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Abstract 

A Comparative Study of Altman’s Z-score and A Factor Analysis Approaches to 

Bankruptcy Predictions 

by 

Yuanlong Chi 

 

This study uses an adapted factor analysis to recast Altman’s Z-score model and 

compare the two approaches in terms of their prediction performance. First, a 

brief review of Altman’s Z-score model and the model of factor analysis method 

is introduced. Then, some recent breakthroughs of factor analysis are presented 

to illustrate the theoretical benefits of adapting the method. The data used in this 

study are described and collected from annual reports of healthy companies and 

companies who applied Chapter 10K bankruptcies over the time period of 2003 

to 2009. Using those data, this study adapts the factor analysis and obtains a new 

Z-score model. Through comparisons, this study finally evaluates both Altman’s 

model and the new Z-score model. In conclusion, this study finds that in both 

aspects of coefficients of determination and predictabilities, the new Z-score 

model shows better performance than Altman’s model, thus providing an 

updated and refined tool for bankruptcy prediction. 
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Chapter 1 Introduction 

 

    Altman’s Z-score is a tool used widely in finance for analyzing and predicting 

the risks of bankruptcy of listed firms. The Z-score is a number computed as a 

sum of weighted of financial variables. The Altman’s Z-score function is an 

equation resulted from computation of Multivariate Discrimination Analysis 

(MDA). The theory of MDA, which is used in computation of Z-score function, 

however, has some drawbacks. Those drawbacks can be improved by using the 

recent breakthroughs in Factor Analysis. Therefore, it is worthy using the new 

developments in factor analysis to estimate a new Z-score model for predicting 

bankruptcies of listed companies. In addition, Altman used companies’ data from 

1950s and 1960s in obtaining the original Z-score model, which might be 

outdated. Thus, using more recent data to estimate new Z-score model is 

essential to evaluate the ability of analyzing and predicting the risk of 

bankruptcies of listed firms. This study intends to apply the results from recent 

developments in factor analysis to the Altman’s Z-score model and use updated 

data to conduct the parameters estimations. The purpose is to see if the new 

score model would outperform the original Z-score model. 
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Chapter 2.1 Review of Altman’s Z-score Model 

 

    The widely popular Z-score function used for analyzing and predicting 

bankruptcies was first published in 1968 by Edward I. Altman (Altman, 1968). In 

Altman’s study, the initial sample involved sixty-six corporations with thirty-

three companies in each group in the time period of 1946 to 1965. The Z-score 

uses multiple inputs from corporate income statements and balance sheets to 

measure the financial status of a company. The inputs that Altman selected were 

from those financial reports that are one reporting period earlier than 

bankruptcies. The inputs that Altman used were twenty-two different financial 

ratios. Altman considered that these financial ratios were chosen to eliminate 

size effects. Those ratios were divided in five categories: liquidity, profitability, 

leverage, solvency, and activity. The reason for dividing the input variables in 

case 5 categories is ad-hoc. They are standard financial categories.  

 

    Altman applied linear multiple discriminant analysis (MDA) to find the best 

combination of five variables from an original set of variables. However, when 

applying the method of MDA, Altman could not avoid biased estimators. Altman 

himself admitted to the bias and tried the best way to minimize it. It is generally 
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believed that the biased estimators come from two sources: sampling errors and 

searching (Frank etc., 1965). This is the first drawback of MDA – the biased 

estimators. 

 

    After computations, Altman obtained the Z-score model as following: 

 

                                          

 

Where, 

 

   
                   

            
⁄  
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                    ⁄  

 

                                                        ⁄  

 

                    ⁄  

 

    After obtaining the parameters of the Z-score model, Altman conducted a test 

to assess the model’s performance. The test was used to evaluate the prediction 

accuracy. He believed that the “measure of success of the MDA in classifying 
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firms is analogous to the coefficient of determination (  ) in regression analysis”. 

