
Certification

Application of Image Segmentation and Adaptive Interpolation Techniques to
3D Reconstruction of the Human Temporal Bones

by

Zhenfeng Zhao

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia,
in Partial Fulfillment of the Requirements for the
Degree of Master of Science in Applied Science

December 2011, Halifax, Nova Scotia

Copyright Zhenfeng Zhao, 2011

Approved: Dr. Norma Linney
Supervisor
Mathematics and Computing Science Dept.

Approved: Dr. Matthias Schmidt
External Examiner
Department of Radiology, Dalhousie University

Approved: Dr. Manohar Bance
Supervisory Committee Member
Division of Otolaryngology, DAL

Approved: Dr. Pawan Lingras
Supervisory Committee Member
Mathematics and Computing Science Dept.

Approved: Dr. Paul Muir
Supervisory Committee Member
Mathematics and Computing Science Dept.

Approved: Dr. Stavros Konstantinidis
Program Representative

Approved: Dr. Kevin Vessey
Dean of Graduate Studies

Date: December 6, 2011

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
OttawaONK1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
OttawaONK1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-82903-5
Our file Notre reference
ISBN: 978-0-494-82903-5

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1+1

Canada

Abstract

Application of Image Segmentation and Adaptive Interpolation Techniques to 3D

Reconstruction of the Human Temporal Bones

By Zhenfeng Zhao

Three dimensional models aid otolaryngologists in understanding the complex
anatomical features of the human temporal bone. Many of these models are gen­
erated by reconstructing histological sections. The goal of this thesis is to provide
improvements on these existing 3D reconstruction methods. Presented are a seg­
mentation framework and a contour finding algorithm for histological slices, followed
by Gaussian filtering and error analysis. An adaptive interpolation algorithm based
on monotonic piecewise cubics is used to automatically generate missing anatomical
structure. Part of the algorithm development was completed on CT scans with pro­
posals for extension to histological slices. The contour finding and Gaussian filtering
algorithms output valid data points for interpolation. The adaptive interpolation
algorithm produces satisfactory results with the interpolation error for the malleus
being 1.80% when half of the data is used. The equivalent 3D model volume difference
was 0.24%.

December 6, 2011

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Norma Linney, my supervisor

for my graduate studies. She gave me a great amount of instructions in research

techniques, analysis methods and guides through the thesis work. She provided helps

for me to solve challenging computer vision and math problems.

I want to thank Dr. Paul Muir and Dr. Pawan Lingras who are my supervisor

committee members. They helped me in areas of interpolation and artificial intelli­

gence, and comments to my thesis.

I also want to thank Dr. Manohar Bance and Rene van Wijhe at the Ear k.

Auditory Research Laboratory (EAR-Lab) of Dalhousie University. They provided

image datasets to be applied in testing, as well as background knowledge in the

medical field.

I would like to thank Graduate Studies and Research and NSERC for their finan­

cial support.

The special thanks go to my families. Thanks to my wife, Cailan, for being with

me. You gave me unconditional support through this long process. Thanks to my

mother. You supported me studying in Canada and showed me the way to the future.

1

Contents

1 Introduction 1

2 Background 5

2.1 Medical Background 5

2.1.1 Human Temporal Bone 6

2.1.2 Incus and Malleus 7

2.1.3 Histological Sections 7

2.1.4 CT Scans 11

2.2 Image Registration 12

2.3 Geometrical Transformations 14

2.4 Image Segmentation 14

2.5 Interpolation 16

2.6 3D Reconstruction 17

3 Theory 19

3.1 Image Registration 19

3.1.1 Least Squares 19

3.2 Image Segmentation 20

3.2.1 Thresholding 20

ii

3.2.2 Clustering 21

3.2.3 Region Growing 22

3.2.4 Canny Edge Detection 22

3.3 Noise and Filtering 23

3.3.1 Median Filter 24

3.3.2 The Fourier Transform 25

3.3.3 The Shannon Sampling Theorem 28

3.3.4 The Gaussian Low-Pass Filter (GLPF) 29

3.4 Interpolation 35

3.4.1 Nearest Neighbor and Linear Interpolation 35

3.4.2 Polynomial Interpolation 36

3.4.3 Cubic Spline Interpolation 37

3.4.4 Monotonic Piecewise Cubic Interpolation 38

3.4.5 Adaptive Interpolation 40

3.5 3D Reconstruction 42

4 Methods and Algorithm Design 44

4.1 Experimental Datasets 46

4.1.1 Histological Sections 46

4.1.2 CT Images 47

4.2 Image Registration for Histological Sections 48

4.2.1 Image Pre-processing 48

4.2.2 Registration Methods 50

iii

4.2.3 Image Renaming 50

4.3 Segmentation Algorithms for Histological Sections 51

4.3.1 Object Selection 51

4.3.2 Adaptive Region Growing 52

4.3.3 Median Filtering and Smoothing 55

4.3.4 Canny Edge Detection 56

4.3.5 Image Loading and Saving 59

4.4 The Segmentation Algorithm for CT Scans 59

4.5 The Contour Finding Algorithm for Histological Sections and CT Scans 60

4.5.1 Objective 61

4.5.2 Algorithm Description 62

4.6 A Gaussian Filtering Algorithm for CT Scans 64

4.6.1 Gaussian Filtering Overview 64

4.6.2 The Gaussian Filtering Algorithm Description 66

4.6.3 Gaussian Filtering Development 68

4.7 Error Analysis for CT Scans 77

4.7.1 Errors Overview 77

4.7.2 Segmentation Error Analysis 78

4.7.3 Contour Finding Error Analysis 80

4.7.4 Filtering Error Analysis 81

4.7.5 Error Combination 83

4.8 Adaptive Interpolation Algorithm for CT Scans 84

IV

4.8.1 Spline Interpolation Experiments 85

4.8.2 Monotonic Piecewise Cubic Implementation 86

4.8.3 The Adaptive Interpolation Algorithm Description 87

4.8.4 Interpolation Analysis Method 92

4.9 3D Reconstruction for CT Scans 93

4.9.1 Region Filling 94

4.9.2 Model Generation and Volume Calculation 95

5 Experimental Results 97

5.1 Results for Histological Sections 97

5.1.1 Results of Registration 98

5.1.2 Results of Segmentation 99

5.2 Results for CT Images 107

5.2.1 Results of Gaussian Filtering 107

5.2.2 Results of Error Analysis I l l

5.2.3 Results of Interpolation 117

5.2.4 Results of 3D Reconstruction 131

6 Conclusions and Future Work 135

6.1 Summary 135

6.2 Conclusions for the Experimental Results 136

6.3 Applications of CT Results to Histological Sections 138

6.4 Future Work 139

Bibliography 142

Appendix 152

v

A Registration Supporting Materials 153

A.l Review of Non-rigid Registration for Histological Sections 153

B Segmentation Supporting Materials 155

B.l K-means Clustering 155

B.2 Region Growing 157

C Standalone GUI Programs 159

C.l Transformation Programs 159

C.2 Renamel Program 160

C.3 Rename2 Program 161

C.4 SelectObject Program 163

C.5 Advantages of GUI programs 165

D Interpolation Supporting Materials 167

VI

List of Tables

4.1 Overview of methods and steps 45

4.2 List of software developed as part of the thesis research 46

4.3 Histological section datasets 47

4.4 CT image set 48

4.5 Physical dimensions of the incus and the malleus CT dataset in mm . 48

4.6 Summary of Image Format Information 49

4.7 Edge directions for surrounding pixels 58

4.8 Summary of error categories and analysis methods 78

5.1 On Slice Filter Parameters I l l

5.2 z direction Filter Parameters I l l

5.3 Overall error analysis results for CT data 117

5.4 The X\ table for adaptive interpolation 121

5.5 Tests of adaptive interpolation using different X\ input, CT incus data 121

5.6 Statistics of differences between the last two interpolants, CT incus . 122

5.7 Statistics of differences between the last two interpolants, CT malleus 122

5.8 Knot number counts for adaptive interpolants, CT incus 124

5.9 Knot number counts for adaptive interpolants, CT malleus 126

vii

5.10 Number of data points used for different j3 values, CT malleus, 9 = 0

degrees 128

5.11 Overall results of adaptive interpolation, variable /3, CT malleus . . . 129

5.12 Overall results of adaptive interpolation, CT data 129

5.13 Error of adaptive interpolation, CT data 130

5.14 Quantitative analysis of 3D reconstruction, CT incus 133

5.15 Quantitative analysis of 3D reconstruction, CT malleus 134

5.16 Overall comparison between interpolation results and complete filtered

data points for the incus and the malleus 134

D.l Various PCHIP implementations 167

D.2 Sample interpolated values show equal results of Matlab and C # program 168

vm

List of Figures

2.1 A schematic drawing of the human outer, middle and inner ear 6

2.2 A schematic drawing of the middle ear bones and surrounding structures 7

2.3 Photos of the incus bone in the human inner ear 8

2.4 Photos of the malleus bone in the human inner ear 8

2.5 Two neighbor stained histological section sample images 10

2.6 A gray scale histological section of the temporal bone region 10

2.7 Two CT scans samples 11

3.1 Standard deviation, confidence intervals and three-cr rule 33

3.2 An example of the ringing effect 34

3.3 Cubic spline and monotonic piecewise cubic interpolation plotting on

monotonic data 39

3.4 Cubic spline and monotonic piecewise cubic interpolation plotting on

non-monotonic data 39

4.1 Example data smoothed using Gaussian filtering 65

4.2 The structure of all contour points 66

4.3 Schematic diagram of on-slice contour points 67

ix

4.4 Schematic diagram of z-direction contour points 67

4.5 The relationship between CT/ and as (on-slice direction) 75

4.6 The Matlab test confirms aj and as relationships (on-slice direction). 76

4.7 The relationship between aj and as (z direction) 76

4.8 The Matlab test confirms Of and as relationships [z direction) 76

4.9 Error analysis overview diagram 79

4.10 Schematic diagram of z-direction contour points and interpolants . . 89

5.1 Colored regions in two neighboring histological sections 98

5.2 Screen shot of before and after transformation of two colored histolog­

ical sections 99

5.3 A sample registration result - (1) 99

5.4 Original image for region growing 100

5.5 Selecting ROI and region growing 101

5.6 Applying two-threshold region growing 101

5.7 Original image for Canny edge detection 102

5.8 Screen shot of the Canny edge detection program 103

5.9 Original image showing target region 104

5.10 Applying patch growing, median filtering and Canny edge detection on

a ROI 105

5.11 Applying above methods in a second image 105

5.12 Sample results of segmentation, contour finding, and preliminary in­

terpolation algorithms 106

x

5.13 Averaged Power Spectrum and GLPFs (on slice Direction) 108

5.14 Averaged Power Spectrum and GLPFs (z direction) 108

5.15 Spatial GLPF Developed and Applied (on-slice Direction) 108

5.16 Spatial GLPF Developed and Applied (z direction) 109

5.17 Gaussian Filtering Example Results (on-slice Direction) 110

5.18 Gaussian Filtering Example Results (z direction) 110

5.19 Segmentation comparison on sample CT data (1) 112

5.20 Segmentation comparison on sample CT data (2) 113

5.21 Segmentation comparison on sample CT data (3) 113

5.22 Contour finding algorithm errors on sample CT data 114

5.23 Filtering algorithm errors on sample CT data (on slice) 115

5.24 Filtering algorithm errors on sample CT data [z direction) 115

5.25 Filtering algorithm errors on sample CT data (overall) 116

5.26 Cubic spline and monotonic piecewise cubic interpolation based on

every 4th data point 118

5.27 Cubic spline and monotonic piecewise cubic interpolation based on

every 8th data 119

5.28 Cubic spline and monotonic piecewise cubic interpolation plotting on

actual sample data 120

5.29 Sample test of interpolation results 121

5.30 Sample interpolation results, radius interpolant for the CT incus, 6: 0

degrees 123

xi

5.31 Sample interpolation results, radius interpolant for the CT incus, 9:

90 degrees 123

5.32 Sample interpolation results, radius interpolant for the CT incus, 9:

270 degrees 124

5.33 Sample interpolation results, radius interpolant for the CT malleus, 9:

0 degrees 125

5.34 Sample interpolation results, radius interpolant for the CT malleus, 9:

90 degrees 125

5.35 Sample interpolation results, radius interpolant for the CT malleus, 9:

270 degrees 125

5.36 Comparison between original data points and final interpolants 127

5.37 Visual comparison of 3D model and the bone photo of malleus (1) . . 132

5.38 Visual comparison of 3D model and the bone photo of malleus (2) . . 132

5.39 Visual comparison of 3D model of the malleus before and after filtering 132

5.40 Visual comparison of 3D model using filtered and interpolated data . 133

B.l Performing k-means clustering on a histological section image 156

C.l Affine transformation on a histological section image 160

C.2 A screenshot of the program Rename 1 161

C.3 A screenshot of the program Rename2 162

C.4 A GUI program for selecting an object 164

D.l Verification test on Hugin C + + Pchip Routine using Matlab, CT incus 168

xii

List of Symbols

a: The percentage of the signal power to keep, while the rest needs to be filtered

/3: A fraction t ha t is multiplied with da ta error rate; the result is used to measure

interpolation accuracy

en Standard deviation of the Gaussian function curve

a/: Standard deviation of the three-cr rule

af. S tandard deviation {a) in the frequency domain

as: Standard deviation (a) in the spatial domain

9: The angle of the contour point to the region center

A: The gain factor in G L P F function

Bwidth'- Bandwidth; the width between lower and upper cutoff frequencies

D(u): Distance between u and the origin of the centered filter function

D0: Specified distance (nonnegative variable) to the origin; the distance equals to the

cutoff frequency

Diffinterpoiant(z): The function of absolute difference between the last two inter-

polants by evaluating them at z locations

E: Error

Eapprox'- The approximate da ta error

Econtourfiltering- Error of contour finding and filtering measured using the 1 — 5 method

E'contourfind- Error of contour finding

Efuteringi'- Error of Gaussian filtering measured using the 1 — 5 method

xiii

Efiitenng2'- Error of Gaussian filtering measured using the A r method

Efilterings'- Error of Gaussian filtering in the on slice filtering step measured using the

A r method

EfiitenngZ '• Error of Gaussian filtering in the z-direction filtering step measured using

the A r method

Emterpoiate '• Error of interpolation measured using the 1 — 5 method

EmterPoiant,avg The average of Emterpolant(z) in all z locations

Einterpoiant(z)- The function of the percentage difference between the last interpolant

and the filtered da ta by evaluating it at z locations

E0veraii'- The overall error

Esegment- Average error of segmentation

Esegmenti'- Error of segmentation; comparison of the expert 's manual segmentation

results and the first manual segmentation done by the thesis author

Esegmenti- Error of segmentation; comparison of the expert 's manual segmentation

results and the second manual segmentation done by the thesis author

Esegmenti- Error of segmentation; comparison of the expert 's manual segmentation

results and the manual segmentation done by a third-party tester

Em: Error of segmentation on one image at location z (z = ZQ + mAz; index of m)

Em,contourfind- Error of contour finding on one image at the location index of m

Em,contourfiltering'- Error of contour finding and filtering measured using the 1 — 5

method at the location index of m

Emjiitenngi'- Error of Gaussian filtering measured using the 1 — 5 method on one

xiv

image at the location index of m

Em,interpoiate: Error of interpolation measured using the 1 — 5 method at the location

index of m

Etrue'- The true data error

f(x): A function of x

f(x,y): An image function

fs(n)'- On slice signal, representing a list of contour points in one slice

fz(m): z-direction signal, representing a list of contour points in z-direction with the

same angle.

F(u): Fourier transform of the signal

F(u, v): The Fourier transforms of the image

F: Fourier transform operation

FFT: Fast Fourier transform operation

Fcutoff '• Cutoff frequency

Ts: Sampling rate; the number of samples taken within a unit distance, when taking

samples from a continuous signal

g(x): Output signal in the spatial domain

g(x,y): Output image

G(u): Fourier transform of the output signal (in the frequency domain)

G(u, v): Fourier transform of the output image

h(x): Filter function in the spatial domain

h(x,y): 2D Filter function

xv

hGaussian(%)'- Gaussian filter in the spatial domain

Hcaussianiu)'- Gaussian filter in the frequency domain

H(u): Fourier transform of the filter

H(u,v): The frequency domain filtering function

i: Generic index

I(u): Imaginary part of F(u)

Interpolantiast(z): The last interpolant function

Interpolantsecondiast(z): The second last interpolant function

Interpolanti(z): The interpolant computed in level i of the adaptive interpolation

algorithm

hi: The index of the current interval

Ki. The number of intervals in M points

L: Total x-axis length of the signal function f(x)

TO: The index of contour points in z-direction; index of slice

M: The number of contour points in z-direction (after contour finding); the total

slice number

MI: Mutual information

n: Index of contour points on slice

N: Number of contour points on each slice (after contour finding)

NMI: Normalized mutual information

P(u): Power function of a signal

Ps(u): Power function of a signal in the on-slice direction

xvi

Ps,avg{u)'- Averaged power curve in the on-slice direction

Pz,avg{u): Averaged power curve in the z direction

PT'- Total signal power

Psj: Total signal power in the on-slice direction

Qmax'- Number of points in the image contour (after contour finding) that has the

largest number of points

r: The radius from the contour point to the region center

77: Radius of a contour point after filtering on slice

r//: Radius of a contour point after filtering in z-direction

rz{6): The radius function on slice with fixed z

re{z): The radius function in the z direction with fixed 6

r(z,8): The 2D radius function in the z direction and on slice

rfUtered(z): The discrete r function of filtered data

R(u): Real part of F(u)

Ar: The difference in two radii

ROI: Region of interest

RO1contour Find'- The result image region of contour finding

ROI filtering- The result image region of filtering

ROI interpolate '• The result image region of interpolation

ROIsegment'- The result image region of segmentation

ROIm: The image region at the location index of m

ROIm,contourFind'- The result image region of contour finding at the location index of

xvii

m

ROImjiitermg'- The result image region of filtering at the location index of m

ROInterpolate'- The result image region of interpolation at the location index of m

ROIm^segment : The result image region of segmentation at the location index of m

S: Similarity index

Sm: Similarity index at the location index of m

t: Index of a particular contour point in the current interval

T: The number of points in the current interval

u: Frequency variable

An: An increment, or unit, of a fixed interval in the frequency domain

V(x): The piecewise function

vz(x): A third degree polynomial function in a subinterval of a piecewise function

Ws: The filter width of a spatial GLPF in the on-slice direction

Wz: The filter width of a spatial GLPF in the z direction

x: Horizontal coordinate

(x,y): The coordinate of a point or a pixel in an image

(xc, yc): The center coordinate of all contour points in one slice

X: The number of data points in an interval

Xi\ Starting value of intervals (1st level)

X%: The number of points in one interval in zth level

Ax: An increment, or unit, of a fixed interval in the spatial domain

y: Vertical coordinate

xviii

z: The z coordinate of the contour point

Acronyms

DFT: Discrete Fourier transform

DLL: Dynamic-link library

FFT: Fast Fourier transform algorithm

GLPF: Gaussian low-pass filter

ILPF: Ideal low-pass filter

PCHIP: Piecewise Cubic Hermite Interpolation Package

SPD: Spectral power distribution

xix

Chapter 1

Introduction

There are a large number of complex anatomical features within the small space

occupied by the middle and inner ear in the human temporal bone. Otolaryngologists

desire to study and better understand the complex structure to improve diagnostic

tools and hearing-aid devices. Three dimensional (3D) models are used for studying

the inner ear structure and realizing medical conditions in the area. Our collaborators,

medical researchers from the EAR-Lab [17] at Dalhousie University, desired improved

3D models to aid in the research work that creates better diagnostic tools. The

existing models are built from histological sections (see below) using a commercial

software package for visualizing and manipulating bio-medical data in 3D, called

Amira (see Section 2.6).

Histological sections (slices of the human temporal bone) are created post-mortem

from tissue samples that are prepared as slides and then digitized. The process is

very time consuming and filled with inaccuracies. The 3D model is built from these

slices. Researchers desire a more accurate and robust 3D model. The thesis investi­

gates possibilities for improving the process of building a 3D model from histological

sections of the human temporal bone.

Since histological sections are created post-mortem and the process is fraught with

inaccuracies, there is no gold standard for the creation of the model. In other words,

there is no way to tell how closely the model represents the original anatomy.

1

To aid in our investigation, the EAR-Lab [17] provided us with a second dataset.

This dataset included a complete computerized tomography (CT) scan of the two

temporal bones of this study, the incus and the malleus. The CT scan was non­

destructive and consisted of a set of cross sectional images of the incus and the malleus.

This dataset was investigated to develop algorithms with the goal to applying them to

the histological section data. As explained in detail in the experimental data section

(refer to Section 4.1), the CT scans were taken from a more complete dataset, which

can be used as test data. These test results can assist research based on histological

sections.

The techniques investigated included registration, the process of aligning digital

images so that same structures appearing in multiple images correspond, and seg­

mentation, the process of isolating the structure of interest in a digital image. We

also considered the techniques of filtering or removing noise from the images, and

interpolation, a method of constructing missing data points using a set of given data

points. All of these techniques were investigated using the CT scan data with the

goal of extending the methods to histological sections.

Our research primarily explored segmentation and interpolation techniques suit­

able for histological sections. Several segmentation algorithms were studied and im­

plemented, e.g., thresholding, k-means clustering, region growing, and Canny edge

detection. The region growing algorithm was modified and improved to fit the charac­

teristics of histological sections; we call the resulting algorithms two-threshold region

growing and patch growing algorithms. We propose a segmentation framework that

uses semi-automatic selection of the region of interest (ROI), and performs median

filtering, patch growing, and Canny edge detection automatically. The segmentation

framework produces both region and edge images. Then, these images are processed

by the contour finding algorithm. After that, the final segmentation results are ob­

tained.

2

The other focus of our research was interpolation. Relevant questions are which

interpolation technique is suitable for our application, and how should interpolation

be applied to produce accurate results. The interpolation algorithm should achieve

high accuracy while optimizing data usage (i.e., using relatively small amounts of the

total amount of available data).

After studying and experimenting with linear splines, cubic splines and monotonic

piecewise cubic splines, we concluded that monotonic piecewise cubics would be the

most suitable for our application. Interpolation is explained in Section 2.5.

An adaptive interpolation algorithm was designed to obtain better approxima­

tions. Because data points being interpolated need to be smoothed, with outliers

removed, an automatic filtering algorithm was designed, using a filter based on a

Gaussian function. After that, error analysis of segmentation, contour finding, and

filtering algorithms were done for the CT test data. The resulting error data was

used as basis for the adaptive interpolation algorithm. A stand-alone software pro­

gram was designed to include contour finding, filtering, error analysis and adaptive

interpolation algorithms. With several parameters of the program being set, final

results from the interpolation process were obtained; these were used to generate 3D

models.

In summary, the thesis explores techniques for histological sections and describes

the methods applied to the CT data. These methods were developed, with the goal

of extending them to the histological sections. This thesis aims to improve exist­

ing 3D model generation methods for medical researchers. We present a collection

of algorithms to segment structures or regions from registered images, find the con­

tour points (data points representing the contour of the segmented ROIs) from the

segmentation results, perform filtering to obtain smooth contour points, analyze er­

rors associated with collecting contour points, and apply an adaptive interpolation

algorithm to generate missing data from the sequence of images.

3

Chapter 2 reviews the literature and relevant techniques in this field, including

reviews of the medical background, image registration, geometrical transformations,

image segmentation, interpolation, and 3D reconstruction. Chapter 3 describes the

theory behind the methods and applications in this thesis. In Chapter 4, we present

methods and algorithms that are designed and developed to solve our research prob­

lems. The methods consist of: 1) image registration; 2) image segmentation algo­

rithms; 3) obtaining an equal number contour points on every segmented region of

interest (ROI); 4) filtering control points using automatically developed GLPFs; 5)

analyzing errors in above steps and passing error results to the adaptive interpolation

algorithm; 6) adaptive interpolation using monotonic piecewise cubics to generate

missing structure; and 7) 3D reconstruction. The result is a complete, smooth and

detailed 3D model, as well as data usage information for contour points.

Chapter 5 presents the data, results and discussion for histological sections and

CT scans. The results are in two categories. First, for histological sections, sample

results of registration, segmentation, and contour finding are shown. Second, results

of Gaussian filtering, error analysis, adaptive interpolation, and 3D reconstruction

on CT scans are presented. Chapter 6 summarizes the thesis and presents our con­

clusions. It also relates CT test results to histological sections, and presents future

work.

4

Chapter 2

Background

Our research has applied computer vision techniques to address issues with human

temporal bone analysis using serial CT scans and histological sections. This chapter

reviews the literature and relevant techniques in these fields, through the following

sections: medical background, image registration, geometrical transformations, image

segmentation, interpolation, and 3D reconstruction.

2.1 Medical Background

In this section, middle and inner ear anatomy of the human temporal bone will be

briefly introduced. It is the bone from which our experimental data was acquired.

Surrounded by the temporal bone, the incus and the malleus are the two middle ear

bones that were the focus of our experiments and testing. The first type of image

data, a series of stained histological section images of human temporal bone, and the

method used to obtain these images will be introduced. This will be followed by a

brief description of the second type of image data we considered, CT scans.

5

ScmiarcuJai Canals (three)

Eustachian Tube

Figure 2.1: A schematic drawing of the human outer, middle and inner ear (EAR-Lab
[17]).

2.1.1 Human Temporal Bone

There are a large number of complex structures within the small space of the human

temporal bone. Otolaryngologists often find it fairly challenging to understand the

three-dimensional (3D) anatomy of the human temporal bone [84]. Figure 2.1 depicts

the outer, middle and inner ear structures contained within the temporal bone, while

Figure 2.2 zooms in on the middle ear bones and surrounding structures. The incus

and the malleus are the two main bones to be considered in our work. They arc

located close to the tympanic membrane and external car canal. The length of the

incus and the malleus is approximately the radius of the ear canal, so it is less than

10 mm.

It is very useful to have detailed knowledge of the microscopic anatomy of the

human temporal bone in order to understand surgical relationships and interpret

radiological images of the temporal bone in patients with otologic problems. Analysis

using histological sections is useful for identifying the underlying tissue types as well

as the structure of each individual tissue component.

6

Figure 2.2: A schematic drawing of the middle ear bones and surrounding structures
(EAR-Lab [17]).

2.1.2 Incus and Malleus

As mentioned above, in our research, we will focus on two bones in our research, the

incus and the malleus, as in Figure 2.2. They are both in the middle ear. The incus

is a small bone with an anvil shape. The malleus is hammer shaped. Photos of these

bones are given in Figures 2.3 and 2.4.

2.1.3 Histological Sections

Histological section images differ from other types of medical images (refer to Section

2.1.4). Figure 2.6 shows a histological cross-section of the human inner ear. It is

an image sample supplied by the EAR-Lab [17]. These images often have relatively

severe distortion and displacement issues, making it difficult to perform subsequent

computer-based analyses on them.

Histological sections are created post-mortem, by staining and cutting with a

7

Figure 2.3: Photos of the incus bone in the human inner ear (EAR-Lab [17]).

Figure 2.4: Photos of the malleus bone in the human inner ear (EAR-Lab [17]).

microtome, taking sample tissue slices, and digitizing using a microscope. The manual

preparation process for histological sections introduces noise, artifacts and issues of

distortion and deformation. In our dataset, digital images were created from the

slides and our analysis was carried out on the digital images.

Preparation and digitization methods for histological sections of human temporal

bones arc complex. Wang et al. [84] presented a preparation and digitization method

for histological sections of human temporal bones. Preparation of the human tempo­

ral bone generally involves fixation, decalcification, and embedding in a supporting

medium such as cclloidin. This is followed by slicing the sample into sections, or

cutting parallel to the long axis of the specimen at a thickness of 20 microns. Initially

every tenth section is stained and mounted for microscopic examination. Digitization

is then performed by a special microscope.

