
Ontology-Independent and QOS-enabled Dynamic Composition
of Web Services in Business Domains

by

Rui Ding

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia,
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Applied Science

April 8, 2011, Halifax, Nova Scotia

Copyright Rui Ding, 2011

Approved: Dr. Dawn Jutla
Supervisor
Department of Finance, Computing
Information Systems & Management
Science

Approved: Dr. Nur Zincir-Heywood
External Examiner
Faculty of Computer Science
Dalhousie University

Approved: Dr. Stavros Konstantinidis
Supervisory Committee Member
Department of Math and Computing Science

Approved: Dr. Michael Zhang
Supervisory Committee Member
Department of Finance, Computing
Information Systems & Management
Science

Approved:

Approved:

Date:

Dr. Muhong Wang
Program Representative

Dr. Jason Clyburne
Graduate Studies Representative

April 23, 2011

I

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-75793-2
Our file Notre reference
ISBN: 978-0-494-75793-2

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• • •

Canada

Table of Contents
List of Tables iv
List of Figures v
Acknowledgements vi
Abstract vii
Abstract vii
Chapter 1 1
Introduction 1

1. 1 Research Objectives 2
1.2 Thesis Organization 2

Chapter 2 3
Literature Review 3

2.1 Semantic Web, Ontology, Web Service and Owl-S 3
2.1.1 Semantic Web 3
2.1.2 URI and Unicode 7
2.1.3 XML, NameSpace, and XML Schema 8
2.1.4 RDF and RDF Schema 9

2.2 Web Services 17
2.2.1 Web Service Architectures 18
2.2.2 Web Services Stack and Related Technologies 19
2.2.3 Semantic Web Services 23

2.3 Service Composition 24
2.3.1 Methods for Dynamic Service Composition 26

Chapter 3 33
System Design and Methods 33

3.1 System Design 33
3.2 Methods for Similarity Measurement 36

3.2.1 Syntactic similarity 37
3.2.2 Semantic similarity 39
3.2.3 Operational similarity 44

Chapter 4 50
Implementation 50

4.1 Tools involved in the implementation 51
4.2 The Factors for Performance Evaluation 52
4.3 JUDDI and web services 54

4.3.1 Publish to JUDDI registry 54
4.3.2 Present semantic information and QoS parameters in UDDI registry 56
4.3.3 Find web services 59

4.4 Load and parse the input 62
4.5 Implementation of the proposed service matching method 63
4.6 Implementation of the E-Workflow composition method; 65
4.7 Implementing the MOACO algorithm 69
4.8 Implementation of dynamic web service composition 72
4.9 Addressing Global QoS Constraints 76

Chapter 5 80
Results Evaluation 80

5.1 Experiments 80
5.2 Results 81

5.2.1 Overhead Examination 86
5.2.2 Best Composition Solution 91
5.2.3 Global QOS Constraints and Possible Composition Solutions 95

ii

Chapter 6 97
Conclusions and Future Work 97

6.1 Future Work 101

in

List of Tables

Table 2.1 OWL sublanguages 15
Table 5.1 Detailed Execution times for each major step 89
Table 5.2 Algorithm calculation times for each approach 91
Table 5.3 Capability to find the best solution 92
Table 5.4 Possible solutions comparision 95

IV

List of Figures

Figure 2.1 Architecture for Semantic Web [Berners-Lee, 2000] 7
Figure 2.2 Web Services roles, operations and artifacts [Gruber, 1993] 18
Figure 2.3 Web Services conceptual stack [Gruber, 1993] 20
Figure 2.4 Working principles of UDDI [Fensel, 2001] 22
Figure 3.1 System architecture 34
Figure 3.2 Service discovering process, questions and possible solutions 35
Figure 3.3 Web service integration 40
Figure 3.4 fragment of race ontology. 41
Figure 4.1, Apache Tomcat application server manager page 52
Figure 4.2 screenshot of JUDDI console page 55
Figure 4.3 100 web services published to the private UDDI registry 55
Figure 4.4 UDDI core data structures and their relationships 57
Figure 4.5 Structure Diagram for businessService entity 57
Figure 4.6 CategoryBags to store semantic info and QoS parameters in a UDDI registry 58
Figure 4.7 Sample Input File 62
Figure 4 8 Fragment of wine ontology 67
Figure 4.9 pseudo code for MOACO algorithm 70
Figure 4.10 pseudo code for global update of IPSi 71
Figure 4 11 Pseudo code for building a path (referenced in Fig. 4.9.) 71
Figure 4.12 Structure diagram for WSDL 75
Figure 4.13 Web service instance selection graph [Fang, 2009] 78
Figure 5.1 atypical raw result of an experiment run 82
Figure 5.2 Sample results comparison form 83
Figure 5.3 Total execution time comparision results 84
Figure 5.4 Total Execution time comparision without Google Distance 87
Figure 5.5 Detailed Execution times for each major steps (comparision chart) 90
Figure 5.6 Algorithm calculation times for each approach (comparision chart) 91
Figure 5.7 Illustration of E-Workflow Operational Matching Step 94

V

Acknowledgements

To my supervisor Dr. Dawn Jutla

This thesis would not have been possible without your encouragement,

guidance, and invaluable help

To my Wife Xiao

Your patience and support sailed me through it all.

To my beloved parents Jiazheng & Ligu

Your unconditional love and encouragement were my guiding star.

Nothing would ever suffice to repay your endless sacrifices.

To my Daughter Lorna & my Son Bryan

Your lovely smiles are the origin of my strengths and courage.

VI

Abstract

Ontology-Independent and QOS-enabled Dynamic Composition of Web

Services in Business Domains

By Rui Ding

Abstract: This thesis proposes a novel and high-performance ontology-independent
approach and methods for Quality of Services (QoS)-enabled dynamic web services
discovery and composition. One proposed method uses Google distance for calculating
semantic similarities instead of using the state-of-the-art ontological-based approaches in
the semantic matching stage. A further new method is architected for the QoS operational
matching stage of web services discovery. Moreover, the thesis proposes a hybrid
approach to dynamic web services composition, called FOIQOS, consisting of using a
prescriptive system for web services discovery and composition. Another problem the
thesis addresses is the absence of comparisons of existing QoS-enabled composition
approaches in the literature. To compare the new methods proposed in the thesis,
FOIQOS and three other approaches for QOS-enabled dynamic web services composition
were implemented. Experimental results show that the proposed FOIQOS approach
significantly outperforms its ontology-based and heuristic-based method counterparts, in
terms of both increased accuracy and reduced overhead.

April 23, 2011

Vll

Chapter 1

Introduction

The Quality of Service (QoS)-based services computing environment is rich and

complex with theoretical proposals and implementation workarounds. Approved

standards do not yet exist for QoS-enabled web service composition although many

methods have been proposed in the past decade (e.g. Ponnekanti and Fox, 2002, Cardoso

and Sheth, 2003, Wu et al, 2003, Liu et al, 2005, Karunamurthy et al, 2006, Thissen and

Wesnarat, 2006, Fang et al, 2009). Some methods (e.g. Cardoso and Sheth, 2003, Wang

et al, 2006, Ye and Zhang, 2006) can use or rely on ontological reasoning, for identifying

service concepts and their properties, within service discovery which would be useful in

domains where ontologies exist. However, ontologies are absent or poorly maintained in

many domains, including business and public policy domains. Automated reasoning over

a badly maintained ontology is not useful, creates new problems, and certainly incurs

overhead in terms of delay.

Hence for the many situations that lack a well-defined ontology, this thesis proposes a

Flexible Ontology-independent and QOS-enabled (FOIQOS) approach, for automatically

discovering and selecting web services for composition that incorporate QoS parameters

to meet predefined application-level QoS objectives.

Moreover, trade-offs among methods for QoS-enabled dynamic web service

compositions are not readily understood as direct scientific comparisons of these methods

are absent from the literature. This thesis fills that gap.

The main purpose of this thesis is to explore an ontology-independent approach for

l

dynamically composing web services that incorporate QoS parameters to meet predefined

QoS objectives. Furthermore, the thesis provides direct comparisons of the author's

approach and other approaches for dynamic web services composition.

1.1 Research Objectives

(1) Propose an ontology-independent approach to automatically discover web

services which are then dynamically composed to meet application-defined QoS

objectives;

(2) Compare the thesis's methods with other types of QoS -enabled web service

composition methods to evaluate their relative performance and understand their tradeoffs.

1.2 Thesis Organization

The thesis organization is as follows. Chapter 2 introduces the background

literature. Chapter 3 presents a design of a proposed ontology-independent approach for

web service composition, reviews methods in the approaches selected for comparison,

and proposes relevant methods. Chapter 4 describes the implementation environment for

the proposed and comparative approaches. Chapter 5 presents the results of the proposed

method and its peers. The final chapter offers a summary and conclusions.

2

Chapter 2

Literature Review

This chapter provides relevant background literature spanning web services

research. First, the concepts of web services and semantic web services are introduced.

Then principles of service composition, available tools, and methods for dynamic service

composition are reviewed.

2.1 Semantic Web, Ontology, Web Service and Owl-S

2.1.1 Semantic Web

The Semantic Web is a vision for the future of the Web, in which information is

given explicit meaning, making it easier for machines to automatically process and

integrate information available on the Web.

"What is the Semantic Web?" There is no clear definition. Tim Berners-Lee gave the

description as following: "The Semantic Web is an extension of the current web in which

information is given well-defined meaning, better enabling computers and people to work

in cooperation" [Technology Investigation Center, 2003]. From the above description, we

can obtain the following meaning: the Semantic Web is the next generation of the World

Wide Web, which can be understood and automatically processed by machines.

After learning the origin and development of the Semantic Web, we realize that Al

(Artificial Intelligence) integrated with Web technologies resulted in the Semantic Web.

The fundamentals of the Semantic Web are the formalization and conceptualization of the

3

knowledge and the relevant ratiocination. It has a consanguineous relationship with

Artificial Intelligence. So, most of the analyses of the Semantic Web are considered using

Al technologies. The knowledge in the Semantic Web is a series of descriptions and

modeling of the resources. Resource here is a comprehensive conception. A Resource is

anything that can have a URI (Uniform Resource Identifier). It could be a web site, a web

page, or even a part of a web page. It uses symbols and expressions to describe the

resource, other resources related with it, and the relationship between them. Traditional

knowledge-representation systems such as an Al system typically have been centralized

and each has its own narrow and particular set of rules for making inferences about its

data. In contrast, in the semantic web, knowledge and its representation may be provided

by vast amounts of people or organizations through various manners [W3C, 2005].

Further, knowledge can be understood by various applications and reasoning under the

instructions of certain logic rules.

Currently, Web content is formatted for human readers rather than programs. HTML

is the predominant language to create web pages. A portion of a typical Web page of a

physical therapist might look like this:

<hl>Agilitas Physiotherapy Centre</hl>

Welcome to the home page of the Agilitas Physiotherapy Centre.

Do you feel pain? Have you had an injury? Let our staff

Lisa Davenport, Kelly Townsend (our lovely secretary)

and Steve Matthews take care of your body and soul.

<h2>Consultation hours</h2>

Mon 1 lam - 7pm

4

Tue 1 lam - 7pm

Wed 3pm - 7pm

Thu 1 lam - 7pm

Fri 11am - 3pm<p>

But note that we do not offer consultation during the weeks of the

<a href-'.. .">State Of Origin games. [Grigoris, 2004]

For people, the information is presented in a satisfactory way, but machines will have

problems. Keyword-based searches will identify the words physiotherapy and

consultation hours. An intelligent agent might even be able to identify the personnel of

the center. But it will have trouble distinguishing therapists from the secretary, and even

more trouble with finding the exact consultation hours (for which it would have to follow

the link to the State of Origin games to find when they take place). The semantic web

approach to solving these problems is not the development of super intelligent agents.

Instead it proposes to solve the problem from the Web page side. In addition to containing

formatting information aimed at producing a document for human readers, they could

contain information about their content. In our example, there might be information such

as

<company>

<treatmentOffered>Physiotherapy</treatmentOffered>

<companyName>Agilitas Physiotherapy Centre</companyName>

<staff>

<therapist>LisaDavenport</therapist>

<therapist>Steve Matthews</therapist>

5

<secretary>Kelly Townsend</secretary>

</staff>

</company>

This XML representation is far more easily process-able by machines. It is a kind of

metadata. The term metadata refers to such information: data about data. Metadata

capture part of the meaning of data, thus the term semantic in Semantic Web.

Web Applications on the web need to communicate with each other. Most of the

machine readable information passed between those applications is descriptions about the

resources on the web. According to the descriptive level, web information can be

partitioned into several ranks [Jinghua, 2005]. The lowest rank, rank 1, is the raw data in

the real life; Web page source information is located at the rank 2 (see HTML example

mentioned above); metadata or patterns of the information resource is in rank 3; Logic

reasoning and rules proof is in the highest rank. We can see the lower the rank, the more

detailed and concrete the data is, therefore it is more suitable for human to process. In

contrast, the higher rank data is more abstract, thus it is better for machines to process

automatically. The data on the World Wide Web is disorderly and unsystematic. The

information content and the information representations are lumped together. It is difficult

to make use of the data because data with different "ranks" are not treated

discriminatingly. To avoid the same problem, a logical architecture is necessary to

Semantic Web. Figure 2.1 shows the architecture for the Semantic Web given by Berners-

Lee [2000].

Rules Trust

Data Proof

Data Logic

Ontology vocabulary

RDF + rdfschema

£,

fO
C
Oft

* § N M >

ro

*5>

XML + NS + xmlschema

Figure 2.1 Architecture for Semantic Web [Berners-Lee, 2000]

2.1.2 URI and Unicode

According to Figure 2.1, the lowest layer of the architecture for the semantic web is

the encoding layer. The semantic web adopts the URI (Uniform Resource Identifier) to

identify resource and its properties. A URI can be further classified as a locator, a name,

or both. The term URL (Uniform Resource Locator) refers to the subset of the URI that

identify resources via a representation of their primary access mechanism (e.g., their

network "location"), rather than identifying the resource by name or by some other

attribute(s) of that resource. The term "Uniform Resource Name" (URN) refers to the

subset of the URI that are required to remain globally unique and persistent even when

the resource ceases to exist or becomes unavailable [Berners-Lee, 1998a]. In addition,

since the final objective of Semantic Web is to build a global information network, all

kinds of languages and character information need to be covered. So, it adopts Unicode as

the solution for the character encoding question. URI and Unicode is the foundation of

the Semantic Web. It solves the problems of how to locate the resource on the web and

how to encode all kinds of characters. In a word, the Unicode and URI layers ensure that

we use international characters sets and provide means for identifying the objects in

Semantic Web.

2.1.3 XML, NameSpace, and XML Schema

The second layer is the grammar layer. It is well-known that HTML had a

tremendous contribution to the development of the Web. But with further development of

the web, HTML is not sufficient any more. So, XML was used as the grammar of the

Semantic Web. [Technology Investigation Center, 2003] HTML is used to display data,

and it focuses on how data looks. While XML is designed to describe data and it focus on

what data is. XML stands for Extensible Markup Language. It is a complement to HTML.

With XML, data can be stored in separate XML files. Using this way people can

concentrate on using HTML for data layout and display, and be sure that changes in the

underlying data will not require any changes to HTML. Unlike the HTML, the tags and

the structure of XML are not predefined; people can define their own tags. That's what

"Extensible" stands for. The most useful advantage of the XML is that the data converted

to XML can be exchanged and shared between incompatible systems [W3Schools, 2005].

Because XML tags can be freely defined by the author, there must be some unavoidable

situations, in which the different tags have the same name. To solve this problem, W3C

introduced the NameSpace mechanism. For example, a user can add an xmlns attribute to

the <table> tag:

<f:table xmlns:f="http://www.w3schools.com/furniture">

8

http://www.w3schools.com/furniture

It indicates the tag <table> is specified in the NameSpace represented by F:

http://www.w3schools.com/furniture

Hence, even if other persons define the <table> tag also, as long as their NameSpace

is different, there will not be a conflict. In short, the XML layer with namespace and

schema definitions makes sure we can integrate the Semantic Web definitions with the

other XML-based standards. At this layer, XML gives the format for data exchanging,

however, from a computational perspective, XML tags like <table> has no essential

difference with HTML tag <H1>. A computer does not know what a table is. That means

XML documents do not have any semantics.

2.1.4 RDF and RDF Schema

The third layer is metadata layer. XML provides the grammar for the web

information encoding, while the Resource Description Framework (RDF), as its name

implies, is a framework for describing and interchanging metadata. RDF is designed to

represent information in the Web in a minimally constraining, and flexible way.

Resource Description Framework is built on the following rules [Grigoris, 2004]

[W3C Recommendation, 2004a]:

1. Resource: which is anything that can have a URI; this includes web sites, web

pages, or even a part of a web page, as well as individual elements of an XML

document.

http://www.w3schools.com/furniture

2. Property: which is a Resource that has a name and can be used as a property to

describe attributes and characteristics of a Resource, for example Author or Title

of this paper.

3. Property value: which is the value of a Property, for example "Report" is the value

of Title property. A property value can be another resource.

4. Statement: RDF identifies things using Web identifiers (URIs), and describes

resources with properties and property values. While the combination of a

Resource, a Property, and a Property value forms a Statement. A Statement is the

concrete descriptions of a Resource. Usually it can be described by using a

<S,P,0> triple. Here S (Subject) denotes a particular thing (people, Web pages or

whatever), P (Predicate) denotes the properties of that thing (such as "is a sister

of," "is the homepage of) , and O (object) denotes the certain values of P

regarding S (such as another person, another Web page).

In describing RDF statements, square brackets are used to denote RDF resources,

containing a name for the resource. RDF properties are shown as labeled arrows from

subject to object:

[SubjectName] —propertyName—> [ObjectName]

Any complex system can be simplified to an aggregation of <S, P, 0> triples. For

example:

<rdf:RDF>

<rdf:Descriptionabout="http://www.rfcs/rfc2396.html">

10

http://www.rfcs/rfc2396.html

<k:author> Tim Berners-Lee </k:author>

</rdf: Description>

</rdf:RDF>

The above XML code makes the assertion: the author (Predicate) of

http://www.rfcs/rfc2396.html (Subject) is Tim Berners-Lee (Object), which can be

described as RDF statement:

[http://www.rfcs/rfc2396.html] -author~> [Tim Berners-Lee]

However, RDF just defines several basic modeling primitive. It doesn't provide the

Property of its own. As shown in the above example, it didn't clarify the constraint that an

author should be a person. Fortunately, RDF-Schema, an extension of RDF, further

defines class hierarchies and property domains and data ranges. Simply speaking, RDF is

domain-independent. RDF Schema provides a mechanism for describing specific domains.