The result of his test to the initial sample is shown in the following: 

 

 

 

 

 

Table 1 – Altman’s Test 

 Number 

Correct 

Per cent 

Correct 

Per cent  

Error 

 

n 

Type I 31 94 6 33 

Type II 32 97 3 33 

Total 63 95 5 66 

Source: Altman, 1968 

    

    Type I means Type I error, that is the probability of the error of the model 

mispredicts firms’ failures in the set of existing firms. Type II means Type II error, 

which is the probability of the error of the model mispredicts firms’ existing in 

the set of failure firms. The given of these potential test errors indicates that 

MDA analysis should be tested in order to obtain the model’s coefficient of 

determination (  ). Thus, the conduction of the test itself indicates another 

drawback of MDA – the uncertainty of coefficient of determination level of 

the model after parameter estimations. 
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    In light of these two drawbacks of MDA, a factor analysis approach to obtain a 

new Z-score model for predicting the firms’ bankruptcies is proposed in this 

study. The following section will introduce the classical factor analysis and show 

how the recent breakthroughs in factor analysis can be used in this study to 

improve the Z-score’s predictability. 

 

 

 

Chapter 2.2 The Classical Factor Analysis 

 

    Factor analysis was invented in 1904 by Charles Spearman. Factor analysis is 

one of the success stories of statistics in the social sciences. The reason for its 

wide appeal is that it provides a way to investigate latent variables, the 

fundamental traits and concepts in the study and evaluate of individual 

differences (Robert and Robert, 2007). 

 

    In this study, the method of factor analysis is used to construct a factor model 

of describing financial characteristics of companies and, then to provide a 

comprehensive score for each firm. These scores, will be used to compare with 

Altman’s Z-score. 

 

Suppose   is a random vector with p dimensions, 
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With the mean of 

 

                       , 

 

And the covariance matrix 

 

                       . 

 

Suppose x is a factor analysis model with k factors such that x could be expressed 

as 

 

                                

        

                                

 

That is 

 

                                                                                 ---- (1) 

 

Where: 

 

                              , 

                  , 
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and 

  

                   

 

are unknown. Λ is the factor loading matrix,     is the factor loading, f is the 

common factor and u is error or, specific factor. 

 

Often the following assumptions are made: 

 

            ; 

               , where    is the k×k identity matrix; 

            ; 

                ; 

 

Factor analysis model usually requires that the error covariance matrix follow 

two constraints:  

 

                 (non-negative definite)                           ---- (2) 

               

(

 

  
    

   
   

  
  

 
 

 
  

 )

 , (diagonal)                ---- (3)                                   

 

  is called the errors covariance matrix or, specific covariance matrix. 
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From the assumptions above, it implies a covariance structure  

 

             . 

 

Also, from the constraints above  

 

         ∑    
  

   , (j =1,…, k)  (the sum of elements that in jth column in Λ)  

 

is defined as the sum of squares of the jth column elements of Λ, called the 

variance contribution, which is a measure of common factor fj  explaining all the 

variables x; and 

the sum of squares of the first k columns’ elements of Λ: 

 

      ∑   
 
                                                                                    ---- (4) 

 

is called the cumulative variance contribution, which is a measure of the common 

factors f1,…, fk explaining all the variable x (equivalent with the coefficient of 

determination and used in later, i.e. the R2); 

 

      ∑     
 
     

 

is called the proportion of cumulative variance contribution. 

 

In addition, 
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  ∑    

  
    (i=1,…,p),   

    

 

i.e. sum of squares of the ith-row elements in Λ, is called the communality. 

Finally, 

 

      ∑   
 
    ∑   

  
    ∑ ∑    

  
   

 
                     

 

where tr is the trace of a square matrix. 

 

The task of factor analysis is to estimate 

 

                 

 

and  

 

                   

 

and then give factor { fj } a reasonable explanation. 
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Chapter 2.3 Advantages of Adapting Factor Model 

 

    In the previous section, I indicated some drawbacks of the MDA itself. In this 

section, I will explain in what ways factor analysis would have its advantages 

over MDA in study of the score function.  