Auer ct al. [3] showed that there are two important elements in this acquisition

process. These are the specific microscopes used and the quality of manual interac­

tion. The quality of the digital images depends on several factors, such as background

illumination of the microscope, the microtome (the block and knife used to cut the

sections), the embedding medium, and the precision of the manual operations. The

quality of the images may vary from one image to the next. Artifacts can be in­

troduced during the cutting process. For example, tissue segments can overlap or

be missing. Figure 2.5 shows two examples of images of histological sections. The

distance between these two tissue slides is 100 microns. However, there are significant

differences between the two; obvious distortions and displacements are evident. Color

artifacts are introduced from factors such as the microscope background illumination

during image acquisition.

Generally, the acquisition process produces artifacts such as holes, varied intensi­

ties, blurred regions, and different inter-slice intensities. Some slices are completely

corrupted and cannot be used, and this results in non-uniform slice spacing.

9

Figure 2.5: Two stained neighboring histological section sample images From left to
right (a-b): a. Experimental image data No. 41; b. Experimental image data No 46
(Temporal Bone Foundation, Boston, USA.)

Figure 2.6: A gray scale histological section of the temporal bone region, with six
objects labeled. (EAR-Lab [17] and Temporal Bone Foundation, Boston, USA.)

10

Figure 2.7: Two CT scans samples. From left to right (a-b). a. Experimental image
data No. 280; b. Experimental image data No. 300 (Temporal Bone Foundation,
Boston, USA.)

2.1.4 CT Scans

CT, computed tomography, is a medical imaging method. Tomography is the process

of scanning through a 3D object and generating two-dimensional (2D) cross-section

images. The medical device producing CT images is called CT scanner. CT scans

are non-destructive. CT scans use tomographic principles to obtain cross sectional

images of anatomical structures automatically, in contrast to histological sections,

which are very labor intensive. Tomographic principles allow the combination of a

series of x-ray views from many different angles to produce a cross-sectional image.

A complete CT scan consists of a series of cross-sectional images at different depths

which can be combined to give a 3D representation of the 3D object.

Two sample CT scans are shown in Figure 2.7. They are taken from roughly

the same locations as the two histological section samples in Figure 2.5. CT scans

are a typical type of medical images. Other common types of medical images are

MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), and

ultrasound (US).

11

2.2 Image Registration

In image processing, image registration is the fundamental task of finding a mapping,

or transformation, between two images both spatially and with respect to intensity

[9]. Minimizing the effect of the displacement problem is the purpose of registration

[75]. Medical image registration is useful for diagnosis and staging of diseases, plan­

ning treatment, guiding surgery or interventions, studying disease progression, and

researching cohorts of patients [48] [9].

There are generally two categories of medical image registration: rigid registration

and non-rigid registration. Rigid registration is based on rigid-body transformation;

this includes only rotation and translation. Non-rigid registration is based on de-

formable transformations with more degrees of freedom [12]. CT scans, the main

image type considered in the research, require only rigid registration. Since there are

distortion and deformation issues when histological sections are acquired, non-rigid

registration is required when processing them.

Dawant [12] reported that the studies of medical image registration have had a

rapid increase since 1990, and it now represents a substantial portion of medical

image processing research. However, most of the literature only covers rigid image

registration. Auer et al. [3] stated that most registration methods are only able to

perform rigid-body motion and are sensitive to noise and artifacts. Thus the current

trend is the study of non-rigid registration.

Least squares (refer to Section 3.1.1) is widely applied in image registration [55]

[57] [56] [18] [28] [59]. It uses a sum of squares of differences (SSD) cost function.

A SSD cost function method in [56] produces rigid transformation parameters which

result in accurate registered images. The contrast and brightness adjustment of the

reference image is optimized in [55] to correspond with the other image so that the

best match over all linear intensity remappings is found. An efficient feature-based

12

SSD-type image alignment algorithm in [57] is suitable for aligning different types of

medical images.

Mutual information (MI) [68] is another important registration technique. It

measures the information in the first image that is shared by the second one. In

Luo's thesis research [45], he applied mutual information registration, together with

gradient information, to solve a CT image registration problem. A similar method

was applied by Li [43] in her thesis on music retrieval. Mutual information (MI)

has a large number of applications in rigid registration [43] [48] [74] [61] [62] [63].

Mutual information based registration has become exceedingly widespread [34] [47]

[73]. Likar et al. [44] reported that MI maximization was a powerful tool for CT,

MRI, and PET images.

There are many applications of intensity based registration [3] [9] [58] [81]. Lazeb-

nik et al. [41] and Hellier et al. [30] developed methods utilizing landmark based

registration where corresponding landmarks in the source image and target image are

identified. The research of Johnson et al. [35] indicates that better image correspon­

dence is produced by applying landmark and intensity information together rather

than applying either one alone. Hsu et al. [32] proposed a registration algorithm that

extracts image features with a hierarchical design. In this type of algorithm, the im­

ages are registered globally and subdivided into multiple images for local registration.

One source image can be divided into 4, 16, 64, and then 256 sub-images hierarchi­

cally. Since including only one step in the registration process usually does not give

satisfactory results, there are studies that have developed hierarchical registration

algorithms [44] [3].

As this thesis mainly focuses on CT images, where rigid registration is sufficient,

non-rigid registration and issues in registering histological sections are discussed in

Appendix A.l.

13

2.3 Geometrical Transformations

Geometrical transformations play an important role in image registration. Global,

rigid, affine, and projective transformations are most frequently used [48] [85]. Global

transformations are applied to the entire image, while local ones involve subdividing

the image into a number of regions and transforming sub-regions of the image indi­

vidually. Local transformations can be done hierarchically.

Geometrical transformations are performed with the goal of aligning images so

that corresponding points of two or more images will appear at the same position.

Luo [45] states that the process of registration is finding an optimal transformation

to match information in two or more images.

Several options for extending the process to non-rigid registration are affine trans­

formations, projective and curved transformations [50] [85]. Affine transformations

include rotation, translation, shearing, and scaling.

Auer designed a hierarchical non-rigid registration algorithm that is able to align

images, using a transformation based on elastic thin plate splines [3]. A thin plate

spline is based on the physics analogy of bending a thin plate of metal. It was first

applied in the registration of remote sensing images by Goshtasby [27] and then in

the registration of medical images by Bookstein [7].

2.4 Image Segmentation

Segmentation is the process of partitioning a digital image into multiple sets of pixels.

The representation of an image can be simplified by segmentation so that analysis is

easier [16] [70]. During the segmentation process, a label is assigned to every pixel

in an image, and certain visual characteristics are shared by pixels with the same

label. In this section, several segmentation techniques are reviewed, e.g., thresholding,

14

clustering, region growing, edge detection and semi-automatic segmentation.

Thresholding is a simple image processing technique. The image pixels with values

greater or less than a certain threshold value are classified to be image foreground or

background (more details are given in Section 3.2.1). It is commonly used in a wide

range of applications. For example in recent years, Pham [60] addresses threshold

and positive color selection in quantitative image analysis of histological sections, in

order to decrease effects of observer biases.

Clustering is the process of organizing objects into groups whose members are

similar in a certain way [1]. The most commonly used method of cluster detection

in practice is k-means. Section 3.2.2 describes a form of k-means clustering that was

first published by MacQueen in 1967 [46].

Region growing starts from one or more seed points and groups pixels or sub-

regions into larger regions based on predefined criteria. This method has several

advantages over conventional segmentation techniques. Further description of the

region growing technique is given in Section 3.2.3.

Since 1980, numerous edge detection techniques have been investigated [11] [14]

[40] [33] [5] [76] [71] [6]. Canny [11] suggested that good detection, good localization,

and low spurious responses were the three key criteria of a good edge detector. Canny

also described how to define the optimal detector for an isolated step edge. Detailed

information for this technique is given in Section 3.2.4.

Semi-automatic segmentation (often referred to interactive segmentation) is widely

used in graphics editors and image manipulation programs as interactive tools. Mag­

netic Lasso in Adobe Photoshop is a great example of this kind of segmentation, and

is one of the most popular tools of this type. It accepts input about the region of

interest (ROI) from the user and applies algorithms that find the best curve to fit the

edge of the image. Intelligent Scissors Tool is another segmentation tool, created by

Mortensen [52] [53] [15].

15

Two other important tools of this type are Siox [21] and Livewire [4]. Livewire is

similar to the Magnetic Lasso Tool in Adobe Photoshop, and can find image bound­

aries. It is implemented as an open source image segmentation tool, e.g., ImageJ,

which is a Java-based image processing program.

Simple Interactive Object Extraction (SIOX) is one of most popular segmentation

methods in the open source world for selecting foreground objects from images. This

technique uses two brushes for foreground and background marking. It takes very

little user interaction using a free hand selection tool, to label the foreground and

background. Then, foreground objects can be extracted. The foreground selections

can be refined by further markings either on the foreground or the background [20]

[21] [22]. SIOX can be found in the world's most popular graphics programs, e.g.,

GIMP, Inkscape, ImageJ and Fiji (plug-in).

2.5 Interpolation

The process of determining the value of the function at positions that lie between

its samples is interpolation. Interpolation techniques have been discussed in a wide

range of applications in image registration, especially in non-rigid registration.

There are generally two categories of interpolation techniques, deterministic and

statistical [25]. Since statistical interpolation is rarely applied in image registration

[25], only deterministic interpolation methods are discussed in this thesis. Lehmann

et al. [42] introduced several interpolation techniques. Schnabel et al. [67] described

an interpolation method using finite-element methods.

Several common types of interpolants are nearest neighbor, linear, polynomial

(e.g., quadratic, cubic or higher order), cubic spline, and monotonic piecewise cubic

interpolants. Nearest neighbor interpolation finds the nearest sample point to the

desired point and assigns it the value of the nearest sample point [25]. This can

16

be viewed as piecewise constant interpolation. Linear interpolation assumes a linear

relationship among sample point values.

Polynomial interpolation is the interpolation of a given dataset by a polynomial.

It has comprehensive applications in image processing. A spline is a piecewise poly­

nomial function [13]. A piecewise function has different representation in each piece

of the domain. The most common spline interpolants are linear, quadratic, and cubic

splines.

There is general agreement on the important role of cubic splines in image pro­

cessing [42] [31] [66]. Spline interpolation may involve polynomials of higher degree

than cubic.

2.6 3D Reconstruction

3D reconstruction from a serial image dataset is used to generate 3D virtual models

so that the shape and appearance of real objects can be captured. After the processes

of registration, geometrical transformation, segmentation and interpolation, 3D re­

construction is the end process required to build 3D models of a human temporal

bone.

3D reconstruction of virtual models using histological sections as well as CT and

MRI images has been done in many studies. In some of the early work in this

field, Takagi et al. [77] [78] developed computer-generated wire-frame models of

various structures in the inner ear from histological sections. In order to display

the reconstructed images of human temporal bones in 3D, Takahashi et al. [79] also

developed a 3D imaging technique. In some other recent studies, Rusinkiewicz et al.

[65] proposed a new 3D model reconstruction method which allows the user to rotate

an object by hand and see a continuously-updated model as the object is scanned.

In several related studies, a complete 3D virtual model of the major human ear

17

structures was constructed using computer-aided design (CAD) software by Jones et

al. [36], and the 3D modeling procedure used to form the histological section images

was demonstrated. Auer et al. [3] proposed a segmentation tool that allows a 3D

reconstruction of the most important tissue components. Braumann et al. [8] recon­

structed 3D data from tumoral tissue, and also introduced a list of image processing

steps for the reconstruction of tumor invasion fronts from histological sections. Ju

et al. [37] conducted a 3D volume reconstruction of a mouse brain from histological

sections where a Gaussian filter (refer to Section 3.3.4) was applied.

Wang et al. [84] developed a human temporal bone 3D virtual model using histo­

logical sections and the Amira software [2], which is discussed below. Wang's work is

relevant to this thesis, because, in our thesis, the target region is the human temporal

bone, and the tool we use is Amira.

Amira is a commercial software package for 3D modeling and visualization. It

is a product from Visage Imaging, Inc. The version 4.1 of Amira is installed in

the graduate student lab computer (Intel Duo CPU 3.16GHz, 1.93 GB of RAM;

Window XP). Amira has limitations in performing registration, segmentation and

3D reconstruction. In Amira, only rigid registration methods are provided, and the

segmentation methods are mostly interactive and manual. Therefore, results for 3D

reconstruction obtained using Amira are not satisfactory.

18

Chapter 3

Theory

This chapter describes the theory behind the methods and algorithms used in this

thesis. They are: 1) image registration; 2) image segmentation; 3) noise and filtering;

4) interpolation; and 5) 3D reconstruction.

3.1 Image Registration

Image registration maps two or more images into a single coordinate system through

geometrical transformations. It corrects for the displacement of the images. Images

from a single CT scan as provided in this study do not have displacement issues so

they do not need to be registered. Registration is needed for histological sections due

to the acquisition process and the other issues discussed in Section 2.1.3. This section

introduces the least squares technique applied in our research involving histological

sections.

3.1.1 Least Squares

The least squares registration method is used to align two successive images by trans­

forming the first image to align with the second. After each transformation the sum

19

of squared differences (SSD) of gray level values of the two images is computed. The

process is iterated until the minimum SSD is reached.

For two images, A and B, the SSD between A and B, is

H-1W-1

SSD(A;B) = J2 E (G^uVi) - GB(xi;y,))2, (3.1)

where GA and GB are the gray values for the images A and B, W and H are width

and height of images A and B in pixels, and (xi,yj) is the coordinate of a pixel. A

lower SSD value indicates a higher similarity between images [56] [55]. The more

pixels that have the same gray values, the better the alignment quality that will be

achieved.

3.2 Image Segmentation

The objective of applying segmentation techniques in this thesis is mainly to identify

regions of interest (ROIs) in the histological sections. Although manual segmentation

was done on the provided CT scans, they still needed further segmentation to find

edges and contours, so we also have applied segmentation techniques to the CT scans.

This section introduces the segmentation techniques relevant to this thesis. Thresh­

olding, k-means clustering, region growing and Canny edge detection are described.

3.2.1 Thresholding

In the process of thresholding, a certain threshold value is used to partition an image

into two pixel groups. In a grayscale image, if the gray value of an individual pixel is

greater than the threshold, typically, it is given a value of " 1 " . Otherwise, it is given

a value of "0".

As the simplest method of the image segmentation techniques, thresholding can

20

create only binary images. A grayscale image can be transformed to one having

black and white pixels after thresholding [69]. Adaptive thresholding uses different

threshold values for different image regions. It is sometimes called local or dynamic

thresholding [69]. Choosing the appropriate threshold value is often the key to the

success of the thresholding process; this is typically done manually (chosen by the

user), or automatically (by a computer algorithm).

3.2.2 Clustering

Clustering refers to categorizing source data into a number of groups, or clusters. It

is a convenient technique for discovering data distribution and patterns in underlying

data. The discovery of dense and sparse regions in a dataset is the primary goal

of clustering [1]. Clustering can be considered the most important algorithm for

unsupervised learning. (This means it deals with finding structure in a collection of

unlabeled data.)

The k-means clustering algorithm [46] take as input a predefined number of clus­

ters, k. Means stands for an average: the average location of all the members of a

single cluster. This location is called a centroid. k centroids need to be determined

for every data object; this involves grouping the members of the data object into k

clusters. At first, members of each clusters were found by measuring the distance be­

tween the initialized centroid and them. Within each iteration of the algorithm, data

objects are reassigned to the k clusters and centroids are recalculated. The algorithm

terminates once the centroids do not change from one iteration to the next.

K-means clustering was studied and implemented in our research. The algorithm,

implementation and sample results are given in Appendix B.l, with a brief discussion

to point out that it is not suitable for our goal of segmenting only one or two objects

from images.

21

3.2.3 Region Growing

Region growing is a procedure that groups pixels or sub-regions into larger regions

based on predefined criteria. The basic approach is to start with a set of "seed"

points. If neighboring pixels have properties similar to the seeds, we append them

to the region surrounding the seed point [25]. The selection of similarity criteria

depends not only on the problem under consideration, but also on the type of image

data available. A possible property for examining neighboring pixels could be gray

levels or pixel values.

The similarity criteria could be a fixed or a variable tolerance in a gray-level

range. In our application, the standard deviation of the seed points is selected as the

similarity criteria. If the difference between neighboring pixels and the seed is less

than the standard deviation of the seed points, they are included in the seed points.

Since the seed points are changed over a number of iterations, the variable tolerance

should be recalculated. When no more pixels satisfy the criteria for inclusion in the

region, the process of growing stops [25].

3.2.4 Canny Edge Detection

This method was proposed by Canny [11] [49]. The method is basically used to

detect edges in images. Edges carry important information about an image. Edges

are characterized by abrupt changes of intensity or color in the images.

Canny edge detection starts with Gaussian filtering (refer to 3.3.4) to smooth

the image. Then, it uses the Sobel operator (refer to Section 4.3.4) to compute the

magnitude and orientation of the gradient using finite-difference approximations for

the partial derivatives. After that, it applies non-maxima suppression to the gradient

magnitude to generate a thin line in the output image. Non-maxima suppression

relates the edge direction to a direction that can be traced in an image. Further

22

details are given in Section 4.3.4. Finally, it detects and links edges using a double

thresholding algorithm with hysteresis. The edge points are output, if their gray val­

ues are above a high threshold. Hysteresis is applied to determine whether connected

segments to these points contain points with gray values higher than a low thresh­

old. This method can efficiently generate direction information for edges in several

orientations and then integrate them into a single set of thin edges [11].

The design for obtaining edge profiles is based on the specification of detection

and criteria of localization [11]. The specification of the number of directions is found

by non-maxima suppression. There are three performance criteria: good detection

(neither failure in marking real edge points nor false marking of non-edge points), good

localization (the marked edge points should be close to the real edge center) and only

one response to one edge (when the same edge has two or multiple responses, only

one should be marked true) [11]. The Canny edge detection algorithm is described in

Section 4.3.4.

3.3 Noise and Filtering

Noise is random fluctuations in a signal, and is unwanted. Filtering can smooth the

signal so that it has only valid data, with invalid noise removed. Noise exists in

both CT scans and histological sections. The sources of noise are data collection

and data processing steps. Acquisition of CT scans includes a small amount of noise

introduced through the automatic CT scanner. The manual processes of fixation,

decalcification, embedding, cutting, staining and digitizing of histological sections all

introduce inaccuracies and variability, implying substantial noise. In our algorithms,

image segmentation is not done perfectly and introduces noise. In the contour finding

algorithm, the selection of control points on the segmented edge contour represents a

significant source of noise. Such noise needs to be filtered so that a valid signal can

23

be input to the interpolation algorithm.

A digital image can be thought of as a set of spatial domain signals. The spa­

tial domain is the normal image space with pixel values corresponding to the pixel

locations (x and y coordinates). The frequency domain is the domain for analysis of

signals with respect to frequency. This section describes median filtering as a spatial

domain technique, and Gaussian filtering as a frequency domain technique.

An important theoretical tool in this area, the Fourier transform, is described, as

are the discrete Fourier transform, the fast Fourier transform, and the power spec­

trum. The Shannon sampling theorem is briefly introduced. The theory behind

development of a Gaussian low-pass filter (GLPF) is the emphasis of this section.

Important questions are answered, e.g., how to build a suitable GLPF, with appro­

priate parameters, to smooth the frequency domain signal. Both one-dimensional

(ID) and 2D Gaussian filtering methods are introduced, as appropriate for ID signals

or 2D images, respectively.

3.3.1 Median Filter

Median filtering is a non-linear filtering technique used to remove noise from images

or other signals. The idea is to examine an input sample and determine if it is a valid

representative of the signal.

Median filtering replaces the value of the pixel by the median of the gray levels

of the neighboring pixels. The window (sometimes also refers to a mask) is usually

a rectangle that includes an odd number of samples. The mask includes all pixel

samples in the rectangle. For example, it has 9 samples if it is 3 pixel by 3 pixel or

25 samples if 5 pixel by 5 pixel. The median of the sample values is determined and

this value is assigned to the pixel at the center of the mask, replacing the previous

value. This calculation is repeated, with the mask traversing the entire image.

24

Median filters are popular since they provide excellent noise-reduction capabilities.

They are particularly useful for reducing certain types of random noise, e.g., speckle

noise (granular noise with gray dots) and salt-and-pepper noise (black or white noise

pixel; looks like salt and pepper in an image). They have an edge-preserving feature,

and do less blurring than mean filters with similar dimensions. A mean filter applies

the mean value in the image mark, unlike the median filter uses the median value.

Median filtering is a spatial domain technique, because it modifies the pixel values

directly in the 2D space.

3.3.2 The Fourier Transform

Although spatial domain filtering techniques can smooth given signals or images effec­

tively, there is another group of techniques for filtering and smoothing that operates

in the frequency domain. The frequency domain is the space that is defined using the

Fourier transform of a signal.

The Continuous Fourier Transform

A spatial domain signal can be transformed to the frequency domain using the Fourier

transform, which transforms a real variable x and the continuous function f(x) to a

frequency domain representation [26]. This transform is defined by

/

oo

f(x)e-^uxdx, (3.2)
•oo

where F denotes the Fourier transform process, F(u) is the resulting function in the

frequency domain, u is a given point in the frequency domain, and j = y/—l.

The inverse Fourier transform can transform a continuous function in the fre-

25

quency domain, F(u), back to a continuous function in the spatial domain, f(x):

/

oo

F(u)ej2vuxdu. (3.3)
• o o

Equations (3.2) and (3.3) are called the Fourier transform pair [25].

The Discrete Fourier Transform

Assuming we take N samples, Ax units apart, starting at xo, a continuous function

/ (x) can be evaluated at the discrete points (xo, xo + Ax,xo + 2Ax, ...,x0 + [A—l]Ax)

to yield a sequence of values

{/(xo), f(x0 + Ax), / (x 0 + 2Ax),..., / (x 0 + [N - 1] Ax)} (3.4)

The function f(x) is then defined at discrete locations such that

/ (x) = / (x 0 + xAx) (3.5)

where x = 0,1,2, ...,N -1 [25].

Similarly the frequency domain function F[u) can be evaluated at the discrete

points (0, Ait, 2Att,..., [N — 1] Ait), so we define the discrete function F(u) in a similar

manner, i.e.,

F(u) = F(uAit) (3.6)

for u = 0, Ait, 2Ait,..., [N - 1] An.

Therefore, the discrete Fourier transform (DFT) pair for sampled functions is

J V - l
F^ = NJ2 f{x)e-*™*'N (3.7)

x=0

for 11 = 0,1, 2,..., AT- 1, and

26

J V - 1

f(x) = J2 F(u)ej27iux/N (3.8)
M = 0

for x = 0,1,2,. . . ,N -1.

The terms Au and Ax have the following relation [25]

In the spatial domain,

Ax = ^ (3.10)

where L is the total length of x-axis [26]. In the frequency domain, rewriting Equation

(3.9), we have the following relations,

Au=-, NAu = —. (3.11)
L Ax

The Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient algorithm for the computation of

the Fourier transform. The FFT algorithm is a decomposition procedure that has an

operation count for multiplication and addition proportional to N log2 N [26]. The

algorithm has the form

N-l

FFT{/(x)} = F(u) = - J 2 f(x)W*UX (3-12)

where u = 0,1, • • • , N — 1, and

WN = e~j%. (3.13)

It can be shown that if TV" is a power of 2, then F(u) can be decomposed into two

parts and significant computational efficiencies can be obtained.

27

Compared to Equation (3.7), the FFT algorithm significantly reduces the compu­

tational effort. In Equation (3.7), the summation requires N complex multiplications

of f(x), x = 0,1, 2, • • • , N — 1, by e~^ and followed by N — 1 additions. Particularly

for large TV, the FFT has a significant computational advantage over the DFT. For

example, using FFT for N = 512 is 56.89 times as fast as using the DFT [26]. FFT

can only be applied when JV is a power of 2 (i.e., TV = 2,4,8,16,...).

3.3.3 The Shannon Sampling Theorem

In the experimental data, there are valid data and noise, due to the acquisition system

and previous precessing steps. The use of the Shannon sampling theorem allows a

valid representation of the valid data to be obtained from samples of the experimental

data.

In signal processing and image processing, the Shannon theorem is important in

signal sampling and reconstruction, in order to prevent aliasing. Aliasing is a phe­

nomenon where additional frequency components, or aliased frequencies, are intro­

duced into the sampled signal, and the sampled signal is corrupted [25]. It typically

happens if the sampling rate is too low. The sampling rate, Ts, is the number of

samples taken within a unit distance, when taking samples from a continuous signal.

The Shannon sampling theorem states that if the sampling rate is at least twice the

bandwidth (the width of a frequency range), then uniformly-spaced discrete samples

will give a complete representation of the signal. In the case of a low-pass filter (refer

to Section 3.3.4), which removes high frequencies, the bandwidth, Bwi(ith, is the width

between lower and upper cutoff frequencies. The term cutoff frequency (described in

Section 3.3.4) indicates the threshold frequency. Frequencies outside the range of the

lower and upper cutoff frequencies are removed, or cut off. The condition that is

sufficient to reconstruct the exact signal from samples at a uniform Ta is:

28

J-'s > ^Bmdth (3-14)

If Bwicith > Tsjl, the signal is undersampled, and aliasing would occur.

3.3.4 The Gaussian Low-Pass Filter (GLPF)

In signal processing, filtering is used to remove or reduce certain unwanted frequencies

in a signal. The GLPF is a filtering technique that can be applied either in the

frequency domain or in the spatial domain. A low-pass filter is a filter that passes

low frequencies well, but attenuates (or reduces) frequencies higher than a certain

cutoff frequency associated with the filter.

The idea is that a given signal has an outline, or overall fluctuation, as well as

details, or smaller waves. Smoothing is often used to remove details, while keeping the

primary characteristics of the signal. However, this task may not be straightforward

using spatial domain filtering techniques, because it may be difficult to separate

overall behavior from the details. The Fourier transform converts the spatial signal

to the frequency domain, so that high frequency values, representing the details, can

be removed easily and accurately.

After the input spatial signal f(x) is transformed to the frequency domain, it

becomes a frequency domain function, F(u). Filtering in the frequency domain can be

done through multiplying by a filtering function H{u) [25]. Then, the inverse Fourier

transform of the above filtered frequency function is computed in order to compute

the filtered result in the spatial domain [25]. Below we discuss GLPF functions in

the spatial and frequency domains for both ID and 2D.

29

I D GLPF

The ID GLPF can be applied to a smooth ID signal. The Fourier transform of the

filtered signal, G(u), is given by

G(u) = H(u)F{u) (3.15)

where H(u) is the Fourier transform of the filter (to be discussed shortly), and F(u) is

the Fourier transform of the original signal. The filtered result in the spatial domain,

g(x), is obtained by taking the inverse Fourier transform of G(u).

The Gaussian low-pass filter function is given by the following two equations. In

the frequency domain,

H(u) = Ae^, (3.16)

where a is the standard deviation of the Gaussian curve. A is the gain factor of the

GLPF. It controls the height of the filter curve. A = 1 means that the filter height is

not changed. In the spatial domain, the corresponding filter function, h(x), is

h{x) = V^aAe-2^2*2. (3.17)

Multiplication of two functions in the frequency domain corresponds to convolu­

tion in the spatial domain. Hence the spatial domain equivalent of Equation (3.18)

is

g(u) = h(u) * f(u) (3.18)

where * indicates the convolution operation.

30

2D GLPF

The 2D GLPF can be used for 2D signal denoising, and in particular in image filtering.

The method can reduce noise in an image or a 2D signal, by multiplying the image

signal by the filtering function in the frequency domain.

The 2D filtering equation is

G(u, v) = H(u, v)F(u, v) (3.19)

where F(u,v) is the Fourier transform of the image before filtering, H(u,v) is the

frequency domain filtering function and G(u, v) is the Fourier transform of the image

after filtering.

