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Abstract 

Improving Sugar Beet {Beta vulgaris L.) Productivity Following Inocuation with 

Gluconacetobacter spp. 

By Abuduxikuer Abudureheman 

Gluconacetobacter diazotrophicus is nitrogen fixing endophyte that associates with 
sugar cane. Fourteen strains of Gluconacetobacter spp., including Gluconacetobacter 
diazotrophicus, were tested for capability of fixing nitrogen in sugar beet at 1 mM and 
10 mM NO3". Inoculation at different growth stages with different bacteria 
concentrations was assessed in sugar beets provided 5 mM NO3" to evaluate its impact 
on infection level and capacity of nitrogen fixation. A 16S rRNA based PCR technique 
was applied for identification of isolated strains. GUS labeled strains were also used to 
investigate the possible sites that the bacteria infect the host plant. Results showed that 
certain strains improved plant growth significantly. A greater biomass increase and 
higher nitrogen fixation was found at lower nitrogen treatments. Utilization of GUS-
labelled strains of Gluconacetobacter diazotrophicus indicated that root tips, root hairs 
and the intersection of lateral roots were possible sites of infection by the bacterium. 
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1. GENERAL INTRODUCTION 

The earth's climate is changing continuously, but unlike earlier dramatic changes that 

occurred in planet's history, this time human influence is adding to this change. 

Increased using of fossil fuels by humans is enhancing the greenhouse effect, generating 

unpredictable climates along with warmer temperatures overall. Climate change has 

become a part of scientific agenda since the 1970; however, it only attracted significant 

international concern starting in the 1990s. Now, global climate change is not only the 

scientific and social issue but more importantly it is also economical and political issue 

worldwide (Dawson and Spannagle, 2009). 

Approximately 50 different gases are released by human, contributing to the 

greenhouse effect. However, many of those gases are only in small quantities that do not 

significantly contribute to global climate change. The significant contributors include: 

carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Carbon dioxide is the 

most important greenhouse gas, contributing 77% of 2004 emission, followed by methane, 

14%; nitrous oxide, 8%, and the synthetic gases, 1% (IPCC, 2007; WRI, 2005). 

Consumption of fossil fuel is responsible for the most significant source of CO2 emissions, 

accounting for more than 70% global emission (WRI, 2005). CO2 emissions from fossil 

fuel consumption have dramatically increased up to 145% followed economic growth 

during 1970-2004 (IPCC, 2007; IDA, 2007). The bulk of 8% N20 emission derives from 

fertilized agricultural soil due to increased food demand for rising of world population 

(IDA, 2007). 
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Carbon dioxide is an essential substrate of photosynthesis in plants and other 

photoautotrophs, as well as an important greenhouse gas which absorbs and re-emits 

infrared radiation. However, release of CO2 from burning fossil fiiels greatly contributes 

to increasing of atmospheric CO2 concentration, which negatively affects earth's surface 

temperature causing more warmer and unpredictable climate. In 2010, the atmospheric 

CO2 concentration reached to 390 ppm (parts per million) from 280 ppm of pre-industrial 

times (Pieter, 2009) and present level is higher than at any time during last 800 thousand 

years (Jonathan, 2006). Global temperatures have increased by 0.76 °C since the 

industrial revolution and it has been speculated that there will be 0.5-1.0 °C increase in 

global temperature in next 50 years, even if emission of greenhouse gases is inhibited 

completely. GHGs emitted until today guarantees further increase of 1.5-2.0 °C compared 

to pre-industrial times (Dawson and Spannagle, 2009). It is hypothesized that humans will 

adapt this magnitude of global temperature change regardless of direct adverse effects. 

However, studies indicate that exceeding 2 °C of temperature increase most likely results 

in significant adverse impacts on natural ecosystems and biodiversity (IPCC, 2002; 

Lanchbery, 2006). Base on the Intergovernmental Panel on Climate Change (IPCC) 

research date, climate change may accounts for the single largest factor for biodiversity 

loss in 20th century. Coupled with the fact that current species extinction is above natural 

extinction rate due to human damages, it is estimated that more than half of the species on 

earth may no longer exist by 2100 (Meyer, 2006). Further, warmer climate melts ice 

sheets, causing rising of sea levels and shifts in climate zones. Thus, greenhouse effect 

not only influences the biodiversity of natural ecosystems but also will have huge impact 

on agriculture production due to changing of annual and seasonal precipitation patterns, 
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and increasing frequency of extreme climates. Reduction of agriculture production is a 

serious issue considering 3 billion population growth is expecting in next 40 years (Cohen, 

2005). Thus, global crop production has to increase to meet the demand of 9 billion 

people by 2050. Even though the changes in climate conditions might increase the crop 

yields in some regions, such as northern part of Canada, changes in temperature and water 

availability will negatively influence crop production of most regions, especially in 

tropical regions. 

From an energy point of view, fossil fuels are non-renewable sources and account for 

more than 80% of world energy consumption (IEA, 2006). The world oil production 

reached its peak in 2000, followed by coal and natural gas (US Department of Energy, 

2004). About 90% of discovered oil is already in production, leaving very little growth 

for future field discovered (Koppelaar, 2006). However, demand and consumption will 

increase at 1-2 % per year up to 2030 (IEA, 2006). In the last 30 years, more fossil fuels 

have been consumed compared to last two preceding centuries and it has been estimated 

that the consumption will double by 2050 (WRI, 2005). Fossil fuels are vital part of 

global economy and any changes that might occur in this energy sector will directly have 

impact not only on global economy but most countries' political stability as well. Thus, 

depleting the oil, coal and natural gas reservoirs will impact every country on the planet. 

