclear energy resources in the late twentieth century. As a result, limited

research has been conducted on the genesis of the deposits or the geochemical signatures

ofuranium host rocks within the area.

The Late Devonian (McGregor & McCutcheon, 1988; Tucker et al., 1998) Harvey and

Piskahegan Groups of southern New Brunswick were previously documented to contain

U mineralization within felsic rhyolites (Strong, 1980; Brack, 1982; McLeod and

Johnson, 2007). Previous studies (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;

Gemmell, 1975; Beaudin et al. 1980; Ruitenberg & McCutcheon, 1985; Payette &

Martin, 1986b) have indicated the Harvey and Piskahegan Groups can be lithologically

correlated despite displaying distinct geochemical characteristics and subtle regional

variability. The younger, Visean (St. Peter, 2002) Cumberland Hill Formation (Fm) also

contains U mineralization within felsic volcanics, although of a less significant grade than
1



either Harvey or Piskahegan. Through both geochemical and pétrographie investigations,

these localities will be utilized to examine the genetic history, geochemistry and

economic potential of southern New Brunswick felsic volcanics.

1.2. Central Research Questions
When this thesis first began, the primary focus was to determine whether or not the

felsic volcanic deposits, Harvey and Piskahegan of southern New Brunswick were

genetically related. From here, a diverse geochemical and pétrographie research design

was implemented to solve a variety of other intriguing questions related to uranium

mineralization in southern New Brunswick. Three additional central research questions

guided this scientific investigation then on.

1 . What was the original geochemical composition of the Harvey Group and how did it

evolve (i.e. partial melting, fractional crystallization, crustal contamination, lithospheric

interaction etc.)?

2. How does the geochemistry of the Cumberland Hill Formation compare to other
formations within southern New Brunswick? How does this influence our current

understanding of the geological history of the Maritimes?

3. What economic potential lies within the uranium deposits of Southern New
Brunswick?

1.3. General Thesis Outline

The body of this thesis aims to answer the aforementioned research questions and

continually builds on knowledge in the subject area. Chapter three investigated the

2



original melt geochemistry of peraluminus felsic volcanics of the Harvey and Piskahegan

Groups through the analysis of melt inclusions, hosted within quartz. This study offers the

first of many lines of geochemical evidence that the two groups are geochemically

unrelated, in contrast to previous work (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;

Gemmell, 1975; Beaudin et al. 1980; Ruitenberg & McCutcheon, 1985; Payette &

Martin, 1986b). The enormous economic U potential within felsic volcanics of southern

New Brunswick is also further illustrated within this study.

Chapter four investigated the genetic history and geochemical characteristics of

whole-rock samples (n=27) within the Harvey Group. Since the age of the Harvey Group

was previously unknown, Piskahegan and Harvey were predominantly correlated, and

assumed coeval, based on stratigraphy alone. This study advances our current

understanding of how the Harvey Group formed, and further exemplifies that Harvey and

Piskahegan are distinct deposits.

Lastly, chapter five investigated whole-rock samples (n=15) from the younger,

peralkaline rhyolites and trachytes of the Cumberland Hill Fm. While difficult to infer

from geochemistry alone, this study offered valuable insight into the possible petrogenic

history of the Maritimes. The uranium potential of these region was also exemplified

through comparison to the Streltsovka Caldera, the largest hydrothermal, peralkaline

uranium deposit in the world.

All of the chapters in this body of work were separately completed as a manuscript for

publication. As a result, some introductory material may seem redundant, since each

chapter is designed to stand-alone.
3



Chapter 2: Methods

Methods discussed extensively within the bodies of Chapters 3, 4, and 5 are not

discussed below. Any additional details not discussed in methods covered in the

aforementioned chapters will be covered herein.

2.1. Sample Preparation and Field Work
During the summer 2008, fieldwork including reconnaissance field investigation,

detailed mapping of selected areas, and sample collection was completed in southern New

Brunswick. Twenty-seven samples were obtained from the Harvey Group (Cherry Hill—

n=18, Harvey Mountain- n=5, York Mills- n=5), 110 samples from the Piskahegan

Group (Albert- n=2, Bailey Rock- n=4, Big Scott Mountain- n=16, Kleef-n=3, Little

Mount Pleasant- n=10, McDougall Brook Granite- n=20, Mount Pleasant Mine Site-

n=l, Scoullar Mountain- n=27, Seelys- n=25, South Oromocto- n=2) and 15 samples

from the Cumberland Hill Fm. Whole-rock samples were expedited to Saint Mary's

University, Halifax, Nova Scotia for further processing. All samples were cut into slabs

(1 cm width) to prepare for thin sectioning and subsequently chipped and powdered

(Dalhousie University, Halifax) for geochemical analysis.

2.2. Petrography
A slab from representative samples were sent to Vancouver Petrographies where

twenty-seven polished thin sections were obtained for pétrographie characterization and

microprobe analyses. Thin sections were stained to readily distinguish between albitic

plagioclase and potassium feldspar. Representative samples from each group were
4



examined utilizing both a pétrographie and transmitted light microscope to identify the

minerals, and textures present within the samples.

2.3. Major and Trace Element Geochemistry
Standard sample preparation procedures were used for geochemical analysis using a

Philips PW2400 X-Ray fluorescence spectrometer (XRF) at the G.G. Hatch Stable

Isotope Laboratory, Ottawa, Ontario. Each sample was fused (Claisse Fluxer) and pressed

(Carver press) prior to placement in the Philips PW2510 sample changer. The XRF was

controlled by Philips SuperQ/Quantitative and SemiQ/Qualitative (v. 2.1D) software,

enabling the quantifiable output of 28 major (wt. %) and minor elements (ppm), loss of

ignition (L.O.I.) values, and major compounds (wt. %). The XRF operates at detection

limits of 0.01% (or better) for major elements and L.O.I.

Various samples from Harvey and Piskahegan were analyzed by fusion using a Perkin

Elmer Optima 3000 inductively coupled plasma mass spectrometer (ICP-MS) to

determine trace element concentrations. Samples were analyzed at Activation

Laboratories, Ancaster, Ontario according to standard procedures (Hoffman, 1992).

2.4. 147Sm/144Nd Radiogenic Isotopes
Four samples (NB07-2, -11,-21, -28) were analyzed for Sm/Nd isotopie ratios using a

Finnigan MAT 262V thermal ionization -mass spectrometer (TIMS) at Memorial

University, Newfoundland. Samples chosen for analysis contained low Rb (<1075 ppm)

and Sr (<950 ppm) concentrations, few inclusions and were relatively homogenous.

Approximately 0.05-0.2g of powdered sample was dissolved in concentrated HF and

HNO3 acids, and spiked with 150Nd/149Sm prior to acid digestion (5 days). Once the
5



sample evaporated, the remaining material is taken up into 2N HCl for 2 days, dried
again, and taken up into 2N HCl. Samples are subsequently loaded into cationic exchange
chromatography utilizing AG50W-X8 resin to accumulate rare earth element (REE)

fractions. After purification, the Sm and Nd fractions are isolated with a secondary

column loaded with Eichrom© Ln resin and analyzed using a multicollector Finnigan Mat

262 mass spectrometer operating in static mode. Once analyzed, the values are

normalized to 146NdZ144Nd = 0.7219, calibrated to the JNdi-1 standard (143NdZ144Nd =

0.512115, Tanaka et al., 2000), and accurate to <0.002% (Nd), and <0.1% (147SmZ144Nd
ratio). Subsequent to analysis, eNd values were calculated based on the present day

chondrite uniform reservoir (CHUR; 147SmZ144Nd = 0.1967 and 143NdZ144Nd = 0.512638),
and age equations were modeled using the De Paolo mantle model, and the known Sm

decay constant (6.54xl0~12 years; Steiger and Jäger, 1977).

2.5. Lu-Hf Zircon Isotopes
In situ zircon Hf isotope analyses were carried out using a New Wave UP 213 laser-

ablation microprobe, attached to a Nu Plasma multi-collector ICP-MS, coupled with a

fixed detector array of 12 Faraday cups and 3 ion counters at the Institute of Earth

Sciences, Academia Sinica in Taipei. The New Wave UP 213 laser system delivered a

beam of 213 nm UV light from a frequency-quintupled (5th harmonic) Nd: YAG laser.
Analyses were carried out with a beam diameter of 55 mm, 5 Hz repetition rate, and

energies of -0.4 mJZpulse. Typical ablation times were 80-120 s, with background
collected 30 s prior to ablation. Instrumental conditions, data acquisition, and analytical

procedures were similar to Griffin et al. (2000).
6



For this study, masses 172, 175, 176, 177, 178, 179 and 180 were simultaneously
examined in static-collection mode and normalized to 179Hf177Hf = 0.7325, using an

exponential correction for mass bias. All isobaric interferences of Lu and Yb on
176Hf were corrected, and the recommended 176LuZ175Lu and 176Yb/172Yb ratios of 0.02669
(De BiÈvre and Taylor, 1993) and 0.5865 were used for the data reproduction. The
reproducibility of the Hf isotope analyses is demonstrated by 28 Hf analyses on the 50

ppb solution of the AMES Hf metal, with the mean value for 176Hf177Hf equalling
0.282152 ± 18 (2s), identical to the recommended value of 0.282151 ± 13 (Munker et al,

2001). AU results were calibrated to zircon standards, Mud Tank and 91500 (Woodhead

and Hergt, 2005; Griffin et al., 2006, Weidenbeck et al., 1995), with typical within run
precision (2s) of ± 0.000030 on the 176Hf177Hf analysis.

The eHf(T) values were calculated using chondritic ratios of 176Hf177Hf (0.282772) and
176Lu/177Hf (0.0332) as derived by Blichert-Toft and Albarede (1997). These values were

reported relative to 176Hf177Hf = 0.282163 for the JMC475 standard. The 176Hf177Hf
value of 0.282152 ± 18 were obtained for the AMES Hf metal, considered isotopically

indistinguishable to the JMC475 standard.

2.6. O18O Quartz Isotopes
Six samples were chosen based on the large abundance of quartz phenocrysts to

analyze for O18O. Samples were chipped to obtain individual mineral grains, and 15mg of

quartz was isolated using a binocular microscope. Samples were analyzed at the Queen's

University Stable Isotope and ICP-MS Lab for analysis of O18O in quartz using the

7



conventional BrF5 method of Clayton and Mayeda (1963) and run on a dual inlet

Finningan Mat 252 Isotope Ratio Mass Spectrometer. All values reported in standard
delta notation relative to VSMOW, and were reproducible to 0.3%o.

¿18o = (18o/16osample-18o/16ostandard) xim
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Chapter 3: Magmatic enrichment of uranium, thorium and rare earth
elements in late paleozoic rhyolites of southern new brunswick, canada:
evidence from silicate melt inclusions

Submitted to Economic Geology, April 7, 2010
Accepted May 27, 2010

Taryn R. Gray1*, Jacob J. Hanley1, Jaroslav Dostal1, Marcel Guillong2 +
'Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3,
Canada

department of Earth Sciences, ETH Zurich, Clausiusstrasse 25, Zürich, Switzerland
+ current address: ARC Centre of Excellence in ore Deposits (CODES), University of
Tasmania, Hobart, Tasmania, 7001
*corresponding author <Taryn.Gray@smu.ca>

3.1. Abstract

The major and trace element geochemistry of silicate melt inclusions was investigated

within Late Paleozoic felsic rhyolites from the Piskahegan and Harvey Groups of

southern New Brunswick, Canada in order to provide further insight into the genetic

history of the volcanic- and caldera-related U mineralization that occurs in the region.

Glassy melt inclusions analyzed by laser ablation ICP-MS and electron microprobe show

enrichment in most incompatible trace elements but a marked depletion in Ba, Sr, and Eu

compared to whole-rock. At Harvey, melt trapped in early quartz phenocrysts ("pre-

emptive" inclusions) and in late quartz aggregates ("syn-eruptive" inclusions) within the

groundmass of the rhyolites was significantly more fractionated than melt trapped in

quartz phenocrysts at Piskahegan. Fractionation was associated with the crystallization of

feldspar and resulted in progressive enrichment of the melt in U, Th, B, LILE, LREE and

other metals, and an increase in the U/Th ratio of the melt. A higher degree of melt
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fractionation combined with post-magmatic leaching may have been prerequisites for

mineralization at Harvey. Since whole-rocks are highly susceptible to alteration, melt

inclusion analysis may be the only method capable of providing constraints on melt

chemistry/evolution in such ancient volcanic terrains and may enable the evaluation of the

economic potential of such terrains if the initial U and Th concentration, and U/Th ratio

of the volcanic products impact the ultimate mineralizing potential of the system.

3.2. Introduction

In volcanic- and caldera-associated U deposits, metal-bearing magmas are derived

from either a deep mantle source (Locardi, 1985; Treuil, 1985), or partial melting of mid-

lower crustal rocks (Chen and Fang, 1985). Since peraluminous rhyolites, as well as

granites are almost always of crustal origin (Douce, 1999), the latter hypothesis is more

likely but still debated. The enrichment of U, Th and REE can be further facilitated by

subsequent fractionation of the mantle- or crustal-derived melt or by assimilation of

additional U-, Th-, and REE-enriched crustal rocks during ascent and emplacement, and

later through extraction, leaching and redistribution of ore metals by interaction of

mineralized volcanics with exsolved magmatic fluid or heated meteoric water (Chen and

Fang, 1985).

In the late Devonian Harvey and Piskahegan Groups in southern New Brunswick, the

processes that led to U and Th enrichment in the mineralized felsic volcanic rocks are

poorly understood. Evidence from similar volcanic U-related deposits indicates that in

addition to primary magmatic enrichment processes related to the eruption of U-Th-

bearing volcanics, secondary magmatic enrichment processes tend to dominate near
10



intrusive centers (e.g., Rexpar, Canada; Preto, 1978) and may involve the exsolution and

circulation of magmatic-hydrothermal fluids from the volcanic sequence. Whereas, distal

to the intrusive centers, metamorphic or meteoric water circulation control enrichment

(e.g., Anderson, United States; Rytuba and Glazman, 1979). It is often difficult in such
environments to determine the relative importance of primary and secondary processes in

generating the mineralization. First, the interpretation of the genetic history of a volcanic

rock sequence using whole-rock geochemistry and mineral chemistry alone can be
misleading because whole-rocks represent mixtures of variable proportions of crystals
and silicate liquid. Second, many trace elements, notably the large ion lithophile elements

(LILE), light rare earth elements (LREE), U and Th are prone to differential
remobilization during alteration over a wide range of conditions (e.g., Schiano, 2003;

Lowenstern, 2003; Dawood et al., 2004; Davidson et al., 2007). In contrast to whole-

rocks, determination of the trace element concentrations of glassy melt inclusions can be

done reliably using in-situ analytical techniques to yield reliable information about the
magmatic phase composition at the time of melt entrapment in a given host phase, and its
evolutionary path by primary magmatic processes (e.g., crystal fractionation, mixing and

assimilation) provided that no post-entrapment modification has occurred (e.g., Webster
et al., 1995; Chabiron et al., 2001, 2003; Halter, 2002; Heinrich, 2003). Determination of

the trace element content of melt inclusions may also serve as a means to evaluate how

post-solidus alteration has modified the original chemistry of the coeval volcanic rocks.
In order to determine how differing levels of U and Th enrichment in ore-forming

magmas were achieved at Harvey and Piskahegan, and to evaluate the influence of any
11



post-magmatic processes (i.e. leaching), glassy silicate melt inclusions within rhyolites at

both localities were investigated to constrain the magmatic phase composition at the time

of entrapment. While previous investigations (Payette and Martin, 1986a) examined

major element composition within melt inclusions of Harvey, trace element analyses of

the inclusions were not obtained. Mineralized rhyolites are highly enriched in U,

containing up to -1500 ppm U at Harvey and Piskahegan (Brack, 1982; N. Downey, pers.

commun.). The analysis of melt inclusions makes it possible to determine if sufficient

magmatic enrichment occurred to account for the observed mineralization directly (i.e.,

derived from the parent magma), or whether they were enriched by some other

mechanism.

3.3. Geological Setting

The late Devonian Harvey and Piskahegan Groups are located in southern New

Brunswick, on the eastern edge of the Maritimes Basin, approximately 40km southeast

and 50km south of Fredericton respectively (Fig. 1). The 12 km-thick Maritimes Basin

formed during the Mid-Devonian in the final phase of the growth of Pangaea and

remained tectonically active until the early Permian {cf. Gibling et al., 2009). Repeated

subsidence, basin inversions (with associated faulting), and two major basin extensional

phases led to four distinct pulses of igneous activity within the region. These occurred

during the Middle Devonian (390-385 Ma), Late Devonian (375-370 Ma), Latest

Devonian to Early Tournaisian (365-354 Ma), and Late Tournaisian-Early Visean (339-

250 Ma) as determined through the examination of igneous rocks of Middle Devonian-
12



Early Carboniferous age from the southern margin of the Magdalen basin in Cape Breton

Island and northern mainland Nova Scotia (Dunning et al., 2002). The Piskahegan Group

was deposited in 363.4 ± 1.8 Ma (Tucker et al., 1998) while the Harvey Group is believed

to be synchronous with Piskahegan based on stratigraphy (Payette and Martin, 1986b;

McCutcheon et al., 1997).

Harvey and Piskahegan contain U mineralization within rhyolitic rocks (McLeod and

Johnson, 2007). The mineralization style is classified as volcanic- and caldera-related U,

and localized within felsic volcanics, and intercalated clastic sediments (cf. Gandhi and

Bell, 1996; IAEA, 2009). Such mineralization can be either synvolcanic or epigenetic,

strongly structurally-controlled, and can be found in all stratigraphie levels of the

volcanic complex. Volcanic- and caldera-related U deposits are typically low grade and

several deposits may be present in a given region or volcanic complex (e.g., Streltsovka

caldera, Russia, Chabiron et al., 2001, 2003, Nash, 2010; Gan-Hang volcanic belt, China,

Finch et al., 1993; Dornot deposit, Mongolia, Mironov, 1993; Nopal deposit, Mexico,

Goodell, 1981). In these mineralized systems, and as is displayed at Harvey and

Piskahegan, uraninite typically occurs with molybdenite, fluorite, quartz, and sulphides.

The Harvey Group is subdivided into three formations: York Mills, Cherry Hill, and

Harvey Mountain (Kuan, 1970; Beaudin et al., 1980), composed predominantly of

sedimentary rocks (red sandstone and siltstone) within York Mills, and felsic

volcanogenic sediments in all formations including laminated rhyolites, ash flow and ash-

fall tuffs (ignimbrites), and pyroclastic breccia (Fig. 1). The 75-10Om thick Harvey

Mountain is composed of laminated rhyolites, pyroclastic breccia and ash-fall tuffs. The
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rhyolites are aphanatic and devitrified, with well-defined alteration indicated by the

presence of grey-green spherulite (3-4mm) layers (Payette and Martin, 1986b), with the
glass replaced by a mica-rich material (illite and quartz; Kuan, 1970; Pajari, 1973). A

summary of the major and accessory mineral phases present within Harvey Mountain can

be found in Table 1. The Cherry Hill Formation is the predominant host of U

mineralization, composed of quartz-feldspar porphyry, with 2 poorly welded ash-flow

sheets (5 m and 100 m thick) at the base (Kuan, 1970; Beaudin et al., 1980). The quartz-

feldspar porphyry contains about 20% phenocrysts (up to 3 mm in diameter) of quartz and

feldspars set in a groundmass composed of devitrified welded shards. These rocks also

contain pumice and lithic fragments. Recent exploration identified three mineralized

ignimbritic units with associated clay alteration, silicification and hematization, grading

up to 0.447% U3O8 over 0.6 m, and 0.24% U3O8 over 1.2 m within Harvey (Capella,
2007).

The Piskahegan Group represents one of only a few caldera sequences in Canada of

the pre-Cenozoic that has preserved exocaldera, intracaldera and late-caldera fill

sequences (McCutcheon et al., 1997). The exocaldera sequence contains the Bailey Rock

rhyolites, the only formation identified to contain suitable melt inclusions hosted in quartz

phenocrysts. The Bailey Rock Formation is composed of quartz-feldspar-phyric lava flow
with abundant K-feldspar phenocrysts, with quartz, plagioclase and hornblende

pseudomorphs (Table 1). Devitrification and flow banding can be observed, however the

groundmass is generally recrystallized (McCutcheon et al., 1997). Previous exploration

has identified spatially associated mineralized volcanogenic sandstone and conglomerates
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with associated chlorite, hematite, and fluorite alteration grading up to 0.036% U3O8 over

1 .22 m within the Carrow Formation, underlying the Bailey Rock rhyolites (McNamara,

1978).

3.4. Analytical Methods
Major and minor element analysis of whole-rock was performed on fused glass disks

using a Philips PW2400 X-Ray fluorescence spectrometer (XRF) at the University of

Ottawa, G.G. Hatch Stable Isotope Laboratory. Trace element analysis was performed

using a Perkin Elmer Optima 3000 inductively coupled plasma mass spectrometer (ICP-

MS) at Activation Laboratories, Ancaster, Ontario.