The 2D Gaussian low-pass filter in the frequency domain is

H{u, v) = Ae^X), (3.20)

while in the spatial domain it is

h(x) = 27ra2Ae-27r2°2(x2+y2). (3.21)

Power Spectrum, Cutoff Frequency and Sigma

When applying the GLPF to attenuate the noise, the actual amount of attenuation

for each frequency depends on the filter design. The key element is the a value,

which determines the width of the GLPF curve, affecting how much high frequency

information will be leave alone.

As a is the standard deviation of the Gaussian function curve, one approach is to

define the shape of the GLPF curve according to the Fourier transform of the signal,

F(u), and then compute the a value based on F(u). This way, the GLPF based on

31

this a value would match the width of F(u) and have reasonable filtering results.

There is a relationship between a suitable a value of the GLPF and the shape

of the Fourier spectrum of a given function which is discussed below. However, it

appears that there may not be a simple formula for the determination of a. In order

to work out such a relationship, the definition of the power spectrum of a signal in

the frequency domain needs to be introduced.

The Fourier transform uses complex variables. The spectrum or magnitude of the

Fourier transform is very important for filtering in the frequency domain [25]. The

Fourier spectrum |.F(u)| is given by:

\F(u)\ = y/[B?(u)+P(u)], (3.22)

where R(u) and I(u) are, respectively, the real and imaginary parts of F(u).

The power spectrum, P(u), of a signal is the square of the magnitude of the

Fourier transform. It describes how the power of a signal is distributed with respect

to frequency [25]. P{u) is given by

P{u) = \F{u)\2 = R\u) + I\u). (3.23)

Summing the components calculated in Equation (3.23) for u = 0,1,2, • • • ,N — 1,

gives the total ID signal power, PT,

N-l

pT = j2p(u)- (3-24)
u=0

Gonzalez [25] described one way to use the summed power spectrum of an image in

the frequency domain to compute the cutoff frequency. The approach works similarly

for a ID signal, using the signal power to compute the cutoff frequency.

As mentioned earlier, the GLPF removes high frequency components for the

32

d

O

q
d

0.1% 2 i 1 %

- 3 0 7 -2(Jf

K 2 , 1 % 0.1%

1(7/ 2(7/ 3(7/

#(«) = (3.25)

Figure 3.1: Standard deviation, confidence intervals and three-<r rule. For the normal
distribution, one standard deviation al away from the mean encloses about 68% of
values; about 95% of the values are within the two al range; and about 99.7% lie
within the three al range.

Fourier transform. The ideal low-pass filter (ILPF) is a much simpler filter; it has

the following definition

1, if D(u) < D0

0, if D(u) > D0

where D{u) is the distance between u and the origin center of the transform, and DQ is

a specified nonnegative distance from the origin. The ILPF ''cuts off' all components

with a distance greater than DQ from the origin of the transform, which is called the

cutoff frequency, Tcutoff-

The DQ distance from the origin of the transform encloses a percentage, a, of the

signal power. The rest of the signal power needs to be filtered. The three-o" rule [64],

shown in Figure 3.1, is useful to determine how much signal power to cut off. As DQ

of ILPF decreases, more power is removed, which results in more smoothing, al in

the three-cr rule is the standard deviation of the normal distribution. This is different

from a in the GLPF, which is a parameter in Equations (3.16) and (3.17).

The ILPF is useful for understanding basic filtering concepts and it can be easily

33

wr "" i f

i

I
Figure 3.2: An example of the ringing effect. From left to right (a-b): a. an image
without the ringing effect; b. the same image showing the ringing effect.

implemented, but it is not practical and causes aliasing. The "ringing" effect can be

seen in an image that has been filtered by the ILPF. Figure 3.2 shows an example of

the ringing effect, which appears as bands, or "echos" near the edge.

Applying a ILPF in the frequency domain generates multiple peaks in the spatial

domain. A GLPF function does not have this issue. It does not have a sharp cutoff

and thus does not exhibit ringing in the spatial domain.

Finally, since a of the GLPF determines the spread of the curve, a can be set to

D0 [25], and Equation (3.16) can be expressed as

H{u) = e 2°o (3.26)

The gain factor A in Equation (3.16) is set to 1, so that the peak of the GLPF is

1. The peak is at the origin of the GLPF where multiplying the GLPF by a signal

does not change the signal. Using D(u) to replace u in Equation (3.16) results in

normalization of the GLPF. The GLPF is symmetrical, with the origin at D(u) = 0.

When D(u) = DQ (or D(u) = a), the filter has a value that is 0.607 of its maximum,

since H(u) = e~2~ = 0.607. Interestingly, such a D(u) value arises when u equals a

In conclusion, the signal power can be analyzed using the power spectrum. The

three-cr rule allows us to estimate how much power to cutoff, so that DQ can be com-

34

puted. The ILPF illustrates the idea of using a low-pass filter to remove frequencies

higher than Do, giving the cutoff frequency, Fcutoff- The GLPF uses the same idea

as the ILPF, but does not cause aliasing while cutting off high frequencies.

3.4 Interpolation

Interpolation techniques are important in numerical analysis and have been used in

a variety of applications in image processing. Piecewise linear interpolation (refer to

Section 3.4.1), is a simple and standard method provided by a variety of commercial

software packages. Better interpolants can be obtained by interpolation with higher

degree polynomials. Our goal is to find a suitable polynomial interpolation method

to use on image data to generate missing slices in histological sections data. For

this purpose, this section introduces linear, polynomial, cubic spline, and monotonic

piecewise cubic interpolation. It also describes an adaptive interpolation algorithm

to ensure accuracy while optimizing data usage.

3.4.1 Nearest Neighbor and Linear Interpolation

Nearest neighbor and linear interpolation techniques are relatively simple. They are

often applied in fast, coarse image processing. Nearest neighbor interpolation finds

the nearest sample point to a desired point and assigns its value to the desired point

[25]. This can also be described as piecewise-constant interpolation.

Piecewise linear interpolation assumes a straight line segment between two given

data points. In this case, given two points (xo,y0) and (xi,yi), for an x value in the

interval (XQ,XI), the corresponding y value is given by

y = (x-x0)— -+yo- (3.27)

35

Piecewise bilinear interpolation is an extension of piecewise linear interpolation

for interpolating functions in two independent variables [25] by performing linear

interpolation in both dimensions.

3.4.2 Polynomial Interpolation

Polynomial interpolation is the interpolation of a given dataset by a polynomial. In

other words, given a set of data points, the aim is to find a polynomial that goes

exactly through these points. Given n + 1 data points, assume a polynomial of degree

n of the form:

y = a0 + oix + a2x
2 + ... + anx

n, (3.28)

where a0, a\,..., an are n + 1 real constants. Since n + 1 values of y are given at n + 1

values of x, one can write n + 1 equations obtained by requiring that the value of the

polynomial agree with the given y value. For the data points (x%, yt), we require

y% — a0 + a\x% + a2x
2 + ... + anx™. (3.29)

Then the n + 1 constants, ao, a\,..., an, can be found by solving the system of n + 1

simultaneous linear equations.

More advanced techniques such as Lagrange interpolation or Newton interpolation

can also be used to obtained the polynomial interpolants [38]. A potential issue is

that the resulting polynomial may have oscillatory behavior when n is large. Conse­

quently, spline interpolation can be a more appropriate choice when n is large since

the resulting interpolant tends to have values closer to the data points.

36

3.4.3 Cubic Spline Interpolation

A spline is a piecewise polynomial function [13]. Cubic splines are piecewise cubic

polynomials. Between each pair of data points a unique cubic polynomial is generated

such that the curve is continuous and smooth, and interpolates the data points.

The piecewise function has the form:

V(x) = <

Vi(x), if X\ < X < X2

v2(x), if x2 < x < x3

vn-i(x), if Xn_! < x < xn

where v%(x) is a third degree polynomial denned by

(3.30)

vl{x) = a%{x - xz)
3 + b,(x - Xi)2 + cx{x - xt) + d% (3.31)

for i = 1,2, ...,n — 1. The first and second derivatives of V{x) are fundamental to

this process. We have

v[{x) = 3at(x — Xj)2 + 2bt(x — x^ + c4 (3.32)

v"(x) = 6at(x — xz) + 26j (3.33)

for i = 1, 2,..., n — 1.

Each segment of the cubic spline is defined by three constraints [72], which are:

1. V(x) will interpolate all data points. It follows that V(x) will be continuous on

the interval [x\, xn].

2. The first derivative of V(x) will be continuous on the interval [x\, xn]

37

3. The second derivative of V(x) will be continuous on the interval [xi, xn]

This leaves two degrees of freedom in the definition of V(x); a variety of techniques

have been developed to specify the two remaining degrees of freedom [72].

3.4.4 Monotonic Piecewise Cubic Interpolation

A variant of cubic spline interpolation is monotonic piecewise cubic interpolation.

Monotonic piecewise cubic interpolation yields an interpolant that preserves the

monotonicity of the interpolated dataset. A monotonic piecewise cubic interpolant

has a continuous first derivative, unlike a cubic spline interpolant that has two con­

tinuous derivatives.

The main reason that monotonic piecewise cubic interpolation is considered is that

the direction of the curve between data points is controlled to be either monotonically

increasing or decreasing. Monotonically increasing means that the function value is

strictly increasing from the left to the right, and the next value cannot be less than

the previous value. Monotonically decreasing is the opposite. In many cases, such

as medical and histological data, to fit the physical data better, monotonicity of the

interpolant is a useful property. The coefficients of the cubic on each subinterval are

determined to interpolate the associated data points, to provide continuity of the first

derivative, and to preserve monotonicity.

Two examples were constructed using Matlab to compare the interpolated val­

ues of a monotonic piecewise cubic with those of a cubic spline. For monotonically

increasing data, in Figure 3.3 the monotonic piecewise cubic interpolant preserves

the monotonicity, but the cubic spline does not. For non-monotonic data in Figure

3.4, the monotonic piecewise cubic deals better with the intervals in which the data

changes direction.

Cubic spline interpolation and monotonic piecewise cubic interpolation have dif-

38

50

45

40

35

30

25

20

15

10

5$

0

O interpolation points

monotone spline

- -cubic spline

-e—o e—e—- .-0-- e-

o X 10 15

Figure 3.3: Cubic spline and monotonic piccewise cubic interpolation plotting on
monotonic data

18

16

14

12

10

O interpolation points

monotone spline

— — -cubic spline

X 10 15

Figure 3.4: Cubic spline and monotonic piccewise cubic interpolation based on non­
monotonic data

39

ferent features. Cubic spline algorithms are very popular. However, many examples

show that cubic spline interpolation can give a poor fit, particularly if there are rapid

changes in a small interval in the dataset.

Fritsch and Carlson discuss a "visually pleasing" monotonic cubic interpolant [38].

A software package for the implementation of monotonic piecewise cubic, PCHIP [23],

will be introduced in Section 4.8.2.

3.4.5 Adaptive Interpolation

The idea of subdividing a task where needed is generally known as divide and conquer.

Here we use this refinement idea to control the interpolation process.

The basic idea is to use an adaptive algorithm to minimize the number of subin-

tervals over which the piecewise polynomial interpolant is defined. The algorithm

starts by interpolating at small number of data points, and then estimates the error

of the interpolant. A new interpolant using more data points where there are large

estimated errors is then constructed. The process is iterated until each piece of the

interpolant has an acceptable error or there are no more sample points available. The

idea is to dynamically refine the pieces on which the piecewise polynomial is based.

The algorithm uses fewer data points in regions where the estimated error is small

and more data points in regions where the estimated error is large.

For histological sections with some slices missing, an algorithm is needed to gen­

erate missing data. For CT images, all the data are available to use. However, it

will be useful to develop an interpolation algorithm and test it on the full set of CT

data. Once this task is completed, the algorithm can then be applied to histological

sections to approximate missing data.

There is a question of how good is "good enough" for each piece of the interpolant.

A tolerance needs to be applied to the interpolation error estimate. The tolerance is

40

related to the accuracy of the data being interpolated. The interpolation process is

considered to be successful if its errors are smaller than the errors introduced by the

data collection process.

Interpolation errors can be estimated by comparing the ith and (i + l) th inter-

polants. Let Interpolanti be the piecewise polynomial interpolant generated by the

adaptive interpolation algorithm during its ith iteration. The relative error estimate

for the ith interpolant at location z is

\Interpolanti+\(z) — Inter polanti{z)\
{Interpolant^z)]

If the difference between two successive interpolants is sufficiently small, then we

will assume that the generated interpolant represents the data reasonably well.

The overall idea of the adaptive interpolation algorithm is explained here. A much

more detailed algorithm description will be given in Section 4.8.3.

1. Choose Xi < X2, where X\ and X2 are integers smaller than the total number

of data points.

2. Build interpolanti using every Xith data point.

3. Build interpolant2 using every X2th data point.

4. Compare interpolanti and interpolant2 on each piece of interpolant2 as in Equa­

tion (3.34) and as described in Section 4.8.3.

5. If the estimated error is smaller than the tolerance on certain pieces, the number

of data values employed in such pieces is considered to be sufficient. If the

estimated error is larger than the tolerance on a given piece, we introduce a

new sample point chosen from the middle of the set of data points associated

with the given piece of the interpolant. Once this new set of interpolation points

41

is identified over the entire domain, interpolant3 is constructed to interpolate

this new dataset.

6. Iterate the above process until the estimated error is less than the tolerance on

every piece, or there are no more available data points.

Monotonic piecewise cubic interpolant is chosen as the underlying interpolation

technique. The non-smooth data regions where rapid changes occur use more data

points than the smooth regions. Then, an overall satisfactory approximation with

acceptable accuracy can be achieved using a different density of interpolation data

points over various regions.

3.5 3D Reconstruction

In the context of this project, 3D reconstruction is the process of reconstructing a

3D model from an image dataset or image sequence of the model. The result is a

3D visualization of the 3D model, which is better and easier for analysis than a 2D

sequence of images.

One goal of this project is to investigate methods to improve 3D reconstruction

for histological sections. The methods are based on adaptive interpolation methods,

from which intermediate slices can be generated to augment the dataset. With more

data to work with, the resulting 3D model can be built more accurately, giving a

surface that is smoother and has more detail.

Although improving 3D reconstruction is a goal of the research, 3D reconstruction

is not the focus of our algorithm development. The improvements that we obtain for

3D reconstruction result from filtering and interpolation methods. 3D models gener­

ated with and without interpolation will be compared to evaluate the interpolation

method. The hypothesis is that the 3D reconstruction process will be improved by

42

the use of interpolation methods.

43

Chapter 4

Methods and Algorithm Design

This Chapter presents the methods based on the theories that are described in Chap­

ter 3. Table 4.1 presents an overview of the methods and algorithms we consider.

It also indicates whether each step has been applied to CT images or histological

sections. The CT images required fewer processing steps than histological sections

because they were segmented before being provided to us. Also, CT images did

not need to be registered, because they were not displaced during the CT scanning

procedure. Also no median filtering was required for the CT scans.

We present methods and algorithms to 1) perform image segmentation; 2) obtain

an equal number of contour points (data points representing ROI contours) on ev­

ery segmented ROI; 3) filter control points using automatically developed GLPFs;

4) analyze errors in above steps and pass error results to the adaptive interpolation

algorithm; 5) perform adaptive interpolation using monotonic piecewise cubics to gen­

erate missing structures; and 6) perform 3D reconstruction. The result is a complete,

smooth and detailed 3D model. As well, data usage information for contour points is

produced.

The algorithm has a streamlined and connected design, with methods grouped

into four categories. The core methods are Gaussian low-pass filtering and adaptive

44

Number

1

2

3
4

5
6
7
8
9
10

11
12

13

Methods

Images acquired from the EAR-Lab
[17]
Image preprocessing - convert images
to JPG
Rigid registration using Amira
Image renaming - depth information
captured
Segmentation - adaptive region growing
Median filtering
Segmentation - edge detection
Contour finding - smooth contour
Gaussian low-pass filtering on slices
Gaussian low-pass filtering in the z di­
rection
Calculate filtering error
Apply monotonic adaptive spline in­
terpolation and generate intermediate
slices, based on error limit
3D reconstruction using all the inter­
mediate generated slices

CT Scans

Yes

No

No
Yes

Yes
No
Yes
Yes
Yes
Yes

Yes
Yes

Yes

Histological
Sections
Yes

Yes

Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes

Yes

Table 4.1: Overview of methods and steps

interpolation (developed in C#) . The secondary methods are image segmentation

(using C and CVlab) and contour finding algorithms (using C#) . CVLab is a Linux

based computer vision software tool. Other software that was used includes Amira (for

image registration and 3D reconstruction), and stand-alone programs developed to

allow interaction, connectivity and automation. These include region selection, image

renaming and conversion tools (developed in C#) . Information on these programs

and algorithms is listed in Table 4.2.

45

Name
Patchgrow

Median
Cannycontour

Kmeanss
Zeropad
Rename 1
Rename2

Selectobject

Reconstruction

Platform
Linux
Linux
Linux
Linux
Linux

Windows
Windows
Windows

Windows

in
C
C

c
c
c
c#
c#
c#

c#

Purpose of the program
Adaptive region growing
Median filtering
Canny edge detection
Kmeans image segmentation
Image zero padding
Rename and convert Amira result images
Rename and convert CVlab result images
Select objects and write CVlab scripts for
segmentation
Load segmentation results; contour finding,
Gaussian filtering, error analysis and adap­
tive interpolation; save result images

Table 4.2: List of software developed as part of the thesis research

4.1 Experimental Datasets

This section introduces the experimental datasets. Both histological sections and CT

images were supplied by the EAR-Lab [17]. They were originally acquired from the

Temporal Bone Foundation, in Boston, USA. There are a number of bones in the

images, as described in Figure 2.6. The incus and the malleus are two ROls studied

in this thesis. These were introduced in Section 2.1.2.

4.1.1 Histological Sections

The histological section images provided to us by the EAR-Lab [17] were in PSD

format. There are six sets of color images, identified in the Table 4.3. The sections

are usually 20 microns thick. Every 5th or 10th (10 x 20 micron) section has been

digitized and provided to us, giving the distance between two neighboring data slices

as 100 or 200 microns, respectively. The slide number represents the z coordinate

of the slice and indicates if every 5th or 10th section has been used. With this z

coordinate, plus the (x, y) coordinates in the image plane, the 3D space of the image

set is defined. The physical dimensions of the actual slides are 25 mm by 18 mm.

46

Case number
1
2
3
4
5
6

Case name
8486i
8486d
8655d
86551

87213d
8913i

Number of Images
69
41
84
59
137
101

Table 4.3: Histological section datasets

Some digital images were larger than this because the canvas size was increased to

accommodate rotation and translation during image alignment.

Unlike the CT dataset which has over 700 images, the histological section sets have

between 40 and 140 images per set. Although they are provided at every 5th or 10th

slice on average, if a slice that should be picked is broken or of low quality, a nearby

slice may be provided instead. For example, Case 8486i has images with numbers 1,

6, 11, 13, 15, 21... Obviously not every 5th data value is provided. Therefore, the

images are not uniformly spaced.

4.1.2 CT Images

One CT dataset was provided, as specified in Table 4.4. These images are obtained

using a micro CT scanner (SkyScan 1072 Desktop x-ray Microtomograph) and are

saved in BMP and JPG formats. The CT image resolution is 600 by 600 pixels. The

CT images did not come in DICOM format (this is a standard medical image format).

The physical dimensions of one image slice are 15.5 mm by 15.5 mm by 0.015 mm

(i.e., one slice is 0.015 mm thick). The specifications for the incus and the malleus

datasets are summarized in Table 4.5.

The original CT images were of poor quality. Therefore, manual segmentation was

performed by the Research Associate at the EAR-Lab [17] using a priori knowledge.

In this manner segmented ROIs were provided for testing the filtering and adaptive

47

Case number
1

Case name
Gastrol

Number of Images
751

Table 4.4: CT image set

Region
Incus

Malleus

Start I m a g e #
36
22

End I m a g e #
224
245

of Images
189
224

Width
15.5
15.5

Height
15.5
15.5

Depth
5.67
6.72

Table 4.5: Physical dimensions of the incus and the malleus CT dataset in mm

interpolation algorithms designed in this thesis. Both the original CT images and

segmentation results were provided to us. Segmentation was applied to every second

image by the Research Associate at EAR-Lab, because that would provide enough

image data.

4.2 Image Registration for Histological Sections

Image registration is needed only for histological sections; CT scans do not need to be

registered, because no displacement was introduced from CT scanning. Rigid regis­

tration for histological sections was performed using Amira. Pre-processing, renaming

and format conversion was done before and after registration using Photoshop and

C # programs we developed.

4.2.1 Image Pre-processing

The objective of this step is to convert source images to a dimension and format

suitable for registration in Amira. The original and converted format and resolutions

are listed in the Table 4.6. The table shows that both the format and resolutions of

the histological sections are changed, so that they can be used in Amira and later in

CVlab. The CT images are not changed before being sent to Amira, but are changed

48

Image

CT
Histological Sections

Original For­
mat
JPG
PSD (Photoshop
format)

Original Reso­
lution
600 by 600
varies between
2400 by 1800
and 3200 by
2400, e.g., 2038
by 2868

Converted
Format
GIF, JPG
GIF, JPG

Converted
Resolution
600 by 600
800 by 600

Table 4.6: Summary of Image Format Information

later for processing by CVlab.

Issues associated with the original histological sections are:

1. The PSD format can be only loaded by certain types of software, e.g., Photo­

shop, so images in PSD format need to be converted to a more common format.

2. PSD files are too large to manipulate easily. One PSD file is around 9M.

3. The original resolution is too high. Very high resolution images cannot be

loaded into the Amira software.

Another issue is non-uniform slice spacing, due to the fact that some slices are

completely corrupted and cannot be used. This issue is handled in later steps by

using the file names of original images to indicate the slice positions in 3D space.

For example, No. 41 and No. 46 images in Figure 2.5 have file names 41.jpg and

46.jpg, which indicates that they are in relative positions corresponding to z = 41

and z = 46.

PSD files are converted to JPG files through the following steps:

1. Apply zero padding and let all images have the same resolution: 3200 by 2400,

(since the original resolutions are not always the same).

2. Resize to 800 pixels by 600 pixels

49

3. Convert to JPG images

4. Save them with the original file name, except use 001.jpg instead of l.jpg

For histological sections, all images are resized only once, to 800 by 600, after

zero padding, so that they all have the same image size. Early in the research, this

resolution was set as a requirement by the Research Associate at the EAR-Lab [17].

The requirement was based on the 1G RAM in the lab computers and the need to

load all the images at one time.

We complied with this image size requirement by reducing the resolution of the

histological sections and then using the reduced resolution images throughout the

process.

4.2.2 Registration Methods

Image registration of the image set is performed using the Amira software's align­

ment and rigid transformation modules. The AlignSlices module in Amira with least

squares as the alignment algorithm is applied to correct the displacement of the im­

ages; rigid transformations, translations and rotations, are applied in space.

This step also changes the color images to gray scale images, since we do not need

color images for our research. Gray scale images contain sufficient information.

A demonstration of the registration process and sample registration results done

by Amira are shown in Section 5.1.1.

4.2.3 Image Renaming

The goal of this step is to attach 3D depth information to registered images. There is

an issue introduced by the Amira software in the image registration step. Amira only

saves images with names numbered 0, 1, 2, and so on, instead of using the original

names that contain 3D depth information.

50

To rename registered images to preserve original depth information, we developed

a C # program, Renamel. It renames a list of images to GIF images using the

original names, as in the PSD files. The Renamel program is introduced in Appendix

C.2. It takes registration result images from Amira and outputs images for image

segmentation using CVlab.

4.3 Segmentation Algorithms for Histological Sec­

tions

The segmentation framework was designed to work on histological sections. An ob­

ject selection program was developed to select ROIs. Thresholding, clustering, region

growing, and Canny edge detection techniques were implemented, tested, and cus­

tomized to optimize performance. K-means clustering was not applied because it

could not extract a single region of interest (ROI) from an image. The algorithm,

test results for k-means clustering are presented in Appendix B.l. Methods of patch

growing, median filtering, and Canny edge detection were combined in a segmenta­

tion algorithm. The algorithm starts with a stand-alone selection program, followed

by a CVlab script which automatically goes through all methods and saves the re­

sults. The object selection is a semi-automatic process, and all other methods are

fully automatic.

4.3.1 Object Selection

We developed an object selection program, SelectObject, which produces the input

for the automatic segmentation algorithm for an image set. It is implemented in C #

under Microsoft Windows. It allows users to select an object in the first image, and

only select it again if the object location changes. It automatically generates the

51

patch coordinates and segmentation commands for a CVlab script for region growing

and Canny edge detection. As the script is run in CVlab, the final segmentation

is performed. CVlab has many low level image processing algorithms that ease the

implementation of a segmentation algorithm.

The detailed steps for the use of the SelectObject program and its advantages are

described in Appendix C.4.

The result script from this step and the image set can be loaded into CVlab for

segmentation.

4.3.2 Adaptive Region Growing

Region growing is a segmentation method that we experimented with in this thesis.

Extending the "traditional" region growing algorithm (refer to Appendix B.2), this

section describes two modified and improved methods: two-threshold region growing

and a patch growing algorithm. The patch growing algorithm is the one we finally

chose to implement as our segmentation algorithm. It can segment and extract only

the target region, without growing and finding other similar regions.

Two-threshold Region Growing Algorithm

After the "traditional" region growing algorithm (Appendix B.2) was tested, a mod­

ified method, two-threshold region growing, was designed. It improved upon the

region growing method. The following is the algorithm description:

1. Ask the user to input a threshold value (Tl) and apply thresholding (introduced

in 3.2.1). Different from "traditional" region growing, this method is started

by picking a threshold empirically instead of selecting a patch. Pixels in the

resulting region of thresholding are the seeds.

2. Use the result from step 1 as the starting region for this step. Calculate the

52

mean and standard deviation of the pixel values of the seed region from Step 1.

Use the standard deviation as another threshold value (T2).

3. For every pixel in the starting region, the algorithm checks the eight neighboring

pixels. There is a binary image that has one bit for every pixel of the original

image. If the difference between the gray level of the pixel and its neighbors is

less than T2, the position in the binary image corresponding to the neighboring

pixel is set to 1.

4. Do not check a neighboring pixel, if the corresponding position in the binary

image has value of 1. That pixel is either inside the T l thresholding region or

has been checked already.

5. Repeat steps 2, 3 and 4 until no more neighboring pixels are added.

The resulting image is represented by a binary image with pixel values 0 for black

and 1 for white.

Results obtained from applying "traditional" region growing and two-threshold

region growing are given in Section 5.1.2. The "traditional" region growing method

exhibits some drawbacks, as observed in our test results. Its patch selection process is

only semi-automatic. The modified two-threshold region growing method is relatively

efficient in our particular case. Firstly, it is a fully automatic segmentation process.

Secondly, it only asks the user for one parameter, the threshold (Tl). Thirdly, Figure

5.5.b obtained from two-threshold region growing exhibits better segmentation results.

Basically, region growing only segments regions with fairly similar gray values, but

two-threshold region growing segments the image by continuing to grow until a strong

edge (gradient difference) is detected.

Nevertheless, the two-threshold region growing method requires the input of a

threshold value for every image and this may be difficult to find. The images have

53

ROIs as well as unwanted regions. Only the ROIs are required for 3D reconstruction.

The two-threshold region growing method still needs a suitable scheme for selecting

a segmented ROI for each image.

Patch Growing Algorithm

Both the "traditional" region growing and two-threshold region growing methods

segment the image globally. A better method is needed for segmenting a certain

ROI locally, when there are many objects in the image. The patch growing method

is designed to improve the two-threshold region growing method. It allows easy

identification of one ROI, followed by segmentation of that ROI.

