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Late Paleozoic Felsic Volcanic Rocks in Southern New Brunswick and Related Uranium
Mineralization

by Taryn Rosemary Gray Hons. B.Sc.

Abstract

Three units of Late Paleozoic felsic volcanics within southern New Brunswick were
examined geochemically and petrographically to determine their genetic history and
economic potential. The Late Devonian Harvey and Piskahegan Groups are
predominantly composed of peraluminous volcanics, and were previously considered
coeval since they contain similar stratigraphy, and formed during the same pulse of
igneous activity. The younger, Viséan aged Cumberland Hill formation is characterized
by peralkaline trachytes and rhyolites, forming through extensive fractional crystallization
of alkali basaltic magma, likely derived from a mantle plume. The Harvey, and to a lesser
extent, Piskahegan Group display excellent economic potential, enriched in uranium and
rare earth elements. Cumberland Hill exhibited significantly lower concentrations of
economic elements, slightly elevated in incompatible trace elements, including uranium.
This study determined Harvey and Piskahegan are not genetically related, it also refined

the genetic history and economic potential of southern New Brunswick.
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CHAPTER 1: INTRODUCTION

1.1. Introduction to the Problem
The Maritimes Basin of southern New Brunswick is known to contain felsic volcanic

and volcaniclastic rocks, resulting from a period of intense tectonic activity during the
Mid-Devonian to Late Permian (Belt, 1968; Kuan, 1970; Pajari, 1973; Bradley, 1982;
Beuthin; 1994). This area has been continually investigated for its economically viable
ore deposits throughout much of the last century creating profitable mining industries
harvesting tin, indium, tungsten, molybdenum and gold (Pouliot et al., 1978; Yang et al,,
2003; Sinclair et al., 2006). Although uranium mineralization was discovered during
historic metal exploration, only recently has it become economically viable with the
expansion of nuclear energy resources in the late twentieth century. As a result, limited
research has been conducted on the genesis of the deposits or the geochemical signatures
of uranium host rocks within the area.

The Late Devonian (McGregor & McCutcheon, 1988; Tucker et al., 1998) Harvey and
Piskahegan Groups of southern New Brunswick were previously documented to contain
U mineralization within felsic rhyolites (Strong, 1980; Brack, 1982; McLeod and
Johnson, 2007). Previous studies (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;
Gemmell, 1975; Beaudin et al. 1980; Ruitenberg & McCutcheon, 1985; Payette &
Martin, 1986b) have indicated the Harvey and Piskahegan Groups can be lithologically
correlated despite displaying distinct geochemical characteristics and subtle regional
variability. The younger, Viséan (St. Peter, 2002) Cumberland Hill Formation (Fm) also

contains U mineralization within felsic volcanics, although of a less significant grade than
1



either Harvey or Piskahegan. Through both geochemical and petrographic investigations,
these localities will be utilized to examine the genetic history, geochemistry and
economic potential of southern New Brunswick felsic volcanics.
1.2. Central Research Questions

When this thesis first began, the primary focus was to determine whether or not the
felsic volcanic deposits, Harvey and Piskahegan of southern New Brunswick were
genetically related. From here, a diverse geochemical and petrographic research design
was implemented to solve a variety of other intriguing questions related to uranium
mineralization in southern New Brunswick. Three additional central research questions

guided this scientific investigation then on.

1. What was the original geochemical composition of the Harvey Group and how did it
evolve (i.e. partial melting, fractional crystallization, crustal contamination, lithospheric
interaction etc.)?
2. How does the geochemistry of the Cumberland Hill Formation compare to other
formations within southern New Brunswick? How does this influence our current
understanding of the geological history of the Maritimes?
3. What economic potential lies within the uranium deposits of Southern New
Brunswick?
1.3. General Thesis Outline

The body of this thesis aims to answer the aforementioned research questions and

continually builds on knowledge in the subject area. Chapter three investigated the
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original melt geochemistry of peraluminus felsic volcanics of the Harvey and Piskahegan
Groups through the analysis of melt inclusions, hosted within quartz. This study offers the
first of many lines of geochemical evidence that the two groups are geochemically
unrelated, in contrast to previous work (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;
Gemmell, 1975; Beaudin et al. 1980; Ruitenberg & McCutcheon, 1985; Payette &
Martin, 1986b). The enormous economic U potential within felsic volcanics of southern
New Brunswick is also further illustrated within this study.

Chapter four investigated the genetic history and geochemical characteristics of
whole-rock samples (n=27) within the Harvey Group. Since the age of the Harvey Group
was previously unknown, Piskahegan and Harvey were predominantly correlated, and
assumed coeval, based on stratigraphy alone. This study advances our current
understanding of how the Harvey Group formed, and further exemplifies that Harvey and
Piskahegan are distinct deposits.

Lastly, chapter five investigated whole-rock samples (n=15) from the younger,
peralkaline rhyolites and trachytes of the Cumberland Hill Fm. While difficult to infer
from geochemistry alone, this study offered valuable insight into the possible petrogenic
history of the Maritimes. The uranium potential of these region was also exemplified
through comparison to the Streltsovka Caldera, the largest hydrothermal, peralkaline
uranium deposit in the world.

All of the chapters in this body of work were separately completed as a manuscript for
publication. As a result, some introductory material may seem redundant, since each

chapter is designed to stand-alone.



CHAPTER 2: METHODS

Methods discussed extensively within the bodies of Chapters 3, 4, and 5 are not
discussed below. Any additional details not discussed in methods covered in the
aforementioned chapters will be covered herein.

2.1. Sample Preparation and Field Work

During the summer 2008, fieldwork including reconnaissance field investigation,
detailed mapping of selected areas, and sample collection was completed in southern New
Brunswick. Twenty-seven samples were obtained from the Harvey Group (Cherry Hill-
n=18, Harvey Mountain— n=5, York Mills— n=5), 110 samples from the Piskahegan
Group (Albert— n=2, Bailey Rock— n=4, Big Scott Mountain— n=16, Kleef —n=3, Little
Mount Pleasant— n=10, McDougall Brook Granite— n=20, Mount Pleasant Mine Site—
n=1, Scoullar Mountain— n=27, Seelys— n=25, South Oromocto— n=2) and 15 samples
from the Cumberland Hill Fm. Whole-rock samples were expedited to Saint Mary’s
University, Halifax, Nova Scotia for further processing. All samples were cut into slabs
(1 cm width) to prepare for thin sectioning and subsequently chipped and powdered
(Dalhousie University, Halifax) for geochemical analysis.

2.2. Petrography

A slab from representative samples were sent to Vancouver Petrographics where
twenty-seven polished thin sections were obtained for petrographic characterization and
microprobe analyses. Thin sections were stained to readily distinguish between albitic

plagioclase and potassium feldspar. Representative samples from cach group were
4



examined utilizing both a petrographic and transmitted light microscope to identify the
minerals, and textures present within the samples.

2.3. Major and Trace Element Geochemistry

Standard sample preparation procedures were used for geochemical analysis using a
Philips PW2400 X-Ray fluorescence spectrometer (XRF) at the G.G. Hatch Stable
Isotope Laboratory, Ottawa, Ontario. Each sample was fused (Claisse Fluxer) and pressed
(Carver press) prior to placement in the Philips PW2510 sample changer. The XRF was
controlled by Philips SuperQ/Quantitative and SemiQ/Qualitative (v. 2.1D) software,
enabling the quantifiable output of 28 major (wt. %) and minor elements (ppm), loss of
ignition (L.O.L.) values, and major compounds (wt. %). The XRF operates at detection
limits of 0.01% (or better) for major elements and L.O.1.

Various samples from Harvey and Piskahegan were analyzed by fusion using a Perkin
Elmer Optima 3000 inductively coupled plasma mass spectrometer (ICP-MS) to
determine trace element concentrations. Samples were analyzed at Activation
Laboratories, Ancaster, Ontario according to standard procedures (Hoffman, 1992).

2.4.'Sm/"**Nd Radiogenic Isotopes

Four samples (NB07-2, -11, -21, -28) were analyzed for Sm/Nd isotopic ratios using a
Finnigan MAT 262V thermal ionization -mass spectrometer (TIMS) at Memorial
University, Newfoundland. Samples chosen for analysis contained low Rb (<1075 ppm)
and Sr (<950 ppm) concentrations, few inclusions and were relatively homogenous.
Approximately 0.05-0.2g of powdered sample was dissolved in concentrated HF and

HNO; acids, and spiked with "*Nd/"**Sm prior to acid digestion (5 days). Once the
5



sample evaporated, the remaining material is taken up into 2N HCI for 2 days, dried
again, and taken up into 2N HCl. Samples are subsequently loaded into cationic exchange
chromatography utilizing AG50W-X8 resin to accumulate rare earth element (REE)
fractions. After purification, the Sm and Nd fractions are isolated with a secondary
column loaded with Eichrom®© Ln resin and analyzed using a multicollector Finnigan Mat
262 mass spectrometer operating in static mode. Once analyzed, the values are
normalized to "ONd/'**Nd = 0.7219, calibrated to the JNdi-1 standard (**Nd/'*‘Nd =
0.512115, Tanaka et al., 2000), and accurate to <0.002% (Nd), and <0.1% (**’Sm/"*Nd
ratio). Subsequent to analysis, eng values were calculated based on the present day
chondrite uniform reservoir (CHUR; TSm/'**Nd = 0.1967 and '*Nd/"**Nd = 0.512638),
and age equations were modeled using the De Paolo mantle model, and the known 7Sm
decay constant (6.54x107'"? years; Steiger and Jiger, 1977).

2.5. Lu-Hf Zircon Isotopes

In situ zircon Hf isotope analyses were carried out using a New Wave UP 213 laser-
ablation microprobe, attached to a Nu Plasma multi-collector ICP-MS, coupled with a
fixed detector array of 12 Faraday cups and 3 ion counters at the Institute of Earth
Sciences, Academia Sinica in Taipei. The New Wave UP 213 laser system delivered a
beam of 213 nm UV light from a frequency-quintupled (5™ harmonic) Nd: YAG laser.
Analyses were carried out with a beam diameter of 55 mm, 5 Hz repetition rate, and
energies of ~0.4 ml/pulse. Typical ablation times were 80-120 s, with background
collected 30 s prior to ablation. Instrumental conditions, data acquisition, and analytical

procedures were similar to Griffin et al. (2000).
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For this study, masses 172, 175, 176, 177, 178, 179 and 180 were simultaneously
cxamined in static-collection mode and normalized to '"Hf/""Hf = 0.7325, using an
exponential correction for mass bias. All isobaric interferences of 7Ly and "*Yb on
8L f were corrected, and the recommended 176w/ Lu and "*Yb/!"2Yb ratios of 0.02669
(De BiBvre and Taylor, 1993) and 0.5865 were used for the data reproduction. The
reproducibility of the Hf isotope analyses is demonstrated by 28 Hf analyses on the 50
ppb solution of the AMES Hf metal, with the mean value for 7SHf/'""Hf equalling
0.282152 + 18 (20), identical to the recommended value of 0.282151 + 13 (Munker et al,
2001). All results were calibrated to zircon standards, Mud Tank and 91500 (Woodhead
and Hergt, 2005; Griffin et al., 2006, Weidenbeck et al., 1995), with typical within run
precision (20) of + 0.000030 on the 76H /' "HF analysis.

The eHf(t) values were calculated using chondritic ratios of eH{/'"HS (0.282772) and
1761 u/'""HF (0.0332) as derived by Blichert-Toft and Albarede (1997). These values were
reported relative to '"°Hf/'"""Hf = 0.282163 for the JMC475 standard. The '"*Hf/'”"Hf
value of 0.282152 + 18 were obtained for the AMES Hf metal, considered isotopically

indistinguishable to the IMC475 standard.

2.6. 8'%0 Quartz Isotopes
Six samples were chosen based on the large abundance of quartz phenocrysts to

analyze for '°0. Samples were chipped to obtain individual mineral grains, and 15mg of
quartz was isolated using a binocular microscope. Samples were analyzed at the Queen’s

University Stable Isotope and ICP-MS Lab for analysis of 80 in quartz using the



conventional BrFs method of Clayton and Mayeda (1963) and run on a dual inlet
Finningan Mat 252 Isotope Ratio Mass Spectrometer. All values reported in standard

delta notation relative to VSMOW, and were reproducible to 0.3%.o.

6180 = (180/16Osamplc—wO/mOStaﬂda‘d) x1000

180/160

standard
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3.1. Abstract

The major and trace element geochemistry of silicate melt inclusions was investigated
within Late Paleozoic felsic rhyolites from the Piskahegan and Harvey Groups of
southern New Brunswick, Canada in order to provide further insight into the genetic
history of the volcanic- and caldera-related U mineralization that occurs in the region.
Glassy melt inclusions analyzed by laser ablation ICP-MS and electron microprobe show
enrichment in most incompatible trace elements but a marked depletion in Ba, Sr, and Eu
compared to whole-rock. At Harvey, melt trapped in early quartz phenocrysts (“pre-
eruptive” inclusions) and in late quartz aggregates (“syn-eruptive” inclusions) within the
groundmass of the rhyolites was significantly more fractionated than melt trapped in
quartz phenocrysts at Piskahegan. Fractionation was associated with the crystallization of
feldspar and resulted in progressive enrichment of the melt in U, Th, B, LILE, LREE and

other metals, and an increase in the U/Th ratio of the melt. A higher degree of melt
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fractionation combined with post-magmatic leaching may have been prerequisites for
mineralization at Harvey. Since whole—rocks are highly susceptible to alteration, melt
inclusion analysis may be the only method capable of providing constraints on melt
chemistry/evolution in such ancient volcanic terrains and may enable the evaluation of the
economic potential of such terrains if the initial U and Th concentration, and U/Th ratio
of the volcanic products impact the ultimate mineralizing potential of the system.

3.2. Introduction

In volcanic- and caldera-associated U deposits, metal-bearing magmas are derived
from either a deep mantle source (Locardi, 1985; Treuil, 1985), or partial melting of mid-
lower crustal rocks (Chen and Fang, 1985). Since peraluminous rhyolites, as well as
granites are almost always of crustal origin (Douce, 1999), the latter hypothesis is more
likely but still debated. The enrichment of U, Th and REE can be further facilitated by
subsequent fractionation of the mantle- or crustal-derived melt or by assimilation of
additional U-, Th-, and REE-enriched crustal rocks during ascent and emplacement, and
later through extraction, leaching and redistribution of ore metals by interaction of
mineralized volcanics with exsolved magmatic fluid or heated meteoric water (Chen and
Fang, 1985).

In the late Devonian Harvey and Piskahegan Groups in southern New Brunswick, the
processes that led to U and Th enrichment in the mineralized felsic volcanic rocks are
poorly understood. Evidence from similar volcanic U-related deposits indicates that in
addition to primary magmatic enrichment processes related to the eruption of U-Th-

bearing volcanics, secondary magmatic enrichment processes tend to dominate near
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intrusive centers (c.g., Rexpar, Canada; Preto, 1978) and may involve the exsolution and
circulation of magmatic-hydrothermal fluids from the volcanic sequence. Whereas, distal
to the intrusive centers, metamorphic or meteoric water circulation control enrichment
(e.g., Anderson, United States; Rytuba and Glazman, 1979). It is often difficult in such
environments to determine the relative importance of primary and secondary processes in
generating the mineralization. First, the interpretation of the genetic history of a volcanic
rock sequence using whole-tock geochemistry and mineral chemistry alone can be
misleading because whole-rocks represent mixtures of variable proportions of crystals
and silicate liquid. Second, many trace elements, notably the large ion lithophile elements
(LILE), light rare earth elements (LREE), U and Th are prone to differential
remobilization during alteration over a wide range of conditions (e.g., Schiano, 2003;
Lowenstern, 2003; Dawood et al., 2004; Davidson et al., 2007). In contrast to whole—
rocks, determination of the trace element concentrations of glassy melt inclusions can be
done reliably using in-situ analytical techniques to yield reliable information about the
magmatic phase composition at the time of melt entrapment in a given host phase, and its
evolutionary path by primary magmatic processes (e.g., crystal fractionation, mixing and
assimilation) provided that no post-entrapment modification has occurred (e.g., Webster
et al., 1995; Chabiron et al., 2001, 2003; Halter, 2002; Heinrich, 2003). Determination of
the trace element content of melt inclusions may also serve as a means to evaluate how
post-solidus alteration has modified the original chemistry of the coeval volcanic rocks.

In order to determine how differing levels of U and Th enrichment in ore-forming

magmas were achieved at Harvey and Piskahegan, and to evaluate the influence of any
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post-magmatic processes (i.e. leaching), glassy silicate melt inclusions within rhyolites at
both localities were investigated to constrain the magmatic phase composition at the time
of entrapment. While previous investigations (Payette and Martin, 1986a) examined
major clement composition within melt inclusions of Harvey, trace element analyses of
the inclusions were not obtained. Mineralized rhyolites are highly enriched in U,
containing up to ~1500 ppm U at Harvey and Piskahegan (Brack, 1982; N. Downey, pers.
commun.). The analysis of melt inclusions makes it possible to determine if sufficient
magmatic enrichment occurred to account for the observed mineralization directly (i.e.,
derived from the parent magma), or whether they were enriched by some other

mechanism.

3.3. Geological Setting

The late Devonian Harvey and Piskahegan Groups are located in southern New
Brunswick, on the eastern edge of the Maritimes Basin, approximately 40km southeast
and 50km south of Fredericton respectively (Fig. 1). The 12 km-thick Maritimes Basin
formed during the Mid-Devonian in the final phase of the growth of Pangaea and
remained tectonically active until the early Permian (c.f. Gibling et al., 2009). Repeated
subsidence, basin inversions (with associated faulting), and two major basin extensional
phases led to four distinct pulses of igneous activity within the region. These occurred
during the Middle Devonian (390-385 Ma), Late Devonian (375-370 Ma), Latest
Devonian to Early Tournaisian (365-354 Ma), and Late Tournaisian—Early Viséan (339-

250 Ma) as determined through the examination of igneous rocks of Middle Devonian—
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Early Carboniferous age from the southern margin of the Magdalen basin in Cape Breton
Island and northern mainland Nova Scotia (Dunning et al., 2002). The Piskahegan Group
was deposited in 363.4 + 1.8 Ma (Tucker et al., 1998) while the Harvey Group is believed
to be synchronous with Piskahegan based on stratigraphy (Payette and Martin, 1986b;
McCutcheon et al., 1997).

Harvey and Piskahegan contain U mineralization within rhyolitic rocks (McLeod and
Johnson, 2007). The mineralization style is classified as volcanic- and caldera-related U,
and localized within felsic volcanics, and intercalated clastic sediments (c.£ Gandhi and
Bell, 1996; IAEA, 2009). Such mineralization can be either synvolcanic or epigenetic,
strongly structurally-controlled, and can be found in all stratigraphic levels of the
volcanic complex. Volcanic- and caldera-related U deposits are typically low grade and
several deposits may be present in a given region or volcanic complex (e.g., Streltsovka
caldera, Russia, Chabiron et al., 2001, 2003, Nash, 2010; Gan-Hang volcanic belt, China,
Finch et al., 1993; Dornot deposit, Mongolia, Mironov, 1993; Nopal deposit, Mexico,
Goodell, 1981). In these mineralized systems, and as is displayed at Harvey and
Piskahegan, uraninite typically occurs with molybdenite, fluorite, quartz, and sulphides.