On the other hand, the elevating atmospheric CO2 level from fossil fuel consumption 

urgently demandes a switch to more greener and renewable energy sources. 
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A possible solution for mitigating greenhouse gas emissions derived from fossil fuel 

consumption is finding and obtaining primary energy from renewable sources and carbon 

storage. Bioefuel as a renewable energy sources, are promising due to the fact that it is 

derived from recent living organisms or metabolic waste and can be efficiently stored, 

unlike other renewable sources; therefore, biofuels is not only a greener energy source but 

also a sustainable source. Biofuel can be in liquid, solid and gas forms. Solid forms of 

biofuel (biomass), such as wood, manure and crop residues, are the major energy source 

of 2.5 million people in developing world (Dawson and Spannagle, 2009). Biogas, 

derived from anaerobic digestion of city and animal wastes to produce methane (CH4), is 

gas form of biofuel. All commercial biofuels comes in liquid form as either bioethanol or 

biodiesel and bioethanol blends up to 10% gasoline can be used in regular cars without 

any modification of engines. Unlike bioethanol, biodiesel can directly replace the fossil 

fuel derived diesel. Bioethanol, a substitute for gasoline, is produced from sugar and 

starch rich crops, while biodiesel is generated from plant and animal oils. Historically, 

both liquid forms of biofuels have been used as fuel over a hundred years (Dawson and 

Spannagle, 2009). The transport sector currently produces 14% of greenhouse gas 

emissions using conventional fuels and the demand for the fuel is estimated to grow as 

much as 50-60% by 2030 (Ibid ). Biofuels are already proven to be an important part of 

greenhouse gas mitigation. The International Energy Agency estimates that biofeul 

production most likely increase up to 6-8% per year until 2030, indicating 4-6 fold 

increase in production. Thus, biofuels will fuel 4-7% of transportation by 2030 (IEA. 

2006a). Some studies even indicate that biofeul could possibly provide 10 % of 

transportation fuel by 2030 (WBCSD, 2007). 
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Bioethanol production has rapidly increased during the 1990s and the production 

double in the decade, reaching 20 billion litres in 2000. Corn-based ethanol production in 

US accounted for 40% of world bioethanol production in 2000, while Brazil remained the 

largest producer of biofuel production in the world. More than 40% of its transportation 

runs with bioethanol generated from sugar cane (WBCSD, 2007; Isherwood, 2006). In 

2006, the bioethanol production reached 52 billion litres, doubling the production in short 

six years (Ibid). 

Brazilian sugar cane-based ethanol production at 0.2-0.5 $US/litre is much more 

efficient and cheaper than corn-based production at 0.6-0.8 $US/litre (WBCSD. 2007; 

Crutzen et al. 2007). One of the major reasons for lower cost of production is that 

Brazilian sugar cane requires less amounts of nitrogen fertilization due to a nitrogen 

fixing bacteria, Gluconacetobacter diazotrophicus, which is specific to sugar cane and 

can contribute up to 150 kg of N ha"1 per year (Boddy et al. 1991, 1995; Cavalcante et al. 

1988; James, 2000; Sevilla et al. 2000). One unique characteristic of this bacterium is 

that it thrives in medium as high as 10% of sugar concentration (Cavalcante & Dobereiner, 

1988). Given the fact that sugar cane is a tropical and sub-tropical plant, it cannot be 

grown in Canada. However, considering sugar beet is suited for temperate climates and 

the sugar content is 25 % higher than that in sugar cane (World Bank, 1998; Weeden, 

2000), it is hypothesized that introduction of this endophytic nitrogen fixing bacterium, 

Gluconacetobacter diazotrophicus, into sugar beet might also benefit the new host plant 
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with fixed nitrogen through nitrogen fixation. The potential nitrogen fixation in sugar beet 

will reduce the high costs on fertilization, making it more desirable plant for ethanol 

production at a lower cost in Canada. 

A series of studies have been conducted to introduce the nitrogen fixing endophytic 

diazotrophs species, Gluconacetobacter diazotrophicus spp. and Gluconacetobacter 

johannae spp., into sugar beet. Forteen strains of Gluconacetobacter spp. were tested to 

find the most effective nitrogen fixing stains. The screening experiment was conducted 

both in 1 mM and 10 Mm nitrogen concentrations to assess the possible impacts of 

different nitrogen concentrations on nitrogen fixation. Sugar beet seeds were also 

inoculated at different growth stages to evaluate if inoculation time affects nitrogen 

fixation. Sugar beet seeds were also inoculated with different bacteria concentrations at 

seed and seedling stages to evaluate if inoculant number is an additional factor that 

influences nitrogen fixation in the plant. In all experiments, the 15N dilution technique 

was used to quantify nitrogen fixation by the endophytic diazotrophs. Bacteria were also 

isolated from inoculated plants and the 16S rRNA molecular technique was applied to 

confirm the isolates. Finally, using GUS (beta-glucuronidase) labelled strains of 

Gluconacetobacter diazotrophicus, infection sites of sugar beet by bacteria were 

visualized with aid of microscope. 
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2.0  LITERATURE REVIEW 

2.1 Biofuel 

Biofuels are a wide range of fuels which are mainly derived from plant-based sources, 

or biomass. Generally, these fuels can be in a solid, liquid or gaseous state (Demirbas, 

2009). Bioethanol and biodiesel are the mostly widely used biofuels and are more similar 

to conventional petroleum fuel and in liquid form. Ethanol is mainly generated from 

either fermentation of sugar from sugarcane, sugar beet and sorghum; or saccharification 

of starch from corn, wheat and manioc. Second generation bioethanol comes from 

hydrolysis of cellulosic biomass, such as trees and grasses but it is still in developmental 

stages (Zuurbier and Vooren, 2008). Bioethanol can be directly used as fuel for vehicles 

but normally it is used as blending agent with gasoline to boost octane and reduce carbon 

emissions. Biodiesel is mainly produced from vegetable oils, animal fats or recycled 

grease. Major sources of vegetable oils are rapeseed, soybean, canola, corn and palm oil. 