Representative rhyolite samples from Harvey (NB07-18, NB07-31) and Piskahegan

(NB07-39, NB07-78) were chosen for melt inclusion analysis. Approximately 15 melt

inclusions of varying size (between 40 and 150 µ??) per slide were chosen for

geochemical analysis. Selected inclusions (>40 µ??) were absent of solid phases of

ambiguous origin (i.e., that may be accidentally trapped, or formed during

recrystallization), did not contain any visible signs of post-entrapment modification, and

were large enough and trapped at sufficiently low degrees of undercooling to eliminate

the influence of diffusion-related concentration gradients on trapped melt composition

(i.e., boundary layer effects).

Major and minor elements in silicate melt inclusions from each sample were analyzed

using a JEOL JXA 8200 Superprobe electron microprobe (EMP) comprised of 5

wavelength-dispersive spectrometers, a Noran (133ev resolution) energy dispersive

spectrometer, and a cathodoluminescence photomultiplier. An accelerating voltage of
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15kV and a 20s on-peak counting time was applied for the analysis of all elements, except

F which required a 40s on-peak counting time. Calibration of analyte sensitivities and

confirmation of analytical accuracy was performed using a variety of natural mineral
standards (fluorapatite, garnet, sanidine, tugtupite, kaersutite, Durango apatite) and

silicate glass standards (Coso Obsidian, Astimex Obsidian). Fluorine was analyzed using
a TAPH crystal since it is the most sensitive crystal available that does not have peak

overlap problems between F Ka and Fe La lines. Several large inclusions (-70-100 µp?)

were analyzed multiple times, never in the same location, to determine the influence of
beam diameter and current on alkali and halogen mobility. It was determined that a beam

current of 2.03xl0"8 A, coupled with a large beam diameter (3µ??) was optimal for all

elements, excluding Na2O for which concentrations reported are -20% lower than

concentrations obtained by LA-ICP-MS. Reduction of beam current was shown to

improve Na2O accuracy but compromised F concentrations. Since F cannot be determined
accurately by LA-ICP-MS, but Na2O can, we chose to optimize for F determination

(2.03?10"8?,3µ??).

Major and trace element concentrations were quantified by laser ablation ICP-MS

(LA-ICP-MS) at the Swiss Federal Institute of Technology (ETH Zurich). Heinrich et al.

(2003) outline the details of the analytical routine used. Ablation was performed using a

prototype 193 nm ArF excimer laser ablation system similar to GEOLAS, with the laser
operating at an energy density of 25-35 J/cm2, with a pulsed beam, and energy-
homogenized beam profile (Günther et al., 1997). Melt inclusions were ablated through

step-wise increasing of the ablation pit diameter (from 10-110 µp?) such that the final pit
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size was slightly larger than the maximum inclusion dimension. After collecting -50 s of

background signal with the laser turned off, the inclusions required 10 to 30 s of ablation

time to collect the melt inclusion + host quartz signal. Ablated aerosols were transported

into an ELAN DRC quadrupole ICP-MS operated in dual detector mode using the

conditions similar to those described in Pettke et al. (2004). Mass spectrometer dwell time

was 10 ms for all elements. Quantification of trace element concentrations followed

procedures outlined in Longerich et al. (1996), Heinrich et al. (2003), and Halter et al.

(2002), and was performed using the software SILLS (Guillong et al., 2008). Groups of

16 analyses were collected, bracketed by 2 analyses before and after the external standard

(SRM 610 from NIST) to apply a linear instrument drift correction. The Al2O3 content of

the melt inclusions, determined by EMP, was very consistent in assemblages of inclusions

from single samples and used as the internal standard to quantify trace element
concentrations in melt inclusions from raw LA-ICP-MS data.

3.5. Results

3.5.1. Description ofMelt Inclusions
Porphyritic rhyolite samples contain melt inclusions in early quartz phenocrysts and

later quartz-rich matrix (Fig. 2A, B, E). Melt inclusions ranged from 25-300 µ?? in

diameter at Harvey, and 30-200 µ?? in Piskahegan. The inclusions often exhibited

negative crystal shapes and are primary in origin. Analyzed inclusions ranged from 40-

150 µ??, were completely glassy and clear (colorless to pale brown), free from

devitrification and recrystallization, and devoid of daughter crystals, accidental solids, or

bubbles. In the unlikely event that tiny fluid bubbles were present in the samples
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analyzed, their total volume would have contributed negligibly to the overall LA-ICP-MS

signal. Melt inclusions were classified into the following categories :(i) early (in quartz

phenocryst; "pre-eruptive") glass + vapour bubble (Fig. 2C); (ii) early glass + bubble (1-

8 µ??) + solids (Fig. 2D), and (iii) late (in matrix quartz) "syn-eruptive" glass + vapour

bubble (2 µ??) + aqueous fluid bubbles (6 µ??; Fig. 2E). The fluid bubbles were trapped

within the melt during inclusion formation (a free volatile phase), while the vapour

bubbles were produced post entrapment via contraction as the inclusion cooled. The fluid

bubbles are not considered shrinkage bubbles as they are too finely dispersed and are

present in variable amounts in each inclusion, showing that heterogeneous entrapment

occurred (Fig. 2G, H). Analyses of the "syn-eruptive" inclusions were restricted to those

without visible fluid bubbles. We can not preclude the possibility that a few bubbles,

masked by the larger vapour bubble, were present in some analyzed inclusions. However,

we consider that the data obtained through LA-ICP-MS do not represent mixtures of a

volumetrically minor fluid and dominant melt phases since the relatively very small size

of the fluid bubbles would prevent them having any significant influence on the overall

bulk element concentrations. On the other hand, the presence of a fluid phase at eruption,

prior to, or at the time of entrapment (Fig. 2E) of "syn-eruptive" melt is significant in

terms of the overall evolution of the magmatic-hydrothermal system because it implies

metals may have already been scavenged by a fluid phase at the time the melt was

trapped. Therefore, concentrations of U, Th and other incompatible elements in the "syn-

eruptive" melts are minimums, with the original magmatic concentrations being possibly

higher than those reported here (see below).
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3.5.2. Melt inclusion and whole-rock compositions
Based on the EMP and LA-ICP-MS data, melt inclusions in the rhyolites containing a

high-K calc-alkaline rhyolitic liquid with concentrations (normalized to 100 wt. %) of

S1O2 in the melt averaging 74 wt. % in Harvey and Piskahegan, with whole-rock

concentrations slightly higher at 78 wt. % in Harvey and 80 wt. % in Piskahegan (Table

2). Melt inclusions at both Harvey and Piskahegan contain significantly lower

concentrations of MgO and T1O2, and slightly lower CaO and Na20 compared to whole-

rock. This may reflect the accumulation of plagioclase feldspar, mafic silicates and

oxides, or the presence of mafic rock inclusions (xenoliths ?) within the host rocks to the

inclusion-bearing phenocrysts. Only P2O5, and AI2O3 are elevated in the Harvey "syn-

eruptive" melt inclusions compared to bulk host rocks (Table 2). The geochemical

characteristics of the whole-rock compared to melt inclusions imply the melt was more

evolved, with whole-rock diluted by phenocrysts. Based on discrimination diagrams for

tectonic granitoids (e.g., Rb vs. Y+Nb or Y+Ta, Ta vs. Yb; Pearce et al., 1984), the pre-

emptive phase of the rhyolite has a composition consistent with within- plate granitoids

(i.e., continental rifting) but the relative proportions of mantle-derived and crustal-derived

source volume is not known.

Previous work (Payette and Martin, 1986a) showed highly variable F concentrations in

melt inclusions from Harvey, ranging widely from below detection limits to ~ 2 wt. %.

These results could not be reproduced in the current study, possibly due to analytical error

in the earlier study associated with F-Fe peak overlap. Several inclusions analyzed by

Payette and Martin (1986a) were acknowledged to contain solid phases, that, if
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accidentally trapped, may have artificially elevated F concentration. Concentrations of F

in the "pre-emptive" melt inclusions analyzed in the current study were very consistent

from inclusion to inclusion and averaged 0.28 ± 0.14 wt. % (n=13, 1s) and 0.23 ± 0.17

wt. % (n=ll, 1s) in the two samples at Harvey, compared to 0.38 ± 0.08 wt. % (n=12,

1s) and 0.21 ± 0.10 wt. % (n=8, 1s) in the two samples from Piskahegan (Table 2). The

Cl content of the melt inclusions is also consistent and very homogeneous at both study

locations, averaging 0.18 ± 0.03 wt. % (n=l 1, 1s) and 0.05 ± 0.06wt. % (n=13, 1s) in the

Harvey samples, compared to 0.11 ± 0.02 wt. % (n=12, 1s) and 0.14 ± 0.02 wt. % (n=8,

1s) at Piskahegan (Table 2). The H2O contents of the inclusions at Harvey and

Piskahegan are low, consistent with an already partially degassed rhyolite melt at the time

of entrapment. Estimated H2O contents of approximately 1-1.5 wt. % assumed that water

comprises the difference between 100% and the totals of major and minor elements

determined by EMP (Table 2; Anderson, 1973; Sommer, 1977)

Normalized abundance (continental crust-normalized; Rudnick and Gao, 2004)

diagrams (Fig. 3) show that silicate melt inclusions at both Harvey and Piskahegan are

slightly enriched in most incompatible trace elements and significantly depleted in Ba, Sr,

and Eu compared to whole-rock. This is most notable at Harvey where Ba, Sr and Eu

contents in the melt inclusions are orders of magnitude lower than bulk rhyolite (Fig. 3).

There is slight enrichment of HREE relative to LREE in both the whole-rocks and melt

inclusions from both deposits. Overall, trace element patterns are similar at both

localities; however Harvey melt inclusions show higher overall trace element contents

and greater depletion in Ba, Eu and Sr than Piskahegan. Late, "syn-eruptive" melt
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inclusions at Harvey show much higher LILE and U, Th contents compared to early "pre-

emptive" melt inclusions.

3.6. Discussion

3.6.1. Comparison ofHarvey and Piskahegan: the role offractionation
Harvey and Piskahegan have been interpreted as genetically related based on

stratigraphy (Kuan, 1970; Pajari, 1973; Gemmell, 1975; Beaudin et al., 1980). While this

appears unlikely based on melt inclusion geochemical trends, it is possible to argue that

Harvey represents a more evolved volcanic suite based on high concentrations of

incompatible elements and elevated LVTh ratio. In order to explicitly determine the

genetic relationship between Harvey and Piskahegan, additional geochemical

investigations will be required to ascertain the nature of the source material, and the

petrogenetic chronology of Harvey.

However, the melt inclusion data do allow for a comparison of the relative magmatic

evolution (i.e., melt fractionation) of Harvey and Piskahegan rhyolites at the time melt

inclusions were trapped in early quartz phenocrysts, prior to eruption. Differences in the

degree of fractionation within the liquids of each environment are best exemplified by the

behavior of highly incompatible trace element concentrations (e.g., B, Cs) and

incompatible ore metals U and Th (Fig. 4). Since B and Cs behave incompatibly during

crystallization, and are only slightly more compatible in exsolving volatile phases than in

coexisting in granitic magmatic systems (Pichavant, 1981; London, 1988; Audétat and

Pettke, 2003), changes in their concentrations in melt are highly sensitive to only crystal

fractionation. Using the calculation method of Audétat and Pettke (2003), and assuming
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plagioclase and alkali feldspar were the fractionating mineral phases, we estimated the

degree of fractionation of melts trapped in inclusions from each environment. Based on

the Cs content of the "pre-emptive" melt, we determined the degree of fractionation to be

between 70 and 92% at Piskahegan, and at least 95% at Harvey for all melt inclusions

analyzed. The concentration of Cs and other highly incompatible elements in "syn-

eruptive" melt inclusions at Harvey is about an order of magnitude higher than in the

"pre-emptive" inclusions, corresponding to a degree of fractionation exceeding 99%.

Increasing concentrations of Cs and B correlate positively with U and Th, as do

several other pathfinder elements including Cu, As, W, and S and incompatible elements

(Cr, Nb, Ti). This indicates that all these elements experienced enrichment in the melt due

to crystal fractionation, and were not artificially elevated through sampling of fluid

bubbles. Notably, this process influences the U/Th ratio whereby increasing U relative to

Th results in increasing U/Th ratio with increasing fractionation. Significantly elevated

values of Th exist on average in the "syn-eruptive" inclusions (118 ± 21 ppm, 1s, n=7)

compared to Harvey (45 ± 6.4 ppm, 1s, n=42) and Piskahegan melt (37 ± 8.0 ppm, 1s,

n=35), and especially in contrast to the non-mineralized whole-rocks of Harvey (45 ppm,

1s, n=2) and Piskahegan (37 ppm, 1s, n=l). The "syn-eruptive" (76 ± 12 ppm, 1s, n=7)

and "pre-emptive" (20 ± 2.0 ppm, 1s, n=42) values of Harvey are also elevated in U

compared to non-mineralized whole-rock (9.0 ppm, 1s, n=2), with a less significant

difference exhibited in Piskahegan melt (11 ± 3.6 ppm, 1s, n=35) and non-mineralized

rock (6.0 ppm, 1s, n=l). Overall, both Harvey and Piskahegan melt inclusions are
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notably enriched in U and Th compared to whole-rock, with Harvey "syn-eruptive"

inclusions highly enriched. The U/Th ratios in Harvey vary from 0.52-0.92 (average=

0.66 ± 0.15, 1s, n=7) in the "syn-eruptive" inclusions, compared to a range of 0.28-0.56

(average= 0.45 ± 0.06, 1s, n=42) in "pre-eruptive" inclusions, and 0.14-0.84 in non-

mineralized whole-rock (average= 0.49 ± 0.50, 1s, n=2). The U/Th ratio is less variable

in Piskahegan, ranging from 0.22-0.41 (average= 0.29 ± 0.4, 1s, n=35) in "pre-eruptive"

inclusions and 0.23 (n=l) in non-mineralized whole-rock.

3.6.2. Significance of U/Th ratios and changes in U and Th content of the melts
A continual increase in the U/Th ratio over time at Harvey was related to the evolution

of the rhyolitic magma. It is impossible to comment on the relative concentrations of U in

the initial source magmas for the Harvey and Piskahegan volcanics since melt inclusions

were trapped in quartz after significant fractionation had already occurred. Changes in U,

Th and U/Th ratio are related to fractionation, but interestingly, the increase in U and Th

observed between the "pre-" and "syn-eruptive" melt inclusions was not of the same

magnitude as observed for the LILE. The concentrations of U and Th increase by a factor

of 3-4, whereas Cs and B increase by only an order of magnitude. This suggests that U

and Th either behaved much more compatibly than Cs and B during mineral fractionation,

or that the metals partitioned into a volatile (fluid) phase, thereby reducing the amount of

these metals in the melt. The latter hypothesis is justified on the basis of pétrographie

evidence (Fig. 2) that shows that the "syn-eruptive" melt was saturated in a fluid phase at

the time of entrapment in the matrix quartz. The presence of the fluid phase (Fig, 2 D, E)

indicates we analyzed the coexisting melt phase from which the fluid separated.
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Therefore, the concentration of fluid compatible trace elements within the "syn-eruptive"

melt essentially represents a minimum, likely higher prior to fluid separation in the lava,

since some elements were extracted when the fluid separated. Recent experimental

evidence also shows that (i) U is highly soluble in magmatic hydrosaline fluids at

relatively oxidizing conditions, and (ii) U solubility under such conditions greatly exceeds

Th solubility, resulting in preferential transport of U relative to Th during fluid exsolution

and fluid-melt interaction (Bali et al., 2009).

While primary magmatic fractionation clearly affected the total and relative abundance

of U and Th in the melts at Harvey and Piskahegan differently, syn- to post-magmatic

processes involving fluid leaching of ore metals also resulted in differential transport of U

over Th. At Harvey, a complete lack of correlation between U and Th in the whole-rocks

(Gray et al., in prep) is observed, while Piskahegan displays a linear, positive correlation

between U and Th. Additionally, U is highly enriched in some mineralized rocks at

Harvey, ranging from 330-1560 ppm (n=6), with a U/Th ratio of 7.6-49 (n=6; N.

Downey, pers. commun.). Non-mineralized samples drilled within the same area as

mineralized samples exhibit significantly lower U concentrations (17.2- 148 ppm, n=28),

and U/Th ratios (0.39-3.0, n=28). This is in contrast to other rocks in both the York Mills

and Harvey Mountain Formations are enriched in Th, relative to U (Gray et al., in prep),

possibly representing U-depleted source rocks that were extensively leached (cf.

Dawood, 2004).

Examination of the "syn-eruptive" inclusions identified small bubbles of fluid,

interpreted as a fluid that separated from the melt during crystallization of the rhyolitic
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magma prior to or during eruption. This indicates that volatiles are capable of interacting

with partially crystallized lava, and provides evidence that leaching of metals from these

fluids could occur over a wide range in temperature, starting at high temperatures,

culminating with low temperatures due to interaction with meteoric water circulation.

Therefore, the eventual leaching of U and Th glass from highly evolved melt inclusions

could enable a significant concentration of metals to be supplied to meteoric fluids, in

addition to the metals may have been initially removed from the melt during fluid-melt

interaction at higher temperatures.

3.6.3. Controls on LILE, REE and HFSE abundance
While incompatible trace elements, especially LILE and HFSE, are highly enriched in

melt inclusions compared to whole-rock, both Harvey and Piskahegan exhibit negative

Eu, Sr, and Ba anomalies in melt inclusions and whole-rock. The preferential depletion of

these elements indicates that the crystallization of feldspars within the melt (Fig. 3; Table

1; Hildreth, 1979; Cullers and Graf, 1984). Harvey displays significant variation in

feldspar composition throughout the major formations, with relatively few feldspar

phenocrysts exhibited within the oldest York Mills, rare to abundant K-feldspar and

plagioclase (up to 2 mm) found in Cherry Hill, and abundant, coarse-grained K-feldspar,

and rare albite found within the uppermost Harvey Mountain Formation (Payette and

Martin, 1986b). Piskahegan is also highly zoned, with significant K-feldspar and

plagioclase accumulations present in the uppermost (late) caldera formations, decreasing

in the underlying sequences (McCutcheon et al., 1997). However, the Bailey Rock

Formation contains significant K-feldspar (<20%), and plagioclase, despite its lower
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stratigraphie position. Since whole-rocks do not show these extreme Eu, Sr and Ba

depletions (Fig. 3) when compared to the melt inclusions, the whole-rocks cannot be

considered representative of bulk liquid compositions and must represent samples from

formations that contain significant accumulations of feldspar crystals.

Melt inclusions in Harvey show enrichment in HREE compared to LREE, while

Piskahegan shows a relatively flat REE pattern. Initially, we considered that differences

in REE chemistry may be related to accessory phases (Table 1). Rare microphenocrysts of

apatite, titanomagnatite and zircon occur within the Bailey Rock rhyolites of Piskahegan

(McCutcheon et al., 1997), while only zircon was identified at Harvey (Table 1; Payette

and Martin, 1986b). Considering the mineral-melt partition coefficients for relevant trace

elements in these systems (Mahood and Hildreth, 1983; Stix and Gorton, 1990; Streck

and Gründer, 1997), it is possible that U and Th would have preferentially partitioned into

zircon, while La and Ce partitioned into titanomagnetite, apatite and zircon. However,

since the partition coefficient for U between zircon and melt is significantly higher than

Th, zircon fractionation would have resulted in a progressive lowering of the LVTh ratio

in the melt. This is in contrast to the observed compositions of melt inclusions at both

localities that show a progressive increase in LVTh ratio with time (Figure 4). Therefore,

zircon could not have significantly influenced U and Th abundance.

Similarly, titanomagnetite appeared to be a potential LREE fractionating phase

present at Piskahegan but absent at Harvey. But HREE enrichment is characteristic of the

Harvey rocks in which this mineral is absent, and apatite and zircon abundance the same

in both locations (Table 1). Like U and Th, differences in REE composition of the Harvey
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and Piskahegan rocks must not be related to accessory phase crystallization. This is in

agreement with Taylor (1981) who indicated that HREE enrichment is unable to occur

through crystal-liquid equilibrium processes alone, and hypothesized that F-rich volatiles

may interact with the melt to cause this enrichment. Increases in F concentration have

been demonstrated to yield a positive correlation with HREE and a negative correlation

with LREE suggesting that F forms stable complexes with HREE (Mineyev et al., 1963).