The Harvey Group is subdivided into three formations: York Mills, Cherry Hill, and
Harvey Mountain (Kuan, 1970; Beaudin et al., 1980), composed predominantly of
sedimentary rocks (red sandstone and siltstone) within York Mills, and felsic
volcanogenic sediments in all formations including laminated rhyolites, ash flow and ash-
fall tuffs (ignimbrites), and pyroclastic breccia (Fig. 1). The 75-100m thick Harvey

Mountain is composed of laminated rhyolites, pyroclastic breccia and ash-fall tuffs. The
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rhyolites are aphanatic and devitrified, with well-defined alteration indicated by the
presence of grey-green spherulite (3-4mm) layers (Payette and Martin, 1986b), with the
glass replaced by a mica-rich material (illite and quartz; Kuan, 1970; Pajari, 1973). A
summary of the major and accessory mineral phases present within Harvey Mountain can
be found in Table 1. The Cherry Hill Formation is the predominant host of U
mineralization, composed of quartz-feldspar porphyry, with 2 poorly welded ash-flow
sheets (5 m and 100 m thick) at the base (Kuan, 1970; Beaudin et al., 1980). The quartz-
feldspar porphyry contains about 20% phenocrysts (up to 3 mm in diameter) of quartz and
feldspars set in a groundmass composed of devitrified welded shards. These rocks also
contain pumice and lithic fragments. Recent exploration identified three mineralized
ignimbritic units with associated clay alteration, silicification and hematization, grading
up to 0.447% U;0g over 0.6 m, and 0.24% UsOg over 1.2 m within Harvey (Capella,
2007).

The Piskahegan Group represents one of only a few caldera sequences in Canada of
the pre-Cenozoic that has preserved exocaldera, intracaldera and late-caldera fill
sequences (McCutcheon et al., 1997). The exocaldera sequence contains the Bailey Rock
rhyolites, the only formation identified to contain suitable melt inclusions hosted in quartz
phenocrysts. The Bailey Rock Formation is composed of quartz-feldspar-phyric lava flow
with abundant K-feldspar phenocrysts, with quartz, plagioclase and hornblende
pseudomorphs (Table 1). Devitrification and flow banding can be observed, however the
groundmass is generally recrystallized (McCutcheon et al., 1997). Previous exploration

has identified spatially associated mineralized volcanogenic sandstone and conglomerates
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with associated chlorite, hematite, and fluorite alteration grading up to 0.036% U3Og over
1.22 m within the Carrow Formation, underlying the Bailey Rock rhyolites (McNamara,
1978).

3.4. Analytical Methods

Major and minor element analysis of whole-rock was performed on fused glass disks
using a Philips PW2400 X-Ray fluorescence spectrometer (XRF) at the University of
Ottawa, G.G. Hatch Stable Isotope Laboratory. Trace element analysis was performed
using a Perkin Elmer Optima 3000 inductively coupled plasma mass spectrometer (ICP-
MS) at Activation Laboratories, Ancaster, Ontario.

Representative rhyolite samples from Harvey (NB07-18, NB07-31) and Piskahegan
(NB07-39, NB07-78) were chosen for melt inclusion analysis. Approximately 15 melt
inclusions of varying size (between 40 and 150 pm) per slide were chosen for
geochemical analysis. Selected inclusions (>40 um) were absent of solid phases of
ambiguous origin (i.e.,, that may be accidentally trapped, or formed during
recrystallization), did not contain any visible signs of post-entrapment modification, and
were large enough and trapped at sufficiently low degrees of undercooling to eliminate
the influence of diffusion-related concentration gradients on trapped melt composition
(i.e., boundary layer effects).

Major and minor elements in silicate melt inclusions from each sample were analyzed
using a JEOL JXA 8200 Superprobe electron microprobe (EMP) comprised of 5
wavelength-dispersive spectrometers, a Noran (133ev resolution) energy dispersive

spectrometer, and a cathodoluminescence photomultiplier. An accelerating voltage of
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15kV and a 20s on-peak counting time was applied for the analysis of all elements, except
F which required a 40s on-peak counting time. Calibration of analyte sensitivities and
confirmation of analytical accuracy was performed using a variety of natural mineral
standards (fluorapatite, gamet, sanidine, tugtupite, kaersutite, Durango apatite) and
silicate glass standards (Coso Obsidian, Astimex Obsidian). Fluorine was analyzed using
a TAPH crystal since it is the most sensitive crystal available that does not have peak
overlap problems between F Ko and Fe La lines. Several large inclusions (~70-100 pm)
were analyzed multiple times, never in the same location, to determine the influence of
beam diameter and current on alkali and halogen mobility. It was determined that a beam
current of 2.03x10® A, coupled with a large beam diameter (3um) was optimal for all
elements, excluding Na,O for which concentrations reported are ~20% lower than
concentrations obtained by LA-ICP-MS. Reduction of beam current was shown to
improve Na,O accuracy but compromised F concentrations. Since F cannot be determined
accurately by LA-ICP-MS, but Na,O can, we chose to optimize for F determination
(2.03x10° A, 3 um).

Major and trace element concentrations were quantified by laser ablation ICP-MS
(LA-ICP-MS) at the Swiss Federal Institute of Technology (ETH Zurich). Heinrich et al.
(2003) outline the details of the analytical routine used. Ablation was performed using a
prototype 193 nm ArF excimer laser ablation system similar to GEOLAS, with the laser
operating at an energy density of 25-35 J/em?, with a pulsed beam, and encrgy-
homogenized beam profile (Gunther et al., 1997). Melt inclusions were ablated through

step-wise increasing of the ablation pit diameter (from 10-110 pm) such that the final pit
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size was slightly larger than the maximum inclusion dimension. After collecting ~50 s of
background signal with the laser turned off, the inclusions required 10 to 30 s of ablation
time to collect the melt inclusion + host quartz signal. Ablated aerosols were transported
into an ELAN DRC quadrupole ICP-MS operated in dual detector mode using the
conditions similar to those described in Pettke et al. (2004). Mass spectrometer dwell time
was 10 ms for all elements. Quantification of trace element concentrations followed
procedures outlined in Longerich et al. (1996), Heinrich et al. (2003), and Halter et al.
(2002), and was performed using the software SILLS (Guillong et al., 2008). Groups of
16 analyses were collected, bracketed by 2 analyses before and after the external standard
(SRM 610 from NIST) to apply a linear instrument drift correction. The Al,O; content of
the melt inclusions, determined by EMP, was very consistent in assemblages of inclusions
from single samples and used as the internal standard to quantify trace element
concentrations in melt inclusions from raw LA-ICP-MS data.

3.5. Results

3.5.1. Description of Melt Inclusions
Porphyritic rhyolite samples contain melt inclusions in early quartz phenocrysts and

later quartz-rich matrix (Fig. 2A, B, E). Melt inclusions ranged from 25-300 pm in
diameter at Harvey, and 30-200 pm in Piskahegan. The inclusions often exhibited
negative crystal shapes and are primary in origin. Analyzed inclusions ranged from 40-
150 um, were completely glassy and clear (colorless to pale brown), free from
devitrification and recrystallization, and devoid of daughter crystals, accidental solids, or

bubbles. In the unlikely event that tiny fluid bubbles were present in the samples
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analyzed, their total volume would have contributed negligibly to the overall LA-ICP-MS
signal. Melt inclusions were classified into the following categories:(i) early (in quartz
phenocryst; “pre-eruptive”) glass + vapour bubble (Fig. 2C); (ii) early glass + bubble (1-
8 wm) + solids (Fig. 2D), and (iii) late (in matrix quartz) “syn-eruptive” glass + vapour
bubble (2 um) + aqueous fluid bubbles (6 um; Fig. 2E). The fluid bubbles were trapped
within the melt during inclusion formation (a free volatile phase), while the vapour
bubbles were produced post entrapment via contraction as the inclusion cooled. The fluid
bubbles are not considered shrinkage bubbles as they are too finely dispersed and are
present in variable amounts in each inclusion, showing that heterogeneous entrapment
occurred (Fig. 2G, H). Analyses of the “syn-eruptive” inclusions were restricted to those
without visible fluid bubbles. We can not preclude the possibility that a few bubbles,
masked by the larger vapour bubble, were present in some analyzed inclusions. However,
we consider that the data obtained through LA-ICP-MS do not represent mixtures of a
volumetrically minor fluid and dominant melt phases since the relatively very small size
of the fluid bubbles would prevent them having any significant influence on the overall
bulk element concentrations. On the other hand, the presence of a fluid phase at eruption,
prior to, or at the time of entrapment (Fig. 2E) of “syn-eruptive” melt is significant in
terms of the overall evolution of the magmatic-hydrothermal system because it implies
metals may have already been scavenged by a fluid phase at the time the melt was
trapped. Therefore, concentrations of U, Th and other incompatible elements in the “syn-
eruptive” melts are minimums, with the original magmatic concentrations being possibly

higher than those reported here (see below).
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3.5.2. Melt inclusion and whole—rock compositions
Based on the EMP and LA-ICP-MS data, melt inclusions in the rhyolites containing a

high-K calc-alkaline rhyolitic liquid with concentrations (normalized to 100 wt. %) of
SiO; in the melt averaging 74 wt. % in Harvey and Piskahegan, with whole-rock
concentrations slightly higher at 78 wt. % in Harvey and 80 wt. % in Piskahegan (Table
2). Melt inclusions at both Harvey and Piskahegan contain significantly lower
concentrations of MgO and TiO,, and slightly lower CaO and Na,O compared to whole—
rock. This may reflect the accumulation of plagioclase feldspar, mafic silicates and
oxides, or the presence of mafic rock inclusions (xenoliths ?) within the host rocks to the
inclusion-bearing phenocrysts. Only P,Os, and Al,Os are elevated in the Harvey “syn-
eruptive” melt inclusions compared to bulk host rocks (Table 2). The geochemical
characteristics of the whole-rock compared to melt inclusions imply the melt was more
evolved, with whole-rock diluted by phenocrysts. Based on discrimination diagrams for
tectonic granitoids (e.g., Rb vs. Y+Nb or Y+Ta, Ta vs. Yb; Pearce et al., 1984), the pre-
cruptive phase of the rhyolite has a composition consistent with within— plate granitoids
(i.e., continental rifting) but the relative proportions of mantle-derived and crustal-derived
source volume is not known.

Previous work (Payette and Martin, 1986a) showed highly variable F concentrations in
melt inclusions from Harvey, ranging widely from below detection limits to ~ 2 wt. %.
These results could not be reproduced in the current study, possibly due to analytical error
in the earlier study associated with F-Fe peak overlap. Several inclusions analyzed by

Payette and Martin (1986a) were acknowledged to contain solid phases, that, if
19



accidentally trapped, may have artificially elevated F concentration. Concentrations of F
in the “pre-eruptive” melt inclusions analyzed in the current study were very consistent
from inclusion to inclusion and averaged 0.28 + 0.14 wt. % (n=13, 10) and 0.23 + 0.17
wt. % (n=11, 10) in the two samples at Harvey, compared to 0.38 + 0.08 wt. % (n=12,
1o) and 0.21 £ 0.10 wt. % (n=8, 10) in the two samples from Piskahegan (Table 2). The
Cl content of the melt inclusions is also consistent and very homogeneous at both study
locations, averaging 0.18 £ 0.03 wt. % (n=11, 10) and 0.05 + 0.06wt. % (n=13, 10) in the
Harvey samples, compared to 0.11 =+ 0.02 wt. % (n=12, 10) and 0.14 + 0.02 wt. % (n=38,
1) at Piskahegan (Table 2). The H,O contents of the inclusions at Harvey and
Piskahegan are low, consistent with an already partially degassed rhyolite melt at the time
of entrapment. Estimated H,O contents of approximately 1-1.5 wt. % assumed that water
comprises the difference between 100% and the totals of major and minor elements
determined by EMP (Table 2; Anderson, 1973; Sommer, 1977)

Normalized abundance (continental crust-normalized; Rudnick and Gao, 2004)
diagrams (Fig. 3) show that silicate melt inclusions at both Harvey and Piskahegan are
slightly enriched in most incompatible trace elements and significantly depleted in Ba, Sr,
and Eu compared to whole-rock. This is most notable at Harvey where Ba, Sr and Eu
contents in the melt inclusions are orders of magnitude lower than bulk rhyolite (Fig. 3).
There is slight enrichment of HREE relative to LREE in both the whole—rocks and melt
inclusions from both deposits. Overall, trace element patterns are similar at both
localities; however Harvey melt inclusions show higher overall trace element contents

and greater depletion in Ba, Eu and Sr than Piskahegan. Late, “syn-eruptive” melt
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inclusions at Harvey show much higher LILE and U, Th contents compared to early “pre-
eruptive” melt inclusions.

3.6. Discussion

3.6.1. Comparison of Harvey and Piskahegan: the role of fractionation
Harvey and Piskahegan have been interpreted as genetically related based on

stratigraphy (Kuan, 1970; Pajari, 1973; Gemmell, 1975; Beaudin et al., 1980). While this
appears unlikely based on melt inclusion geochemical trends, it is possible to argue that
Harvey represents a more evolved volcanic suite based on high concentrations of
incompatible elements and elevated U/Th ratio. In order to explicitly determine the
genetic relationship between Harvey and Piskahegan, additional geochemical
investigations will be required to ascertain the nature of the source material, and the
petrogenetic chronology of Harvey.

However, the melt inclusion data do allow for a comparison of the relative magmatic
evolution (i.e., melt fractionation) of Harvey and Piskahegan rhyolites at the time melt
inclusions were trapped in early quartz phenocrysts, prior to eruption. Differences in the
degree of fractionation within the liquids of each environment are best exemplified by the
behavior of highly incompatible trace element concentrations (e.g., B, Cs) and
incompatible ore metals U and Th (Fig. 4). Since B and Cs behave incompatibly during
crystallization, and are only slightly more compatible in exsolving volatile phases than in
coexisting in granitic magmatic systems (Pichavant, 1981; London, 1988; Audétat and
Pettke, 2003), changes in their concentrations in melt are highly sensitive to only crystal

fractionation. Using the calculation method of Audétat and Pettke (2003), and assuming
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plagioclase and alkali feldspar were the fractionating mineral phases, we estimated the
degree of fractionation of melts trapped in inclusions from each environment. Based on
the Cs content of the “pre-eruptive” melt, we determined the degree of fractionation to be
between 70 and 92% at Piskahegan, and at least 95% at Harvey for all melt inclusions
analyzed. The concentration of Cs and other highly incompatible elements in “syn-
eruptive” melt inclusions at Harvey is about an order of magnitude higher than in the
“pre-eruptive” inclusions, corresponding to a degree of fractionation exceeding 99%.
Increasing concentrations of Cs and B correlate positively with U and Th, as do
several other pathfinder elements including Cu, As, W, and S and incompatible elements
(Cr, Nb, Ti). This indicates that all these elements experienced enrichment in the melt due
to crystal fractionation, and were not artificially elevated through sampling of fluid
bubbles. Notably, this process influences the U/Th ratio whereby increasing U relative to
Th results in increasing U/Th ratio with increasing fractionation. Significantly elevated
values of Th exist on average in the “syn-eruptive” inclusions (118 + 21 ppm, 1o, n=7)
compared to Harvey (45 + 6.4 ppm, 10, n=42) and Piskahegan melt (37 = 8.0 ppm, lo,
n=35), and especially in contrast to the non-mineralized whole-rocks of Harvey (45 ppm,
1o, n=2) and Piskahegan (37 ppm, 1o, n=1). The “syn-eruptive” (76 + 12 ppm, lo, n=7)
and “pre-eruptive” (20 + 2.0 ppm, 1o, n=42) values of Harvey are also elevated in U
compared to non-mineralized whole-rock (9.0 ppm, 1o, n=2), with a less significant
difference exhibited in Piskahegan melt (11 + 3.6 ppm, 10, n=35) and non-mineralized

rock (6.0 ppm, 1o, n=1). Overall, both Harvey and Piskahegan melt inclusions are
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notably enriched in U and Th compared to whole-rock, with Harvey “syn-eruptive”
inclusions highly enriched. The U/Th ratios in Harvey vary from 0.52-0.92 (average=
0.66 £+ 0.15, 10, n=7) in the “syn-eruptive” inclusions, compared to a range of 0.28-0.56
(average= 0.45 + 0.06, 10, n=42) in “pre-eruptive” inclusions, and 0.14-0.84 in non-
mineralized whole-rock (average= 0.49 + 0.50, 10, n=2). The U/Th ratio is less variable
in Piskahegan, ranging from 0.22-0.41 (average= 0.29 + 0.4, 10, n=35) in “pre-eruptive”
inclusions and 0.23 (n=1) in non-mineralized whole-rock.
3.6.2. Significance of U/Th ratios and changes in U and Th content of the melts

A continual increase in the U/Th ratio over time at Harvey was related to the evolution
of the rhyolitic magma. It is impossible to comment on the relative concentrations of U in
the initial source magmas for the Harvey and Piskahegan volcanics since melt inclusions
were trapped in quartz after significant fractionation had already occurred. Changes in U,
Th and U/Th ratio are related to fractionation, but interestingly, the increase in U and Th
observed between the “pre-*“ and “syn-eruptive” melt inclusions was not of the same
magnitude as observed for the LILE. The concentrations of U and Th increase by a factor
of 3-4, whereas Cs and B increase by only an order of magnitude. This suggests that U
and Th either behaved much more compatibly than Cs and B during mineral fractionation,
or that the metals partitioned into a volatile (fluid) phase, thereby reducing the amount of
these metals in the melt. The latter hypothesis is justified on the basis of petrographic
evidence (Fig. 2) that shows that the “syn-eruptive” melt was saturated in a fluid phase at
the time of entrapment in the matrix quartz. The presence of the fluid phase (Fig, 2 D, E)

indicates we analyzed the coexisting melt phase from which the fluid separated.
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Therefore, the concentration of fluid compatible trace elements within the “syn-eruptive”
melt essentially represents a minimum, likely higher prior to fluid separation in the lava,
since some elements were extracted when the fluid separated. Recent experimental
evidence also shows that (i) U is highly soluble in magmatic hydrosaline fluids at
relatively oxidizing conditions, and (ii) U solubility under such conditions greatly exceeds
Th solubility, resulting in preferential transport of U relative to Th during fluid exsolution
and fluid-melt interaction (Bali et al., 2009).

While primary magmatic fractionation clearly affected the total and relative abundance
of U and Th in the melts at Harvey and Piskahegan differently, syn- to post-magmatic
processes involving fluid leaching of ore metals also resulted in differential transport of U
over Th. At Harvey, a complete lack of correlation between U and Th in the whole-rocks
(Gray et al., in prep) is observed, while Piskahegan displays a linear, positive correlation
between U and Th. Additionally, U is highly enriched in some mineralized rocks at
Harvey, ranging from 330-1560 ppm (n=6), with a U/Th ratio of 7.6-49 (n=6; N.
Downey, pers. commun.). Non-mineralized samples drilled within the same area as
mineralized samples exhibit significantly lower U concentrations (17.2- 148 ppm, n=28),
and U/Th ratios (0.39-3.0, n=28). This is in contrast to other rocks in both the York Mills
and Harvey Mountain Formations are enriched in Th, relative to U (Gray et al., in prep),
possibly representing U-depleted source rocks that were extensively leached (c.f.
Dawood, 2004).