Classes in RDF Schema are much like classes in object oriented programming languages.

This allows resources to be defined as instances of classes, and subclasses of classes. For

example, if we wish to say that the class "lecturer" is a subclass of "academic staff

member". How to describe it by using RDFS? Remember that RDF allows one to express

any statement about any resource, and that anything that has a URI can be a resource. So,

first, we define resource lecturer, academicStaffMember, and subClassOf, and then define

subClassOf to be a property, and then write the triple (subClassOf, lecturer,

academicStaffMember) [Grigoris, 2004]. All these steps are within the capabilities of

RDF. So, an RDFS document (that is an RDF schema) is just an RDF document, and we

11

http://www.rfcs/rfc2396.html
http://www.rfcs/rfc2396.html

use the XML-based syntax of RDF.

RDF Schema is a primitive ontology language. It offers certain modeling primitives

with fixed meaning [W3C Recommendation, 2005]. However, RDF plus RDFS is still not

powerful enough for representing full semantics. There is a need for more powerful

ontology languages that expand RDF Schema and allow the representations of more

complex relationships between Web objects.

2.1.5 Ontology Vocabulary

Layer 4 is the glossary layer. The extension of RDF Schema, Ontology, is layer 4 of

the Semantic Web Architecture. RDF Schema can define class, subclass relations,

property, subproperty relations, and domain and range restrictions. So, in a sense, RDF

Schema is a kind of simple Ontology language. However the expressiveness of RDF and

RDF Schema is very limited: RDF is roughly limited to binary ground predicates, and

RDF Schema is limited to a subclass hierarchy and a property hierarchy, with domain and

range definitions of these properties. [W3C Recommendation, 2005] While the number of

characteristic use-cases for the Semantic Web identified by the Web Ontology Working

Group of W3C requires much more expressiveness than RDF and RDF Schema offer.

Therefore we need an ontology layer on top of RDF/RDFS.

The most famous and frequently referenced definition about ontology is:" ontology is

an explicit specification of a conceptualization. The term is borrowed from philosophy,

where Ontology is a systematic account of Existence. For Al systems, what "exists" is

that which can be represented. When the knowledge of a domain is represented in a

declarative formalism, the set of objects that can be represented is called the universe of

12

discourse. This set of objects, and the describable relationships among them, are reflected

in the representational vocabulary with which a knowledge-based program represents

knowledge. Thus, in the context of Al, we can describe the ontology of a program by

defining a set of representational terms. In such ontology, definitions associate the names

of entities in the universe of discourse (e.g., classes, relations, functions, or other objects)

with human-readable text describing what the names mean, and formal axioms that

constrain the interpretation and well-formed use of these terms. Formally, an ontology is

the statement of a logical theory." [Gruber, 1993]

N. Guarino and P. Giaretta (1995) gave the similar definition: "an ontology is an

explicit, partial account of a conceptualization/ the intended models of a logical

language."

Fensel analyzed the above definition and summarized it to four words: [Fensel, 2001]

• 'conceptualization': an abstract model of a phenomenon,

• 'formal': a precise mathematical description,

• 'explicit': the precision of concepts and their relationships clearly defined,

• 'shared': the existence of an agreement between ontology users

The Ontology layer is on top of the RDFS primitive class-property descriptions. It

supports the evolution of vocabularies as it can define relations between the different

concepts. Ontology provides a bridge to exchange semantic information and share the

concept among different intelligent entities. It is the pivot in the layers of the semantic

web. Furthermore, it can use Ontology languages, such as OIL (Ontology Inference

Language), DAML (DARPA Agent Markup Language), KIF (Knowledge Interchange

Format), SHOE (Simple HTML Ontology Extensions), XOL (Ontology Exchange

13

Language), and OWL (Web Ontology Language), to write explicit, formal

conceptualizations of domain models.

2.1.6 Logic, Proof and Trust

By using RDF/RDFS and Ontology languages, we can provide the descriptions to

Web resources. But these descriptions are not enough, as web applications based on

semantics need to reason from these descriptive knowledge based on some rules. This

kind of reasoning capability is provided by logic. Logic has a well-understood formal

semantics, and it can provide a high-level language in which knowledge can be expressed

in a transparent way. The aim of the logic layer is to provide a method to describe the

rules, [Berners-Lee, 1998b] in such a way so that rules can be exchanged across different

applications. DLML (Description Logic Markup Language) is a language to express rules.

It encapsulates the connections of description logics through the DTD, and is able to

embed formal knowledge in description logic in documents. [DLML, 2003]

The Proof layer involves the actual deductive process as well as the representation

of proofs in Web languages (from lower levels) and proof validation. Finally, the Trust

layer will emerge through the use of digital signatures and other kinds of knowledge,

based on recommendations by trusted agents or on rating and certification agencies and

consumer bodies. Sometimes "Web of Trust" is used to indicate that trust will be

organized in the same distributed and chaotic way as the WWW itself. Being located at

the top of the pyramid, trust is a high-level and crucial concept: the Web will only achieve

its full potential when users have trust in its operations (security) and in the quality of

information provided. [Grigoris, 2004]

14

2.1.7 OWL

The OWL (Web Ontology Language) is designed for use by applications that need to

process the content of information and perform useful reasoning tasks on the information

instead of just presenting information to humans. It is developed from the DAML+OIL

and has become the standard web ontology description language recommended by W3C.

OWL facilitates greater machine interpretability of Web content than that supported by

XML, RDF, and RDF Schema (RDF-S). It provides additional vocabulary along with a

formal semantics, such as Local Scope of properties, Disjointness of classes, Boolean

combinations of classes, Cardinality restrictions, and so on. According to the different

requirement, OWL has three increasingly-expressive sublanguages [W3C

Recommendation, 2004b], as shown in the following table:

Table 2.1. OWL sublanguages

Sublanguage

OWL Lite

OWLDL

Description

supports those users primarily needing a
classification hierarchy and simple
constraint features.
OWL DL (Description Logic) includes
all OWL language constructs with
restrictions that how the constructors
from OWL and RDF may be used, such
as type separation. It supports those
users who want the maximum
expressiveness without losing
computational completeness (all
entailments are guaranteed to be
computed) and decidability (all
computations will finish in finite time)
of reasoning systems. OWL DL was
designed to support the existing
Description Logic business segment and

Example

supports cardinality constraints,
and it only permits cardinality
values of 0 or 1.
a class may be a subclass of
many classes, a class cannot be
an instance of another class.

a class cannot also be an
individual or property, a property
cannot also be an individual or
class

15

OWL Full

has desirable computational properties
for reasoning systems.
The entire language is called OWL Full
and uses all the OWL languages
primitives. It supports users who want
maximum expressiveness and the
syntactic freedom of RDF with no
computational guarantees. It allows an
ontology to augment the meaning of the
pre-defined (RDF or OWL) vocabulary.
It is too powerful for a reasoning
software to support it completely.

a class can be treated
simultaneously as a collection of
individuals and as an individual
in its own right.

As we know, OWL builds on RDF and RDF Schema and uses RDF's XML-based

syntax. Consider the relationships between the three sublanguages of OWL and RDF.

OWL Full can be viewed as an extension of RDF, while OWL Lite and OWL DL can be

viewed as extensions of a restricted view of RDF. Every OWL document is an RDF

document, and every RDF document is an OWL Full document, but only some RDF

documents will be a legal OWL Lite or OWL DL document.

Users should consider several rules when choosing which sublanguage best suits their

needs. The main rules are listed as following:

• The choice between OWL Lite and OWL DL depends on the extent to which

users require the more-expressive constructs provided by OWL DL.

• The choice between OWL DL and OWL Full mainly depends on the extent to

which users require the meta-modeling facilities of RDF Schema (e.g., defining

classes of classes, or attaching properties to classes).

• When using OWL Full as compared to OWL DL, reasoning support is less

predictable because complete OWL Full implementations will be impossible.

[W3C Recommendation, 2004b]

16

The detailed language features and specific syntax are defined at

http://www.w3.Org/TR/2004/REC-owl-features-20040210/#sl.3. So they will not be

discussed in this report.

2.2 Web Services

A Web service is an interface that describes a collection of operations that are

network-accessible through standardized XML messaging. A Web service is described

using a standard, formal XML notion, called its service description. It covers all the

details necessary to interact with the service, including message formats (that detail the

operations), transport protocols and location. The interface hides the implementation

details of the service, allowing it to be used independently of the hardware or software

platform on which it is implemented and also independently of the programming

language in which it is written. This allows and encourages Web services-based

applications to be loosely coupled, component-oriented, cross-technology

implementations. Web services fulfill a specific task or a set of tasks. They can be used

alone or with other Web services to carry out a complex aggregation or a business

transaction. [Heather, 2001]

Web services combine the best aspects of component-based development and the

Web. Like components, Web services represent functionality that can be easily reused

without knowing how the service is implemented. Unlike current component technologies

which are accessed via proprietary protocols, Web services are accessed via ubiquitous

Web protocols such as HTTP, using universally-accepted data formats such as XML.

[W3C Recommendation, 2005] Any type of application can be offered as a Web service.

Web services are applicable to any type of Web environment: Internet, intranet, or

17

http://www.w3.Org/TR/2004/REC-owl-features-20040210/%23sl.3

extranet. Web services can support business-to-consumer, business-to-business,

department-to-department, or peer-to-peer interactions. A Web service consumer can be a

human user accessing the service through a desktop or wireless browser; it can be an

application program; or it can be another Web service.

2.2.1 Web Service Architectures

There are three roles in the Web service architectures: service provider, service

registry and service requestor. The interactions among three roles involve publish, find

and bind operations. Figure 2.2 illustrates these operations, the components providing

them, and their interactions.

Figure 2.2 Web Services roles, operations and artifacts [Gruber, 1993]

The service provider is the owner of the service. From an architectural perspective, it

is the platform that hosts access to the service. The service requestor is the business that

requires certain functions. From an architectural perspective, it is the application that is

18

looking for and invoking an interaction with a service. The service requestor role can be

browser-driven by a person or a program without a user interface, for example another

Web service. The service registry is a searchable registry of service descriptions where

service providers publish their service descriptions. Service requestors find services and

obtain binding information (in the service descriptions) for services. [Gruber, 1993]

As shown in Figure 2.2, three operations are defined in the Web Service architectures:

Publish, Find, Bind. [Gruber, 1993]

• Publish. To be accessible, a service description needs to be published so that the

service requestor can find it.

• Find. In the find operation, the service requestor retrieves a service description

directly or queries the service registry for the type of service required.

• Bind. In the bind operation the service requestor invokes or initiates an

interaction with the service at runtime using the binding details in the service

description to locate, contact and invoke the service.

2.2.2 Web Services Stack and Related Technologies

To perform the three operations of publish, find and bind in an interoperable manner,

there must be a Web Services stack that embraces standards at each level. Figure 2.3

shows a conceptual Web Services stack. The upper layers build upon the capabilities

provided by the lower layers. The vertical towers represent requirements that must be

addressed at every level of the stack. The text on the left represents standard technologies

that apply at that layer of the stack.

19

WSFL

Static —*- UDDI

Direct — ^ UDDI

WSDL

SOAP,

HTTP. FTP, email,
MQ, HOP, etc.

Figure 2.3 Web Services Conceptual Stack [Gruber, 1993]

The foundation of the Web Services stack is the network. Because of its ubiquity,

HTTP is the standard network protocol for Internet-available Web Services. Other

Internet protocols can be supported, including SMTP and FTP.

The next layer, XML-based messaging, represents the use of XML as the basis for

the messaging protocol. SOAP (Simple Object Access Protocol) defines a standard

communications protocol for Web Services.

The service description layer is actually a stack of description documents. WSDL

(Web Services Description Language) is used for base-level service description. WSDL is

an XML document for describing Web Services. WSDL can be created manually by

XML editors or automatically by special tools like Java2WSDL from existing service

interfaces.

UDDI (Universal Description, Discovery and Integration) is a standard mechanism to

20

register and discover Web Services. Although UDDI is often thought of as a directory

mechanism like "yellow page", it also defines a data structure standard for representing

service description information in XML and provides a Web based user interface to

publish and query business information.

The publication of Web Services includes the production of the service descriptions

and the subsequent publishing. A service description can be published using a variety of

mechanisms. UDDI is the most often used mechanism for service publication and

discovery.

The discovery of Web Services includes the acquiring of the service descriptions and

the consuming of the descriptions. Acquiring can use a variety of mechanisms. Like

publishing Web service descriptions, acquiring Web service descriptions will vary

depending on how the service description is published and how dynamic the Web service

application is meant to be. Service requestors will find Web Services during two different

phases of an application lifecycle-design time and runtime. At design time, service

requestors search for Web service descriptions by the type of interface they support. At

runtime, service requestors search for a Web service based on how they communicate or

qualities of service advertised.

21

I
1 Software companies.
standatcrs bod es, ana
programmers populate the
registry with aesertotions
o' different tModels

1, Businesses popu'ate the
rogistry with cescriptions of
the sorv cos they support

UDDI business registry

. Business
registrations

Services type
[registrations

4 F/arketp^aces, soared
e-nginos. and busness
apps que«y the registry
to discover services at
other companres

3. UDDI ass'gns a
programrnalleahy unique
identifier (UUID) to each tModel
and business registration and
sto*es an Internet registry

5. Businesses us© this data to
facilitate easier Integration wwtn
•jach other over the Web

Figure 2.4 Working principles of UDDI [Fensel, 2001]

Figure 2.4 depicts how to send a message to the registry center, and how customers

can discover and use the services. UDDI registry center is based on the data offered by

the customers. As shown in Figure 2.4, there are several steps to make the best use of the

data in the UDDI. When a service provider (software developers or business) wants to

make the service or tModel available to service consumers, it describes the service using

WSDL and registers the service in a UDDI registry. A technical specification is modeled

as a tModel. A tModel can model many different concepts, such as, a type of service or a

platform technology. The UDDI registry will then assign a UUID to each service or

tModel and maintain pointers to the WSDL description and to the service. When a service

consumer wants to use a service, it queries the UDDI registry to find a service that

matches its needs and obtains the WSDL description of the service, as well as the access

point of the service. The service consumer uses the WSDL description to construct a

SOAP message with which to communicate with the service.

22

2.2.3 Semantic Web Services

"The Semantic Web is an extension of the current web in which information is given

well-defined meaning, better enabling computers and people to work in cooperation."

[Berners-Lee, 2001]

Web services are Web-based enterprise applications which are accessible over the

Web and have interfaces that can be called from another program. A Web service is

registered and can be located through a Web Service Registry, such as an UDDI Registry.

Web services communicate by passing messages to each other, and support loosely

coupled connections between systems. A Web service is described using a standard,

formal XML notation, called its service description. Service description languages, such

as the mainstream Web Service Description Language (WSDL), covers all the details

necessary to interact with the service, including message formats (that detail the

operations), transport protocols and location. [Systinet Corp., 2003]

The Semantic Web service is an integrated technology for the next generation of the

Web. It combines semantic web technologies and web services and aims at turning the

Internet from an information repository for human consumption into a world-wide system

for automatic and distributed Web computing. The major difference between semantic

web services and "regular" web services is that the descriptions of the semantic web

services are well-defined in computer-interpretable forms. This will enable the

automation of Web service tasks, including automated Web service discovery, execution,

composition and interoperation.

23

2.3 Service Composition

Web services communicate by passing messages through interfaces. This enables

developers or users to compose autonomous services to achieve new functionality. There

are two types of Web services: simple and composite. Simple services are Internet-based

applications that do not rely on other Web services to fulfill consumers' requests. A

composite service is defined as a composition of outsourced Web services (called

participant services) working in order to offer a value-added service. Actually, it is

difficult to solve a real problem by using only a simple service. Service composition

accelerates rapid application development, service reuse, and complex service

consummation. It also reduces business risks since reusing existing services avoids the

introduction of new errors.

There are two types of services compositions: static composition and dynamic

composition. With static composition, the role of each participating service and the

logical flow of messages between them are pre-defined by the developer manually at the

design time. BPEL4WS (Business Process Execution Language for Web Services)

[Andrews, 2003] or WSCI (Web Service Choreography Interface) [Mcllraith, 2001], for

example, are primarily designed for supporting this approach. While with dynamic

composition, services to be composed are decided at the run time.

Static composition can support complex interaction patterns such as branch and loop,

but it lacks adaptability therefore is not suitable for customers' changing requirements.

Because the participating services may be collected from the inter organization domain,

public or external, the accessibilities of each participating service may not be certain, and

hence the composed service may not be guaranteed to be executable.

24

While with dynamic composition, given an ultimate goal and specified parameters

for evaluating successful composition, the solution automatically generates the logical

flow, identifies the candidate services, and composes them together. It is flexible and can

be adaptive to different customer requirements and different environments.

Most methods to realize automated or semi-automated composition fall in the realm

of workflow composition or Al planning. The definition of a composite service includes a

set of simple services together with the control and data flow among the services. That is

similar to a workflow. On the other hand, dynamic composition generates the plan

automatically.

Different methods provide different levels of automation in service composition,

but that does not mean the higher automation the better. Workflow methods are usually

used in the situation where the requester has already defined the process model, but an

automatic program is required to find and compose the simple services to fulfill the

requirement. Al planning methods are used when the requester has no process model but

has a set of constraints and preferences, and hence the process model can be generated

automatically by the program.

A composed Web process can be executed either via a centralized approach or a

distributed approach. The centralized approach is based on the client/server architecture,

with a scheduler, which controls the execution of the components of the Web process.

The controller/scheduler invokes a Web service, gets the results, and based on the results

and the Web process design specification, the controller then invokes the next appropriate

Web service. The distributed approach is more complex, in which each Web service hosts

a coordinator component to share the execution context and collaborate with other

25

coordinators to realize the execution. The distributed approach usually is achieved

through peer-to-peer communication or using agent based solutions.

2.3.1 Methods for Dynamic Service Composition

Dynamic service composition uses the notion of a semantic web service and

methods for dynamically composing them. The major difference between semantic web

services and regular web services is the descriptions of the semantic web services are

well-defined in computer-interpretable forms. This will enable the automation of Web

service tasks, including automated Web service discovery, execution, composition and

interoperation.