 

    For the drawback of biased estimator of MDA, factor analysis (principal 

component method) can produce a factor model with unbiased factor score, i.e. 

the new Z-score. Therefore, I used the first theorem directly from He’s study – 

Theorem 1 (He, 2012). 

 

Theorem 1: If Λ=Λ*, then  

i. The Thompson factor score of the regressor of Λ* is the rotation of the first k 

standardized principal components, which are the linear combination of x. i.e.  
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 (  

   ⁄   
        

   ⁄   
   )    

    
   ⁄        

   ⁄         ---- (5) 

 

ii. The regressed factor score f * of the regressor of Λ* is unbiased, and its average 

prediction error is smaller than other factor scores. Therefore, the regressed 

factor score of the loading matrix Λ regressed under the principal component is 

better. 

 

    The proof of Theorem 1 is contained in Appendix 1. Basically, Theorem 1 

shows that by adapting factor analysis principal component method, we can get 

unbiased factor loading matrix, Λ*. Then, after adapting the data in the factor-

loading matrix, we can get unbiased factor scores, i.e. the Z-value in this case. 

 

    For the second drawback of MDA, i.e. uncertainty of coefficient of 

determination, factor analysis (principal component method) has its advantage. 

In factor analysis, ∑     
 
    is a proportion of cumulative variance contribution. 

This proportion is analogous to the coefficient of determination in ordinary 

regression analysis, i.e. R2. Thus, this proportion measures the percentage of data 

explained by factor model. Recent breakthrough in factor analysis (principal 

component method) can maximize the proportion. That is, when we adapt the 

principal component method of factor analysis, we can guarantee the factor 

model maximizes its ability to explain the data, i.e. maximize the coefficient of 

determination. In order to do so, I directly use the Theorem 2 (He, 2012). 
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Theorem 2： For a given k＜r =rank( )， 

 

(i) For any matrix of factor loadings, Λ, for (1) we have  

 

              ∑   
 
                                                                        ---- (6) 

 

where tr is the trace of a square matrix. 

 

(ii)  If Λ=Λ*, i.e. the matrix of factor loadings, estimated under the principal 

component method, then for (1) we have  

 

     {∑   
 
   }    [       ]  ∑   

 
                               ---- (7) 

 

    The proof of Theorem 2 is contained in Appendix 2. Theorem 2 indicates 

that, through rotation, factor model will find one loading matrix that maximizes 

the coefficient of determination of the factor model. Thus, no more need of using 

the modeling test to get the coefficient of determination. 
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Chapter 3 Sample Data 

 

    The sample data that are used in this study consists of two groups – the 

bankruptcy group and the healthy group. The data is collected through 

Bloomberg and UCLA-LoPucki Bankruptcy Research Database.  The stock prices 

and financial ratios for healthy firms are manually collected from the Bloomberg; 

the financial ratios for the bankruptcy firms are manually collected from the 

links to the annual reports before bankruptcy declarations which provided by 

UCLA-LoPucki data base. The bankruptcy group has 33 companies that filed 

under Chapter 10K in U.S. government during the time period of 2003 to 2009. 

The healthy group has 33 companies that are still listed in NYSE (New York Stock 

Exchange) and NASDAQ stock markets. The financial ratios of bankruptcy 



 19 

companies are selected from their annual reports prior to bankruptcy 

announcements. The financial ratios in healthy group are selected from 2009 

annual reports. The choice of using 2009 financial year considered that 2009 

financial year is the most recent year with available data so it meets the up-to-

date motivation of the study. 

 

    The reason of using financial ratios of combining data is explained in pervious 

section. Variable in ratios are effective tools for eliminating size effect among 

different companies. Therefore, when sampling the companies, sizes of them are 

not considered in this case.  The financial ratios are selected under 5 categories -- 

liquidity, profitability, leverage, solvency, and activity.  Those 22 ratios are the 

same as Altman’s that were used in his study. 

 

Chapter 4 Model Construction and Model Evaluation 

 

    Originally, we have 22 financial ratios, categorized under 5 categories.   