Examination of the “syn-eruptive” inclusions identified small bubbles of fluid,

interpreted as a fluid that separated from the melt during crystallization of the rhyolitic
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magma prior to or during eruption. This indicates that volatiles are capable of interacting
with partially crystallized lava, and provides evidence that leaching of metals from these
fluids could occur over a wide range in temperature, starting at high temperatures,
culminating with low temperatures due to interaction with meteoric water circulation.
Therefore, the eventual leaching of U and Th glass from highly evolved melt inclusions
could enable a significant concentration of metals to be supplied to meteoric fluids, in
addition to the metals may have been initially removed from the melt during fluid-melt
interaction at higher temperatures.
3.6.3. Controls on LILE, REE and HFSE abundance

While incompatible trace elements, especially LILE and HFSE, are highly enriched in
melt inclusions compared to whole-rock, both Harvey and Piskahegan exhibit negative
Eu, Sr, and Ba anomalies in melt inclusions and whole—rock. The preferential depletion of
these elements indicates that the crystallization of feldspars within the melt (Fig. 3; Table
1; Hildreth, 1979; Cullers and Graf, 1984). Harvey displays significant variation in
feldspar composition throughout the major formations, with relatively few feldspar
phenocrysts exhibited within the oldest York Mills, rare to abundant K-feldspar and
plagioclase (up to 2 mm) found in Cherry Hill, and abundant, coarse-grained K-feldspar,
and rare albite found within the uppermost Harvey Mountain Formation (Payette and
Martin, 1986b). Piskahegan is also highly zoned, with significant K-feldspar and
plagioclase accumulations present in the uppermost (late) caldera formations, decreasing
in the underlying sequences (McCutcheon et al., 1997). However, the Bailey Rock

Formation contains significant K-feldspar (<20%), and plagioclase, despite its lower
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stratigraphic position. Since whole-rocks do not show these extreme Eu, Sr and Ba
depletions (Fig. 3) when compared to the melt inclusions, the whole-rocks cannot be
considered representative of bulk liquid compositions and must represent samples from
formations that contain significant accumulations of feldspar crystals.

Melt inclusions in Harvey show enrichment in HREE compared to LREE, while
Piskahegan shows a relatively flat REE pattern. Initially, we considered that differences
in REE chemistry may be related to accessory phases (Table 1). Rare microphenocrysts of
apatite, titanomagnatite and zircon occur within the Bailey Rock rhyolites of Piskahegan
(McCutcheon et al., 1997), while only zircon was identified at Harvey (Table 1; Payette
and Martin, 1986b). Considering the mineral-melt partition coefficients for relevant trace
clements in these systems (Mahood and Hildreth, 1983; Stix and Gorton, 1990; Streck
and Grunder, 1997), it is possible that U and Th would have preferentially partitioned into
zircon, while La and Ce partitioned into titanomagnetite, apatite and zircon. However,
since the partition coefficient for U between zircon and melt is significantly higher than
Th, zircon fractionation would have resulted in a progressive lowering of the U/Th ratio
in the melt. This is in contrast to the observed compositions of melt inclusions at both
localities that show a progressive increase in U/Th ratio with time (Figure 4). Therefore,
zircon could not have significantly influenced U and Th abundance.

Similarly, titanomagnetite appeared to be a potential LREE fractionating phase
present at Piskahegan but absent at Harvey. But HREE enrichment is characteristic of the
Harvey rocks in which this mineral is absent, and apatite and zircon abundance the same

in both locations (Table 1). Like U and Th, differences in REE composition of the Harvey
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and Piskahegan rocks must not be related to accessory phase crystallization. This is in
agreement with Taylor (1981) who indicated that HREE enrichment is unable to occur
through crystal-liquid equilibrium processes alone, and hypothesized that F-rich volatiles
may interact with the melt to cause this enrichment. Increases in F concentration have
been demonstrated to yield a positive correlation with HREE and a negative correlation
with LREE suggesting that F forms stable complexes with HREE (Mineyev et al., 1963).
This hypothesis has been demonstrated both empirically (Kerrich and Fryer, 1979; Taylor
and Fryer, 1980; Webster et al., 1989) and experimentally (Flynn and Burnham, 1978)
whereby Cl-bearing fluids increase the concentration of LREE, Na, Fe, Ti, Mn, Zn, Nb,
and Zr, while F or CO,-bearing fluids enhance the abundance of HREE, Al, Na, Li, Rb,
Cs, Ta, Th, and U. However, since the F-rich peralkaline granites (Taylor, 1981) fail to
exhibit enrichment of HREE, and trapped melt phases at Harvey and Piskahegan have
similar F concentrations (~0.2-0.3 wt. %) despite differing REE patterns, it is evident that
F did not significantly influence the concentrations of HREE in these 2 environments. On
the basis of the arguments above, we suggest the differences in REE signatures between
Harvey and Piskahegan likely reflects differences in the original magmatic source for

each suite.

3.6.4. The effect of boundary layers on melt inclusion composition
Previous rescarch (e.g. Harrison and Watson, 1984; Bacon, 1989; Lu et al., 1995) has

suggested that the presence of a boundary layer adjacent to forming melt inclusions can

facilitate preferential enrichment and depletion of elements with variable diffusive
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coefficients. However, some studies argue that this process is reduced for inclusions
>40pum while others suggest that boundary layers have little effect on overall trace
element concentrations in trapped melts except in cases where diffusion-controlled crystal
growth predominates (see Bacon et al., 1992; Lowenstern, 1995; Baker, 2008). A recent
study by Baker (2008) indicated that a test of homogeneity dependant on melt inclusion
size can be conducted to determine if inclusions were influenced by boundary layer
effects. In the study areas, ratios of elements with variable diffusivities (e.g., Zr/Cs) in the
melt inclusions of variable size were relatively constant. It was concluded that boundary
layer effects did not impact the studied inclusions and that observed (measured)

compositions are homogeneous, ultimately representing the composition of the bulk melt.

3.6.5. Comparisons to other volcanic- and caldera-associated U deposits
The Streltsovka Caldera is the largest U deposit in the world, containing over 280000

tons of U0z (grade = 0.2% U; IAEA, 2009). Despite being significantly elevated in F
(~1.77 wt. %) compared to the peraluminous Harvey and Piskahegan deposits, the
rhyolitic melt inclusions of the Streltsovka Caldera display similar trace element
signatures. Streltsovka melt inclusions are peralkaline, high F, moderate to high SiO2, low
FeO, and TiO,, with moderate Na,O and K,O. The exhibited geochemical trends are
similar, with slightly enriched LREE, and depleted HREE compared to Piskahegan and
Harvey melt inclusions (Fig. 3C; Chabiron et al., 2001). This provides further evidence

that concentration of F within a melt does not explicitly control the concentrations of
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HREE as commonly indicated (see Mineyev et al., 1963; Flynn and Burnham, 1978;
Kerrich and Fryer, 1979; Taylor and Fryer, 1980; Webster et al., 1989).

The relative enrichment of REE in melt compared to whole—rock implies the melt of
Harvey, just like Streltsovka, was saturated during trapping and experienced significant
fractionation since crystallization occurred (Chabiron et al., 2001). Piskahegan did not
exhibit REE enrichment in melt inclusions compared to whole-rock, and therefore
minimal fractionation occurred after trapping of the magma. This provides further
evidence that a variable genetic history occurred between Harvey and Piskahegan.

Overall, the REE geochemical signature of the Streltsovka melt inclusions most
closely resembles the “syn-eruptive” inclusions of Harvey, with both exhibiting REE
enrichment, and negative Eu and Ba anomalies in melt inclusions. Interestingly, both
Harvey “syn-eruptive” (76 = 18 ppm), and melt inclusions (34 + 10 ppm), are enriched in
U compared to Streltsovka melt inclusions (17 + 4 ppm), while the concentration of U
within mineralized samples is significantly elevated at Streltsovka (~2000 ppm)
compared to Harvey (~1500 ppm). Although both deposits are highly enriched in U, it is
evident that significant U was lost from Harvey, facilitated by intense alteration (i.e. by
meteoric water circulation, regional metamorphism).

3.6.6. Melt inclusions as an exploration tool
Through comparison of U and Th concentrations within melt inclusions and whole—

rock samples, it is evident that the analysis of melt inclusions holds promise as an
exploration tool for volcanic- and caldera-related U deposits. Melt inclusions from known

economic U deposits (Fig. 3C) show highly elevated U, Th and REE contents with
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negative Eu anomalies. The compositions of melt inclusions at Harvey and Piskahegan
are very comparable to known economic U deposits, with the Harvey “syn-cruptive”
inclusions even more significantly enriched in U, Th, and REE than other sites. These
chemical characteristics can be identified easily through the analysis of melt inclusions
and it may be favorable to target volcanic sequences with unusually high U and Th
contents contained in melt inclusions (Figure 4).

Whole-rock values, on the other hand, will be misleading due to the effects of
alteration and differential remobilization of U and or Th. This is evident in the barren
volcanics at Harvey and Piskahegan which have similar U, Th and U/Th ratios, despite
marked differences in the U grade of mineralization at each locality (Figure 4). Multiple
studies have indicated that U can be removed from volcanics during primary degassing
(Goodell and Trentham, 1980) or by post magmatic processes including groundwater
(Goodell and Trentham, 1980) and acid leaching (Whitfield et al., 1959; Larsen, 1961).
Non-mineralized samples at Harvey depict a lower U/Th ratio than either mineralized
whole-rocks or melt inclusions, and overall, whole-rock enrichments in barren rhyolites
at Harvey and Piskahegan are similar, despite the enrichment in U in the mineralization at
these two deposits being so markedly different. Therefore, even if a deposit contains
mineralization, it may be overlooked if the exploratory drilling fails to intersect the
mineralized section. By performing melt inclusion analyses in conjunction with whole—
rock geochemistry, it may be possible to differentiate between those volcanic suites that
exhibited the greatest level of primary magmatic enrichment and therefore, have the

greatest potential to contain high grade mineralization since it is the volcanic materials
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themselves that source the U and Th in the deposits by interaction with a continuum of
high—temperature magmatic to lower-temperature meteoric/metamorphic fluids. On the
other hand, determination of U/Th ratios in melt inclusions as a means to predict the
ultimate U/Th ratio of the deposits is less reliable, since in addition to primary decoupling
of U from Th during magmatic fractionation, U is remobilized more readily than Th by
acidic fluids. Acid soluble U can be derived from multiple sources including, metamict
minerals, adsorbed ions on crystal surfaces, acid soluble minerals with elevated U, and
hydrothermal fluids that are introduced through cracks or grain boundaries (Larsen and
Phair, 1954; Brown et al., 1956; Neuerburg, 1956). This is especially prevalent in rocks
with high SiO, concentrations as a greater proportion of the U is acid-soluble, and
therefore easily leached (Whitfield et al., 1959).

Exploration should focus on identifying highly evolved (fractionated) melt inclusions
as they contain the highest values of both U and Th. This study suggests that
crystallization of feldspars that do not sequester any strongly incompatible trace elements
(including Th and U), leading to increases in the overall concentration of U and Th in the

melt that were higher at Harvey than in temporally similar melt stages at Piskahegan.

3.7. Conclusion
The analyses of melt inclusions from Harvey and Piskahegan indicate that the

magmatic-hydrothermal genetic history cannot be determined from whole-rock data
alone. While the major and trace element geochemical trends are similar in whole-rock,

the melt inclusion trace element signatures are extremely varied between the two

31



deposits, with Harvey significantly more enriched in U, Th, Cs, B, and LREE than
Piskahegan. This implies these suites did not evolve from the same magmatic source, or
at the very least Harvey represents a more fractionated magma, indicated by the variable
U/Th ratios, and trace element signatures. In order to conclusively determine the genetic
source of Harvey and Piskahegan, additional geochemical work will be required.

Much higher grade U mineralization at Harvey may be related to the higher pre- and
“syn-eruptive” melt concentrations. After initial enrichment by magmatic fractionation, U
contained in the volcanic products was likely remobilized by a magmatic fluids, or low
temperature meteoric/metamorphic fluids. Additional evidence for remobilization is
exhibited by the prevalent alteration within some samples, and the occurrence of vein-
hosted U mineralization. Volcanic products at Piskahegan, in contrast, did not attain the
same degree of fractionation (and therefore, enrichment in U and Th) and may not have
experienced significant post-magmatic U remobilization. Whole—rock analyses do not
adequately portray the melt evolution of these systems, since non-mineralized and
mineralized whole rocks at Harvey and Piskahegan are shown to display similar U/Th
ratios and bulk U and Th concentrations, despite marked differences in U grades shown
by the localities.
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Figure 3.2. Types of melt inclusions and their host. A. porphyritic rhyolite saple with
quartz phenocrysts, B. melt inclusions within a quartz phenocryst C. melt inclusion type
1, glass + bubble, and melt inclusion type 2, glass + bubble + daughter phases, D. “syn-
eruptive” melt inclusion in matrix, E. bubbles of fluid trapped within the melt, and F.
signal from the LA-ICP-MS indicating various eclement measured within the inclusion, G.
Melt inclusions with variable amounts of fluid bubbles indicating heterogeneous
entrapment, H. Clean (fluid bubble free) “syn-eruptive” melt inclusion. QZ = quartz, FB

= fluid bubble, VB = vapour bubble
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samples from the Cherry Hill and Harvey Mountain Formations were averaged, and used
to reflect the whole—rock geochemical trend of Harvey. B. Piskahegan, whole-rock(n=1),
and Bailey Rock NB07-39 (n=25), NB07-78 (n=10) melt. C. Melt inclusions from other
localities: Mount Malosa (n=7); Cuasso al Monte (n=2); Ehrenfriedersdorf (n=1); Rito del
Medio (n=2; Zajacz et al., 2008), and Streltsovka (n=40; Chabiron et al., 2001). Values

required for normalization were obtained from Rudnick and Gao (2004).
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Piskahegan and 2 samples of rhyolite from Harvey, and are similar to one another. A.
Concentration of B relative to incompatible trace elements in quartz-hosted melt
inclusions. B. Concentration of Cs relative to incompatible trace elements in quartz-
hosted melt inclusions. Approximate fractionation values (% fractionation of the liquid)
for the Piskahegan “pre-eruptive” melt, Harvey “pre-eruptive” melt and Harvey “syn-
eruptive” melt are shown, and were estimated using the method of Audétat and Pettke

(2003) utilizing the Cs content of the melt inclusions, determined by LA-ICP-MS.

Mineral Bailey Rock Cherry Hill Harvey Mountain
25-35% phenocrysts, 15% phenocrysts, remainder is 10-15% phenocrysts,
remainder is groundmass, felsic grounmass Qz>KR>Pl  remainder is felsic grounmass
Modal Abundance Kfs>Qz=Pl>HBL Qz=Kfs>Pl
quarnz .1+ 3.0mm phenocrysts 0.1-3Imm phenocrysts 0.1 -2mm phenocrysts
k-feldspar 1.0-12mm phenocrysts <2mm phenocrysis <2mm phenocrysts
plagioclase I.8mm phenocrysts rare phenocrysis rare phenocrysts
biotite N/A rare altered biotite rare altered biotite
0.2-1. 30mm pseudomorphs N NiA
{Ap, Zm, Ti-Mag) in
amphibole plagioclase
chlorite replaced amphibole N/A N/A
flourite N/A present in cavities Present i Cavitics
calcite N/A rare
N/A replaced glass shards in NiA
illite groundmass
rare microphenocrysts in rare microphenocrysts rure mHcrophenocrysts
apalite amphibole
rare microphenocrysts in rare microphenocrysts rare microphenocrysts
zircon amphibole
raze microphenocrysts in WA N/A
litanomagnetite amphibole

Table 3.1. Summary of major and accessory minerals within Piskahegan and Harvey.
Descriptions of phenocysts represent summaries of current and previous work on
Piskahegan (McCutcheon et al., 1997) and Harvey (Payette and Martin, 1986a, b; Kuan,
1970; Pajari, 1973). Abbreviations used: Hbl = hornblende, Kfs = K-feldspar, Pl =

plagioclase, Qx = quartz
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Table 3.2. Table 2. Major Compounds and Trace Element Concentrations of Melt
Inclusions Hosted in Quartz Phenocrysts, and Whole—Rock. *Representative samples
from Harvey (Cherry Hill, NB07-11 and Harvey Mountain, NB07-21) were used as trace
element data (obtained through ICP-MS) was unavailable for these samples. **All values
were obtained through ICP-MS and normalized with the SILLS program using average
microprobe data. All major compound values were normalized to 100%, H>O content
within inclusions was not directly measured and assumed to equal the difference between
the sum of oxides subtracted from 100 wt. %. F was analyzed using a 3um beam
diameter and a 1x10®A beam current, utilizing silicate Coso Obsidian (Analyzed=
1.0£0.09 wt. %, Expected= 1.13 wt. %), Astimex Obsidian (Analyzed= 0.08+0.04 wt. %,
Expected= 0.07 wt. %) and mineral standards, Durango Apatite (Analyzed= 3.10+0.18
wt. %, Expected= 3.22 wt.%). - symbol indicates no data available, or value below

detection limits
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3.10. Summary of Contributions
Geochemical analysis (and the associated preparation), of whole rocks and melt

inclusion microprobe work was completed by the primary author, with LA-ICP-MS
analysis of melt inclusions conducted by the second and fourth authors. As the primary
author, I completed multiple drafts of this paper with subsequent revisions completed
predominantly by Dr. Jacob Hanley, with minor revisions undertaken by Dr. Jarda Dostal
and Marcel Giiillong. The primary author created all figures, with photographs in Fig. 2
(D, E, F, G, H) taken by Dr. Hanley. Editing of this manuscript is currently ongoing at the
time of submission as the paper was recently accepted (May 27, 2010), and re-submitted

(July 17, 2010).

47



CHAPTER 4: REVISED PETROGENIC HISTORY OF LATE PALEOZOIC RHYOLITES OF THE
HARVEY FORMATION, NEW BRUNSWICK, CANADA

TARYN R. GRAY'*, JAROSLAV DOSTAL', GREGORY J. SHELLNUT’

'Department of Geology, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3,
Canada

2 Academia Sinica, Institute of Earth Sciences, Nankang, Taipei, 11529, Taiwan
*corresponding author <Taryn.Gray@smu.ca>

4.1 Abstract

A suite of geochemical analyses of whole-rock samples were conducted to investigate
the geochemical and petrogenic relationship between the Late Paleozoic Piskahegan and
Harvey Groups of southern New Brunswick, Canada. eHf and eNd values revealed that
Harvey formed from partial melting of juvenile crustal material and Gander basement
rocks indicating the source material of Harvey is significantly older, and more
heterogencous than previously thought. Elevated fractionation during genesis resulted in
strong negative Sr, and Ba anomalies consistent with feldspar fractionation, and a
relatively flat REE pattern. Harvey also appeared to be highly enriched in uranium, which
may have been aided by post-magmatic water circulation as revealed through 8'%0 quartz
isotopes and geochemical variation diagrams. Piskahegan in contrast formed through the
melting of Avalon source rocks, and experienced less fractionation and post-magmatic
alteration than Harvey. Through this study, the genetic history of Harvey has been
revised, particularly the dissimilarity of the Harvey and Piskahegan Groups, despite being

coeval in age and emplaced in the same environment.
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4.2 Introduction
The Late Devonian Harvey Group is located within the Maritimes Basin,

approximately 40km southeast of Fredericton, New Brunswick. This region of southern
New Brunswick hosts a variety of distinct igneous intrusions (Dunning et al., 2002)
resulting from the complex tectonic history of the region. While the exact age of the
Harvey Group was previously unknown, it is believed to be synchronous to the nearby
Piskahegan Group, which was deposited in 363.4+1.8 Ma (Tucker et al., 1998), during
the third major pulse of igneous activity within the Maritimes Basin (Dunning et al.,
2002).