This hypothesis has been demonstrated both empirically (Kerrich and Fryer, 1979; Taylor

and Fryer, 1980; Webster et al., 1989) and experimentally (Flynn and Burnham, 1978)

whereby Cl-bearing fluids increase the concentration of LREE, Na, Fe, Ti, Mn, Zn, Nb,

and Zr, while F or CC^-bearing fluids enhance the abundance of HREE, Al, Na, Li, Rb,

Cs, Ta, Th, and U. However, since the F-rich peralkaline granites (Taylor, 1981) fail to

exhibit enrichment of HREE, and trapped melt phases at Harvey and Piskahegan have

similar F concentrations (-0.2-0.3 wt. %) despite differing REE patterns, it is evident that

F did not significantly influence the concentrations of HREE in these 2 environments. On

the basis of the arguments above, we suggest the differences in REE signatures between

Harvey and Piskahegan likely reflects differences in the original magmatic source for
each suite.

3.6.4. The effect ofboundary layers on melt inclusion composition
Previous research (e.g. Harrison and Watson, 1984; Bacon, 1989; Lu et al., 1995) has

suggested that the presence of a boundary layer adjacent to forming melt inclusions can

facilitate preferential enrichment and depletion of elements with variable diffusive
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coefficients. However, some studies argue that this process is reduced for inclusions

>40µ?? while others suggest that boundary layers have little effect on overall trace

element concentrations in trapped melts except in cases where diffusion-controlled crystal

growth predominates (see Bacon et al., 1992; Lowenstern, 1995; Baker, 2008). A recent

study by Baker (2008) indicated that a test of homogeneity dependant on melt inclusion

size can be conducted to determine if inclusions were influenced by boundary layer

effects. In the study areas, ratios of elements with variable diffusivities (e.g., Zr/Cs) in the

melt inclusions of variable size were relatively constant. It was concluded that boundary

layer effects did not impact the studied inclusions and that observed (measured)

compositions are homogeneous, ultimately representing the composition of the bulk melt.

3.6.5. Comparisons to other volcanic- and colder-a-associated'U deposits
The Streltsovka Caldera is the largest U deposit in the world, containing over 280000

tons of U3O8 (grade = 0.2% U; IAEA, 2009). Despite being significantly elevated in F

(-1.77 wt. %) compared to the peraluminous Harvey and Piskahegan deposits, the

rhyolitic melt inclusions of the Streltsovka Caldera display similar trace element

signatures. Streltsovka melt inclusions are peralkaline, high F, moderate to high SiCh, low

FeO, and TiO2, with moderate Na2O and K2O. The exhibited geochemical trends are

similar, with slightly enriched LREE, and depleted HREE compared to Piskahegan and

Harvey melt inclusions (Fig. 3C; Chabiron et al., 2001). This provides further evidence

that concentration of F within a melt does not explicitly control the concentrations of
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HREE as commonly indicated (see Mineyev et al., 1963; Flynn and Bumham, 1978;

Kerrich and Fryer, 1979; Taylor and Fryer, 1980; Webster et al., 1989).

The relative enrichment of REE in melt compared to whole-rock implies the melt of

Harvey, just like Streltsovka, was saturated during trapping and experienced significant

fractionation since crystallization occurred (Chabiron et al, 2001). Piskahegan did not

exhibit REE enrichment in melt inclusions compared to whole-rock, and therefore

minimal fractionation occurred after trapping of the magma. This provides further

evidence that a variable genetic history occurred between Harvey and Piskahegan.

Overall, the REE geochemical signature of the Streltsovka melt inclusions most

closely resembles the "syn-eruptive" inclusions of Harvey, with both exhibiting REE

enrichment, and negative Eu and Ba anomalies in melt inclusions. Interestingly, both

Harvey "syn-eruptive" (76 ± 18 ppm), and melt inclusions (34 ± 10 ppm), are enriched in

U compared to Streltsovka melt inclusions (17 ± 4 ppm), while the concentration of U

within mineralized samples is significantly elevated at Streltsovka (-2000 ppm)

compared to Harvey (-1500 ppm). Although both deposits are highly enriched in U, it is

evident that significant U was lost from Harvey, facilitated by intense alteration (i.e. by

meteoric water circulation, regional metamorphism).

3.6.6. Melt inclusions as an exploration tool
Through comparison of U and Th concentrations within melt inclusions and whole-

rock samples, it is evident that the analysis of melt inclusions holds promise as an

exploration tool for volcanic- and caldera-related U deposits. Melt inclusions from known

economic U deposits (Fig. 3C) show highly elevated U, Th and REE contents with
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negative Eu anomalies. The compositions of melt inclusions at Harvey and Piskahegan

are very comparable to known economic U deposits, with the Harvey "syn-eruptive"

inclusions even more significantly enriched in U, Th, and REE than other sites. These

chemical characteristics can be identified easily through the analysis of melt inclusions

and it may be favorable to target volcanic sequences with unusually high U and Th

contents contained in melt inclusions (Figure 4).

Whole-rock values, on the other hand, will be misleading due to the effects of

alteration and differential remobilization of U and or Th. This is evident in the barren

volcanics at Harvey and Piskahegan which have similar U, Th and UATh ratios, despite

marked differences in the U grade of mineralization at each locality (Figure 4). Multiple

studies have indicated that U can be removed from volcanics during primary degassing

(Goodell and Trentham, 1980) or by post magmatic processes including groundwater

(Goodell and Trentham, 1980) and acid leaching (Whitfield et al, 1959; Larsen, 1961).

Non-mineralized samples at Harvey depict a lower U/Th ratio than either mineralized

whole-rocks or melt inclusions, and overall, whole-rock enrichments in barren rhyolites

at Harvey and Piskahegan are similar, despite the enrichment in U in the mineralization at

these two deposits being so markedly different. Therefore, even if a deposit contains

mineralization, it may be overlooked if the exploratory drilling fails to intersect the

mineralized section. By performing melt inclusion analyses in conjunction with whole-

rock geochemistry, it may be possible to differentiate between those volcanic suites that

exhibited the greatest level of primary magmatic enrichment and therefore, have the

greatest potential to contain high grade mineralization since it is the volcanic materials
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themselves that source the U and Th in the deposits by interaction with a continuum of

high-temperature magmatic to lower-temperature meteoric/metamorphic fluids. On the

other hand, determination of U/Th ratios in melt inclusions as a means to predict the

ultimate U/Th ratio of the deposits is less reliable, since in addition to primary decoupling

of U from Th during magmatic fractionation, U is remobilized more readily than Th by

acidic fluids. Acid soluble U can be derived from multiple sources including, metamict

minerals, adsorbed ions on crystal surfaces, acid soluble minerals with elevated U, and

hydrothermal fluids that are introduced through cracks or grain boundaries (Larsen and

Phair, 1954; Brown et al., 1956; Neuerburg, 1956). This is especially prevalent in rocks

with high S1O2 concentrations as a greater proportion of the U is acid-soluble, and

therefore easily leached (Whitfield et al., 1959).

Exploration should focus on identifying highly evolved (fractionated) melt inclusions

as they contain the highest values of both U and Th. This study suggests that

crystallization of feldspars that do not sequester any strongly incompatible trace elements

(including Th and U), leading to increases in the overall concentration of U and Th in the

melt that were higher at Harvey than in temporally similar melt stages at Piskahegan.

3.7. Conclusion

The analyses of melt inclusions from Harvey and Piskahegan indicate that the

magmatic-hydrothermal genetic history cannot be determined from whole-rock data

alone. While the major and trace element geochemical trends are similar in whole-rock,

the melt inclusion trace element signatures are extremely varied between the two
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deposits, with Harvey significantly more enriched in U, Th, Cs, B, and LREE than

Piskahegan. This implies these suites did not evolve from the same magmatic source, or

at the very least Harvey represents a more fractionated magma, indicated by the variable

LVTh ratios, and trace element signatures. In order to conclusively determine the genetic

source of Harvey and Piskahegan, additional geochemical work will be required.

Much higher grade U mineralization at Harvey may be related to the higher pre- and

"syn-eruptive" melt concentrations. After initial enrichment by magmatic fractionation, U

contained in the volcanic products was likely remobilized by a magmatic fluids, or low

temperature meteoric/metamorphic fluids. Additional evidence for remobilization is

exhibited by the prevalent alteration within some samples, and the occurrence of vein-

hosted U mineralization. Volcanic products at Piskahegan, in contrast, did not attain the

same degree of fractionation (and therefore, enrichment in U and Th) and may not have

experienced significant post-magmatic U remobilization. Whole-rock analyses do not

adequately portray the melt evolution of these systems, since non-mineralized and

mineralized whole rocks at Harvey and Piskahegan are shown to display similar LVTh

ratios and bulk U and Th concentrations, despite marked differences in U grades shown

by the localities.
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Figure 3.1. Map of study locations, (a) Location of Harvey and Piskahegan within the

Atlantic Provinces, Canada, (b) Piskahegan, analyzed samples are located within the

Bailey Rock rhyolite formation (modified from McCutcheon et al., 1997), and (c) Harvey,

analyzed samples are located in the Cherry Hill, and Harvey Mountain rhyolite

formations (modified from Payette and Martin, 1986b).
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Figure 3.2. Types of melt inclusions and their host. A. porphyritic rhyolite saple with

quartz phenocrysts, B. melt inclusions within a quartz phenocryst C. melt inclusion type

1, glass + bubble, and melt inclusion type 2, glass + bubble + daughter phases, D. "syn-

eruptive" melt inclusion in matrix, E. bubbles of fluid trapped within the melt, and F.

signal from the LA-ICP-MS indicating various element measured within the inclusion, G.
Melt inclusions with variable amounts of fluid bubbles indicating heterogeneous

entrapment, H. Clean (fluid bubble free) "syn-eruptive" melt inclusion. QZ = quartz, FB

= fluid bubble, VB = vapour bubble
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Figure 3.3. Average continental crust-normalized multi element plot of melt inclusions
and whole-rock. A. Harvey, whole-rock(n=2), Cherry Hill NB07-18 melt (n=21), and

"syn-eruptive" melt (n=7), and Harvey Mountain, NB07-31 melt (n=21). Neither NB07-

18, nor NB07-31 whole-rocks were analyzed by ICP-MS, therefore representative
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samples from the Cherry Hill and Harvey Mountain Formations were averaged, and used
to reflect the whole-rock geochemical trend of Harvey. B. Piskahegan, whole-rock(n=l),

and Bailey Rock NB07-39 (n=25), NB07-78 (n=10) melt. C. Melt inclusions from other

localities: Mount Malosa (n=7); Cuasso al Monte (n=2); Ehrenfriedersdorf (n=l); Rito del

Medio (n=2; Zajacz et al., 2008), and Streltsovka (n=40; Chabiron et al., 2001). Values

required for normalization were obtained from Rudnick and Gao (2004).
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Figure 3.4. Fractionation trends involving Cs, B, U and Th at Harvey and Piskahegan, as

evidenced from melt inclusions. Whole-rock values are indicated for 1 host rhyolite at
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Piskahegan and 2 samples of rhyolite from Harvey, and are similar to one another. A.

Concentration of B relative to incompatible trace elements in quartz-hosted melt

inclusions. B. Concentration of Cs relative to incompatible trace elements in quartz-

hosted melt inclusions. Approximate fractionation values (% fractionation of the liquid)

for the Piskahegan "pre-emptive" melt, Harvey "pre-emptive" melt and Harvey "syn-

eruptive" melt are shown, and were estimated using the method of Audétat and Pettke

(2003) utilizing the Cs content of the melt inclusions, determined by LA-ICP-MS.

Mi IKMl Bailey Rock Cherry Hill Harvey Mountain

Modal Abundance
quart?

k-feldspar
plagtoclase

biolite

amphibole
ehlorite

flourile
calcite

illitc

apatite

tjtanoniagncirtc

25-35% phenocrysis,
remainder is groundmass,

Kfs>Qz>Pl>HBL
0, 1 · 3,0i«m phenoerysts

1 .0- 1 2 mm phenoerysts
1,8mm phenoerysts

WA

ft.2-l,50mm pseudoroorphs
(Ap. Zm, Ti-Mag) in

plagitela«
replaced amphibole

N/A
?/?

?/?

rare mkrophenociy*t$ in
amphibole

rare mierophenocrysts in
amphibole

rare mierophenocrysts inamphibole

1 5% phcnocrysls, remainder is
fclsic grounmass Qz>Kfi»>PI

0.1-Jmm phenocryste
<2mm phenocry&ts

rare phenocrysw
rare altered biotttc

NfA

N-'A

present in eavities
rare

replaced gkss shard» in
groundmass

rare microphenoerysts

rare mieropheiwcryste

NfA

10-15% phenoerysts,
remainder is fclsic grounma»

Qr>Kfc>PI
0, 1 -2mm pheiwcryst*

<2mm phenoerysts
rare phenoerysts

rare altered bioliu-
N/A

N/A

present in cavities

N/A

«re microphenOtrysls

rare mkrwphenocrysts

N/A

Table 3.1. Summary of major and accessory minerals within Piskahegan and Harvey.

Descriptions of phenocysts represent summaries of current and previous work on

Piskahegan (McCutcheon et al., 1997) and Harvey (Payette and Martin, 1986a, b; Kuan,

1970; Pajari, 1973). Abbreviations used: HbI = hornblende, Kfs = K-feldspar, Pl =

plagioclase, Qx = quartz
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Table 3.2. Table 2. Major Compounds and Trace Element Concentrations of Melt

Inclusions Hosted in Quartz Phenocrysts, and Whole-Rock. *Representative samples

from Harvey (Cherry Hill, NB07-1 1 and Harvey Mountain, NB07-21) were used as trace

element data (obtained through ICP-MS) was unavailable for these samples. **AU values

were obtained through ICP-MS and normalized with the SILLS program using average

microprobe data. All major compound values were normalized to 100%, H2O content

within inclusions was not directly measured and assumed to equal the difference between

the sum of oxides subtracted from 100 wt. %. F was analyzed using a 3µ?? beam

diameter and a IxIO8A beam current, utilizing silicate Coso Obsidian (Analyzed=

1.0±0.09 wt. %, Expected= 1.13 wt. %), Astimex Obsidian (Analyzed= 0.08±0.04 wt. %,

Expected= 0.07 wt. %) and mineral standards, Durango Apatite (Analyzed= 3.10±0.18

wt. %, Expected= 3.22 wt.%). - symbol indicates no data available, or value below
detection limits
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3.10. Summary of Contributions
Geochemical analysis (and the associated preparation), of whole rocks and melt

inclusion microprobe work was completed by the primary author, with LA-ICP-MS

analysis of melt inclusions conducted by the second and fourth authors. As the primary

author, I completed multiple drafts of this paper with subsequent revisions completed

predominantly by Dr. Jacob Hanley, with minor revisions undertaken by Dr. Jarda Dostal

and Marcel Giiillong. The primary author created all figures, with photographs in Fig. 2

(D, E, F, G, H) taken by Dr. Hanley. Editing of this manuscript is currently ongoing at the

time of submission as the paper was recently accepted (May 27, 2010), and re-submitted

(July 17, 2010).
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Chapter 4: Revised Petrogenic history of Late Paleozoic Rhyolites of the
Harvey Formation, New Brunswick, Canada

Taryn R. Gray1*, Jaroslav Dostal1, Gregory J. Shellnut2
'Department of Geology, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3,
Canada
2 Academia Sinica, Institute of Earth Sciences, Nankang, Taipei, ? 529, Taiwan
Corresponding author <Taryn.Gray@smu.ca>

4.1 Abstract

A suite of geochemical analyses of whole-rock samples were conducted to investigate
the geochemical and petrogenic relationship between the Late Paleozoic Piskahegan and
Harvey Groups of southern New Brunswick, Canada. eHf and eNd values revealed that
Harvey formed from partial melting of juvenile crustal material and Gander basement
rocks indicating the source material of Harvey is significantly older, and more
heterogeneous than previously thought. Elevated fractionation during genesis resulted in
strong negative Sr, and Ba anomalies consistent with feldspar fractionation, and a
relatively flat REE pattern. Harvey also appeared to be highly enriched in uranium, which

1 Q

may have been aided by post-magmatic water circulation as revealed through d O quartz
isotopes and geochemical variation diagrams. Piskahegan in contrast formed through the
melting of Avalon source rocks, and experienced less fractionation and post-magmatic
alteration than Harvey. Through this study, the genetic history of Harvey has been
revised, particularly the dissimilarity of the Harvey and Piskahegan Groups, despite being
coeval in age and emplaced in the same environment.
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4.2 Introduction

The Late Devonian Harvey Group is located within the Maritimes Basin,

approximately 40km southeast of Fredericton, New Brunswick. This region of southern
New Brunswick hosts a variety of distinct igneous intrusions (Dunning et al., 2002)

resulting from the complex tectonic history of the region. While the exact age of the

Harvey Group was previously unknown, it is believed to be synchronous to the nearby

Piskahegan Group, which was deposited in 363.4±1.8 Ma (Tucker et al., 1998), during

the third major pulse of igneous activity within the Maritimes Basin (Dunning et al.,

2002).

The Harvey Group was previously examined through mineralogy, stratigraphy and

geochemistry (see Payette and Martin, 1986a,b), leading to the interpretation that the
Harvey Group was composed of F-rich rhyolites, similar to topaz rhyolites (see Burt et al.

1982, Christiansen et al., 1983,1984, Naumov et al., 1984), despite the absence of the

mineral topaz in any of the samples. Classifying the Harvey Group as F-rich rhyolites has

become increasingly important in recent years with the identification of U mineralization

in the region (McLeod and Johnson, 2007). Elevated concentrations of F within a melt

have been shown to increase U concentration and heavy rare earth elements (HPvEE;

Mineyev et al., 1963; Flynn and Burnham, 1978; Kerrich and Fryer, 1979; Taylor and
Fryer, 1980; Webster et al., 1989). Given that a recent melt inclusion study conducted on

the Harvey volcanics (see Gray et. al, 2010) failed to indicate elevated concentrations of F

within the melt (-0.25 wt. %), an alternate mechanism must be responsible for the

increased U concentration in this region.
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It is apparent based on the current ambiguity regarding the pedogenesis and geochemistry

within Harvey volcanics that an additional study is warranted to determine the origin of the

Harvey Group. Through geochemical work, predominantly concerning the age, and

composition of the source material, a stronger interpretation of the genetic history of the

Harvey Group will be elucidated. This will aid in our overall understanding of how the

Harvey Group is related to, if at all, the Piskahegan Group of southern New Brunswick, and

topaz rhyolites. This study also aids in evaluating the economic potential of Harvey and

enhances our current understanding of the Maritimes Basin genetic history.

4.3 Geologic Setting
The 12 km thick Maritimes Basin formed during the Mid-Devonian during the final

formation phase of Pangea and would remain tectonically active until the early Permian

(Gibling et al., 2009; Fig. 4.1). The Maritimes Basin experienced repeated subsidence

throughout the Carboniferous, as well as basin inversions (with associated faulting)

throughout the area. During the mid to late Devonian, the Western St. George Batholith

formed, followed by two major basin extension phases during the Late Devonian- Early

Mississippian. This was associated with continental sedimentation, although marine

influence resulted in evaporite deposits in some areas (Gibling et al., 2009). The Harvey

Group, as well as the Piskahegan Group formed during the third major pulse of igneous

activity within the Maritimes (see Dunning et al., 2002), subsequent to the Acadian

Orogeny.
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The Harvey Group has been subdivided into three formations (Fm), York Mills,

Cherry Hill and Harvey Mountain (Fig. 4.2; Kuan, 1970; Beaudin et al., 1980), all of

which will be examined in this study. The uppermost Harvey Mountain Fm is overlain by

conglomerate, sandstone and shale units within the Mississippian aged Bonaventure

(Shin; Jutras et. al, 2007) Group, and the Pennsylvanian aged Cumberland (Pictou)

Group. The Harvey Mountain Fm is a 75-100 m thick sequence composed of laminated

rhyolites, pyroclastic breccia and ash-fall tuffs. The rhyolites are typically aphanatic,

devitrified, and contain well-defined alteration characterized by grey-green spherulite (3-

4mm) layers (Payette and Martin, 1986b). The predominant mineralogy is composed of

albite, K-feldspar, quartz, with lithic fragments and fluorite within the groundmass. The

Cherry Hill Fm contains most of the U-mineralization and is comprised of quartzfeldspar

porphyry, with two poorly welded ash-flow sheets at the base, spanning 5-6 m and 100 m

(Kuan, 1970; Beaudin et al., 1980). The volcanogenic sediments are devitrified, and

contain lithic material (Beaudin et al., 1980), with mineralogy predominantly composed

of K-feldspar, plagioclase, with rare quartz, zircons, broken spherulites and mafic

inclusions (Payette and Martin, 1986b). The 60 m thick York Mills Fm contains mostly

sedimentary rocks including red sandstones, conglomerates and shale, containing

phenocrysts of quartz, feldspar and rhyolitic fragments (Payettte and Martin, 1986b).