After collecting data for the two groups, we have to select the best combination 

of ratios from the 5 categories that 1) can discriminate the two groups and 2) has 

high coefficient of determination. The criteria of selecting the best 5-variable 

linear combination don’t have to be consistent, as long as the combination has 

the most efficient discrimination and acceptable high coefficient of 

determination. The combination has 5 variables (ratios), which should come 

from each of the financial categories. 
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     The new Z-score model is obtained by using the data through factor analysis, 

principal component method. The software of doing this study is SPSS. In the 

factor model, 4 factors are selected as to construct a saturate factor model, 

whose factor-loading matrix is rotated in the fashion of maximum variation. The 

factor scores of those 4 factors are calculated under the method of regression. 

The flowchart of the analysis is as follows: 
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Collect Data of 22 Financial Ratios which fall 
into 5 categories; 

Select one ratio in each of the 5 categories to 
form a linear combination of 5 variables; 

Use Factor Analysis's Principal Component 
Method to obtain the factor-loading matrix; 

Average the rows of the factor-scoring matrix, 
computated as the coefficients of the 

standardized 5 variables; 

Calculate scores for each firm using the 5 
variables and their coefficients; 

Compute the Coefficient of Determination of 
the 5-variable linear combination; 

Estimate the predictability of the combination 
for the firms in both healthy and bankruptcy 

groups; 

Select another 5-variable linear combination; 
compute the coefficients for each of the 5 

variables, note the coefficient of determination, 
and the predictability for the groups of firms; 

Select the best 5-variable combination with 
high coefficient of determination and the most 

efficient predictability; 

Name the best combination as our New Z-score 
Model. 
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    The new Z-score of the factor model is calculated as the average of four factor 

scores, each factor score is regressed. Therefore, there is no need of showing the 

four-factor model but showing the average factor score model. The new Z-score 

model is as following: 

 

                                                

 

Where, 

 

   
                   

            
⁄  

 

   
                            

            
⁄  

 

                    ⁄  

 

                                                        ⁄  

 

                    ⁄ . 

 

    Surprisingly, the ratios that were selected in the new Z-score model are 

identical with Altman’s model. The new Z-score model has greater coefficient of 

determination than Altman’s model. The following chart will demonstrate this 

characteristic. 



 23 

 

Table 2 –Coefficient of Determination of the New Z-score Factor Model 

Factor Coefficient of 

Determination for Each 

Factor 

Coefficient of 

Determination for Each 

Factor Model 

1 43.286 43.286 

2 21.694 64.981 

3 18.461 83.442 

4 10.430 93.872 

 

 

    Through the chart we can tell that the four-factor model can explain up to 

93.872% of variation, i.e. equation 7. That is, the coefficient of determination of 

the factor model is 0.93872. The significant high coefficient of determination 

indicates that the factor model has great conviction. 

 

    After the computation, we get the parameters of the factor model. However, 

at this step, though we know the parameters of Altman’s model, there is no way 

to know how well the Altman’s model can explain the variation. Thus, the table 

below indicates the difference of the two models at this step: 

 
Table 3 – Parameters of Altman’s Model and the New Z-score Model 

Parameters Altman’s Model New Z-score Model 

   1.2 0.2825 

   1.4 0.30925 

X3 3.3 0.308 

X4 0.6 0.25 

X5 1.0 0.95 

Cumulative % Variation Unknown 93.872 

 

    With the new Z-score model, new Z-scores are calculated for every firm in each 
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of the groups. The score of each firm is presented in Appendix 3. Theoretically, a 

positive new Z-score value implies a healthy firm and a negative new Z-score 

value implies a bankruptcy firm. Further predictability evaluation of both 

Altman’s model and the new Z-score model will be presented in the following 

chapter. 
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Chapter 5 Predictability Evaluation 

 

    After having obtained the new model, its predictability needs to be evaluated. 

The evaluation is conducted the same was as the Altman’s test table, i.e. Table 1, 

that is shown in early section of this study.  Therefore, this study conducts two 

tests to find the predictabilities of Altman’s model and the new Z-score model.  