The Harvey Group was previously examined through mineralogy, stratigraphy and
geochemistry (see Payette and Martin, 1986a,b), leading to the interpretation that the
Harvey Group was composed of F-rich rhyolites, similar to topaz rhyolites (see Burt et al.
1982, Christiansen et al., 1983,1984, Naumov et al., 1984), despite the absence of the
mineral topaz in any of the samples. Classifying the Harvey Group as F-rich rhyolites has
become increasingly important in recent years with the identification of U mineralization
in the region (McLeod and Johnson, 2007). Elevated concentrations of F within a melt
have been shown to increase U concentration and heavy rare earth elements (HREE;
Mineyev et al., 1963; Flynn and Burnham, 1978; Kerrich and Fryer, 1979; Taylor and
Fryer, 1980; Webster et al., 1989). Given that a recent melt inclusion study conducted on
the Harvey volcanics (see Gray et. al, 2010) failed to indicate elevated concentrations of F
within the melt (~0.25 wt. %), an alternate mechanism must be responsible for the

increased U concentration in this region.
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It is apparent based on the current ambiguity regarding the petrogenesis and geochemistry
within Harvey volcanics that an additional study is warranted to determine the origin of the
Harvey Group. Through geochemical work, predominantly concerning the age, and
composition of the source material, a stronger interpretation of the genetic history of the
Harvey Group will be elucidated. This will aid in our overall understanding of how the
Harvey Group is related to, if at all, the Piskahegan Group of southern New Brunswick, and
topaz rhyolites. This study also aids in evaluating the economic potential of Harvey and

enhances our current understanding of the Maritimes Basin genetic history.

4.3 Geologic Setting
The 12 km thick Maritimes Basin formed during the Mid-Devonian during the final

formation phase of Pangea and would remain tectonically active until the early Permian
(Gibling et al., 2009; Fig. 4.1). The Maritimes Basin experienced repeated subsidence
throughout the Carboniferous, as well as basin inversions (with associated faulting)
throughout the area. During the mid to late Devonian, the Western St. George Batholith
formed, followed by two major basin extension phases during the Late Devonian- Early
Mississippian. This was associated with continental sedimentation, although marine
influence resulted in evaporite deposits in some areas (Gibling et al., 2009). The Harvey
Group, as well as the Piskahegan Group formed during the third major pulse of igneous
activity within the Maritimes (see Dunning et al., 2002), subsequent to the Acadian

Orogeny.
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The Harvey Group has been subdivided into three formations (Fm), York Mills,
Cherry Hill and Harvey Mountain (Fig. 4.2; Kuan, 1970; Beaudin et al., 1980), all of
which will be examined in this study. The uppermost Harvey Mountain Fm is overlain by
conglomerate, sandstone and shale units within the Mississippian aged Bonaventure
(Shin; Jutras et. al, 2007) Group, and the Pennsylvanian aged Cumberland (Pictou)
Group. The Harvey Mountain Fm is a 75-100 m thick sequence composed of laminated
rhyolites, pyroclastic breccia and ash-fall tuffs. The rhyolites are typically aphanatic,
devitrified, and contain well-defined alteration characterized by grey-green spherulite (3-
4mm) layers (Payette and Martin, 1986b). The predominant mineralogy is composed of
albite, K-feldspar, quartz, with lithic fragments and fluorite within the groundmass. The
Cherry Hill Fm contains most of the U-mineralization and is comprised of quartzfeldspar
porphyry, with two poorly welded ash-flow sheets at the base, spanning 5-6 m and 100 m
(Kuan, 1970; Beaudin et al., 1980). The volcanogenic sediments are devitrified, and
contain lithic material (Beaudin et al., 1980), with mineralogy predominantly composed
of K-feldspar, plagioclase, with rare quartz, zircons, broken spherulites and mafic
inclusions (Payette and Martin, 1986b). The 60 m thick York Mills Fm contains mostly
sedimentary rocks including red sandstones, conglomerates and shale, containing
phenocrysts of quartz, feldspar and rhyolitic fragments (Payettte and Martin, 1986b).
There is however a volcanogenic component to the York Mills Fm, consisting of lithic
tuffs intercalated by lapilli tuffs, and an overlying laminated rhyolite layer. The slightly
welded to non-welded tuffs contain rare phenocrysts of feldspar in a devitrified

groundmass; the rhyolite contains quartz, albite, and fluorite within cavities.
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The Piskahegan Group represents one of only a few caldera sequences of the pre-
Cenozoic preserving Exocaldera, Intracaldera and Latecaldera fill sequences
(McCutcheon et al., 1997), the other located in Newfoundland (Coyle and Strong, 1987).
The Mount Pleasant deposit is known to contain two distinct types of economic
mineralization, W-Mo-Bi, and Sn-Cu-Zn-Pb, genetically related to various phases of the
361 Ma Mount Pleasant Granitic Suite (e.g. GRI, GRII, GRIII; see Kooiman et al., 1986;
McCutcheon 1990; Sinclair and Kooiman, 1990). The extrusive samples analyzed within
this study are located within the Mount Pleasant Caldera, inter dispersed between the
intrusive Mount Pleasant Porphyry (340-30Ma; Kooiman et al. 1986) and the younger,
McDougall Brook Granite. Both intrusive are believed to have formed from extreme
fractionation of the same magmatic source, with the McDougall Brook Granite
contaminated by wall rocks, while the Mount Pleasant Porphyry was significantly more
fractionated during magmatic-hydrothermal evolution facilitating the enrichment of
HFSE, especially Sn, W, Mo, and Bi (Yang et al., 2003).

The Intracaldera sequence (Scouller Mountain, Little Mount Pleasant, Seelys,
McDougall Brook Fms) is composed mainly of rhyolite ash flow tuffs, andesites, and
porphyritic microgranites towards the uppermost Fm. Two Fms from the Intracaldera
sequence will be examined in this study for comparison to Harvey, the Little Mount
Pleasant Fm, predominantly composed of flow banded rhyolite and volcanic tuffs and the
Seelys Fm comprised of pumice bearing, lapilli tuffs (see McCutcheon et al., 1997 for
further discussion). The Exocaldera sequence (Hoyt Station Basalt, Rothea, Carrow, The

Bailey Rock) is located laterally to the Intracaldera sequence and considered the extrusive
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equivalent of the Mount Pleasant Porphyry (McCutcheon et al., 1997). It contains basalts,
thyolite ash flow tuffs, andesite and alluvial redbeds. The Bailey Rock Fm will also be
examined as it contains rhyolites. Both the Intracaldera and Exocaldera sequences are
underlain by a disconformity and overlain by the Late Caldera Fill Sequence (Big Scott
Mountain, Kleef and Mount Pleasant Porphyry), which is predominantly composed of
thyolite tuffs and lava flows, alluvial redbeds, basalt and porphyry.

Previous studies have indicated the economic potential of southern New Brunswick
(see Pouliot et al., 1978; Yang et al., 2003; Sinclair et al., 2006), and of particular interest
to this study; U mineralization has been identified within Harvey (Strong, 1980; McLeod
and Johnson, 2007) as well as Piskahegan (Brack, 1982). Based on the presence of U,
Harvey and Piskahegan can generally be classified as a volcanic- and caldera-related U
deposits (Gandhi and Bell, 1996; IAEA, 2009). The mineralization in Harvey is largely
structurally controlled by predominantly northwest bounded faulting (Fig. 4.1), and
localized within felsic volcanics, and clastic sediments (Gandhi and Bell, 1996; IAEA,
2009). The U mineralization is hosted within the ignimbrites, and associated with clay
alteration, silicification and hematization, grading up to 0.447% U3;Og over 0.6 m, and
0.24% U305 over 1.2 m (Capella, 2007), with concentrations up to 1500 ppm noted (N.
Downey, pers. commun.). Piskahegan contains similar uranium concentrations,

containing up to 1527 ppm in mineralized regions (Brack, 1982).

4.4 Methods
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4.4.1. Sample Preparation and Field Work
During the summer 2008, 28 whole—rock samples were obtained from the Cherry Hill

(n=18), Harvey Mountain (n=5), and York Mills (n=5) Fms of the Harvey Group, and 31
samples from the Bailey Rock (n=3), Little Mount Pleasant (n=10) and Seelys (n=18)
Fms of the Piskahegan Group in order to complete petrographic and geochemical studies.
A portion of each sample was chipped (1cm cubes) and powdered to prepare for further
geochemical analysis, with the remainder sent to Vancouver Petrographics to obtain
polished thin sections.
4.4.2. Major and Trace Element Analysis

Powdered whole—rock samples from Harvey (n=28) , and Piskahegan (n=31) were sent
to the University of Ottawa, G.G. Hatch Stable Isotope Laboratory, Ontario to determine
loss of ignition (L.O.I) as well as the concentration of major elements and compounds
using a Philips PW2400 X-Ray fluorescence spectrometer (XRF). Trace elements from
Harvey (n=8) and Piskahegan (n=9) were analyzed by fusion using a Perkin Elmer
Optima 3000 inductively coupled plasma mass spectrometer (ICP-MS) at Activation
Laboratories, Ancaster, Ontario according to standard procedures (Hoffman, 1992).
4.4.3."7Sm/"" Nd Radiogenic Isotopes

Eight samples from Harvey (2, 11, 21, 28) and Piskahegan (35A, 56, 66, 81) were
analyzed for Sm/Nd isotopic ratios using a Finnigan MAT 262V thermal ionization -mass
spectrometer (TIMS) at Memorial University, Newfoundland. Samples chosen for
analysis contained low Rb (<1075 ppm) and Sr (<950 ppm) concentrations, few

inclusions and were relatively homogenous. Approximately 0.05-0.2g of powdered
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sample was dissolved in concentrated HF and HNO; acids, and spiked with SONd/**Sm
prior to acid digestion (five days). Once the sample evaporated, the remaining material
was taken up into 2N HCI for two days, dried, and again taken up into 2N HCI. Samples
were subsequently loaded into cationic exchange chromatography utilizing AG50W-X8
resin. After purification, the Sm and Nd fractions were isolated with a secondary column
loaded with Eichrom© Ln resin and analyzed using a multicollector Finnigan Mat 262
mass spectrometer operated in static mode. All values were normalized to 146N d/'Nd =
0.7219, calibrated to the JNdi-1 standard ('*Nd/'**Nd = 0.512115, Tanaka et al., 2000),
with Nd values accurate to <0.002% and '*"Sm/'**Nd ratio accurate to <0.1%.
4.4.4. >°°Pb/*3U Geochronologic Dating

Zircon grains from sample 17 were concentrated by conventional magnetic and heavy
liquid techniques and subsequently mounted to perform cathode luminescence and
backscatter imaging. The U and Pb isotopic analyses were performed using laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Beijing SHRIMP
Center, Institute of Geology, Chinese Academy of Geological Sciences. Standard
analytical procedures were utilized for LA-ICP-MS (Chiu et al., 2009) with results
calibrated to the GJ-1 zircon standard obtained from the Australian Research Council
National Key Centre for Geochemical Evolution and Metallogeny of Continents, at
Macquarie University, Sydney (Jackson et al., 2004; Elhlou et al., 2006), as well as
secondary standards including the Harvard reference zircon 91500 (Wiedenbeck et al.,
1995) and the Australian Mud Tank Carbonatite zircon. Final isotopic ratios were

determined by GLITTER 4.0 (GEMOC) software and age corrected based on the
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procedure established by Anderson (2002).
4.4.5. Hf zircon isotopes

In situ zircon Hf isotope analyses were carried out using a New Wave UP 213 laser-
ablation microprobe, attached to a Nu Plasma multi-collector ICP-MS, coupled with a
fixed detector array of 12 Faraday cups and 3 ion counters at the Institute of Earth
Sciences, Academia Sinica in Taipei. Instrumental conditions, data acquisition, and
analytical procedures were similar to Griffin et al. (2000). All results were calibrated to
zircon standards, Mud Tank (Woodhead and Hergt, 2005; Griffin et al., 2006) and 91500
(Weidenbeck et al., 1995), with typical within run precision (20) of + 0.000030 on the
1"8H{/'7"Hf analysis.
4.4.6. 8'%0 Quartz Isotopes

Six samples were analyzed at the Queen’s University Stable Isotope and ICP-MS Lab
for analysis of 6'°0 in quartz using a conventional BrFs method of Clayton and Mayeda
(1963) and run on a dual inlet Finningan Mat 252 Isotope Ratio Mass Spectrometer. All
values reported in standard delta notation relative to VSMOW, and were reproducible to
0.3%o.
4.5. Alteration and the Possible Effect on Chemical Composition

Whole-rock samples from the Harvey Group and to a minor extent the Piskahegan
Group, show signs of post formation alteration. Petrographic characterization of the
Harvey samples revealed significant oxidation of the samples, identified by red-brown
staining of various minerals as well as the groundmass. Piskahegan displayed similar

oxidation in various samples, but to a reduced degree. Examination of the geochemical
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data yielded elevated L.O.I. values (>5 wt.%) in multiple samples from the Cherry Hill
Fm (7, 9, 10, 12, 18) where alteration appears to be most substantial. Extensive alteration
caused diminished SiO, concentrations in all samples, except 18. However, since sample
18 was completely dissimilar to all rhyolites analyzed, it was determined to be modified
by alteration despite normal SiO, concentrations.

While alteration of this extent would usually be problematic, it is possible to elucidate
which eclements reflect the magmatic distribution of Harvey and Piskahegan by
comparing whole—rock to melt inclusion data from Harvey and Piskahegan (Gray et al.,
2010). According to Figure 3 of Gray et al. (2010), whole—rock values are depleted
compared to melt inclusion values in all incompatible elements including large ion
lithophile elements (LILE; e.g. Rb, Ce, Sr, Ba) and high field strength elements (HFSE;
e.g. Zr, Hf, Th, U, Ta, REE). This implies any depletion exhibited within melt inclusions
that is also preserved in whole-rock can be considered primary and not induced by
alteration.

To avoid any ambiguity in the geochemical comparison between Piskahegan and
Harvey, immobile elements (e.g. Ti, Nb, Ta, Zr, Hf, Y, Cr, and some REE) were
predominantly used for comparison. This will insure secondary alteration did not
manipulate geochemical trends and aid our understanding of which elements may have

been influenced by alteration.

4.6. Results
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4.6.1. Geochronology- *°Pb/**U ICP-MS
206pp/238 LA-ICP-MS geochronologic dating of zircons from sample 17 (Cherry Hill)

revealed a bimodal distribution of ages centered on 361 + 7 Ma (MSWD = 1.7) and 403 +
11 Ma (MSWD = 2.1; Fig. 4.3, Table 4.1). Based on current understanding of igneous
activity within the Maritimes basin (see Dunning et al., 2002), we interpret the volcanic
rocks of the Harvey Group were emplaced in 361 Ma. This is consistent with the
formation age of the Piskahegan deposit (363.4 + 1.8 Ma; Tucker et al., 1998), and the
stratigraphic history of the basin. Older, early Devonian aged (403 Ma) samples likely
represent the age of the protolith, derived from a juvenile source, although some mixing
may have occurred with older, Gander source rocks. This indicates the source material of
the Harvey Group is much older than previously thought. The presence of similar aged
plutons within Nova Scotia (e.g. 370 Ma South Mountain Batholith, Kontak and Martin,
1997) and New Brunswick (360 Ma Pleasant Ridge Pluton; Taylor, 1992) as well as
Cobequid Highlands rhyolites of the Fountain Lake Group (362-368 Ma; Dunning et al.,
2002), and Cape Breton rhyolites of Lowland Cove (365 Ma; Dunning et al., 2002) imply
widespread volcanic activity occurred in the early Devonian.
4.6.2. Geochemistry- major element

Based on XRF data of whole—rock samples (concentrations un-normalized), the York
Mills (81.19 £ 3.0 wt. %, n=5, 10), Harvey Mountain (79.33 + 3.6 wt. %, n=5, 10), and
Cherry Hill (75.63 + 3.17, n=13, 10) Fms are classified as high-silica rhyolites (Table
4.2; Fig. 4.4A). York Mills and Harvey Mountain are both significantly depleted in CaO,

and slightly depleted in TiO,, ALO; compared to Cherry Hill, likely related to
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accumulations of oxides, plagioclase feldspar and or mafic inclusions (Table 4.2). The
large enrichment of CaO (8.06 wt. %) exhibited within Cherry Hill should be interpreted
cautiously as sample 8 also contains anomalous values of Na;O (6.81 wt. %) and SiO;
(65.98 wt. %) compared to the average Cherry Hill samples (Na,O = 3.34 = 1.47 wt. %,
Ca0=1.21 £ 2.15 wt%, n=5, 10). Despite the absence of L.O.1. values for sample 8, it is
assumed these uncharacteristic values are a result of alteration, given that mineralogy is
not conclusive with a basaltic/andesitic rock. Only Cherry Hill contains any notable F
concentration (0.20, + 0.05 wt.%, n=4, 10), with Harvey Mountain (0.04 + 0.01wt. %,
n=3, 10) and York Mills (0.04 wt %, n=1) relatively barren.

Rhyolitic samples of the Piskahegan Group are uniform, and decreased in SiO,
concentrations compared to Harvey yielding 75.90 + 0.12 wt. % in Bailey Rock (n=2,
10), 74.80 + 0.85 wt. % in Little Mount Pleasant (n=10, 10) and 75.54 + 1.87 wt. % in
the Seelys Fm (n=18, 1o; Table 4.3). All other major elements exhibit homogenous
concentrations between Fms, with Little Mount Pleasant slightly enriched in alkalies
compared to Bailey Rock or Seelys. Overall Piskahegan is more enriched in ALO;,
Fe,0;, MgO, and TiO, compared to Harvey, while depleted in SiO,.

Harker diagrams of major elements compared to SiO; revealed increases in SiO;
correlate to a decrease in concentration of all compounds (TiO,, MnO, CaO, Na,O, MgO,
K,0, Fe,0; and ALO;), except KO in Harvey Mountain (Fig. 4.5). Negative Eu
anomalies, associated with feldspar fractionation are exhibited within all three Fms, most
notably the Harvey Mountain Fm. Previous mineralogical work by Payette and Martin

(1986b) indicated the Harvey Mountain Fm contains significant feldspar accumulations,
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with moderate quantities in Cherry Hill, and relatively rare phenocrysts in the York Mills
Fm. Within the Piskahegan samples, only the Seelys Fm exhibited any change in major
clement concentrations with changing SiO,, with Fe;O3; concentrations decreasing with
increasing SiO,. All other compounds remained constant, owing largely to the
homogenous SiO; concentrations.
4.6.3. Geochemistry-trace element

Primitive mantle normalized diagrams indicate the Harvey Group is significantly
depleted in Eu, Sr (not shown), and Ba, consistent with feldspar fractionation, as well as a
negative Ti anomaly (Fig 4.6A). The magnitude of depletion exhibited in whole-rock is
considerably smaller than the negative anomalies displayed in Cherry Hill and Harvey
Mountain silicate melt inclusions (Gray et al., 2010). Given that the magnitude of
depletion is less in whole-rock samples compared to melt inclusions, it is apparent that
the depletion is magmatic and not related to any post-formation alterations. Whole—rocks
are enriched in HFSE (Nb, Hf, REE, Th, U) except Ta. Piskahegan in contrast displays
less significant depletions in Eu, Sr (not shown), and Ba, with a similar Ti anomaly to
Harvey (Fig. 4.6C). Whole-rock samples from Piskahegan similarly displayed reduced
depletion compared to melt inclusions (Gray et al, 2010). Whole-rock samples at
Piskahegan are also enriched in HFSE, although to a lesser extent than Harvey.