Algae is considered an alternative future feedstock for biodiesel and represents the third 

generation of biofuels, producing 200 times more yield (per acre) than vegetable oils. 

Difficulties lie in creating cost-effective cultivation system (Sheehan, 1998). 

Biofuels have been considered automobile fuel since the emergence of auto industry 

one century ago. However, production of biofuel is hampered by abundant and cheap 

petroleum (Zuurbier and Vooren, 2008). Nevertheless, interests on biofeuls like ethanol 

and biosiesel increased dramatically in last few years (EIA, 2007). Growing emissions of 
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pollutants and high oil prices are major reasons for this increase. Additionally, scarcity of 

fossil fuel sources, and reducing greenhouse gas emissions urge immediate transition to 

more sustainable and renewable alternative energy source, while increasing demanding 

on energy caused by increasing of world population and development of third world 

countries making this change imperative (Sensoz et al. 2000). Transportation consumes 

30% of the world's energy, of which, 99% comes from traditional fossil fuel (EIA, 2007). 

Thus, transportation sector expects this transition more than any other sector. 

2.1.1 Biomass 

Biomass is organic feedstock derived from plants through photosynthesis, including 

woody plants, agricultural residues, organic waste by-products, energy crops, municipal 

green waste and forestry (Schuck, 2006). Biomass is the oldest form of renewable energy 

and is the most used renewable energy source in the today's world, reaching 13.8% in 

2000 compared to 6.7 % in 1990 of global total annual energy (Klass, 2004). In general, 

biomass contributes around 10% of total energy supplies in industrialized countries 

compared to up to 30% of developing counties (IEA, 2007). Canada as world's top 

exporter of wood products, over 60% of renewable energy comes from biomass- mostly 

from wood residues and Canada's grain ethanol production from biomass reached more 

than 1 billion tonnes in 2008 (IEA, 2006). 

World renewable energy represnts 18% of global energy supply, of which, over 55 % 
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comes from traditional biomass- wood products (Demirbas, 2001). However, as demand 

for energy is increasing exponentially in response to continuous growth of world 

population and scarcity of non-renewable energy sources, it is necessary to exploit new 

and more abundant energy sources via developing newer technologies, such as cellulosic 

ethanol production (Champagne, 2008) and wood feedstocks are more abundant than 

starch, sugar or oil (Rajagopal and Zilberman, 2007). Switchgrass and Miscanthus are 

major perennial grasses undergoing trials to test the breakdown of cellulose in cell walls 

of plants to convert into ethanol, holding enormous potential for future ethanol production 

(Lynd, 1996). Even though this technology is still developing, it will make feasible the 

utilization of the nongrain parts of crops, such as corn stover, rice hust, sorghum stalk, 

bagasse of sugarcane and any wooden materials for ethanol production, increasing 

sources of biomass (Wyman, 1999; Lynd, 1996). 

Biomass as the fourth largest energy source after coal, oil and natural gas, and is a 

major source of energy for 50% of world's population (Karekezi and Kithyoma, 2006); its 

development and production depends on land availability. Currently, 0.19% of world land 

is using for energy crops, represents only 0.5-1.7% of agricultural land (Ladanai and 

Vinterback, 2009). Therefore, future energy from biomass greatly depends on extension 

of land availability and agriculture is the largest potential contributor of future food and 

world biomass for renewable energy supply. 
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2.1.2 Oil Seed biofuel crops 

Biodiesel, in contrast with ethanol, is generated from oilseed crops and animal fats 

(Demirbas, 2001; Sheehan, 2000). Among 350 oil-bearing crops, only soybean, palm, 

sunflower, cottonseed, rapeseed, and peanut oils are considered potential biodiesel source 

(Goering et al. 1982). Using vegetable oils as energy source has started a hundred years 

ago when diesel engine was invented and diesel engines run can run on various vegetable 

oils back then (Bartholomew, 1981; Nitscheke and Wilson, 1965). Now biodiesel can be 

blended with fossil fuel up to 50% (IEA, 2007b). 

Vegetable oil is attractive for biodiesel production from environmental point of view 

and it is renewable. Currently, the major disadvantages of these crops are low yield and 

high inputs, and that they may raise a variety of concerns such as increased food prices. 

However, increasing prices of fossil fuel has renewed interest in vegetable oils (Demirbas, 

2008). Oil seed and nut kernels contain 20-60% of oil (Demirbas, 2008). USA is the 

world largest soybean producer and soybean is becoming primary biodiesel source along 

with rapeseed, while palm oil is produced mainly in Malaysia and Indonesia. Whereas, 

the rapeseed is the most commonly produced in Europe (Demirbas, 2008), Germany 

producing 50% of global biodiesel in 2005 (Martinot, 2005). Increased demand for 

agriculture to produce biodiesel, biofuel overall, may increase the declined income of 

farms; therefore reduces subsidies for farmers (Hazell and Pachauri, 2006). 
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Biodiesel from animal fat, $ 0.4-0.5/ litre of gasoline equivalent (lge), is relatively cheaper 

than vegetable oil, $0.6-0.8/lde (IEA, 2007b). Currently, biodiesel production is more 

expensive compared to petrodiesel, and biodiesel production is heavily depend on 

feedstock and land availability more than bioethanol production, nor it can displace 

current fossil fuel use (Bala, 2005). As US an example, If all the oilseed production, 

animal fats and recycled grease were used for biodiesel production, only 4 billion gallons 

of diesel could be produced, less than current production of corn-based ethanol (Schnepf, 

2007). Therefore, the research on converting non-food plant materials, including 

agricultural biomass waste such as corn stover and cereal straws, and energy crops into 

synthetic biodiesel is underway, which surely brings the potential to produce a great 

amount of biodiesel from cellulosic materials avoiding of agricultural supply and price 

concerns (CRS, 2007). 