 

    For Altman’s model, misclassification will count mainly at Altman’s Z-value 

rule of 1.81 -- “bankrupt” and 2.99 – “non-bankrupt” (Altman, 1968).  There are 

33 firms in the bankruptcy group and financial ratios are calculated through the 

last annual report before bankruptcy clearance; another 33 firms in the healthy 

group and financial ratios are calculated through the 2009 annual report. The 

predictability of Altman’s model is the following: 

 

Table 4 – Predictability of Altman’s Model Using Updated Data 

 Correct Number % Correct Total 

Bankruptcy Group 27 81.8 33 

Healthy Group 18 54.5 33 

Total 45 68.2 66 

 

    For the new Z-score model, misclassification will count mainly at new Z-value 

rule of negative -- “bankrupt” and positive – “non-bankrupt”.  There are 33 firms 

in the bankruptcy group and financial ratios are calculated through the last 
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annual report before bankruptcy clearance; another 33 firms in the healthy 

group and financial ratios are calculated through the 2009 annual report. The 

predictability of the new Z-score model is the following: 

 

Table 5 -- Predictability of the New Z-score Model Using Updated Data 

 Correct Number % Correct Total 

Bankruptcy Group 27 81.8 33 

Healthy Group 23 69.7 33 

Total 50 75.8 66 

 

    So far, for Altman’s Z-score model, the percentage of correction is obtained 

from the previous table. Thus, we can not only get the predictability accuracy of 

the model, but also get the coefficient of determination (  ) of the model. 

Therefore, a full comparison between two models is built as the following table: 

 

Table 6 – Predictability Comparison between Altman’s Model and the New Z-

score Model 

 Altman’s Model New Z-score Model 

% Correct on Bankruptcy 

Group 

81.8 81.8 

% Correct on Healthy 

Group 

54.5 69.7 

Coefficient of 

Determination 

0.682 0.939 
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    From the table above, the advantages of the new Z-score model are obvious. 

Though the new Z-score model’s percentage of correct prediction for healthy 

group is same as Altman’s model’s; for the percentage of correct prediction on 

bankruptcy group, the new Z-score model has an advantage of 15.2% than that of 

Altman’s model. For the coefficient of determination, the new Z-score model has 

0.939 on the up-to-date data, which is 0.257 higher than that of Altman’s model. 

Therefore, the new Z-score model has not only higher coefficient of 

determination, but also has more accuracy on the up-to-date data. 
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Chapter 6 Out-of-sample Comparisons 

 

    After obtaining the new Z-score model, a second data set was collected as out-

of-sample to test if the new Z-score model’s predictability continues to 

outperform with Altman’s model.  

 

    The second data set contains 14 healthy companies listed in TSX (Toronto 

Stock Exchange) and 15 bankrupt companies. The data of the healthy group are 

financial ratios that are selected from 2011 annual reports; and the data of the 

bankrupt group are financial ratios that are selected from annual reports during 

the time period of 1997 to 2002. In the comparative tests, both Altman’s Z-scores 

and the new Z-scores are calculated for these companies. For the healthy 

companies, any Altman’s Z-scores lower than 2.99 are counted as prediction 

failure; and any new Z-scores lower than zero are counted as prediction failure. 

Also, for the bankruptcy companies, any Altman’s Z-scores greater than 1.81 are 

counted as prediction failure; and any new Z-scores greater than zero are 

counted as prediction failure. The result of the test is shown in the following 

table. 
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Table 7 – Comparative Tests Using Out-of-sample Data 

 Altman’s Model New Z-score Model 

% Correct on Bankruptcy 

Group 

80 80 

% Correct on Healthy 

Group 

71.4 100 

Coefficient of 

Determination 

0.757 0.939 

 

    From Table 7, the out-of-sample data test shows that the new Z-score model is 

still superior to Altman’s model in term of prediction accuracy. Although the new 