There is however a volcanogenic component to the York Mills Fm, consisting of lithic

tuffs intercalated by lapilli tuffs, and an overlying laminated rhyolite layer. The slightly

welded to non-welded tuffs contain rare phenocrysts of feldspar in a devitrified

groundmass; the rhyolite contains quartz, albite, and fluorite within cavities.
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The Piskahegan Group represents one of only a few caldera sequences of the pre-

Cenozoic preserving Exocaldera, Intracaldera and Latecaldera fill sequences

(McCutcheon et al., 1997), the other located in Newfoundland (Coyle and Strong, 1987).

The Mount Pleasant deposit is known to contain two distinct types of economic

mineralization, W-Mo-Bi, and Sn-Cu-Zn-Pb, genetically related to various phases of the

361 Ma Mount Pleasant Granitic Suite (e.g. GPJ, GPJI, GRIII; see Kooiman et al., 1986;

McCutcheon 1990; Sinclair and Kooiman, 1990). The extrusive samples analyzed within

this study are located within the Mount Pleasant Caldera, inter dispersed between the

intrusive Mount Pleasant Porphyry (340-30Ma; Kooiman et al. 1986) and the younger,

McDougall Brook Granite. Both intrusive are believed to have formed from extreme

fractionation of the same magmatic source, with the McDougall Brook Granite

contaminated by wall rocks, while the Mount Pleasant Porphyry was significantly more

fractionated during magmatic-hydrothermal evolution facilitating the enrichment of

HFSE, especially Sn, W, Mo, and Bi (Yang et al., 2003).

The Intracaldera sequence (Scouller Mountain, Little Mount Pleasant, Seelys,

McDougall Brook Fms) is composed mainly of rhyolite ash flow tuffs, andésites, and

porphyritic microgranites towards the uppermost Fm. Two Fms from the Intracaldera

sequence will be examined in this study for comparison to Harvey, the Little Mount

Pleasant Fm, predominantly composed of flow banded rhyolite and volcanic tuffs and the

Seelys Fm comprised of pumice bearing, lapilli tuffs (see McCutcheon et al., 1997 for

further discussion). The Exocaldera sequence (Hoyt Station Basalt, Rothea, Carrow, The

Bailey Rock) is located laterally to the Intracaldera sequence and considered the extrusive
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equivalent of the Mount Pleasant Porphyry (McCutcheon et al., 1997). It contains basalts,
rhyolite ash flow tuffs, andésite and alluvial redbeds. The Bailey Rock Fm will also be
examined as it contains rhyolites. Both the Intracaldera and Exocaldera sequences are

underlain by a disconformity and overlain by the Late Caldera Fill Sequence (Big Scott
Mountain, Kleef and Mount Pleasant Porphyry), which is predominantly composed of

rhyolite tuffs and lava flows, alluvial redbeds, basalt and porphyry.
Previous studies have indicated the economic potential of southern New Brunswick

(see Pouliot et al., 1978; Yang et al., 2003; Sinclair et al., 2006), and of particular interest
to this study; U mineralization has been identified within Harvey (Strong, 1980; McLeod
and Johnson, 2007) as well as Piskahegan (Brack, 1982). Based on the presence of U,

Harvey and Piskahegan can generally be classified as a volcanic- and caldera-related U
deposits (Gandhi and Bell, 1996; IAEA, 2009). The mineralization in Harvey is largely
structurally controlled by predominantly northwest bounded faulting (Fig. 4.1), and
localized within felsic volcanics, and clastic sediments (Gandhi and Bell, 1996; IAEA,

2009). The U mineralization is hosted within the ignimbrites, and associated with clay
alteration, silicification and hematization, grading up to 0.447% U3O8 over 0.6 m, and
0.24% U3O8 over 1.2 m (Capella, 2007), with concentrations up to 1500 ppm noted (N.

Downey, pers. commun.). Piskahegan contains similar uranium concentrations,
containing up to 1527 ppm in mineralized regions (Brack, 1982).

4.4 Methods
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4.4.1. Sample Preparation and Field Work
During the summer 2008, 28 whole-rock samples were obtained from the Cherry Hill

(n=18), Harvey Mountain (n=5), and York Mills (n=5) Fms of the Harvey Group, and 31

samples from the Bailey Rock (n=3), Little Mount Pleasant (n=10) and Seelys (n=18)

Fms of the Piskahegan Group in order to complete pétrographie and geochemical studies.

A portion of each sample was chipped (1cm cubes) and powdered to prepare for further

geochemical analysis, with the remainder sent to Vancouver Petrographies to obtain

polished thin sections.

4.4.2. Major and Trace Element Analysis
Powdered whole-rock samples from Harvey (n=28) , and Piskahegan (n=31) were sent

to the University of Ottawa, G.G. Hatch Stable Isotope Laboratory, Ontario to determine

loss of ignition (L.O.I) as well as the concentration of major elements and compounds

using a Philips PW2400 X-Ray fluorescence spectrometer (XRF). Trace elements from

Harvey (n=8) and Piskahegan (n=9) were analyzed by fusion using a Perkin Elmer

Optima 3000 inductively coupled plasma mass spectrometer (ICP-MS) at Activation

Laboratories, Ancaster, Ontario according to standard procedures (Hoffman, 1992).

4.4.3. Sm/ Nd Radiogenic Isotopes
Eight samples from Harvey (2, 11, 21, 28) and Piskahegan (35A, 56, 66, 81) were

analyzed for Sm/Nd isotopie ratios using a Finnigan MAT 262V thermal ionization -mass

spectrometer (TIMS) at Memorial University, Newfoundland. Samples chosen for

analysis contained low Rb (<1075 ppm) and Sr (<950 ppm) concentrations, few

inclusions and were relatively homogenous. Approximately 0.05-0.2g of powdered
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sample was dissolved in concentrated HF and HNO3 acids, and spiked with 150NdZ149Sm
prior to acid digestion (five days). Once the sample evaporated, the remaining material
was taken up into 2N HCl for two days, dried, and again taken up into 2N HCl. Samples
were subsequently loaded into cationic exchange chromatography utilizing AG50W-X8
resin. After purification, the Sm and Nd fractions were isolated with a secondary column
loaded with Eichrom© Ln resin and analyzed using a multicollector Finnigan Mat 262

mass spectrometer operated in static mode. AU values were normalized to Nd/ Nd =
0.7219, calibrated to the JNdi-1 standard (143NdZ144Nd = 0.512115, Tanaka et al., 2000),
with Nd values accurate to <0.002% and 147SmZ144Nd ratio accurate to <0.1%.

4.4.4. 206PbZ238U Geochronologic Dating
Zircon grains from sample 17 were concentrated by conventional magnetic and heavy

liquid techniques and subsequently mounted to perform cathode luminescence and
backscatter imaging. The U and Pb isotopie analyses were performed using laser ablation

inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Beijing SHRIMP
Center, Institute of Geology, Chinese Academy of Geological Sciences. Standard

analytical procedures were utilized for LA-ICP-MS (Chiù et al., 2009) with results
calibrated to the GJ-I zircon standard obtained from the Australian Research Council

National Key Centre for Geochemical Evolution and Metallogeny of Continents, at

Macquarie University, Sydney (Jackson et al., 2004; Elhlou et al., 2006), as well as
secondary standards including the Harvard reference zircon 91500 (Wiedenbeck et al.,
1995) and the Australian Mud Tank Carbonatite zircon. Final isotopie ratios were
determined by GLITTER 4.0 (GEMOC) software and age corrected based on the
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procedure established by Anderson (2002).

4.4.5. Hfzircon isotopes
In situ zircon Hf isotope analyses were carried out using a New Wave UP 213 laser-

ablation microprobe, attached to a Nu Plasma multi-collector ICP-MS, coupled with a

fixed detector array of 12 Faraday cups and 3 ion counters at the Institute of Earth

Sciences, Academia Sinica in Taipei. Instrumental conditions, data acquisition, and

analytical procedures were similar to Griffin et al. (2000). All results were calibrated to

zircon standards, Mud Tank (Woodhead and Hergt, 2005; Griffin et al., 2006) and 91500

(Weidenbeck et al., 1995), with typical within run precision (2s) of ± 0.000030 on the

176Hf/177Hf analysis.

4.4.6. d!80 Quartz Isotopes
Six samples were analyzed at the Queen's University Stable Isotope and ICP-MS Lab

for analysis of O18O in quartz using a conventional BrF5 method of Clayton and Mayeda

(1963) and run on a dual inlet Finningan Mat 252 Isotope Ratio Mass Spectrometer. All

values reported in standard delta notation relative to VSMOW, and were reproducible to

0.3%o.

4.5. Alteration and the Possible Effect on Chemical Composition
Whole-rock samples from the Harvey Group and to a minor extent the Piskahegan

Group, show signs of post formation alteration. Pétrographie characterization of the

Harvey samples revealed significant oxidation of the samples, identified by red-brown

staining of various minerals as well as the groundmass. Piskahegan displayed similar

oxidation in various samples, but to a reduced degree. Examination of the geochemical
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data yielded elevated L.O.I, values (>5 wt.%) in multiple samples from the Cherry Hill

Fm (7, 9, 10, 12, 18) where alteration appears to be most substantial. Extensive alteration

caused diminished SiCh concentrations in all samples, except 18. However, since sample

18 was completely dissimilar to all rhyolites analyzed, it was determined to be modified

by alteration despite normal SiO2 concentrations.

While alteration of this extent would usually be problematic, it is possible to elucidate

which elements reflect the magmatic distribution of Harvey and Piskahegan by

comparing whole-rock to melt inclusion data from Harvey and Piskahegan (Gray et al.,

2010). According to Figure 3 of Gray et al. (2010), whole-rock values are depleted

compared to melt inclusion values in all incompatible elements including large ion

lithophile elements (LILE; e.g. Rb, Ce, Sr, Ba) and high field strength elements (HFSE;

e.g. Zr, Hf, Th, U, Ta, PvEE). This implies any depletion exhibited within melt inclusions

that is also preserved in whole-rock can be considered primary and not induced by
alteration.

To avoid any ambiguity in the geochemical comparison between Piskahegan and

Harvey, immobile elements (e.g. Ti, Nb, Ta, Zr, Hf, Y, Cr, and some REE) were

predominantly used for comparison. This will insure secondary alteration did not

manipulate geochemical trends and aid our understanding of which elements may have

been influenced by alteration.

4.6. Results
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4.6.1. Geochronology- 206PbZ238UICP-MS
206PtV238U LA-ICP-MS geochronologic dating of zircons from sample 17 (Cherry Hill)

revealed a bimodal distribution of ages centered on 361 ± 7 Ma (MSWD = 1 .7) and 403 ±

1 1 Ma (MSWD = 2.1; Fig. 4.3, Table 4.1). Based on current understanding of igneous

activity within the Maritimes basin (see Dunning et al., 2002), we interpret the volcanic
rocks of the Harvey Group were emplaced in 361 Ma. This is consistent with the

formation age of the Piskahegan deposit (363.4 ± 1.8 Ma; Tucker et al., 1998), and the
stratigraphie history of the basin. Older, early Devonian aged (403 Ma) samples likely
represent the age of the protolith, derived from a juvenile source, although some mixing
may have occurred with older, Gander source rocks. This indicates the source material of
the Harvey Group is much older than previously thought. The presence of similar aged
plutons within Nova Scotia (e.g. 370 Ma South Mountain Batholith, Kontak and Martin,
1997) and New Brunswick (360 Ma Pleasant Ridge Pluton; Taylor, 1992) as well as

Cobequid Highlands rhyolites of the Fountain Lake Group (362-368 Ma; Dunning et al.,
2002), and Cape Breton rhyolites of Lowland Cove (365 Ma; Dunning et al., 2002) imply
widespread volcanic activity occurred in the early Devonian.

4.6.2. Geochemistry- major element
Based on XRF data of whole-rock samples (concentrations un-normalized), the York

Mills (81.19 ± 3.0 wt. %, n=5, 1s), Harvey Mountain (79.33 ± 3.6 wt. %, n=5, 1s), and

Cherry Hill (75.63 ± 3.17, n=13, 1s) Fms are classified as high-silica rhyolites (Table
4.2; Fig. 4.4A). York Mills and Harvey Mountain are both significantly depleted in CaO,
and slightly depleted in TiO2, Al2O3 compared to Cherry Hill, likely related to

58



accumulations of oxides, plagioclase feldspar and or mafic inclusions (Table 4.2). The

large enrichment of CaO (8.06 wt. %) exhibited within Cherry Hill should be interpreted

cautiously as sample 8 also contains anomalous values OfNa2O (6.81 wt. %) and SiO2

(65.98 wt. %) compared to the average Cherry Hill samples (Na2O = 3.34 ± 1.47 wt. %,

CaO=1.21 ± 2.15 wt%, n=5, 1s). Despite the absence of L.O.I, values for sample 8, it is

assumed these uncharacteristic values are a result of alteration, given that mineralogy is

not conclusive with a basaltic/andesitic rock. Only Cherry Hill contains any notable F

concentration (0.20, ± 0.05 wt.%, n=4, 1s), with Harvey Mountain (0.04 ± O.Olwt. %,

n=3, 1s) and York Mills (0.04 wt %, n=l) relatively barren.

Rhyolitic samples of the Piskahegan Group are uniform, and decreased in SiO2

concentrations compared to Harvey yielding 75.90 ±0.12 wt. % in Bailey Rock (n=2,

1s), 74.80 ± 0.85 wt. % in Little Mount Pleasant (n=10, 1s) and 75.54 ± 1.87 wt. % in

the Seelys Fm (n=18, 1s; Table 4.3). All other major elements exhibit homogenous

concentrations between Fms, with Little Mount Pleasant slightly enriched in alkalies

compared to Bailey Rock or Seelys. Overall Piskahegan is more enriched in AI2O3,

Fe2O3, MgO, and TiO2 compared to Harvey, while depleted in SiO2.

Harker diagrams of major elements compared to SiO2 revealed increases in SiO2

correlate to a decrease in concentration of all compounds (TiO2, MnO, CaO, Na2O, MgO,

K2O, Fe2O3 and Al2O3), except K2O in Harvey Mountain (Fig. 4.5). Negative Eu

anomalies, associated with feldspar fractionation are exhibited within all three Fms, most

notably the Harvey Mountain Fm. Previous mineralogical work by Payette and Martin

(1986b) indicated the Harvey Mountain Fm contains significant feldspar accumulations,
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with moderate quantities in Cherry Hill, and relatively rare phenocrysts in the York Mills
Fm. Within the Piskahegan samples, only the Seelys Fm exhibited any change in major
element concentrations with changing SiO2, with Fe2O3 concentrations decreasing with

increasing SiO2. AU other compounds remained constant, owing largely to the
homogenous SiO2 concentrations.

4.6.3. Geochemistry-trace element
Primitive mantle normalized diagrams indicate the Harvey Group is significantly

depleted in Eu, Sr (not shown), and Ba, consistent with feldspar fractionation, as well as a
negative Ti anomaly (Fig 4.6A). The magnitude of depletion exhibited in whole-rock is
considerably smaller than the negative anomalies displayed in Cherry Hill and Harvey
Mountain silicate melt inclusions (Gray et al., 2010). Given that the magnitude of

depletion is less in whole-rock samples compared to melt inclusions, it is apparent that

the depletion is magmatic and not related to any post-formation alterations. Whole-rocks
are enriched in HFSE (Nb, Hf, REE, Th, U) except Ta. Piskahegan in contrast displays

less significant depletions in Eu, Sr (not shown), and Ba, with a similar Ti anomaly to
Harvey (Fig. 4.6C). Whole-rock samples from Piskahegan similarly displayed reduced

depletion compared to melt inclusions (Gray et al., 2010). Whole-rock samples at
Piskahegan are also enriched in HFSE, although to a lesser extent than Harvey.

A chondrite normalized REE diagram indicates a flat line REE pattern compared to

Piskahegan, which is enriched in LREEs over HREEs (Fig. 4.6 B, D). Both Harvey and
Piskahegan exhibit distinct Eu anomalies. This variation in chondrite normalized REE

patterns is either related to a difference in the original magmatic source, or increased
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fractionation at Harvey, as deciphered through melt inclusion analysis (Gray et al., 2010,

2010).

Harker diagrams revealed that the concentration of trace elements in Harvey were

strongly influenced by the concentration of SiO2 (Fig. 4.5). Increases in SiO2 yielded a

reduction in Y, Ce, Nb, and slightly Zr in all Fms. Concentration of Y was highly varied,

especially within Cherry Hill despite similar SiO2 concentration. This is expected due to

the variable concentration of Y-bearing accessory mineral phases including zircon. Th

concentrations remained unchanged except in York Mills, which exhibited a noticeable

reduction in Th with increasing SiO2. The concentration of trace elements was relatively

unchanged with increasing SiO2 in Piskahegan, however the Seelys Fm showed an

increase in Th concentration.

U and Th concentrations of Harvey and Piskahegan were correlated to elucidate how

post-magmatic processes, if any, may have influenced the U concentration at these sites

since the absence of a positive correlation indicates post-magmatic remobilization of U

(Dawood, 2004). No discernable trend within the Cherry Hill or York Mills Fms was

documented, while Harvey Mountain has a slightly positive correlation (Fig. 4.7).

Piskahegan in contrast exhibits a positive correlation between U and Th within the Seelys

Fm, with neither Little Mount Pleasant, nor Bailey Rock illustrating an apparent trend.

Figure 4.7 indicates that Harvey could have experienced post-magmatic remobilization of

U, which may have influenced the higher U concentrations found within the Cherry Hill,

and to a lesser extent the York Mills Fm compared to Piskahegan.

61



4.6.4. Petrology- major and minor elements
The geochemical work of this study support the earlier conclusions of Payette and

Martin (1986b) regarding tectonic setting, and build on the interpretations concerning

magmatic origin. Based on the Y versus Nb tectonic discrimination diagram of Pearce et

al. (1984), and the elevated concentrations of K, Rb, Th and depletions in Ba and Sr, it is

apparent the Harvey Group represents a within plate granite (WPG), consistent with

similar aged Piskahegan Group (Fig. 4.4b). Due to insufficient geochemical evidence

regarding the nature of the source material, it was previously assumed the genesis of the

Harvey Group was similar to that of topaz rhyolites (Payette and Martin, 1986b). Burt et

al., (1982) and Christiansen et al., (1983) hypothesized that the Spor Mountain topaz

rhyolites formed from the emplacement of basaltic rich magma during basin extension.

This enabled a sufficient heat source to initiate anatexis of crustal material, and explained

the large volume of rhyolites exhibited at Harvey. Evidence for this hypothesis is

exhibited by the peraluminous nature of the melt, and the presence of glassy inclusions

(Payette and Martin, 1986b). Piskahegan volcanics are thought to have formed from

similar processes either by extensive fractional crystallization of a basaltic magma (e.g.

Musselwhite et al, 1989), or partial melting of lower crustal material subsequent to the

intrusion of basaltic magma (Huppert & Sparks, 1988).

4.6.5. 6Nd isotopes
Harvey rocks displayed a range in eNd values from -4.6 to 0.64 (n=4), indicating a

heterogeneous source material containing both juvenile (negative model ages) and older,

Gander aged material (Table 4.4; Fig. 4.9). Consistent with earlier interpretations of
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Payette and Martin (1986b), mafic and intermediate rocks likely provided the heat source

to allow the partial melting of crustal material at Harvey. Sample NB07-11, Cherry Hill

exhibited a distinctly more negative eNd value, than other Harvey samples. This could

indicate a relative shift to older crustal source material, or a difference in geochemistry

facilitated by coeval or subsequent intra-crustal processes such as hydrothermal activity

or fractionation of REE bearing minerals. The later hypothesis is preferred since Harvey

is highly fractionated, and sample 1 1 contains elevated concentrations of T1O2, Ba, Sr, V,

Zr, with depletions in Pb, and Y.

The composition of Harvey is in stark contrast to that of Piskahegan, which displayed

more uniform e?<? values (-0.11 to 0.86, n=4; Table 4.4). It is important to note however

that only two of the samples examined were rhyolites (81, 66) with the other samples

being granitic (35A) and basaltic (56). Despite the differing lithology, the values are still

homogenous with a model age of approximately 1000 Ma indicating Piskahegan likely

formed from Avalon source material. This provides further evidence that the variable

geochemical signatures observed at Harvey and Piskahegan are not controlled by

fractional crystallization, but rather they formed from entirely different magmatic sources,

with Harvey originating from much older material than previously thought.