2.1.3 Sugar crops 

Sugar and starch rich crops like sugarcane and corn are major sources to produce 

world's ethanol today. Additional crops include cereals, sorghum, potatoes and sugar beet. 

There are three main means to produce ethanol from biomass: fermentation of sugar from 

sugarcane, sugar beet and sorghum; saccharification of starch from corn, wheat and 

manoic; and hydrolysis of cellulosic materials (Goldemberg, 2007). Currently, corn in 

US and sugarcane in Brazil produce 90 % of world ethanol (Goldemberg, 2007). Even 

though 98% of US ethanol comes from corn, accounting for 20% of corn produced 

annually, however it can only represents about 3.6% of annual gasoline demand and cost 
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for corn based ethanol is twice compared to sugarcane-ethanol production (Worldwatch 

Institue, 2006). Under the most optimistic condition, tripling the corn-based ethanol 

production to over 60% of corn annual production can only replace 7.2% of US energy 

supply (CRS, 2007). 

Further, the notion that ethanol from corn reduces green house gas emissions is only 

establishes when no fossil fuel and fertilizers are added. Additionally, for sugarcane-

ethanol, the net energy gain is 8.5: 1 and most biodiesel, the net gain is 2.5 : 1 while corn-

based ethanol cannot be compared to those numbers even when it bears the highest yield 

possible (Gail, 2007). Being a food crop is another major drawback of corn, indicating it 

might have to compete with agricultural food land and can have negative effects on food 

prices. Therefore, the interest in converting municipal wastes and animal manures, as 

well as cellulose biomass, into sugars by hydrolysis is also developing along (Champgne, 

2007). 

Sugarcane based ethanol is considered green and is produced at competitive price 

with gasoline. In addition, sugarcane waste (bagasse) can be used as energy source to 

ethanol plant, reducing energy costs (CRS, 2007). Brazilian sugarcane, a tropical plant, 

has already producing 16 billion litres per year, dominating the world bio-ethanol 

production (Goldemberg, 2007). Brazilian ethanol is entirely depending on sugarcane and 

reached peak in the 1980s, then declined due to lower fossil fuel prices. However, 

sugarcane-ethanol production increased dramatically beginning of this century due to 

higher oil prices and lower production costs (Goldemberg, 2007). 

12 



Sugarcane needs much less fossil fuel input, 10-12%, compared to corn and reduces 90% 

of CO2 compared 15-25% of reduction in corn, whereas sugar beet needs relative high 

amounts of inputs and reduces 50-60% emission compared to gasoline. Corn based 

ethanol is quite energy intensive process and energy input is as high as 60-80%. In terms 

of cost, sugarcane is more viable and comparable to fossil fuels, costing $0.3/lge (litre of 

gasoline equivalent) compared to $0.3-0.4/lge of gasoline, while corn (US) and sugar beet 

(EU) cost $0.6-0.8/lge with potential reduction to $0.4-0.61ge, where sugar beet energy 

output is higher than corn (IEA, 2007b). 

2.1.3.1 Sugar beet 

Sugar beet (Beta vulgaris L.) is a biennial temperate climate root crop, herbaceous 

dicotyledon, and belongs to the family Chenopodiaceae. During its first year of growth, 

it accumulates sugar and stores them in its large tuber-like root to over winter. During the 

next year, it produces flowers and seeds; therefore, it is normally sown in spring and 

harvested at the end of the first year unless being grown for seed. Sugar beet only has 250 

years of history and percentage of sucrose in beet was as low as 7.5% during the 1800s. 

Then it was raised to 17 % (fresh weight) using progeny test methods by Luois Vilmorin 

in the late 19th century and sugar content can vary between 15-25 % depending on growth 

conditions (Singh et al. 1985; Martin et al. 2006). For sugar processing sugar beet, it 

contains 17% sugar and 75% water (World Bank, 1998). Sugar beet is on average grown 

17.8 million acres, 6 million ha (2000-2003) and production is about 266 million tons or 

18 tons/acre (Martin et al. 2006). Before the twentieth century, sugarcane accounted for 



95% of world sugar production, however, by late twentieth century sugar beet accounted 

for 40% of world sugar consumption (Atanassov, 1986). 

Sugar beet germinates at about 16 °C but germination is more rapid at 28 °C. The 

optimum temperate for plant growth is 24 °C, however, 17-20 °C is most desirable for 

root growth. Temperature directly influences sugar content of beet; the highest sugar 

content occurs temperature between 19 -22 °C and temperatures at 30 °C or above 

negatively effects sugar accumulation (Terry, 1970; Brandes et al. 1941). However, cool 

nights does not do harm to the beet. Application of access nitrogen or application in the 

late season causes decrease of sugar content and increases impurities in the beet 

(Mortvedt et al. 1999). Normally sugar beet requires about 8 kg of nitrogen for per ton of 

roots and applying before seedling or mid-season is desirable for higher content of sugar 

and for higher yield (Martin et al. 2006). 