A chondrite normalized REE diagram indicates a flat line REE pattern compared to
Piskahegan, which is enriched in LREEs over HREEs (Fig. 4.6 B, D). Both Harvey and
Piskahegan exhibit distinct Eu anomalies. This variation in chondrite normalized REE

patterns is either related to a difference in the original magmatic source, or increased
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fractionation at Harvey, as deciphered through melt inclusion analysis (Gray et al., 2010,
2010).

Harker diagrams revealed that the concentration of trace elements in Harvey were
strongly influenced by the concentration of SiO; (Fig. 4.5). Increases in SiO; yielded a
reduction in Y, Ce, Nb, and slightly Zr in all Fms. Concentration of Y was highly varied,
especially within Cherry Hill despite similar SiO, concentration. This is expected due to
the variable concentration of Y-bearing accessory mineral phases including zircon. Th
concentrations remained unchanged except in York Mills, which exhibited a noticeable
reduction in Th with increasing SiO;. The concentration of trace elements was relatively
unchanged with increasing SiO; in Piskahegan, however the Seelys Fm showed an
increase in Th concentration.

U and Th concentrations of Harvey and Piskahegan were correlated to elucidate how
post-magmatic processes, if any, may have influenced the U concentration at these sites
since the absence of a positive correlation indicates post-magmatic remobilization of U
(Dawood, 2004). No discernable trend within the Cherry Hill or York Mills Fms was
documented, while Harvey Mountain has a slightly positive correlation (Fig. 4.7).
Piskahegan in contrast exhibits a positive correlation between U and Th within the Seelys
Fm, with neither Little Mount Pleasant, nor Bailey Rock illustrating an apparent trend.
Figure 4.7 indicates that Harvey could have experienced post-magmatic remobilization of
U, which may have influenced the higher U concentrations found within the Cherry Hill,

and to a lesser extent the York Mills Fm compared to Piskahegan.
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4.6.4. Petrology- major and minor elements
The geochemical work of this study support the earlier conclusions of Payette and

Martin (1986b) regarding tectonic setting, and build on the interpretations concerning
magmatic origin. Based on the Y versus Nb tectonic discrimination diagram of Pearce et
al. (1984), and the elevated concentrations of K, Rb, Th and depletions in Ba and Sr, it is
apparent the Harvey Group represents a within plate granite (WPG), consistent with
similar aged Piskahegan Group (Fig. 4.4b). Due to insufficient geochemical evidence
regarding the nature of the source material, it was previously assumed the genesis of the
Harvey Group was similar to that of topaz rhyolites (Payette and Martin, 1986b). Burt et
al., (1982) and Christiansen et al., (1983) hypothesized that the Spor Mountain topaz
rhyolites formed from the emplacement of basaltic rich magma during basin extension.
This enabled a sufficient heat source to initiate anatexis of crustal material, and explained
the large volume of rhyolites exhibited at Harvey. Evidence for this hypothesis is
exhibited by the peraluminous nature of the melt, and the presence of glassy inclusions
(Payette and Martin, 1986b). Piskahegan volcanics are thought to have formed from
similar processes either by extensive fractional crystallization of a basaltic magma (e.g.
Musselwhite et al., 1989), or partial melting of lower crustal material subsequent to the
intrusion of basaltic magma (Huppert & Sparks, 1988).
4.6.5. engisotopes

Harvey rocks displayed a range in eng values from -4.6 to 0.64 (n=4), indicating a
heterogeneous source material containing both juvenile (negative model ages) and older,

Gander aged material (Table 4.4; Fig. 4.9). Consistent with earlier interpretations of
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Payette and Martin (1986b), mafic and intermediate rocks likely provided the heat source
to allow the partial melting of crustal material at Harvey. Sample NBO7-11, Cherry Hill
exhibited a distinctly more negative eng value, than other Harvey samples. This could
indicate a relative shift to older crustal source material, or a difference in geochemistry
facilitated by coeval or subsequent intra-crustal processes such as hydrothermal activity
or fractionation of REE bearing minerals. The later hypothesis is preferred since Harvey
is highly fractionated, and sample 11 contains elevated concentrations of TiO», Ba, Sr, V,
Zr, with depletions in Pb, and Y.

The composition of Harvey is in stark contrast to that of Piskahegan, which displayed
more uniform eng values (-0.11 to 0.86, n=4; Table 4.4). It is important to note however
that only two of the samples examined were rhyolites (81, 66) with the other samples
being granitic (35A) and basaltic (56). Despite the differing lithology, the values are still
homogenous with a model age of approximately 1000 Ma indicating Piskahegan likely
formed from Avalon source material. This provides further evidence that the variable
geochemical signatures observed at Harvey and Piskahegan are not controlled by
fractional crystallization, but rather they formed from entirely different magmatic sources,
with Harvey originating from much older material than previously thought.

4.6.6. 8"°0 Quartz

Three samples (16, 17, 30) from the Harvey Group and two samples from Piskahegan
were analyzed for 6'°O quartz isotopes (Table 4.5). Due to low yield, samples 16 and 17
were excluded from interpretation as a result of possible contamination. Results yielded a

6'%0 value of 14.7%o for the York Mills Fm, while the Piskahegan samples ranged from
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9.7%o in the Little Mount Pleasant Fm to as high as 11.3%o in the Bailey Rock Fm. The
results exhibited at Harvey and Mount Pleasant are consistent with the 6'%0 values of
granitoids within the 550-537 Ma Brookville (+9 - +12.5%o; Samson et al., 2000), and
Caledonia terranes (up to 14.7%o, n=7; Potter et al., 2008), southern New Brunswick, as
well as the rhyolites of the 680 Ma Mira terrane (+9 — 10.9 %o), Cape Breton (Potter et
al., 2008). Recent studies of the Kidd Creek VMS deposit, located within the late Archean
Abitibi subprovince within the Superior Province of Canada have also indicated elevated
E‘)lSOqumZ (7.9-12%o) within similar fine grained rhyolites. Huston et al. (1996) attributed
these values to be related to deep, S-type intrusion, which provided the heat for the
anatexis of the crustal material, (forming the VMS deposit), while King et al. (1997)
indicate the range in E)lquumZ imply a heterogeneous oxygen isotope exchange during
hydrothermal activity. The second hypothesis is preferred based on a robust petrographic
study, as well as analysis of 8'®Oyircons that were capable of determining the original
magmatic '*O signature. Therefore, the results of this study should be examined
cautiously as 8'®Oguar; may not be as robust as previously thought, especially in low
temperature hydrothermal systems.
4.6.7. eHf isotopes

The average value of ¢Hf zircons in sample 17 was 6.6 +/- 1.4 (MSWD = 8.3; Table
4.6). When re-grouped by age, eHf(403 Ma) yielded an average value of 7.0 +/-1.7
(MSWD = 3.4), while ¢eHf(361 Ma) equalled 6.3 +/- 2.6 (MSWD = 13). Depleted mantle

(i.e. MORB) sources typically have ¢Hf values ranging from 15 to 20 (Workman and
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Hart, 2005), while crustal eHf values are less than 2 (Rudnick and Fountain, 1995).
Therefore, the source material of Cherry Hill is composed of both depleted mantle and
juvenile crustal components, consistent with eéNd results. Since the eHf values were
relatively homogonous, the zircons, and by association whole rocks, formed from the
same source. While the eHf of zircons is relatively homogeneous, it is apparent based on
eng values that the source material is clearly heterogeneous. This discrepancy is attributed
to having analyzed a single sample from Cherry Hill, as neither York Mills nor Harvey

Mountain contained suitable zircon yields to be analyzed.

4.7. Discussion

4.7.1. Harvey felsic volcanics comparison
While all three Fms within the Harvey Group displayed subtle variability, the Cherry

Hill Fm was the most geochemically distinct. Cherry Hill contained consistently lower
Si0, concentrations and was noticeably enriched in almost all elements; especially REE,
alkalies, and Fe,O3; compared to Harvey Mountain and York Mills. Cherry Hill contains
the greatest abundance of accessory minerals including zircon, which facilitated the
elevated concentration of Y, and zircon served as a suitable host for U. Payette and
Martin (1986b) also identified the presence of basaltic material within Cherry Hill
groundmass, which could explain the distinct geochemistry of Cherry Hill compared to
other Harvey Fms. It is difficult to ascertain exactly how the basaltic material influenced
the geochemistry of the Cherry Hill Fm without being able to properly identify and
quantify the mineral components of the basalt groundmass. Lastly, in addition to
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mineralogical variability, Cherry Hill exhibited noticeable alteration in both geochemical
and petrographic analysis and may have been influenced by post magmatic water
circulation. The influence of alteration processes could have facilitated the increased
concentration of trace elements compared to York Mills and Harvey Mountain.

4.7.2. Relationship to Piskahegan
The Harvey Group has previously been identified as coeval to the Piskahegan Group

based on a similar stratigraphic history (see Kuan, 1970; van de Poll, 1972; Pajari, 1973;
Gemmell, 1975; Beaudin et al. 1980; Ruitenberg and McCutcheon, 1985; Payette and
Martin, 1986b) despite displaying distinct geochemical characteristics and subtle regional
variability. 2°°Pb/? 8U LA-ICP-MS zircon dating supports that both Groups were derived
during the same pulse of magmatic activity within the Maritimes Basin, and tectonic
discrimination diagrams show that both Harvey and Piskahegan are WPG. These
similarities are expected as the Maritimes basin underwent a significant phase of
lithospheric extension subsequent to the Acadian Orogeny and provided an ideal setting
for volcanic activity within the basin. However, despite similar timing and geologic
setting, both formed from very different crustal material and experienced a varied genetic
history.

The Piskahegan Group formed from the anatexis of subducted juvenile crustal material
from the Avalon terrane based on the ¥751r/8%Sr ratio of 0.713 (Kooiman et al., 1986), and
positive eéNd values (Table 4.4). The Harvey Group originated due to partial melting of
juvenile crustal material and older, Gander aged, material based on ¢éNd and ¢Hf (Table

4.4, 4.6). The heat source required for the anatexis of the crustal material at both Harvey
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and Piskahegan was likely facilitated by the emplacement of mafic and intermediate rocks
during lithospheric thinning as previously hypothesized (Burt et al., 1982; Christiansen et
al., 1983).

Trace and major element analyses of continental crust normalized melt inclusions
hosted within quartz phenocrysts revealed that Harvey was significantly enriched in
LREE and incompatible elements (Cs, B, U, and Th) compared to Piskahegan (Gray et
al., 2010). A comparison of both chondrite and primitive mantle normalized whole-rock
data (Fig. 4.6) also indicate that Piskahegan is enriched in HREE and depleted in LREE
compared to Harvey which illustrates a relatively flat REE pattern implying variable
geochemical source magma. Additional evidence is revealed in the highly fractionated
signature of the Harvey Group compared to Piskahegan. Large negative Eu, Sr, and Ba
anomalies are exhibited in both whole-rock and melt inclusions from Harvey, and a
fractionation diagram of pre-eruptive melt comparing Cs content to U, Th, U/Th implied
the degree of fractionation is 70 - 92% at Piskahegan, at least 95% at Harvey, and >99%
in pre-eruptive Harvey (see Gray et al., 2010).

Lastly, the elevated '*O values exhibited at Harvey contrasted to Piskahegan, as well
as figure 4.7 reveal that Harvey was influenced by post-magmatic water circulation,
which likely facilitated the elevated U mineralization at Harvey. The results of this study
indicate that the differences between the Harvey and Piskahegan volcanics cannot be
explained by alteration and increased fractionation at Harvey alone. It is evident when
examining the éNd and eHf isotopes in conjunction with melt inclusion studies (Gray et

al., 2010) that Harvey and Piskahegan evolved from distinct source material. Post-
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formation alteration did however facilitate the variability within the Harvey Group itself,
and complicate the determination of the relationship between Piskahegan and Harvey.
4.7.3. Similarity to Topaz Rich Rhyolites

Topaz rich rhyolites are generally high SiO, (>74 wt. %), Na,O (>3.6 wt. %), enriched
in F (>0.2 wt. %), high F/Cl ratio, low in TiO»(<0.2 wt. %), CaO (<0.9 wt. %), MgO(<0.2
wt. %), P0s, (~0.01 wt. %) and have flat REE pattern compared to typical rhyolites
(Christiansen et al., 1983). High F/Cl ratio (>3) systems also tend to exhibit enrichment in
Al, Na, Li, Rb, Cs, Ta, Th, and U, while Cl dominant systems show elevation in LREE,
Na, Fe, Ti, Mn, Zn, Nb, and Zr (Flynn and Burnham, 1978; Kerrich and Fryer, 1979;
Taylor and Fryer, 1980; Christiansen et al., 1986; Webster et al., 1989). Harvey rhyolites
may appear to be geochemically similar to F-rich topaz rhyolites, however whole rocks
have variable SiO;, Na,0, and CaO, lower F (~0.1 wt. %) and TiO,, while melt inclusions
contain equivalent SiO,, Na,O, but lower CaO, TiO,, MgO, P,0s, F (<0.25 wt. %)
content (Gray et al.,, 2010), and variable F/CI ratios (sample 18=1.28, n=11; sample
31=5.9, n=13). The low F content determined in this study, as well as the melt inclusion
study of Gray et al. (2010) are in severe contrast to previously reported values of up to
1.97 wt. % in melt inclusions from Harvey (Payette and Martin, 1986a). This ambiguity
can be explained though analytical error in the earlier study which may have had F-Fe
peak overlaps during analysis. Alternatively, multiple inclusions analyzed contained solid
phases, that if accidentally trapped, could artificially increase F concentration. Piskahegan
whole-rocks have similar SiO,, TiO; lower Na,O, CaO, F (~0.1 wt. %), while melt

inclusions contain higher P,Os, equivalent Si0,, and CaO, but lower Na;O, TiO,, MgO,
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and F (<0.25 wt. %) content (Gray et al., 2010), and variable F/CI ratios (sample 39=
3.45, n=12; sample 78=1.5, n=8). Therefore, based on new geochemical data, it is

apparent Harvey, nr Piskahegan can be considered an F-rich topaz rhyolite.

4.8. Conclusions
The Harvey Group represents a distinct suite of volcanic rocks forming during a

major phase of igneous activity subsequent to the Acadian Orogeny. Facilitated by
lithospheric thinning, a pulse of basaltic rich magma provided the heat required for the
anatexis of juvenile crustal material and Gander basement rock. Continued fractionation
of the magma, and post-formation alteration processes created the unique REE, U-rich
geochemistry of the Harvey volcanics. This is in contrast to the Piskahegan Group, which
formed from the melting of younger, Avalon source rocks, and experienced significantly
less fractionation and post-magmatic alteration than Harvey. Despite forming in the same
tectonic environment, and displaying similar lithology and to some extent geochemistry,
it is apparent that Harvey volcanics cannot be considered coeval to the Piskahegan Group.
Similarly, Harvey volcanics in no way resemble F-rich rhyolites based on their distinct
geochemistry. This illustrates that felsic volcanics, relatively barren of F, can still serve as
an economic source of U in southern New Brunswick, and likely elsewhere.
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Figure 4.1. Map of study location. A. Geologic map of the Maritimes Basin, and B. Local

surface geology of the Harvey Group (modified from Payette and Martin, 1986b).
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Figure 4.2. Simplified stratigraphic log of the Harvey Group and overlying sediments,

modified from (Beaudin, 1980) compared to Piskahegan (modified from McCutcheon et

al., 1997).
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zircons from sample 17. Both indicate a bimodal age distribution of 361 Ma and 403 Ma.
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Z1/TiO; of Fms of the Harvey Group, Cherry Hill (n=13), York Mills (n=5) and Harvey
Mountain (n=5) compared to rhyolitic Fms of Piskahegan, Bailey Rock (n=2), Little
Mount Pleasant (n=3) and Seclys (n=5) after Winchester and Floyd (1977), (b) Y vs. Nb,
after Pearce et al., (1984). Only samples from Piskahegan analyzed for trace elements via

ICP-MS were plotted.
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Figure 4.5. Harker diagram of major compounds and trace elements correlated to Si0; of

the Harvey Group, Cherry Hill (n=13), York Mills (n=5), Harvey Mountain (n=5)
compared to fields of Piskahegan, Bailey Rock (n=2), Seelys (n=5), Little Mount Pleasant

(n=3). Only samples analyzed for ICP-MS were utilized to determine fields.
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Chondrite normalized plot of Harvey, C. Primitive mantle plot of Piskahegan rhyolites
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plot of Piskahegan. Primitive mantle and chondrite normalized values after Sun and

McDonough (1989).
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1990). Abbreviations used in diagram: BE — Bulk Earth, SCM — Subducted Crustal

Material
Corrected Atomic Ratios Apparent Age {Ma)
Analysis  mppymy *Pbi U ** P *Ph Pb/U TPHAYU P PhPh
Number
Value o Value lg Value L) Value g Value lo Value lo
1 00404 00011 02699 0056 004846  0.00907 255 7 243 45 122 315
2 00625 00017 09048 00964  0.10493  0.00864 391 1 654 51 1713 148
3 00412 00014 04382 00971 007718 001479 260 169 6% 1126 398
4 0067 00015 05139 00342 0035567 000274 418 421 23 439 106
5 00577 00012 04386 00286 005515 0.0027 361 369 20 418 106
6 00565 00026 13792 0226 017694 002124 355 1 8R0 96 2624 198
7 00646 00013 04737 00156 005317  0.00092 404 394 11 336 38
8 00567 00011 04349 00121 005566  0.00075 355 367 9 439 29
9 00577 00011 04484 00H21 0.05634  0.00072 362 3% 8 466 27

10 0055 00014 04175 00503 0035449  0.00547 k2L
i 0057 00012 0493 00256 006274 0.00222 357
12 00675 00015 05221 00487 005612 0.00423 421
13 00627 00021 07291 01392 008435 0.0136] 392 1
14 0036 00012 0456 0.0303 005905 000294 5
15 00611 00021 07891 01506 0.09372 0.015 382

354 36 391 218
407 17 699 73
427 313 457 183
556 82 1301 39
381 21 569 105
591 85 1503 W8

BT RV N RV SR SR N RV -JV- 3

16 00518  0.001 0388 00089 00543 0.00056 325 333 7 385 22
17 00608 00014 05199 00543 006199  0.00529 381 425 36 674 179
18 00653 00012 0507 0019 005631  0.00059 408 416 B 465 22
19 00628 00012 04878 00116 005639 0.0006 92 403 8 468 23
20 00592 0001 0.505 00035 006191 000078 kY] 4415 9 671 26
21 00625 0.0012 0.54 00422 0.0627  0.00411 39 438 28 698 140
22 00571 00011 04916 00411 006249  0.00447 358 406 28 691 |53

Table 4.1. U-Pb SHRIMP dating of zircons, sample 17.
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Table 4.2. Harvey whole-rock major and trace element data. * Major compounds and
elements were analyzed via XRF, ** trace element data was obtained through ICP-MS.
*Sample excluded from interpretations due to high LOI value. - indicates no data

available
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Table 4.2. Continued.
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Table 4.3. Piskahegan whole—rock major and trace element data. * Major compounds and
elements were analyzed via XRF, ** trace element data was obtained through ICP-MS. -

indicates no data available
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gample Nd { ) Sm {ppm} WS NG “'Nd/ NI Zo

Epelion Y De m.Epsim

Uit or* Paoio {380}

Cherry Hill  NBD7-1 28.02 844 0,138800 0512266 4 -7.28 157500 179847 -4.80

g Charry Hill  NBO?-2 39.80 14.39 0218500 0512722 4 164 . - 0.64
Harveay

=  Mountsin  NBO7-2% K20 962 0.170100 0512575 4 -1.23 182500 200782 001

York Mills  NBOT-28 1397 565 0.244400 0512897 7 115 - - -1.04

McDougait

- Brook NBO7-35A 65.50 10.62 0098000 0512429 5 -4.08 B17.00 95079 048

g Seelys NBO7-81 67.41 11.44 0102800 0512437 5 -392 838.00 979.03 041
Scouller

,‘; Mountain  NBOT-56 38.97 7.48 0.116000 0512482 5 -2.8% B66.00 102740 0.86
& Scouller

Mountan  NBO7-88 90,59 16.23 0108300 0512424 5 4,17 900.00 105060 -0.1%

Table 4.4. Results of the Sm-Nd isotope analyses of whole-rock samples from Harvey

and Piskahegan. * '""Nd/'**Nd corrected from the deviation from JNdi-1 with mean value

obtained from the Memorial University TIMS Lab of 143144 (0.51237, n=112, 0.000019).