Z-score model’s percentage of correct prediction for bankruptcy group is same as 

Altman’s model’s, for the percentage of correct prediction on healthy group, the 

new Z-score model has an advantage of 29.6% over that of Altman’s model (100% 

comes with the new Z-score model vs. 71.4% comes with Altman’s model). For 

the coefficient of determination, the new Z-score model has 0.939 on the up-to-

date data, which is 0.182 higher than that of Altman’s model. Therefore, with the 

out-of-sample data, the new Z-score model has not only higher coefficient of 

determination, but also has more accuracy compared with Altman’s model. 
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Chapter 7 Conclusion 

 

    Altman obtained his Z-score model in 1968. For more than 40 years, the model 

has been considered classical and accurate for predicting the bankruptcy 

possibilities of companies. This study’s goal is to estimate another approach of 

factor analysis, with up-to-date data, to obtain the new Z-score model in order to 

improve Altman’s model. 

 

    Compared with Altman’s method in obtaining his model, factor analysis has its 

own advantages. The primary advantage of factor analysis is that the estimator is 

unbiased. It is crucially important. Usually the bias of traditional MDA 

(multivariate discriminate analysis) can’t be avoided.  The only way of reducing 

bias estimation of MDA is through reducing the sampling bias and searching bias. 

Factor analysis has unbiased estimator through the methodology itself. Another 

advantage of factor analysis is in the aspect of model evaluation. With completing 

of estimating the parameters, it will immediately get the percent of cumulative 

variance contribution, or the coefficient of determination. Researchers will 

immediately know how well the model in this aspect is. The traditional MDA 

method will only allow researchers to test the accuracy of the model and then get 

the coefficient of determination of the model. Factor analysis saves researchers 

much time and vigor on finding the coefficient of determination of the model. 
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Especially, the study finds that the coefficient of determination from factor 

analysis is much higher than Altman’s method of MDA, which is 0.257 higher. 

Thus, the method of getting the new Z-score model, factor analysis, has 

advantages on unbiased estimator and immediately getting the higher coefficient 

of determination. 

 

    Apart from the advantages from the method itself, the new Z-score model has 

more advantages on predictabilities. Through the study, we find that the new Z-

score model has its advantage on predicting the healthy firms. The overall 

percentage of correct prediction of the new Z-score is 7.6% higher than Altman’s 

model. 

 

    Then, this study introduced another data set in order to test if the new Z-score 

model has its superiority. The results indicate that in both aspects, coefficient of 

determination and predictability, the new Z-score has more accuracy prediction 

on bankruptcy. 

     

    With a positive sign for non-bankruptcy and a negative sign for bankruptcy, 

some more works should be done in future research. This study only counts 66 

firms from public stock markets. Thus, a larger database should be set and 

processed. In addition, factor analysis method is suggested to apply on study of 

private companies, unlisted companies and small-size companies. 
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Appendix 1 – Proof of Theorem 1 (He, 2012) 

 

The proof of Theorem 1:  

Based on the relations of R,   , T, we have:  

 

         (

   
   

  
  

  
  

  
   

)  , 

 

So,      

(

 

  
   

   
  

  
  

  
  

  
   

  )

    

 

When R is irreversible,     takes the generalized inverse matrix of R (Zhang and 

Fang, 1982), 

 

In the form of matrix，     

(

 

  
   

   
  

  
  

  
  

  
   

  )

   , 

 

Where             . 
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Therefore, calculated by matrix multiplication, the Thompson factor score    

of the regressor of Λ*: 
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Since (  
   ⁄   

        
   ⁄   

   )  is the first k standardized principal  

components (Zhang and Fang, 1982),   
 (  

   ⁄   
        

   ⁄   
   )

 
    is the 

rotation of the first k standardized principal components. This completes the 

proof of Theorem 1 i. i.e. (6).  

 

From (6), and the multiplication of matrices,  

 

              

 

Holds, and 

 

          |     
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   ⁄        
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       |     
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   ⁄   )
 
    



 34 

                         
 (  

   ⁄        
   ⁄   )

 
(  

   ⁄        
   ⁄   )      

       

 

That is, the Thompson factor score is unbiased, and its average prediction error 

is smaller (Fang, 1989). This completes the proof of Theorem 1 ii. 