Sugar cane as world's main source for sugar production, it is not grown in Canada due to 

climate is too cold for tropical plant. While, the nation's the largest portion, 90%, of sugar 

depends on importing raw sugar from sugar cane, and the rest depends on sugar beet 

grown in Canada (Agriculture and Agri-Food Canada, 2009). In 2006, sugar beet is 

grown almost 20,000 hectares mostly in Alberta and Ontario, producing 1.2 MT of sugar 

beets, which is 35% higher compared to 2001 statistics (Statistics Canada, 2008). Alberta 

accounts for 81% of Canada's sugar beet area and sugar content can reach 19% by weight 

compared to 10% of sugar cane. However, an average yield of sugar beet is 50 T/ha, 
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producing 6-7 tons of sugar on average. While 1 hectare of sugar cane producing about 

100 tonnes of biomass, equals to 5-10 tonnes of raw sugar (Statistics Canada. 2008). 

1.2 Nitrogen fixation 

The growths of plants require the availability of mineral nutrients and nitrogen is the 

most limiting among all the mineral nutrients. Nitrogen is a necessary building block for 

nucleic acid and proteins. The earth's atmosphere contains nearly 80% of nitrogen in gas 

form (Dixon & Wheeler, 1986). However, a vast majority of organisms cannot access this 

abundant supply of nitrogen source due to the strong triple bond between the two nitrogen 

atoms, making the molecule non-reactive, until it is fixed (combined) in the form of 

ammonium (NH4+) or nitrate (NC>3+). Nitrogen is fixed industrially by Haber-Bosh 

process, converting combined nitrogen and natural gas into ammonia (N2 + 3H2 = 2NH3), 

a high energy consuming process. In nature, lightening also fixes nitrogen at certain level, 

ionizing the molecules in the atmosphere and enables them to combine and form nitrogen 

oxide, which dissolves in rain and forms nitrite (NO2-) and nitrate. However, 

atmospheric nitrogen fixation only accounts for less than 10% of totally annual yield of 

fixed nitrogen (Kar et al. 2002). By far biological nitrogen fixation by soil 

microorganisms has the most significant role in agriculture after industrial fertilizers 

(Dong et al. 1995). Nitrogen fixing bacteria combines nitrogen with hydrogen to create 

compounds that are easily usable by plants; therefore, recovering the fertility of soil via 

biological nitrogen fixation has profound ecological effects and has a great agronomic 
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importance. Some of these bacteria are found in soil while some others live in association 

with roots of plants. In exchange for fixed nitrogen, the plant provides the bacteria with 

organic acids as energy source for growth. Thus, both partners benefit from this 

relationship and it is where they gained the name symbiotic nitrogen fixation. 

2.2.1 Legumes 

Legumes, pod-bearing plants, belong to the family of Fabaceae (Leguminosae), which 

is the third largest family of flowering plants (Hirsch et al. 2001). Increasing productivity 

of non-legume crops by crop rotations with legumes was described by Romans over 2000 

years ago. However, the production of beneficial effect of legumes was not explained 

until 1800 (William, 2008). Now, it is widely accepted that the positive effect of legumes 

in increasing crop productivity attributes to those nitrogen fixing soil bacteria called 

rhizobia, belonging to the genus Rhizobium (William, 2008). 

Rhizobium resides within root nodules of legumes. Association of legumes with 

Rhizobium spp. has an extreme importance in sustainable agriculture. Ten percent of 

legume N is left in the root after harvesting and N directly deposited into soil during root 

development have an utmost importance in maintaining soil fertility (Kipe-Nolt and 

Giller, 1993; Giller, 2001). The importance of legumes is not only because of legumes 

conserve nitrogen fertilizers, but also seeds and plants contain high percentage of protein; 

thus, legumes are nutritionally important for both humans and animals (Vance et al. 
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2000). Legumes take 11% (approximately 275 million hectares) of world's agriculturally 

arable land and provide more than 33% of mankind's nutritional N requirement (Food and 

Agricultural Org. of the United Nations, 2003; Vance et al. 2000). 

2.2.2 Legume-Rhizobium symbiosis 

The agricultural importance of the symbiotic relationship of legume-rhizobia is well 

established, in which a legume supplies rhizobium with carbohydrates as energy source 

and rhizobium supplies the host with fixed nitrogen in the form of ammonia. Despite 

the fact that Leguminosae is a massively large family, including about 750 genera and 

20,000 species, not all genera or species form root nodules, a tumor-like root structure, 

associated with rhizobium (Dixon and Wheeler, 1986). Thus, legume-rhizobium 

symbiosis is highly species specific. 

The uniqueness of this symbiosis lies in the fact that this association maximizes the 

transfer of fixed nitrogen to the plant from rhizobia residing harbor (Karl and William, 

2002). In legume symbiosis, root nodules not only protect the bacteria by providing them 

a shelter but also providing with a low O2 content, which has a vital significance because 

nitrogenease, the enzyme that catalyzes biological nitrogen fixation, is denatured by O2. 

However, low concentration of nitrogen must be available for bacteria to survive and 

generate energy to drive nitrogen fixation (Karl and William, 2002). 
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Effective infection of legumes by rhizobia and establishment of legumes-rhizobia 

symbiosis involves recognition of signal molecules between the host and the bacteria in 

the soil (Hirsch et al. 2003; Zhang et al. 2002). Rhibozia living in soil are able to sense 

flavonoids, plant secondary metabolites, secreted by host roots and these flavonoid 

molecules trigger production of a set of nodulation molecules known as Nod factors by 

the bacteria (Zhang and Smith, 1995; 1996). Then, recognition of Nod factors by the host 

plant roots leads to a number of biochemical and morphological chances, such as cell 

division, root hair curling and elongation (Dixon and Wheeler, 1986). Root hair growth is 

re-directed to encircle the rhizobia multiple times (Sprent and Sprent, 1990). 