4.6.6. O18O Quartz
Three samples (16, 17, 30) from the Harvey Group and two samples from Piskahegan

were analyzed for O18O quartz isotopes (Table 4.5). Due to low yield, samples 16 and 17

were excluded from interpretation as a result of possible contamination. Results yielded a

O18O value of 14.7%o for the York Mills Fm, while the Piskahegan samples ranged from
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9.7%o in the Little Mount Pleasant Fm to as high as 1 1.3%o in the Bailey Rock Fm. The

results exhibited at Harvey and Mount Pleasant are consistent with the (518O values of
granitoids within the 550-537 Ma Brookville (+9 - +12.5%0; Samson et al., 2000), and

Caledonia terranes (up to 14.7%o, n=7; Potter et al., 2008), southern New Brunswick, as

well as the rhyolites of the 680 Ma Mira terrane (+9 - 10.9 %o), Cape Breton (Potter et

al., 2008). Recent studies of the Kidd Creek VMS deposit, located within the late Archean

Abitibi subprovince within the Superior Province of Canada have also indicated elevated

ô18Oquartz (7.9-12%o) within similar fine grained rhyolites. Huston et al. (1996) attributed
these values to be related to deep, S-type intrusion, which provided the heat for the

anatexis of the crustal material, (forming the VMS deposit), while King et al. (1997)

indicate the range in ô18Oquartzimply a heterogeneous oxygen isotope exchange during

hydrothermal activity. The second hypothesis is preferred based on a robust pétrographie

study, as well as analysis of ô18Ozirc0ns that were capable of determining the original

magmatic 18O signature. Therefore, the results of this study should be examined

cautiously as ô18Oquartzmay not be as robust as previously thought, especially in low

temperature hydrothermal systems.

4.6.7. sHfisotopes
The average value of eHf zircons in sample 17 was 6.6 +/- 1.4 (MSWD = 8.3; Table

4.6). When re-grouped by age, eHf(403 Ma) yielded an average value of 7.0 +/-1.7

(MSWD = 3.4), while eHf(361 Ma) equalled 6.3 +/- 2.6 (MSWD = 13). Depleted mantle

(i.e. MORB) sources typically have eHf values ranging from 15 to 20 (Workman and
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Hart, 2005), while crustal eHf values are less than 2 (Rudnick and Fountain, 1995).

Therefore, the source material of Cherry Hill is composed of both depleted mantle and

juvenile crustal components, consistent with eNd results. Since the eHf values were

relatively homogonous, the zircons, and by association whole rocks, formed from the

same source. While the eHf of zircons is relatively homogeneous, it is apparent based on

eNd values that the source material is clearly heterogeneous. This discrepancy is attributed

to having analyzed a single sample from Cherry Hill, as neither York Mills nor Harvey

Mountain contained suitable zircon yields to be analyzed.

4.7. Discussion

4.7.1. Harveyfelsic volcanics comparison
While all three Fms within the Harvey Group displayed subtle variability, the Cherry

Hill Fm was the most geochemically distinct. Cherry Hill contained consistently lower

S1O2 concentrations and was noticeably enriched in almost all elements; especially REE,

alkalies, and Fe203 compared to Harvey Mountain and York Mills. Cherry Hill contains

the greatest abundance of accessory minerals including zircon, which facilitated the

elevated concentration of Y, and zircon served as a suitable host for U. Payette and

Martin (1986b) also identified the presence of basaltic material within Cherry Hill

groundmass, which could explain the distinct geochemistry of Cherry Hill compared to

other Harvey Fms. It is difficult to ascertain exactly how the basaltic material influenced

the geochemistry of the Cherry Hill Fm without being able to properly identify and

quantify the mineral components of the basalt groundmass. Lastly, in addition to
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mineralogical variability, Cherry Hill exhibited noticeable alteration in both geochemical
and pétrographie analysis and may have been influenced by post magmatic water
circulation. The influence of alteration processes could have facilitated the increased

concentration of trace elements compared to York Mills and Harvey Mountain.

4. 7.2. Relationship to Piskahegan
The Harvey Group has previously been identified as coeval to the Piskahegan Group

based on a similar stratigraphie history (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;

Gemmell, 1975; Beaudin et al. 1980; Ruitenberg and McCutcheon, 1985; Payette and
Martin, 1986b) despite displaying distinct geochemical characteristics and subtle regional
variability. 206Pb/238U LA-ICP-MS zircon dating supports that both Groups were derived
during the same pulse of magmatic activity within the Maritimes Basin, and tectonic
discrimination diagrams show that both Harvey and Piskahegan are WPG. These
similarities are expected as the Maritimes basin underwent a significant phase of
lithospheric extension subsequent to the Acadian Orogeny and provided an ideal setting
for volcanic activity within the basin. However, despite similar timing and geologic
setting, both formed from very different crustal material and experienced a varied genetic
history.

The Piskahegan Group formed from the anatexis of subducted juvenile crustal material
from the Avalon terrane based on the 875r/86Sr ratio of 0.713 (Kooiman et al., 1986), and

positive eNd values (Table 4.4). The Harvey Group originated due to partial melting of
juvenile crustal material and older, Gander aged, material based on eNd and eHf (Table
4.4, 4.6). The heat source required for the anatexis of the crustal material at both Harvey
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and Piskahegan was likely facilitated by the emplacement of mafic and intermediate rocks

during lithospheric thinning as previously hypothesized (Burt et al., 1982; Christiansen et

al, 1983).

Trace and major element analyses of continental crust normalized melt inclusions

hosted within quartz phenocrysts revealed that Harvey was significantly enriched in

LREE and incompatible elements (Cs, B, U, and Th) compared to Piskahegan (Gray et

al., 2010). A comparison of both chondrite and primitive mantle normalized whole-rock

data (Fig. 4.6) also indicate that Piskahegan is enriched in HREE and depleted in LREE

compared to Harvey which illustrates a relatively flat REE pattern implying variable

geochemical source magma. Additional evidence is revealed in the highly fractionated

signature of the Harvey Group compared to Piskahegan. Large negative Eu, Sr, and Ba

anomalies are exhibited in both whole-rock and melt inclusions from Harvey, and a

fractionation diagram of pre-eruptive melt comparing Cs content to U, Th, LVTh implied

the degree of fractionation is 70 - 92% at Piskahegan, at least 95% at Harvey, and >99%

in pre-eruptive Harvey (see Gray et al., 2010).

Lastly, the elevated 18O values exhibited at Harvey contrasted to Piskahegan, as well

as figure 4.7 reveal that Harvey was influenced by post-magmatic water circulation,

which likely facilitated the elevated U mineralization at Harvey. The results of this study

indicate that the differences between the Harvey and Piskahegan volcanics cannot be

explained by alteration and increased fractionation at Harvey alone. It is evident when

examining the sNd and eHf isotopes in conjunction with melt inclusion studies (Gray et

al., 2010) that Harvey and Piskahegan evolved from distinct source material. Post-
67



formation alteration did however facilitate the variability within the Harvey Group itself,

and complicate the determination of the relationship between Piskahegan and Harvey.

4. 7.3. Similarity to Topaz Rich Rhyolites
Topaz rich rhyolites are generally high SiO2 (>74 wt. %), Na2O (>3.6 wt. %), enriched

in F (>0.2 wt. %), high F/Cl ratio, low in TiO2(<0.2 wt. %), CaO (<0.9 wt. %), MgO(<0.2

wt. %), P2O5, (-0.01 wt. %) and have flat REE pattern compared to typical rhyolites

(Christiansen et al., 1983). High F/Cl ratio (>3) systems also tend to exhibit enrichment in

Al, Na, Li, Rb, Cs, Ta, Th, and U, while Cl dominant systems show elevation in LREE,

Na, Fe, Ti, Mn, Zn, Nb, and Zr (Flynn and Burnham, 1978; Kerrich and Fryer, 1979;

Taylor and Fryer, 1980; Christiansen et al., 1986; Webster et al., 1989). Harvey rhyolites

may appear to be geochemically similar to F-rich topaz rhyolites, however whole rocks

have variable SiO2, Na2O, and CaO, lower F (-0.1 wt. %) and TiO2, while melt inclusions

contain equivalent SiO2, Na2O, but lower CaO, TiO2, MgO, P2O5, F (<0.25 wt. %)

content (Gray et al., 2010), and variable F/Cl ratios (sample 18=1.28, n=ll; sample

31=5.9, n=13). The low F content determined in this study, as well as the melt inclusion

study of Gray et al. (2010) are in severe contrast to previously reported values of up to

1.97 wt. % in melt inclusions from Harvey (Payette and Martin, 1986a). This ambiguity

can be explained though analytical error in the earlier study which may have had F-Fe

peak overlaps during analysis. Alternatively, multiple inclusions analyzed contained solid

phases, that if accidentally trapped, could artificially increase F concentration. Piskahegan

whole-rocks have similar SiO2, TiO2 lower Na2O, CaO, F (-0.1 wt. %), while melt

inclusions contain higher P2O5, equivalent SiO2, and CaO, but lower Na2O, TiO2, MgO,
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and F (<0.25 wt. %) content (Gray et al., 2010), and variable F/Cl ratios (sample 39=

3.45, n=12; sample 78=1.5, n=8). Therefore, based on new geochemical data, it is

apparent Harvey, nr Piskahegan can be considered an F-rich topaz rhyolite.

4.8. Conclusions

The Harvey Group represents a distinct suite of volcanic rocks forming during a

major phase of igneous activity subsequent to the Acadian Orogeny. Facilitated by

lithospheric thinning, a pulse of basaltic rich magma provided the heat required for the

anatexis of juvenile crustal material and Gander basement rock. Continued fractionation

of the magma, and post-formation alteration processes created the unique REE, U-rich

geochemistry of the Harvey volcanics. This is in contrast to the Piskahegan Group, which

formed from the melting of younger, Avalon source rocks, and experienced significantly

less fractionation and post-magmatic alteration than Harvey. Despite forming in the same

tectonic environment, and displaying similar lithology and to some extent geochemistry,

it is apparent that Harvey volcanics cannot be considered coeval to the Piskahegan Group.

Similarly, Harvey volcanics in no way resemble F-rich rhyolites based on their distinct

geochemistry. This illustrates that felsic volcanics, relatively barren of F, can still serve as

an economic source of U in southern New Brunswick, and likely elsewhere.
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1990). Abbreviations used in diagram: BE - Bulk Earth, SCM - Subducted Crustal
Material

Corrected Atomic Ratios Apparent Age (Ma)
Analysis
Number

*Pb/!'"U Wpfc/!»U 17PbZ^Pb

Value to Value to Value Io

wPb/seU *"Pb/!,,U ""Pb/^Pb

Value te Value Io Value ïô~
1
2
3
4
5
6
?

9
IO
Il
12
13
14
15
16
I?
IH
19
20
21
22

0.0404
0.0625
0.0412

0.067
0.0577
0.0565
0.0646
0.0567
0.0577
0.0556
0.057

0.0675
0.0627
0.056

0.0611
0.0518
0.0608
0.0653
0.0628
0,0592
0.0625
0.0571

0.001 1
0.0017
0.0014
0.0015
0.0012
0.0026
0,0013
0.0011
0.0011
0.0014
0.0012
0.0015
0.0021
0.0012
0.0021

0.001
0.0014
0.0012
0.0012
0.00?
0.0012
0.0011

0.2699
0.9048
0.4382
0.5139
0.4386
1.3792
0.4737
0.4349
0.4484
0.4175

0.493
0.5221
0,7291
0.456

0.7891
0.3SS

0.5199
0.507

0,4878
0.505
0.54

0,4916

0.056
0.0964
0.0971
0.0342
0.0286
0.2246
0.0156
0.0121
0.0121
0.0503
0.0256
0,0487
0.1392
0.0303
0.1506
0.0089
0.0543
0.ÖI 19
0.0116
0.0135
0.0422
0.0411

0.04846
0.10493
0.07718
0.05567
0,05515
0,17694
0.05317
0.05566
0.05634
0.05449
0.06274
0.05612
0,08435
0.05905
0.09372
0.05434
0.06199
0.05631
0.05639
0.06191
0.0627

0.06249

O.O09O7
0.00864
0,01479
0.00274

0.0027
0,02124
0.00092
0.00075
0.00072
0.00547
0.00222
0.00423
0.01361
0.00294

0.015
0.00056
0.00529
0.00059

0.0006
0,00078
0.00411
0.00447

255
391
260
418
361
355
404
355
362
349
357
421
392
351
3S2
325
381
408
392
371
391
358

7
II
9
9
8

16
8
7
7
8
7
9

13
7

13
6
9
7
7
7
8
7

243
654
369
421
369
880
394
367
376
354
407
427
556
381
591
333
425
416
403
415
438
406

9
8

36
17
33

122 315
1713 148
1126 398
439 106
418 106

96 2624 198
It 336 38

439 29
466 27
391 218
699 73
457 163

82 1301 319
21 569 105

1503 308
385 22
674 179
465
468
671

85
7

36
8
8
9

28
28

22
23
26

698 140
691 153

7ViWe 4.1. U-Pb SHRIMP dating of zircons, sample 17.
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Table 4.2. Harvey whole-rock major and trace element data. * Major compounds and

elements were analyzed via XRF, ** trace element data was obtained through ICP-MS.
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available
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Table 4.2. Continued.
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^¡^ Nd(ppm) Sm(Om) »'Smi'-Nd "'Nd^NO" Zo ^S"
NB07-11
NB07-2

NB07-21
NB07-28

28.02
39.80

34.20
13.97

C

I
NB07-35A 65 50
NB07-81 67,41

NB07-S6

NB07-66

38.97

90,59

6.44
14.39

962
5.65

10.62
11.44

7.48

16.23

0.138800
0.218600

0 512266 4
0512722 4

0170100 0.512575 4
0.244400 0.512697 7

0098000 0.512429 5
0.102600 0.512437 5

0.116000 0.512482 5

0,108300 0.512424 5

•7.26
1.64

-123
1.15

¦4.08
-392

-2.8S

-4.17

Paolo ?µ?* (360)
1575.00 1796,47 -4.80

0.64

1625.00 2007.92 -0.01
-1.04

817.00 950.71
838.00 979,03

0.46
0.41

866.00 1027.40 0.86

900,00 1050,60 -0.11

Table 4.4. Results of the Sm-Nd isotope analyses of whole-rock samples from Harvey
and Piskahegan. * 143NdZ144Nd corrected from the deviation from JNdi-1 with mean value

obtained from the Memorial University TIMS Lab of 14V44 (0.51237, n=112, 0.000019).
**sNd values were calculated based on the present day chondrite uniform reservoir

(CHUR; 147SiW144Nd = 0.1967 and 143NdZ144Nd = 0.512638), and age equations were
modeled using the De Paolo mantle model, and the known decay constant (6.54xl0~12

years; Steiger and Jäger, 1977). ATDM2 calculated using a linear evolution for a mantle

separated from the CHUR at 4.55Ga and having a present day Epsilon value of +10.

Unii Sample Host Rock Yield SI SO (VSMOW)

Cherry Hilt

York Mills

Big Scijlt Mountain

Bailey Ruck

Little Mount Pleasant

NB07-16

NBOT-] 7

NB07-30

NB07-3JA

NB07-73

NB07-I06(I)

rhyolite

quartz-feldspar porphyry

rhyolitc

quart7-fckt$par porphyry

rhyolitc

rhyolite

13.1

14.9

15,7

16.2

15 6

16.3

10.4

11.9

14,7

135

11.3

9.7

Table 4.5. 518O of quartz within whole-rock samples from Harvey and Piskahegan. Pure
quartz should yield 16.7 ± 0.3, samples 16 and 17 were excluded from interpretation due

to low yield.
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Analysis
Number

,*H|yi"Hf ™Ltt,mHf «*?^,p?G

5
7
8
IO
II
12
IS
I?
IS
19
20
21
22

35ÜT
,28266$
282««
.282629
.282762
282664
.282745
,282673
,282829
.282682
282661
.282824
.282744
28264»

0,00384
0.0005 Î
0.00137
0.00185
0.00240
0.00194
0,00150
0.00158
0,001 1 1
0.00199
0.00146
0.00123
0.00323

TuSSST
0,21257
0.02322
0.0069S
0.08355
0.12648
0.10121
0.00788
0,07463
0.06408
O.0SS56
0.08476
0.06907
0.18784

U/PbAge
403

Hf,

361
403
361
361
361
403
361
361
403
403
361
403
361

T(DM), T(DMh HfChur(l) HfDM(I)
0,28278 1 9.Í h.U 0.79 0,282513 0,282951
0.282639 3.5 0 90 1,14 0,282540 0,282983
0,282689 6.2 0.783 1.00 0,2825 »3 0.282951
0.282620 2.8 0.89 1.19 0.282540 0.282983
0.282749 7.4 0.71 0.89 0.282540 0.282983
0.282648 3.8 0.87 1.12 0.282540 0.282983
0.282730 7.7 074 0.91 0,282513 0.282951
0,282663 4.4 0.83 1.09 0,282540 0,282983
0.28281« 9.9 0.61 0.74 0.282540 0,282983
0.282674 5.7 0,81 1.04 0.282513 0,282951
0.282646 4.7 0861 1.10 0.282513 0.282951
0.282814 9.7 0.61 0.75 0.282540 0.282983
0 282735 7.9 0.725 0.90 0.282513 0.282951
0 282619 2.8 0.92 1-19 0.282540 0.282983

Table 4.6. Lu-Hf isotopie analysis of zircons, sample 17. *eHf(T) values were calculated
using chondritic ratios of 176Hf/l77Hf (0.282772) and 176LW177Hf (0.0332) as derived by
Blichert-Toft and Albarede (1997). All isobaric interferences of 176Lu and 176Yb on 176Hf
were corrected, and the recommended 176Lu/175Lu and 176YW172Yb ratios of 0.02669 (De
BiÈvre and Taylor, 1993) and 0.5865 were used for the data reproduction.

4.11. Summary of Contributions
This study involved a variety of geochemical analyses, of which the facilities were not

available at Saint Marys. As a result, preparation for all geochemical analyses were

completed by the primary author, and funded largely through grants provided to TRG,
and JD. LA-ICP-MS and Hf analyses of zircon were completed by Greg Shellnut at the

University of Taiwan. All figures within this manuscript were created by the primary
author. While the manuscript was improved through conversations with the co-authors,

the manuscript was written in it's entirety by the primary author. Revisions of this
manuscript are ongoing at time of submission as it is still being prepared for publication
submission.
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5.1. Abstract

Felsic volcanic rocks from the 335 Ma Cumberland Hill Formation of southern New

Brunswick, Canada correspond to peralkaline rhyolites and trachytes. These rocks, which

underwent extensive fractional crystallization from an alkali basaltic magma, have high
concentrations of incompatible trace elements including uranium (up to ca. 20 ppm).

Mafic parent magma was derived from either decompression mantle melting occurring
during rifting, or a mantle plume, with the latter hypothesis preferred. Cumberland Hill
peralkaline rhyolites may represent an economic source of uranium based on the elevated

uranium concentrations and high degree of similarity with volcanic rocks of the

Streltsovka caldera (Transbaikalia, Russia), one of the largest, hydrothermal, uranium
deposits in the world.

5.2. Introduction

Igneous rocks are sparsely distributed throughout the Middle Devonian-Permian

Maritimes Basin, and they appear to decrease in volume through time from: (i) Middle to
Late Devonian tholeiites, minor alkali basalt, bimodal gabbro and A-type to evolved I-
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type granite; (ii) Lower Carboniferous bimodal igneous rocks, and most sparsely, (iii)

Upper Carboniferous bimodal igneous rocks (Fyffe and Barr, 1986; McCutcheon, 1990).

The felsic igneous rocks of the Cumberland Hill Formation (Fm), the topic of this paper,

were considered part of the Late Wesphalian Pictou Group, and consequently associated

with the latter phase of magmatism based on stratigraphie relationships (Fyffe and Barr,

1986). However, recent mapping indicated these volcanic rocks lie within the Visean to

early Namurian Mabou Group, and therefore associated with the middle phase (St. Peter,

1997; New Brunswick Department of Natural Resources, 2010). A mid-Visean U-Pb

zircon date of 335 ± 2 Ma age substantiates this interpretation (St. Peter, 2002). The

Cumberland Hill Fm now appears to have approximately the same age as several, alkalic

mafic formations in New Brunswick (e.g. the Hardwood Ridge, Royal Road and

Queenstown basalts), and the tholeiitic-alkalic mafic rocks of the Cap aux Diables Fm in

the Magdalen Islands (Barr et al., 1985; Fyffe and Barr, 1986; La Fleche et al., 1998;

New Brunswick Department of Natural Resources, 2010).

The mafic rocks of the Magdelen Islands have continental within-plate characteristics

(Barr et al. 1985), and HIMU-OIB Pb-isotopic signatures that have been related either to

a mantle plume (Pe-Piper and Piper, 1998) or to decompression melting below a pull-

apart rift (LaFleche et al., 1998). The plume origin is consistent with the model proposed

by Murphy et al. (1999) and Keppie and Krogh (1999) wherein the magmatism and

deformation front migrated northwards from southern Nova Scotia at 380-370 Ma

through northern Nova Scotia at 365-355 Ma to the Magdalen Islands in 335 Ma. The

plume model is also consistent with the presence of a high-density lens beneath the
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Maritimes Basin (Mariliier and Verhoef, 1989), which may represent the beheaded

portion of the plume. In this paper, we present whole-rock major and trace element

analyses for the volcanic rocks of the Cumberland Hill Fm, and although we recognize

that the data cannot distinguish between the various tectonic models, they can be of

economic value as such rocks can be related to potential uranium mineralization

(Dahlkamp, 1993; Plant et al., 1999; Cuney, 2009; Nash, 2010).