 

Appendix 2 – Proof of Theorem 2 (He, 2012) 

 

For proving Theorem 2, we need to introduce Lemma 1;  

 

Lemma 1 (Weyl's Lemma): Let both R and B be p-order symmetric matrices, 

where the eigenvalues for   are        ， 

and  

 

               

 

For B are        ,   

 

             . 

 

If R-B is non-negative definite, then  

 

                     .  

 



 35 

Theorem 2 proof： For any matrix of factor loadings Λ,        ，So the 

difference, 

 

               . 

 

That is,   is a non-negative definite matrix.  

 

Let                     be eigenvalues of    , where  

         .  

 

According to the assumption of R and its eigenvalues   , and 

from Lemma 1,  

 

                      holds. Hence 

 

              ∑   ∑   
 
   .   

 

This completes the proof of Theorem 2 (i), i.e. (6). 

 

From the spectral decomposition of R:   ∑      
 , Calculated by  multiplication 

of the matrix:         ∑      
 . We have 

  

                ∑       
  

     , and                 , 
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Also  

 

          is non-negative definite, 

 

And  

 

∑   
 
    ∑   

  
    ∑ ∑    

  
   

 
                   . 

 

This completes the proof of Theorem 2 (ii), i.e. (7). 
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Appendix 3 – Altman’s Scores and Factor Scores of the Data (first 

33 companies belong to bankruptcy group; second 33 

companies belong to healthy group) 

 

Company Date Altman's Z New Z 

aaiPharma 04-12-31 -2.864710975 -0.820775 

Abitibibowater Inc. 07-12-31 0.238907221 -0.298735 

Accuride 
Corporation 

08-12-31 -0.234490702 -0.33594 

Amcast Industrial 
Corporation 

03-8-31 1.595279958 -0.041435 

Anchor Glass 
Container 
Corporation 

04-12-31 1.08282922 -0.13578 

Asyst Technologies 08-3-31 0.103414633 -0.376185 

Calpine 
Corporation 

04-12-31 0.477004841 -0.254535 

Caraustar 
Industries, Inc. 

08-12-31 0.311031365 -0.21598 

Champion 
Enterprises, Inc. 

09-1-3 1.041850871 -0.133835 

Chesapeake 
Corporation 

07-12-30 1.681246587 -0.08738 

Circuit City Stores, 
Inc. 

08-2-29 3.638979854 0.374615 

Collins & Aikman 
Corporation 

03-12-31 0.966047965 -0.166135 

Dana Corporation 04-12-31 1.748336512 -0.027715 

Acterna 03-3-31 -8.294386933 -1.6955725 
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Corporation 

Delta Air Lines 04-12-31 -0.198251799 -0.35459 

Falcon Products 03-11-1 1.440458923 -0.0641125 

General Motors 
Corporation 

08-12-31 -0.885750572 -0.474335 

Granite 
Broadcasting 
Corporation 

05-12-31 0.539823903 -0.2447775 

GSI Group Inc. 07-12-31 12.44504967 0.49578 

Hancock Fabrics 06-1-28 3.113376974 0.25597 

Hines Horticluture, 
Inc. 

06-12-31 0.391225329 -0.2789075 

Inphonic 06-12-31 0.967552775 -0.31907 

Lear Corporation 08-12-31 1.393011345 -0.0441875 

AMR Corporation 10-12-31 0.754494776 -0.2138825 

Lyondell Chemical 
Company 

07-12-31 1.466897093 -0.0960225 

McLeodUSA 
Incorporated 

04-12-31 -2.593675906 -0.7879475 

Northwest Airlines 
Corporation 

04-12-31 42.95090498 1.75601 

Applied Extrusion 
Technologies, Inc. 