Typically, the process of dynamic composition includes the following five phases:

publication of simple services, translation of the definition language, generation of the

composition process model, evaluation of the composite service, and execution of

composite service. Several methods to realize automated or semi-automated composition

have been proposed in the last decade.

In [Mcllraith, 2002], a Golog-based1 method to compose web services is

presented. The authors adapt and extend the Golog language to perform automatic

composition by applying logical inference techniques on pre-defined plan templates. The

user's requirements and constraints can be presented by the first-order language of the

situation calculus - Golog. The authors extend it to support sensing actions that can find

values of variables at runtime. Essentially, Golog-based systems are user-provided plan

Golog is a high-level logic programming language developed at the University of Toronto, for the specification and
execution of complex actions in dynamical domains It is based on a formal theory of action specified in the situation
calculus, a first-order logic language for representing dynamically changing world by reasoning about actions and
changes [Lesp'erance, 1997]

26

templates which are modified based on user preferences at runtime. The final plan is

generated automatically but the templates are not automatically built.

SWORD [Ponnekanti, 2002] is a developer toolkit for web service composition.

In SWORD, a service is modeled by its preconditions and postconditions and represented

by a rule expressing that given certain inputs, the service is capable of producing

particular outputs. A rule-based expert system is then used to automatically determine

whether a desired composite service can be realized using existing services. SWORD

uses an Entity-Relation (ER) model to describe web services and does not support any

existing service-description standards such as WSDL and OWL-S.

Semantic E-Workflow Composition [Cardoso, 2003] talks about service

composition in workflow systems. A workflow is an abstraction of a process. It is built

using components called tasks or activities. The design of traditional workflow

application selects the appropriate tasks from a workflow repository which contains

modest number of tasks therefore the process is humanly manageable. The authors of

[Cardoso, 2003] devised an algorithm to discover and select appropriate web services by

using a feature-based model to find similarities. Issues about how web services can be

integrated into workflows by syntactic, operational metrics, and semantic integration of

inputs and outputs are also discussed in [Cardoso, 2003]. More details about the feature-

based model can be found in Chapter 3.

SHOP2 [Wu, 2003] is HTN-based planner for composing web services. HTN

(Hierarchical Task Network) planning is an Al planning method that creates plans by task

decomposition. "This is a process in which the planning system decomposes tasks into

smaller and smaller subtasks, until primitive tasks are found that can be performed

27

directly." [Wu, 2003] The authors find that the concept of task decomposition is similar to

the concept of composite process decomposition in OWL-S process ontology. The

authors also give a very detailed description on the process of translating OWL-S to

SHOP2. HTN planner is more efficient than other planning language such as Golog.

However, the SHOP2-based composition requires an assumption that each simple service

either produces outputs or effects but not both. This can distinguish between information-

gathering services and effect-producing services. To meet this assumption, each service

used for composition has to produce only outputs or only effects.

There are over a dozen proposals in the literature developing QoS ontologies to

play a part in web services composition. See Tran [2008] for a useful tabulation of eight

of them. Seven of these proposals do not provide support comparison of QoS values

while WS-QoSOnto [Tran 2008] provides weak support. Some QoS ontologies are

blurred with domain ontologies and these suffer more from maintenance issues. The pure

QoS ontologies can provide complementary infrastructure to FOIQOS for similarity

matching when more complex QoS parameters are considered such as security. Although

there are WS protocols, such as WS-Security, that can handle this issue.

In [Ye, 2006], the author introduced a novel and very interesting approach to

perform the matching between a web service and a request by using mappings between

web services and the domain ontology. The basic idea is to simply replace the terms in a

description (could be web service description or request description) by the concepts

defined in the domain ontology. By this means, both service descriptions and request

descriptions can be formalized by the concepts within the same domain ontology and

therefore the matches could be more easily and precisely. A thing should be noticed is

28

that the range (e.g. 100<price<200) defined in a constraint should be formalized also. The

paper realized this by converting all numerical constraints into "interval sets". By using

this kind of annotation mechanism, the matching between a web service and a request is

converted to the matching between their semantic annotations. However, to support the

annotation mechanism, a set of preprocessing steps should be taken before web service

publishing and discovering. Specifically, before the publishing phase, the following

preprocessing should be finished: extract the functional descriptions of a web service

from its definition documents; formalize the functional descriptions through the

annotation mechanism; build the mapping between web services and the ontology. In a

similar manner, before the discovering phase, the functional descriptions should be

extracted from a request and formalized to the semantic annotations.

A current UDDI registry only provides keyword-based discovering methods,

which are not strong enough to meet the application needs. The simplest way to publish

semantic information of a service and service properties like QoS is to register T-models

which refer to the external description files. However, this approach has very poor

efficiency. [Liu, 2005] proposed a domain oriented UDDI registry architecture. An

external centralized database to store service-related information and service properties is

used in this architecture. The interesting and useful idea in this architecture is: they

assume all the services belong to the same category of the taxonomy would have the

similar characteristics. So a service property schema, regarding the service properties,

constraints and semantic information, is defined for each category. All the services

published in a category share the same service property schema. For service discovering,

a service requester can get the service property schema based on the category of the

29

requested service and then perform searching based on the properties defined in the

schema. The major advantage of this idea is the properties used in discovering are not

fixed. It is definable according to different types of services.

[Thissen, 2006] considered QoS aspects when selecting candidate services for a

composition and developed a QoS broker to complement the UDDI registry with non­

functional aspects. Aggregation formulas of simple composition patterns are applied to

the whole workflow of a composed service to select the most suitable collection of simple

services. The paper uses a bottom-up composition to compute the QoS of the composed

service. With the workflow pattern for a composed service, aggregation is done by

collapsing the composition graph step-wise into a single node based on the basic

composition patterns. A set of formulas was defined to model the aggregations of the QoS

parameters typically used in web service composition. QoS aggregation is very useful in

Al planning dynamic composition, in which the workflow are generated automatically

when given a ultimate goal and specified parameters. Because the composition process is

not predefined, there could be many different possible combinations of web service. QoS

aggregation can be used to select the best combination by providing methods to compare

the overall QoS values of the combinations instead of considering only a single web

service.

[Nie, 2006] proposed a definition language to describe user requirements by

integrating semantic descriptions and SLA (Service Level Agreement) with the process

description. This description language supports the dynamic composition and can adapt

the change of QoS constraints automatically when SLA violations occur. The proposed

description language describes user requirements of service composition in five ways: 1.

30

The semantic description declares the user profile and domain constraints of a web

service; 2. The SLA description provides the negotiations between service providers and

service requestors regarding the quality of service, and discovers appropriate web services

based on QoS constraints; 3. The policy description defines the compensation policy

based on user requirements when SLA violations and service faults occur; 4. The service

partner declaration defines abstract partner names which are used to replace the web

service entities from the business process to support the dynamic composition. 5. The

business process description defines the business process of the composition which

provides the definition of message type, variables declaration and executing process. The

description language proposed in the paper supports the dynamic service composition on

demand very well. Firstly, it allows service requestors to describe the composite service

clearly and dynamically. This is realized by using a concept called "abstract partner". An

abstract partner is basically a template, in which the profile, semantic constraints, and

SLA of a requested service are defined. A composite service is defined in four

components: semantic descriptions, SLA descriptions, a set of abstract partner

descriptions, and the process descriptions.

In [Fang, 2009], the author presents a novel global QoS optimizing and multi-

objective Web Services selection algorithm based on a Multi-objective Ant Colony

Optimization (MOACO) for the Dynamic Web Service composition. Ant Colony

Optimization (ACO) is a meta-heuristic proposed by Dorigo et al. [Dorigo, 1999]. The

basic idea is to model the problem to solve the search for a minimum cost path in a graph,

and use artificial ants to search for good paths. The MOACO approach first generates an

Abstract Service Plan, which is a combination of composition work-flow and service

31

templates. This Abstract Plan is composed of individual Web Service Types, which

specifies web service functional properties (IOPE). Web Service Type definition is very

similar to ST definition in the original E-Workflow Composition approach. Each web

service instance must be categorized to a web service type. The MOACO approach then

models a Web Service Instance Selection graph based on all the web service instances

and the Abstract Service Plan, and applies the Global QoS Optimizing Web Services

Selection Algorithm on that graph to find out the optimized paths which meet the global

QoS constraints set by the user. The key advantage of the approach is that a user can set

the "global" QoS constraints (most approaches just find the path to meet each local QoS

constraints. But that doesn't guarantee the selected path will meet the global constraints.);

another interesting point of the approach is that the algorithm can find a set of possible

paths which meet the global QoS constraints. However, as a learning-based algorithm,

MOACO takes much longer execution times than other algorithms. And the accuracy of

the results is highly dependent on the number of ants and the number of the iterations.

This approach is good enough to handle the sequence process, but for the parallel process,

it need some tweaks to the algorithm, e.g. treat the web service types involved in a

parallel process as an individual web service type.

32

Chapter 3

System Design and Methods

This thesis covers several technologies including semantic web services and

dynamic service composition. This chapter will introduce the proposed FOIQOS

(Flexible Ontology Independent QoS-enabled) approach for dynamic web service

composition. The system design and the detailed methodologies used in the approach will

be discussed in this chapter. Specifically, we will introduce main QoS metrics for web

services, and similarity measures for syntactic, semantic, and operational matching.

3.1 System Design

As shown in Figure 3.1, the central part of the dynamic web services composition

system is a software agent, named the Compose Agent, which will read in Process

(workflow) and Templates (demands) as inputs, and realize service discovering and

composition automatically. There are two types of inputs, one is Predefined Process,

which defines the workflow of the whole task; the other is Templates for each service,

which defines each individual service involved in the task. Templates are formalized

demands which provide expected service profiles like service names, service descriptions,

and QoS parameters. The Compose Agent reads in Templates and search for the best

participating services (service discovering) by performing matchmaking between the

templates and related web services, and composes the selected web services automatically.

This thesis proposes the FOIQOS approach for service discovery. See Figure 3.1 for how

FOIQOS fits in the services composition system. Automatic service discovering is the

most important function within this work and is detailed in Figure 3.2.

33

input-

Service
Templates

Realize function-

Load and parse Inputs
Automatic

Composition

A

Figure 3.1 System architecture

The proposed FOIQOS approach for service discovery consists of three main

components of which the proposed use of Google Distance for the semantic matching

stage is the main innovation. The three components of FOIQOS are:

(1) Syntactic matching using the Q-gram method.

(2) Semantic matching using Google Distance to remove dependence on ontology

usage.

(3) QoS parameter matching using relative distance calculations vs. absolute distance

in operational matching formulae.

34

Store and discover services-

UDDI

problem

f Current UDDI
/ mechanisms do not
V support Semantic
\d iscovery and QoS

\
Possible solutions

1 Modify
UDDI

mechanisms
or use our

own
database
2 Publish
Semantic
and QoS

properties by
using

Tmodels
Get all the

privacy web
services
through
regular
UDDI

discovery
APIs, then

perform
matching

algorithms
locally

Service Discovering

A

Service Names,
Service

Descriptions

Time
Cost

Reliability

"HI™
question

Service Inputs,
Service Outputs

How to get the values of those
QoS parameters

Monitoring
Estimating

WS-As

al-time But increase
the execution time and
cost Out scope of this

thesis

Values from service
providers

A
Values from trusted

third parties

A

Figure 3.2 Service discovering process, questions and possible solutions

Currently, the industry standard for web service publishing/discovery is UDDI

version3, which does not support the semantic descriptions and operational properties

35

file:///discovery

(QoS) of web services. Although using our own web services database will make it easier

for us to store and search the semantic descriptions of web services, following the

industry standard can make our work more general and more acceptable to the public. So,

in this work, we still prefer to use the UDDI registry (public/private) as the directory

storage mechanism. However, current UDDI APIs only support key-words based

discovery. Although we can store QoS information and semantic description in a UDDI

directory by using tModels, how to read them out and perform matchmaking based on

them is a problem. A simplified approach would be to create customized categories (e.g.

Privacy) in the UDDI and we assume all the web services in, for example, the privacy

domain must belong to Privacy category. During the discovering process, we first get all

the Privacy web services by using regular UDDI discovery APIs, and then perform the

syntactic matching, semantic matching, and QoS matching locally. Investigating

approaches to extend the UDDI APIs for fast QOS processing is for future work.

3.2 Methods for Similarity Measurement

The design of traditional workflow application selects the appropriate tasks from a

workflow repository. If the repository contains a modest number of tasks, the process is

manageable. However composing web services within a workflow application is not that

easy because the potential number of web services for the composition process can be

very large. The designer faces two problems: (1) discovering a Web service with the

desired functionality and operational metrics to accomplish a specific task; (2) resolving

the structural and semantic differences between the services found and the tasks within a

workflow.

Discovering a Web service manually is impossible, since thousands of services are

36

available on the Internet. One approach to discover and select appropriate web services is

using feature-based models to find similarities across tasks (activities) and Web service

interfaces. Web service interfaces are constructed using service templates. We borrow the

following terminology from [Cardoso, 2003].

A service template represents a structure or blueprints that the designer uses to

indicate the characteristics of the desired Web service. A service template is specified as:

ST = <sn, sd, QoS, Os, Is>. The five fields here: sn, sd, QoS, Os, Is, correspondence to

service name, service description, quality of service (operational metrics), output

parameters and input parameters. Term service object are used to indicate the potential

services can be applied to service template. It is specified as SO = <sn, sd, QoS, Os, Is>.

The five fields here have the same meaning as the ones defined in ST.

After creating service templates, the solution discover and select appropriate web

services by computing the similarities between SO and ST. The similarities here include

three parts: syntactic similarity, operational similarity, and semantic similarity.

3.2.1 Syntactic similarity

In [Cardoso, 2003] the syntactic similarity of a ST and a SO is computed by using

"string matching" method based on their service names and service descriptions. Formula

(1) shows the function to calculate the syntactic similarity. The functions SynNS and

SynDS are used to compute the similarities between two service names, and two service

descriptions, respectively. The two weights cox and a>2 indicate the degree of confidence

that a designer has in the service name and service description he supplied when

constructing a ST.

37

SynSimilarty(ST,SO) =
coxSynNS(ST.sn, SO.sn) + co2SynDS(ST .sd, SO.sd)

C0X +0)2

Formula (1)

Many algorithms (e.g. Hamming distance, edit distance, block distance, q-gram,

TF-IDF) have been proposed to perform "string matching" tasks: hamming distance is

defined as the number of bits which differ between two binary strings. This approach is

only suitable for exact length comparison [Chapman, 2006]; edit distance is defined as the

minimum edit steps to transform one string to another string. The typical edit operations

are defined as following: 1) Copy character from string 1 to string2 (cost 0), 2) Delete a

character in stringl (cost 1), 3) Insert a character in string2 (cost 1), 4) Substitute one

character for another (cost 1) [Gilleland, 2006]; block distance is a vector based approach

where two strings are defined as two points in n-dimensional vector space and the

distance is calculated by summing the edges between points that must be traversed to get

from one stringl to string2 [Teknomo, 2006]; q-gram is an approach typically used in

approximate string matching, "q-gram" is realized by first "sliding" a window with length

q over the characters of a string to create a collection of 'q' length grams, then rating the

number of q-gram matches within the second string over q-grams collected from first step.

Q-gram is intuited by the fact that when two strings are similar to each other (the edit

distance between two strings is small), the number of the same q-grams they share is large

[Chapman, 2006]; TF-IDF (Term Frequency-Inverse Document Frequency) is a technique

borrowed from the information retrieval area. It is also a vector-based approach and

typically used to calculate the relevance of text documents. Considering that strings are

short text documents, especially in our case, a service description usually contains one or

38

more sentences, TF-IDF is also a reasonable approach to compute the syntactic

similarities. TF-IDF realized by consider each text document as a vector and all the words

within all the text documents (in our case, all the strings) as attributes of the vectors. Then

the weight of each word in a document is obtained by calculating term frequency and

inverse document frequency and this weight is used as the value of the attribute according

to the word. Finally, we calculate the distances between vectors to get the most similar

document.

This thesis will implement and evaluate the performance of the q-gram

approaches in computing similarities of service names and service descriptions. To

achieve a better performance, data preprocessing algorithms often used in the information

retrieval area will be employed also. Specifically, this thesis will consider word-

stemming and stop words removal in the data preprocessing part.

3.2.2 Semantic similarity

Semantic similarity could contain two meanings: (1) the semantic similarity between

two inputs/outputs of a ST and a SO; (2) the semantic similarity between the outputs of a

ST and the inputs of a SO, which is a candidate service of the next ST in the workflow;

and the semantic similarity between the outputs of a SO and the inputs of the next ST in

the workflow.

In most cases, morphological variants of words have similar semantic interpretations and can be considered as equivalent
for the purpose of IR applications For this reason, a number of so-called stemming Algorithms, or stemmers, have been developed,
which attempt to reduce a word to its stem or root form Thus, the key terms of a query or document are represented by stems rather
than by the original words This not only means that different variants of a term can be conflated to a single representative form - it
also reduces the dictionary size, that is, the number of distinct terms needed for representing a set of documents A smaller dictionary
size results in a saving of storage space and processing time [Lancaster University, 2004]

Words which are very frequent and do not carry meaning (such as "a", "the") are called stop-words These words are
assumed not to carry any important information and so are usually ignored in order to save storage space of the inverted file First, you
should define the list of stop-words Then, when you read in a new document you should remove all the stop-words before proceeding
to the next stage [Hong Kong University, 2004]

39

The meaning (1) is straightforward. It is to compare a service template to all the

candidate services in terms of the inputs and outputs. It can be described as

Similarity(ST.INs, SO.INs) and Similarity(ST.OUTs, SO.OUTs).

The meaning (2) falls into the realm of web service integration. Consider the

"sequence" operation within a process model. It requires that the outputs (or part of the

outputs) of the former service should be the inputs (or part of the inputs) of the later

service. It can be described as in Figure 3.3.

Web service A

inputl
-mput2
+output1()
+output2()

Web service B

inputl
mput2

+output1()

Web service A

-inputl
•input2
+output1 ()
+output2()

Web service B

-inputl

-output 1 ()

*

Web service C

-inputl

+output1()

Web service A

-inputl

+output1()

*

•

Web service B

-inputl

+output1()

Web service C

-inputl
-input2
+output1()
+output2()

*

(a) (b) (c)

Figure 3.3 (a) shows the outputs of web service A are the inputs of web service B; (b)
shows the outputs of web service A are the inputs of web service B and web service C; (c)
shows the outputs of web service A and outputs of web service B are the inputs of web
service C

Both meanings of semantic similarity can be realized by evaluating the similarity of

two concepts associated with an output and an input. In the real case, there should be

existing domain ontology for all the inputs and outputs. The similarities are calculated

based on concepts and their properties within that domain ontology.