5.3. Geological Setting
Late Devonian to Early Permian rocks of New Brunswick comprise the western

portion of the Maritimes Basin of the Atlantic Canada region, in which a successor basin

developed during the waning stages and subsequent to the Middle Devonian Acadian

Orogeny (e.g. St. Peter and Johnson, 2009, Fig. 5.1a). In New Brunswick, these rocks

occur within deep depositional centers or subbasins, or on shallowly buried or partially

exposed basement uplifts and platforms.

The volcanic rocks of the Cumberland Hill Fm crop out as several inliers over 20 km2

and are unconformably overlain by the Upper Carboniferous Pictou Group on the New

Brunswick Platform (Fig. 5.1b). The outcrops are likely related to a single volcanic centre

partially hidden beneath Pictou Group (or Mabou Group) rocks, since the area

incorporating the inliers clearly defines a circular area of high magnetic response on

recent aeromagnetic maps (Thomas and Kiss, 2005).

Fyffe and Barr (1986) examined some of the felsic volcanic rocks in the vicinity of

Cumberland Hill including lava flows and tuffs in a rhyolitic formation and underlying

trachytic formation. Subsequently, St. Peter (1997) delineated the distribution of these
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formations in more detail, depicting the trachytes as mostly underlying, but in part

interdigitating with the rhyolites. There is also one massive intrusive porphyry plug with

several smaller dikes/pipes, interpreted by Thomas and Kiss (2005) as volcanic feeder

dikes based on their bulls eye positive magnetic anomalies (50-375 nT) within the

magnetically anomalous area. The exact thickness of these formations is unknown as they

are poorly exposed, however, both trachytic and rhyolitic formations are believed to be

tens of meters thick.

The rhyolites are generally aphanitic to porphyric laminated flows and tuffs with

feldspar phenocrysts and microphenocrysts (0.1-4 mm in length) set in quartzfeldspathic

groundmass. They contain green clinopyroxene as rare phenocrysts as well as Fe-Ti oxide

accessories. The more altered trachytes contain aligned and extensively altered feldspar

phenocrysts (0.1 - 2 mm), rare Fe-Ti oxides and altered clinopyroxene phenocrysts set in

a fine-grained feldspar-rich groundmass or devitrified glass matrix.

5.4. Geochemistry
Major and trace elements of 15 whole-rock samples from the Cumberland Hill Fm

(Table 5.1) were determined using a Perkin Elmer Optima 3000 inductively coupled

plasma mass spectrometer (ICP-MS) in the Activation Laboratories in Ancaster, Ontario.

Prior to analysis, samples were digested by fusion to ensure the complete dissolution of

accessory minerals. Full analytical and technical parameters utilized can be found in

Activation Labs on-line manual.

According to the (Na20+K20) vs SiO2 classification of LeMaitre et al. (1989; Fig. 5.2)

and the Zr/Ti02 vs SiO2 diagram (Fig. 5.3) of Winchester and Floyd (1977), the rocks can
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be subdivided into two groups, trachytes and peralkaline rhyolites, analogous to

comendite/pantellerite fields according to Winchester and Floyd (1977). Most rocks are

peralkaline with a high agpaitic index (AI = mole (Na+K)/Al; Shand, 1951) and acmite in
their norms. Considering loss of ignition (L.O.I) free analyses (Table 5.1), the trachytes

on average (n=7, 1s) have moderate SiO2 (65 ± 2.48 wt. %) accompanied by high total

alkalis (9.5 ±1.81 wt. %), low CaO (2.5 ±1.21 wt. %), high FeOtot/MgO (ca. 25) and

elevated concentrations of high field strength elements (HFSE; e.g. 947 ± 334 ppm Zr, 85

± 29 ppm Nb). The average rhyolitic rocks (n=8, 1s) have higher SiO2 (75 ± 0.66 wt. %),

equivalent total alkali concentrations (9.0 ± 0.29 wt. %, very low CaO (0.23 ± 0.08 wt.

%), high FeOtot/MgO (ca. 140) and high HFSE (e.g. 2369 ± 138 ppm Zr, 251 ± 36 ppm

Nb). The Al203/(CaO+Na20+K20) ratios (mole) of both trachytes and rhyolites are <1,

typical of peralkaline rocks.

Major and trace elements in volcanic rocks of the Cumberland Hill Fm vary largely
due to the degree of fractionation exhibited within trachytes and rhyolites. In order to
determine the fractionation trends, Nb was utilized as a differentiation index (see White et

al., 2006; Fig. 5.4). With increasing concentration of Nb, the trachytes displayed a

positive correlation to Al2O3, and a negative correlation to Ti02; rhyolites in contrast have
relatively constant Al2O3 (Fig. 5.4a), and TiO2 (Fig. 5.4b). The reduction in TiO2 can most

likely be attributed to crystallization of Fe-Ti oxides. Trace elements also displayed
distinct fractionation trends when compared to Nb in both trachytes and rhyolites.

Trachyte samples showed marked decreases in Ba with increasing Nb (Fig. 5.4c),

reflecting the crystallization of feldspars, as well as an increase in incompatible trace
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elements including Zr, La, and Ga (Fig. 5.4d, e, f). However, the abundances of these

trace elements in the rhyolites remained virtually unchanged with increasing Nb. The

contrast in the fractional crystallization between trachytes and rhyolites is highlighted by

a CaO-K2O-Na2O ternary diagram (Fig. 5.5), which illustrates trachytes move away from

the CaO apex, while rhyolite variation is parallel to the K2O-Na2O join. This is most

readily explained by the crystallization of Ca-bearing plagioclase and clinopyroxene in

trachytes, and alkali feldspar crystallization in rhyolites.

The chondrite-normalized rare earth element (REE) patterns (Fig. 5.6a) are strongly

enriched in light REE (LREE) and have fractionated heavy REE (HREE). The rhyolites

have higher contents of LREE with (La)n values of ca. 440-510 compared to the trachytes
with (La)n ca. 270-430, while the trachytes have higher (La/Yb)n ratios (ca. 8-11) than

rhyolites (ca. 4-6). A similar relationship is observed for (LaZSm)n which in the trachytes
is ca. 2.6-3.4 and in the rhyolites is ca. 2.2-2.6. The shape of the REE patterns of trachytes

does not change significantly, although the absolute abundances are escalating with the

increasing degree of differentiation. Such a variation, together with the presence of a

small but distinct negative Eu anomaly is consistent with low-pressure fractional

crystallization of common rock forming minerals including feldspars. The REE patterns

of the rhyolites are characterized by a pronounced negative Eu anomaly although the

shape of the patterns and the absolute abundances of the rhyolites vary in a narrow range.

Primitive mantle-normalized trace element patterns of both rock types (Fig. 5.6b) are

fairly similar. Both are highly fractionated and peak at Th-Nb, however rhyolites display

a strong, negative Ba, Sr, and moderately negative Eu anomalies, while the trachytes
90



contain only slightly negative anomalies of these elements. This implies that the rhyolites

underwent a more extensive fractionation of feldspars compared with the trachytes.

The abundances of U and Th in the felsic rocks of the Cumberland Hill Fm are high

and variable (Table 5.1). Rhyolites display significantly higher contents of U (14 ± 4.0

ppm, n=8, 1s), and Th (33 ± 3.1 ppm, n=8, 1s) compared to trachytes (U= 2.4 ± 2.4 ppm,

n=7, 1s; Th= 12 ± 1.4 ppm, n=7, 1s). As a result, the rhyolites also have a higher U/Th

ratio (0.44 ±0.13, n=8, 1s) than trachytes (0.32 ± 0.09, n=7, 1s), which is comparable to

the whole-rock or melt inclusion data from peralkaline rhyolites of various U districts in

the world (Cuney and Kyser, 2009). The concentration of both Th and U are notably

higher in Cumberland rhyolites than exhibited in the Devono-Carboniferous rhyolites of

Nova Scotia where Th and U are averaging 18.3 and 4.6 ppm, respectively (Dostal et al.,

1983a) although the Nova Scotia rhyolites also have within-plate characteristics (Dostal

et al., 1983b).

In contrast to typical igneous rocks (see Heier et al., 1965), there is no coherence of

radioactive trace elements with K since both the trachytes and rhyolites have similar

concentrations of K. In addition, the lack of correlation of radioactive trace elements with

Zr and Y suggests that primary accessory minerals such as zircon are not the principal

host of these elements (Dupuy and Dostal, 1983). These minerals are modally

insignificant in the rocks. Therefore, it is more plausible that U and Th are primarily

hosted as groundmass as suggested by their correlation with Ba and Sr.
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5.5. Petrogenesis
Overall the geochemical and mineralogical similarities of the spatially and temporally

associated trachytes and rhyolites imply they are genetically related. However,

discontinuous and/or contrasting variation trends and significant differences in

incompatible trace element ratios indicate the rhyolites were not derived from the

trachytes via continuous fractional crystallization, although fractional crystallization may

be responsible for the variations within the individual suites. The evolution of trachytes

involved crystallization of feldspars, clinopyroxene and Fe-Ti oxides, while the

fractionation of rhyolites was dominated by crystallization of alkali feldspar.

An alternative model to continuous fractional crystallization for the origin of the

rhyolites is assimilation-fractional crystallization. However, the low and overlapping

Th/Ta ratio of the trachytes and rhyolites (Fig. 5.7a), a sensitive indicator of crustal

contamination (Gorton and Schandl, 2000), demonstrates that assimilation-fractional

crystallization and crustal contamination processes cannot solely account for derivation of

the rhyolites from the trachytes. This is also supported by Nd isotope data of Pe-Piper and

Piper (1998), who reported an SNd value of ca. 3.3 from the Cumberland Hill rhyolite.

Although the Th/La ratio, another sensitive indicator of upper crustal contamination, is

relatively high in the rhyolites (ca. 0.15-0.3), it suggests limited crustal contamination

occurred.

K/Rb ratios in trachytes are much higher than in rhyolites (Fig. 5.8a,b), which suggest

the evolution of the rhyolites may have been affected by fluids (Dostal and Chatterjee,

1995). Again, this mechanism cannot explain the origin of the rhyolites, but rather
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indicates that fluids played an important role during the evolution of these rocks and

perhaps even led to the mobilization of U (Cuney and Kyser, 2009; Nash, 2010) in the

rhyolites (Fig. 5.8b).

A comparison with similar rocks (e.g. Peccerillo et al., 2003) suggests the Cumberland

Hill trachytes and rhyolites could represent various stages of fractional crystallization

within an evolving alkali basaltic magma. Considering the Y-Nb-Ce diagram of Eby

(1992), it is apparent the rocks plot within the mantle derived source rock field (Fig. 5.7b)

and are similar to A-type granites (Fig. 5.7c). The absence of a negative Ta-Nb anomaly

suggests the parent magmas were not derived from subcontinental lithospheric mantle,

but more plausibly originated from asthenospheric mantle. The rhyolites were also

influenced partially by crustal contamination as indicated by the high Th/La ratio.

LaFleche et al (1998) and Pe-Piper and Piper (1998) described alkali basaltic rocks of

comparable age from other parts of the Maritimes basin. The presence of alkali gabbroic

rocks and lamprophyre dikes of a similar age (Johnson 2008) in the area suggests that the

felsic rocks of Cumberland Hill Fm could be derived from such a parent by fractional

crystallization. In fact, peralkaline felsic volcanic complexes are typically associated with

a shallow-seated alkaline intrusions ranging in compositions from gabbros to highly

fractionated granitic rocks. Although there is insufficient geochemical data available on

the mafic alkali rocks in the vicinity of the Cumberland Hill Fm, the chemical analyses of

alkali basaltic rocks reported by LaFleche et al. (1998) from the Magdalen Islands

indicate that similar basalts could have been a parent for the trachytes and rhyolites.

Trachytes of similar compositions have been documented to evolve from alkali basalts by
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extensive fractional crystallization (Peccerillo et al, 2003) and peralkaline rhyolites could

have evolved from such magma by further fractional crystallization in the magma

chamber. A likely scenario for the Cumberland Hill felsic rocks is that they are the

products of fractional crystallization of alkali basaltic magma, and that the trachytes and

rhyolites represent separate magma pulses with the latter being younger having

undergone more extensive fractionation prior to emplacement.

5.6. Economic Potential

Silica-oversaturated peralkaline felsic volcanic rocks, particularly rhyolites, are

frequently enriched in U and represent a potential source ofuranium for volcanic-related

hydrothermal U deposits, such as the late Jurassic Streltsovka caldera located in

Transbaikalia, Russia near the Chinese-Mongolian border (Ischukova, 1997; Chabiron et

al., 2001, 2003; Cuney and Kyser, 2009; Nash, 2010). Uranium mineralization within

Streltsovka is generally isolated within the sandstones, conglomerates and rhyolitic tuffs

of the caldera, commonly isolated in subvertical veins and stockworks grading up to 0.6%

U3O8 in large stockworks, and as high as 1.0% U3O8 in veins (Chabiron et al., 2003).

Sediment-hosted U deposits may also occur in siliciclastic sedimentary basins, such as the

Jurassic Tim Mersoi basin in Niger, grading up to 0.1 1% U3O8 in organic material

entombed in sandstone (Forbes et al., 1984; Forbes, 1989; Plant et al., 1999; Pagel et al.,

2005; IAEA, 2009).

The crystallization of U-bearing accessory minerals in highly polymerized peralkaline

melts is typically suppressed (Cuney, 2009; Cuney and Kyser, 2009) leading to

progressive enrichment of U in residual melts during fractional crystallization and
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entrapment of U in the glassy groundmass. Subsequently U can be leached during the

alteration or devitrification of the glass (Nash, 2010). Cuney (2009) and Cuney and Kyser

(2009) inferred that ignimbritic tuffs, in which U is hosted in the glass, are the most

favourable type of volcanic rock; such rhyolitic pyroclastic rocks are abundant in the
Cumberland Hill Fm.

The rhyolites of the Cumberland Hill Fm have relatively high abundances of U

compared to associated trachytes and may be a source of U mineralization. The U

concentrations in these rhyolites are elevated compared to similar felsic and mafic Late

Tournaisian-Early Visean deposits of the Maritimes Basin (Magdalen Islands, 0.4-1.9

ppm; Central New Brunswick, 0.8-1.9 ppm; Cobequid Highland dykes, 0.2 ppm; Pe-Piper

and Piper, 1998) and Nova Scotia Devono-Carboniferous basalts (0.5-0.8 ppm; Dupuy

and Dostal, 1983) and rhyolites (-4.6 ppm; Dostal et al., 1983a,b). The abundances of U

in the rhyolites are comparable to the U concentrations of the peralkaline rhyolites of the

Streltsovka caldera (Fig. 5.6b), the largest, volcanic-related, U ore field in the world

(Cuney, 2009). Despite similar U concentration, it is important to consider where U is

hosted in rhyolites. When U is hosted in zircon or other resistant accessory minerals it

cannot be readily remobilized. Based on current geochemical work, it appears U is

present within the glassy groundmass of the Cumberland Hill rhyolites and can therefore

be released and redeposited and thus could be a source of U.

5.7. Conclusions

Although the geochemistry of the felsic rocks of the Cumberland Hill Fm is consistent

with both the plume and decompression melting models, other factors such as NNE-
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migration of the magmatism and deformation front are more consistent with the plume
model (Keppie and Krogh, 1999; Murphy et al., 1999). The high potential for U
mineralization related to the rhyolitic rocks of the Cumberland Hill Fm, and equivalent

exposed or buried formations on the New Brunswick Platform is perhaps the most
important aspect of this study as it furthers the economic viability of the region.
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Figure. 5.1. Map of Study Area, a) Map of Atlantic Canada depicting the Maritimes

Basin and its present erosional edge (adapted from Roliff 1962; Williams 1974; Bradley

1982; and Fyffe and Barr 1986). Major faults are indicated as dashed lines, study area is

indicated with a box, (b) Geological map of the Cumberland Hill area, southern New
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Brunswick (adapted from Smith, 2007). Minto Fm represents grey to red medium grained

sandstone with red mudstone with conglomerate and traces of coal, while the Minto Fm-

Hurley Creek Member is characterized by reddish brown coarse grained sandstone and

conglomerate interbedded with fine grain mudstones. The Cumberland Hill Fm volcanic

rocks contain rhyolitic and trachytic lavas and volcanoclastic rocks and minor feldspar

porphyry and red-brown lithic sandstone.
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Figure 5.2. (Na20+K20) versus SiO2 ( wt. %) diagram of Le Maitre et al. 1989 for the

volcanic rocks of the Cumberland Hill Fm. Abbreviations: D - dacite; T - trachyte; R -

rhyolite.
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Figure 5.3. Zr/Ti02 versus SiCh diagram of Winchester and Floyd (1977) for the felsic

volcanic rocks of the Cumberland Hill Fm. Abbreviations: Com/Pan -

comendite/pantellerite; T - trachyte; R - rhyolite; P - phonolite

99



?

14 ?

12

600

?400

Ë
200

160 ?

e 120 ?

???

O öS

? ?>

8

?

t G

O

O

Q^

100

O Trachyte
4- RhyoMe

-t- -»- +

t ? » G

,-++?» -tr +.

t r
300

B gO

D
t G

?

O

O

S'O

8°
<9

+?+·+ ¦*-

t » G

+ +

? 1 1 » G

?*++ -¡G

Nb (ppm)
Figure 5.4. Fractionation diagram using Nb as a tracer. Nb (ppm) versus (a) Al2Ch (wt.

~i 1 1—
100 200

Nb (ppm)
300

h 60

1-20

%), (b) TiO2 (wt. %), (c) Ba (ppm), (d) Zr (ppm), (e) La (ppm), and (f) Ga (ppm)

diagrams for felsic volcanic rocks from the Cumberland Hill Fm.

100



O Trachyte
+ Rhyolite

O Q- ?D ucP

CaO Na2O
Figure 5.5. CaO-K20-Na20 ternary diagram. Volcanic rocks of the Cumberland Hill Fm

show fractionation of Ca-plagioclase and clinopyroxene in trachytes, while only alkali

feldspar played a role in rhyolites.
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Figure 5.6. Normalization diagrams, (a) Chondrite-normalized REE patterns of the

average of trachytes (n=7) and rhyolites (n=8) from the Cumberland Hill Fm. and rhyolite

from Streltsovka (n=l; Chabiron et al. 2003); (b) Primitive mantle-normalized multi-

element plots of the average of trachytes (n=7) and rhyolites (n=8) from the Cumberland

Hill Fm. and rhyolite from Streltsovka (n=l; Chabiron et al. 2003). Normalizing values

are after Sun and McDonough (1989).
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Figure 5. 7. Discrimination diagrams for felsic volcanic rocks from the Cumberland Hill

Fm. (a) Diagram Yb (ppm) versus Th/Ta diagram of Gorton and Schandl (2000); WPVZ

= within plate volcanic zones; MORB = mid-ocean ridge basalts; WPB = within plate

basalts, (b) Plot of Y-Nb-Ce (Al granites with element ratios similar to the mantle,

whereas A2 are granites originated from continental crust or arcs), dividing line between

groups is from Eby (1992), (c) Y (ppm) versus Nb (ppm). Field boundaries are from

Pearce et al. (1984) as modified by Christiansen and Keith (1996); VAG-volcanic arc

granite; WPG- within plate granite; ORG- ocean ridge granite; syn-COLG -

syncollisional granite.
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Table 5.1. Major and trace element concentrations of Cumberland Hill trachytes and
rhyolites. All values were obtained through ICP-MS, - symbol indicates value below
detection limits.

5.10. Summary of Contributions
This study involved the analysis of major and trace elements using XRF and ICP-MS,

equipment unavailable at Saint Marys. Rocks were sliced and chipped in preparation for
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geochemical analysis (TRG) and funded through grants (TRG, JD). All figures within this

manuscript were created by the primary author, aided by helpful suggestions of Malcolm

McLeod (Fig. 1). The original draft of this manuscript was completed during an

independent study, under the direction of Dr. Dostal. Subsequently, the co-authors made

large improvements to the original manuscript. Dr. Dostal and Dr. Keppie offered further

insight into the mantle plume theory and aided the petrologie discussion. Additionally, the

regional geology and lithology sections were enhanced by Malcolm McLeod. Final

revisions of the manuscript were completed by the primary author. Revisions of this

manuscript are currently complete as the submission is still in review with Atlantic

Geology.
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Chapter 6: Conclusions

To answer the original research question that initiated this thesis, it is clear that Harvey

and Piskahegan did not evolved from the same magmatic source, despite being similar in

age. While both are within plate granites, the Harvey Group formed by partial melting of

juvenile crustal material and Gander aged basement rock. Continued fractionation of the

magma, and post-formation alteration created the unique REE, U-rich geochemistry of

the Harvey volcanics. The Piskahegan Group, formed from the melting of younger,

Avalon source rocks, and experienced significantly less fractionation and post-magmatic

alteration than Harvey.