The patch growing algorithm description is as follows:

1. Select a rectangular patch completely inside the ROI which needs to be seg­

mented. This is similar to "traditional" region growing, but the patch is applied

differently.

2. The pixels within the patch are considered to be seeds. Their positions in the

original image are recorded in a binary image that has one bit position for every

pixel in the original image. The bits in the binary image that correspond to

pixels inside the patch are set to 1.

3. Calculate the mean value, avg, and standard deviation, a, of the selected patch.

4. For every position in the binary image with a value of 1, the algorithm checks

the eight neighboring pixels in the original image. If the difference between the

gray level of these surrounding pixels and avg is less than a, the position in the

binary image corresponding to the patch of the neighboring pixel in the original

image is set to 1.

54

5. Each time a new pixel position is added to the binary image, the mean and

standard deviation of the pixel values that have been recorded in the binary

image are recalculated.

6. Repeat the above two steps until no more neighboring pixel is added.

The result is the ROI that grows from the selected patch. The algorithm has the

following features:

1. The seeds are all the pixels in the selected patch inside the ROI, which is

different from using the mean value or thresholding regions as seeds in region

growing and two-threshold methods.

2. Picking an ROI and inputting a patch can be done at the same time. When a

ROI is selected, xy coordinates of two points of the patch (the upper left and

bottom right corners) are the only input needed. This requires only one mouse

click by the user; the software stores the mouse-down and mouse-up positions

as the input for the determination of the patch.

3. The process is highly automatic. Selection of all patches for each image is

done using the SelectObject program. The user does not need to wait for the

processing of each image, but can select all ROIs first and then let all the

segmentation processes run automatically.

After experimenting on several image datasets, we found that the patch growing

algorithm was the most suitable for our application.

4.3.3 Median Filtering and Smoothing

Median filtering is a noise reduction technique that was implemented in CVlab using

the following steps:

55

1. Choose a dimension for the filter window, for example, 3 pixel by 3 pixel or 5

pixel by 5 pixel. The window includes an odd number of pixel samples.

2. Sort the sample gray values in the image from smallest to largest within the

window range.

3. Determine the median of the sample values and assign this value to the pixel

at the center of the window, replacing the previous value

4. Repeat steps 2 and 3 and traverse the image, letting the filter window move

from the top left corner to the bottom right corner.

Median filtering is applied to the image resulting from the application of the patch

growing algorithm to remove noise and artifacts left in the image. In particular, some

noise present in the image produced by the patch growing algorithm is salt and pepper

noise, i.e., a few dots distributed throughout the image. Median filtering can reduce

this type of noise efficiently. The next step in the segmentation process is Canny edge

detection, and incorrect edges might be identified if the noise is not removed. The

method needs a suitable choice for the filter width. For the processing of histological

sections, a filter width of 5 pixels by 5 pixels was selected empirically.

4.3.4 Canny Edge Detection

This section will explain the methods called the Sobel operator, nonmaxima suppres-
L

sion and double thresholding. They are applied in the Canny edge detection algorithm

in several steps:

1. Apply a 2D Gaussian low-pass filter (GLPF was introduced in Section 3.3.4) to

smooth the image.

2. Use a Sobel operator to compute the gradient, magnitude and orientation using

finite-difference approximations for the partial derivatives.

56

3. Apply nonmaxima suppression to the gradient magnitude to generate a thin

line in the output image.

4. Detect and link edges using the double thresholding algorithm.

Sobel Operator

There are two parts to this step. The first step is to find the edge strength by

estimating the gradient of the image. The Sobel operator computes a 2D spatial

gradient approximation of an image. The Sobel operator estimates the gradient in

the x-direction (columns) and y-direction (rows). G, the magnitude of the gradient

is then approximated using the formula:

G=yjG*+(Py, (4.1)

where Gx is the gradient in the x direction and Gy is the gradient in the y direction.

The second step, finding the edge direction, is straightforward once the gradients

in the x and y directions are known. The formula for finding the edge direction is:

9 = arctan(Gy/Gx), (4.2)

where 6 is the angle of the edge direction. However, an error is generated whenever

Gx is equal to zero. Whenever the magnitude of Gx is equal to zero, the edge direction

has to be equal to 90 degrees or 0 degrees, depending on what the magnitude of Gy

is. If \Gy\ has a value of zero, the edge direction will equal 0 degrees. Otherwise the

edge direction will equal 90 degrees. If both \GX\ and \Gy\ have values of zero, there

is no edge.

57

Degree
0

45
90
135

Direction
the horizontal direction

along the positive diagonal
the vertical direction

along the negative diagonal

Table 4.7: Edge directions for surrounding pixels

Nonmaximum Suppression

Assume a 5 by 5 image mask. When describing the surrounding pixels, there are

only four possible directions listed in Table 4.7. For the pixels in the 180 to 360

degree range, we can subtract 180 degrees to apply the results in Table 4.7. The edge

orientation has to be resolved into one of these four directions. This is done based on

which direction the edge is closest to. The edge direction is set as follows:

0, if 0 < 9 < 22.5 or 157.5 < 6 < 180

45, if 22.5 < 6 < 67.5

90, if 67.5 <9< 112.5

135, if 112.5 < 6 < 157.5

(4.3)

After the edge directions are known, nonmaximum suppression is applied. Non-

maximum suppression traces along the edge in the edge direction and suppresses any

pixel value (i.e., sets it equal to 0) that is not considered to be an edge. A thin line

in the output image is generated.

Double Thresholding

Hysteresis is used to eliminate streaking. Hysteresis is the dependence of an edge

that is currently detected on the edges already detected. Streaking is the breaking up

of an edge when the Sobel operator outputs values fluctuating around the threshold

58

value. Why are two thresholds necessary? If a single threshold (Tl) is applied to an

image, and an edge has an average strength equal to T l , in some cases the edge will

dip below the threshold because of noise. Similarly the edge will look like a dashed

line if it extends above Tl . To avoid this, two thresholds are used by hysteresis, a

higher one (Tl) and a lower one (T2). Any pixel is presumed to be an edge pixel

and marked if its value is greater than T l . After that, any pixel which is connected

to this edge pixel is also selected as an edge pixel if its value is greater than T2. In

order to follow an edge, the gradient of T l is needed to start. The process does not

stop until a gradient below T2 is detected.

4.3.5 Image Loading and Saving

An image set and a CVlab script implementing the previous step needed to be up­

loaded into our CS server (Linux) in order to perform segmentation. In CVlab, the

segmentation can be done, by running the script, in only one command.

The Rename2 program was developed to load segmentation results from CVlab,

output images for the contour finding algorithm, and later for interpolation steps. It

is a C # program similar to the Renamel program. The Rename2 program is given in

Appendix C.3. Advantages of these GUI programs are also discussed Appendix C.5.

4.4 The Segmentation Algorithm for CT Scans

The CT scans have already been segmented, but there are many objects in each

image. The ROI still needs to be selected and the region and edge images generated.

1. Use ObjectSelect to select the object or ROI from all objects in the manual

segmentation results, which were provided by the EAR-Lab [17].

2. Automatically generate a CVlab script.

59

3. Apply the software that implements the patch growing algorithm, to determine

the regions within the image.

4. Run Canny edge detection program to identify the edges. There is no need to

perform a median filtering step, because there are no outliers or noise inside the

region.

5. Save region and edge image result.

4.5 The Contour Finding Algorithm for Histolog­

ical Sections and CT Scans

The contour finding algorithm is expected to identify corresponding contour points

(edge points representing the contour) on different images. It needs to obtain contour

points in all images and create the same number of uniformly spaced angular con­

tour points in all images using monotonic piecewise cubic interpolation. This step is

intended to eliminate noise inside the ROI and identify points on the contour of the

ROI. It also computes an angle attribute for each contour point. In 3D reconstruc­

tion, contour points contain 3D coordinate data, xyz. The angle attribute helps in

the correlation of 3D data points, so that all 3D points that are to be interpolated

have the same angle attribute.

The contour finding algorithm was designed for histological sections. It has the

functionality to eliminate outliers inside segmented region images. For CT scans,

the algorithm still works for region images without inside outliers. Therefore, this

algorithm works on both histological sections and CT scans. It was designed and

preliminarily tested on histological sections, but was also refined, improved and tested

on CT scans.

60

4.5.1 Objective

The goal is to (i) interpolate the segmentation results, and (ii) use the augmented

dataset, including given and generated data, to reconstruct a 3D model. Issues with

segmentation results are: there are noise and unwanted structures inside ROIs and

edge contours are rough and have different sizes, so interpolation is very challenging.

Therefore, the algorithm needs to:

1. Remove noise and unwanted structures.

2. Have a closed and clear contour representing the ROI.

3. Identify points on the contour of an ROI that will be interpolation points for

the interpolation algorithm.

4. Ensure that there are the same number of contour points for the ROI in each

image.

There is related work on generating missing images [24]. It has a purpose similar

to our research, which is to reconstruct and visualize the underlying 3D structure,

and to facilitate analysis of datasets. Although this method generates images and

histological sections, it still requires segmentation. Our method, on the other hand,

automatically generates missing ROIs ready for 3D reconstruction.

We designed an algorithm to automatically obtain the closed contour or ROI.

Edge detection methods can find all edges, but broken edges with pieces in the middle

should be removed by this method. This algorithm has advantages over other edge

detection methods because it generates a closed contour with points in the angular

order. These contour points represent an edge in the 3D space.

In designing an algorithm that achieves this, we needed to calculate the center of

the region and identify a rediating line from the center to every edge. If there are two

or multiple edge points along one radiating line, only the farthest one from the ROI

61

center is marked as valid. Noise can also be eliminated during this process by finding

the farthest point for contour points with the same angle. The noise and artifacts

inside the region can be eliminated.

These contour points are used in the interpolation step to generate missing points

with input z. For example, we can use contour points in 4 images (No. 1, 6, 13, and

20) to interpolate and get all points in 20 images (No. 1 to 20). Here z is the image

number as well as the depth in 3D space.

4.5.2 Algorithm Description

The contour finding algorithm is described in the following.

Input: segmentation results for a dataset; these are two binary image sets; region

and edge images.

Output: contour point list, saved in XML format. The list has contour points

with xyz and angle values representing the ROI for each image in the data set.

Goal: Compute a closed and clear contour representing the ROI, eliminating noise

and artifacts, or outliers.

Algorithm steps:

1. Load region and edge result images (output of segmentation algorithms); assign

the image number to the z value of the image.

2. Calculate the geometric center for the ROI in the region image; obtain xy

coordinates of all points in the edge image; compute the angle from these points

to the ROI center.

3. Segmentation results are stored into a list of points with attributes x, y, z and

angle.

62

4. For any points with the same angle, keep only the point with the maximum

distance to the ROI center and remove the rest.

5. The resulting contours from Step 4 may have a different number of points for

each image; this is a problem for interpolating points on different images. We

decided that interpolation is needed for points on each image using uniformly

spaced angle values, so that each angle has corresponding points in each image.

Interpolation can be then applied to these corresponding points. Therefore, the

angle increment (A#) is required. It is found by averaging all angle differences

(Odiff) between each two neighboring points:

Wmax „

where Qmax is the number of points in the image contour that has the largest

number of points. The resulting contour point number N is given by

" - % •

6. Using the A9 value, the angle array for points in every slice is:

Q,A9,2A6,--- ,(N-1)A0 (4.6)

Apply monotonic piecewise cubic interpolation to resulting points from Step 4

on each image using this angle array; obtain resulting contour points.

The final result of the contour finding algorithm is the set of contour points.

There are the same number of contour points for the ROI in each image. Later steps

(filtering and interpolation) can be done on every set of these contour points with

the same angle on different images in the dataset (this is also called the z direction).

63

This solves the issue of filtering and interpolation for the edges that vary in size and

shape. The value of A/9 is calculated automatically by the algorithm. The contour

point number is parametric and depends on the image set.

To summarize, the contour finding algorithm has a creative design. It generates

the same number of contour points for each image using segmentation results, and

creates a mapping of these points on different images correspondingly using the an­

gle attribute. It provides connectivity between segmentation results and Gaussian

filtering and interpolation methods.

4.6 A Gaussian Filtering Algorithm for CT Scans

This section describes the Gaussian filtering algorithm that is applied to smooth the

contour points obtained from Section 4.5. It applies both the theory and methods

introduced in Section 3.3 in order to use the FFT algorithm and build GLPFs with

appropriate parameters. It presents an algorithm for building two ID GLPFs and

applying them to 3D contour points.

The Gaussian filtering algorithm is designed for CT scans. In future work, this

algorithm can be adjusted to work on histological sections. The idea would be the

same; however, the change needed would involve implementing the Fourier transform

for non-uniformly spaced data from histological sections.

4.6.1 Gaussian Filtering Overview

Gaussian filtering for both image denoising and ID signal smoothing was introduced

in 3.3.4. The Gaussian filtering in this section is a ID filter that is applied to smooth

contour point data. The algorithm is designed to smooth 3D contour points using

two ID GLPFs, one of which smooths the contour points on each slice, while the

other smooths data in the z direction.

64

mL-̂ - Before
Filtering

- Before
Filtering

- A f t e r
Filtering

Z Dii ection Index (m) Z Direction Index (m)

Figure 4.1: Example data smoothed using Gaussian filtering (CT Incus region, 162
slices, contour points at 180 degrees). From left to right (a-b): a. Before filtering
data; b. Before and after filtering data

Filtering is an important step since interpolation works better on smooth data.

In the initial experiments, simple filtering methods, e.g., mean filter and median

filter, did not give satisfactory results. In theory, the signal processing methods in

the frequency domain would work much better according to the characteristics of the

data. When data are transformed into the frequency domain, the high frequency data

represent details, small changes, or spikes, while the low frequency part of the data

represents the outline shape and global changes. Then, a Gaussian low-pass filter

with appropriate parameters can be applied to remove high frequency data, or spikes,

so that the results are smoother. Figure 4.1 demonstrates the effect of filtering.

We need to examine the data and determine frequency spectrum, find the appro­

priate a value of the GLPF, and apply the GLPF.

There are two equivalent ways to apply the GLPF:

1. Multiply the signal by the GLPF in the frequency domain and transform the

filtered result back to the spatial domain.

2. Perform a convolution using the spatial form of the GLPF.

We chose the second option, which means that there was no need to use an in­

verse Fourier transform. In order to use this second option, we need to understand

the relationship between the GLPFs in the frequency and spatial domains. More

65

ContourpointO-
Contourpointl
Contourpoint2
Contourpoint3

Contourpoint(N-l)

-.—

• •—

X
Y
2
R

Angle

C On-slice "1
(̂ direction J

direction

Figure 4.2: The structure of all contour points.

importantly, after determining the standard deviation (07) in the frequency domain,

the standard deviation (as) in the spatial domain needs to be calculated.

4.6.2 The Gaussian Filtering Algorithm Description

This algorithm is designed to filter and smooth the contour points, and remove spikes

and outliers. It takes a contour point list as input, and outputs a filtered list of

contour points and filtering errors.

The structure of contour points is shown in Figure 4.2. They are represented by

M lists. Each of these lists is obtained from a ROI of an image at a certain z location

in the 3D space. For each ROI corresponding to a given z value, there are N contour

points. Figure 4.3 shows a sketch of sample on-slice contour points. Figure 4.4 is a

sketch of sample z-direction contour points.

The idea is to process the on-slice contour points in the frequency domain, by

66

ROI at a certain
Z location

Horizontal line,
0 degree

Contour points
(on-slice

direction)

Figure 4.3: Schematic diagram of on-slice contour points.

(n, Zi 1

2. Another
set of Z-
direction
contour

points with
a different

angle

1.
Corresponding
contour points

in the Z
direction on

sample images;
they share the

same angle
attribute

Figure 4.4: Schematic diagram of z-direction contour points.

67

building and applying a GLPF in the on-slice direction. Then, we use the same ap­

proach to develop another GLPF and filter z-direction contour points. This way the

3D model represented by 3D points with angle attributes can be smoothed automat­

ically. The algorithm steps are as follows:

1. In on-slice filtering, contour points have the same z value. Each is represented

using a radius (r) and an angle (9). r is the distance from contour points to the

contour center. The list of contour points on a given slice can be viewed as a

ID signal, f(x).

2. Automatically develop a spatial GLPF for f(x) using a frequency analysis and

filtering method. As this step is the most important in the algorithm, it will

be further detailed in Section 4.6.3, which is to define a and the filter width

to build the GLPF based on the average power spectrum of the signal in the

frequency domain.

3. Apply convolution using the spatial GLPF to the radii values (r) (this does the

J actual smoothing). Smoothing the r values will change the xy coordinates.

4. Apply the same type of Gaussian filtering to the contour point list for the z

direction.

5. Measure differences or errors generated from automatic Gaussian filtering both

in on-slice and z-direction.

4.6.3 Gaussian Filtering Development

The above algorithm presents the overall logic and steps. As well, several key points

are described, in particular how a is computed, how GLPFs are built, and how the

filter width is determined. The only input of the program is the percentage of the

signal power to keep, e.g., a = 95%.

68

The theory described in Section 3.3.4 is applied in the subroutine to compute aj

(a in the frequency domain), and its related as (a in the spatial domain). The CT

dataset and its incus ROI is used to walk through this subroutine. Two major and

useful conclusions from the analysis and experiments in this work are:

Do = Fcutoff = Of (4.7)

** = *f~- (4-8)

The development steps of Gaussian filtering are as follows:

1. There are M slices in the dataset and N contour points on each slice. Contour

points on each slice can be represented by xy coordinates or radii, r, and angle,

9. As A# was previously computed and fixed in Equation (4.4), there is:

0 = eo + 0A#, 1A0, 2A#, • • • , (N - 1)A0 (4.9)

Equation (4.9) is equivalent to:

9 = e0 + nAd (4.10)

where n = 0,1, 2, • • • , N — 1, and 6Q is set to 0 degrees. The value N is the

number of contour points on each slice, defined by Equation (4.5). These N

contour points can be simplified as a ID signal with discrete r values, which are

represented by function fs(n):

rn = fs(n) = fs(e0 + nA6) (4.11)

The value of fs(n) is the r value at a certain n location on slice.

69

2. Contour points in one slice have corresponding contour points in all other slices,

with the same 9 value. That is, each 8 angle has M points in the z direction.

Contour points at each 6 can be represented by radii r and distances z. The

function of z can be expressed as

z = z0 + OAz, lAz, 2Az, ••• ,(M~ 1) Az. (4.12)

Equation (4.12) is equivalent to

z = z0 + mAz, (4.13)

where m = 0,1, 2, • • • , M — 1, z0 is the label number of the first image, and M

is the number of images. Az is a fixed physical distance between two neighbor

points and depends on the data. These M contour points can be simplified

as another ID signal with discrete r values, which are represented by function

fz(m):

rm = Mm) = fz{zQ + mAz). (4.14)

Similar to the on slice function, Az is the distance between each two neighbor

contour points in the z direction or the distance between two neighbor images.

The value of fz(m) is the r value at a certain m location in the z direction.

Obviously, Equations (4.11) and (4.14) have the same form. Gaussian functions

developed for both directions would share the same method in the following.

3. There are M fs(n) functions and N fz{jn) functions. These functions are ana­

lyzed and filtered in two steps. On slice filtering is done at first.

4. M fs(n) functions are normalized, which is to find the mean of the function

and subtract it from each value so that the function has a mean of zero.

70

5. FFT is applied to each function fa(n) using Equation (3.12):

Fa(u) = FFT{/S(n)}. (4.15)

Each is an array of complex numbers with real and imaginary parts. The

FFT routine was implemented by modifying a 100-line code (approximately)

that was found in pudn.com, a Chinese programming source community. It was

tested and compared with FFT in Matlab. Its results and Matlab results match

completed, which shows that the FFT routine works correctly.

6. The cumulative spectrum and percentage of total power under the cumulative

spectrum is calculated. A cutoff size between 95% and 99.7% needs to be chosen.

7. A power spectrum is computed using Equation (3.23) for each F„(ri):

Ps(u) = \Fs(u)\2 = R2
s(u) + I2(u). (4.16)

For M slices, contour points on each slice would have a power spectrum Ps(u).

8. The on-slice averaged power spectrum PS!avg(u) is then computed by averaging

M power spectrums, Ps,m(u):

M - l

Ps,avg(u) = (J2 Ps,m(u))/M. (4 .17)
m=0

For each frequency u, an average power value is calculated. This average is

calculated across all slices (in the z direction).

9. The total on-slice signal power Ps^ is computed by summing all the average

71

http://pudn.com

power values Ps,avg(u), across all the frequencies, u:

PS,T = J2P^V9(U). (4.18)
u=0

10. The Ps,avg(u) function is then shifted by moving the zero-frequency component

to the center of the function. Because Ps,avg(u) is symmetric, dividing it into

two equal intervals, left and right, the total signal power of each of the left and

right portion is PS>T/2.

11. The suitable cutoff frequency, Jr
cut0ff, is a distance Do [25] from the Fourier

origin. It is located by considering the fraction (a) of the total power spec­

trum, PStx, that we wish to maintain. Using the three-cr rule (Section 3.3.4),

about 95% of the power is contained within two standard deviations (2a/) of

the mean, and 99.7% of the power is contained within three standard devia­

tions (3o7). Empirically it was determined that maintaining 95% of the power

spectrum (2a/) causes too much smoothing/blurring, and maintaining 98% does

satisfactory smoothing. Therefore, 98% was used. For example, when summing

power from the center to the right of Ps,avg(u), if the at u = 5, the summed

power hits a of the PS,T/2, Fcutoff is 5.

12. The GLPF in the frequency domain can be built using Equation (3.26) and the

relationship that was worked out using theory in Section 3.3.4:

-Do = Fcutoff = crf. (4.19)

which is a key point that connects pieces of theory to the method, and gives this

algorithm a seamless design. It can be interpreted as: The Do value determined

by computing a of the signal power is useful to define the cutoff frequency,

72

which is also the suitable a input to build a GLPF in the frequency domain to

smooth the particular signal.

13. Based on Shannon sampling theorem in Section 3.3.3, the sampling rate, Ts,

needs to be checked and verified using:

Fs > ^cutoff- (4 .20)

According to Equation (4.19), it is also indicated that oj is valid if it is less

than half of the sampling rate:

as < Fs/2. (4.21)

14. Applying the frequency filter would require the inverse Fourier transform to

convert the filtered results back to the spatial domain. Its drawback is that the

inverse Fourier transform needs a lot of computing time for a large amount of

data. The alternative is to build the equivalent GLPF in the spatial domain,

and apply convolution on the spatial ID signal, fs(n).

15. In theory, building the equivalent GLPF using its frequency filter is possible,

but not an easy problem. As in Equation (3.17), a (specifically as) needs to be

determined. The problem is to compute as using aj.

16. as and Of are related, but an equation between them needs to be figured out.

They are corresponding variables in the spatial and frequency domains. The

relationship between samples in these two domains was introduced in Equations

(3.9), (3.10) and (3.11).

17. Of is already known, which represents a length in F(u). Working out the actual

length in f(x) would give the as value. Then, the length as is aj units or

73

increments of F(u) in u-axis. The increment is Au. This analysis concludes the

following:

as = afAu = a f J ^ . (4.22)

In the FFT routine applied, the unit of Au is "radians per N samples". Ax is

the x-axis increment in / (x) , so Ax = 1. Therefore,

as = af^. (4.23)

18. This seems too simple to be true. As well, the spatial GLPF built this way in

the experiments seems too wide. In order to confirm this statement logically,

various experiments were done. One way to examine and verify Equation (4.23)

is to see if the GLPFs built using Of and its corresponding as match.

19. The GLPF function pair in the test is:

HGaussian(u) = Ae2° f ••• (Frequency domain form) (4.24)

hGaussian(x) = \/2^crsAe~2v °"sX • • • (Spatial domain form) (4.25)

Applying FFT to hGaussian(x) would give a H'Gaussian(u) function:

G ™ » = WT{hGauaBian(x)}. (4.26)

This experiment shows:

HGausszan(U) = HGaussmn(u), (4.27)

where values in both functions are equal. A complete CT dataset was used in

this experiment. For the on-slice direction, all GLPFs in this test are plotted in

74

m
Frequency Index (n) Ou slice Index of Q fa)

Figure 4.5: The relationship between cy and as (on-slice direction). From left to right
(a-b): a. The frequency (Gaussian) filter is built using of, b. The spatial filter is
built using as based on Equation (4.23).

Figures 4.5 and 4.6. The z direction GLPFs are shown in Figures 4.7 and 4.8.

20. hoaussianix) is the GLPF built for applying convolution on the contour points.

The filter width of the spatial GLPF (on-slice), Ws, needs to be defined, because

the function needs to be cropped to a certain width range. (Similarly, the filter

width of a spatial GLPF in the z direction is noted as Wz.) If some values in the

GLPF hGaussian{x) are too small to be effective, there is no need to keep them,

although in theory every point of the Gaussian function is non-zero. Therefore,

a rule should be used to remove effectively-zero values from the GLPF. Then,

the remaining number of values would be the width. In practice, values outside

the 3-cr/ range of HQausSian(u) can be considered zero, according to the three-cr

rule of Gaussian distribution. To achieve the 3-af range is to keep 99.7% of the

values from the GLPF center/origin.

21. As <7S and Ws are determined, the spatial GLPF can be properly built. This

filter is for on-slice smoothing.

The development method of the spatial GLPF for filtering on-slice contour points

was described. The number of samples, N, is how many angles in the contour points.

The method of developing the spatial GLPF for z-direction filtering is similar. The

input list of contour point data are transformed by Fast Fourier Transform. The

75

^
*3

&
£
h

0035

0

OE_

ooa

0 016

001

ocos

100

I
/

. / 100

\ ' ' ' 1] spulsalflhet j

1
1 1
1 \
V.
SB * o soo

Oo-slice Index of 9 (n)

S
a

i
•3

1 4

12

1

0 8

D6

u

G_2

0

1

-

IQu

1 •

1
1 \

200 300

Frequency Index

*

1 frequency Wief

* Q

(1)

'

1

«0

Figure 4.6: The Matlab test confirms aj and as relationships (on-slice direction).
From left to right (a-b): a. The spatial filter in 4.5.b is imported into Matlab; b.
Such spatial filter in (a) is then transformed to the frequency domain using Matlab's
FFT, which shows the resulting frequency filter is the same as Figure 4.5.a.

«
a
Mi

I .

U.

- -

21

A _ n
/ \
/ \

_̂__i_ _̂z
4 1 Bl S I 101 1-1

Frequency Index (m)

_

. -

1 4 1

-

161

Fi
lte

r
M

ag
ni

tu
de

 • f t

i \

——-apBlai tilt=r

\
/ l

/ V
11 H Oi Bl 131

Z Direction Index (m)
11 1-1 161

Figure 4.7: The relationship between aj and as (z direction). From left to right (a-b):
a. The frequency (Gaussian) filter is built using Oj\ b. The spatial filter is built using
as based on Equation (4.23).

Z Direction Index (m) Frequence Index (m)

Figure 4.8: The Matlab test confirms oj and as relationships (z direction). From left
to right (a-b): a. The spatial filter in 4.7.b is imported into Matlab; b. Such spatial
filter in (a) is then transformed to the frequency domain using Matlab's FFT, which
shows the resulting frequency filter is the same as 4.7.a.

76

power spectrum, a of signal power, and the cutoff frequency are computed with

three-cr rule being applied. As as and Ws is determined, the GLPF can be fully

defined in ^-direction. In this case, M is the number of images in the dataset.

4.7 Error Analysis for CT Scans

The sources of error are analyzed in this section for CT scans. The goal of this

section is to determine the approximate data error Eapprox. Such data error serves

as important input for the adaptive interpolation algorithm (refer to Section 4.8).