3.2.2.1 Semantic similarity through feature-counting using an ontology

In [Cardoso, 2003], the authors proposed a similarity function as showed in

Formula (2) based on a general feature-counting model introduced by Tversky [Tversky,

40

2005]. The basic idea is that "common features tend to increase the perceived similarity

of two concepts, while feature differences tend to diminish perceived similarity."

[Cardoso, 2003]

similarity'(0,1) = p(o)r^p(I)\.\p(o)np(I)\
p(o)<Jp(I)\ P(I)\

Formula (2)

Here, p(x) indicates all the properties associated with a concept. So that the similarity

between two concepts can be approximated by the number of properties shared among

two concepts. Figure 3.4 is a fragment of a sample ontology designed by me to

demonstrate the concepts and related properties and relationships within a Race ontology.

It is used as an example to illustrate how to calculate the semantic similarities by using

the methods introduced in [Cardoso, 2003].

Asian (Asia, eye color,
skin color, language)

South Asian (South Asia,
black, skin color, language)

Indian (India, black,
brown, Indian)

Race (location, eye color,
skin color, language)

European (Europe, eye
color, white, language)

Far Asian (Far Asia, eye
color, skin color,
language)

o German (Germen,
blue, white, German)

Chinese (China,
black, yellow,
Chinese)

Korean (Korea,
black, yellow,
Korean)

Figure 3.4 fragment of race ontology. Each concept within the ontology has four

41

properties, location, eye color, skin color, and language.

As discussed above, the semantic similarity is calculated based on the number of

properties shared among two concepts. So, the similarity between Chinese and Korean is

calculated as following:

5, = p(Chinese) = (China, black, yellow, Chinese);

S2 = p(Korean) = (Korea, black, yellow, Korean);

53 = p(Chinese) n p(Korean) = (black, yellow);

54 = p(Chinese) u p(Korean) = (China, black, yellow, Chinese, Korea, Korean)

J I S I I S I 2 2
—— * —— - J— * — « 0.408
S4 I | S2 I V 6 4

3.2.2.2 Semantic similarity through Google distance

Google distance is a novel approach proposed by Paul Vitanyi and Rudi Cilibrasi

in [Vitanyi, 2004] to realize automatic meaning extraction. This approach is based on the

fact that when the Google search engine is used to search for a particular term it will

return the number of hits (web pages containing that term). Suppose the hits returned by

the Google search engine for the term "hat" is HI, and the total number of the web pages

Google could have returned is H2, then the result of H1/H2 can be treated as the

probability that term "hat" occurred in the world wide web. This actually complies with

the definition of "marginal probability"4 in the theory of probability. It together with

4 Marginal probability is the probability of one event, ignoring any information about the other event
Marginal probability is obtained by summing (or integrating, more generally) the joint probability over the
ignored event The marginal probability of h is P(Ji), and the marginal probability of e is P(e)

42

conditional probability, joint probability and Bayesian' theorem, can be used to represent

the relationships between two terms.

Conditional probability is defined as the probability that the event h will occur, given

the knowledge that the event e has already occurred. Conditional probability is written

P(h|e), and is read "the probability of h, given e" [Wikipedia, 2004]. In the case of Google

distance, conditional probability can be defined as the probability that term B appears on

a webpage, given the condition that the term A also appears on the webpage. This is the

basis of Google distance, because higher conditional probabilities imply a closer

relationship between the two terms.

Joint probability is defined as the probability of two events in conjunction. That is, it

is the probability of both events together. The joint probability of h and e is P(h, e). In the

case of Google distance, joint probability can be defined as the number of the hits when

input both term A and term B as a query string into Google search engine.

Bayes' theorem is defined in Formula (3):

P(h | e)P(e) = P(h,e) = P(e \ h)P(h)

P(h\e) = P(elh)m Formula (3)
P(e)

Based on Bayes' theorem, we can easily get the conditional probabilities which reveal

the relationships between two terms. The original distance function proposed by Paul

Vitanyi and Rudi Cilibrasi to calculate the distance between term A and term B is simply

the minimum number of P(A|B) and P(B|A).

The normalized Google distance (NGD) function is as following:

43

NGD(x,y) = max{log/(x),log/(v)}-log/(x,v) ^ ^ (4)

log M - mm {log / (*) , log / (v)}

Where f(x) is defined as the number of hits a Google search for term x returns. M is

the overall number of web pages that Google indexes.

The research in [Evangelista, 2006] tested the assumption that the NGD of two

random and independent terms should be close to 1. The testing results showed the

expectation value of the distance between two random and independent words is not 1 but

0.7. In order to achieve the desired value of unity between independent words, it is

necessary to recalibrate the NGD function (Formula (4)) by dividing by 0.7:

* 0.7

The authors of [Evangelista, 2006] also concluded that NGD values depend on the

number of hits that each term has. Factors such as which Google server was connected to

and the number of websites connected to the world-wide-web can yield different NGD

values. So the NGD values are not stable and accurate enough.

This thesis will investigate the performance of both the feature-counting model

coupled with ontology use, and our proposed Google distance-based approach within

business domains.

3.2.3 Operational similarity

The operational similarity of ST and SO is calculated based on QoS metrics. The

purpose is to determine the best candidate web service based on operational capabilities

of each SO and the QoS values defined in a ST.

44

3.2.3.1 Definition of QoS metrics

Quality of service can be characterized according to various dimensions. The QoS

metrics will be considered in this work involve following dimensions (parameters): Time

(T), Cost (C), and Reliability (R).

Time is a commonly used performance measure. To simplify, this thesis considers

Time (T) as the total processing time of a web service, from invocation to result output on

a device.

Cost (C) corresponds to the cost associated with the execution of a web service. Cost

is an important QoS parameter in the real world. In the real case, some web services are

not free, so customers have to pay for using web services. That is why some research

works also called it Price [Li, 2005].

Task reliability (R) is a function (see Formula (5)) of the failure rate which

corresponds to the likelihood that a component will perform when the user demands it.

R(t) = 1 - failure rate Formula (5)

Here failure rate is given as the ratio of successful executions, which is computed as the

number of times the task has been scheduled for execution and how many times the task

has not successfully executed. In the real case, failure rate can be computed in terms of

the total amount of time in which a service is not available during a given time interval.

This is similar to the definition of Unavailability in [Li, 2005].

3.2.3.2 Computing operational similarities

In [Cardoso, 2003], the operational similarity of a ST and a SO is computed by using

the "geometric distance" method based on their QoS parameters as shown in Formula (6).

The idea is to determine how close the operational capabilities of two Web services are;

45

OpSimilarity(ST, SO) =

\lQoS dim D(ST, SO, time) * QoS dim D(ST, SO, cos 0 * QoS dim D(ST, SO, reliability)

Formula (6)

The distance of two QoS parameter values is calculated using function QoSdimD(ST,

SO, dim), where dim is a QoS parameter. The function calculates the geometric distance

of the ST and of the SO by using Formula (7).

QoS dim D(ST, SO, dim) = ljdcdmn (ST, SO, dim) * dcdmg (ST, SO, dim) * dcdmm (ST, SO, dim)

Formula (7)

Here dcdmm indicates the distance between the minimum values of a QoS

parameter in ST and SO and calculated by Formula (8). Similarly, dcdmg and dcdmm

respectively indicate distances between the average values and maximum values of a QoS

parameter in ST and SO.

dcd (ST, SO, dim) = 1 - ' m i " (^ - ^ (d i m » - mi"(S7>.(dim)) | F o r m u l a (8)
mill V 3 3 / , /cirri si' \ \ v ' min(.ST qos(aim))

The main problem with this approach is that regarding the quality of the service, the

web service with the highest similarity value may not be the one with best QoS values.

For example, considering the QoS parameter time, when a service requester defines time

in a ST, usually, it only cares about the longest process time (tl) acceptable to it and

possibly it will define the preferred process time (t2) as well. With the approach in

[Cardoso, 2003], the algorithm will tend to choose a service which process time is

between tl and t2 rather than choose a service which process time is shorter than t2. That

can be improved because regarding the QoS parameter time, the shorter the better.

This thesis will define only an acceptable value for each QoS parameters in ST and

46

file:///lQoS

suppose each QoS parameters in SO is defined by (min, avg, max) triple. Different to the

reliability function (Formula (5)) used in [Cardoso, 2003], this thesis uses failure rate to

represent the reliability. This is to make sure that for values of all the three QoS

parameters, the smaller values are always better than larger ones. The similarity is

calculated base on two rules:

(a), the values in the triple must be better than the acceptable value in ST (e.g. for

time, the minimum time, maximum time and average time of SO must be less than the

acceptable time defined in ST);

(b), the similarity should be calculated using Formula (9):

{min£Q#oXdim))c,ST90^dim)}fc{^^
ST.qoJ(dim)- min@QqoJ(dim))

dc^STSQdim^l

dcd^STSQdim^l

dcciJSZSQdim^l-

STjqo^dim)
STqos(dim)- av^SQqo^dim))

STqo^dim)
STqo^dim}- maxSQqo^dim))

STqoS(dim)

QoSdimD(ST, SO, dim)= 1 - ^dcd^m(ST, SQdimf dcdmg(ST, SO, dim)? dcc^JST, SQdim)

Formula (9)

Notice that the last equation in Formula (9) is different from Formula 4. This is

because in this model, the smaller the value of a QoS parameter of SO is, the larger the

distance (dcd) between that value and the acceptable value defined in ST is. As defined in

rule (a), the values in the triple of SO must be better than the acceptable value in ST,

which means dcd is inversely proportional to the distance between ST and SO.

3.2.3.3 Approaches to obtain QoS values
In order to facilitate the operational similarity of QoS parameters, it is necessary to

define methods to obtain the values of QoS parameters discussed above. The possible

47

approaches include: (1) monitoring the changes of the QoS values at the run time by

updating those values after each execution, or (2) estimating QoS values through (a)

simulation mechanisms (e.g. test the task based on specific inputs); (b) using the QoS

values provided by service providers; and/or (c) obtain QoS values from TTP (Trusted

Third Party) which provides QoS testing services.

Both monitoring approach and estimating approaches can get correct and real-time

values of QoS parameters, but they will increase the execution time and/or cost of the

system and is out of the scope of this research. To simplify this process my thesis will

only investigate and implement the latter two approaches (b) and (c) and incorporate SLA

(Service Level Agreement) constraints. Based on the two copies of QoS parameter values

obtained from the service provider and TTP, the system selects the best participation

services through certain rules. For example, if the two copies have similar values, we

consider it more reliable.

SLA is a part of a service contract used by both service provider and requestor

regarding the performance and cost. It regulates the common understanding about

services with the main purpose to form an agreement on the level of service. Usually, a

SLA may specify the levels of availability, performance, or other attributes of the service.

Generally, the technical interpretation of SLA is described through a set of SLO (Service

Level Objective), which contains one or more service parameters in terms of quality

measurements.

WSLA stands for Web Service Level Agreement, which is a standard published by

IBM for specifying and monitoring SLAs for Web Services. It enables web service

providers and requestors to define a variety of SLAs, specify the QoS parameters and the

48

related measurements. [Keller, 2003] In addition to the service provider and service

requestor, WSLA may also involve third parties in the SLA monitoring and enforcement

process. This happens when SLAs published by a service provider are not fully trusted by

service requestors. Those trusted third parties perform a part of all of the measurement

and computation activities defined within an SLA. They also implement violation

detection by comparing actual values against the values provided by service providers.

This dissertation examines the use of WSLA to describe the QoS parameter values

provided by service providers and trusted third parties, and use those values to calculate

the operational similarities between STs and SOs.

49

Chapter 4

Implementation

The following subsections discuss the implementation of the composition system

proposed in Chapter 3. To implement the proposed FOIQOS system, we need to realize

the following tasks:

• Set up the development and test environment;

• Get a UDDI registry to register / discover web services. Since all the public UDDI

registry were retired already, we have to create our own private UDDI registry;

• Find a way to publish and inquiry the semantic descriptions and QoS parameters

in UDDI registry;

• Create sample workflow and service templates as input; Read in the input and

based on the inputted service templates to find the proper web service instances

and compose them together based on the inputted workflow;

• Implement the FOIQOS service discovering method consisting of implementing

Google distance and the modified similarity matching methods discussed in

Chapter 3.

To compare FOIQOS proposal with a workflow-based method and an Al planning-based

web services discovery method, I implement also (1) the E-Workflow composition

method, and (2) the MOACO algorithm, and complete the following implementation

tasks.

• Implement dynamic web service composition within a Compose agent;

• For testing, create and publish a large number, say n= 100, of web services onto a

50

UDDI registry;

4.1 Tools involved in the implementation
The following tools and public resources were involved in the implementation:

• Java EE SDK 5 Update 2 from SUN Microsystems, Inc as the development

language and runtime environment

• JUDDI version 2.0.1 from the Apache Software Foundation. It is a Java

implementation of the UDDI version 2.0 specification. And it is used as our

private UDDI registry

• MySQL 5.086 community Database server from MySQL AB as the database

server in support of the UDDI registry

• Tomcat 5.5.27 application server from Apache Software Foundation. Our private

UDDI registry, web services, and compose agent are all run on that server;

• UDDI4J version 2.0.5 from IBM and HP. It provides a Java API to interact with a

UDDI registry

• Eclipse SDK version 3.2.2 from the Eclipse Foundation. It is a open source Java

development platform

• Apache Axis2 version 1.4.1 from Apache Software Foundation. It is an

implementation of the SOAP (Simple Object Access Protocol)

For experimental purposes, the system presented in this thesis is tested on an Intel

Core 2 Due CPU @ 3GHz computer with 3GB memory. As shown in Figure 4.1, the

JUDDI registry with mySQL database server, the Apache Tomcat application server to

51

deploy the UDDI registry, web services, and the Compose Agent, will be located on the

same machine.

\ Manager

| List Agpiicatttans _

Applications

Path

I _
/E pnvacy

/ajtis2

/balancer

/host manager

HTML Manager Help Manager Help Server Status |

,/isp-examoles

/juddi

/|uddi console

/servlats examples

,/tomcat docs

Avebdav

Display Name

(Welcome lo Tomcat

E pnvacy

Apache Axis

Apache Axis2

Tomcat Simple Load Balancer Example App

Tomcat Manager Applica)ion

JSP 2 0 Examples

jUDDI

jUDDIConsolo

Tomcat Manager Application

Servlet 2 4 Examples

Tomcat Documentation

Webdav Content Management

— . --

-
. .

-- —-

true

true

true

true

true

true

true

true

true

true

true

I Commands

| Start Stop Reload Undapjpy

Stan* Slap. Reload Undeptoy

Q

Q
Q

Q

Q

Q
0

Q

Q

Q

Q

| Start Slop Reload Undeplny

Start Stan Reload Urtdanlav

J Start Slfifi Reload Undep|ay

Start Stop R___ Undeplny

i Start SlOC Reload Undeptoy

Start Sign Raloao; L indsay

Start Stop Reload Undeplny

Start Stop Reload Undeploy

| Start Stop Reload Undeploy

Start Slop Reload Undeploy

Start Stop Reload Undaploy

Deploy
' Deploy directory or WAR file located on server

WAR flip tn •Jonlnv

Content Path (optional) |

XML Configuration file URL [

WAR or Directory URL f~

Figure 4.1, Apache Tomcat application server manager page.

Figure 4.1 shows a list of applications deployed on the server. Among them, juddi is
the application for JUDDI registry, while E-privacy is the application for the proposed
system.

4.2 The Factors for Performance Evaluation

The thesis will evaluate the performance of the implementation and compare with the

Semantic E-Workflow Composition approach. As well, it will be compared to the

MOACO algorithm for web service discovery. In order to examine the robustness of the

algorithms, we ran the experiments against different amount of web service instances

starting from 10 to 100, incrementing by 10 each time. The following factors will be

considered to evaluate the performance of the system:

(1) Accuracy of results: it can be interpreted in terms of whether the system always

52

chooses the "best participating web services" in the composition. The "best

participating web service" can be defined as: a web service which performs the

exact functions as expected with most optimized QoS values among all the

candidate web services."

(2) Time to obtain results: it can be defined as the total time the compose agent used

to realize service discovering and automatic composition. It can be approximated

as following:

Total time ~ Total time before Matching + Web service Matching Time + Web

service Composing Time where

(a) The Total time before matching ~ time for loading and parsing input + time for

searching UDDI + time for initiating Google distance or loading an ontology

And (b) Web service matching Time ~ Text preprocessing time + time to calculate Q-

gram distance + time for semantic selection + time for QoS selection;

This thesis uses text preprocessing to remove the stop words and stem the words in

the web service names and web service descriptions so that one can get more accurate

syntactic matching results.

In the proposed approach and MOACO approach, we use Google distance algorithm

to calculate the semantic similarities. (The authors of MOACO did not specify an

approach to use for calculating semantic similarity).

MOACO is a learning based algorithm. We know all the learning based algorithms

will have a learning process. They usually have to iterate many times to train the program.

For MOACO, we set the iteration limit to 100 and 200, which are used in [Fang, 2009] as

well.

53

In order to obtain more accurate values of the performance metric, we will repeat

experiments and present the averages within an acceptable confidence interval.

4.3 JUDDI and web services

Since all the public UDDI registries have been retired, we have to create our own

private UDDI registry for us to publish / inquire web services. There are several private

UDDI registries available, such as the UDDI services included in Windows Server 2003,

and the IBM WebSphere UDDI registry. We finally chose JUDDI because it has the

following advantages:

• It is an open source freeware. Easy to set up and be customized.

• Unlike the UDDI services in Windows Server 2003 and IBM WebSphere UDDI

registry (they are bundled together with a bunch of Enterprise solutions), JUDDI is

light weighted and portable.