Further, not only can this symbiosis relieve the requirements for nitrogen fertilizers 

during the growth of leguminous crops, it can also result in yields in nitrogen-deficient 

soils where most cereals and non-leguminous crops would barely survive. Additionally, 

inoculation of legume crops is not only an inexpensive means of N fertilization, compared 

to chemical fertilization, at a rate of $ 2-3 per acre but it does not pollute the water and 

soil (Vessey, 2004). Thus, Applying additional nitrogen fertilizer, however, suppresses 

N2 fixing symbiosis due to the reason that plants have enough nitrogen in the soil and do 

not have to spend energy to form nodules to obtain more nitrogen by feeding the 

rhizobium. Globally, about 70-80% of total 17.2 x 107 tons of fixed nitrogen is reduced 

by legume-rhizobium symbiosis (Burris, 1980; Ishizuka, 1992). 
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2.3 Free-living nitrogen fixing bacteria and plant growth promoting 

rhizobacteria 

Following increasing discovery of various groups of nitrogen-fixing microorganisms, 

the concept that plants stimulate proliferation of microorganism in root zone was firmly 

established by 19th century. The roots influence surrounding soil environment biologically 

by excreting a significant amount of organic carbon into it. Thus, the term rhizosphere, a 

dynamic environment and hosts wide range of microorganisms, was coined as the soil 

surrounding the roots under plant influence (Starkey, 1985; Rovira, 1991). The loss of 

organic maters into soil during root growth actively boosts microbial population around 

the root, stimulating microbial activity (Whipps, 1990; Morgan and Whipps, 2001). 

Among a dozen genera of isolated nitrogen fixing bacteria by 1969, Azotobacter, 

Clostridum and Klebsiella were categorized as bacteria that fix nitrogen in a non-

symbiotic way, free-living state (Stelwart, 1969). Free-living nitrogen fixers (diazotrophs) 

include saprophytes living on plant residues, rhizosphere bacteria which has close 

associate with plant roots and bacteria that live within plants (endophytes). Unlike 

symbiotic nitrogen fixation, those free-living bacteria are not intimately related to legume 

plants and always actively chase the energy sources in soil to find required energy for 

nitrogen fixation (Vadakattu and Paterson, 2006). 

The significance of free-living nitrogen fixing bacteria on nitrogen enrichment was a 

bit of controversial topic in the beginning. Some reported that the nitrogen contribution of 
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free-living bacteria was negligible (Mishuastin and Shilnikova, 1969), while it is 

becoming clear that non-symbiotic free-living plant-beneficial microorganisms has a 

great potential (Dobereiner, 1968; Vadakattu and Paterson, 2006) and they have different 

mechanisms to promote plant growth, such as morphological and physiological changes 

of the roots and production of plant growth hormones (Dobbelaere et al. 2001). In some 

cases, free-living microorganisms indirectly promote plant growth by suppressing the 

plant diseases (Moeene-Loccoz and Defago, 2004; Bashan and de-Bashan, 2002) or 

parasitic plants (Bouillant et al. 1997; Miche et al. 2000). However, in most cases, the 

beneficial effects of free-living microorganisms stay undiscovered. In addition, those 

undefined beneficial effects combine with other multiple effects related to variability in 

plant genotypes, soil composition, microclimatic conditions and difference in soil biota 

(Moenne-Loccoz et al. 2006). Further, the quantity of fixed nitrogen by free-living 

diazotrophs in natural condition is insignificant compared to legume-rhizobia symbiose 

based nitrogen fixation, unless organic substrates are added (Delwiche and Wijler, 1956). 

However, vastly unknown contribution of free-living plant-plant beneficial 

microorganisms to plant growth and health is not negligible. 

Many rhizosphere microorganisms benefit from root exudates and have positive 

impacts on plant growth and health either symbiotically or associatively. Those 

associative microorganisms are called plant growth-promoting rhizobacteria (PGPR). 

PGPR enhance plant growth with various mechanisms both directly and indirectly. Some 

direct influences are enhancing seed germination, development and modification of root 

morphology, solubilisation of mineral nutrition, decreasing pollutant toxicity (heavy 
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metals), promotion of mycorrhizal functioning, utilization and phytohormones, such as 

auxins and cytokines (Jacoud et al. 1998, 1999; Dobbelaere et al. 2001; Glick et al. 1999). 

Indirect effects involve suppression of phytophathogenic bacteria and phytoparasitic 

nematodes (Cronin et al. 1997; Walsh et al, 2001; Burdman et al 2002). 

2.3 Nitrogen Fixing Endophytes 

Endophytic bacteria refers to those that reside within the plant without causing 

visible disease symptoms (Schulz and Boyle. 2006); equally only those bacteria that can 

be isolated from surface-sterilized plant tissues and extracts from within plant tissues 

(Hallmann et al., 1997). Since the mid 20th century, numerous endophytic studies have 

been reported on various plant tissue parts, such as seeds (Mundt and Hinkel, 1976), 

tubers (Trevet and Hollis, 1948), roots (Philipson and Blair, 1957), stems and leaves 

(Henning and Villforth, 1940), and fruits (Sharrock et al. 1991). 

At early stages, endophytes were believed to be weak pathogens, however, discoveries 

in recent years confirmed several beneficial effects on host plants, such as promotion of 

plant growth, increased resistance to plant pathogens and parasites (Hallmann et al. 1997). 