Both deposits show very distinct trace and major element geochemical signatures as

studied via melt inclusions and whole rock. Harvey was enriched in LREE and Cs, B, U,

and Th compared to Piskahegan. Harvey was also highly fractionated, at least 95%, while

Piskahegan was only fractionated 70 - 92% as elucidated though the analysis of the Cs

content within melt inclusions. Increased fractionation, coupled with post-magmatic

water circulation, likely facilitated the elevated U mineralization at Harvey compared to

Piskahegan.

6.1. Addressing the Central Research Questions

The first research question was: "What was the original geochemical composition of

the Harveyformation and how did it evolve? "

The original geochemical composition of the Harvey calc-alkaline rhyolites was

deduced through melt inclusion analysis. Rock from the Harvey Group are classified as
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high silica, peralkaline rhyolites with limited concentrations of fluorine. Normalized

abundance diagrams indicated that silicate melt inclusions are slightly enriched in most

incompatible trace elements and significantly depleted in Ba, Sr, and Eu compared to

whole rock, with a slight enrichment of HREE relative to LREE. As identified above,

Harvey was also quite fractionated with large negative anomaly's in Ba, Eu, and Sr,

indicative of feldspar fractionation.

Whole-rocks are depleted in MgO and TiO2, likely related to accumulations of

oxides, plagioclase feldspar and or mafic inclusions. Whole-rocks are enriched in HFSE

(Nb, Hf, REE, Th, U) except Ta. Harvey remains enriched in HREE compared to LREE

according to continental crust normalized diagrams, however both chondrite and

primitive mantle normalized diagrams indicate a flat REE pattern. Mineralogical

investigations revealed that Harvey rocks are quite altered, and geochemistry indicates
that remobilization has occurred.

While the magmatic geochemistry offered insight into the element concentrations of

the melt, radiogenic and oxygen isotopes were required to elucidate the nature of the

source material. Slightly positive ENd values indicated partial melting of juvenile crustal

material and Gander basement rock. Continued fractionation of the magma, and post-

formation alteration processed created the unique REE, U-rich geochemistry of the

Harvey volcanics. The formation of Harvey was facilitated by lithospheric thinning,

during which a pulse of basaltic rich magma may have provided the heat required. This

result was supported by Hf isotopes which indicated a source composed of both depleted

mantle (i.e. MORB) and crustal material.
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The second research question was: "How does the geochemistry of the Cumberland

Hill Formation compare to other deposits within southern New Brunswick and what

impact does this have on our current understanding of the geological history of the

Maritimes? "

The rocks of the Cumberland Hill Fm can be subdivided into two groups, trachytes and

peralkaline rhyolites. Both have lower S1O2, equivalent alkalies, and lower Cao

compared to Harvey or Piskahegan rhyolites. Major and trace element concentrations

vary significantly in the trachytes and rhyolites of Cumberland Hill due to the high degree

of fractionation exhibited within rhyolites. The chondrite-normalized REE patterns

indicated Cumberland Hill volcanics are strongly enriched in LREE and have fractionated

HREE, with rhyolites more enriched in LREE overall. The abundances of U and Th in the

felsic rocks of the Cumberland Hill Fm are low compared to Harvey or Piskahegan,

although all three formations exhibit concentrations notably higher than exhibited in the

Devono-Carboniferous rhyolites of Nova Scotia.

The Cumberland Hill trachytes and rhyolites likely represent various stages of

fractional crystallization that coincided with an evolving alkali basaltic magma. The

parent magma was probably derived from asthenospheric mantle that was influenced

partially by crustal contamination. Alternatively, it has been hypothesized that trachytes

and rhyolites from the Magdalen Islands, with similar geochemical composition were

derived through fractionation of alkali basaltic. However, without further geochemical
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work ascertain the nature of the source material, the nature of the pedogenesis within this

deposit is still largely speculative.

Igneous rocks are sparsely scattered throughout the Maritimes Basin, and seem to

decrease in volume throughout the Devonian to Permian. The Cumberland Hill Fm

formed at approximately the same times as many alkalic mafic formations in New

Brunswick (e.g. the Hardwood Ridge, Royal Road and Queenstown basalts), and the

tholeiitic-alkalic mafic rocks of the Cap aux Diables Fm in the Magdalen Islands, all of

which have within plate characteristics. Interestingly, the mafic rocks of the Magdelen

Islands have an HIMU-OIB Pb-isotopic signatures that suggests origin related to either a

mantle plume or decompression melting. The location of the Cumberland Hill Fm

supports the hypothesis that a mantle plume migrated northwards from southern Nova

Scotia at 380-370 Ma, through northern Nova Scotia at 365-355 Ma, and finally reaching

the Magdalen Islands in 335 Ma.

The third research question was "What economic potential lies within the U deposits of
Southern New Brunswick? "

Based on this body of research, it is evident the province of New Brunswick is host to

a variety of deposits with considerable economic potential, not only in previously

explored commodities such as gold, molybdenum, and tin, but also uranium. The

abundances of U and Th in the felsic rocks of the Cumberland Hill Fm are low compared

to Harvey or Piskahegan. However, both Harvey and Piskahegan contain significantly

larger concentrations of U and Th than other rhyolite deposits in Nova Scotia (ex. Fisset
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Brook, McAras Brook, Upper Byers Brook, Middle Diamond Brook, Horton Group,

Murphy Brook, Fountain Lake Group).

While it is clear none of these deposits are co-magmatic, the presence of such elevated

concentrations of uranium, and REE imply that either the mantle, or crust in this region

contains anomalously high concentrations of these elements. Therefore, similar deposits

may exist in this region, although it is unclear at present time where they may be located.

Additional melt inclusion and radiogenic isotope work could help constrain the nature of

the source material and aid in locating additional economic deposits within southern New

Brunswick, or possibly within Europe, Nova Scotia, and Newfoundland considering the

tectonic history of the Maritimes Basin.

6.2. Environmental Implications
The rocks analyzed within this study all contained U within a devitrified groundmass,

and therefore over time, U could have been eroded from these source rocks. Erosion is

facilitated by water, which is capable of transporting U6+ within oxidized waters, that

once reduced, precipitates U4+(Le. pitchblende, uraninite). How far U is transported is
entirely dependant on the climate of the region (i.e. precipitation), nature of host rocks

(i.e. permeability) and how long before reducing conditions are met. Given the extremely

large half like of U (4.5x1 09 years), it is possible for U to travel large distances, becoming
hosted in multiple different sources over time. As a result, a significant portion of the U

previously isolated within Carboniferous volcanics is currently localized in

conglomerates and red-bed type deposits, particularly in reduced traps including roll-

fronts, coal-rich shales, bogs and even tree trunks. This implies that despite the push to
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cease exploration for U due to health concerns, dangerous concentrations may already be

present throughout New Brunswick (i.e. shallow wells). Figure 6.2.1. illustrates the

occurrence of U mineralization within New Brunswick. The previously discused Harvey

and Piskahegan Groups, located south of Fredericton are characterized as stratabound

volcanics, and are relatively rare considering U distribution within the province. Given

that the most significant accumulations of U mineralization exist near the provinces most

populated cities (Fredericton, Moncton and Saint Johns), the large concentrations of U

identified within Piskahegan, Harvey and Cumberland Hill should be considered

cautiously, as they represent significant volumes of U that could be remobilized to

surrounding regions.

Edmundston

Fredericton

i: Mone

• Granite Related
Stratabound volcanogenic

St. John a Stratabound sedimentary
hosted

Figure 6.2.1. Map of New Brunswick uranium occurrences (modified from New

Brunswick Natural Resources, 2010). Note that symbols may represent more than one U

deposit within that area.
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Chapter 8: Appendix

Additional figures and tables not submitted for publication can be found in section

below with all figures and table therein following similar format to the general style of

peer-reviewed journals.

8.1. Additional Figures
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Figure 8.1.1. Residual total field magnetic survey of southwestern New Brunswick

using 200m grid spacing. Data from Natural Resources Canada/ Geological Survey of

Canada. Harvey and Mount Pleasant outcrop areas have associated, strong positive

anomalies, as do the plutons to the south (i.e. Western Saint George Batholith and related,

smaller plutons). Continuous positive anomalies between Harvey and Mount Pleasant
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could hypothetically be caused by 1) Additional volcanic centers 2) Buried plutons
beneath Carboniferous cover.
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Figure 8.1.3. Cathode Luminescence (b, d) and Backscatter images (a, c) of zircons from

Sample NB07- 17.

8.2. Additional Tables
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Formation Unit Sample
NUW I
NB07-02
NB07-03
NB07-04
NB07-0S
NB07.O6

NB07.07

??T7-08

NB07-O9
NB07-IO
NB07-I1
N807-I2
??T7-?3
NB07-I4
NB07-IS
NB07-I6
NB07-I7
NB07- 18

NB07-I9

NH07-Î0

45*»· 02.
45 44' 03.
4544*02.
45 44' 02,
45 44' 02

CoordJBaus
rmrsmpw
5" H 1 67 Off 40,6" W
e-N/*7W4i.«rw
5" Ni 67 W 40.6- W
G N '67 Off 40.5" W
3" N /67 Off 40.5" W

p50â»^S!»JMRwS^^ÎiÎS»iiên33^ir^^tïè^«riB^cl^^
pini: flow bunded (weak) ignitnbritr-, fcWs(Mf-rh>Tk, cm s«e clast»
piak flow banded (weak) ignimbnlc, IHdipar-priync, cm size flasts
pink flow banded (weak) igrtirnbriie, feMipar-phyrte, cm size claiis
pink flow tended (weak) rgnimbrile, fddspar-ptijTK. cm size clusts
pink flow banded (weak) ignimbrile, fcldsrur-phyrtc. cm si« clastv
igaimbriie and underlying rol sedmeetsVtuff, basal contact of
ifnimbrite exposed
ijBimhntc ami underlying red icdimcntxlulî, basal cooIbcI of
ijtiimbrite exposed
pink-orange very fine gran«) rhyolite from projectiefi u base
pink-oranfc very fine »rained rttyolitc from projection at bate
pink-orange very fine grained rhryplrtc from projection al tase
pink-orinai voy fine grained rhyelile from projection U bue
red vok-wmemc sediment
red vnlcwijjenic sediment
piali igfiimtsnle with lest fiume
dark pink, weakly flow-bended rtiyolitc
quartz-feldspar porphyry, pink matrix, quarte and feldspar«
extrusive rtiyvlitf
rhyolite chut* up Ie 2-4 cm, less porphyritie (ateo otficr. smaller eta*«.
(peenisb) rare very fiee Brained)
rhvulilc claiU up to 2-4 cm. tea pofphyrilk (ali» other, smaller etat*
(fflt«nisr>|i tare very fia» grained >

r

45 43· 57.4" N / 67 Dl ' 07.4" W

45 43'57.4"^67 01'07.4"W

45 43' 58. G
4643' 5*1"
4643" 58.1"
4* 43· 58.1"
45 43' 5» 5"
45 43" 59.5"
45 43' 59.3"
45 43' 56.4"
45 43' 5 1.4"
4643' 51.4"

N i 67
N 1 67
N '67
N .'67
N /67
N /67
N /67
HlVt
N /67
N .'6?

0I'«.5"W
0I'«5.5"W
Dl '05.5"W
01 '05.S" W
Ol' 01 J" W
or ?? .7- w
offíi.rw
0ff3*.6"W
IW 30.5" W
Off 30.5* W

45 43' 5 1.4" N /6? Off 29.4" W

45 43' 5 1 4" N ¦' 67 00 29.0" W

piok-whi IC rh)x>li«í, «ry. fiiK» grained arid coir».- grji (led
pink-whjlc rhyoliic, very, fine grained and «*r« trained
rhyolite
flowbarulcd
more maastvc

lamiautled rhyolrle
rriyDlite

NW-ií
NB07-2IB
NB07-22
NB07-23
NB07-24
NB07-25
NB07.31

45 44' 10LÎ" N 7*6 W 12 6"W
45 44' 10.2" N 1 66 ?* 12.6» W
4643" 33,7" N '67 Off 31,3" W
45 43" 32.7" N .' 67 Off 30.6" W
46 43" 32.7" N / 67 Off 30.6" W
45 4flf 08,9" N / 67 05' 43 S" W
45 33" 21.5" N / 66 41' 4S.0" W

NB07-26
NB07-27
NB07-2*

NB07.29

N807-XI

45 40· 09.0" N / 67 05' 43.3" W
45 40* 09.4" N / 67 05' 4 i .6" W
45 4ff 09.3" N ·' 67 05' 40.4" W

45 4ff 03.K" K ' 67 05' 45.9" W

45 42' 46.4" N /67 Of 3M* W

breceiated
breeciaied
breeeiatcdi
outcrop of felsic volcafjictirtic «w(lwnei«e, iwiid-pel*le-bo«ilder.
siwd clasts, poorly Ksrted and bedded, sub rounded to tub angular, one
large boulder sueed ctasi
weakly Mow-banded rfiyolite, pinkdark purpte-icd. flow-banded
rbyolMedlow banding neatly vertical), very vuggy, brtcciansd fracture
filfck vug« and fracture« filled with: drusg quartz (dominant)), and silica,
barite, and purple and (rwel greets fluorite, alteielion is extensive, rare:
2 5cm «red basalt (dart grey), amygdaloidal, rounded indium»

Table 8.2.1. Sample locations and description of rocks from Harvey and Piskahegan
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Forrajiioji lin« Sample
mmsr
NU07-32B
N807-32C
NB07.32D
NB07-52F,
NB07-32F
NB07-32G
N807-J2H
NB07-32I
NB07-32J
NB07-32K
NBÛ7.32L
NB07-32M
NB07-32N
NB07-32O
NB07-32P
NB07-32O

NB07-3ÎA

NB07.3JB

N807-J3C

45 JJ'
45 33'
45 33'
4$ W
45 33'
45 33'
45 33'
45 33'
45 JJ'
45 33'
45 33'
45 JJ'
45 33'
45 33'
45 M'
45 33'

Coordinates

5Ti11RTSHr
21.5- N. 66 41·
2?.5"?,<664G
21.5" N/6641'
21.5- N/6641'
21.5" Ni 6*41'
2I.S-N/ÍA4T
2?,?"?/664?'
2?.5"?,'664G
21.5" N /6641'
21.5" N/6641'
21.5" N,'6641'
2I.S"N/664I'
20.4" N/ 664 G
20.4- N /664 G
20.4" H '6641'
20.4" N /66 4 1'

DCTCTi[KiDIl

4s.rw

4s.rw
WW
«.irw
4S.CTW
48,9" W
4s.tr w
4S.IT W
4«.rw
48.?G W
48,(TW
43,rw
4j.rw
4J,rw
43.rw

45 32' 39.2" N / 66 42'16.r W

45 32' 39.2" N /6642' 16.ÍT W

45 J2\W.2"N/6642'l6.rW

N807-3JD 45 J2' 3ü.3'N;6642'lji,3"W
??07.34?
NB07-34B
NB07-34C
N807-3ÎA
NB07-35B
NB07.3SC
NB07-JÍD
NB07-35E
NB07.3SF
NB07-36
NB07-37
N8Ü7-37A
NB07-3ÎB
NB07.IOI
N8Ü7-I02
NB07-I03

Huartt-fcldtpar porphyry
quartt-feldspar porphyry
quarLffckUpji porphyry
qüarte-feMtepar porphyry
Huani-fcldsp«r porphyry
CfuiirlT-fcldipar porphyry
^%nj-U\áíptt porphyry
quaru-lctdspar porphyry
<juam-feldifiar porphyry
¡¡uaru-iMipx porphyry
quaitt-fekfapar porphyry
spiarte-feotpw porphyry
quaru-feiafnf porphyry
quarti-rctdipH porphyry
<pwr«-f(ld»p*f porphyry
quartï-icldjjsar porphyry
feSdtpar and qimtt pornhyrytie, «ned. Grey-pink with dark gjey-green fine
grauioi mark métaseme, oud-way. breotiaitd iaaafU veins with embedded
Heart* crystals, sky alteration, more maftc
fcÉdsp» nd ?aa? perpbyrytk. med. ü*ey-pBik with dark pey-grettt fiee
granted mafic òichauore, mid-vray. brecciated quarti veins wi* embedded
i|uaru crystals., day alKmiem, more ftnftt
icktapar and quarti porpfayrytte, med. Grey-pink with dark grey-peen fiae
grained mafic mctawow. mid-way, krecciiwd <|WirW win« with embedded
quarti crystal», clay aHeratnn, mere mafic
rhyolite-ntore feltk aw) pirtt;

45 32' 38.
45 32' 3*.
45 32' 38
45 32' 3«
45 32' 3S
45 33' OJ
45 33' OJ
45 34' 22
45 34' 22
45 34* 22,
45 34' 15
45 34' 15
45 34' 15
45 28' 06.
45 2«' 06
45 2??6

3" N
3" N
3" N
J-N
3" N
3" N
J-N
.6"N
.6"N
,6"N
«TN
.VN
VN
r ?
S"N

66 42'IS.3"W
66421II1J-W
66 42'IS.3"W
6642' IS.J" W
66 42· IS J" W
6641' 51.5" W
664I'5I,J*W
66 34'43.VW
66 34' 43V W

¦'6* K 43, V W
'6* »"52.7" W
• 66 J6' 52.7" W
¦¦ 66 36' iî.r W
> 66 46' 30.5" W
¦6646' 30.5" W
66 46' 30.5" W

rh^-oüft-morc fclsit and pink
rhyoJut-flwrc fcleic sad pink
rhyaüMMMore felsic and pink
rtvyoJitt-more felsic and pini
rhyoUK-mow felsic and pini
rhyolitc
rhyoliSf
weakly vesicular dark pey andesls* or basalt
weakly vesicular dark grey andésite or basalt
weakly vehicular dark pey andésite or basalt
phytic rhyolitc
ptiyik rhyolite
ptiync rnyelite
granite
granité
granite

Table 8.2.1. Continued 1
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Foniurtwe Un« Srnnpíc
MW-MA
NB07-3BB
NB07-3&C
NB07-7I
NB07-72

Cowdiiwtes

45 34' 22.6* N í 66 34' 43.9" W
45 34' 22.6* N ,'66 34' 43,9* W
45 33' 25.7" N .' 66 36' Ol .S" W
45 33' íi.r N; 66 3**01.*' W

ÊÎB07-Î9
NB07.73
NBOT-??'
NB07-7R1
NBÖ7-7«1

NW7-40
NB07-4I

H807-42
NB07.43
NB07-9?
??ß7^?
NB07-99
NEMR-IOO
NBÖT-HM
NB07-I05
NÖ07-IO6
NOT7-IW7

45 34?5.9*?.·66 3*'52.7··*'
45 34' 59.0* N I 66 35' 16.8* W
45 33' 49.4* N / 66 40* T3.?* W
45 33' 49.4* N / 56 W 03.1" W
45 33' 40.4* N ' 66 W 03.7* W

Inscription
raicul!n333t^^^

«*icula*b*s*li
macular baiali ·· deeply vrealhcreiJ mtduh-tmmn

rh>«iilc
rhyolile
rhyolilic and basaltic bouldcri
rhyolilic uni bojaltic boulder*
rhyoliik and baoïltk boaldm

45 49* 29,2* N .'-»S 03' 12.3"· W
45 40* 20.2* N .· 65 03' 12.3* W

45 20· 34,
45 20* 41.
45 25' 01.
45 25'Dl.
45 25' 26,
45 25' 26.
45 2«' 00.
45 2«' 12.
45 2K' 12.
45 27 S»,

6' N '6* 44*
2* N .' 66 44'
G?.'ß??
I* N i 66 47
r N ¦ «* 4*'
r N ' 66 46'
,5* N / 66 44'
.0* N 1 66 44'
.0* N ,' 66 44'
G Ni 6644'

23,TW
58.0- W
54,5* W
54.5* W
44.3* W
44.3* W
05.3* W
10.9* W
10.9" W
53.5* W

pw-thyiitic rhyolile
qtiuiz-f-lélfiar porphyry wilh Flow-banded rbyolilí
rbyolite
rhyolitc
risolile
rhyolitc
rhyolile
qp«rtff"M«|iar porphyry
<|U«f«-feMsper porphyry
rhyolitc

NB07-44
ÍÍB07-I5
NB07-46
NB07-47
KTO7-49
*?{?»7.5»
NB07-5I
KB07-S2"
NB074»
NB07-SI
??*7-?!2
NOT7-S3
NB07-S4
??»7-«5
NB07.S6
NF»7-*¡7
f»Bt>7.S9
NÖ07-9Ö

45 20"
45 20"
45 20*
45 20*
45 W
45 30·
45 3(C
45 iff
45 32'
45 32'
45 32'
45 32'
45 32'
45 il'
45 20"
45 20*
45 2*'
45 2«·