**¢Nd values were calculated based on the present day chondrite uniform reservoir

(CHUR; "Sm/"Nd = 0.1967 and "*Nd/'"¥Nd = 0.512638), and age equations were

modeled using the De Paolo mantle model, and the known decay constant (6.54x10™"?

years; Steiger and Jager, 1977). “"TDM2 calculated using a linear evolution for a mantle

separated from the CHUR at 4.55Ga and having a present day Epsilon value of +10.

Harvey

g
g
3
Z

Unit Sample Host Rixk Yiekd $180 (VEMOW)

NB07-16 rhyolite 3.1 0.4

Cherry Hilt
NB07-17 quartz-feldspar porphyry 149 e
York Mills NBO7-30 rhyolite 157 14.7
Big Scott Mountain NBO7-33A  quanz-feldspar porphyry 162 135
Bailey Rock NB{7-73 rhyolite 156 H3
Little Mount Pleasant  NBO7-106 (1} rhyalite 16.3 9.7

Table 4.5. 8"0 of quartz within whole-rock samples from Harvey and Piskahegan. Pure

quartz should yield 16.7 + 0.3, samples 16 and 17 were excluded from interpretation due

to low yield.
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‘;‘:ﬂ'ﬁf HETHE LW/ THE Y THE UPbAge  HE  eHfn® T(DM), T(DM): HfChur (1) HIDM (D)

3 [ R i T XTG4 GoIs0s 307 5 TR R 0.06 o ﬁ M!l! %1 5204]
5 0282665 0.00384 021257 3ol 0282639 15 0.90 1.4 0.282983
7 0.282693 000051  0.02322 403 0.282689 6.2 0.783 1.00 0.2825!3 0.282951
8 0282625 000137  0.00698 361 0.282620 28 0.89 .19 0282540 0.282983
10 0.282762 000185 008355 361 0282749 74 0.71 089 0282540 0.282983
L} 0282664 0.00240 0.12648 361 0282648 3B 0.87 112 0282540  0.282983
12 0282745 000 GO 403 0.282730 7.7 0.4 091 0282513  0.282951
15 0,282673 000150  0.D078E 36l 0.282663} 4.4 083 109 0282540 0282983
17 0282829 000158  (.07463 361 0.252818 99 0.61 074 0282540 0.282983
I8 0.282682 0O0MII  0.06408 403 0.282674 57 0.81 104 0282513 0.282951
19 0282661 00099  (.08836 403 0.282646 4.7 0.861 110 0282513 0.282951
20 0282824 000146  0.08476 36l 0.282814 97 0.61 0.75 0282540 0.282983
b | 0282744 000123 0.06907 403 0282738 79 0.725 090 0282513 0.282951
22 0.282641 000323  (.18784 A6l 0.282619 28 0.92 119 0.282540  0.282981

Table 4.6. Lu-Hf isotopic analysis of zircons, sample 17. *¢Hf(T) values were calculated
using chondritic ratios of 176H£/1""Hf (0.282772) and 1761 u/""THf (0.0332) as derived by
Blichert-Toft and Albarede‘ (1997). All isobaric interferences of 176Lu and 176Yb on '"*Hf
were corrected, and the recommended 1761 1/"Lu and "*Yb/'"*YD ratios of 0.02669 (De
BiEvre and Taylor, 1993) and 0.5865 were used for the data reproduction.
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completed by the primary author, and funded largely through grants provided to TRG,
and JD. LA-ICP-MS and Hf analyses of zircon were completed by Greg Shellnut at the
University of Taiwan. All figures within this manuscript were created by the primary
author. While the manuscript was improved through conversations with the co-authors,
the manuscript was written in it’s entirety by the primary author. Revisions of this
manuscript are ongoing at time of submission as it is still being prepared for publication

submission.
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5.1. Abstract

Felsic volcanic rocks from the 335 Ma Cumberland Hill Formation of southern New
Brunswick, Canada correspond to peralkaline rhyolites and trachytes. These rocks, which
underwent extensive fractional crystallization from an alkali basaltié magma, have high
concentrations of incompatible trace clements including uranium (up to ca. 20 ppm).
Mafic parent magma was derived from cither decompression mantle melting occurring
during rifting, or a mantle plume, with the latter hypothesis preferred. Cumberland Hill
peralkaline rhyolites may represent an economic source of uranium based on the clevated
uranium concentrations and high degree of similarity with volcanic rocks of the
Streltsovka caldera (Transbaikalia, Russia), one of the largest, hydrothermal, uranium
deposits in the world.
5.2. Introduction

Igneous rocks are sparsely distributed throughout the Middle Devonian-Permian
Maritimes Basin, and they appear to decrease in volume through time from: (1) Middle to

Late Devonian tholeiites, minor alkali basalt, bimodal gabbro and A-type to evolved I-
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type granite; (ii) Lower Carboniferous bimodal igneous rocks, and most sparsely, (iii)
Upper Carboniferous bimodal igneous rocks (Fyffe and Barr, 1986; McCutcheon, 1990).
The felsic igneous rocks of the Cumberland Hill Formation (Fm), the topic of this paper,
were considered part of the Late Wesphalian Pictou Group, and consequently associated
with the latter phase of magmatism based on stratigraphic relationships (Fyffe and Barr,
1986). However, recent mapping indicated these volcanic rocks lie within the Viséan to
early Namurian Mabou Group, and therefore associated with the middle phase (St. Peter,
1997; New Brunswick Department of Natural Resources, 2010). A mid-Viséan U-Pb
zircon date of 335 + 2 Ma age substantiates this interpretation (St. Peter, 2002). The
Cumberland Hill Fm now appears to have approximately the same age as several, alkalic
mafic formations in New Brunswick (e.g. the Hardwood Ridge, Royal Road and
Queenstown basalts), and the tholeiitic-alkalic mafic rocks of the Cap aux Diables Fm in
the Magdalen Islands (Barr et al., 1985; Fyffe and Barr, 1986; La Fleche et al., 1998;
New Brunswick Department of Natural Resources, 2010).

The mafic rocks of the Magdelen Islands have continental within-plate characteristics
(Barr et al. 1985), and HIMU-OIB Pb-isotopic signatures that have been related either to
a mantle plume (Pe-Piper and Piper, 1998) or to decompression melting below a pull-
apart rift (LaFleche et al., 1998). The plume origin is consistent with the model proposed
by Murphy et al. (1999) and Keppie and Krogh (1999) wherein the magmatism and
deformation front migrated northwards from southern Nova Scotia at 380-370 Ma
through northern Nova Scotia at 365-355 Ma to the Magdalen Islands in 335 Ma. The

plume model is also consistent with the presence of a high-density lens beneath the
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Maritimes Basin (Marillier and Verhoef, 1989), which may represent the beheaded
portion of the plume. In this paper, we present whole-rock major and trace element
analyses for the volcanic rocks of the Cumberland Hill Fm, and although we recognize
that the data cannot distinguish between the various tectonic models, they can be of
economic value as such rocks can be related to potential uranium mineralization
(Dahlkamp, 1993; Plant et al., 1999; Cuney, 2009; Nash, 2010).

5.3. Geological Setting

Late Devonian to Early Permian rocks of New Brunswick comprise the western
portion of the Maritimes Basin of the Atlantic Canada region, in which a successor basin
developed during the waning stages and subsequent to the Middle Devonian Acadian
Orogeny (e.g. St. Peter and Johnson, 2009, Fig. 5.1a). In New Brunswick, these rocks
occur within deep depositional centers or subbasins, or on shallowly buried or partially
exposed basement uplifts and platforms.

The volcanic rocks of the Cumberland Hill Fm crop out as several inliers over 20 km?
and are unconformably overlain by the Upper Carboniferous Pictou Group on the New
Brunswick Platform (Fig. 5.1b). The outcrops are likely related to a single volcanic centre
partially hidden beneath Pictou Group (or Mabou Group) rocks, since the area
incorporating the inliers clearly defines a circular area of high magnetic response on
recent aeromagnetic maps (Thomas and Kiss, 2005).

Fyffe and Barr (1986) examined some of the felsic volcanic rocks in the vicinity of
Cumberland Hill including lava flows and tuffs in a rhyolitic formation and underlying

trachytic formation. Subsequently, St. Peter (1997) delineated the distribution of these
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formations in more detail, depicting the trachytes as mostly underlying, but in part
interdigitating with the rhyolites. There is also one massive intrusive porphyry plug with
several smaller dikes/pipes, interpreted by Thomas and Kiss (2005) as volcanic feeder
dikes based on their bulls eye positive magnetic anomalies (50-375 nT) within the
magnetically anomalous area. The exact thickness of these formations is unknown as they
are poorly exposed, however, both trachytic and rhyolitic formations are believed to be
tens of meters thick.

The rhyolites are generally aphanitic to porphyric laminated flows and tuffs with
feldspar phenocrysts and microphenocrysts (0.1- 4 mm in length) set in quartzfeldspathic
groundmass. They contain green clinopyroxene as rare phenocrysts as well as Fe-Ti oxide
accessories. The more altered trachytes contain aligned and extensively altered feldspar
phenocrysts (0.1 - 2 mm), rare Fe-Ti oxides and altered clinopyroxene phenocrysts set in
a fine-grained feldspar-rich groundmass or devitrified glass matrix.

5.4. Geochemistry

Major and trace elements of 15 whole-rock samples from the Cumberland Hill Fm
(Table 5.1) were determined using a Perkin Elmer Optima 3000 inductively coupled
plasma mass spectrometer (ICP-MS) in the Activation Laboratories in Ancaster, Ontario.
Prior to analysis, samples were digested by fusion to ensure the complete dissolution of
accessory minerals. Full analytical and technical parameters utilized can be found in
Activation Labs on-line manual.

According to the (Na;O+K,0) vs SiO; classification of LeMaitre et al. (1989; Fig. 5.2)

and the Zr/TiO; vs SiO; diagram (Fig. 5.3) of Winchester and Floyd (1977), the rocks can
88



be subdivided into two groups, trachytes and peralkaline rhyolites, analogous to
comendite/pantellerite fields according to Winchester and Floyd (1977). Most rocks are
peralkaline with a high agpaitic index (AI = mole (Na+K)/Al; Shand, 1951) and acmite in
their norms. Considering loss of ignition (L.O.I) free analyses (Table 5.1), the trachytes
on average (n=7, 10) have moderate SiO, (65 = 2.48 wt. %) accompanied by high total
alkalis (9.5 = 1.81 wt. %), low CaO (2.5 = 1.21 wt. %), high FeOyMgO (ca. 25) and
elevated concentrations of high field strength elements (HFSE; e.g. 947 = 334 ppm Zr, 85
+ 29 ppm Nb). The average rhyolitic rocks (n=8, 10) have higher SiO; (75 = 0.66 wt. %),
equivalent total alkali concentrations (9.0 = 0.29 wt. %, very low CaO (0.23 = 0.08 wt.
%), high FeO,,/MgO (ca. 140) and high HFSE (e.g. 2369 + 138 ppm Zr, 251 + 36 ppm
Nb). The AL,O3/(Ca0+Na,0+K,0) ratios (mole) of both trachytes and rhyolites are <I,
typical of peralkaline rocks.

Major and trace elements in volcanic rocks of the Cumberland Hill Fm vary largely
due to the degree of fractionation exhibited within trachytes and rhyolites. In order to
determine the fractionation trends, Nb was utilized as a differentiation index (see White et
al., 2006; Fig. 5.4). With increasing concentration of Nb, the trachytes displayed a
positive correlation to Al,Os3, and a negative correlation to TiO; thyolites in contrast have
relatively constant Al,O; (Fig. 5.4a), and TiO; (Fig. 5.4b). The reduction in TiO can most
likely be attributed to crystallization of Fe-Ti oxides. Trace elements also displayed
distinct fractionation trends when compared to Nb in both trachytes and rhyolites.
Trachyte samples showed marked decreases in Ba with increasing Nb (Fig. 5.4c),

reflecting the crystallization of feldspars, as well as an increase in incompatible trace
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elements including Zr, La, and Ga (Fig. 5.4d, e, f). However, the abundances of these
trace elements in the rhyolites remained virtually unchanged with increasing Nb. The
contrast in the fractional crystallization between trachytes and rhyolites is highlighted by
a Ca0-K,0-Na,O ternary diagram (Fig. 5.5), which illustrates trachytes move away from
the CaO apex, while rhyolite variation is parallel to the K;O-NayO join. This is most
readily explained by the crystallization of Ca-bearing plagioclase and clinopyroxene in
trachytes, and alkali feldspar crystallization in rhyolites.

The chondrite-normalized rare earth element (REE) patterns (Fig. 5.6a) are strongly
enriched in light REE (LREE) and have fractionated heavy REE (HREE). The rhyolites
have higher contents of LREE with (La), values of ca. 440-510 compared to the trachytes
with (La), ca. 270-430, while the trachytes have higher (La/Yb), ratios (ca. 8-11) than
thyolites (ca. 4-6). A similar relationship is observed for (La/Sm), which in the trachytes
is ca. 2.6-3.4 and in the rhyolites is ca. 2.2-2.6. The shape of the REE patterns of trachytes
does not change significantly, although the absolute abundances are escalating with the
increasing degree of differentiation. Such a variation, together with the presence of a
small but distinct negative Eu anomaly is consistent with low-pressure fractional
crystallization of common rock forming minerals including feldspars. The REE patterns
of the rhyolites are characterized by a pronounced negative Eu anomaly although the
shape of the patterns and the absolute abundances of the rhyolites vary in a narrow range.
Primitive mantle-normalized trace element patterns of both rock types (Fig. 5.6b) are
fairly similar. Both are highly fractionated and peak at Th-Nb, however rhyolites display

a strong, negative Ba, Sr, and moderately negative Eu anomalies, while the trachytes
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contain only slightly negative anomalies of these elements. This implies that the rhyolites
underwent a more extensive fractionation of feldspars compared with the trachytes.

The abundances of U and Th in the felsic rocks of the Cumberland Hill Fm are high
and variable (Table 5.1). Rhyolites display significantly higher contents of U (14 = 4.0
ppm, n=8, 10), and Th (33 + 3.1 ppm, n=8, 10) compared to trachytes (U= 2.4 + 2.4 ppm,
n=7, 1o; Th= 12 = 1.4 ppm, n=7, 10). As a result, the rhyolites also have a higher U/Th
ratio (0.44 = 0.13, n=8, 10) than trachytes (0.32 = 0.09, n=7, 15), which is comparable to
the whole-rock or melt inclusion data from peralkaline rhyolites of various U districts in
the world (Cuney and Kyser, 2009). The concentration of both Th and U are notably
higher in Cumberland rhyolites than exhibited in the Devono-Carboniferous rhyolites of
Nova Scotia where Th and U are averaging 18.3 and 4.6 ppm, respectively (Dostal et al.,
1983a) although the Nova Scotia rhyolites also have within-plate characteristics (Dostal
et al., 1983b).

In contrast to typical igneous rocks (sce Heier et al., 1965), there is no coherence of
radioactive trace elements with K since both the trachytes and rhyolites have similar
concentrations of K. In addition, the lack of correlation of radioactive trace elements with
Zr and Y suggests that primary accessory minerals such as zircon are not the principal
host of these elements (Dupuy and Dostal, 1983). These minerals are modally
insignificant in the rocks. Therefore, it is more plausible that U and Th are primarily

hosted as groundmass as suggested by their correlation with Ba and Sr.
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5.5. Petrogenesis
Overall the geochemical and mineralogical similarities of the spatially and temporally

associated trachytes and rhyolites imply they are genetically related. However,
discontinuous and/or contrasting variation trends and significant differences in
incompatible trace element ratios indicate the rhyolites were not derived from the
trachytes via continuous fractional crystallization, although fractional crystallization may
be responsible for the variations within the individual suites. The evolution of trachytes
involved crystallization of feldspars, clinopyroxene and Fe-Ti oxides, while the
fractionation of rhyolites was dominated by crystallization of alkali feldspar.

An alternative model to continuous fractional crystallization for the origin of the
rhyolites is assimilation-fractional crystallization. However, the low and overlapping
Th/Ta ratio of the trachytes and rhyolites (Fig. 5.7a), a sensitive indicator of crustal
contamination (Gorton and Schandl, 2000), demonstrates that assimilation-fractional
crystallization and crustal contamination processes cannot solely account for derivation of
the rhyolites from the trachytes. This is also supported by Nd isotope data of Pe-Piper and
Piper (1998), who reported an eng value of ca. 3.3 from the Cumberland Hill rhyolite.
Although the Th/La ratio, another sensitive indicator of upper crustal contamination, is
relatively high in the rhyolites (ca. 0.15-0.3), it suggests limited crustal contamination
occurred.

K/Rb ratios in trachytes are much higher than in rhyolites (Fig. 5.8a,b), which suggest
the evolution of the rhyolites may have been affected by fluids (Dostal and Chatterjee,

1995). Again, this mechanism cannot explain the origin of the rhyolites, but rather
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indicates that fluids played an important role during the evolution of these rocks and
perhaps even led to the mobilization of U (Cuney and Kyser, 2009; Nash, 2010) in the
rhyolites (Fig. 5.8b).

A comparison with similar rocks (e.g. Peccerillo et al., 2003) suggests the Cumberland
Hill trachytes and rhyolites could represent various stages of fractional crystallization
within an evolving alkali basaltic magma. Considering the Y-Nb-Ce diagram of Eby
(1992), it is apparent the rocks plot within the mantle derived source rock field (Fig. 5.7b)
and are similar to A-type granites (Fig. 5.7c). The absence of a negative Ta-Nb anomaly
suggests the parent magmas were not derived from subcontinental lithospheric mantle,
but more plausibly originated from asthenospheric mantle. The rhyolites were also
influenced partially by crustal contamination as indicated by the high Th/La ratio.

LaFleche et al (1998) and Pe-Piper and Piper (1998) described alkali basaltic rocks of
comparable age from other parts of the Maritimes basin. The presence of alkali gabbroic
rocks and lamprophyre dikes of a similar age (Johnson 2008) in the area suggests that the
felsic rocks of Cumberland Hill Fm could be derived from such a parent by fractional
crystallization. In fact, peralkaline felsic volcanic complexes are typically associated with
a shallow-seated alkaline intrusions ranging in compositions from gabbros to highly
fractionated granitic rocks. Although there is insufficient geochemical data available on
the mafic alkali rocks in the vicinity of the Cumberland Hill Fm, the chemical analyses of
alkali basaltic rocks reported by LaFleche et al. (1998) from the Magdalen Islands
indicate that similar basalts could have been a parent for the trachytes and rhyolites.