Promotion of plant growth can be achieved by several mechanisms, such as production of 

plant hormones, synthesis of siderophores, nitrogen fixation, solubilisation of minerals 

(e.g. phosphorous) or through enzyme activitys, e.g. suppression of ethylene by 1-

aminocyclopropane-l-carboxylate (ACC) deaminase (Whipps, 2001; Hurek and 
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Reinhold-Hurek, 2003; Cherin and Chet, 2002). In recent years, the most interest has 

focused on the nitrogen fixation mechanim, especially endophytic diazotrophs 

(Dobereuner and Pedrosa, 1987; Estrada et al. 2002). Generally, endophytes do not 

induce a hypersensitive response in the plant. Most endophytic bacteria colonize 

intercellular spaces (Hinton and Bacon, 1995), although it has been shown that they also 

colonize intracellularly, e.g. Azoarcus spp. (Hurek et al. 1994). 

Endophytic bacteria mostly originate from seeds (Adams and Kloepper, 1996), 

vegetative planting material (Dong et al. 1994), rhizosphere soil (Mahaffee and Kloepper, 

1997) and phyllaffee (Beattie and Lindow, 1995). Endophytic colonization starts with 

colonizing root surface, then entry of bacteria through germinated breaches and move into 

starchy endosperm, further translocating to radical and coleoptile. Gradually, endophytes 

spreading to all parts of the plant (Hinton and Bacon, 1995). In terms of population 

density, it is highly variable depending on plant species and other factors. However, roots 

have with average densities of 105 CFU/g compared to stem and leaves, 104 CFU/g and 

103 CFU/g, indicating population number decreases acropetally (Hallman and Berg, 

2006). Plant organs, such as flowers, fruits and seeds have even lower colonization 

numbers and, most cases, numbers are below detecting thresholds. 
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2.3.2 Association of endophytes with sugar cane 

Four million vehicles in Brazil run on ethanol produced from sugar cane grown on 8% 

(four million hectares) of nation's cropped area, providing more than 10 billion litres of 

fuel-alcohol annually (Boddey et al. 1991). Sugar cane contains 13.3% saccharose (about 

10-15% sucrose) and 14% fiber (World Bank, 1998). Sugar cane is a tropical perennial 

C4 grass (family Poaceae) and produces massive amounts of biomass which, however, 

demands significant input of nitrogen, more than 250 kg /Ha. (Fuenctes-Ramirez et al. 

1999). Nevertheless, applications of N fertilizer to sugar cane by Brazilian farmers are 

not adequate enough to cover the theoretical loss of nitrogen when plants are harvested 

(Boddy et al. 1995; Ruschel, 1981). In many parts of country, sugar cane has been 

continuously planting more than 100 years without nitrogenous fertilizer, and yet none of 

cane yield or soil N reserves fall with the time (Dong et al. 1994; Cavalcante and 

Dobereiner, 1988). In Brazil, the rates of nitrogen fertilisation are normally as low as 60 

kg per hectare and the effect of adding additional the nitrogen fertilizer is negligible (Reis, 

V.Lee et al., 2007; Ruschel et al., 1984). These results lead scientists to suspect that sugar 

cane might have been benefiting from BNF (Neyra and Dobereiner, 1977; Ruschel, 1981). 

Based on the 15N isotope dilution and N-balance studies, it was confirmed that some 

Brazil sugar cane varieties are particularly effective in obtaining N up to 60 to 80%, 

equivalent to 200 kg N ha-1 year, of plant N which supposedly comes from sugarcane 

associated biological nitrogen fixation (BNF) (Boddey et al. 1991; Urquiage et al. 1992). 

However, both N-fixation techniques are not direct means to link BNF with endopytic 
23 



diazotrophic in sugar cane (James et al. 1997). Even though many genera of nitrogen 

fixing bacteria, such as Bacillus (Seldin et al. 1984), Azotobacter (Singh et al. 1981), 

Derxia , Enterobacter , Hlesiella , Beijerinckia (Dobereiner, 1961) and Azospirillum 

(Dobereiner, 1988), have been isolated from the rhizosphere of sugarcane (Seldin et al. 

1984; Singh et al. 1981; Dobereiner, 1961, 1988; Reis et al. 2007), none have enough 

numbers to be responsible for the high rates of N fixation, indicating rhizosphere free-

living bacteria are not major contributors to sugar associated symbiosis. Then interest 

was caste on endophytes, bacteria that live inside the host plant without causing any 

disease symptoms, as a prime contributor of fixed N to sugarcane. Acetobacter 

diazotrophicus (Gluconacetobacter diazotrophicus) and Herbaspirillum are most 

recognized endophytes for their substantial numbers, up to 107/g fresh weight, isolated 

from within surface sterilized roots, stems and leaves (Cavalcane et al. 1988; Yamada et 

al. 1997; Boddey et al. 1995, 2000; Reis et al. 1994; Dobereiner et al. 1995). Large 

numbers of bacteria are of critical importance to correlate the BNF to specific Infixing 

bacteria. In soybean, for an example, a large nodule should contain 109 bacteria (Baldani 

et al. 1986). Theoretically, sugar cane plants should have similar bacteria numbers to 

account for 80% nitrogen fixation (Urquiaga et al. 1992; James and Olivares, 1997a). 

The lower number of bacteria in sugarcane, compared to soybean, can be ascribe to the 

fact that sugarcane has lower %N compared to soybean so demands for N is not as high 

as soybean (James and Olivares, 1997a). 