52.5*
52.5*
54,0*
S7.S"
30,0*
36,3*
36.3*
31.3*
33.9*
33.9'
17.1*
15,5*
15.5-
44,2*
35.8"
35.r
49.7*
49.r

66 44'53.0"W
66 44' 5*.0" W
66 44' 57,7* W
66 44' Si. I" W
66 42'25.CW
66 43' 12.2" W
M43'I2.2*W
66 42'03.0"W
66 42' 2H.9* W
66 42' 2K.9" W
66 42' 44.3" W
66 42' 45.7* W
66 42' 45.7- W
6*4J'J6.rW
66 46' 27.5* W
66 46' 27.5* W
66 50· 34.7- W
66 50* 34.7* W

((UIc with (Vh sc*lc*
MlItUW)C

rhyolilic
rhyolilic
rhyolrtic
rhyolilic
rhyolilic
rhyolilic
rhyoliiie
rhyolilic
rhyoiuiL
rhyolilic
rhyoliiie
rhyoli"ie
rhyolilic
rhyolilic
rhyoblk
rhyolilic
rhyolitic
rttyolitic

boulders
boukderi
tmiUcn
boulder*
Kwiildcri
boulder»
boulder*
KmIdem
Knlldfri
boutdcr*
bautdm
boulders
bouldm
beniWer»
bautder*
boulders,
boulder*
bwibekn

Table 8.2.1. Continued 2
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Fomaboe linài Sample Cwtfdmilcs

MBiMS wmwvHéumvv
NB07.53 45 JOT 42.4" N /66 4O- 42.7" W
HB07.S4 45 iff 42.4" N /66 W 42.7" W
NW7-S5 43 3 1' 14,2* K ' 66 40* 1*** W
NBQ7-56 45 JI' 14.2" N ,< 66 40" 16-6" W
KB07.57 45 3 1' 14.2" M / 66 4O- 16.6" W
NB07-5S 45 3 1' ?4.G K / 66 W 16.6" W
NB07-S» 45Jt' 14.2" ti /(AW 1* 6" W
¡KB07-60 45 31' 14,2" N ,· 66 W ìbJb" W
ÍÍB07*! 45 3 G 14 2" N / 66 4ff 16.6" W
K8Ö7-62 4$ 3 1' 06.4" X/ 66 4ffl »5* W
NB07-63 45 il" 06,4" N /(S* 40*1 ».S" W
HB07X 45 3ff47,rK/66 4ff3*rW

KB07-65 45 iff 29,3" N /66 W 3 1.7" W
NB07-66 45 3ff 2*,4" N / 66 W 53 .*' W
fiB0?-6? 45 JV WTtt/t*W»A' W
NB07.68 45 30· 04.6" N /66 40" 11.5" W
NB07-I» 45 3*05.4" M.' 66 40" 11.1" W
HB07-7Ö 45 3» 02,6" N /66 40· f» 5* W
M307-VI 45 2!Tl î.r N '66 «TI 7.4" W
NB07-92 45 28' 00.4" N /66 49· 59-2" W
NB07-93 45 2S1 00.4" M /66 49"59J" W
NB07-94 45 27 50,4" N,'66 50Ol M" W
KBQ7-45 45 ÌT 50.4" H > 66 50· ß I H" W
NB07-96 45 2T 50.4" N/ 66 50?IJ" W

IlMCTiptll»

¦kyoiiM
ifcyoliie
»««It > iodcmt
basali / andeute
twalt / anaciati:
huait ¦ imdçulc
feMiali / *ede«ie
basalt ' aodcwlc
hasall / ftndcHtc
hasalt / «desile «itti «Iphkks
(MHtIt ' MKteMtt with wilj*K*es

Ayoliie
Avoli«
h*4*li / tndcMC rubMt
loailt · andesüe boulders
basalt / astante bouklera
ItMtI encoBformiç-t«l»(e<l*ta^'rh}<o»«te*«)glo-flet*W
basalik «earn KHilifcr
ihyuliK·
¦hyalite / nndcsüe (ilart I
ihyolite* subcroj» ' buwlde»
rttyolice? sufecTCf .' houldtfs
rhyolmr' aubmjp ,' botildws

NB07-74
HB07-75
ffB07-76

NB07-IIM(

45 33' 59,4" N / 66 4(F 35 7" W
45 34' 02.7" X /6* 4O" Jl G W
45 34' 02.r N I 66 W 3 Ll" W

45 34' 4*.J" N' ' 66 .W 23 .2* W

*M»ltic heuWer*
bMtltk, fMipm-ptiync kowlácts
basaltic. tMtp»fbft*: Nxilikr»

hn*ly tlKfed rtiyolnf . pjwctaeiK». e* b»s*h?

Table 8.2.1. Continued 3.
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?*>p?ß-?1 Bi* Serti Mountain Stcty, (?- 16]

w 4' 52« 32* m m »t »? 321 ,w Jjn 32» 3^ 32« m· m 3k 3m
SiW. üi JS y M 15 WM W.W TJW WJJ W« WiJ ?.« 74,« Tili 11.« »jli HJB !4Ji Mil TIM TJiS

TiO, 0.4Î 0.47 «32 036 0.38 «J7 0.« (JJ «34 637 «37 035 0.54 035 0» 032 »31 »»7
AljÛ, 7.W H.« 12.» 12.54 1270 12.2? 13.06 12.21 11.» I2.ll I2.6Î ??.? IMI I2.H4 I2.ÎÎ IiW 13 II 1158
ft,O, 4.44 3.41 ÌJ4 150 IM 2Jl 2.4t US 249 1 Sl 2*1 2.34 2.40 242 IJJ 233 IJJ 2.43
MsO 0.14 0.OK OOJ 003 0.03 OW 0.01 603 003 003 0*4 0« OM 001 0*3 «03 003 0OJ
MfO 7.14 3.46 «4t 049 0« 050 0,4* 046 042 052 OeJ 041 049 045 03« 0.42 041 045
CiO WM UM 050 0*2 0.57 (UM 0.54 «57 053 054 0*4 0.51 0.5» 0.55 0.4* «34 0*2 «44

NMJ 1.2* 1.« IM 1*2 I.7K I.« 1.25 l»l ÎJ0» IJJ IJS IJ* |.#l Ul UJ JJ* 1,20 t 54
K:0 1.41 IJO *I3 *2* SHS 53» 7.12 IM» S30 fc79 JM *A9 dHK 729 6J$ 7JS 7.4S *,J6
P3O, 0.15 0.10 00* 007 00« 00* 007 007 00» 007 097 007 00* 007 0» 0?* O« OOti

F 065 0«3
LCH 23» 15.10 1.40 leo 2.1« I SO I.W IJSO 1.70 1.10 IM IJO I.W 1*0 IJO 1.50 2.10 2.00

?<?1 ?03.?9 ???» *»».47 "99.HS ???.40 %7.V1 "IDO.Ol *9».«li »9».? 99.7J ^9.Hl %9KS »100.0* *».HJ 99.« %94J "Ì0O.J* ???.11
Crtppm) 44 45 IO IO *0 IO 70 ».0 4,0 - 7.0 5.0 56 - - J» lo

Ni 29 24 . IO . 20 21 7.0 ¦ 2.0 Î.0 . 1.0 10 ¿0
Ce 70 JO 92 Ml IiH 102 144 7» 6« 2.0 HK « *J 141 2.0 122 W 115
v *5 45 12 IJ 11 I« 14 H 1* IS I« IH *J8 IK 9.0 IS I* IK
«¦ - i» 25 24 2* » 33 24 2J I* 32 27 27 2« I* 27 2» »
&> *> « *t « 4« 47 45 4} 41 50 44 42 42 42 50 43 40 41
S" 5.0 *.«
w 3. 1 4.4
» 7.0 Ï.J
R* 45 40 2W 311 200 27B 34« 272 2*7 JI4 2*7 313 3SJ 3*0 31« »52 3*5 112
C« !¦* *.0 IO 3.0 TO 7.« Il 2« lì IO «0 lì 20 12 IO 12
Ua 615 *» 514 SU 4M, 411 BOT 4*0 413 *J4 473 5*3 55? *I0 537 Jl! jn M
» MW 714 I» 144 1*K I&7 141 1*4 l$4 132 I60 14* IJi I4S IJJ US IJS 14»
Tt 4,0 1 S

Ö» *» «¦» 15 15 *7 I« I» I« I* 15 I« 15 IS I* 15 I* 15 15
* Î.I4 2J4
N* 7.O0 ».«1 21.0 IJO 22.0 22.0 24.« 21.0 21.0 20» 210 220 22.0 120 207 220 2JO 2"1O
Hf 7.« 7*
» **,« i}} 2üi m m ilo jit 207 »7 30* î74 m 2ß* 3» 2*3 2» 2*2 WS
V 27.0 2«.« 43 0 4fctt 43.0 45.» 50.0 4*0 43.0 45.1 459 450 4§.« 44 0 40.« 4M 450 47.0
ï* · · JIO JSO 35.« ?? Jft.o 33.0 35.0 »5 MO JiO JJo JIO JOO îî.0 34.0 34.«
'! - - »O IJO 14.0 »0 14.0 IJO 11.0 SJS IJD 100 14.« IJO 4JÍ IJiO 12.0 14.«

'·* - *·* »*» 7*» «Ml 4*0 1650 3*0 5*0 510 3*0 3*0 420 5*0 *0* 4SO *20 «40
C« 54.0 71 ? ??? m
** Ili li»

Nil JlO 4JXI 45.0 J* O 54.0 JÍ0 JJ.« J».0 J2.0 42.3 *J0 4*0 4J.0 44 0 45 0 50.0 42.0 32.0
S" *J* suas
f» ! W I 12

G"» T.4* * 24
¦t» UJ iJo
°> «I «.16
H» 1 64 ? Aj
& 4S» JJ»

Til 0.7Í5 ft?«
Vb 4 79 SlJ

________Lu __^_____ 070ft 0 745

Table 8.2.2. Major and trace element whole-rock data from Piskahegan. Major elements

and compounds were analyzed using XRF. * Representative samples were analyzed for
trace elements concentrations via ICP-MS. Values are not normalized to 100%, - symbol
indicates no data available or below detection limits.
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154
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«um
HOJ
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IM.
4.00
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0 542

4,0
178
12

4T

200
14
IMI
T*

17.0

2IK
400
2S.0
12.«
J3.0

SO

IW
12

20)
15

144
76

1*0

217
Jft.O
2« O
IO*

101 .0

20
)0
mu

7

54

20*
16
U)
«

225
Wl)
XU)
12.0
«IO

72 0 75 0

151
9
il
46

210
?
?t?

21*
360
.»0
10.0
960

6?
2«
14)
J)

215
8.0
7)1
«0

ISII 16.0 1*11

4Hl
J7 0
??.0
140
Too

I)
70
HK
5«
15
71

JO»
14
S«
12»

V I
46»
2*0
120
STO

IO
RO
118
*5
M

62

21)
IJ

.1*0
I2T

2«
54*
2s.«
14.«
4)0

II
3,0
110
W
14
6«

212
Ufi
427
Do

18.0

271
«.0
JOO
I)O
»40

20
24
107
140
Ì.O
95

62
21
tu
«s

17

1*0

JW

20
125
»42

66
24
J)?
?50

19

isii

14»
JDO

Table 8.2.2. Continued 1.
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0.541
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04W
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28
2.7
I»

2.14
23.3
6.40
JCr*
75.«
27.5
5.31

1 57
22.«
»0.2
16?

0 583
15.1
2.41
13.4
252
7 40
I.«
6.?*
OWI

24
7.0
20

129
mi

80

12*

m
407

I (, O

ìs.e
I ZJB
3 JdO
4ItO
Hi«

4SJD

19
te
¦5
91
is
m

IW

VÓI
221

IMO

44$
43.0
20.0
12.0
«30
IO*

44.0

26
*,n
13
W
17
91

I4T

IKW
JM)

IVO

4.15
46.«
14X1
6.O0
71,0
127

Stß

SS
42
24
162

«5

61
38
24
163
13
92

3« 25

936 707

17 |»

200 20.0

V» 2«*
»J» 34.0

3,00

4Ï O SUO
72 0 81 ?

Table 8.2.2. Continued 3.



fh«T> HiälNB(i?.|»tn· Ili Hin«) ?????a??- NBDTJ I irr I J)

I 2 } 4 > «? Tl IC 9 IO 11 I ? 3 4 ? | 6 7 I S
?i.·© «kj 6,6™™?!^????^??? ^G"?G,??™1^?7*,??™?G
?,?? Jl 1.9 JJ «?.« Î.0 i.l Jl JI JJ Jl 3.2 2} 2.7 IA 2.5 2.» IT 2.Í J4
AJ.O, IS 14 IS IJ IS 14 IS IS I* IS IS Ii IJ IS Ii 14 14 14 17
MnO ß!» - - 001 O.OJ O.Ol 0.02 ??? ß?? - - Ot* 0.06 004 0.« 905 OXiJ OW 003
G»0 OJS 0.22 9.40 042 0.2* 0,32 0.40 0.52 047 0.1* 0.37 0.21 OJS OM OJI OU Olì O.IH CU»
TiO; 910 0.0Í 0.11 ß« 0,04 OM 0.« 0,01 907 0,06 013 0/Ö4 0.03 - 0,04 001 0*4 0,05 O«
S«} TS 76 T4 7? T4 TS 74 ?4 Tí 75 TS « Tí 74 ?» 75 76. ft Tl
Feo 0.30 OM 030 0 34 1.07 0*4 110 0,27 ß?5 0S4 0.37 0 71 OSK OXt ?.ß» 0*7 0.7J ».»S 0*6
SOi 001 OjOI O.Ol 081 - 0.02 0.01 O.Ol »04 - O.Ol 0.01 O.Ol 0.04 004 · O.OJ · OjM
CrjO. .--.-...... . 0.02
MfO - 0.01 001
NiO O.Ol ¦ 0.01 002 . 0.02 . . ftOI 0.02 T.02 OJOI . 0.01
Tut»! loo loo loo too ico ion to» loa loo loo loo 100 ioo too im 100 wo 100 ioo

? Ol* OIT 017 Ol» 022 0.14 0^1 0.21 0 18 0.1* 0.15 0.05 002 007 OiIl 0.01 00Î 0.02 Ol»
AI 0.10 009 0.10 00» OjW 0.00 009 0.10 0.10 0.10 0.10 ClO 0.10 60» 0.0* 0.00 009 0.09 911
Mn . .
c* 001
Ti ........... ........
F 001 Ml - - - 0.02 0.02 003 0,02 003 0OJ OOJ 003
Si 0.41 «41 0.40 8,41 0.41 »41 041 «.« 0.40 041 041 0.41 0.41 041 0.42 0.41 041 0.41 83»
He ... um .
S
Cr ........... ........
M«
w ...,,.,,

foal OJH 03» U.Î9 OlS» 0.59 OS« ?» M 0.S9 0.St OSW 0.5« PSW OS» 0.S7 OS» (LS USH O60

Table 8.2.3. Harvey major and trace element data analyzed by electron microprobe of

melt inclusions hosted in quartz phenocrysts. - symbol indicate no data available.
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Harvey Mountain- ??07-3?(?-?3> York Mills NB07-30 (n=7)

-------------------9 ÏÔ ? ?2 B I 2 3 I 4 5 6 7TS U 4.9 26 Oil 0.1?> ~?? ?.? *V 6.2 6.0 6.Í 9.3
??? 2 7 2.3 0.03 0.05 0.13 3.3 4.3 3.3 3.4 3.3 3.4 3.5
Al1O, 15 12 3.3 0.6 1.0 15 19 15 15 15 16 18
MnO 0 07 0 17 - · 0.02 · 0.06 0,02 ¦ 0.02 0 04 0.01
CaO 0 19 0 27 0.01 0.01 0.01 0.69 2.9 0.53 0.35 0.48 0.70 1-6
TjO, - - - - 0,04 0,06 0.31 0.05 0,00 0,07 0.08 0.02
SiO. 75 78 94 99 98 73 66 74 74 73 73 66
FeO 071 2.03 0.06 0.03 0.17 1.3 1.9 1.3 0.31 1.43 0.36 0.16
SO, 0.01 0.01 - 0.02 - 0.01 Oll 0.02 0.03 - 0.02 0.57
Cr3O, 0.01 ¦ - · 0.01 0.01 0.01
MgO 0.01 0.11 0.01 · 0.02 - 0.02
NiO 0.01 0.02 - 0.13 - 0.01 0.03 0,01 - 0.04 -

Total 100 100 100 100 100 100 - 100 100 100 100 100
Cl 003 0 12 0.00 - - 0.16 0.73 0.15 0,15 0.15 0-16 0.28
Al 0.10 0.08 0.02 - 0.01 0.10 0.13 0.10 0.10 0.10 0.10 0.12

0.02 . - - - 0.01

0.02 0.02 ... - 0.03 0.01 001 - 0.02 0.01

Mn
Ca
Ti
F
Si 041 0.42 0.48 0.50 0.49 0,40 0.37 0.40 0.41 0.40 0.40 0.37
Fe . 0.01 · - - 0,01 0.01 0.01 - 0.01
s
Cr ----- -
Mg
Ni

Total 0.58 0-57 0.52 0.50 0.50 0.59 0.61 0.59 0.59 0.59 0.59 0.62
Table 8.2.3. Continued 1.
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Piat»hcg«iiBaiky Roclt- ??07-39(?»»?2> Baiky Rocfc NB07-7S feSj

T 2 3 4 3 6 7 89 10 " HT" 12 3 4 5 6 7 8
M> 6 3 6.4 6.8 6.3 6.5 6.5 7.0 7.4 6.3 6.5 6.5 22 4.4 7.4 6.1 6.0 6.6 6.3 6.1 5.9N12O 29 2 9 2 9 2.9 2.7 3.2 2.9 Z» 2.7 2.7 2.7 0.42 1.3 3-0 Î.S 3.8 3.1 3.1 3.1 3.1
AIfO> 15 14 14 14 14 15 14 15 14 14 14 15 15 15 14 14 t5 15 15 15
MbO 0 02 001 0.04 0.02 0.03 0.03 0.03 0.03 0.02 0.05 0.01 0,03 0.06 0.03 0.03 0,01 0.03 0.01 0.02 0.05
CeO 0 42 040 041 0.32 0.32 0.08 0.06 0.08 0.35 0.42 0,20 0.23 1.6 0.86 0.42 0.61 0.82 0.3 Î 0.42 OJI
TiO- 021 012 0 12 016 0.23 0.0* 0.14 0.24 0.17 0.13 0.17 0.11 0J7 0.12 0.11 0.13 0.17 0.18 0.14 0.15
SW^ 75 76 7* 75 76 75 74 74 77 7S 76 S2 74 73 77 74 74 75 75 75
FcO 0 39 0.2» 0,2« 1,4 0.2« 0.21 0*6 0.72 0.29 0,31 0,31 OJl 3.15 0,61 0.15 0.39 0,26 0.25 0.32 0.25
SO, 001 - - 002 - 001 - 0.01 ¦ 0,03 0.01 0.01 - 0.03 0.04 - 0.04 0.02 0,01 0.01
Cr2O, - - 0.01 0.01 .---
MgO - - . 0.03 - - OJSi 0.06 0.01 - . - 0.18 0.01 · 0.02 -NiO 004 · · · 0.02 ¦ · 0.02 · 0,02 0.03 - · 0.02 0.01 0.02 0.03 0.01 . 0.02

Tofcl 100 100 100 100 100 100 100 !00 100 100 100 100 100 too IW 100 100 100 100 100
Ct Oil 00« 0 12 0.15 0.10 0.14 0.13 O.lt 0.10 0.10 0.07 0.08 0.13 0.14 0.14 0.14 0.17 0.13 0.12 0.14
Al 0.09 0.09 0.09 0.09 0.09 0,09 0.09 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.09 0.09 0.10 0.10 0.10 0.10
Mn ¦·-¦-¦**'"" *
O, 0.01 0,01
Ti -----
F 002 000 0 01 - - 0.02 0.01 0.02 Ô.02 0.01 0.00 0.01 0.01 0.02 0.01 - 0.02 0.01 0.01 0.02
& 041 0.41 0.41 0.41 041 041 0.41 0.41 0.42 0.41 0.41 0-43 0.40 0.40 041 0.41 040 0-41 0.41 041
Fe . . . 0.01 - ..... · - 0,01 ·
S -------
Cr -

Mg *""'".
Ki .,·,..·¦··¦» .»·«·-¦·

ToWl 0.58 0.58 0,58 0.58 0.58 0.58 0.59 0.59 0.S8 0.58 0.58 0.54 0 57 0.59 0.58 0.59 0.59 0.5» 0.5» ...0,58
Table 8.2.4. Piskahegan major and trace element data analyzed by electron microprobe of
melt inclusions hosted in quartz phenocrysts. - symbol indicate no data available.

142