The data points are not perfect due to errors introduced in data collection and data

processing steps. The errors of these data points need to be analyzed so that the

performance of the adaptive interpolation algorithm can be measured. They need to

be estimated, defined, and provided as basis for the adaptive interpolation algorithm.

This section presents error analysis methods for segmentation, contour finding and

filtering methods. It starts with an overview and ends with error combination. For all

three errors, it uses the 1 — 5 (one minus similarity index) method. The filtering error

is measured by one more method, which measures changes of radii between contour

points and the ROI center. This method is called the Ar method.

4.7.1 Errors Overview

Table 4.8 describes what the main errors are. It shows how these errors can be

estimated or accurately measured. Figure 4.9 shows the overview diagram of the

error analysis. The analysis methods of these errors are described in Sections 4.7.2,

4.7.3, 4.7.4, and 4.7.5. The results of error analysis are presented in Section 5.2.2.

Aside from these main errors in data acquisition, CT scan is relatively accurate.

Pixel size is given in CT header and is known, but this information was not available

because the original CT scans in DICOM were not provided. Instead, JPG images

77

Number
1

2

3

Method name
Image segmenta­
tion

Contour finding

Gaussian filtering

CT error calculable
Not measurable but can be estimated.
The expert's manual segmentation re­
sults are compared with 3 manual tests
using 1 minus similarity index (1 — 5
method), in Equation (4.29), resulting

l-1 segment •

Measurable using 1 — 5 on before and
after images, resulting EcontourFind.
Can be measured in two methods, 1 — 5
and Ar; the 1 — 5 method measure
the difference in the regions, resulting
Efuteringi, while the Ar method accu­
rately measures the radius changes of
contour points, resulting Efutering2.

Table 4.8: Summary of error categories and analysis methods

are given. Due to the digitizing process, the image data have integer pixel locations

(rounding generates certain error); the error is estimated to be less than 0.5 pixels.

CT images do not need to be registered, so there is no need to analyze registration

errors for CT.

4.7.2 Segmentation Error Analysis

The segmentation algorithm can be measured by similarity index, 5. It measures

how similar two regions, ROI\ and ROI2 are:

5 = 2 *
\ROhr\ROh\

ROh\ + \ROI2\
(4.28)

If ROI\ and ROI2 are identical, 5 is 1. The error then generated from the

algorithm is how much the two regions are dissimilar. The error Em on one image at

78

file:///ROhr/ROh/

Source
images

Filtering

Segmentation
results

{
Manual

segmentation
result 1

(, -s)

Esegment 1

Manual
segmentation

result 2

Manual
segmentation

result 3

(1-S]

Esegment 2 Esegment 3

z z i —
I Average I

Esegment EcontourFind Efiltering2

Figure 4.9: Error analysis overview diagram.

79

location z (z = z0 + mAz; index of m) is given by:

Em = l-Sm = l-2* — — — —- (4.29)

where Sm, ROIm^ and ROIm^ are the similarity index and two regions at the location

index of m respectively. The error averaged over all z locations is given by:

1 A f - l

E=M^Em- (4 - 3 0)

m=0

For CT images, segmentation results were done manually by the Research As­

sociate at the EAR-Lab [17]. These segmentations, completed by an expert, were

considered the gold standard for the purposes of this research. In order to have rough

estimates of segmentation errors using statistical methods, we decided to perform

manual segmentation using Amira on the CT complete dataset three times: twice by

the author of this thesis, and once by a third party tester. The segmentation error

is estimated by comparing those three sets of segmentation results to the results of

the expert, as shown in Figure 4.9. From these comparisons and using Equations

(4.29) and (4.30), three lists/arrays were obtained; Esegmentl, Esegment2 and Esegment3.

The error result data for both the incus and the malleus regions in CT images are

presented in Section 5.2.2.

4.7.3 Contour Finding Error Analysis

The success of the contour finding algorithm can be measured by comparing regions

obtained before and after this step. On one image at the location index of m, the

before region is the segmentation result, ROIm^egment, while the after region is the

80

contour finding result, ROIm,fiont(mrF%nd. The error EmtContourfmd is given by:

J-, 1 C 1 0 I-rtC-im,segment ' ' ^^^-m,contour Find] r, o-\\
J-''m, contour find — J- &m, contour find -L 1~QFTT i i_ I D O T f° V •/

\-Hj*~'-*-m,segment] ~T~ |xLL>J-rn,contour'Find]

The error averaged over all z locations is given by:

1 M - l

^contour find ~T~7 / J •E-'m,contour find' V - "^J
m=0

Error data for the incus and the malleus regions in CT images are in Section 5.2.2.

4.7.4 Filtering Error Analysis

Filtering error can be computed in two ways, resulting in Eftiteringi and Eftitermg2

respectively.

The first method is called 1 — 5 method, which stands for one minus similarity

index. It measures the filtering error, Ef%itermg\, by comparing the regions obtained

before and after this step. On one image at the location index of m, the before region

is the contour finding result, ROIm}ContOUrFind, while the after region is the filtering

result, ROImjtitermg- The error EmjMermgl is given by:

•p 1 C 1 0 | J i t> J-m,contour-Find ' ' tXKJ±m,filtering] i * r>o\
•t^m,filtering! — J- ^mjilteringl — J- ^ * JrTTy? I _i_ I HOT i" K^-^J

\-K-'^'-Lm,contourFind\ "r l-t^^J-m,filtering]

The error averaged over all z locations is given by:

1 M - l

-'-'filteringl = "TT / _, 1-Jm,filteringl- V^-'-'^j

m=0

The Ar method for obtaining Efatenng2 is computed differently. The radii, r, of

all contour points in all images are known before and after filtering. These contour

points are on M images, each of which has N of them. Each contour point has a r

81

value. Filtering has two steps, on slice and in the z direction, the results of which are

ri and r/f respectively. Therefore, the r of a contour point corresponds to an error on

slice {EfMermgs)-, an error in the z direction (EfMenngz), and one more overall error

(Efiitermg2)- They are given by three equations:

P _ \i'm,n i m,n\ , . „ r \
->->filtering S,m,n — \Q.OD)

\rf 1' 'm,n Tm,n\

'm,n

\r/f 1' "m,n T'm,n\

T'm,n

\rfl 1' "m,n Tm,n\

J-i I ' "771,71 ' '771,n | / . „ „ ^
£JfiltermgZ,m,n — ~ {4.60)

T'm,n

T? _ \r,,m,n — fm,n\ , . „_-.
1->filtering2,m,n ^ f t . o i j

where n = 0,1,2, • • • , N — 1, and m = 0,1, 2, • • • , M — 1, according to Section 4.6.3.

The structure of Eflitermg2tm,n and rm)Tl are 2D arrays, with M x N values, much the

same as there are M x N contour points. Each contour point corresponds to a rm<n

value, as well as a Eflitenng2,m,n value.

Efiitemng2 is the average of EfMermg2,m,n and is given by:

1 M - 1 J V - 1

Efiltermg2 = T 7 T 7 / _, / y Eflitering2,m,n (4 . 3 8)

771=0 77=0

Efilterings and EftiteringZ a r e averages computed using an equation of the same

form as Equation (4.38).

The sample error data for both the incus and the malleus regions in CT images

for both 1 — 5 and Ar methods are in Section 5.2.2.

Errors of contour finding and filtering can be measured separately, noted as

Ecantourfmd and -E'/i/ieriTigi • They also can be measured using one equation, between

ROIm,se9ment and ROImjzitermg- The error generated in these two steps, EmtContcmrfiltering,

on one image at the location index of m is given by:

82

file:///Q.OD

j - , 1 C 1 0 \-**'^'*m,segment ' ' HXJJ-m,filtering]
J-Jm, contourfiltering J- &m, contour filtering -*- ^ * TTTT^J [i I P/O T \

I-*£•(_>i-nx,segment] "r |-fLL/imjfiltering]

(4.39)

The error averaged over all z locations is given by:

l-J contour filtering •** / d -*-•'m, contourfiltering' \^.4:UJ

m=0

Such results are given in Section 5.2.2.

4.7.5 Error Combination

Each step in the algorithm results in a different error measurement. We use the term

"error" in this thesis to refer to lack of consistency. A key point is how the errors

are combined to obtain an overall error, Eapprox , that can be used as input to the

adaptive interpolation algorithm. In determining how to combine the several sources

of error, three methods were considered. Assuming that there are three error sources,

Ei, E2 and £3, the three methods considered are described here.

1. The absolute values of the individual errors can be added to form an overall

error [80].

EoveraU = \EX\ + \E2\ + \Ea\ (4 . 4 1)

2. It is unlikely that all errors are in the same direction, although it is possible.

The overall error of multiple errors is usually larger than any of the individual

error, and smaller than their sum. Therefore, a statistical treatment can give a

more conservative estimate [80] [10]:

83

E^erall = \jE\ + E\ + E\ (4.42)

3. If one error has a magnitude far larger than all other errors, it is considered

the dominant error. Then, Eweraii could be the maximum of all errors. The

dominant errors need to be found in the experiment and should be reduced as

much as possible [10].

Equation (4.42) was applied to the CT error analysis to obtain an overall er­

ror measure, Eoveraa, with the three error sources being EfiUeringi, Esegment and

J-1contour find •

Eoverall ~ \ E ment + Econtourfind + E-futerinql- (4 .43 J •'segment ' contour find ' filtering!

Errors analyzed for CT incus and malleus are summarized in Table 5.3. As dis­

cussed at the end of Section 5.2.2, the filtering error Efutermg2 is assigned to Eapprox

and passed to the adaptive interpolation algorithm. The error basis for the adaptive

interpolation algorithm has been defined as

^approx — 1-Jfiltering2- ^4.44J

4.8 Adaptive Interpolation Algorithm for CT Scans

This section presents experimental adaptive interpolation algorithms for CT scans.

An important question is which interpolation technique is most suitable for our appli­

cation, and how should it be applied to produce accurate results, while using a small

amount of data. We describe why monotonic piecewise cubics were chosen and how

they are applied.

84

4.8.1 Spline Interpolation Experiments

This section presents experiments on spline interpolation techniques that were per­

formed in order to choose a suitable interpolation method for our application. Our

original investigation considered linear splines, as well as natural and clamped cu­

bic splines. However we found that none of the above gave satisfactory results. We

found that monotonic piecewise cubic interpolation led to smooth and accurate re­

sults when applied to the test data. Our research thus focused on monotonic piecewise

cubic interpolation.

Linear interpolation involves the use of line segments between every two data

points. However, bone structures in our image data usually have smooth surfaces.

Thus, interpolation with polynomial of higher degree should be more suitable. Poly­

nomial and spline interpolation (introduced in Section 3.4) are two other options.

However, polynomial interpolation can have oscillatory behavior for large numbers of

data points. Cubic splines are piecewise cubic polynomials. Because cubic splines are

continuous and smooth, we felt they might be reasonable candidates and we therefore

conducted some experiments using them.

The CT image dataset had uniformly spaced data points, so we implemented spline

interpolation that assumes uniformly spaced data points. However, since histological

sections have non-uniformly spaced data images, the algorithm needs a more general

form can handle non-uniformly spaced points.

In the implementation of cubic spline interpolation, a number of code resources

were found. A C + + implementation, by Moreau [51], was ported to our C # program.

Moreau's code was based on Fortran 77 source from Tuan Dang Trong's Numath

Library and Forsythe's book [19].

Both natural cubic splines and clamped cubic splines were tested. A natural cubic

spline has a starting and ending slope set to be 0, while the clamped cubic spline sets

85

the starting and ending slopes. In the experiment, natural cubic splines resulted in

good approximations in most data intervals, but did not work well in certain other

intervals. Clamped cubic splines generated a better fitting function, especially at the

beginning and the end of the interval, where the slopes are controlled, but oscillations

still existed in the small intervals where there were rapid changes in the data.

A summary of our results on cubic splines will be presented in Section 5.2.3. We

drew the conclusion that cubic splines are not suitable for our research. A better

and more suitable approach, monotonic piecewise cubic interpolation, was then con­

sidered. Monotonic piecewise cubics are very similar to cubic splines, but on each

interval the cubic is either monotonically increasing or decreasing between each pair

of data points.

According to the theory in Section 3.4.4, monotonic piecewise cubic interpolation

can produce smooth and visually pleasing interpolants. Figure 5.28 gives an example

where cubic splines and monotonic piecewise cubics were compared using actual CT

sample data (refer to Section 5.2.3). It shows that the monotonic piecewise cubic deals

better with the intervals in which there is a significant change in the data values. In

our experiments, we observed that cubic splines work well where the data change

slowly, but worse than monotonic piecewise cubics when the data changes abruptly.

4.8.2 Monotonic Piecewise Cubic Implementation

The theory behind monotonic piecewise cubics is described in Section 3.4.4. Its imple­

mentation is available in a software package, Piecewise Cubic Hermite Interpolation

Package (PCHIP), designed by Fritsch and Carlson [23]. A routine, PCHEZ, gener­

ates a smooth piecewise cubic interpolant that is visually pleasing. Another routine,

PCHEV, evaluates the interpolant and its derivative.

Unlike cubic splines for which there are a large number of available implemen-

86

tations, it was difficult to find suitable implementation of the monotonic piecewise

cubic. PCHIP is available in Matlab and in Fortran in Kahamer's book [38], both of

which are difficult to port to C # . Some other C++, python and Fortran programs

were analyzed as listed in Table D.l in Appendix D. In the end, a C + + version in an

open source program, called Hugin (hugin.sourceforge.net), was ported successfully

into our "Reconstruction" program in Windows/C# .NET (refer to Table 4.2). Hugin

is a panorama photo stitcher, a popular and large software application.

The C + + PCHIP source was compiled to be dynamic-link libraries (DLL), which

are shared libraries of functions in executable files, using Visual Studio .NET so

that the routines can be called in C # . Unit tests for the program verified that the

program was correctly implemented, and that the interpolation results were accurate.

An actual dataset sample (CT images, incus, No. 36 to No. 66) was tested and results

are presented in Appendix D. Both Figure D.l and Table D.2 show that interpolated

values of Matlab and PCHIP DLLs in the C # "Reconstruction" program match well.

4.8.3 The Adaptive Interpolation Algorithm Description

Section 3.4.5 introduced the adaptive algorithm interpolation, why it is needed, a brief

description of the algorithm steps, and Equation (3.34). In this section,we describe

how the theory and equations in Section 3.4.5 are applied and implemented. The

adaptive interpolation algorithm is implemented in C # .

Input: filtered contour point list and Eapprox (results of Sections 4.6 and 4.7.

Output: Interpolants, interpolated images (entire set) and data for analysis

Goal: Implement an adaptive interpolation algorithm based on monotonic piece-

wise cubics. Perform a smooth interpolation using monotonic piecewise cubics, apply

optimization to use a small number of data points to obtain good approximations,

and generate intermediate images for the 3D reconstruction of a virtual model.

87

http://hugin.sourceforge.net

The structure of contour points was introduced in Figure 4.2. Figures 4.3 and

4.4 illustrate on-slice and z-direction contour points. The adaptive interpolation

algorithm is applied on contour points in the z direction.

Each of the contour points is represented by an (x, y) pair. These N contour

points share the same ROI center (xc, yc), and z value. The angle 9 and radius r from

each contour point to the center can be computed:

r = ^{x - xcf + {y- ycy (4.45)

9 = arccos (x ~ Xc j (4.46)

Then, each contour point has attributes, x,y,z,9,r, and is associated with the ROI

center (xc,yc).

The approximate data error, Eapprox (calculated in Equation (4.44)), is represented

by a similar structure except that each entry is an error value associated with the

contour point. In each angle from the ROI center, Eapprox is an array with filtering

error values in the z direction, perpendicular to the image plane. Figure 5.18 shows

an example; the Eapprox values are larger in some places, but smaller in other places.

The interpolation function of monotonic piecewise cubics is applied along the z

direction, as in Figure 4.10. For a certain 9 angle, there are M corresponding contour

points, one from each image ROI. The r values of these points are used to build

an interpolant. Then, new r values are generated from the resulting interpolant at

desired z values for a given angle 9. With 8, z and r defined, the other two attributes

of the contour point, x and y, can be calculated:

x = xc + r cos(8) (4.47)

y = yc + rsin(fl) (4.48)

88

rvalues at a certain
angle, from three
sample images,

(Z direction)

an interpolant built
using rvalues for a

fixed angle

another
interpolant for a
different fixed

angle

Figure 4.10: The structure of all contour points and interpolants.

One interpolant is required for each of the N angles. The interpolation method

traverses all 9 values, so that the corresponding contour points with the same 9 are

interpolated in the z direction.

Each interpolation function uses some fraction of the available M contour points in

the z direction. The approximate data error, Eapprox, is used to guide the interpolation

error. It is better if the error array of Eapprox for each angle can be applied locally

so that the adaptive interpolation algorithm allows smaller errors in places where

the data error is smaller, and allows larger errors for places with larger data error.

Therefore, the array Eapprox for each angle was averaged in each interval, instead of

being averaged globally.

Two terms used for the adaptive algorithm are:

1. Knot: a contour point that is provided to the interpolation algorithm.

2. Interval: the region between two adjacent knots.

89

For each 6, the adaptive algorithm performs the following steps (based on Section

3.4.5). X\ is a variable, but is set to 16 for this explanation.

1. Build a piecewise monotonic Interpolantl starting with coarse data, where i

represents the interpolant level and starts at i = 1. Every Xith (e.g., X\ = 16)

data point is used.

2. Build another piecewise monotonic Interpolantl+\ with twice as many as data

points of the previous interpolant (or every 8th point), Interpolantl.

3. Compare Interpolantl and Interpolantl+\ on each interval of Interpolanti+x.

In each interval, we would like to have the maximum of the interpolation errors

be no larger than some fraction, ft, of the average of the corresponding Eapprox

values. The comparison that is performed on each interval is given by:

T l -I

Tk-i (\Interpolantl+i{z) — Interpolantt(z)\\ ft ^-^

^ ^ \Interpolant%(z)\) ~ ? W ^ Ea^°^z)

(4.49)

where i represents the interpolant level, t is the index of the contour point in the

current interval, k is the interval index, T& is the number of contour points in the

current interval. The value of Interpolantt(z) is the radius (r) at a particular

9 and z. The z value can be expressed as

z = zkfl +1, (4.50)

where Zk,o is the z value at the beginning of the kth interval. The interpolants

can be compared in all z locations within the interval.

4. For the first two interpolants constructed by this algorithm, the data points used

to build Interpolantl and Interpolanti+i are saved within a dictionary/mapping

structure. The dictionary stores the z value at the beginning of each interval

90

under the index of the interval. The result of the above comparison is an array

of boolean variables (one entry per subinterval) indicating whether Equation

(4.49) is true or false. When we move to the next interpolation level, i is

increased by 1, and the process repeats.

5. The next step is to search the above boolean array for any intervals for which

Equation (4.49) was false. We then subdivide each such interval using an in­

termediate data point (at the interval center). This gives us a new list of data

points upon which to build Interpolanti+1 (i = 2 at the interpolant level 3).

The new list includes all the data points used to build Interpolanti as well as

all the new intermediate data points introduced in this step. We then compare

Interpolanti and Interpolanti+\ using Equation (4.49).

6. In the experiments, the coefficient j3 is set to 0.5 in Equation (4.49). The goal

is to let the adaptive interpolation algorithm stop when the interpolation errors

are no larger than half of the approximate data error, Eapprox. Such results will

be presented in Section 5.2.3.

7. A suitable Xi value needs to be defined. If X\ is power of 2, it is convenient

to subdivide in the middle of each interval. In our test data of CT incus and

malleus, the total image numbers are 189 and 224 respectively. Therefore, for

the CT data, the minimum of the X1 value is 4, while its maximum is 128.

If Xi is 4, the algorithm has only 3 levels to adapt. X\ = 128 provides three

points in the first level for both the incus and the malleus regions of CT images.

Therefore, possible X\ values, 8, 16, 32, 64, or 128, were tested.

8. The above process was iterated until Equation (4.49) is true for all intervals,

or until all the contour points are included in a given interval. The latter case

represents a failure in that the adaptive interpolation algorithm was not able

91

to obtain an interpolant for which the estimated interpolation error is less than

the Eapprox values associated with the interval.

9. The algorithm is repeated for each of the N angles, which is illustrated in

Figure 4.10. iV interpolants are computed. They can be evaluated at a number

of locations. Then, the new list of contour points with a structure described in

Figure 4.2 is saved as XML files.

As the algorithm goes to the next level, as more points are used for one piece,

the error for neighboring intervals needs to be rechecked. Changing the data on one

piece/interval could cause small changes on neighboring intervals.

Although two interpolants are both monotonic in an interval, their slopes may

be different, and thus their interpolated values may change differently. The interval

maximum does not always occur at the end point, so all points in the interval are

checked to find the maximum.

4.8.4 Interpolation Analysis Method

One approach to analyzing the interpolation results is using the 1 — 5 method, based

on a similarity index. This method was used in the error analysis in Sections 4.7.4,

4.7.2 and 4.7.3.

The 1 — 5 method is used to compare the interpolation results with the filtering

results. Two filtering errors, Efzitenngi and Eflitering2, were computed in Section 4.7.4,

using the 1 — 5 method and Ar method respectively. Efutermg2 was set as Eapprox

which is used as the tolerance for the adaptive interpolation algorithm, as in Equation

(4.49). The interpolation error measured by the 1 — 5 method should be relatively

low; the ratio of the interpolation error to Ef%iteringi should be close to (3.

All contour points resulting from the adaptive interpolation algorithm can be saved

as ROI images, ROIm^nterpoiate (at index of m), using the region filling algorithm in

92

Section 4.9.1. These images are compared with the filtering result, ROImjtitering,

produced in Section 4.7.4. The overall interpolation error, Emtmterpoiate, is given by:

j-i -. Q 1 0 |-KU1m^filtering ' ' ^^'•'•m,interpolate\ / . (--•-,
{-"m,interpolate -*- 'Jm,mterpolate J- ^ * F D T T T i i l r>/0 T T \^"""U

\^^'J-m,filtering\ ~T |JXC_>J-m,mterpolate\

The error averaged over all z locations is given by:

1 M - l

7\/f / J Tt^interpolate- V^-^^l i n t e r p o l a t e

m=0

We examined the interpolating error for the incus and the malleus regions in CT

images and they are given in Table 5.13 in Section 5.2.3.

Another method to evaluate the success of the interpolation method is to mea­

sure the difference (in percentage) between the last interpolant and the filtered data,

rfiitered(z)- At a location z, this difference EmteTVOiant{z) is given by

w / x _ \Interpolantiast(z) - r flltered(z)\
£>interpolant\Z) — 7~\ • (4 . DO J

ffilteredyZ)

To measure the averaged error between interpolation results and filtered data, the

average of Emterpoiant{z), noted as Einterpoiant,avg, is given by

M - l

Emterpolant,avg = (/_^ ^interpolant{Zo + m/\z))/M. (4 . 5 4)

m=0

4.9 3D Reconstruction for CT Scans

As reviewed in Section 3.5, 3D reconstruction is a necessary step to present the

interpolation result. The Amira software is applied in the 3D reconstruction step. It

loads interpolation result images, does surface generation and displays the 3D model,

which can be manipulated in 3D, e.g., dragging, panning, and zooming.

93

There are several steps in 3D reconstruction:

1. Apply a region filling algorithm and generate solid ROI images using interpo­

lation results.

2. Load images into Amira.

3. Generate a 3D model using the SurfaceGen module.

4. View the 3D model result using the SurfaceView module.

5. Perform volume calculation and comparison of different 3D models.

The final 3D models can be measured by visual comparison and volume calculation

as a quantitative analysis method.

4.9.1 Region Filling

The region filling algorithm is a preliminary step in 3D reconstruction. It is to fill

inside a closed edge contour with a pixel value, so that the region becomes solid and

stands out from the background. On a source image, the edge contour is white, while

the rest is black. Region filling starts from one seed inside the ROI defined by the edge

contour and grows and fills the ROI with the pixel value of 255, which is white. It

is a similar but simplified version of region growing algorithms introduced in Section

4.3.2.

Region filling needs to be applied to the 3D contour points obtained from the

adaptive interpolation step, to generate a sequence of black and white images with a

solid region on each of them. Then, these images can be loaded into Amira for 3D

reconstruction, since Amira only takes an image set as input.

Region filling in most image manipulation programs is an interactive process,

which takes mouse clicking events from a user to know where to fill. We need an

94

automatic method to avoid mouse clicking on multiple images. The hypothesis is

that automatically filling in a set of edge contour images can be done. However, in

the experiment, there are issues and challenges in this step.

The ROI center was considered as the seed location inside the ROI. However, the

ROI center is a valid seed for most cases, but not all. The ROI center can land inside

the region, outside the region, on the edge contour, or on an artifact. In the last

three conditions, the region filling algorithm would fail on filling the target ROI. For

a small percentage of images, it is difficult to correctly find the valid seed inside the

ROI and fill automatically.

Region filling involves neighbor checking recursively. It is straightforward in C

programming. However, in C # .NET, we found that our recursive code was too

slow to be effective. As a result, we replaced our approach that used a seed with a

faster and more accurate region filling method from the .NET C # library. In the

Drawing2D library, GraphicsPath class can have edge lines defined to form a path.

Using the path, a Region instance can be created. Then, a method, FillRegion in

the Graphics class can fill the region object with a defined color. This approach

automatically fills in a closed edge contour efficiently. For example, when applied to

our application, 200 region images were filled and saved in 2 seconds.

4.9.2 Model Generation and Volume Calculation

Model generation is provided by the SurfaceGen module in Amira. This module

generates a 3D model using an image set with ROIs. The produced surface is a

triangular approximation of the all the interfaces of the image stack. The number of

triangles depends on the resolution of the input slices.

There is a Volume Measurement function in Amira, by which the volume of the

3D model can be measured. The units in the volume column can be specified by the

95

user. For our test cases of inner ear bones, the volume can have mm3 as the unit.

The module TissueStatistics can compute the volume for multiple target regions.

It produces a list of statistical quantities, such as the number of regions or materials

and their names, the volumes of each region and the number of triangles used to

represent the 3D model.

The measurement of the volume and surface area provides useful quantitative data

for analysis of 3D reconstruction. This data can be used to compare the 3D models

built using different datasets, e.g. segmented, filtered and interpolated.

96

Chapter 5

Experimental Results

As outlined in Section 4.1, two types of experimental data sets were provided by the

EAR-Lab [17]: six sets of histological section images and a set of CT images. The

methods and algorithms were designed with both data sets in mind. This chapter

presents the results and discussions when the developed algorithms were applied and

tested on the appropriate dataset. Early stage experiments were done on histologi­

cal sections. Sample results of histological sections after registration, segmentation

and contour finding are presented. The second stage of our research focused on the

CT image data provided. The results of Gaussian filtering, error analysis, adaptive

interpolation and 3D reconstruction are presented.

5.1 Results for Histological Sections

Sample results of image registration on histological sections are given below with

a demonstration of transformations. The segmentation algorithms were tested on

histological sections, and sample results are shown.

97

Figure 5.1: Colored regions in two neighboring histological sections. From left to
right (a-b): a. Colored image data No. 51; b. Colored image data No. 56 (Temporal
Bone Foundation, Boston, USA.)

5.1.1 Results of Registration

Both rigid and non-rigid registration techniques were investigated for use on histologi­

cal slices. Affine transformations including rotation, translation, scaling and shearing

were implemented in C# . A program entitled Transforml implemented rigid trans­

formations and one entitled Transform2 implemented affine transformations.

Figure 5.1 shows two sample neighboring histological sections in the dataset (Case

8486i, slice No. 51 and No. 56). In these two images the goal is to align the three

regions indicated by yellow, blue and green. Screen shots of sample results are shown

in Figure 5.2. Figure 5.2.a shows overlaying two images before transformation, with

the top one semi-transparent. In Figure 5.2.b, the three regions align after the rigid

transformation including rotation and translation. This is done using the Transforml

program. As non-rigid transformations were not investigated further, a sample result

from Transform2 is in Appendix C.l).