03-9-30 0.972188541 -0.1624575 

Silicon Graphics 05-6-24 -3.998750008 -1.2026925 

Tweeter Home 
Entertainment 
Group 

06-9-30 1.702220544 -0.00619 

Ultimate 
Electronics 

04-1-31 2.839541561 0.1634025 

Visteon 
Corporation 

08-12-31 0.988469626 -0.1203075 

Winn-Dixie Stores 04-6-30 4.929533647 0.5985475 

Amcon Distributing 09-9-30 11.93532197 1.9647875 

AAR Corp. 09-5-31 2.700031934 0.0941825 

Abercrombie & 
Fitch Co. 

09-1-31 4.101159493 0.30714 

B & G Foods, Inc. 09-1-3 1.202269581 -0.149815 

Best Buy Co. 09-2-28 4.265865813 0.3978875 

The Boeing 
Company 

09-12-31 2.179823027 0.0303775 

Cabot Corp 09-9-30 2.161396681 0.0021 

Cambrex 
Corporation 

09-12-31 1.72281814 -0.079835 

Danaher 09-12-31 3.415065493 0.050785 
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Corporation 

Diebold 
Incorporated 

09-12-31 2.959142031 0.11954 

Eagle Materials, 
Inc. 

09-3-31 2.42734471 -0.01688 

Ennis, Inc. 09-2-28 3.11515299 0.1488975 

Feihe International 
Inc 

09-12-31 2.035675987 -0.1071775 

Ferro Corporation 09-12-31 2.018587529 -0.00271 

Gardner Denver, 
Inc. 

09-12-31 2.861685314 0.0102875 

Glatfelter 09-12-31 3.113811757 0.180285 

H.J. Heinz 
Company 

09-4-29 3.34959136 0.19203 

Harley-Davidson, 
Inc. 

09-12-31 2.334024714 0.046765 

Harman 
International 

09-6-30 2.017293337 0.0172875 

James Hardie 
Industries SE 

09-3-31 2.552081032 -0.1267425 

Kaydon 
Corporation 

09-12-31 9.297301829 0.482845 

Kraft Foods Inc 09-12-31 1.752615515 -0.0931175 

Lennox 
International 

09-12-31 4.172020209 0.2668375 

Lockheed Martin 
Corporation 

09-12-31 2.758896786 0.1073525 

Lydall, Inc. 09-12-31 6.984412516 0.7195225 

Magna 
International Inc 

09-12-31 2.453047329 0.049935 

Manitowox 
Company Inc. 

09-12-31 0.772455316 -0.197085 

Masco Corporation 09-12-31 1.802749285 -0.0526975 

McDonald's 09-12-31 5.455448202 0.340565 

Medtronic, Inc. 09-4-24 3.875143982 0.1242175 

Nike, Inc. 09-5-31 6.741443761 0.4116625 

Omega Protein 
Corporation 

09-12-31 2.141990412 -0.039285 

Pall Corporation 09-7-31 3.325965918 0.1152 
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Appendix 4 – Out-of-sample Data Set (first 15 companies belong 

to bankruptcy group; second 14 companies belong to healthy 

group) 

 

Company Altman’s Z score New Z-score 

1 0.268897538 -0.119975985 

2 2.132201461 -0.057574296 

3 0.495111843 -0.09959739 

4 1.51850449 -0.194484323 

5 -0.072820019 -0.240006514 

6 2.239233387 0.01728559 

7 1.898126806 0.199140299 

8 -1.545008912 -0.1150304 

9 -1.345764319 -0.038363668 

10 0.409539919 -0.066329297 

11 0.492941359 -0.110935315 

12 0.040539293 -0.015500051 
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13 1.463590746 -0.139638436 

14 0.264772548 -0.158275364 

15 0.097960937 0.014614311 

16 -0.547408161 0.115717118 

17 0.053009097 0.123121395 

18 1.202909596 0.500218482 

19 2.422891499 0.915936319 

20 -1.847538771 0.129687593 

21 0.050519653 0.196136979 

22 0.040448758 0.319110979 

23 4.719809871 1.687358276 

24 2.486587089 0.800527521 

25 3.772358225 1.272617755 

26 3.675777755 1.44115538 

27 1.430232 0.62743955 

28 7.822424194 3.706475928 

29 2.147060642 0.829638601 
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