• Its implementations of the UDDI standards are very clear and straightforward;

• Support both UDDI v2.0 and v3.0;

4.3.1 Publish to JUDDI registry
JUDDI registry supports the actions listed in the Figure 4.2.

54

^ - , Ki 4\ h\P !s®>\<r- .. - j - c g a i ^

find_servfce flJDDI API (proprietary)

get_reglstrv!rifo

The find_servlce API call returns a servlcellst message that contains zero or more fmd_publisher
serviceinfo structures matching the criteria specified in the argument list If an error occurs geLPubllsherUetalt
while processing this API call, a dispositlonReport element will be returned to the caller save_puWisher
within a SOAP Fault containing information about the error that was encountered deletejublisher

<- n v e i ^ n n 1 G e n c d i n f m f fc
o r. in P el)sn min o pm J h t l p

n n d ^ c i r e j s i n ^ n - • * i
tuuJ u] i t t,r&-»
*fudnii«,] D f> rv . . . / f i u d f i i i l i t
f i duiial i l e r s 1

• ^ e i b f e »nc • iMidt-Uf^

t l l ia I f i , ,
t l ' ic .elKpj "L rhde lXs -

tHcielBatf-
f u i d — t r v i u f

4| — -
| Validate | Submit | Reset |

.. !•«<•> \ « i « (i)

t r i e - 2 r v » l n a

ke^laae • * 1-

i n o r ' E D w l o p / *

j | f udd Ji t L I

__i -r
Time 0 milliseconds

*

find_buslness
find_service
ffnd_blnding
find_tModel
find retatedBusfnesses
get_busmessDeUil

get_businessneUilExt
5et_servlceDetail
get_blndingOetail
get_tModelOetail

UDDI Publish API
get_authToken
get_regtsteredlnfo
discard authToken
save_business
save service
saye.bindmg
save tModel
delete business
delete service
delete_blnding
delete tModel
add_publisherAssertion;
set_publtsherAssertions
get_publishertssertions
delete_publlsherAssertlons
get_assertionStatusReport

Figure 4.2 screenshot of JUDDI console page.

On the right side of Figure 4.2, we can see a list of all the supported actions by

JUDDI. To publish to the JUDDI, we can use the JUDDI console (shown in Figure

4.2); or program a JAVA program and call the UDDI4J APIs to publish to or query

the UDDI registry; or the simplest way, to publish / inquiry through UDDI browser.

Eclipse IDE offers a WSE (Web Services Explorer) component, by which we can

easily publish / inquiry UDDI registry through a graphic user interface. In this thesis,

we created and published 100 web services as shown in the Figure 4.3.

55

smanmrnBEB WSMMWa
Fie Elk IMvqate Search Ftoiect Run WWo» Heb

HOBBE LTT?m

I 111 v ' v ' i ' # • * ' 5* t_ * jf - ' * - ' L - I^JavaE

li_ broker)ava : i.fmfervtesava J, gooojeDstance)ava |£ WebSarpte)ava 1 broker.l feva J] brokBrWortftow Java . (J moaciHwlava [L brotorWorlfowAI p «| WebSerwesExplore U % c

Web Services Explorer "• ^ „, j »

Navigator

£ B UDDI Mam
d j j u d d i

C Executed Queries
*l query resits Busnessessubojjery

^Pubjshed Businesses
^Pubtehed Services
. * Published Service Interfaces

* Actions

£? Query Results

Select a result to see more detafs or select a set of results and cfck a button to rjerfom an operation

» Services

r
r Comoanno

r cornparriq Service

r CCftlPaiTQl

r comparriQ?

r comoarnoj

r comoarriol

r comparroS

P comparlnq6

f rams rwi7

1 Status

comparing tfie P3P potaes with (he E-Pnvacy regulations

comparing the P3P poBdes of each tnrd party with the E-Prtvacy regulations

comparing the pnvacy policies of each third party with die returned E-Pnvacy
regulators

compare p3p pokes of a web ste aganst the privacy laws

comparing privacy law wth partner s pnvacy prices

comparing two n p i s

coniparitgS

comparing the P3P of each thrd party with the E Pnvacy regulations

fimntrmn n1n wthmitm artt „ _ „

IW«B0149INunt» of s erms Inn) 100

I 3 .

Figure 4.3 100 web services published to the private UDDI registry

4.3.2 Present semantic information and QoS parameters in UDDI registry

As a central directory for publishing and inquiring web services, UDDI must be

capable of representing data and Meta data about web services. As well, it should offer a

standard mechanism to classify, catalog and manage Web services, so that they can be

discovered and consumed. For those purposes, four core data structure types were defined

to represent information with UDDI: the businessEntity, the businessService, the

bindingTemplate and the tModel. Figure 4.4 shows the relationships between the four

core types. Each businessEntity contains 0 or more businessServices. The businessService

structure represents the logical services that belong to a single businessEntity. A typical

56

businessService entity is structured like Figure 4.5. The bindingTemplate entities present

a list of technical descriptions (such as tModel instance details, access point) about the

businessService. The categoryBag presents a list of categories that each describes a

business aspect of the businessService. Users may define their own category

classifications by using tModels.

businessEntity: Information about the
party who publishes information about
a service

busmessEnttties contain
businessServices

businessService Descriptive
information aboul a particular famify of
technical services

businessServices coniam
bin din gTpfnplates

bindingTemplate: Technical
information about a service entry point
ana implementation specs

tModel: Descriptions of specifications
for services or value sets Basis for
technical fingerprints

bindingTemplates contain references to
iModels These references designate the
interface specifications for a service

Figure 4.4 UDDI core data structures and their relationships

uddiibusint jssSeruice

r--l uddhname •;

0 co

businessService H-i-T *** JEh

--Tuddhdescription ;!

0 oo

r--^uddi:bindingTemplates [+]

j-^uddiicategoryBag Ep

-^dsig:Signature \+\

0 oo

Figure 4.5 Structure Diagram for businessService entity

57

In order to store the semantic information and QoS parameters in the UDDI

registry yet without making any modifications to the existing UDDI standards, in this

thesis, we use customized categories to save the semantic information and QoS

parameters in UDDI registry. Figure 4.6 shows a web service published in our private

UDDI registry and how the semantic information and QoS parameters are presented by

using categories.

comparing the P3P policies wfth the E Privacy regulations

Categories Add Remove Edit Cancel

r~ undefined input

r~ undefined output

r~ undefined Qo5 time nun

f undefined QoS time avg

r~ undefined QoS dme max

P undefined QoS cost nun

[" undefined QoS cost avg

P undefined QoS cost max

T undefined QoS reliability mm

f~ undefined QoS reliability avg

I™ undefined QoS reliablity max

partner_name, regidation

recommendations

20

30

40

10

10

10

05

07

09

at

m
ESI

Edit

Edit

Edl

Edit

Edit

H i

H i

Edit

Figure 4.6 CategoryBags to store semantic info and QoS parameters in a UDDI registry

The tModel concept is very important in the UDDI world. Typically, a tModel can

be used to represent interfaces. The interface could be a standard which will be followed

by a group of other entities. Or it could be a contract between service provider and service

consumer. Furthermore, a tModel can be used to represent customized category

classifications which can then be added into interface tModels to make search easier.

Finally, tModels can be used as namespaces to add more meanings into the UDDI data

structure.

58

Specifically, we first created a tModel "Querylf' as a customized category. Then

for each web service published by E-privacy web services providers, they must reference

to the tModel "Querylf and specify the "Key values" for the following 11 "Key names":

input, output, QoS time min, QoS time avg, QoS time max, QoS cost min, QoS cost avg,

QoS cost max, QoS reliability min, QoS reliability avg, QoS reliability max. By this

means, we can easily store the semantic information (input, output) and QoS parameters

in the UDDI registry without making any changes to the UDDI structures.

4.3.3 Find web services

In this thesis, we created a tModel "Eprivacy web services providers" which is

used as an interface or category. We assume all the E-privacy web services providers

have to use that tModel. And our web service discovering and matching algorithms will

only apply to the web services published by those providers. So, all we need to do is to

first search the UDDI by using a tModel key to find all the businesses that use that

tModel, then get all the web services published by those businesses, and then perform the

syntactic matching, semantic matching, and QoS matching on top of those web services.

Following is the pseudo code of the findServices function:

Construct a UDDI Proxy object.

Set UDDI registry query URL

Construct a tModel Bag

Construct a tModel Key with the known tModel Key

Add the tModel Key into the tModel Bag

Construct a Find Quantifier

Set Find Quantifier to 'caseSensitiveMatch'

59

Construct a Vector

Add the Find Quantifier into the Vector

Search the UDDI registry by tModel Bag, Find Qualifier Vector and maximum

number of return entries

Get vector of business information

For (each business information) {

Search the UDDI registry by Business Key, Find Qualifiers

Get vector of service information

For (each service information) {

Get service key

Get service detail by the service key

Get the first business service

Get service wsdl URL

Get service description

Get service category bag

For (each category) {

If (key name = "input")

Input = key value

Else if (key name = "output")

Output = key value

Else if (key name = "QoS time min")

TimeMin = key value

Else if (key name = "QoS time avg")

60

TimeAvg = key value

Else if (key name = "QoS time max")

TimeMax = key value

Else if (key name = "QoS cost min")

CostMin = key value

Else if (key name = "QoS cost avg")

CostAvg = key value

Else if (key name = "QoS cost max")

CostMax = key value

Else if (key name = "QoS reliability min")

ReliMin = key value

Else if (key name = "QoS reliability avg")

RelitAvg = key value

Else if (key name = "QoS reliability max")

ReliAvg = key value

}

}

}

Create a new SO object by using service key, service name, service description, input,

output, timeMin, timeAvg, timeMax, costMin, costAvg, costMax, reliMin, reliAvg,

reliMax

Add newly created SO object to a list of SO objects

61

<*?xml version="1.0" encoding="UTF-8"?>
<process id="l" type="sequence" >
<process id="2" type="parallel" >
<STid = "l">

<Name>Ontology Query 1 </Name>
<Description>get the related e-privacy regulations through ontology query</Description>
<Input>Ontology Query</Input>
<Output>E-Privacy regulations</Output>
<QoS>

<Time>50</Time>
<Cost>30</Cost>
<Reliability>0.5</Reliability>

</QoS>
</ST>
<ST id = "2">

<Name>Partners</Name>
<Description>Return the third party list of the input web site</Description>
<Input>web site</Input>
<Output>third party list</Output>
<QoS>

<Time>50</Time>
<Cost>20</Cost>
<Reliability>0.5</Reliability>

</QoS>
</ST>

</process>
<STid = "3">

<Name>Comparing service</Name>
<Description>comparing the P3P policies of each third party with the E-Privacy

regulations</Description>
<Input>partner name, e-privacy regulation</Input>
<Output>comparingresults</Output>
<QoS>

<Time>50</Time>
<Cost>50</Cost>
<Reliability>0.5</Reliability>

</QoS>
</ST>

</process>

Figure 4.7 Sample Input File

4.4 Load and parse the input
The input to the compose agent includes the workflow and the web service templates.

They are specified in a XML file. Figure 4.7 is a sample input file used in the experiments:

62

The XML tags used in the above XML file are self-explanatory. Each process node

specifies a process; each ST node specifies a service template; while each QoS node

specifies a QoS matrix. The compose agent will load the above XML file, parse it and

finally get a list of ST objects. Following is the pseudo code for loading and parsing input

file:

Construct a DocumentBuilderFactory object

Construct a DocumentBuilder object

Parse the input XML file into a document object

Get document element (root element)

Get a node list of ST elements

For (each node in the list) {

Get the ST element

Parse the following values from ST element: id, Name, Description, Input,

Output, Time, Cost, and Reliability

Create a new ST object by using those values

Add the newly created ST object to a list of ST object

}

4.5 Implementation of the proposed service matching method

In 4.3.3 (find web services), we searched the UDDI, got all the available web service

instances, and transformed them into a list of SO objects. In 4.4 (load and parse input), we

read in the input xml file, parse the file, and finally get a list of ST objects. The service

matching process basically compares each SO object against each ST object in terms of

the syntactic similarity, semantic similarity, and QoS similarity to find the best matching

63

SO object for each ST object. We compare the syntactic similarity first, then semantic

similarity, and finally the QoS similarity. To improve the performance, we set the

threshold for syntactic similarity scores and semantic similarity scores. Only when a SO's

similarity score is less than the threshold, the SO can move to the next matching step.

Following is the pseudo code for this matching process:

Construct a Stemmer object

Construct a deletewords object

Construct a editDistance object

Construct a qGram object

Construct a googleDistance object

Construct a qosDistance object

Set threshold

For (each ST) {

Stem the ST name

Remove the stop words from ST description and stemming

For (each SO) {

Stemming the SO name

Remove the stop words from SO description and stemming

Calculate Q-gram distance for ST name and SO name

Calculate Q-gram distance for ST description and SO description

Get the syntactic similarity score

If (the syntactic similarity score < threshold) {

Calculate Google distance for ST input and SO input

64

Calculate Google distance for ST output and SO output

Get the semantic similarity score

If (the semantic similarity score < threshold) {

Calculate QoS distance by using proposed formula

If (the QoS score > 0 AND the QoS score < saved best

score for the current ST) {

Save the QoS score as the best score for the current ST

Save the current SO as the best matching SO for the current ST

}

}

}

}

}

4.6 Implementation of the E-Workflow composition method;

The E-Workflow composition method basically follows the same matching process.

Although it is not mentioned in the original paper, to improve the performance and make

the results more comparable, we set the threshold for syntactic similarity scores and

semantic similarity scores as well.

Different to our proposed approach, which only set the acceptable values, the E-

Workflow composition method set minimum, average, maximum values for each QoS

parameter in a ST. As shown in the following XML code fragment, the ST node in the

input XML file for the E-Workflow method is different as well.

65

<STid = "l">
<Name>Ontology Query</Name>
<Description>get the related e-privacy regulations through ontology query</Description>
<Input>Ontology Query</Input>
<Output>E-Privacy regulations</Output>
<QoS>

<TimeMin> 10</TimeMin>
<CostMin>30</CostMin>
<ReliabilityMin>0.5</ReliabilityMin>
<Time Avg>3 0</TimeAvg>
<CostAvg>30</CostAvg>
<ReliabilityAvg>0.8</ReliabilityAvg>
<TimeMax>5 0</TimeMax>
<CostMax>3 0</CostMax>
<ReliabilityMax> 1 </ReliabilityMax>

</QoS>
</ST>

The E-Workflow method also uses the Q-Gram algorithm to calculate similarities

for both service names and service descriptions. Instead of using the Google distance

algorithm, the E-Workflow method calculates semantic distances for service inputs and

outputs through use of a feature-based algorithm. In order to make the feature-based

algorithm workable, a pre-defined domain ontology is required. For experimental

purposes, we used two test domain ontologies. The first is represented in a fast data

structure, a chained hash table, with few terms. It contains 41 terms and each term has 5

properties. The usage of this first test domain ontology is to help isolate the overhead due

to ontology reasoning engines. The second ontology is the classic wine ontology

(http://krono.act.uji.es/Links/ontologies/wine.owl) which is represented in an OWL file

and processed by the ontology reasoning engine, Jena. Figure 4.8 shows a fragment of

wine.owl. Experiments will examine the performance of the E-Workflow approach and

the overhead of using a semantic approach to represent the ontology versus a prescriptive

approach using an in-memory data structure. Jena 2.6.4 OWL APIs are used to load, parse,

66

http://krono.act.uji.es/Links/ontologies/wine.owl

and query the OWL file The Pellet OWL Reasoner is used together with Jena to perform

ontology reasoning over the wine ontology.

u m <4 DryRnrtWie

fceWr*

Teur*

Sancenv

RedBurQtndy ' - 3 CcteiOCr

Pauline

SawqncnBiane

Figure 4.8 Fragment of wine ontology

To make use of the feature-based algorithm, we have to realize the functionality to

get the properties and the value of the properties for a term in the ontology. To realize this,

we first use the Pellet reasoner to filter out the unwanted global properties which will

pollute the ontology query results. When we compute the distance of two terms in the

ontology, we try to get all the declared properties for each term, if there is no property

defined for the term, then we get the shortest path between the two terms instead of using

the feature-based algorithm. If there are properties defined for both terms, then we use a

67

recursive function to get the value for each property. Due to the complexity of the OWL

language, we need to consider several different situations during this simple process. For

example, the queried term might be defined as an intersection class of two other terms. In

that case, we might need to get the property values from those two terms as well. The

details of this ontology reasoning implementation can be found in the source code

attached to this Thesis. After this process, we can get results such as the following:

property for the term RedBurgundy: PinotNoirGrape
property for the term RedBurgundy: Red
property for the term RedBurgundy: Winery
property for the term RedBurgundy: hasWineDescriptor
property for the term RedBurgundy: Dry
property for the term RedBurgundy: hasFlavor
property for the term RedBurgundy hasBody
property for the term RedBurgundy: produces Wine
property for the term RedBurgundy: BourgogneRegion
property for the term RedBurgundy: madeFromFruit

property for the term Burgundy: madeFromGrape
property for the term Burgundy: hasColor
property for the term Burgundy: Winery
property for the term Burgundy: hasWineDescriptor
property for the term Burgundy: Dry
property for the term Burgundy: hasFlavor
property for the term Burgundy: hasBody
property for the term Burgundy: produces Wine
property for the term Burgundy: BourgogneRegion
property for the term Burgundy: madeFromFruit

The Feature-based algorithm is performed based on those properties. The

similarity score for the two terms RedBurgundy and Burgundy in the above example is

7.302967433402214, which indicates a relatively high similarity.

Another key difference between the E-Workflow composition and our proposed

FOIQOS approach is the way to calculate the QoS distance. Recall the E-Workflow

method calculates QoS distance by comparing a ST's minimum QoS values with a SO's

minimum QoS values, a ST's average QoS values with a SO's average QoS values, and a

68

ST's maximum QoS values with a SO's maximum QoS values. It intends to get a service

object, whose minimum, average, maximum QoS values are closest to the minimum,

average, maximum QoS values set for a ST, as the best matching SO for that ST. As well,

it only considers absolute distance whereas FOIQOS considers relative distance. E-

Workflow then cannot guarantee the best choice selection which we instrument as

accuracy.

4.7 Implementing the M O A C O algorithm

Before applying MOACO approach to perform web service discovering / composition,

there are some preprocessing tasks.

Predefine composition workflow and web service types involved in the

workflow;

For each web service instance, categorize it to a web service type according

to the syntactic and semantic similarities between the web service instance

and web service type;

Since in [Fang et al, 2009], the authors did not mention what methods they used to

categorize each web service instance into web service types, in this thesis, we simply used

the same inputs and same syntactic and semantic matching methods used by the proposed

approach to realize those preprocessing tasks for the MOACO approach.