As there was no gold standard for success using non-rigid registration, we used

rigid registration to prepare the histological sections for further processing. Least

squares based rigid registration in Amira (as outline in Section 3.1.1) was used for

this step. A sample result is shown in Figure 5.3. The results show that images are

98

^^d^zm ^|^^KIiL\^^

__

1 8<B§i!BS

1 ""ti

W «

•̂"-̂

^ S j

5e

1

,

9*3

Figure 5.2: Screen shot of before and after transformation of two colored histological
sections. From left to right (a-b): a. Before transformation; b. Aligned images after
transformation. (Case 8486i, slice No. 51 and No. 56)

Figure 5.3: A sample registration result - (1). From left to right (a-b): a. Before
registration; b. After registration. (Case 84861, slice No. 11)

geometrically transformed so that the image set is aligned.

5.1.2 Results of Segmentation

This section presents preliminary results of algorithms of two-threshold region grow­

ing and "traditional" region growing. The two-threshold region growing algorithm

provides better global segmentation. This section also shows sample results of the

customized local segmentation algorithm, patch growing, as well as Canny edge detec­

tion. The overall sample results of our segmentation and contour finding algorithms

99

Figure 5.4: Original image for region growing with an arrow pointing to ROI. (Case
8486i, slice No. 41)

are presented.

Resul ts of Two-threshold Region Growing

Preliminary results show that the two-threshold region growing algorithm works bet­

ter than the "traditional" region growing algorithm in segmenting the test data glob­

ally.

Figure 5.4 is the original image, with an arrow pointing to the ROI. This particular

image is used to demonstrate challenges in segmentation. This ROI is relatively large

for clear viewing. Figure 5.5.a is the gray scale image converted from the original

color image, as the source image for the program. A rectangular patch of the ROI

completely inside the bright region is selected.

Figure 5.5.b shows the result image of region growing using the patch selected in

Figure 5.5.a. The seed is the mean value of the patch selected in Figure 5.5.a. The

100

Figure 5.5: Selecting ROI and region growing. From left to right (a-b): a. Selecting
ROI in the original image; b. Result image from the region growing method. (Case
84861, slice No. 41)

Figure 5.6: Applying two-threshold region growing. From left to right (a-b): a.
Thresholding result as the first step; b. Result image after applying the two-threshold
region growing method. (Case 8486i, slice No. 41)

problems with this method are (i) grouping stops without including the entire region,

and (ii) failing to group all pixels in the selection.

To better deal with these problems, we designed a modified method, two-threshold

region growing. The following images demonstrate the results. Figure 5.6.a is the

thresholding result using a gray value of 240 (in range of [0, 255]). Figure 5.6.b shows

the result image. It shows better segmentation results for the ROI than Figure 5.5.b.

101

Figure 5.7: Original image for Canny edge detection. (Case 8486i, slice No. 241)

Results of Canny Edge Detection

Figure 5.8 shows a result of applying the Canny edge detection algorithm directly on a

sample histological section (as in Figure 5.7). It shows that the Canny edge detection

algorithm has good detection, good localization, and low spurious response. However,

the result also indicates that applying only Canny edge detection is not satisfactory to

our purposes. There are a large number of artifacts in the original images. Therefore,

a portion of detected edges show the contour of artifacts, which could be rather

misleading in image analysis.

The Canny edge detection method is well suited if being combined with another

method, patch growing. Clear edge results are obtained, when the Canny edge de­

tection is applied to the result images from patch growing and median filtering.

Final Results of the Segmentation Framework

The final segmentation algorithm included patch growing, median filtering and Canny

edge detection as outlined in Section 4.3. This algorithm was tested on three supplied

datasets of histological sections, e.g., Case 8486i, 8486d and 8655d.

Sample results are shown in Figure 5.9, 5.10 and 5.11.

102

\~lBM..12M<a1m,,l,

Figure 5.8: Screen shot of the Canny edge detection program. From top left to bottom
right (a, b, c, d): a. The phase image; b. The magnitude image; c. The command
field; d The result image (Case 8486i, slice No. 241)

103

Figure 5.9: Original image showing target region. (Case 8486i, slice No. 11)

The ROI tested is the semicircular canal region which is part of the vestibular

organ, shown in Figure 5.9. Test and result images are cropped in Figures 5.10 and

5.11. It is shown that the algorithms of patch growing, median filtering, and Canny

edge detection produce clear region and edge image results.

The patch growing algorithm can segment one target region at a time. The region

can be extracted from all other regions and noise nearby or with similar intensities.

Canny edge detection can find clear edges from the patch growing results.

These segmentation methods are applied automatically on an image set, resulting

in satisfactory region and edge images.

Preliminary Results of Contour Finding and Interpolation

Figure 5.12 shows a sample result of the contour finding and preliminary interpolation

algorithms for two histological sections, No. 36 and No. 146. In Figure 5.12, starting

from the left, the cropped original images show incus as the ROI for segmentation.

104

Figure 5.10: Applying patch growing, median filtering and Canny edge detection on
a ROI. From left to right (a-c-b): a. Original image; b. Patch growing performed; c.
Median filtering and Canny edge detection performed. (Case 8486i, slice No. 11)

Figure 5.11: Applying above methods in a second image. From left to right (a-c-b):
a. Original image: b. Patch growing performed; c. Median filtering and Canny edge
detection performed. (Case 8486i, slice No. 15)

After applying the segmentation algorithm, which includes patch growing, median

filtering, and Canny edge detection, the region and edge lesults arc obtained. Despite

visible noise and artifacts in the original images, the segmented results showed clear

and satisfactory region and edge images. Then, the contour finding algorithm further

eliminated a small circle artifact in the No. 36 image, to get the result of contour

points. The list of contour points were then sent to the preliminary interpolation

algorithm. Six generated neighboring images for No. 36 are shown in the upper right

corner, and six images for No. 146 are in the bottom right corner.

In summary, the segmentation framework developed for histological sections is

highly automatic and efficient. It allows semi-automatic selection of ROIs and applies

median filtering, patch growing, and Canny edge detection automatically. Although

segmenting histological sections is a challenging task (refer to Section 2.1.3), the

results are satisfactory and have good quality. For a dataset with 69 histological

105

Figure 5.12: Sample results of segmentation, contour finding, and preliminary inter­
polation algorithms (histological sections, Case 8486i, slice No. 36 and No. 146).

sections, the processing time is less than five minutes on our lab computer (Duo CPU

3.16 GHz, 1.93 GB of RAM), plus one minute of manual interaction. The manual

interaction only needs approximately 10 times of mouse clicking to check through 69

histological sections and select all incus or malleus regions. As an exploration into the

segmentation techniques useful for histological sections, our segmentation algorithms

have shown a large number of histological sections may be segmented rapidly and

semi-automatically with a small amount of user interaction.

The contour finding algorithm uses the segmentation results to prepare the his­

tological sections for the interpolation algorithms. Very preliminary work was com­

pleted on interpolation algorithms at this point. CT images were received and further

investigations continued with the CT dataset (refer to Section 4.1.2).

106

5.2 Results for CT Images

The CT images were delivered to us in JPG format. Original images as well as

images already manually segmented by an expert were received (as introduced in

Section 4.1.2). The initial steps in our experiments involved applying the contour

finding algorithm, followed by Gaussian filtering.

This section presents the CT test results obtained for Gaussian filtering, error

analysis, interpolation and 3D reconstruction. For Gaussian filtering, it shows sample

results for the incus in both on-slicc and z direction. It also lists quantitative result

data for both the incus and the malleus from the filtering performance evaluation and

error analysis. This is followed by a section on error analysis results for segmentation,

contour finding, and filtering. Interpolation results are presented as the emphasis of

this chapter. The 3D reconstruction results are shown last.

5.2.1 Results of Gaussian Filtering

This section presents sample filtering results for the incus. In the Gaussian filtering

experiment, 95% and 98% of the power spectrum were used to determine the filter

parameters. After contour finding, there are 548 contour points in the on-slice direc­

tion at different angles from the ROI center in each image ROI. In total there are 189

images, and therefore 189 contour points in the z direction for each of 548 angles .

Two Gaussian low-pass filters (GLPF) were developed for the incus, one for

smoothing contour points on the slice plane, and the other for the z direction. Figures

5.13 and 5.14 show important results before the filters are built. In the on-slice di­

rection, each slice has a power spectrum computed using Equation (4.16). Then, 189

power spectrum functions arc averaged using Equation (4.17) to obtain the averaged

power spectrum in Figure 5.13. Similarly, 548 z-direction power spectrum functions

are averaged to form the power spectrum in Figure 5.14.

107

1 2

o 3

0 2

1

}

11
27 53 79 ID

I
:?

t
H

131 15T 183 209 235 261 237 313 339 355 391 417 443 469 495 521 54

I"!™,™"™.,

On slice Index of 0 (a)

i
1
1

• •

i

1
f

f
' J

i
1
1
J
1

n :i . . . , • • ! , . J I K , a ; . » J...J • . < - M . . I - i y « .

On-slice Index of 0 (n)

\~'<y " it'!

Figure 5.13: Averaged Power Spectrum and GLPFs (on-slice Direction). From left
to right (a-b): a. Using 95% of Power Spectrum; b. Using 98% of Power Spectrum

>»

fc.

e

0 8

0 6

0 2

i

f

1
I

Jj

,
1
t

!

u
— Fre*«tncy',Eilt™

/
\

/
/ 1

«Z J

\
\
\

1 \
Z Direction Index (m) Z Direction Index (m)

Figure 5.14: Averaged Power Spectrum and GLPFs (z direction). From left to right
(a-b): a. Using 95% of Power Spectrum; b. Using 98% of Power Spectrum

Using 95% and 98% of the above power spectrum, Figure 5.15 shows the spatial

GLPF developed for the on-slice direction, and Figure 5.16 presents the one in the z

direction.

Figure 5.17 is an on-slice sample result from the 95th slice in the dataset. Figure

5.18 is a z-direction sample result from smoothing the list of contour points at 180

degrees. On the left of these two figures, 95% of power spectrum was applied and

0 035

0 025

0 02

Sp.tial filler

/ \
/ \

/ \
/ \

/ \
4 7 10 13 16 19 22 25 28 3 1 3 4 37 40 43 48 49 52 55 58 61 54 &T 70 73 76 T9 32 8 .

I S p . t . s l f l t e r l

]
/- \

/ \
/ \

/ \ '
y_ \

—-"̂ ^

Figure 5.15: Spatial GLPF Developed and Applied (on-slice Direction). From left to
right (a-b): a. Using 95% of Power Spectrum; b. Using 98% of Power Spectrum

108

: 3 5 T 9 11 13 15 IT 19 21 23 25 2T 29 31 33 35 37 39 41

Filter Index Filter Index

Figure 5.16: Spatial GLPF Developed and Applied (z direction). From left to right
(a-b): a. Using 95% of Power Spectrum; b. Using 98% of Power Spectrum

98% was applied on the right for comparison.

Using 95% of power spectrum results in more smoothing than using 98%, but

does not preserve the signal outline well. Applying 98% of power spectrum tends to

preserve the signal outline better. All of these results show that the automatically

developed GLPFs using our algorithms smooths the signal well. Particularly in the

z direction, rapid changes near the middle of the curve are removed and the filtered

data are very smooth while the overall shape of the curve is preserved. One important

fact is that the filtering change is smaller in some places and larger in others.

There are 189 lists of on-slice filtering results in total. Figure 5.17 is one example.

Similarly, there are 548 ^-direction result lists of which Figure 5.18 is an example.

These are 2D filtering results that contribute to smoothing the 3D structure. 3D

models built with and without filtering on-slice and in the z direction are shown

in Figures 5.39. A visual comparison shows the model on the right appears much

smoother than the left model.

We used 98% of the power spectrum as input and applied filtering to the contour

points. The error analysis of filtering using GLPFs is given in the following, Section

5.2.2.

Tables 5.1 and 5.2 list important parameters that were computed using 95% and

98% of the power spectrum. They are used to build GLPFs in on-slice and z di­

rections respectively. Our method relates the percentage of power spectrum to the

109

i

P,
,S

•%

80

70

50

50

40

30

20

10

A.

n / i
1 i
; I

! 1

/ x / \ / ^ 1

/ Y / V!
V . « i « * v

26 51 76 1

^-^

! 126 151 176 201226 251216 31

^

T^TZ's

,
1

76 4QM26 4SM76 5C1526

Ridiui b.for*
— Radius stUr

dlff

Ou-slice Index of 0 (n) On slice Index of 0 (it)

Figure 5.17: Gaussian Filtering Example Results (on-slicc Direction - 95th Slice), CT
incus data. From left to right (a-b): a. Using 95% of Power Spectrum; b. Using 98%
of Power Spectrum

35

30

25

20

15

10

5

/ ^
y \

/ V
f^ X ,

i YJ*7fs*v
,\
W

• * • - ^ .

1
12 23 34 45 56 67 78 89 100 111122 133 1+4 155166 177 18

— R adius-be fore

— Radius after

f?

S

r
1

35

30

25

20

15

10

5

A^ 1
X A i

r / \

fv \ . \ / Vi&f^W '

/ '*f V \f \

12 23 34 45 56 67 78 89 100 111 122 133 144 155 1B6 177 188

— Radius-before

—Radius-af ter

diff

Z Direction Index (m) Z Direction Index (m)

Figure 5.18: Gaussian Filtering Example Results (z direction - 180 degrees), CT incus
data. From left to right (a-b): a. Using 95% of Power Spectrum; b. Using 98% of
Power Spectrum

110

Power Spectrum (a)
95%
98%

aS
7
10

crs

0.0128
0.018

Wa

85
59

Table 5.1: On Slice Filter Parameters.

Power Spectrum (a)
95%
98%

af
5
11

os
0.026
0.058

wz
41
19

Table 5.2: z direction Filter Parameters.

computation of Of and as in a creative design. The parameter, the filter width of the

spatial GLPF, Ws, is automatically computed (the method is introduced in Section

4.6.3). The spatial filter is fully denned with values of as and Ws.

To summarize, our Gaussian filtering algorithm is an automatic and effective pro­

cess. The algorithm achieves the goal of smoothing the contour points that represent

a 3D model structure. As a contribution of this thesis, it fully defines the GLPF using

a suitable value of a (the percentage of the power spectrum). Several aspects of the

test results are presented. Sample results of on slice and z-direction filtering using

developed GLPFs show that small fluctuations in the signal are successfully removed,

while the outline of the signal is preserved. Quantitative filtering error analysis indi­

cates how the data points are changed. 3D models built from filtering results display

a smoother surface.

5.2.2 Results of Error Analysis

The CT dataset was tested, and the errors were computed using the methods in

Section 4.7. The error analysis results for CT dataset are listed in the following

sections: 1) segmentation error; 2) contour finding error; and 3) filtering error. A

summary of error analysis results are presented at the end. It shows how different

errors are combined to be an overall error, and how we chose the error to be applied

111

OS

* -»
oc
o
1 -
UJ

Segmentation Comparison 1

^4W^J\AJ^\ Jt fcyfct
* -

.egfertsirsr
CciTp5rtjOn 1

a H D r. r

Slice Index

Figure 5.19: Segmentation comparison on sample CT data (1), measuring difference
between results of Zhenfeng's first test and Research Associate at the EAR-Lab [17].
(A plot of Esegmentl array)

in the next step, interpolation.

Results of Segmentation Error

Using the methods in Section 4.7, three arrays of error data, Esegmenti, Esegment2, and

Esegment3 were calculated and the results are presented in Figures 5.19, 5.20 and 5.21.

Their mean and standard deviation values are presented in the Table 5.3. These

three lists of results are averaged to be one list, Esegment, to be applied as the overall

segmentation errors.

The segmented images were provided to us by the EAR-Lab [17], and used as

reference images. Each of the three new manual segmentations was compared to that

of the expert. Variability in the segmentation results was large with the averaged

segmentation error ranging from 7.3% to 7.6%. The largest errors occurred in the

first and last images in the set and ranged from 15% to 35%. This is because the ROI

in these images are very small so that the absolute error is very large relative to the

size of the region.

112

8.
o
W

Segmentation Comparison 2

^Li^^^^^^^

-Seisren:ation
Comparison 2

!-. -v. CG IJO
Ifl H i) i - J3 r-f U •

Slice Index

Figure 5.20: Segmentation comparison on sample CT data (2), measuring difference
between results of Zhenfeng's second test and Research Associate at the EAR-Lab
[17]. (A plot of Esegment2 array)

(0

o
L.
Ul

Segmentation Comparison 3

'"^Wv.

•Seot-rertfaiicri
Corrparison 3

r s m m ' ^ ' T t n i / s ' j : ! M to n ffi c a H c r t u «

Slice Index

Figure 5.21: Segmentation comparison on sample CT data (3), measuring difference
between results of third party tester and Research Associate at the EAR-Lab [17].
(A plot of Esegment3 array)

113

0)
+-"
10
0£
o
1B,

Ui

E_cent our find

v^f \>vV^\

-E contourfmd

1 9 17 25 33 41 49 ST 65 T3 31 89 97 105 113 121 129 137 145 153 161 189 177 185

Slice Index

Figure 5.22: Contour finding algorithm errors on sample CT data, x-axis: 189 images;
y-axis: error rate, between 0 and 1.

Results of Contour Finding Error

Applying the method in Section 4.7, contour finding errors were calculated for both

the incus and the malleus. The errors are summarized in Table 5.3. Figure 5.22 shows

a graph of the error for the incus region.

Results of Filtering Error

Figures 5.23, 5.24. and 5.25 are plots of the three types of filtering errors on each

slice combined to be one curve for 189 images in the CT incus test, according to the

method in Section 4.7.4. The average for each of these error values is summarized in

Table 5.3.

Summary of Error Analysis Results

Error analysis results for CT incus and malleus are summarized in Table 5.3. It

presents the average and standard deviation of errors in segmentation, contour finding,

and filtering methods. It provides information on the magnitudes of various errors.

They were calculated as discussed in Section 4.7 and used to obtain Eapprox which is

114

* - <
(3

1_

o
111

F i l t e r i n g On-slice

0 OS

0 05

0 04

0 03

0 02

0 01

,1 ,ll| 1 1 | |

1 I , *•

\ i hAK (i

'I , I . « M / V lw i ft A/^v/w Y f
1 , II 1

I
i

y
/ " S W U ^

,
1 9 17 25 33 41 49 57 65 73 81 69 97 105 113 121129 137 145 153 161169 177 135

| F i l t e r i n g On-slice|

Slice Index

Figure 5.23: Filtering algorithm errors on sample CT data (on slice), x-axis:
images; y-axis: averaged error rate on 548 contour points in each image.

• J
IB

tit
o

F i l t e r i n g Z_direct ion

0 35 -

0 3 i

0 25 -

0 2 -

0 15 -

0 1 -

0 05 -

1

1
1

'

1 •
\ - • Ji m
^f^^^ y^±!^L...

10 19 28 37 46 55 84 73 82 91 100 109 118 127 136 14S 154 163 172 181

,

90

Slice Index

Figure 5.24: Filtering algorithm errors on sample CT data (z direction), x-axis:
images; y-axis: averaged error rate on 548 contour points in each image.

115

ID
« • •
RJ a:
i—
o

F i l t e r i n g

- F i l t e r i n g !

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 165

Slice Index

Figure 5.25: Filtering algorithm errors on sample CT data (overall), x-axis: 189
images; y-axis: averaged error rate on 548 contour points in each image.

the input of the adaptive interpolation algorithm.

The contour finding algorithm is a very complex algorithm that obtains all contour

points from segmentation results, with a creative design. It provides connectivity

between segmentation results and Gaussian filtering and interpolation methods.

Taking the incus as an example, Table 5.3 shows that the largest error is the

segmentation error of 7.46% (0.0746). The next is the filtering error of 5.30% (0.0530),

and the smallest error is the contour finding error of 2.38% (0.0238). These give a

combined error, Eoverau, of 9.23% (0.0923). The errors of the malleus are similar in

magnitude to the incus with segmentation, filtering, contour finding and combined

errors being 7.69%, 4.28%, 2.32% and 8.8% respectively.

The segmentation results show significant variability between manual segmenta­

tions. We concluded that it was extremely important to have a reliable, consistent and

accurate automated segmentation algorithm. We developed a segmentation frame­

work for histological sections, but were provided with segmentation results for the

CT images. We proceeded with the provided segmentation results and used the fil­

tering error when calculating the interpolation tolerance. As a result, the 2D array,

116

Error Name

-L-^segmentl

I-1 segment"!

-^segments

^segment

^contour find

-E-J filteringS

-E-J filtering Z

•t-' filteringl

-^ filtering2

^contour filtering

^overall

Incus
Average

0.0734
0.0747
0.0757
0.0746
0.0238
0.0224
0.0415
0.0489
0.0530
0.0554
0.0923

Standard Deviation
0.0591
0.0597
0.0541
0.0576
0.0160
0.0262
0.0325
0.0433
0.0471
0.0453

Malleus
Average

0.0752
0.0764
0.0769
0.0762
0.0232
0.0160
0.0362
0.0374
0.0428
0.0437
0.0880

Standard Deviation
0.0485
0.0487
0.0506
0.0493
0.0158
0.0171
0.0285
0.0381
0.0371
0.0395

Table 5.3: Overall error analysis results (in ratio to 1) for CT data, both the incus
and the malleus.

Efiitenng2, is set to Eapprox and passed to the adaptive interpolation algorithm as

input. Reducing the segmentation and contour finding errors was left for '"future

work".

5.2.3 Results of Interpolation

This section presents the results of the adaptive interpolation algorithm in several

subsections: 1) initial spline experiments that show that cubic splines do not produce

satisfactory results; 2) a sample result for monotonic piecewise cubic interpolation

that suggests that it is a suitable technique for our application; 3) results obtained

with different X\ values to determine an appropriate X\ value for our algorithm; 4)

tests to show that the adaptive algorithm is correctly implemented, and has satisfac­

tory performance; 5) sample results for application to the incus; 6) sample results for

application to the malleus; 7) since we observed several examples where the results

showed larger but localized errors on small intervals in the incus and the malleus sam­

ple results, we experienced with different (3 values to explore the trade-off between

treatment of these lager error and data usage; we show that these larger errors can

117

"

t

~J^J

1
1

1

/

L_

\

\

\

W "A
V

">%.

, I I I I 1 1 I 1 = = £ ^ _ _ J |
e 33 «Q 50 » 1CO IS 1« 1SO iao

Z Index

Figure 5.26: Example 1 of preliminary results. Cubic spline and monotonic piecewise
cubic interpolation based on every 4th data point.

be completed eliminated using a smaller /3 value of 20%; and 8) we also provide over

results using /3 equal to 50%.

Note that when applying Equation (4.49) to obtain results in the following sub­

sections, unless it is specified, otherwise the coefficient /? is set to 0.5 (50%).

1) Cubic Spline Result and Conclusion

In testing cubic splines on the medical images, the interpolant was found to be outside

the reasonable range in some intervals. Examples of such results are shown in Figures

5.26 and 5.27, in which cubic spline interpolation is done on every 4th and every 8th

sample point. Our preliminary experiments showed that a cubic spline was difficult

to control and that interpolation errors were relatively large in some intervals.

We concluded that the cubic spline was not suitable for our research.

118

* »
u
a
»
S
U

V*"**.

.V

/V

\
V

x « &o 60 1(0 is iso IDO iao

Z Index

Figure 5.27: Example 2 of preliminary results. Cubic spline and monotonic piecewise
cubic interpolation based on every 8th data point.

2) Monotonic Piecewise Cubic Sample Result

Monotonic piecewise cubics were found to be a suitable interpolation technique for

our interpolation application. Figure 5.28 is an example. It shows the monotonic

piecewise cubic deals better than cubic spline interpolation on intervals in which the

data values change direction, using actual CT sample data. Because results of cubic

splines are not satisfactory, we decided to proceed with monotonic piecewise cubics

as the interpolation technique in our application.

3) Results for different X1 values

The interval size at the first level of the adaptive interpolation algorithm, X\, is an

important parameter. It is useful to determine a suitable X\ value for the adaptive

interpolation algorithm, as discussed in Section 4.8.3. Table 5.4 shows possible Xi

values corresponding to different interval sizes; these interval sizes are represented by

values of Xi ,X 2 ,X 3 , • • • ,Xg. Possible X\ values, 8, 16, 32, 64, or 128, were tested.

Different X\ values result in different data usage that is shown in Table 5.5.

119

£

285

280

275

C
O

u
a 270

3 ©
265

260

O control points
monotone spline

— -cubic spline

35 40 45 50 55

ZIndex
60 65 70

Figure 5.28: Cubic spline and monotonic pieccwise cubic interpolation plotting on
real sample data (CT images, incus, No. 36 to No. 66)

Also as shown in Table 5.5, as X\ increases, the average number of data points

used in every slice, Nuse^avg., and the ratio between the number of points on average

and the total point number available, RUSed, generally become less, while the same

accuracy is obtained. This shows that a greater X\ value assists in optimizing data

usage. As X\ reaches 64 and 128, the difference in results is small. In theory, the

algorithm can start its first level using three points, which means we set X\ to 128.

Hence, X\ = 128 is applied to on-going testing to obtain CT experimental results.

4) Results of algorithm testing

Tests were done to sec how close the two interpolants in the last adjacent levels in the

adaptive interpolation algorithm were. Figure 5.29 shows the last two interpolants

almost perfectly match for both the incus and the malleus at 0 degrees.

Besides the visual comparison of Figure 5.29, Equation (5.1) computes the dif-

120

xx
x2
X3

x±
x5
xb
x7
x8

Xr=8
8
4
2
1

N/A
N/A
N/A
N/A

X 1 = 1 6
16
8
4
2
1

N/A
N/A
N/A

X i = 3 2
32
16
8
4
2
1

N/A
N/A

X1=64
64
32
16
8
4
2
1

N/A

ATi=128
128
64
32
16
8
4
2
1

Table 5.4: The X± table for adaptive interpolation

Xi Value:
^level

Ntotal

^ubed,avg

™u&ed,btd

^ * used,max

-* *used,mm

-tensed

8
4

189
78

6.721
97
58

41.2%

16
5

189
67

10.368
98
40

35.5%

32
6

189
65

10.993
93
38

34.4%

64
7

189
64

11.180
92
28

33.9%

128
8

189
64

11.569
97
26

33.9%

Table 5 5. Tests of adaptive interpolation using different X\ input, CT incus data.
Summarized data are how many levels the algorithm reaches (Nievei; its value is
averaged and rounded to integers), the number of total data points available (Ntotai).
For the number of data points used in every slice, it shows the average (Nuaed,avg),
standard deviation (NUf,edMd), maximum (Nu3edimax), and minimum (Nusedimm), and
ratio (RUSed) between the number of points used on average and the total point number
available.

Figure 5.29: Sample test of interpolation results, the last two radius interpolants of
CT incus 0 degrees. From left to right (a-b): a. CT incus 0 degrees; b. CT malleus
0 degrees.

121

•Ls1J Jinterpolant\Z)

Average (%)
Minimum (%)
Maximum (%)

Degree 0
3.66E-05

0
0.00277

Degree 90
2.06E-04

0
0.00653

Degree 270
4.071E-05

0
0.00156

Table 5.6: Statistics of differences between the last two interpolants for 9
and 270, CT incus data

0, 90,

'-'I'j Jmterpolant \Z)

Average (%)
Minimum (%)
Maximum (%)

Degree 0
0.000251

0
0.00425

Degree 90
0.000277

0
0.0119

Degree 270
0.000550

0
0.0213

Table 5.7: Statistics of differences between the last two interpolants for 6
and 270, CT malleus

0, 90,

fcrence between the last two interpolants by evaluating them at z locations. The

difference is noted as Dif fmterpolant{z) in percentage.

n , , , s _ \Interpolantlast(z) - Interpolantsecondiast(z)\
UlJ~ JinterpolantyZ) — T , , , / \ l ^ ' l j

lnterpolantiast(Z)

Table 5.6 shows the average, minimum and maximum of the Dif fmterpoiant(z)

values for 189 z locations of the original 189 incus source images at degree 0, 90,

and 270, as sample results. Table 5.7 presents the same information for the malleus

in 224 original z locations. The results show that the interpolation error is much

smaller than the overall average approximate data error, Eflitermg2 (refer to Table

5.3), which is calculated using the same Ar method (see Section 4.7). This means

that the interpolation error is much smaller than the data error.