Trachytes of similar compositions have been documented to evolve from alkali basalts by
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extensive fractional crystallization (Peccerillo et al., 2003) and peralkaline rhyolites could
have evolved from such magma by further fractional crystallization in the magma
chamber. A likely scenario for the Cumberland Hill felsic rocks is that they are the
products of fractional crystallization of alkali basaltic magma, and that the trachytes and
rthyolites represent separate magma pulses with the latter being younger having
undergone more extensive fractionation prior to emplacement.
5.6. Economic Potential

Silica-oversaturated peralkaline felsic volcanic rocks, particularly rhyolites, are
frequently enriched in U and represent a potential source of uranium for volcanic-related
hydrothermal U deposits, such as the late Jurassic Streltsovka caldera located in
Transbaikalia, Russia near the Chinese-Mongolian border (Ischukova, 1997; Chabiron et
al., 2001, 2003; Cuney and Kyser, 2009; Nash, 2010). Uranium mineralization within
Streltsovka is generally isolated within the sandstones, conglomerates and rhyolitic tuffs
of the caldera, commonly isolated in subvertical veins and stockworks grading up to 0.6%
U;0g in large stockworks, and as high as 1.0% U3Os in veins (Chabiron et al., 2003).
Sediment-hosted U deposits may also occur in siliciclastic sedimentary basins, such as the
Jurassic Tim Mersoi basin in Niger, grading up to 0.11% U3Os in organic material
entombed in sandstone (Forbes et al., 1984; Forbes, 1989; Plant et al., 1999; Pagel et al.,
2005; IAEA, 2009).

The crystallization of U-bearing accessory minerals in highly polymerized peralkaline
melts is typically suppressed (Cuney, 2009; Cuney and Kyser, 2009) leading to

progressive enrichment of U in residual melts during fractional crystallization and
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entrapment of U in the glassy groundmass. Subsequently U can be leached during the
alteration or devitrification of the glass (Nash, 2010). Cuney (2009) and Cuney and Kyser
(2009) inferred that ignimbritic tuffs, in which U is hosted in the glass, are the most
favourable type of volcanic rock; such rhyolitic pyroclastic rocks are abundant in the
Cumberland Hill Fm.

The rhyolites of the Cumberland Hill Fm have relatively high abundances of U
compared to associated trachytes and may be a source of U mineralization. The U
concentrations in these rhyolites are elevated compared to similar felsic and mafic Late
Tournaisian—Early Viséan deposits of the Maritimes Basin (Magdalen Islands, 0.4-1.9
ppm; Central New Brunswick, 0.8-1.9 ppm; Cobequid Highland dykes, 0.2 ppm; Pe-Piper
and Piper, 1998) and Nova Scotia Devono-Carboniferous basalts (0.5-0.8 ppm; Dupuy
and Dostal, 1983) and rhyolites (~4.6 ppm; Dostal et al., 1983a,b). The abundances of U
in the rhyolites are comparable to the U concentrations of the peralkaline rhyolites of the
Streltsovka caldera (Fig. 5.6b), the largest, volcanic-related, U ore field in the world
(Cuney, 2009). Despite similar U concentration, it is important to consider where U is
hosted in rhyolites. When U is hosted in zircon or other resistant accessory minerals it
cannot be readily remobilized. Based on current geochemical work, it appears U is
present within the glassy groundmass of the Cumberland Hill rhyolites and can therefore
be released and redeposited and thus could be a source of U.

5.7. Conclusions
Although the geochemistry of the felsic rocks of the Cumberland Hill Fm is consistent

with both the plume and decompression melting models, other factors such as NNE-
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migration of the magmatism and deformation front are more consistent with the plume
model (Keppie and Krogh, 1999; Murphy et al, 1999). The high potential for U
mineralization related to the rhyolitic rocks of the Cumberland Hill Fm, and equivalent
exposed or buried formations on the New Brunswick Platform is perhaps the most
important aspect of this study as it furthers the economic viability of the region.
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Figure. 5.1. Map of Study Area. a) Map of Atlantic Canada depicting the Maritimes
Basin and its present erosional edge (adapted from Roliff 1962; Williams 1974; Bradley
1982; and Fyffe and Barr 1986). Major faults are indicated as dashed lines, study area is

indicated with a box, (b) Geological map of the Cumberland Hill area, southern New
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Brunswick (adapted from Smith, 2007). Minto Fm represents grey to red medium grained
sandstone with red mudstone with conglomerate and traces of coal, while the Minto Fm-
Hurley Creek Member is characterized by reddish brown coarse grained sandstone and
conglomerate interbedded with fine grain mudstones. The Cumberland Hill Fm volcanic
rocks contain rhyolitic and trachytic lavas and volcanoclastic rocks and minor feldspar

porphyry and red-brown lithic sandstone.
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Figure 5.2. (Na,O+K,0) versus SiO; ( wt. %) diagram of Le Maitre et al. 1989 for the
volcanic rocks of the Cumberland Hill Fm. Abbreviations: D — dacite; T — trachyte; R —

rhyolite.
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diagrams for felsic volcanic rocks from the Cumberland Hill Fm.
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feldspar played a role in rhyolites.
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Figure 5.6. Normalization diagrams. (a) Chondrite-normalized REE patterns of the
average of trachytes (n=7) and rhyolites (n=8) from the Cumberland Hill Fm. and rhyolite
from Streltsovka (n=1; Chabiron et al. 2003); (b) Primitive mantle-normalized multi-
element plots of the average of trachytes (n=7) and rhyolites (n=8) from the Cumberland
Hill Fm. and rhyolite from Streltsovka (n=1; Chabiron et al. 2003). Normalizing values

are after Sun and McDonough (1989).
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Figure 5.7. Discrimination diagrams for felsic volcanic rocks from the Cumberland Hill
Fm. (a) Diagram Yb (ppm) versus Th/Ta diagram of Gorton and Schandl (2000); WPVZ
= within plate volcanic zones; MORB = mid-ocean ridge basalts; WPB = within plate
basalts, (b) Plot of Y-Nb-Ce (Al granites with element ratios similar to the mantle,
whereas A2 are granites originated from continental crust or arcs), dividing line between
groups is from Eby (1992), (c) Y (ppm) versus Nb (ppm). Field boundaries are from
Pearce et al. (1984) as modified by Christiansen and Keith (1996); VAG-volcanic arc
granite; WPG- within plate granite; ORG- ocean ridge granite; syn-COLG -

syncollisional granite.
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Table 5.1. Major and trace element concentrations of Cumberland Hill trachytes and
thyolites. All values were obtained through ICP-MS, - symbol indicates value below

detection limits.

5.10. Summary of Contributions
This study involved the analysis of major and trace elements using XRF and ICP-MS,

equipment unavailable at Saint Marys. Rocks were sliced and chipped in preparation for
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geochemical analysis (TRG) and funded through grants (TRG, JD). All figures within this
manuscript were created by the primary author, aided by helpful suggestions of Malcolm
McLeod (Fig. 1). The original draft of this manuscript was completed during an
independent study, under the direction of Dr. Dostal. Subsequently, the co-authors made
large improvements to the original manuscript. Dr. Dostal and Dr. Keppie offered further
insight into the mantle plume theory and aided the petrologic discussion. Additionally, the
regional geology and lithology sections were enhanced by Malcolm McLeod. Final
revisions of the manuscript were completed by the primary author. Revisions of this
manuscript are currently complete as the submission is still in review with Atlantic

Geology.
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CHAPTER 6: CONCLUSIONS
To answer the original research question that initiated this thesis, it is clear that Harvey

and Piskahegan did not evolved from the same magmatic source, despite being similar in
age. While both are within plate granites, the Harvey Group formed by partial melting of
Juvenile crustal material and Gander aged basement rock. Continued fractionation of the
magma, and post-formation alteration created the unique REE, U-rich geochemistry of
the Harvey volcanics. The Piskahegan Group, formed from the melting of younger,
Avalon source rocks, and experienced significantly less fractionation and post-magmatic
alteration than Harvey.

Both deposits show very distinct trace and major element geochemical signatures as
studied via melt inclusions and whole rock. Harvey was enriched in LREE and Cs, B, U,
and Th compared to Piskahegan. Harvey was also highly fractionated, at least 95%, while
Piskahegan was only fractionated 70 - 92% as elucidated though the analysis of the Cs
content within melt inclusions. Increased fractionation, coupled with post-magmatic
water circulation, likely facilitated the elevated U mineralization at Harvey compared to

Piskahegan.

6.1. Addressing the Central Research Questions

The first research question was: “What was the original geochemical composition of
the Harvey formation and how did it evolve?”
The original geochemical composition of the Harvey calc-alkaline rhyolites was

deduced through melt inclusion analysis. Rock from the Harvey Group are classified as
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high silica, peralkaline rhyolites with limited concentrations of fluorine. Normalized
abundance diagrams indicated that silicate melt inclusions are slightly enriched in most
incompatible trace elements and significantly depleted in Ba, Sr, and Eu compared to
whole rock, with a slight enrichment of HREE relative to LREE. As identified above,
Harvey was also quite fractionated with large negative anomaly’s in Ba, Eu, and Sr,
indicative of feldspar fractionation.

Whole—rocks are depleted in MgO and TiO,, likely related to accumulations of
oxides, plagioclase feldspar and or mafic inclusions. Whole—rocks are enriched in HFSE
(Nb, Hf, REE, Th, U) except Ta. Harvey remains enriched in HREE compared to LREE
according to continental crust normalized diagrams, however both chondrite and
primitive mantle normalized diagrams indicate a flat REE pattern. Mineralogical
investigations revealed that Harvey rocks are quite altered, and geochemistry indicates
that remobilization has occurred.

While the magmatic geochemistry offered insight into the element concentrations of
the melt, radiogenic and oxygen isotopes were required to elucidate the nature of the
source material. Slightly positive eng values indicated partial melting of juvenile crustal
material and Gander basement rock. Continued fractionation of the magma, and post-
formation alteration processed created the unique REE, U-rich geochemistry of the
Harvey volcanics. The formation of Harvey was facilitated by lithospheric thinning,
during which a pulse of basaltic rich magma may have provided the heat required. This
result was supported by Hf isotopes which indicated a source composed of both depleted

mantle (i.e. MORB) and crustal material.
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The second research question was: “How does the geochemistry of the Cumberland
Hill Formation compare to other deposits within southern New Brunswick and what
impact does this have on our current understanding of the geological history of the
Maritimes?”

The rocks of the Cumberland Hill Fm can be subdivided into two groups, trachytes and
peralkaline rhyolites. Both have lower SiO,, equivalent alkalies, and lower Cao
compared to Harvey or Piskahegan rhyolites. Major and trace element concentrations
vary significantly in the trachytes and rhyolites of Cumberland Hill due to the high degree
of fractionation exhibited within rhyolites. The chondrite-normalized REE patterns
indicated Cumberland Hill volcanics are strongly enriched in LREE and have fractionated
HREE, with rhyolites more enriched in LREE overall. The abundances of U and Th in the
felsic rocks of the Cumberland Hill Fm are low compared to Harvey or Piskahegan,
although all three formations exhibit concentrations notably higher than exhibited in the
Devono-Carboniferous rhyolites of Nova Scotia.

The Cumberland Hill trachytes and rhyolites likely represent various stages of
fractional crystallization that coincided with an evolving alkali basaltic magma. The
parent magma was probably derived from asthenospheric mantle that was influenced
partially by crustal contamination. Alternatively, it has been hypothesized that trachytes
and rhyolites from the Magdalen Islands, with similar geochemical composition were

derived through fractionation of alkali basaltic. However, without further geochemical
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work ascertain the nature of the source material, the nature of the petrogenesis within this
deposit is still largely speculative.

Igneous rocks are sparsely scattered throughout the Maritimes Basin, and seem to
decrease in volume throughout the Devonian to Permian. The Cumberland Hill Fm
formed at approximately the same times as many alkalic mafic formations in New
Brunswick (e.g. the Hardwood Ridge, Royal Road and Queenstown basalts), and the
tholeiitic-alkalic mafic rocks of the Cap aux Diables Fm in the Magdalen Islands, all of
which have within plate characteristics. Interestingly, the mafic rocks of the Magdelen
Islands have an HIMU-OIB Pb-isotopic signatures that suggests origin related to either a
mantle plume or decompression melting. The location of the Cumberland Hill Fm
supports the hypothesis that a mantle plume migrated northwards from southern Nova
Scotia at 380-370 Ma, through northern Nova Scotia at 365-355 Ma, and finally reaching

the Magdalen Islands in 335 Ma.

The third research question was “What economic potential lies within the U deposits of
Southern New Brunswick?”

Based on this body of research, it is evident the province of New Brunswick is host to
a variety of deposits with considerable economic potential, not only in previously
explored commodities such :<1s gold, molybdenum, and tin, but also uranium. The
abundances of U and Th in the felsic rocks of the Cumberland Hill Fm are low compared
to Harvey or Piskahegan. However, both Harvey and Piskahegan contain significantly

larger concentrations of U and Th than other rhyolite deposits in Nova Scotia (ex. Fisset
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Brook, McAras Brook, Upper Byers Brook, Middle Diamond Brook, Horton Group,
Murphy Brook, Fountain Lake Group).

While it is clear none of these deposits are co-magmatic, the presence of such elevated
concentrations of uranium, and REE imply that either the mantle, or crust in this region
contains anomalously high concentrations of these elements. Therefore, similar deposits
may exist in this region, although it is unclear at present time where they may be located.
Additional melt inclusion and radiogenic isotope work could help constrain the nature of
the source material and aid in locating additional economic deposits within southern New
Brunswick, or possibly within Europe, Nova Scotia, and Newfoundland considering the
tectonic history of the Maritimes Basin.

6.2. Environmental Implications

The rocks analyzed within this study all contained U within a devitrified groundmass,
and therefore over time, U could have been eroded from these source rocks. Erosion is
facilitated by water, which is capable of transporting U®" within oxidized waters, that
once reduced, precipitates U*'(i.e. pitchblende, uraninite). How far U is transported is
entirely dependant on the climate of the region (i.e. precipitation), nature of host rocks
(i.e. permeability) and how long before reducing conditions are met. Given the extremely
large half like of U (4.5x10° years), it is possible for U to travel large distances, becoming
hosted in multiple different sources over time. As a result, a significant portion of the U
previously isolated within Carboniferous volcanics is currently localized in
conglomerates and red-bed type deposits, particularly in reduced traps including roll-

fronts, coal-rich shales, bogs and even tree trunks. This implies that despite the push to
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cease exploration for U due to health concerns, dangerous concentrations may already be
present throughout New Brunswick (i.e. shallow wells). Figure 6.2.1. illustrates the
occurrence of U mineralization within New Brunswick. The previously discused Harvey
and Piskahegan Groups, located south of Fredericton are characterized as stratabound
volcanics, and are relatively rare considering U distribution within the province. Given
that the most significant accumulations of U mineralization exist near the provinces most
populated cities (Fredericton, Moncton and Saint Johns), the large concentrations of U
identified within Piskahegan, Harvey and Cumberland Hill should be considered
cautiously, as they represent significant volumes of U that could be remobilized to

surrounding regions.
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Figure 6.2.1. Map of New Brunswick uranium occurrences (modified from New
Brunswick Natural Resources, 2010). Note that symbols may represent more than one U

deposit within that area.
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CHAPTER 8: APPENDIX

Additional figures and tables not submitted for publication can be found in section
below with all figures and table therein following similar format to the general style of

peer-reviewed journals.

8.1. Additional Figures
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Figure 8.1.1. Residual total field magnetic survey of southwestern New Brunswick

using 200m grid spacing. Data from Natural Resources Canada/ Geological Survey of
Canada. Harvey and Mount Pleasant outcrop areas have associated, strong positive
anomalies, as do the plutons to the south (i.e. Western Saint George Batholith and related,

smaller plutons). Continuous positive anomalies between Harvey and Mount Pleasant
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could hypothetically be caused by 1) Additional volcanic centers 2) Buried plutons

beneath Carboniferous cover.
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Figure. 8.1.2. 9"0Quartz (%o SMOW) isotopic values of Harvey and Piskahegan

compared to the global average of igneous rocks. Error bars represent 26 of error.
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F igur 8.1.3. Cathode Luminescence (b, d) and Backscatter images (a, c) of zircons from

Sample NB07-17.

8.2. Additional Tables
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Formation Unit aﬁ: Coortinairs Description
EAR R o piak flow banded (weak) wgnimbrise, Ickispar-phyrse, ¢m stz¢ ¢lasts
NBO7-02  14544°02.5" N/ 67 00 40.6™ W [pink flow banded (weak) ignimbrite, feldspar-phyric, cm size clasts
NBO7-03  [4544 038" N/ 67 001.9° W  |piak flow banded {weak) ignimbrite, feldspar-phyric, o size clasts
NBOT-04  [4544° 025" N 67 00 406" W |pink flow banded (weak) ignimbrite, feldspar-phyric, cm size ¢lasis
NBO7-0S |45 44023 N/ 67 00 40.5" W |pink flow banded (wesk) ignimbrite, Teldspar-phyric, ¢m size clasts
NBO7.06 (4544 02.3" N/ 6700 0.5 W |piek flow banded (weak) ignimbrike, feldspar-phyric, cm size clasts
. " , v |ipRimbrite and u g red sediments/ Y, basal contact of
NBOT-07 |45 43 574" N/g7O1 074w [0 T wm:"" L
N " , w e | Hmimbrite and undertying red sediments/tuff, basal contact of
NBOT-0B  [454¥ 574" N/ 6T 0P 07.4° W ignimbrite exposed
= INBOTO9 (4543 S8I"N/6701'05.5" W |pink-orange very fine grained rhyolite from projection at base
= INBOT-1D (4647 SKI"N/GTOID55"W pink-omnge very fine grained ryolite from projection a2 base
g NHOT-11 |46 43 SB.1" N/ 67 01' 055" W | pink-omnge very fine grained ryolite from projection st hase
NBOT-12  |4643 $5.1"N/6TUI 055" W |pink-orange very fine grained rhyolite from projection at base
NBO7-13 (4543 595" N/ 67 01 017" W |red valcanigenic sedimem
NBOT-I4  |4543 595" N/6T701'01.7" W |red volcmigenic sediment
NBOT-1S  [4543 SO N/&T 00 $1.3" W |pink ignimbrite with less Baime
NBOT-16  [4543 5647 N /67 OF 38.6" W |dark pink, weakly flow-banded rhyolite
NBOT-17 {4543 SLA™ N /6T O 30.5" W |quartz-Feldspar poephyty, pink matrix, quartz and feldspars
NBOY-18  [4643 $1.47 N /67 00 30.5° W |exmusive chyoline
oS NBOT-19 4543 S1.4" N/ 67 00 20.4" W lhynliif: clasts up to 2-4 cm"ks.s povphyritic {also other, smakier clasts
- m”hﬁ i ml!::}pomhy Ise other, smatler cl
= , .y " e ¢ ugh bo 2-4 ¢, rritic {also othex, smatler clasts
NBOT-X0 (4543 SEA" N A7 00 2000 W ish) rare very fine grained)
& RBO7T-21 |48 44 100" N (66 97 12.6° W | pisk-whale Fhyolite, vory. fine gramned and coarse gramed
4 INBOT-2IB [4544° 102" N/ 66 3 126" W |pink-white rhyolite, very. fine grained and cosrss grained
g NBO7.22  [464F 337N/ 6700 31L.3°W |rivolite
NBO7-23 45437 327" N /67 00 306" W | flow banded
£ NBOT-24 (46437 3277 K67 00 306" W |more massive
S NBOT.25  [4540 0897 N/ 6T 05 43.5" W |lbaminaed rhyolie
NBO7.31 3533 21 5" N/ 66 41" 48.0" W |dhyolite
NBO7-26 |45 40 19.0° N /6705 43.3° W |breoviated
NBO7-17 {4540 094" N/ 67 05 416" W |breccisted
NBOT-28 (4590 09.3" N/ 6T 05 40.4° W | breeciared
outcrop of felsic voleaniclastic congh sand-pebblc-bould
A INBOT29 (4540 038" N 6705 459" W |sized clasts, poordy sonted and bedded, sub rounded 1o sub angular, one
E targr boukder sized clast
§ weakly fiow-banded rhyolite, pinkdark purple-rod, Bow-banded
thyolite { Nlow banding nearly vertical), very vuggy, breeciated fracture
NBO7-3)  [4542° 464" N/ 6T 01 384" W |iills, vugs and fractunes filled with: drusg quanz {dominant)), and sitica.
barite, and parple and (rare) green fluorite, shieration is exiensive, rare:
2 Scm sized basalt {dant grey), amygdaloidal ded inclus