After the preprocessing, based on the composition workflow and categorized web

service instances, the MOACO approach constructs a weighted directed graph, where

each web service instance is a node in the graph. The direction of the graph follows the

direction defined in the workflow. Two virtual nodes, S and T, are added to the graph to

represent the beginning vertex and target vertex. The weight of each node is determined

69

by the QoS values of the web service instance. The MOACO approach then uses a colony

of ants to construct possible paths from S to T. At every generation (iteration), the known

Pareto Front Pknow [Van Veldhuizen, 1999] is updated and finally the pheromone matrix

IPSi is updated as well. Figure 4.9 shows the pseudo code for the MOACO algorithm:

Set global QoS constraints for time, cost, and reliability

Set generation limit (number of iterations)

Set colony size (number of ants)

Initiate Pknow, IPSi, and construct the directed graph based on the inputted

workflow and web service instances

While (iteration number less than iteration limit) {

For each (ant in the colony) {

Build paths (see figure 4 10 for pseudo code)

For each (path found in Build paths step) {

If (global QoS values meet the constraints) {

If (current path not in Pknow) {

Add the current path to Pknow

}

}

}

}

Iteration number + 1;

Update IPSi (see figure 4.8 for pseudo code)

}

Figure 4.9 pseudo code for MOACO algorithm

Depending on the state of Pknow, if new paths were added to Pknow then the pheromone

matrix is reset to the initial values to improve exploration. Otherwise, the method updates

the pheromone matrix with the following formula to get a better exploitation. See Figure

70

4.10. for pseudo code for the global update of ISPi.

ISPi = (l-p)xIPS0 +pxAIPS, p e [0,1] Formula4.1,

Where AIPS is calculated by using the formula 4.2:

MPS = l/ ^Cost2(P) + Time\P) + (1 /Reliability(P))2 , Formula 4.2

Initiate Delta IPSi;

For each (P in Pknow) {

Get the QoS values for

Get the delta value for

Update IPSi value for

}

•

P

P by using formula 4.2

P by using formula 4.1

Figure 4.10 pseudo code for global update of IPSi

While (path length < workflow length) {

Get the heuristic values for all the nodes in the current level

Set the probability of being chosen for each node

and 4.4

Get a random number

Select the node by comparing the probabilities

random number

}

by using the formula 4.3

of each node with that

Figure 4.11 Pseudo code for building a path (referenced in Fig. 4.9.)

71

Each path is a possible composition solution that starts from the virtual beginning

vertex S, follows the workflow direction, and finally reaches the target virtual vertex T.

When building a path, the following formula 4.3 is used to set the probability of being

chosen for each node.

[IPSAa[ri„Y
P., = - = -r Formula 4.3, where Ni is the node in the neighbourhood

s<zN,

of node I that the ant has not visited yet, r]l} is the heuristic value of moving from node i

to node j . r\H is calculated by using the formula 4.4:

r\ = 1 / -J Cost2 (j) + Time2 (j) + (1 / Re liability (j))2 Formula 4.4

4.8 Implementation of dynamic web service composition

To realize the dynamic web service composition, we need to know the composition

workflow, the original inputs, and the best matching web service objects for each ST

(Service Template) in the workflow. Through the matching process, we obtain the best

matching web service objects for each ST. The composition workflow is defined in the

input XML file and is loaded into a document object. The original inputs are stored in a

string list object. (The whole workflow can be treated as a composite web service. The

original inputs are actually the inputs of that composite web service.) The compose agent

will take all the above objects as input parameters and use a recursive function to go

through the composition workflow, pass by the inputs / outputs, invoke the matching

service objects, and return the final output.

The following is the pseudo code for the recursive function used in dynamic web

72

service composition to control the composition process. This recursive function takes a

Node object, the matching service objects, and a list of the input parameters as inputs.

Depends on the workflow, the outputs of the function may be used as the inputs of the

next step:

If (the type of the input Node = ELEMENTJNODE) {

Get all the attributes of the node;

For (each attribute) {

If (Node name == "ST" AND Attribute name = "id") {

Get the matching service object for this ST;

Invoke the matching service object with the input parameters

Return the outputs;

} else if (Node name == "process" AND Attribute name == "type") {

Get the process type (sequence / parallel)

}

Get all the child nodes of the input Node;

For (each child node) {

If (process type == "sequence" AND child node name == "ST") {

Clear the original inputs

Treat the outputs from the previous step as the new inputs

Call the recursive function itself by taking the child node, matching

service objects, and the new inputs parameters as inputs

} else if (process type == "parallel" AND child node name =="ST") {

Call the recursive function itself by taking the child node, matching

73

service objects, and the inputs parameters as inputs

Add the outputs of the above call to the overall outputs of this step

} else {

Call the recursive function itself by taking the child node, matching

service objects, and the inputs parameters as inputs

}

}

}

Another difficult part in the dynamic web service composition is how to invoke a web

service object dynamically. Because all the service objects are discovered and selected

during the run time, we do not know the actual web service name, method name, and we

have no idea about the parameters at the design time. Fortunately, during the web service

selection process, when we get the matching service objects, we've already obtained the

WSDL urls for each matching service objects. With a WSDL URL, we can get the WSDL

file for a web service. A WSDL file is written in XML format. It usually describes a web

service by using following elements:

• Service: contains a set of related port / endpoints. An port / endpoint defines the

address / URL for invoking the service;

• Binding: specifies how the service will be implemented, defines the

communication protocols and data format specification for a port type;

• PortType: an interface which defines a set of operations performed by endpoints;

• Message: contains the information needed to perform the operation. It can serve

74

as the input or output of an operation;

• Types: defines the data types used by the web service. The type definitions are

usually referenced from higher-level message definitions.

• Operation: defines the SOAP actions. It is similar to a method or function call in a

traditional programming language.

WSDL 1.1 WSDL 2.0

definitions

types

- .1;..

A
I message

i u L

|po
i

tType
operation"

I i n p u r " H
| output ^—J

' t
binding

1 ..

description

types

H I

interface^.,
^operation

[input ' P
t output [—J

t
binding

service 1
1 1 DOT! 1 1
_ ,

r

. . >-m ttfc-

se rvice
endooint 1 '

1
1

° 5 _ o

S<8

a> 5
•» .—

o w

Figure 4.12 Structure diagram for WSDL

http://en.wikipedia.org/wiki/Web_Services_Description_Language

The WSDL file can be created manually or by using special tools like Java2WSDL, A

WSDL file can be generated automatically through existing web services. After we get a

WSDL file, we can parse the file and get all the elements mentioned above. With those

elements, we can easily get the service name, method name, invoke URL, parameters, and

all the information we need for dynamic invocation of web services. To parse WSDL files,

75

http://en.wikipedia.org/wiki/Web_Services_Description_Language

we employed AXIS APIs from Apache. Apache Axis is an implementation of SOAP. It

provides extensive support for the WSDL. Following is the pseudo code for the dynamic

invocation process:

Construct a WSDL Parser object

Parse the WSDL file for the input wsdlURL

Get all the element entries

Get service entry for the input service name

Get the service object

Get all the ports specified in the service object

Get the end point reference (invocation URL)

Construct a clientService object

Create a new service call

Set the end point reference value and operation name for the created call

Get the binding entry for this service and this port

Get the parameters contained in the binding entry

Assign input values to the input parameters

Invoke the service and assign the outputs to output parameter

4.9 Addressing Global QoS Constraints

To compare with the MOACO approach, which can find possible composition

solutions and was evaluated by using the number of the solutions found, we also created a

modification of the proposed FOIQOS algorithm to search for all the possible solutions

based on the global QoS constraints. The basic idea of our algorithm is simply a graph

walk through. We use the same inputs as MOACO approach, which can be modeled as a

76

kind of a directed graph. Each web service type in our composition workflow is modeled

as a level in the directed graph, and each web service instance is modeled as a node. As

shown in Figure 4.13, each service type is a level in the graph. If there are n service types

involved in the composition workflow, then there will be n levels in the graph. We mark

each level as WSxn. Each service type could have m service instances. Each service

instance is a node in the graph. We mark each service instance as WSTnim. The direction

of the graph just follows the direction in the composition workflow. Each node in the

previous level can connect to all the nodes in the next level. So ideally if there are n levels

and each level has m nodes, then there could be mn paths connecting from the first level

to the last level. However, because of the global QoS constraints, the composition

solutions should be much less then mn. For each path, one needs to add up the QoS values

of each node contained in a path to see if it meets the specified global constraints. Only

the paths whose total QoS values are less than the specified global QoS constraints can be

treated as a composition solution.

I designed a recursive function to walk through the nodes in a level in the directed

graph. For each node, we add up the QoS values, if the current total QoS values of the

path did not exceed the constraints, then move to the next level. If the total QoS values

exceed the pre-defined constraints, the modified method will discard the current path and

move to the next node in the same level. By this means, time is not wasted to walk

through the whole graph and we can still guarantee to find all the possible paths to

accommodate the pre-defined QoS constraints.

77

\VST, WS» wsT_, wstn

Figure 4.13 Web service instance selection graph [Fang, 2009]

The following is the pseudo code for the recursive function mentioned above:

Read in the temporary total QoS values for the current temporary path

Save a copy of the temporary total QoS values for the current temporary path

For (each node in the current level) {

Add up the QoS values to the temporary total QoS values

If (the temporary total QoS values <= global QoS constrains) {

Connect the node to the current temporary path

If (this is the last level) {

Add the temporary path to the solution set

} else {

Call the recursive function itself to go the next level

}

}

78

Assign back the temporary total QoS values from the saved copy

Move to the next node in this level

}

79

Chapter 5

Results Evaluation

In this chapter, we describe the experiments and evaluate the experimental results.

The experiments are overviewed in section 5.1.

5.1 Experiments

In order to evaluate and compare the performance of the FOIQOS approach, we

implemented and deployed the FOIQOS, E-Workflow, and MOACO approaches in the

same test environment. While the FOIQOS and E-Workflow approaches aimed to find a

best selection and composition of web services, the original MOACO approach aims to

find the possible composition solutions. I decided to extend and implement the FOIQOS

approach to find all the possible composition solutions, resulting in five approaches and

comparisons: FOIQOS (one solution), E-Workflow (one solution), MOACO (one

solution), FOIQOS (many possible solutions), and MOACO (many possible solutions).

For each approach, I ran the experiments against differing numbers of web service

instances starting from 10 to 100, incrementing by 10 each time. As well, I repeated each

experiment for 10 times and present the average to obtain more accurate values of the

performance metric.

The experiment results for all the 5 implemented approaches, including the

FOIQOS approach, E-Workflow approach, and MOACO-based approach modified to

obtain one selection, FOIQOS approach for finding all the possible solutions, and the

MOACO approach for finding possible solutions, will be compared together in terms of

the execution time and the accuracy of the results.

80

A typical raw result of an experiment run is shown in Figure 5.1. It provides the

summarized results such as total execution times for each step, the best matching web

service objects for each web service template, and the inputs / outputs of the composition

process. The designed program is capable of displaying the execution time for each

detailed sub-step, such as stemming, stop words removal, etc., during the whole

discovering and composition process.

5.2 Results

Figure 5.2 shows the spreadsheet we used to store and compare the experiment

results for the experiments running against certain number of web service instances. The

top part of the spreadsheet shows the total execution times for running each approach.

The rest of the spreadsheet is divided into 5 parts and each part shows more detailed

execution times for each major step in an approach and the quality of the approach, e.g.

final matching web service instances, or the total solutions found. To make the

experiment results more reliable, we repeat each experiment for 10 times and present the

average values for comparison.

81

£= Java EE - Eclipse Pfatfon

File Edit Navigate Search Project Run Wndow Help

" Markers j P Properties ' fri Servers ' ^ § Data Source Explorer & Snippets SES Console £3

<termmated > broker_I [Java Appfcation] C \Program r^\3ava\)Okl 6 Q_tl\b?n\)avaw exe (Nov 8,2010 3 09 39 PW) __^______ _ _ „ _ _

|rhe time spent for reading in query Input 0
The time spent for loading and parsing workflow and service templates 94
The time spent for searching UDDI 1765
The time spent for initiating Google distance. 391

The total time spent before matching process 2250
STO, The best matching SO is SO Details - Service Key:7D7A08AO-O772-llDF-88AO-A9319EEE3647, WSDL URL http://localhost 8
080/E~privacy/services/ontoQuery?wsdl#ontoQueryHttpSoapllEndpomt, NamerOntoQuery, Description A service foe perform ont
ology queries to get the privacy regulations. Input RQL Query, Output E-privacy law. Time H m 5, Cost M m 5, Reliability

Hin.O 8, Time Avg 10, Cost Avg.5, Reliability Avg 0 9, Time Hax 15, Cost Hax 5, Reliability Hax 0 99
QoS score- 0 19079S15918639658

ST1, The best matching SO is SO Details - Service Key.C4317E60-BCD8-llDF-BE60-ABA9700FAAE7, WSDL URL http //localhost.8
080/E-privacy/services/partnerl'>Tjsdl#partnerlHttpEndpoint, Name.partner 1, Description get a list of third party partner
for a web site. Input web address. Output third party list. Time H m 5, Cost Bin 1, Reliability Hin-0 8, Time Avg 10, Co
st Avg 1, Reliability Avg 0.9, Time Hax.IS, Cost Hax 1, Reliability Hax 0 99
QoS 3C0re 0.12772456627554668

ST2, The best matching SO is SO Details - Service Key87714A30-27CA-llDF-AED4-BBECF0C08799, WSDL URL http //localhost-B
080/E-privacy/services/comparmgService'wsdltfeomparingServiceHttpEndpoint, Name:comparing Service, Description.comparing

the P3P policies of each third party with the E-Privacy regulations. Input partner name, e-privacy regulation, Output:c
omparing results. Time Hin 20, Cost Hin 1, Reliability Hin-0 7, Time Avg 30, Cost Avg 1, Reliability Avg 0 8, Time Hax*4
'0, Cost Kax:l, Reliability Hax 0 99
QoS score 0 1562716219S043S23
The total time spent for text processing 1473
The total time spent for service matching 107734
oname Query

inputs [What are the privacy laws applying to business in Canada]
Output [PIPEDA]
oname Query

inputs [What are the privacy law3 applying to business in Canada]
Output* [ibm ca]
oname compare
inputs [PIPEDA, lfam.ca]
Output [ibm comO PIPEDA ibm ca]
The tune spent for dynamic composition. 781
The total time spent 110765

The total time spent for Google Distance 106575
CoiriDOSition successfully-'

•F\S

JavaEE

, > ' ". = e

CoiriD

/ Stait| ^ g g > ** ® Ultra I ^ H P Q [J B N O V j fc-Nov | _ ^ r P O j jj^Exa | £_. Qrac j * Java | Untie j £ Java

~d

fRecv J________! 5)1
j1

; } _ V 314PM

Figure 5.1 a typical raw result of an experiment run

82

file:///Program
http://localhost

Algorithm
E workflow
Our approach (find the best solution)
Our approach (find possible solutions)
Global Optimazltion (find the best solut
Global Optimazltion (find possible solut

time Execution time Execution time Execution

8037a
92344
80218

3547
79015
79984
90766
89953

3o47
89672
88468
91453
91563

time
3532
81797
81172
82437
89015

Executi ion time E:
3547

89578
78079
93o79
79703

xecui :ion time
3485
88172
83938
85140
91922

Executi ion time
3625

81297
76078
91984
88734

Executi ion time
3485
80016
92938
81234
82422

Execution time Execution time Avg Exec Time Without Google
3531

80906
85031
87484
81031

3485
87187
86235

3642 4
84979 7
83229 8
89060 9
85692 1

4060 7
3116 4

7591
a734 9

Our approachffind the best solut ion)
Before matching
Google dis tance
google I ru t
matching
composition

2657
87595
172

88750
750

1984
75411
203

76o63
468

2000
86173
234

87219
453

2094
78269
360

79250
453

2000
85982
203

87141
437

2813
83157
219

84260
1094

2109
77450
281

78672
516

2328
76154
188

77219
469

2109
76347
250

77625
1172

1984
82652
187

83781
1422

2207 8
80919
229 7

82048 5
723 4

E work flow-
Before matching
Feature based
matching
composition
Best so lu t ion 9

2515
32

1329
796

n

1765
0

1344
438

n

1766
16

1312
469

n

1750
16

1329
453

n

1781
0

1328
438

n

1703
31

1313
469

n

1812
16

1344
469

n

1719
0

1313
453

n

1734
16

1328
469

n

1719
0

1313
453

1826 4
12 7

1325 3
490 7

0%

ST0 The best matching SO i s SO Detai ls Service hey C7186510-C022 UDF BD41 8E1EBAEB6E97 WSDL URL ht tp / / l o c a l h o s t 8080/E piivac>/services/Query0titolotyb''wsdl«Query0ntoloty5HttpSoapllEndpoint Name Query0ntoloty5 Description QueryOnto
ST1 The best matching SO i s SO Detai ls Service Key 265240BO-C022 UDF BD41 FE34C0D2D1A7 WSDL URL h t tp / / l o c a l h o s t 8080/E privacy/services/ThirdPartyList^wsdlSThirdPartyListSHttpSoapUEndpoint Name ThirdPartyList5 Description get a
ST2 The best matching SO is SO Detai ls Service Key 63013480 BCDA UDF B480 BF0B43A791C3 WSDL URL h t tp / / l o c a l h o s t 8080/E privacy/services/companngService2'Vsdl#comparingService2HttpEndpoint Name coraparmgService2 Description compar

Global Optimzation(find best solut ion)
Before matching

moaco
Google d is tance
google I nit
matching
composition
Best solut ion ' '
t o t a l an ts 30 H

1844
4093

84063
235

89078
1422

2047
4125
83078
203

88297
422

1813
4141

83988
203

89203
437

1984
4172

74876
390

80047
406

1844
4172

86079
250

91313
422

1828
4125

84608
203

89735
421

1812
4125
73845
203

78965
437

1812
4156

80046
219

85250
422

2047
4266

86596
437

91641
500

1885 9
4151 6

81469 9
253 1

66639 3
535 7

1632 8
4151 6

s t 0 The best matching SO i s
s t 1 The best matching SO i s
s t 2 The best matching SO is