The tests show that the last two interpolants of the adaptive interpolation algo­

rithm almost perfectly match and the difference between them is small enough, based

on both visual and quantitative information. The resulting interpolation error is much

smaller than the data error. It indicates that the adaptive interpolation algorithm is

correctly implemented, and that it performs as designed.

122

Figure 5.30: Sample interpolation results, radius interpolant for the CT incus, 6: 0
degrees From left to right (a-b)- a. Plots of the last (8th) interpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

Figure 5.31: Sample interpolation results, radius interpolant for the CT incus, 9: 90
degrees. From left to right (a-b). a Plots of the last (8th) interpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

5) Results for adaptive interpolation applied to the Incus

Adaptive interpolation results in z direction at three different angles, 6 equal to 0,

90, 270 degrees, are shown below.

Figures 5.30, 5.31, and 5.32 are three sample interpolation results for the CT incus

tests. Three plots on the left show how well the last interpolant matches the original

data, where the original data are the filtered results. Three plots on the right show

how the interpolants gradually adapt to approximate the data closer from the 1st,

3rd, 5th to 8th level of the adaptive algorithm.

Table 5.8 shows how many knots are used in each level of the adaptive interpolation

and each interpolant. The algorithm is able to find knots needed increasingly one level

after another. During this process, the interpolants fit closer and closer to the filtered

data.

123

Figure 5.32: Sample interpolation results, radius intcrpolant for the CT incus, 6: 270
degrees. From left to right (a-b): a. Plots of the last (8th) mterpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

Interpolant #
Interpolantl
Interpolant2
Interpolant3
Intcrpolant4
Interpolant5
Intcrpolant6
Interpolant7
Intcrpolant8

Degree 0
Count = 3
Count = 4
Count = 7
Count = 13
Count = 25
Count = 45
Count = 56
Count = 60

Degree 90
Count = 3
Count = 4
Count = 7
Count = 13
Count = 24
Count = 33
Count = 41
Count = 46

Degree 270
Count = 3
Count = 4
Count = 7

Count = 13
Count = 25
Count = 46
Count = 68
Count = 73

Table 5.8: Knot number counts for adaptive interpolants for (9 = 0, 90, and 270, CT
incus data

124

Z Iniles Z Index

Figure 5.33: Sample interpolation results, radius interpolant for the CT malleus, 0:
0 degrees. From left to right (a-b): a. Plots of the last (8th) interpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

Z Iw)es Z Iudei

Figure 5.34: Sample interpolation results, radius interpolant for the CT malleus, 6:
90 degrees. From left to right (a-b): a. Plots of the last (8th) interpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

6) Results for the adaptive interpolation algorithm applied to the malleus

The results for the malleus are presented in the same format as for the incus. Figures

5.33, 5.34, and 5.35 are three sample interpolation results of CT malleus tests. Similar

to CT incus tests, these results show the interpolants adapt to the data points, as more

data points are used. Table 5.9 shows how many knots are used for each interpolant.

Figure 5.35: Sample interpolation results, radius interpolant for the CT malleus, 6:
270 degrees. From left to right (a-b): a. Plots of the last (8th) interpolant and filtered
data; b. Plots of the 1st, 3rd, 5th and 8th interpolants and filtered data

125

Interpolant #
Interpolantl
Interpolant2
Intcrpolant3
Interpolant4
Interpolant5
Interpolant6
Interpolant7
Intcrpolant8

Degree 0
Count = 3
Count = 5
Count = 9

Count = 15
Count = 25
Count = 42
Count = 69
Count = 90

Degree 90
Count = 3
Count = 5
Count = 9

Count = 17
Count = 31
Count = 55
Count = 88

Count = 114

Degree 270
Count = 3
Count = 5
Count = 9
Count = 17
Count = 32
Count = 58
Count = 93

Count = 125

Table 5.9: Knot number counts for adaptive intcrpolants for 0 = 0, 90, and 270, CT
malleus

7) Summary of the incus and the malleus results

In the above two subsections, sample results of the adaptive interpolation algorithm

are presented for two regions, the incus and the malleus, separately. These results

show the break-down steps of the algorithm and how this automatic process works in

detail.

Results of both the incus and the malleus at degree 0, 90, and 270 show that the

accuracy of intcrpolants increases while the level number becomes higher, from 1 to

8. It shows the change from using very coarse data (3 knots) to less coarse data (more

and more knots).

There are a few places where the curve of Interpolants does not match with the

curve of the filtered data. These places can be called "error bumps"; the error bumps

occur only in a small number of intervals. This is because not all of the filtered data

are used in the comparison in Equation (4.49). The difference between two neighbor

intcrpolants arc compared instead. After the two neighbor interpolants match closely,

and the difference between them gets small enough, or the algorithm has no more

levels to adapt, the process would stop. In other words, the algorithm stops because

the last two interpolants are nearly identical, although the last interpolant still varies

slightly from the original/filtered data in small number of places.

126

Figure 5.36: Comparison between original data points and final interpolants using
different /3 values, CT malleus, 6 = 0 degrees. From left to right (a-b): a. Plots of
filtered data and the last (8th) interpolants with the j3 values of 10%, 20%, 25%, and
30% of errors; b. final interpolant has a nearly perfect match to the filtered data at
P = 20%.

The following subsection show results with "error bumps" being reduced; this

requires the use of more data points.

8) Resul t s for different /3 values

Results in above sections applied the /3 value of 50%. This section investigates dif­

ferent j3 values. There are a few error bumps that occur in some figures, e.g., Figure

5.33. These error bumps happen in places where Eappr.ox is large, which is reasonable.

The value of Eapprox fluctuates for each angle with some of the values being large and

others small.

As Equation (3.34) indicated, there is no need to refine the approximation of

interpolation to be more accurate than the original/filtered data. The data samples

being interpolated have larger errors at places where the error bumps occur.

The p values of 150%, 90%, 70%, 50%, 30%, 20%, and 10% were used in the

experiment, to see whether the error bumps associated with Interpolants, can be

reduced.

Figure 5.36 presents plots of original data points (after filtering) and final inter­

polants (Interpolants) with different (3 values. Figure 5.33 shows that error bumps

are substantially reduced when (3 is equal to 20%.

127

p
Used points
Total points

Ratio

-^interpolant^avg

150%
37
224

16.5%
1.523%

90%
56
224

25.0%
1.381%

70%
66
224

29.5%
1.355%

50%
89
224

39.7%
1.189%

30%
116
224

51.8%
0.399%

20%
169
224

75.4%
0.084%

10%
195
224

87.1%
0.020%

Table 5.101 Number of data points used for different ft values, CT malleus, 9 = 0
degrees

Table 5.10 shows the number of data points used for the final interpolant, the

total points available, and the ratio between used and total points, as ft varies from

10% to 150%. The angle is 6 = 0 degrees. Values of Emterpoiant,aug a r e computed using

Equations (4.53) and (4.54). This table shows that the error Emterpoiantiavg becomes

smaller if the ft value decreases, and that the number of used data points increases.

Therefore, the selection of the ft value is key to the success of the interpolation.

Table 5.11 shows the overall final results of interpolation for CT malleus. The

tested ft values are 150%, 90%, 70%, 50%, 30%, 20%, and 10%. It shows how the

data usage is changed with different ft values. For example, using ft = 20%, it shows

that 74.2% of the data points on average are used in the algorithm. Compared to

using 49.8% of the data points, which has error bumps, approximately 25% more data

points on average arc used. Therefore, as ft decreases, the accuracy of interpolation

becomes higher, but more data would be used. There is a trade-off between the data

usage and the interpolation accuracy, where the value of ft is the key element. This

result is useful and relevant to indicate how many histological sections are needed for

interpolating the incus and malleus data.

The results using different ft values show how the interpolation accuracy increases

with ft values being decreased. Error bumps can be fully reduced using the ft value of

20%. When the ft value is 50%, the algorithm achieves a satisfactory approximation

and uses a relatively small number of data points, with reasonable error bumps visible.

128

p
xx

NieVel

Ntotal
1 yused,avg

1* usedfstd

^ *used,rnax

N ^
1 v used,min

loused

150%
128
8

224
52.2
10.9
79
14

23.3%

90%
128
8

224
77.5
12.9
110
29

34.6%

70%
128
8

224
91.5
14.0
127
37

40.8%

50%
128
8

224
111.5
13.8
142
42

49.8%

30%
128
8

224
143.5
11.7
172
93

64.1%

20%
128
8

224
166.3
9.3
190
128

74.2%

10%
128
8

224
195.7
6.8
213
159

87.4%

Table 5.11: Overall results of adaptive interpolation, variable /?, CT malleus. Symbols
are the same as the caption of Table 5.5.

x1
Nleuel

Ntotal

l*used,avg

*Mised

1* used,std

+ 'used,max

^ * used,mm

Incus
128
8

189
64.1

33.9%
11.6
97
26

Malleus
128
8

224
111.5
49.8%

13.8
142
42

Table 5.12: Overall results of adaptive interpolation, CT data, j3 = 50%. Symbols
arc the same as the caption of Table 5.5.

9) Overall Results

Table 5.12 shows how many data points on average are enough for building the final

interpolants for all different angles. Since the algorithm starts with the first level

interval size, Xx — 128, it has 8 levels in total. The interval size from level 1 to level

8 is 128, 64, 32, 16, 8, 4, 2, and 1. The table shows statistics and percentage of the

averaged data points used.

Table 5.13 shows the interpolation error using the 1 — 5 method as in Equations

(4.8.4) and (4.52). Compared to -E/j/termgi which is presented in Table 5.3, it shows

that the interpolation error, Emterpoiate, is reasonable and small enough. Therefore,

the goal to have the interpolation error not larger than 50% (the /? value) of Eapprox

129

-^interpolate

l-Jfilteringl

Ratio

Incus
Average

0.0227
0.0530

0.428 : 1

Standard Deviation
0.0255
0.0472

0.541 : 1

Malleus
Average

0.0180
0.0374

0.481 : 1

Standard Deviation
0.0145
0.0383

0.379 : 1

Table 5.13: Error of adaptive interpolation calculated using 1-S (similarity index),
CT data (Unit of error: ratio from 1)

is achieved.

Combining Tables 5.12 and 5.13 shows an important conclusion. That is, the

adaptive interpolation algorithm can use 33.9% of the data points for the incus to

produce interpolated data points with the error rate of only 2.27% (Einterpoiate =

0.0227). It uses 49.8% for the malleus and has the error rate of 1.80% (0.0180).

To summarize, experimental results of the adaptive interpolation algorithm arc

presented in this section. Through spline experiments, we concluded that monotonic

piecewisc cubics are the most suitable for our application. Both visual comparison

and quantitative results show that the algorithm has satisfactory performance as

designed. In the experiments, the last two interpolants of the adaptive interpolation

algorithm almost perfectly match and the difference between them is small enough.

The resulting interpolation error is much smaller than the data error. Sample results

of the incus and the malleus show the break-down steps of the algorithm, where the

interpolants gradually adapt to the data points and their accuracy increases while at

a higher level. Different values of two input parameters, X\ and /3, were tested, and

the sample results arc shown. The values of X\ = 128 and (3 = 50% are suitable for

our application, because the algorithm uses a relatively small number of data points

to achieve a satisfactory approximation. Moreover, the interpolation accuracy can be

increased further with smaller /3 values. Error bumps that occur at /3 = 50% can be

fully eliminated using the /3 value of 20%. However, that would use more data points.

These results show that the goal of the adaptive interpolation algorithm is achieved.

130

The algorithm successfully allocates a small number of data points and produces

highly accurate results in a fully automated process. For the incus, the adaptive

interpolation algorithm uses 33.9% of the data points to obtain interpolation results

with the relative error rate of only 2.27%. For the malleus, it uses 49.8% and has the

error rate of 1.80%.

This is very good result, because the algorithm has intelligence to find and use

approximately 1/2 to 1/3 of the data points to obtain satisfactory approximation.

The error is in a reasonable range.

5.2.4 Results of 3D Reconstruction

The interpolation results were used to generate 3D virtual models using the Amira

software. The 3D model can be compared visually with the bone photos, as in Figures

5.37 and 5.38. The bone photos on the left are provided by the EAR-Lab [17]. The

scrcenshots on the right are our generated 3D model. The bone photos and the 3D

models are not from the same piece of bone. It shows they appear alike, and that 3D

reconstruction has done a good job. The difference is that the 3D model in Amira

can be viewed from any angle in a 3D space, which is far more useful than a static

bone photo.

Figures 5.39.a and 5.39.b show 3D models in Amira built from before filtering and

filtered data points of the malleus. These models are tilted to such a viewing angle

where the model surface on the right appears much smoother than the left model. It

shows our filtering algorithm smooths the model effectively well.

Figure 5.40.a shows the 3D model in Amira built using filtered data points of the

malleus. Figure 5.40.b overlaps 3D models using both filtered and interpolated data

points. It shows the two models largely overlap, the overall shape is the same, and

that the difference between them is very small.

131

O S

Figure 5.37: Visual comparison of 3D model and the bone photo of malleus (1). From
left to right (a-b): a. Photo of the actual bone; b. 3D virtual model built using our
method.

Figure 5.38: Visual comparison of 3D model and the bone photo of malleus (2). From
left to right (a-b): a. Photo of the actual bone; b. 3D virtual model built using our
method.

Figure 5.39: Visual comparison of 3D model of the malleus before and after filtering.
From left to right (a-b): a. 3D model built using contour points before filtering; b.
3D model built using contour points after filtering.

132

Figure 5.40: Visual comparison of 3D model built from filtered and interpolated data
points of the malleus. From left to right (a-b): a. 3D model built using filtered contour
points; b. 3D models built using both filtered and interpolated contour points.

Result Data
1. Segmentation

2. Filtering
3. Interpolation

Difference between 2 and 3

Triangles
173934
163020
156584

Surface Area (mm2)
47.072
43.666
43.095
1.31%

Volume (mm3)
13.525
13.321
13.669
2.61%

Table 5.14: Quantitative analysis of 3D reconstruction, CT incus; results of the num­
ber of triangles (in the polygon mesh), surface area and volume of the 3D model.

Besides visual comparison, volume calculation is a quantitative analysis method

to find out the difference between two models Using the CT dataset for example,

a complete dataset obtained by manual segmentation and the augmented dataset

resulting from interpolation can be compared using 3D reconstruction.

Tables 5.14 and 5.15 shows quantitative analysis of 3D reconstruction, with three

quantities measured for the 3D model: the number of triangles (in the polygon mesh),

surface area, and volume. Table 5.14 arc the results for the incus, and Table 5.15

shows similar results for the malleus. The dimensions and units were introduced

in Section 4.1.2. Three types of datasets used for measuring the same model arc

segmentation results (without any processing work), filtering results (after contour

finding and filtering), and interpolation results (after interpolation). The 3D model

of filtering results uses the complete filtered dataset, which is considered the upper

limit of the accuracy that the adaptive interpolation algorithm could achieve.

133

dataset
1. Segmentation Results

2. Filtering Results
3. Interpolation Results

Difference between 2 and 3

Triangles
168866
160746
156826

Surface Area (mm2)
45.120
42.485
41.707
1.83%

Volume (mm3)
11.336
11.293
11.266
0.24%

Table 5.15: Quantitative analysis of 3D reconstruction, CT malleus; results of the
number of triangles (in the polygon mesh), surface area and volume of the 3D model.

ROI
Incus

Malleus

Data Usage
33.9%
49.8%

Error of Interpolation
2.27%
1.80%

Difference of 3D Model Volume
2.61%
0.24%

Table 5.16: Overall comparison between interpolation results and complete filtered
data points for the incus and the malleus.

The 3D reconstruction results supports the fact that the interpolation results are

satisfactory with high accuracy through visual and quantitative comparisons. The

3D model generated after our adaptive interpolation algorithm appear highly similar

with the 3D model generated using filtered data points and the actual bone photos.

Quantitatively, the difference between 3D models from filtered and interpolated data

points is very small. The error of the area and volume of the incus model is 1.31%

and 2.61%, and that of the malleus model is 1.83% and 0.24% respectively.

To conclude, the adaptive interpolation algorithm produces accurate results. Ta­

ble 5.16 summarizes error measurements. Compared with using complete filtered

data points (the upper limit), interpolation results using approximately 1/2 and 1/3

of filtered data points have very small error rates. The algorithm achieves acceptable

accuracy in generating missing structure of the human temporal bone automatically.

134

Chapter 6

Conclusions and Future Work

6.1 Summary

The thesis described the methods applied to the CT data that were developed, with

the goal of extending them to histological sections. It explored registration and seg­

mentation techniques for histological sections and focused on contour finding, filtering

and interpolation methods for the CT scans. Chapter 1 described the research prob­

lem and settings, and introduced the objective, which is to improve existing 3D model

generation methods for medical researchers. Chapter 2 reviews the literature and rel­

evant techniques in medical processing, including the topics of medical background,

image registration, geometrical transformations, image segmentation, interpolation,

and 3D reconstruction.

Chapter 3 described the theory behind the methods and algorithms in this thesis.

They are: 1) image registration, 2) image segmentation, 3) noise and filtering, 4)

interpolation, and 5) 3D reconstruction.

Chapter 4 presented algorithms and methods developed based on the techniques

of Chapter 3. The methods applied are grouped into four categories. The core

methods are the Gaussian filtering and adaptive interpolation algorithms (developed

135

in C#) . They are fully automatic, robust and efficient. The secondary methods are

image segmentation (using C and CVlab) and contour finding algorithms (using C#) .

Other software that was used includes stand-alone programs (developed using C # to

allow interaction, connectivity and automation), and Amira (for image registration

and 3D reconstruction). The stand-alone programs include region selection, image

renaming and conversion tools.

Chapter 5 presented results for both histological sections and CT scans. It showed

sample results of histological sections after registration, segmentation, and contour

finding. It described CT results of Gaussian filtering, error analysis, adaptive inter­

polation, and 3D reconstruction.

6.2 Conclusions for the Experimental Results

Experimental results show that designed algorithms in this thesis improved existing

3D model generation methods. The proposed methods include useful contributions

in segmentation, filtering and interpolation techniques.

Good quality results were obtained for segmenting of histological sections. The

designed segmentation framework is highly automatic and efficient. It is a semi­

automatic process to select ROIs and fully automatic in median filtering, patch grow­

ing, and Canny edge detection for an image set. Our segmentation algorithms have

segmented a large number of histological sections rapidly and automatically with a

small amount of user interaction.

The contour finding algorithm was designed for histological sections, and then

applied to the CT dataset. It is a very complex algorithm that obtains all contour

points from segmentation results. It creates a mapping of corresponding contour

points on different images using angle attributes. It provides connectivity between

segmentation results and Gaussian filtering and interpolation methods. This is a

136

necessary step, but introduces noise/error. The averaged error rate of this algorithm

for the incus is 2.38% and malleus is 2.32%.

The Gaussian filtering algorithm is an automatic and effective process. It fully

defines the GLPF using a suitable amount (a = 98%) of the signal power. Two

GLPFs were developed and applied by traversing all on-slice and then z-direction lists

of contour points, respectively. Sample results show that the algorithm successfully

smoothed the signal. 3D models built from filtering results display a smoother surface.

Therefore, the algorithm achieves the goal of smoothing the 3D model structure

represented by contour points. The contour finding and Gaussian filtering algorithms

output valid contour points for interpolation.

The error analysis results of segmentation, contour finding and filtering are com­

puted in detail. This points out the contributions to the error and their magnitudes.

The goal is to determine the approximate data error as input to the adaptive inter­

polation algorithm. Taking the incus for example, the filtering error is 5.30%. Its

segmentation and contour finding errors are 7.46% and 2.38% respectively. The com­

bined error is 9.23% (refer to Table 5.3). The malleus has errors similar in magnitude

to the incus. We concluded that the filtering error was considered to be the dom­

inant error, and it was used as input for the adaptive interpolation algorithm. We

acknowledge that segmentation and contour finding errors are relatively high and the

corresponding algorithms need improvements.

The adaptive interpolation algorithm successfully allocates a small number of data

points and produces highly accurate interpolation results in a fully automated process.

We decided that monotonic piecewise cubics were the most suitable to be applied.

Both visual comparison and quantitative results show that the algorithm has satis­

factory performance. With two parameters of the program, X\ and /3, being set, final

interpolation results were obtained. The adaptive interpolation algorithm uses 33.9%

of the incus data points to obtain results with the relative error rate of only 2.27%.

137

It uses 49.8% for the malleus and has the error rate of 1.80%. The algorithm uses

approximately 1/2 to 1/3 of the data points to obtain satisfactory approximations.

These results show that the goal of the adaptive interpolation algorithm is achieved.

Visual and quantitative comparisons of 3D reconstruction results indicate that 3D

models built using interpolation results are satisfactory and accurate. The errors of

the area and volume of 3D models are acceptable. Such errors are 1.31% and 2.61%

for the incus, and 1.83% and 0.24% for the malleus respectively.

All these results show that the segmentation framework for histological sections

has a good design; the contour finding and Gaussian filtering algorithms work as

expected and designed; and results of the adaptive interpolation algorithm are very

good. Compared with using the complete data set, interpolation results using approx­

imately 1/2 of the data have acceptable errors; for the malleus, the interpolation error

and difference of 3D model volume is 1.80% and 0.24%. The algorithm successfully

and automatically generated the missing structure of the human temporal bone.

6.3 Applications of CT Results to Histological Sec­

tions

Histological sections were first provided to us. Because there are severe distortion and

displacement issues, there is no gold standard to evaluate methods developed for his­

tological sections. Therefore, a different dataset consisting of CT scans was provided

to assist in the development of methods and algorithms. Because the CT dataset is

complete, the performance and accuracy of the methods can be measured. Interpo­

lation and 3D reconstruction results for the CT dataset can reach a target accuracy

using only a portion of available data. This gives suggestions for how the methods and

algorithms tested on the CT dataset can be applied to work on histological sections.

138

The results of CT scans can be related to histological sections. The adaptive

interpolation results of the CT dataset indicate how many images are required, using

the adaptive interpolation algorithm, in order to obtain a satisfactory and accurate

generation of missing structure. The results also provide location information which

shows that some regions of the z dimension need more histological cross-sections and

some other places need less, because the incus and the malleus have different levels

of details in the z direction.

Non-uniformly spaced histological sections would cause an issue for the Fourier

transform algorithm since it requires uniformly spaced points. Another issue is that

the image source dataset for histological sections is smaller than that for CT images.

The Case 8486d has only 41 slices to choose from, which would mean that the adaptive

algorithm would run out of data.

6.4 Future Work

This thesis has suggestions and valuable information for future 3D reconstruction

using histological sections. 3D models of the incus and the malleus, reconstructed

using the CT dataset, may serve as a basis of the model. In future research on

3D reconstruction using histological sections, our 3D models may work as reference

models. For example, non-rigid registration for deformed histological sections can

use 3D models from the CT dataset as a reference. The data usage information

is valuable for 3D reconstruction of histological sections to indicate which locations

need more data and which locations need less data. There may be a match between

3D models from the CT dataset and the future models from histological sections.

Furthermore, templates of the incus and the malleus can be made using our results.

In summary, 3D models from the CT dataset and the data usage information should

provide improvement on registration and 3D reconstruction for histological sections.

139

Future work related to methods and algorithms of this thesis is:

1. The accuracy of segmentation and registration for both CT datasets and histo­

logical sections should be improved.

2. Refinement of the contour finding algorithm should be done. It is difficult to

find contour points. The contour finding algorithm works relatively accurately

and connects well to filtering and interpolation algorithms, but the method

needs further improvement. Assigning contour points based on the center of

the ROI and angles from the center was one option. Other alternatives can be

studied. The error rate may be reduced by a better method.

3. There is possible refinement of Gaussian filtering. We realized that Gaussian

filtering could be a very large task, and it alone can be a research topic. The

development of GLPFs could be refined. For example, a 2D GLPF could be

built for filtering both on slice and z direction contour points at the same time.

4. The error checking in the adaptive interpolation algorithm can be improved.

The approximate data errors on slice and in the z direction can be studied

further.

5. For interpolation and 3D reconstruction of each model, the locations that need

more data points can be analyzed and studied. The studied result would provide

useful information to create templates for models for the incus and the malleus

for example. It also can provide information for histological section acquisition,

such as the need for a small/larger number of slices in certain places of the

specimen. The algorithm may be able to find out how many histological sections

are enough to be interpolated for 3D reconstruction.

6. CT images have uniformly spaced and complete datasets. However, the issue

with histological sections is that the datasets are non-uniformly spaced. For

140

future application on histological sections, the algorithm needs a more robust

form that could encompass such an issue.

Our research has explored registration, segmentation, contour finding, filtering,

interpolation and 3D reconstruction. The research is a proof of concept using a CT

dataset. In future, our programs need to be tested on other CT datasets. Refinement

needs to be done to make the programs solid, robust, accurate, and efficient. Then, the

methods could be applied to histological sections with modifications and adjustments.

141

Bibliography

[1] Akerkar, R., Lingras, P., 2008, "Building an intelligent web: Theory and practice:

Chapter 5 - Clustering", Jones and Bartlett Publishers, pp. 177-204.

[2] Amira Software, Visage Imaging, Inc., Berlin, Germany. Website:

http: //www. amira. com/.

[3] Auer, M., Regitnig, P., Holzapfel, G.A., 2005, "An automatic nonrigid registra­

tion for stained histological sections", IEEE Transactions on Medical Imaging,

vol. 14, no. 4, pp. 478-486.

[4] Baggio, D.L., 2007, "GPGPU Based Image Segmentation Livewire Algorithm

Implementation", Thesis of Master in Science, Technological Institute of Aero­

nautics, Sao Jose dos Campos, Brazil.

[5] Bao, P., Zhang, L., Wu, X., 2005, "Canny edge detection enhancement by scale

multiplication", IEEE Transactions on Pattern Analysis and Machine Intelli­

gence, vol. 27, no. 9, pp. 1485 - 1490.

[6] Black, M., Sapiro, G., Marimont, D., Heeger, D., 1998, "Robust anisotropic

diffusion", IEEE Transactions on Image Processing, vol. 7, pp. 421-432.

[7] Bookstein, F. L., 1989, "Principal warps: thin-plate splines and the decompo­

sition of deformations", IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 11, no. 6, pp. 567-585.

142

[8] Braumann, U.D., Kuska, J.P., Einenkel, J., Horn, L.C., Loffler, M., Hockel, M.,

2005, "Three-dimensional reconstruction and quantification of cervical carcinoma

invasion fronts from histological serial sections", IEEE Transactions on Medical

Imaging, vol. 24, no. 10, pp. 1286-1307.

[9] Brown, L.G., 1992, "A survey of image registration techniques", ACM Comput­

ing Surveys, vol. 24, no. 4, pp. 325-376.

[10] Butner, H., Fovargue, A., Giovanetti, K., Lucatorto, L., Niculescu, G., ONeill, T.,

Utter, B., 2009, "Physics 140L Laboratory Manual", James Madison University,

Harrisonburg, VA.

[11] Canny, J., 1986, "A computational approach to edge detection", IEEE Transac­

tions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698.

[12] Dawant, B.M., 2002, "Non-rigid registration of medical images: purpose and

methods, a short survey", Proceedings of IEEE International Symposium on

Biomedical Imaging, pp. 465-468.