Table 8.2.1. Sample locations and description of rocks from Harvey and Piskahegan
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Formadion Unit

Sample

Big Scott Maundain’

RHETIIR |
NBD7-32B
NBO7-32C
NBOT-32D
NBO7-32E
NBU7-32F
NBO7.32G
NBOT-32H
NBO7.321
NBO7-32)
NBOT-32K
NBOT-32L
NBO7-32M
NBO7-32N
NEO?-320
NBO?-32P
NBOT-320

Coardinates

45 3Y LS N/ GG 4104500 W
A3V AN 64100 W
453¥ 215" NGO Al 4807 W
453 LS NGO AL AR W
SV 2SN G BOW
4533 215" N /6641 480" W
453X AN 66 AL AR W
4533 215" N Gh Al 4B0" W
A53F NS NI66 414807 W
453X 25 NGB AL I W
4533 205" N G4 4800 W
453N SN/ G641 AR0° W
A3V 0A" N BEA B EW
4533 204" N 6641 438" W
4533 204° N/ 6641438 W
4533 204" NGO 41 38 W

Description

quariz-clhspar poTpYTY
quartz-feldspar porphyry
quartz-feldspar porphyry
quartz-feldspar porphyry
quartz-feldspar porphyty
quanz-feldspar porphyry
quaniz-feldspar posphyry
quartz-feldspar pomhyry
quartz-feldspar porphyry
quartz-fekdspar porphyry
quartz-feldspue pomphyry
quartz-feidspar porphyry
quariz-feldspar porphyry
quarte-febdsgar porphyry
quartz-feldspar porphyry
quarnz-feldspar pophyry
quarte-feldspar posphory

feldspar and quastz pomphyTytic, med. Grey-pink with dark grey-green fine
gradned malfic inclusions, mid-way:, brocciated quartz veins with cbeddod
quaariz crystals, clay adteration, more mafic

feldspar snd quanz porphyrytic, med. Grey-pank with dark groy-green fine
grained mafic inclusions, mid-way, brecciated quartz veins with ebedded
quartz crysals. clay sticration, more aafic

feldspar and quastz porplyrytic, med. CGrey-pimk with dark grey-green fine
grained mafic inclusions, mid-way, breccinted quanz veins with embodded

NBOT-J3A [4532° 392" N/ 6642 168 W

NBO7.33B [4S 32 392" N/ 6hd2 6.8 W

Piskabegan

NBOT-3IC 14532 W N 6b 42 168" W

NBO?-33D

A532 WA N AhAY 1RITW

quartz crystals, clay alteration, moee mafic
ehyolite-more felsic and pink

MeDougnll Brook

NBUT-34A |
NBOY-MB
NBO7-34C
NBOT-35A
NBOT-35B
NBOT-35C
NBOT-35D
NBO?-35E
NBOT.35F
NBOT-36

NBOT-37

NBO7-3TA
NBO?-37B
NBO?-101
NBGT-102
NBO?-103

T IT BT N GhAT BT W
4537 A N/ERAT IR W
53T IRIN/GHAT IBI"W
4537 IR NGA AT IKIW
GEITIEI NGO AT IS W
ASITBINGIUSISW
ASIVMINGHI LW
AN BT
S L NI AT W
530206 NBH N W
45 30 1597 N 6636 LT W
45 340 1597 N/ 66 36 SLT W
SIS NBE W ILTW
45 25 D6.B" N7 66 46 J05" W
45 2R 0687 N Bb 46 30,50 W
45 25 DOBT N 66 46 305" W

rhiyolite-mane felxic and pink

rivwolise-more felsic and pink

shyolite-siore lelsic and pink

rhovolite-mare felsic amd pink

rhyodise-morc felsic and pink

dyyolite

rhvolize

weakly vesicular dark grey andesite of basalt
weakly vesicular dark grey andesite or basalt
weakly vesicular dark grey andesite or hasalt
phywic rhyelite

phywic rhyalite

phync rhyolite

granitc

grenite

granite

Table 8.2.1. Continued 1
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Formatiom Unit  Sample Cooedinates Description
M M I N/ ST W [vesicular basadt
£ | NBO7-38B 145 34 226" N /66 34 $3.9° W |vesicular basalt
§ NBOT-3C |45 34' 22.6° N/ 66 34 439" W {vesicular basalt
NBOT-71  |4533 257" N/ 66 36' 018 W | vesicular basaht -« deeply weathered reddish-brown
NBOT-72 {4833 20.7° N/ 66 36' 015" W | vesicular basalt — deeply weathered roddish-brown
WBOT39 |46 M 15.9° N/ 66 36 2.7 W Jrhyoliw
E 2 |NBo7.73 |45 34 59.0" N 66 35 165" W | rhyolise
o B.[NBOTIY 14533 40.4° N 66 4 03,7 W | rhyolitic and basaltic boulders
3 E INB07.7R' |45 33 49.4" N/ 66 40 03.7° W |rhyolitic and basaltic boulders
NKBOT-7' |48 33 49.4° N/ 66 90 03,7 W {rhyolitic and basaltic boulders
S NBOT-30 4549 2927 N/ 65 0F 123" W | shale with fish scales
T |NBOT4)  [4549 29N 650Y 123 W silistone
WBOTAT |35 79 34.6° N/ 66 04 25.0° W | porphyrmic rhyalite
a [NBOT43 45294177 N6 44 550" W [quaniz-febdspar porphyry with Nlow-banded rhyolite
% NBOTH? 4525 0107 N2 66 47 5455 W {hyoline
L |NBOT.9B 45250107 N 6647 SASTW |rhyolise
= [NBOT-9%  [4525 26.8° N 66 46 4437 W | rhyolive
g NBOT-100 |45 25 26.8° N/ 66 86° 44.3° W |chyolite
= [NBOT-104 45250 09.5° N 66 44 053" W |rhyoline
T |NBOT-105 (4528 12.0° N/ 66 34 109 W | quartzsfeldspar porphyry
= |nBo7-106 4528 1207 N2 66 34 1057 W |guana-feldspar porphyry
NEOT-107 |45 27 56.2° N 66 44 53.5° W {rhyelite
NBOT-44 |45 19 52.5° N/ 66 44 58.0° W |rhwolitic boulders
NBOT-45 |45 29 52.57 N/ 66 48 $5.0" W | rhyolitic boulders
NOOT-$6 |45 20 54.0° N/ 66 49 51.7° W | thyalitic boulders
NBOT-47 4529 S7.8" N/ 66 48 581 W | rhyoditic boulders.
NBOT-$9 |45 My 30.0" N 66 42 25.1° W | rhyolitic boulders.
NBOT.-50 |45 My 36.3" M/ 66 47 122" W | hyolitic boulders
NBOT-S! 14530/ 36.3° N2 66 47 122 W {rhyolitic boulders
NBOT-52° |45 36 31.3° N/ 66 42 03.0° W | rhyoitic boulders
B INBOTS0 45323397 N2 66 42 29" W |rhyolitic boulders
& |NBoTRI [4532°33.97 N 6642 289" W [rhyolitic boulders
NBOT-E2 14532 1707 N/ 66 42 443" W | chyulitic boulders
MBOT-81 J45 32 15,5° N 66 42 457" W | rhyolitic boulders
NBOT-54 |45 32 1557 N/ 66 42 457" W | rhyoditic boulders
NBOT-RS {4531 44.2° N/ 66 47 36,1 W |rhyolitic boulders
NBOT-56 |45 29 35.5° N/ 66 46 27.5° W | rhyalitic boulders
NBOTRT |48 20 358 N a6 46 27,57 W | rhyolitic boulders
NBOT-8¢ 4528 49.7° W66 MY 4.7 W {rhyolitic bouldens
NBOT-90 |45 28 49.7° N7 66 9 347 W | rhyolitic boulders

Table 8.2.1. Continued 2
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Piskahegan

&

Formation Uit Samgle Coordinies Dexcription
3 . ¥ 1
NBOT-53 45 30 4247 N/ 66 47 42.7°W |rhpolive
NBOT.SA 14530 4247 N/ g6 A2 W [rivolite
NBOT-S3 14330 1427 N /60 4 166" W [basall / andesite
NBO7-56 45 21 14.2° N/ 66 40 16.6" W |basalt / andesite
NBOT-57 |45 31 1427 N 766 44 16.6" W |basalt / andesite
NBOT-5§ 145 30 1427 N 766 47 166" W [basalt / andesite
NBOT-S9 |45 31 14.2° N /66 40 166" W |basalt / sndesie
NBOT-6D {45 31 14.27 N/ 66 40 16.6" W |basalt / andesite
NBOT6E {45 31 1427 N /66 40 16.6" W |basalt / andesite
§ [NBovs2 45300647 N 66 40 10.5" W [busalt/ andesite with selphides
§ [MBOT63 1330 064" N6 40185 W Joasal  andesite with sulphides
£ INBoTes 4330 427 N ss s 365 W |ehyoline
X [nBorss 45300 2037 N6k 40317 W [rlyolite
§ NBOT-66 |45 30 284" N/ 66 407 319" W |rhyolise
KBOT-6T 145 30 077 K 7 66 40 2047 W Jbasalt ¢ andesite rubblc
NBOT6E |45 30/ 046" N/ 66 40 11.5" W [bumalt / andesite boubders
NBOTO |45 300 0547 M 66 40 11.1° W [basalt / andesite boukders
NBOT-TD {45 MY 02.6° N/ 66 4709 5" W {bwsal unconformity-related sk thyobite conghomerate
NBOT-UE |48 28 17.00 N 66 S0 174 W [basalric strcam boulder
NBOTHZ |45 28 00.4° N/ 6 47 S0 W frbyelite
NBO7.93 |45 38 00.4" N /66 49 592" W |yolite / andesite (dark )
NBOT-94 14527 50.4° N 66 01 87 W |riwwolise? subcrop / bosilders
NBOP-95 14827 30.47 %66 SO W [ohyoice:? suborop ¢ boulders
NBOT96 |45 27 5047 N /66 SO 01LE" W Jebryolite” suberop  bouldens
T INBGI.94 (4557 594 N6 W 3 T W [basaitic boubders
5 NBOT-75 |48 34 021 %66 4P 311°W |basaltic, febdspar-phyric boulders
NBO7-76 14530 027 N /66 W 3107 W [basaltic, feldspar-phyne boulders
g NBO?-10% {45 39 4837 N 66 3T 23 2% W [highly albcred thyolae, pyrockastis. of basah?

Table 8.2.1. Continued 3.
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m - LR 5 4 p. 2 Fid kR X4 3 14 n 7 7 e 14 i - I
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= 10 .51
R 45 #H P L ¥ 200 278 ME I T M4 M7 M3 ME O IR I WS L1}
Oy 4 R H 0 w0 H o0 2 180 L] [ el 12 10 2
B 6is b1% A S aEe AT M 460 433 s34 473 A3 SA3 sID A3Y A2 SR L)
M BN 714 50 k4 16K 167 143 a4 IS4 131 el 148 13% 4% 133 138 135 143
L1l 40 s
Ga %0 in 15 15 ¥ 9 184 16 16 % 16 1% £ L 15 1] i k5
Ta 244 .. )

Nb P00 300 2 2D 24 20 M4 XD 2D 08 N0 220 Xy IR 07T 26 130 124
Hf 74 T.h

FA T i3 <31 9 3R 30 3T 2 OMT W T4 MR BE W0 M3 M0 2RI MR
Y Iy Mg 430 dbD 30 450 300 480 430 451 43D 50 4HO SD S 4KD 450 470

Th s e Mo 34 WD 360 B0 30 XIS Mo Mo 3Ny W0 MO0 0 340 a0
u - - 100 130 140 160 M@ 130 HO 335 130 0D M0 130 455 130 240 140
ta - MO 12D TED 600 4B J05D AR 560 S0 3D D 430 S0 406 A4S0 B0 RO
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Table 8.2.2. Major and trace element whole-rock data from Piskahegan. Major clements
and compounds were analyzed using XRF. * Representative samples were analyzed for
trace elements concentrations via ICP-MS. Values are not normalized to 100%, - symbol

indicates no data available or below detection limits.

136



Kicel {m=3) M Dougall Bevok Ciranite (n=20)

ALD. 146% 1433 Wb 13T I38M 1383 B0 IR93 LMY 1200 119% 1331 B329 134 BANT 15w AT
Fe:0, 1390 147F 1341 418 de6r 414 L& Lot 133 13% L3F 42 513 475 462 KA 24
Ms(} DI 028 28 G o St s 0D G403 006 DM G Q08 DOE A0 4 62
Mg  39F IR 413 033 DR4 BAR 03 05} 0 0 DI a7 (B ES6 140 346 R3S
Cor 799 235 10) [ B 1 0 B3y 43 T ke 1Y) I 9% 4 48 R0
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Mc Dowgall Brook Granite (n=20) m Scoultar Mountain (=193
{n=13"
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Cherry Hidl KBO™ 13 (0~ 1)) Harvey Mountain. NBOT.31(n=13)

35 @s6 30 31 30 2} 313 Rl 32 2% 23 26 25 24 11 26 34

N0 it 2% k3
ALO, [H] L 13 15 13 14 IS 13 16 15 ik i3 13 5 i3 14 14 4 17
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F - - . - 00 B - @Hm - - - 00 B2 002 042 0 00} 043 o
Si 041 D40 DE 0dl 041 041l O4F 0 D3 041 DAL 041 041 G4F D4 04l CG4l 04 D39
ke - - - am - - - - - - B - - - - - - - -
s - . . . . . . . R . . . . . . . . . .
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Sotal D.;H 0.3% U.;"i (1'3') 0.% D58 0% ﬂ.;? D,;‘) 0.5 D,:':H 0.5 0.5 03% 457 ll;l! (L‘S\l L5 Q6D
Table 8.2.3. Harvey major and trace element data analyzed by electron microprobe of

melt inclusions hosted in quartz phenocrysts. — symbol indicate no data available.
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Harvey Mountain- NBO7-31(n=13}

York Mills NBO7-30 (n=7)

9 10 11 12 13 1 2 3 4 5 6 7

RO 6.6 49 26 012 025 6.1 5.0 6.0 6.2 60 65 9.3
NoO 27 23 003 005 013 33 43 33 34 33 34 15
Al O 15 12 33 0.6 1.0 15 19 15 15 13 16 I8
MnO 007 017 - - 0.02 - 006 002 - 002 0.4 0.01
Cal 0.19 027 0061 001 001 0.69 29 053 035 048 0.7 1.6
TiO; - - - - 0.04 006 031 005 000 007 008 002
$Si0» 75 78 94 99 98 73 66 4 74 73 013 66
FeQ 071 203 006 003 017 13 19 1.3 031 143 036 016
S0 0.01 00} - 002 - 001 01l 002 003 - 0.02 057
Cr:0s 0.01 - - . 0.0 001 001 - - - - -
MgO - - - - - 001 011 001 < 002 - 0.02
NiO o001 002 - 013 - 0.01 003 00 - 004 -
Total 100 100 100 100 100 100 - 100 100 100 106 100
003 012 000 . 016 073 0I5 045 015 016 028
Al 0.10 008 0.02 - 0.01 0.10 013 0.0 010 010 010 0.2
Mn - - B B - B B - - - -
Ca - .2 - - - - o0
Ti . . . . R . . . . .
F 002 002 - - - . 003 001 00 - 002 00}
Si 041 042 048 050 0 040 037 040 041 040 040 017

Fe - 0.01 - - - 001 001 001 - 0.0} - -
S - - - . - - - - . - N -
Cr - - - - - - - - - - - -
Mg - . - - - - - - - -
Ni - - - - - B - - - - - B
Total 058 057 052 050 050 0359 061 059 059 059 059 062

Table 8.2.3. Continued 1.
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— Peskahegan ~
Bailcy Rock. NBOT-39 (n=12) Bajlcy Rock NB07-78 (a=8)

i3 s s e 0 8 9o i W2 1 2 3 4 3 8 7 2
RO 63 61 68 63 65 65 70 74 63 65 63 22 44 74 61 60 66 63 61 39
NoO 29 29 29 28 27 32 29 28 27 27 27042 13 30 25 3% 31 31 31 31
ALO, 15 14 14 14 14 15 M4 15 M 14 14 15 15 15 M4 44 15 15 15 1S
MzO 002 001 D04 002 003 003 003 003 002 005 001 003 006 003 003 DOl 003 001 002 0.05
Ca0 042 040 041 032 032 008 0.06 008 035 042 020 023 16 086 042 061 082 031 042 081
TH: 021 042 0.12 016 0.23 008 0.4 024 017 0.43 0.17 011 027 042 011 €13 0.17 0.I8 014 018
S0 7% % 75 15 76 75 74 M 77 15 %6 K MW 73 77 4 T 18 1575
FcO 039 0.26 028 14 028 021 086 072 029 031 031 031 315 061 015 039 026 0.35 032 0.5

SO, 001 - - - o - 00l 0.0} 0.01 000 - D03 04 - 004 002 001 ONN
0. - - - - - - - - - - - - - - 00l 001 - - - -
MgO - - < 003 - - 025 006 001 - . - 01% 001 - 002 - - - -
NiO 004 . . - 002 -~ D02 - 602 003 - -~ 002 001 002 003 001 - 002

Towl 100 100 10 10D 100 100 100 00 100 [00 100 100 100 100 DD 100 10¢ 100 100 100

Ct 041 0408 0.2 615 010 0.94 043 01 010 010 007 008 013 0.1 014 014 017 013 012 0.14
Al 009 009 0.09 000 DOO GO9 008 0.0V 609 009 009 008 010 010 009 009 010 0.1¢ 010 010

. P T e L R
s - - - - - . ... ... wmon - - - - -

- « a -

F 0o 000 001 - . 002 001 002 002 0D 000 001 001 002 001 - GO0 00 00t 002
5 041 041 04! 041 DAl G4 041 041 042 D41 041 043 040 040 041 041 040 041 D31 041
Y T X
S - - - - - - - - -
Cr . . - - - - - - . - - - - - - - B - -
MS . - . - - " . . - - . - - - - - . . .
Ni . . . . . . . . . . . . . . R . . . . .
Total 0.5% 0.58 0.58 O.58 038 058 059 059 058 058 058 0.54 057 059 0658 0.59 059 0.58 058 0.38

Table 8.2.4. Piskahegan major and trace element data analyzed by electron microprobe of

melt inclusions hosted in quartz phenocrysts. — symbol indicate no data available.
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