SO Deta i l s Service Key B193C170 BD53 UDF B671 DA4F88EF0FB8 WSDL URL h t tp / / l o c a l h o s t 8080/E privacy/services/ontoQueryS^sdlttontoQuerySHttpEndpoint Name ontoQuery3 Description ontology query for privacy
SO Deta i l s Service hey 6461729O-C0D1 UDF B290-CE6729998C50 WSDL URL h t tp / / l o c a l h o s t 8080/E privac>/services/ThirdPartyList7^wsdl#ThirdPartyList7HttpEndpoint Name ThirdPartyList7 Description get th i rd p
SO Detai ls Service Key 18780B90 BC45 UDF 8B90-C26C7E2D8C33 WSDL URL ht tp / / l o c a l h o s t 8080/E privacy/services/ComparyServicel^wsdlW^mparyServicelNttpEndpoint Name ComparyServicel Description comparing P

Our approach(find possible solut ions)
Before matching
Google dis tance
google In i t
time for finding paths
matching
so lu t ions found

Global Optimzation(find poss ible solut ions)
Before matching
moaco
Google distance
google In it
matching
solutions found
total ants 30 iteration 100
iteration 200 (solutions / moaco time) 877 / 6281

1969
77410
266
16

78406
1453

1750
2781
74562
172

78468
608

2906
76031
188
16

77078
1453

1828
2718
84454
218

88125
587

843 / 6109 861

2031
85422
250
16

86437
1453

1922
2734
85748
218

89641
604

/ 6203

2219
77801
187
16

78953
1453

2281
2703
83001
2a0

86734
602

59%

1954
75220
297
16

76125
1453

1828
2672
74068
187

77875
601

2907
81048
1266
16

81031
14o3

1875
2985
85951
266

90047
612

1844
73139
203
16

74234
1453

1843
2703
83063
234

86891
577

1875
90036
234
16

91063
1453

1812
2688
76831
203

80610
607

Total aval
Percentage

Total aval
Percentage

2016
81949
250
16

83015
1453

lable solutions

2078
2718
75176
312

78953
587

lable solutions

2032
83078
203
16

84203
1453

1813
2703
76718
203

80547
603

2175 3
80113 4
334 4

16
81054 5

1453
1453

1

1903
2740 5
79957 2
226 3

83789 1
598 8
1453

0 41211287

1676 7
2740 5

ST0 The best matching SO is SO Detai ls
ST1 The best matching SO is SO Detai ls
ST2 The best matching SO i s SO Detai ls

Service Key 7D7A08AO-O772 UDF 88A0 A9319EEE3647 WSDL URL h t tp / / l o c a l h o s t 8080/E privacy/services/ontoQuery^wsdlttontoQueryHttpSoapUEndpoint Name OntoQuery Description A service for perform on
Service Key C4317E60 BCD8 UDF BE60 ABA9700FAAE7 WSDL URL h t tp / / l o c a l h o s t 8080/E privac>/services/partnerl ' 'wsdlt tpartnerlHttpEndpoint Name par tner l Description get a l i s t of th i rd part> partner
Service Key 87714A30 27CA UDF AED4 8BECFOC08799 WSDL URL h t tp / / l o c a l h o s t 8080/E pnvacy/services/comparingService'>wsdl8comparingServiceHttpEndpoint Name comparing Service Description comparin

Figure 5.2 The results comparison form for the experiments running against 90 web service instances
83

Execution Time Comparision (with google distance)

—•—E-workflow

E-workflow (OWL)

FOIQOS

—*—FOIQOS (many solutions)

-*— MOACO (one solution)

—•—MOACO (many solutions)

10 20 30 40 50 60 70 80 90 100

No of Web Services

Figure 5.3 Total execution time comparison results.

Figure 5.3 shows the comparative results of the total execution times for all the 5

approaches. We tested the E-Workflow approach on both 41 term text-based sample

domain ontology and the classic OWL based wine ontology. In the Figure 5.3, legend "E-

workflow (OWL)" indicates the test result of E-Workflow approach on the wine ontology.

The E-Workflow approach performs better than all other 4 approaches in terms of the

execution time when the ontology is represented in a fast data structure, and without the

use of a reasoning engine. However, when the E-Workflow approach used a small OWL

ontology like the wine ontology, the performance dropped significantly. It performed even

worse when the number of web services is more than 50. The wine ontology contains

2008 entities in total, including classes, properties, individuals, and values. While in the

real world, a well-maintained domain ontology would contain far more than ten thousand

entities. For example, a well known biomedical ontology, the Mesh ontology, contains

84

Z3UUUU

200000

150000

£ 100000

50000

57985 entities in total. In our tests, it took 297 milliseconds to load the wine ontology

locally; while it took 14801 milliseconds to load Mesh ontology locally. Furthermore, to

load and query a domain ontology requires a lot of resources. In our test, we can load the

Mesh ontology successfully, but we cannot complete a simple property query on it

because it requires more memory exceeding the capacity of our test environment (3 GB

memory). In the real world, for a large ontology, one may have to store the ontology

persistently locally to improve the performance. However, a common way to use an

ontology is to load it remotely through the internet. This provides a practical way for the

ontology owners to maintain their ontology and consumers access the most up to date

version. However, to load an ontology remotely would increase the time spent to load the

ontology. In our tests, the wine ontology took about 2032 milliseconds to load remotely

versus 297 milliseconds to load locally. The Mesh ontology took 125688 milliseconds to

load remotely versus 14801 milliseconds to load locally. Thus, network delays increase

the overhead of an ontology-based approach as well.

The proposed FOIQOS approach performs slightly better than the MOACO

approach. As we specified in the previous chapters, the proposed approach and MOACO

approach were implemented to use Google distance to calculate the semantic similarities.

The Google distance algorithm needs to invoke search APIs provided by search engine

service providers such as Google, Bing, or Yahoo, to get the web search results, and

calculate the semantic similarity scores based on the returned search results and the

Bayes' theorem. The performance of the Google distance algorithm is highly dependent

on the performance of those search APIs, which is time consuming comparing to other

steps involved in the whole discovering process. Google distance algorithm normally

85

consumes over 95% of the execution times spent for web service matching.

5.2.1 Overhead Examination

In order to examine overheads, Figure 5.4 shows the execution time comparison chart

without the major overhead components: Google Distance and the Ontology engine. In

this chart, we deducted the execution time for Google Distance algorithm from the total

execution time. As well, we took out the E-Workflow approach performed on the wine

ontology from this comparison to avoid the overheads introduced by Jena and Pellet

reasoners on processing the ontology. We can see the differences compared to the chart

shown in Figure 5.3. Without the major components contributing to overhead, the

remaining pieces of overhead the FOIQOS approach is similar to the E-Workflow

approach. FOIQOS performs even slightly better when finding all the possible solutions.

When the number of web services increased, the remaining overhead of the MOACO

approach increased significantly compared to E-Workflow approach and the proposed

approach.

86

Execution Time Comparision (without google distance)

—"~E-workflow

FOIQOS

FOIQOS (many solutions)

-*— MOACO (one solution)

-*—MOACO (many solutions)

10 20 30 40 50 60 70 80 90 100

No of Web Services

Figure 5.4 Total Execution time comparision without Google Distance

Table 5.1 and Figure 5.5 show the detailed execution times for each major steps

during the FOIQOS discovering and composition process. The whole process can be

divided into 3 steps: before matching, matching, and composition.

In the before matching step, the system loads and parses the inputs, searches the

UDDI registry to get all the privacy services, and initiates the Google Distance APIs. In

this step, loading and parsing inputs usuallly takes about 100 milliseconds, Google

initiating usually takes 200 to 400 milliseconds; the time spent for searching the UDDI is

the most time consuming part in this step and it increased significantly when the number

of web service instances increased.

In the matching step, the system performs stemming and stop words removal for

all the web service names and descriptions, calculates syntactic similarities by using the

Q-Gram distance, calculates semantic similarities by using Google Distance algorithm,

87

J I I I L

calculates QoS similarities and finally get the best matching web service instances or find

the possible composition solutions. In this step, the most time consuming part is the

Google Distance. From the numbers in Table 5.1, we can see Google Distance usually

took over 95% of the execution times in the matching step.

In the composition step, the system parses the WSDL files for each best matching

web service instances and actually invoke the web services based on the input workflow.

The execution time of this step is quite stable compared to other two steps.

From Table 5.1, we can see the time spent for the matching step dominates the

total execution time. While the time spend for the Google Distance are dominant the time

spend for the matching step. This explains why the execution times dropped when the

number of web service instances increased from 40 to 50 and from 90 to 100. As

mentioned before, the time spent for Google Distance depends on the performance of the

search APIs provided by the search engine service providers. When those search APIs

performed better, our total execution times could drop even with increased number of

web service instances. Network delay could be another major factor that affects the

performance of the Google Distance since the search services are all internet-based.

The E-Workflow approach follows the same major steps as discribed above. In the

before matching step, instead of initiating Google Distance APIs, E-Workflow loads the

domain ontology into memory during this step. This usually takes about 30 milliseconds

to load the 41-term text based sample ontology, 297 milliseconds to load wine ontology,

and 14801 milliseconds to load Mesh ontology. In the matching step, the E-Workflow

approach queries the properties for the terms through the hash map (for the 41 term

sample ontology), or by using Jena OWL APIS and Pellet reasoner for the wine ontology.

88

It usually takes less than 1 millisecond to query the hash map. The time spend to query

the wine ontology increased from 7789 milliseconds to 190232 milliseconds when the

total number of web service instances increased from 10 to 100. In the table 5.1 and the

figure 5.5, column "Feature-based algorithm overhead" illustrates the overheads of the

queries performed on the wine ontology.

Table 5.1 Detailed Execution times for each major step

No.

Web

Serv­

ices

10
20
30
40
50
60
70
80
90
100

Before

matching

632.7

817.2

1009.4

1384. 2

1532.7

1564. 2

1674.8

1899.8

1885.9

2090. 7

Google

Init (part

of the

Before

Matching)

245.4

275. 1

265.6

392
306.3

289.2

304.5

207.7

253.1

239

Feature-

based

algorithm

overhead

7789.6

16631.2

28203. 6

40851. 6

51411.2

72126.4

86767. 2

105598. 8

119797.8

190232. 2

Google

distance

(GD)

11374.7

21377.9

29171.3

47978.3

43923.7

55064.3

64613.2

76881. 3

81469.9

77408.1

Matching

incl. GD

11465.8

21562.5

30868.7

50482.9

47031.2

58582.7

68920. 5

81700

86639.3

78612.6

Compos

ition

476.5

428.1

471.9

464.2

461
471.8

448.4

793.8

535.7

526.8

89

Detailed Execution Time

200000 I

180000

160000

140000
a
£ 120000
c
2 100000
3

« 80000
X
U-l

60000

40000

20000

-Before matching
Google Init
Feature-based overhead
-Google distance
- Matching
-Composition

4 5 6 7

No of Web Services

10

Figure 5.5 Detailed Execution times for each major steps (comparison chart)

Besides the Google Distance and the common tasks, such as parsing inputs and

data preprocessing, shared by all the approaches, the major execution time difference

among those approaches also depends on the times spent for calculating the similarity

scores. Figures 5.6 and Table 5.2 depict the algorithm calculation times comparison for all

the approaches.

The FOIQOS and the E-Workflow composition approaches calculate all the

similarity scores based on the defined formulas. They spent almost no time on algorithm

calculations. On the other hand, the MOACO algorithm actually is a learning process. It

has to repeat hundreds of times to train the program to get the desired results. From both

Tables 5.2 and Figure 5.6, we can see the MOACO approaches took more time than the

FOIQOS approaches and E-Workflow approach. When the number of web service

instances increase, the calculation times for MOACO increases significantly.

90

Table 5.2 Algorithm calculation times for each approach

No. Web

Services

10
20
30
40
50
60
70
80
90
100

Feature-

based

0
0
0
0
0
0
0
0

12.7

3.2

FOIQOS one

solution

0
0
0
0
0
0
0
0
0
0

FOIQOS

many

solutions

0
0
0
0
0
0
0
0
16
1.6

MOACO one

solution

93.6

454
1420. 3

2200. 1

2599.9

2897.1

3564. 1

3840. 7

4151.6

4984. 3

MOACO many

solutions

84.4

394.9

1109.4

1730.9

2021.9

2223. 4

2515.6

2586

2740.5

2968.9

Algorithm Execution Time Comparision

—•—E-workflow

FOIQOS

FOIQOS (many solutions)

-*— MOACO (one solution)

—•—MOACO (many solutions)

10 20 30 40 50 60 70 80 90 100

No of Web Services

Figure 5.6 Algorithm calculation times for each approach (comparision chart)

5.2.2 Best Composition Solution

Table 5.3 compares the capability of each approach to find the best composition

solution. Since all the implemented approaches use similar methods and criteria when

filtering the web service instances in terms of the syntactic similarities and semantic

similarities, we define the best composition solution as the following:
91

ouuu

5000

4000

3000

<2 2000

1000

For the composition without global QoS constraints:

each web service instance in the solution must be syntactically and

semantically similar to the related web service type / template defined in the

composition workflow. We call those web service instances candidate web

services;

each web service instance in the solution must have best QoS scores among

all the candidate web services belongs to its web service type / template. A

desired web service instance in the solution should have less Time value, less

Cost value, and greater Reliability value. The QoS score is the overall QoS

values based on Time, Cost, and Reliability values. It is calculated by using

the formulas defined in each approach;

For the composition with global QoS constraints, other than the two conditions

listed above, the composition solution must meet the defined global QoS constraints as

well. The experimental results show the E-Workflow composition approach always did

not find the best composition solution, while the FOIQOS approach can always find the

best composition solution. The MOACO approach can find the best composition solution

but not always. When the number of web service instances increased, the capability of

MOACO to find the best solution decreased.

Table 5.3 Capability to find the best solution

No. Web c l f l
0 . E-workflow composition
Services r

10 0%
20 0%
30 0%
40 0%

92

OIQOS

100%
100%
100%
100%

MOACO

80%
60%
50%
50%

50 0% 100% 30%
60 0% 100% 40%
70 I 0% 100% 30%
80 0% 100% 20%
90 0% 100% 0%
100 j 0% 100% 30%

The E-Workflow composition approach only considers the absolute distance when

calculating QoS similarities. The problem with the absolute distance is that it ignores the

negative distance. That means when a SO's QoS value is slightly less than the defined

minimum ST's QoS value, the system will give it a higher score when compared to a

SO's QoS value which is much greater than the defined minimum QoS value. That's

definitely not the desired result. Another problem with the E-Workflow composition is

that it defines Minimum, Average, and Maximum values for each ST (Service Template /

Type)'s QoS parameters. The similarities were calculated based on the absolute distance

between STmin, SOmm, and STavg, SOavg, and STmax, SOmax. This seems reasonable,

however, it is not practical. When considering the quality of the services, the service

requestors actually only care about the acceptable values to him. For example,

considering the QoS parameter time, when a service requester defines time in a ST,

usually, it only cares about the longest process time (tl) acceptable to it and possibly it

will define the preferred process time (t2) as well. With the E-Workflow approach, the

algorithm will tend to choose a SO whose process time is between tl and t2 rather than

choose a service whose process time is shorter than t2. That selection is undesirable

because regarding the QoS parameter time, the shorter the better.

st time: 10,20, 50; so time: 5,10,15
st cost: 10,15,30; so cost: 10,10,10

93

st Reliability: 0.85, 0.9,1.0; so Reliability: 0.9, 0.95, 0.99
dcd time: 0.8753966455665646; dcd cost: 0.9319259231277157; dcdReliability:
0.9582839885514031;
qos d: 0.9212132321989214
sttime 10, 20, 50, so time 10, 15, 20
stcost: 10, 15, 30; so cosf 10, 15, 20
st Reliability 0 85, 0 9, 1.0, so Reliability 0 85, 0 9, 0.95
dcd time 0 915241126759053; dcd cost 0 9736718881674383; dcdReliability
0 983047550507815,
qos d- 0 9568434638599167
ST1, The best matching SO is: SO Details -
Name:Third Party List, Description:Return the third party list of the input web
site, Input:web site, Output:third party list, Time Min: 10, Cost Min: 10,
Reliability Min:0.85, Time Avg: 15, Cost Avg: 15, Reliability Avg:0.9, Time
Max:20, Cost Max:20, Reliability Max:0.95.
QoS score: 0.9568434638599167

Figure 5.7 Illustration of E-Workflow Operational Matching Step

In Figure 5.7 is a fragment of raw service discovering results by using E-

Workflow composition approach. From the above fragment, we can see the algorithm

chooses the SO with the highest QoS score (italicized) as the best matching SO for ST1.

However, when we compare to the SO highlighted in boldface, we can see the bolded SO

actually has lower time values, lower cost values, and higher reliability values. However

the algorithm gave the higher QoS score to the SO shows the algorithm cannot choose the

best web service instance with the better QoSvalues, just because its minimum, average,

and maximun values are closer to ST's minimum, avergage, and maximum values. That

shows how the E-Workflow composition approach cannot choose the best web service

instance with the better QoS values in the last filter stage of the service discovering

process and thus it cannot find the best composition solution.

The MOACO approach, as mentioned before, is a learning algorithm. We put 30

ants into the directed graph, each ant's start position is determined by a probability

94

formula and the next node on the path is determined randomly. We repeat the program

100 / 200 times. When there is less number of web service instances, the program takes

less time to walkthrough the whole graph and has higher probility to fnd the best

composition solution; while when the number of web service instances increased

significantly, with 30 ants and 100 iteration times, the program may not be able to walk

through the whole graph to find all the composition solutions, and of course it even harder

for it to find the best composition solution. The probability for MOACO approach to find

the best composition solutions is low and irregular when there is a large number of web

service instances.

5.2.3 Global QOS Constraints and Possible Composition Solutions

The MOACO approach aims to find possible composition solutions that meet the

defined global QoS constraints. To compare with the MOACO approach on this

perspective, I designed and implemented the FOIQOS algorithm to realize the same

functionalities.