[13] De Boor, C , 1978, "A representation for piecewise polynomial functions", in: A

practical guide to splines, New York: Springer-Verlag, pp. 85-96.

[14] Demigny, D., 2002, "On optimal linear filtering for edge detection", IEEE Trans­

actions on Image Processing, vol. 11, pp. 728-1220.

[15] Dijkstra, E.W., 1959, "A note on two problems in connexion with graphs", Nu-

merische Mathematik, vol. 1, pp. 269-271.

[16] Diniz,P.R.B.,Murta-Junior,L.O.,Brum,D.G.,De Arajo,D.B., Santos,A.C, 2010,

"Brain tissue segmentation using q-entropy in multiple sclerosis magnetic res­

onance images", Brazilian Journal of Medical and Biological Research. , vol. 43,

no. 1, pp. 77-84.

143

[17] Ear & Auditory Research Laboratory (EAR-Lab), Department of Anatomy &:

Neurobiology Surgery, Dalhousie University, Halifax, Nova Scotia, Canada. Web­

site: http://ear-lab.medicine.dal.ca/.

[18] Fitch, A., Kadyrov, A., Christmas, W., Kittler, J., 2005, "Fast robust correla­

tion", IEEE Transactions on Image Processing, vol. 14, no. 8, pp. 1063-1073.

[19] Forsythe G.E., Malcolm M.A., Moler C.B., "Computer methods for mathematical

computations", Prentice Hall, pp. 19-77.

[20] Friedland, G., Jantz, K., Rojas, R., 2005, "SIOX: Simple interactive object ex­

traction in still images", Proceedings of the IEEE International Symposium on

Multimedia (ISM2005), Irvine, California, USA, pp. 253-259.

[21] Friedland, G., Jantz, K., Lenz, T., Rojas, R., 2006, "Extending the SIOX algo­

rithm: Alternative clustering methods, sub-pixel accurate object extraction from

still Images, and generic video segmentation", Technical Report B-06-06, Depart­

ment of Computer Science, Free University of Berlin.

[22] Friedland, G., Jantz, K., Lenz, T., Wiesel, F., Rojas, R., 2007, "Object cut

and paste in images and videos", International Journal of Semantic Computing,

World Scientific, USA, vol. 1, no 2, pp 221-247

[23] Fritsch, F. N.; Carlson, R. E., 1980, "Monotone piecewise cubic interpolation",

SIAM Journal on Numerical Analysis, vol. 17, pp. 238-246.

[24] Gaffling, S., Jager, F., Daum, V.. Tauchi, M., Lutjen-drecoll, E., 2009, "Inter­

polation of Histological Slices by Means of Non-rigid Registration", Conference:

Bildverarbeitung fur die Medizin, pp. 267-271.

[25] Gonzalez, R.C., Woods, R.E., 2002, "Digital Image Processing", Second Edition,

Prentice Hall.

144

http://ear-lab.medicine.dal.ca/

[26] Gonzalez, R.C., Woods, R.E., 1993, "Digital Image Processing", Prentice Hall.

[27] Goshtasby, A., 1988, "Registration of image with geometric distortion", IEEE

Transactions on Geoscience and Remote Sensing, vol. 26, no. 1, pp. 60-64.

[28] Guimond, A., Roche, A., Ayache, N.and Meunier,J., 2001 "Three-dimensional

multimodal brain warping using the demons algorithm and adaptive intensity

corrections", IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 58-69.

[29] Harder, R. L., Desmarais, R. N., 1972, "Interpolation using surface splines",

Aircraft, vol. 9, no. 2, pp. 189-191, 1972.

[30] Hellier, P., Barillot, C., 2003, "Coupling dense and landmark-based approaches

for nonrigid registration", IEEE Transactions on Medical Imaging, vol. 22, no.

2, pp. 217-227.

[31] Hou, H.S., Andrews, H.C., 1978, "Cubic splines for image interpolation and

digital filtering", IEEE Transaction on Acoustics, Speech and Signal Processing,

vol. 26, no. 6, pp. 508-517.

[32] Hsu, L.Y., Loew, M.H., 2001, "Fully automatic 3D feature-based registration of

multi-modality medical images", Image and Vision Computing, vol. 19, pp. 75-85.

[33] Jeong H., Kim, C.I., 1992, "Adaptive determination of filter scales for edge de­

tection", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

14, no. 5, pp. 579-585.

[34] Ji, J.X., Pan, H., Liang, Z., 2003, "Further analysis of interpolation effects in mu­

tual information-based image registration", IEEE Transactions on Medical Imag­

ing, vol. 22, no. 9, pp. 1131-1140.

145

[35] Johnson, H.J., Christensen, G.E., 2002, "Consistent landmark and intensity-

based image registration", IEEE Transactions on Medical Imaging, vol. 21, no. 5,

pp. 450-461.

[36] Jones, C., Sun, Q., Gan, R. Z., 2002, "Computer-aided 3-dimensional modeling

of human ear", Engineering in Medicine and Biology, 24th Annual Conference

and the Annual Fall Meeting of the Biomedical Engineering Society, vol. 1, pp.

266.

[37] Ju, T., Warren, J., Carson, J., Bello, M., Kakadiaris, I., Chiu, W., Thaller, C ,

Eichele, G., 2006, "3D volume reconstruction of a mouse brain from histological

sections using warp filtering", Journal of Neuroscience Methods, vol. 156, no.

1-2, pp. 84-100.

[38] Kahaner D., Moler C , Nash S., 1989, "Numerical Methods and Software", Pren­

tice Hall Series in Computational Mathematics.

[39] Kennedy,D.N., Filipek, P.A., Caviness, V.R., 1989, "Anatomic segmentation and

volumetric calculations in nuclear magnetic resonance imaging", IEEE Transac­

tion on Medical Imaging, vol. 8, no. 1, pp. 1-7.

[40] Koplowitz, J., Greco, V., 1994, "On the edge location error for local maximum

and zero-crossing edge detectors", IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 16, no. 12, pp. 1207-1212.

[41] Lazebnik, R.S., Lancaster, T.L., Breen, M.S., Lewin, J.S., Wilson, D.L., 2003,

"Volume registration using needle paths and point landmarks for evaluation of

interventional MRI treatments", IEEE Transactions on Medical Imaging, vol.

22, no. 5, pp. 653-660.

146

[42] Lehmann, T.M., Gonner, C , Spitzer, K., 1999, "Survey: Interpolation methods

in medical image processing", IEEE Transaction on Medical Imaging, vol. 18, no.

11, pp. 1049-1075.

[43] Li, Q., 2009, "Rhythmic analysis of motion signals for music retrieval", Master

of Applied Science Thesis, Saint Marys University, Halifax, Canada.

[44] Likar, B., Pernus, F., 2001, "A hierarchical approach to elastic registration based

on mutual information", Image and Vision Computing, vol. 19, pp. 33-44.

[45] Luo, F., 2007, "Wavelet-based registration and segmentation framework for the

quantitative evaluation of'hydrocephaly,"', Master of Applied Science Thesis, Saint

Marys University, Halifax, Canada.

[46] MacQueen, J.B., 1967, "Some methods for classification and analysis of multi­

variate observations", Proceedings of 5-th Berkeley Symposium on Mathematical

Statistics and Probability, University of California Press, vol. 1, pp. 281-297.

[47] Maes F., Collignon, A., Vandermeulen, D., Marchal, C , Suetens, P., 1997, "Mul-

timodality image registration by maximization of mutual information", IEEE

Transactions on Medical Imaging, vol. 16, no. 2, pp. 187-198.

[48] Maintz, J.B.A., Viergever, M.A., 1998, "A survey of medical image registration",

Medical Image Analysis, vol. 1, pp. 1-36.

[49] Marr, D., Hildreth, E., 1980, "Theory of edge detection", Proceedings of the

Royal Society, vol. 207, pp. 187-217.

[50] Mclnerney, T., Terzopoulos, D., 1996, "Deformable models in medical image

analysis", Medical Image Analysis, vol. 1, no. 2, pp. 91-108.

[51] Jean-Pierre Moreau's Website of Numerical Analysis Sources. Website:

http://jean-pierre.moreau.pagesperso-orange.fr/.

147

http://jean-pierre.moreau.pagesperso-orange.fr/

[52] Mortensen, E.N., Barrett, W.A., 1995, "Intelligent scissors for Image Composi­

tion", SIGGRAPH 95. Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, New York, NY, USA: ACM Press, pp. 191-

198.

[53] Mortensen, E.N., Barrett, W.A., 1998, "Interactive segmentation with intelligent

scissors", Graphical Models and Image Processing, vol. 60, no. 5, pp. 349-384.

[54] Noblet, V., Heinrich, C , Heitz, F., Armspach, J.P., 2006, "Retrospective eval­

uation of a topology preserving non-rigid registration method", Medical Image

Analysis, vol. 10, no. 3, pp. 366-384.

[55] Orchard, J. , 2005, "Efficient global weighted least-squares translation registration

in the frequency domain", Image Analysis and Recognition (ICIAR), vol. 3656,

pp. 116-124.

[56] Orchard, J., 2007, "Efficient least squares multimodal registration with a globally

exhaustive alignment search", IEEE Transactions on Image Processing, vol. 16,

no. 10, pp. 2526-2534.

[57] Wong, A., Bishop, W., Orchard, J., 2006, "Efficient multi-modal least-squares

alignment of medical images using quasi-orientation maps", Proceedings of in­

ternational conference on image processing, computer vision, and pattern recog­

nition, pp. 66-73.

[58] Penney, G.P., Weese, J., Little, J.A., Desmedt, P., Hill, D.L.G., Hawkes, D.J.,

1998, "A comparison of similarity measures for use in 2-D-3-D medical image

registration", IEEE Transactions on Medical Imaging, vol. 17, no. 4, pp. 586-595.

148

[59] Periaswamy, S.,and Farid,H., 2003, "Elastic registration in the presence of in­

tensity variations", IEEE Transactions on Medical Imaging, vol. 22, no. 7, pp.

865-874.

[60] Pham, N., Morrison, A., Schwock, J., 2007, "Quantitative image analysis of

immunohistochemical stains using a CMYK color model", Diagnostic Pathology,

vol. 2, no. 8, pp. 1-10.

[61] Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A., 2000, "Image registration by

maximization of combined mutual information and gradient information", IEEE

Transactions on Medical Imaging, vol. 19, no. 8, pp. 809-814.

[62] Pluim, J.P.W., Fitzpatrick, J.M., 2003, "Image registration", IEEE Transactions

on Medical Imaging, vol. 22, no. 11, pp. 1341-1343.

[63] Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A., 2003, "Mutual information

based registration of medical images: a survey", IEEE Transactions on Medi­

cal Imaging, vol. 22, no. 8, pp. 986-1004.

[64] Pukelsheim, F., 1994, "The three sigma rule", The American Statistician, vol.

48, no. 2, pp. 88-91.

[65] Rusinkiewicz, S., Hall-Holt, O., Levoy, M., 2002, "Real-time 3D model acquisi­

tion", ACM Transactions on Graphics, Proceedings of the 29th Annual Confer­

ence on Computer Graphics and Interactive Techniques, vol. 21, no. 3.

[66] Sankar, P.V., Ferrari, L.A., 1998, "Simple algorithms and architecture for B-

spline interpolation", IEEE Transaction on Pattern Analysis and Machine Intel­

ligence, vol. 10, pp. 271-276.

[67] Schnabel, J.A., Tanner, C , Castellano-Smith, A.D., Degenhard, A., Leach,

M.O., Hose, D.R., Hill, D.L.G., Hawkes, D.J., 2003, "Validation of nonrigid im-

149

age registration using finite-element methods: application to breast MR images",

IEEE Transactions on Medical Imaging, vol. 22, no. 2, pp. 238-247

[68] Shannon, C.E., 1948, "A mathematical theory of communication", Bell System

Technical Journal, vol 27, pp. 379-423, 623-656.

[69] Shapiro, L.G., Stockman, G.C., 2002. "Computer Vision", Prentice Hall.

[70] Shen, S., Szameitat, A J., Sterr A., 2008, "Detection of infarct lesions from single

MRI modality using inconsistency between voxel intensity and spatial location-

a 3-D automatic approach", IEEE Transactions on Information Technology in

Biomedicine, vol. 12, no. 4, pp. 532-540 .

[71] Shin, M.C., Goldgof, D.B., Bowyer, K.W., Nikiforou, S., 2001, "Comparison

of edge detection algorithms using a structure from motion task", IEEE Trans­

actions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, pp.

589-601.

[72] Shirley, P., 2005, "Fundamentals of Computer Graphics", Second Edition, A K

Peters, Wellesley, Massachusetts.

[73] Skouson, M. B., Guo, Q., Liang, Z. P., 2001, "A bound on mutual information

for image registration", IEEE Transactions on Medical Image, vol. 20, no. 8, pp.

843-846.

[74] Studholme, C , Hill, D.L.G., Hawkes, D.J., 1999, "An overlap invariant entropy

measure of 3D medical image alignment", IEEE Transactions on Medical Imag­

ing, vol. 17, no. 4, pp. 586-595.

[75] Sun, Z.Y., 2005, "Using computer vision techniques on CT scans to measure

changes in ventricular volume to aid in the diagnosis of hydrocephalus", Master

of Applied Science Thesis, Saint Mary's University, Halifax, Canada.

150

[76] Tagare, H.D., DeFigueiredo, R.J.P., 1990, "On the localization performance mea­

sure and optimal edge detection", IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 12, no. 12, pp. 1186-1190.

[77] Takagi, A., Sando, I., 1988, "Computer-aided three-dimensional reconstruction

and measurement of the vestibular end-organs", Otolaryngol Head Neck Surg,

no. 98, pp. 195-202.

[78] Takagi, A , Sando, I., Takahashi, H., 1989, "Computer-aided three-dimensional

reconstruction and measurement of semicircular canals and their cristae in man",

Acta Otolaryngol, no. 107, pp. 362-365.

[79] Takahashi, H., Sando, I., 1992, "Stereophotography of computer-aided three di­

mensional reconstructions of the temporal bone structures", Otolaryngol Head

Neck Surg, no. 106, pp. 110-113.

[80] Taylor, J.R., 1997, "An introduction to error analysis: the study of uncertainties

in physical measurements", 2nd Edition, University Science Books.

[81] Thevenaz, P., Ruttimann, U.E., Unser, M., 1998, "A pyramid approach to sub-

pixel registration based on intensity", IEEE Transaction on Image Processing,

vol. 24, no. 1, pp. 27-41.

[82] Unser, M., Aldroubi, A., Eden, M., 1993, "B-sphne signal processing: Part II-

Efficient design and applications", IEEE Transaction on Signal Processing, vol.

41, no. 2, pp. 834-848.

[83] Unser, M., Aldroubi, A., Eden, M., 1993, "B-sphne signal processing: Part I-

Theory", IEEE Transaction on Signal Processing, vol. 41, no. 2, pp. 821-833.

151

[84] Wang, H.B., Northrop, C , Burgess, B., Liberman, M.C., Merchant, S.N., 2006,

"Three-dimensional virtual model of the human temporal bone: A stand-alone,

downloadable teaching tool", Otology and Neurotology, vol. 27, no. 4, pp. 452-457.

[85] Zagorchev, L., Goshtasby, A., 2006, "A comparative study of transformation

functions for nonrigid image registration", IEEE Transactions on Image Process­

ing, vol. 15, no. 3, pp. 529-538.

152

Appendix A

Registration Supporting Materials

A.l Review of Non-rigid Registration for Histo­

logical Sections

A non-rigid registration method with a deformable transformation is required espe­

cially when images of soft biological tissue need to be aligned to each other. Several

options for composing non-rigid registration are rigid and affine transformations, scal­

ing and skew, spline interpolation between point landmarks, warping, multiple affine

transformations, mechanical models, and rigid bodies plus warping and fluid flow [50].

However, fairly limited work has been done in reviewing non-rigid registration.

Most literature only covers rigid image registration. Auer et al. [3] stated that most

registration methods are only able to perform rigid-body motion and are sensitive to

noise and artifacts. Non-rigid registration is rarely performed in clinical applications,

because there is rarely any gold standard for evaluating the computed registration.

Issues associated with non-rigid registration are how to define the accuracy of the

registration results, how to validate the value of elastic coefficient, how to visualize

the registration results, and how to find robust features and similarity functions.

153

There has been an increase in using machine and complex computer algorithms

in performing image diagnoses, but the computerized process is sensitive to artifacts

and requires that the images are related to each other. Artifacts must be removed or

corrected and the images must be related to each other so that image comparison is

meaningful and objective [3].

Since elastic deformations in the specimens occur during the preparation, rigid

registration methods cannot be applied anymore. A non-rigid registration method is

required especially when images of soft biological tissue need to be aligned to each

other. Otherwise, the images are not well suited for comparison purposes, and many

available registration methods may fail.

Problems in registration may also arise if there are artifacts in images. Artifacts

produced during the specimen cutting process cannot be registered by using a con­

tinuous transformation function. Overlapping regions are not necessarily a problem

for a rigid registration. Nevertheless, problems may exist in a non-rigid registration,

because they occur locally and may cause undesirable local deformations [3]. There­

fore, it is important that such locally mis-registered points can be filtered out. Simple

consistency tests can detect such outliers. Using only a few constraints during the

consistency tests can ensure an accurate local registration [3].

Affine transformations are widely used to correct scaling errors or skew in images,

but they are unable to represent tissue deformation, and unable to represent differ­

ences between subjects. They are often involved in aligning functional images from

different subjects (cohort studies) [50].

Problems associated with non-rigid registration are how to define the registration

accuracy, how to validate the value of elastic coefficient, how to visualize the regis­

tration result, and how to find robust features and similarity function. Furthermore,

there is rarely any gold standard for evaluating the computed registration. Therefore,

non-rigid registration is currently rarely performed in clinical applications [30].

154

Appendix B

Segmentation Supporting

Materials

B.l K-means Clustering

The idea of k-means clustering is to:

1. Select k points to be the starting points for the centroids of the k clusters.

2. Assign each object to the centroid closest to the object, forming k exclusive

clusters of examples.

3. Calculate new centroids of the clusters. Take the average of all attribute values

of the objects belonging to the same cluster.

4. Check if the cluster centroids have changed their coordinates. If yes, repeat

from the Step 2. If no, cluster detection is finished and all objects have their

cluster memberships denned.

As it shows in Figure B.l, the difference between the current clustering results

and the previous one is tremendous. After cycles of running, the difference value is

155

Figure B.l: Performing k-means clustering on a histological section image. From top
left to bottom right (a, b, c, d)- a. The input image; b. The gray scale result image
with 3 clusters, c. The command field, d. The color result image

156

40.259, which is greatly reduced. After 31 cycles, the different does not change any

more. Therefore, the result is generated, and the program can be terminated.

The results show that the method is useful in clustering different regions of in­

terest into certain groups. In this project, it shows that the program can find three

clusters efficiently. The method of initial setting of the centroids leads to good re­

sults, because k-means clustering is sensitive to initial condition, and different initial

condition may produce different result of cluster. The algorithm may be trapped in

the local optimum. If the cluster number is three, the initial centroids have pixel

values of 0, 85, and 170. The setting leads to the better results than initializing

randomly. Different cluster numbers as input have been tested. The results show

that the program can find three clusters efficiently. Meanwhile, after approximately

32 cycles of running, the results can be generated.

k-means clustering has many weaknesses. The number of cluster, K, must be

determined before hand. It is difficult to know which attribute contributes more to

the grouping process since we usually assume that each attribute has the same weight.

B.2 Region Growing

A "traditional" region growing algorithm was implemented and tested. It has the

following steps:

1. Select a rectangular patch of the ROI completely inside the bright part which

needs to be segmented.

2. Calculate the mean value, avg, and standard deviation, a, of the selected patch.

3. Check each pixel in the image and search for those with gray value of avg.

During this step, the seed can be found. Its position in the original image is

stored using a binary image with value 1 correspondingly.

157

4. For every position in the binary image with value 1, the algorithm checks the

eight neighbor pixels in the original image (or four neighbor pixels in another

version of the algorithm). If the difference between the gray level of these

surrounding pixels and m is less than a, the position of the neighboring pixel is

stored in the binary image.

5. Each time a new pixel position is added to the binary image, the mean and

standard deviation of the pixel values referenced by the binary image are recal­

culated.

6. Repeat the above two steps until no more neighboring pixel is added. At the

same time, the result image is represented by a gray scale image with values 0

and 255.

158

Appendix C

Standalone GUI Programs

Several standalone GUI programs connecting a list of methods into a streamline are

described in this Appendix. They were mainly developed using .NET C # program­

ming.

C.l Transformation Programs

The Transform 1 program does rigid transformations on an image. It loads an image

and takes input of translation and rotation parameters from users. The screen shot

of the program is shown in Figure 5.2.

The Transform2 program does the affine transformation on an image. Besides

translation and rotation, it does scaling and shearing. In Figure C.l, slice No.51 is

loaded and displayed in a transformation program that we developed in C # . It shows

a result of an affine transformation that has been performed. Originally, the bottom

left corner of the image is in the origin (0, 0) point. It includes translation, rotation,

scaling and shearing to obtain this result image.

C # programs were developed to understand and study image registration and

transformation techniques. Amira is used for rigid registration on histological sec-

159

A"

I * -

- IP, ' •« l

,& i V < * , . - -

« - ^ . ! • • , - .

-200

-250

Figure C 1: Affine transformation on a histological section, the Transform2 program.

tions.

C.2 Rename 1 Program

The Rename 1 program renames a list of images to GIF images using original names,

as in PSD files. To bring original names back to files, Renamel was developed to:

1. Read a list of images with original names, and have an option to automatically

save them to GIF images.

2. Save the original names in a file that can be used for renaming images in any

later step.

3. Load another list of images and rename them with the original names.

4. Convert them to GIF images for processing in CVlab.

160

CVDDnve Thests\$ Th«is\$ Volume testing Mar 7\Case48SKftregisleietft00OObmp Image Size: | raTGOO 11/20/200911 42 41 AM
IIU. ••••"••'-•' I •IMIIIHIU ,-.J.I II IIIJL.,,1111111

Figure C.2: A screenshot of the program Rename 1.

The program allows loading all images by one click on only one image in the

folder. It uses array-list data type to store the image list, and another array-list to

store all image names. Since image names are strings and need to be sorted, when

registered images are saved from Amira, they need to be 001, 002, etc., instead of 1,

2, etc. Original image names also should be named 001, 016, 123, etc., instead of 1,

16, 123, etc. Only if these string operations are handled, correct names can be added

to image files accordingly in an order.

The program GUI is shown in Figure C.2:

C.3 Rename2 Program

We developed another C # program, Rename2. The GUI is shown in Figure C.3.

161

Figure C.3: A screenshot of the program Rename2.

162

Rename2 is developed for more general purposes:

1. Image conversion among formats, e.g., JPG, GIF, PNG, and BMP

2. Adding or removing letters in front of all names

3. Putting "0" or "00" before all image names

C.4 SelectObject Program

The SelectObject program runs in the following steps:

1. At program start, automatically load all images and pop-up an Excel sheet that

is for data analysis.

2. Select one object in the first image using a patch, shown in red rectangle, inside

the ROI

3. Click NEXT or press ENTER and bring up the next image after the selection

is satisfactory

4. The image shows up and display the previous selection with the selected patch

(shown yellow) from the last image

5. If the yellow patch applies for the current image, click NEXT to the next image;

if not, update the selection, and click NEXT

6. Iterate the above two steps until the last image. The program pops up a "Com­

plete" message box, after all images are selected

7. The CVlab script is written into a file, storing selection coordinates x and y in

a list of commands.

163

« "j B i u 1^ I* ^ 5 5 i | « -H [i j (" T - " "" >««•> J
f ^ u d - F L ^"4 lu i h -C EJ ^ T x Solution Espta

Figure C.4: A screenshot of a GUI program for selecting an object (ROI)

8. For each selection, store a list of attribute values, and calculation in an Excel

sheet that started in the beginning Stored attributes are seven columns of data

in the selected patch region, e.g., image number, mean, standard deviation,

median, min, max pixel, and selected area values.

The program GUI is shown in C.4, with the synchronized Excel sheet behind:

The program has several advanced features and advantages:

1. It has simple and user-friendly GUI design. Selection of 50 images can be done

m less than one minute manually

2. Scripting for CVlab, Excel sheet writing and calculation is fully automatic. Be­

sides seven columns of values, the Excel sheet can update the mean and standard

deviation values for them. It is convenient for data analysis, particularly for

robustness and accuracy analysis, e g., sensitivity to selection offset.

3 The program finds and stores all target images in a list without manual oper-

164

ation so that testing several times become convenient. It also knows when the

list is finished.

4. It saves data in a newly created folder named by current time, e.g., "Selection

2009-3-18 0-49-49". It helps organizing when testing for many times.

5. An advantage of the current algorithm (especially the region growing part) is

that it works for both light and dark regions.

C.5 Advantages of GUI programs

Above GUI programs were developed to assist simple and automatic data transmission

between Windows and Linux systems, as well as different software applications.

Particularly, Amira, a commercial software package with advanced 3D visualiza­

tion features, was used for the registration and final 3D reconstruction step. CVlab,

a Linux program that has many basic image processing and computer vision routines,

was applied to develop a portion of important algorithms. Several GUI applications

were developed to integrate all steps into one streamline. They mainly provide fea­

tures, such as script writing, data passing, image renaming and format conversion.

The reason not having all programs in Windows A reason to keep segmenta­

tion in CVlab is that it uses a number of existing algorithms in CVlab, e.g., histogram,

mean and standard deviation calculations, sobel algorithm, a variety of filtering, nor­

malization and so on.

Segmentation algorithms do not compile, unless all of C programs and their sub­

routines are ported to c # programs. CVlab has been useful, since there are many basic

algorithms available. There would be a large amount of work for porting segmentation

to Windows. Then, there would be integration work needed to connect segmentation

165

programs in Windows and other c # programs. Also, the code structure /architecture

will be changed. There should be more issues than one could see too.

Besides, for testing one image step, copying the images between CVlab and c #

program only need less than 1 minute. In testing, most algorithms need several

seconds to complete. There is not a particular step that is very slow.

Such a layout of algorithm components in a streamline seems suitable in our

applications. The GUI tools usually require two to three clicks, but provide convenient

connectivity for steps in Amira, Linux CVlab, and main c # programs.

166

Appendix D

Interpolation Supporting Materials

Table D.l lists various PCHIP implementations in C++, python and Fortran77. They

are analyzed for porting and then integrating into C # .

An actual dataset sample (CT images, incus, No. 36 to No. 66) was tested. Every

fifth image contour points were interpolated using both C # program (calling Hugin

C + + pchip routine) and Matlab. The interpolants as in Figure D.l match perfectly.

Besides, several sample interpolated values are in Table D.2 to show they are equal.

N a m e
PCHIP

spline, cpp
MonotCubicInterpolator.cpp/hpp

pychip.py

Language
Fortran77

C++
C++

Python

A u t h o r / R e s o u r c e
Fred Fritsch [23]
John Burkardt

public. ict. sint ef. no
Chris Michalski

Table D.l: Various PCHIP implementations

167

z Value
39
40
42
43
49
54
55

C # Pchip DLL
263.976
263.232
263.8
265.8
277.608
277.056
276.312

Matlab Pchip Routine
263.976
263.232
263.8
265.8
277.608
277.056
276.312

Table D.2: Sample interpolated values show equal results of Matlab and C # program,
CT incus

/ \

\ / O control points

monotone spline

35 JS 40 42 44 4fe 4S 50 52 54 S3 5S 60 62 64 35

Figure D.l: Verification test on Hugin C + + Pchip Routine using Matlab, CT in­
cus test. From left to right: a. matlab Pchip interpolation on control points; b:
interpolants in Matlab and C # program calling Hugin C + + Pchip DLLs overlap
completely.

168