Table 5.4 Possible solutions comparision

WS instance
No.
10

20

30

40

50

60

70

Total
path
17

44

130

375

556

728

1064

Algorithm

Our approach
MOACO
Our approach
MOACO
Our approach
MOACO
Our approach
MOACO
Our approach
MOACO
Our approach
MOACO
Our approach
MOACO

Time spend
(ms)
0
42.2
0
98.6
0
1109.4
0
1730.9
0
2021.9
0
2223.4
0
2515.6

Paths
found
17
17
44
43.8
130
127.8
375
327.1
556
411.4
728
487.9
1064
605.6

%

100%
100%
100%
100%
100%
98%
100%
87%
100%
74%
100%
67%
100%
57%

95

80

90

100

1370

1453

2104

Our approach
MOACO
(Iterations)

100
200

Our approach
MOACO 100

200
Our approach
MOACO 100

200

0
2586
5890
16
2740.5
6197
1.6
2968.9
6906.3

1370
576.2
798
1453
598.8
783.3
2104
716.4
1042

100%
42%
58%
100%
41%
54%
100%
34%
49.5%

Table 5.4 shows the comparison of the MOACO approach and the FOIQOS approach in

terms of the capabilities to find the possible composition solutions that meet the global

QoS constraints. The results show the FOIQOS approach can always find all the possible

composition solutions in almost no time. The MOACO approach can find almost all the

solutions when the number of web service instances is less than 30. Its capability to find

the possible composition solutions dropped significantly when the number of web service

instances increased. Increasing the iteration times can improve the capability to find the

possible solutions, but it will increase the execution time significantly.

96

Chapter 6

Conclusions and Future Work

With the increased usage of web services, demand for better service discovering

mechanisms and dynamic service composition approaches is similarly increasing. Since

the early 2000s, the scientific literature shows active contributions to the web service

discovering and composition areas. Service discovering mechanisms mainly consider the

functional properties (i.e. inputs, outputs) and operational properties (i.e. QoS). Further,

dynamic web service composition approaches mainly fall into the realm of workflow

composition or Al planning. In this thesis, we illustrated the problems that exist with

discovery approaches using ontologies, and highlighted the issues that exist in several

methods at the syntactic, semantic, and QoS operational similarity matching stages.

Further, the thesis proposed to use Google distance as an alternative to using domain

ontologies at the semantic matching stage. To evaluate the quality and performance of the

FOIQOS approach, we implement the E-Workflow composition approach, and a recent

Al-planning approach named MOACO, and compared the experiment results.

Basically, the service discovering process falls into two logical steps: WS

matching (meet the functional requirements, e.g. IOPE), and WS selection (meet the non­

functional requirements, e.g. QoS). Matching approaches use the syntactic similarity and

semantic similarity stages to filter out the unwanted service instances step by step.

FOIQOS and E-Workflow use the QoS operational similarity step to select the best

matching service instances as the actual concrete web services that will be invoked in the

actual composition. The MOACO approach first finds the matching web service instances

97

for each involved web service type (WS matching), then, based on the matching results, it

builds a directed graph and applies its selection algorithm. The E-Workflow composition

approach can be used in different ways, as it gives users the flexibility to use syntactic,

semantic, and QoS operational similarities stages as three separate ranking methods. The

user can choose one of them as the actual ranking method. So actually, there may not be a

stepwise final best selection algorithm. To make it comparable to the automatic FOIQOS

and MOACO approaches, we got rid of human interaction and applied the similar

selection process (Syntactic selection, Semantic selection, and QoS selection) as in the

FOIQOS approach but with the E-Workflow formulae and methods. In each selection step,

we applied the corresponding ranking method defined in the E-Workflow composition

approach. Specifically, the E-Workflow approach applied Q-gram algorithm in the

syntactic selection step, a feature-based algorithm in semantic selection step, and its own

QoS distance formulas in QoS selection step. The FOIQOS approach employs the Q-

gram algorithms in the syntactic selection step, Google distance in the semantic selection

step, and its own QoS distance formulas in the QoS operational selection step. The

MOACO approach did not specify the algorithm that was used for Syntactic and

Semantic selections in [Fang et al, 2009]. In our implementation, it shared the same

Syntactic and Semantic selection algorithms with the FOIQOS approach, but set the

global QoS constraints and used its native MOACO algorithm in the QoS selection step.

The experimental results show the FOIQOS approach outperforms the E-

Workflow and MOACO approaches in terms of the accuracy i.e. best selection of web

services to compose. FOIQOS can always find the best composition solutions and all the

possible composition solutions when considering global QoS constraints. In terms of

98

execution times, the performance of the FOIQOS approach is better than both MOACO

and the E-Workflow approaches.

We compare a feature-based algorithm with the Google Distance algorithm.

Theoretically a feature-based algorithm should be relatively more accurate in a specific

domain. However, it needs a pre-defined domain ontology, and highly relies on the

quality of the domain ontology to get accurate semantic matching results. With a polluted

or poorly maintained domain ontology, it is hard for a feature-based algorithm to always

get the accurate semantic similarity scores. In the cases where no property is defined for a

queried term, or the queried term is not defined in the ontology at all, or even worse the

properties are not specified correctly, the feature-based algorithm used in the E-Workflow

approach needs complementary rules or methods to get more accurate results. Google

distance is not domain specific. It can be used to compute semantic distance between any

two terms, and can still get the accurate results. The drawback of the Google Distance

algorithm is its dependency on the web search provider, and it takes more time because of

network delay. However, compared to a feature-based algorithm on an OWL ontology, the

Google distance algorithm actually performs better. The performance of a feature-based

algorithm drops significantly when the size of the ontology increases. Whereas the

performance of the Google distance algorithm is relatively stable.

When computing the QoS similarity, the E-Workflow composition and most of the

existing web service composition approaches, e.g. the approach defined in [Taher, 2005],

only consider the absolute distance when computing the similarity distance. They define

min, avg, max values for each ST's QoS parameters. The algorithm will tend to choose a

web service instance whose QoS values (SOmin, SOavg, SOmax) closest to the values

99

defined in the web service template (STmin, STavg, STmax) rather than choose a web

service instance with the best QoS values (shorter time, less cost, and better reliability).

The FOIQOS approach only defines acceptable values for each ST. Instead of

calculating the absolute distance, it discards the SOs with the negative distances (which

means at least one of the QoS values are not acceptable). As well, it introduces failure rate

to represent reliability (failure rate = 1 - reliability). This is to make sure that for values of

all the three QoS parameters, the smaller values are always better than larger ones. With

this QoS algorithm, the program can always find the SOs with the best QoS values. And

because it discard the SOs with unacceptable QoS values, that will speed up the selection

process.

With the MOACO approach, a service requestor can set the global QoS

constraints. The algorithm can find a set of possible composition solutions which satisfy

the global QoS constraints. Based on the pheromone left on each solution it can find an

optimized solution as the best composition solution. However, due to the fact that

MOACO is a learning-based algorithm, the amount of the possible solutions it can find

and the execution times it spends depend on the number of the ants and the total iteration

times. With limited iteration times, it may not always find the best composition solution.

MOACO does not always find all the possible composition solutions. The overall

performance drops quickly when the number of web service instance increases. A second

and modified FOIQOS approach implemented an improved graph walk-through

algorithm to accommodate the global QoS constraints requirements. It can always find all

the possible composition solutions in a very short time. The FOIQOS approach

outperforms the MOACO approach in every aspect.

100

6.1 Future Work

Currently, there is no standard on how to present web service's operational

properties in OWL-S. So in the thesis, the dynamic composition is based on WSDL, and

the inputted composition workflow and web service templates are defined in XML

formats, whereas the standard of the semantic web is using OWL / OWL-S. As for future

work, we will use OWL-S to define the composition workflow and service templates. As

well, all the web services will be specified in both WSDL and OWL-S. The service

discovering and composition will be based on OWL-S instead of WSDL.

Recall the mention of the absence of commercial UDDI APIs to directly access

QOS information. Thus current approaches using QOS information embedded in the

UDDI require multiple steps to locate appropriate service such that the time required on

service discovery would be longer than our implementation using UDDI categories and

then local similarity matching. However recently, researchers (e.g. Paramala and Saini,

2011) have proposed more efficient methods for implementing UDDI-QOS APIs than

those in Blum and Carter [2004] and Blum [2004] who previously described methods to

use industry UDDI implementations to store QoS information. It would be useful to

compare their similarity matching methods with our methods and approach.

Another interesting research project in the future would be applying automatic

reasoning methods to generate the composition workflow and the service templates based

on the request submitted by the service requestor.

101

7. REFERENCES

[Andrews, 2003] Andrews, T., "Business Process Execution Language for Web Services

(BPEL4WS) 1.1.", 2003,

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel

[Bennicke, 2003] Bennicke, M., Langendorfer, "Towards automatic negotiation of

privacy contracts for Internet services", Networks, the 11th IEEE International

Conference, pp. 319 - 324, 2003

[Berners-Lee, 1998a] Berners-Lee, T., "Uniform Resource Identifiers (URI): Generic

Syntax", 1998, http://www.isi.edu/in-notes/rfc2396.txt

[Berners-Lee, 2000] Berners-Lee, T., "Semantic Web - XML2000", 2000,

http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html

[Berners-Lee, 2001] Berners-Lee, T., Hendler, J., Lassila, O., "The Semantic Web", 2001,

http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-lC70-

84A9809EC588EF21 &cat!D=2

[Berners-Lee, 1998b] Berners-Lee, T., "Rules and Facts: Inference Engines vs. Web",

Available: http.//www.w3.org/Designlssues/Rules html, 1998, last updated 2009.

[Blum 2004] Adam Blum, "UDDI as an Extended Web Services Registry ", SOA

WORLD MAGAZINE, Available: http://webservices.syscon.com/read/45102.htm

[Blum and Carter, 2004] Adam Blum and Fred Carter, "Representing Web Services

Management Information", Available: http://www.oasisopen.org/committees/

download.php/5144/

[Cardoso, 2002] Cardoso, J., Sheth, A., Miller, J., "Workflow Quality of Service",

102

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
http://www.isi.edu/in-notes/rfc2396.txt
http://www.w3.org/2000/Talks/1206-xml2k-tbl/Overview.html
http://www.scientificamerican.com/article.cfm?articleID=00048144-10D2-lC70
http://http.//www.w3.org/Designlssues/Rules
http://webservices.syscon.com/read/45102.htm
http://www.oasisopen.org/committees/

International Conference on Enterprise Integration and Modeling Technology and

International Enterprise Modeling Conference, 2002

[Cardoso, 2003] Cardoso, J., Sheth, A., "Semantic E-Workflow Composition", Journal of

Intelligent Information Systems, Vol. 21, No. 3, pp. 191 - 225, 2003

[Chapman, 2006] Chapman, S., "String Similarity Metrics for Information Integration",

2006, http://www.dcs.shef.ac.uk/~sam/stringmetrics.html

[DLML, 2003] DLML, http://co4.inrialpes.fr/xml/dlml/, 2003

[Dorigo, 1999] Dorigo, M., and Caro, G.D., "The Ant Colony Optimization

metaheuristic," New Ideas in Optimization, McGraw Hill, London, 1999, pp.11-32.

[Evangelista, 2006] Evangelista, A., Kjos-Hanssen, B., "Google Distance Between

Words", University of Connecticut, 2006.

[Fang, 2009] Fang, Q., Peng, X., Liu, Q., Hu, Y., "A Global QoS Optimizing Web

Services Selection Algorithm Based on MOACO for Dynamic Web Service

Composition", ifita, vol. 1, pp.37-42, 2009

[Fensel, 2001] Fensel, D., "Ontologies: Silver Bullet for Knowledge Management and

Electronic commerce", 2001

[Gilleland, 2006] Gilleland, M., "Levenshtein Distance, in Three Flavors", 2006,

http://www.merriampark.com/ld.htm

[Grigoris, 2004] Grigoris, A., Frank, H., "A Semantic Web Primer", 2004.

[Grigoris, 2004] Grigoris, A., Frank, H., "Web Ontology Language: OWL", 2004.

[Gruber, 1993] Gruber, T. R., "Toward Principles for the Design of Ontologies Used for

Knowledge sharing", 1993, http://ksl-web.stanford.edu/KSL_Abstracts/KSL-93-04.html

[Heather, 2001] Heather, K., "Web Services Conceptual Architecture", 2001.

103

http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
http://co4.inrialpes.fr/xml/dlml/
http://www.merriampark.com/ld.htm
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-93-04.html

[Hong Kong University, 2004] Hong Kong University WWW, "A work mechanism of a

simple search engine," 2004, http://ihome.ust.hk/~egwws/comp336/lab4/lab4.htm

[Jinghua, 2005] Jinghua, Z., "Study on Applying Semantic Web to Intelligent Information

Retrieval", 2005.

[Karunamurthy, 2006] Karunamurthy, R., Khendek, F., Glitho, R., "A Novel Business

Model for Web Service Composition", IEEE International Conference on Services

Computing, pp. 431-437, 2006

[Keller, 2003] Keller, A., Ludwig, H., "The WSLA Framework: Specifying and

Monitoring Service Level Agreements for Web Services", Journal of Network and

Systems Management, Special Issue on E-Business Management, Volume 11, Number 1,

2003.

[Kolari, 2005] Kolari, P., Ding, L., Shashidhara, G, Joshi, A., Finin, T., Kagal, L.,

"Enhancing Web privacy protection through declarative policies", Policies for Distributed

Systems and Networks, Sixth IEEE International Workshop, pp. 57 - 66, 2005

[Lancaster University, 2004] Lancaster University WWW, "What is Stemming?" 2004,

http://www.comp.lancs.ac.uk/computing/research/stemrning/general/

[Lesp'erance, 1997] Lesp'erance, Y, Reiter, R., Lin, F., Scherl, R., "GOLOG: A logic

programming language for dynamic domains," Journal of Logic Programming, vol. 31,

no. 1-3, pp. 59-83, 1997.

[Li, 2005] Li, B., Tang, X., Lv, J., "The Research and Implementation of Services

Discovery Agent in Web Services Composition Framework", Machine Learning and

Cybernetics, 2005

[Liu, 2005] Liu, J., Gu, N., Zong, Y, Ding, Z., Zhang, S., Zhang, Q., "Service

104

http://ihome.ust.hk/~egwws/comp336/lab4/lab4.htm
http://www.comp.lancs.ac.uk/computing/research/stemrning/general/

Registration and Discovery in a Domain-Oriented UDDI Registry", Proceedings of the

Fifth International Conference on Computer and Information Technology, 2005

[Mcllraith, 2002] Mcllraith, S., Son, T., "Adapting Golog for Composition of Semantic

Web Services", Proceedings of the Eighth International Conference on Knowledge

Representation and Reasoning, pp. 77-88, 2002

[Nie, 2006] Nie, T., Yu, G, Shen, D., Kou, Y, "An Approach for Composing Web

Services on Demand", Computer Supported Cooperative Work in Design, 10th

International Conference, 2006, pp. 1-6.

[Parimala, 2011], ParimalaN. and Saini, A. Decision Support Web Service, Distributed

Computing and Internet Technology, Lecture Notes in Computer Science, 2011, Volume

6536/2011,221-231.

[Ponnekanti, 2002] Ponnekanti, S. R., Fox, A., "SWORD: A developer toolkit for Web

service composition", Proceedings of the 11th World Wide Web Conference, pp. 24-32,

2002

[Serhani, 2005] Serhani, M.A., Dssouli, R., Hafid, A., and Sahraoui, H. "A QoSbroker

based architecture for efficient web service selection", Proc. of the IEEE Int. Conference

on Web Services, (ICWS'05), IEEE 2005, pp. 113 - 120.

[Systinet Corp., 2003] Systinet Corp., " Web Services: A Practical Introduction to SOAP

Web Services", 2003,

[Taher, 2005] Taher, L., Basha, R., Khatib, H. E., "Establishing Association between QoS

Properties in Service Oriented Architecture", International Conference on Next

Generation Web Services Practices, pp6, 2005

[Tan, 2005] Tan, H., Guo, J. "Some methods to depress the risks of the online

105

transactions", E-marketing & e-businesses, Proceedings of the 7th international

conference on Electronic commerce, ACM International Conference Proceeding Series;

Vol. 113, pp. 217-220,2005

[Technology Investigation Center, 2003] Technology Investigation Center, "P3P -

Platform for Privacy Preferences Project by the W3C", 2003,

http://www.tic.state.ar.us/Reports/p3preport.htm

[Teknomo, 2006] Teknomo, K., "City Block Distance", 2006,

http://people.revoledu.com/kardi/tutorial/Similarity/CityBlockDistance.html

[Tran, 2008] Tran, V.X., WS-QoSOnto: A QoS Ontology for Web Services, 2008 IEEE

Symp. on Service Oriented System Engineering, pp. 233-238.

[Thissen, 2006] Thissen, D., Wesnarat, P., "Considering QoS Aspects in Web Service

Composition", Computers and Communications conference, pp.371 - 377, 2006

[Tversky, 2005] Tversky, A. "Features of Similarity." Psychological Review Vol. 84, No.

4, pp. 327-352, 2005

[Van Veldhuizen, 1999] Van Veldhuizen, D. A., "Multiobjective Evolutionary Algorithms:

Classifications, Analyses and New Innovations," Ph. D. thesis , Air Force Institute of

Technology Wright Patterson AFB, OH, USA.

[Vitanyi, 2004] Vitanyi, P., Cilibrasi, R., "Automatic Meaning Discovery Using Google",

2004, http://www.arxiv.org/abs/cs.CL/0412098

[W3C Recommendation, 2004a] W3C Recommendation, "Resource Description

Framework (RDF): Concepts and Abstract Syntax", 2004

[W3C Recommendation, 2004b] W3C Recommendation, "OWL Web Ontology

Language Overview", 2004

106

http://www.tic.state.ar.us/Reports/p3preport.htm
http://people.revoledu.com/kardi/tutorial/Similarity/CityBlockDistance.html
http://www.arxiv.org/abs/cs.CL/0412098

[W3C Recommendation, 2005] W3C Recommendation, "RDF Vocabulary Description

Language 1.0: RDF Schema", 2005

[W3C, 2005] W3C, "P3P Public Overview", 2005, http://www.w3.org/P3P/

[W3Schools, 2005] W3Schools, "XML Tutorial", 2005,

http://www.w3schools.com/xml/default.asp

[Wang, 2006] Wang, X. Vitvar, T. Kerrigan, M., and Toma, I. "A QoS-Aware Selection

Model for Semantic Web Services," in Proc. of ICSOC 2006, pp. 390-401. June 2006.

[Wu, 2003] Wu, D., Sirin, E., Hendler, J., Nau, D., Parsia, B., "Automatic Web services

Composition using SHOP2", Workshop on Planning for Web Services, 2003, 7 pages.

[Ye, 2006] Ye, L., Zhang, B., "Discovering Web Services Based on Functional

Semantics", IEEE Asia-Pacific Conference on Services Computing, pp. 348-355, 2006

107

http://www.w3.org/P3P/
http://www.w3schools.com/xml/default.asp