Endophytes do not survive for long time in the soil without having a host plant 

(Baldani et al., 1992; Reis et al., 1994; Olivares et al, 1996). Interestingly, it is also 
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reported that Gluconacetobacter diazotrophicus (G. diazotrophicus) is present in low 

concentrations in the rhizosphere of sugarcane and is explained most probably because 

soil close to the host plant is enriched in sucrose (Li and MacRae 1991). It is also worth 

mentioning that increased soil moisture extends survival of G. diazotrophicus (Oliveira et 

al. 2004). Since endophytes live within the plant tissue, they supposedly fix nitrogen 

more efficiently than associative diazotrophs that live in the rhizosphere, such as 

Azosphirillum and Azotobacter (Patriquin et al. 1983; Triplett, 1996). Further, 

endophytes do not have to compete with other rhizosphere microbes for nutrient resources 

and have easy access to carbon substrates supplied by plant (Sprent and James, 1995; 

Hallmann et al. 1997). Moreover, endophytic diazotrophs live and grow in a relatively 

low pC>2 environment within dense plant tissues, which protects the nitrogenase from 

excess oxygen and is necessary for expression of nitrogenase (Patriquin et al. 1983; 

Gallon, 1992; Baldani et al. 1997). 

2.3.2 Gluconacetobacter diazotrophicus 

G. diazotrophicus is gram-negative, obligatory aerobic, rod-shaped and acid producing 

endophyte originally isolated roots and stems of sugarcane (Dong et al. 1994; Cavalcante 

and Dobereiner, 1988). G. diazotrophicus, belongs to alpha subgroup of the 

Proteobacteria (Gillis et al. 1989), grows best in sucrose-rich medium, can grow in up to 

30% sucrose, fixes N2 on N-free semi-solid (Cavalcante and Dobereiner, 1988) and solid 

LGIP medium supplemented with 10% sucrose (Pan and Vessey, 2001; Dong et al. 1995). 
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Nitrogenase activity by the bacteria is inhibited by excessive flux of O2 (Gallon, 1992; 

Hunt et al. 1993; Layzell et al. 1990). Even though G. diazotrophicus showed capability 

of growing extreme conditions such as high sugar concentration and relatively low pH 

(Stephan et al. 1991; Chanway, 1998; James et al. 1998), this bacterium does not survive 

well in soils, particularly in natural soils (Baldani et al. 1997). 

Even though endophytic diazotrophs are suspected as the main contributors of fixed N2 

to sugarcane growth, up until now it was not sure which specific bacteria was responsible 

for the majority of N~fixation. However, Gluconacetobacter diazotrophicus, previously 

known as Acetobacter diazotrophicus (Gillis et al. 1989), has long been the main interest 

for such plant-associated BNF and proposed as major contributor and has been estimated 

to fix up to 150 kg of N ha" per year in sugarcane (Boddy et al. 1991. 1995; Cavalcante et 

al. 1988; James, 2000; Sevilla et al. 2000). The better colonization of sugarcane by 

Gluconacetobacter diazotrophicus might be related to properties of the bacteria, such as 

the optimal growth of sugar level is 10%, which resembles sugar content of sugar cane, 

and it reduces acetylene at pH levels 3 (Cavalcante and Dobereiner, 1988). 

The bacterium also been isolated from different hosts such as coffee (Jimenez et al. 

1997; Madhaiyan et al. 2004 ), potato (Paula et al. 1992), sorghum (Isopi et al. 1995 ), 

pineapple (Tapia et al. 2000), carrot, radish (Madhaiyan et al. 2004) and mealy bugs 

(Ashbolt et al. 1990; Caballero et al. 1995). More recently, isolation of G. diazotrophicus 

from economical important rise crop is reported (Muthukumarasamy R. et al. 2005). 

Further, inoculation of G. diazotrophicus not only promotes the plant growth in sugar rich 
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crop of sugar cane but also enhanced biomass of none sugar rich crops, such as rice plant 

(Riggs et al. 2001; Saravanan et al. 2007a). However, based on its growth conditions, 

theoretically G. diazotrophicus grows better in sucrose-rich crops. It is reported that 

bacterium does not have nitrate reductase and nitrogen fixation is not inhibited by as high 

as 80 mM of nitrate (Boddy et al. 1991; Gillis et al. 1989; Li et al. 1991; Stephan et al. 

1991) nor is nitrogenase greatly inhibited by ammonium ( Fu et al. 1988) , however, 

more recent works indicate that high N-fertilization levels in sugar cane field limits 

population of G. diazotrophicus (Fuentes-Ramirez et al. 1993,1999; Muthukumarasamy, 

1999; Reis Junior et al. 2000). In addition, population of G. diazotrophicus is susceptible 

to different cultivars of plant and is directly influenced by plant genotype (da Silva et al. 

1995). Further, varieties of G. diazotrophicus isolated from Brazilian sugarcane is more 

diverse than the ones isolated in Mexico and is most probably because of different 

nitrogen-fertilization rates in two countries, indicating high N-fertilization also negatively 

effects population diversity of the bacterium (Caballero-Mellado et al. 1995). However, it 

is suggested that population dynamics of G. diazotrophicus influenced by changes in 

plant physiology induced by nitrogen, which subsequently affects plant association with 

the endophyte (Fuentes-Ramirez et al. 1998). As for the symbiosis of G. diazotrophicus 

with sugarcane, high doses of nitrate reduces the concentrations of sucrose in leaves, 

resulting decrease the sugar and sucrose in stem (da Silveira et al. 1991). 

Nevertheless, more recent studies suggest that the beneficial growth effect may have 

come from plant hormonal effects on plant morphology and enhanced nutrient uptake 

rather than BNF, such as generation of indole-acetic acid (IAA) and gibberellins (Bastian 
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et al. 1998; Sevilla et al. 1998; Bastian et al. 2000; Fuentes- Ramirez et al. 1993). 

Solubilization of plant macro and micronutrient like P and Zn also are possible plant-

growth-promoting traits (Saravanan et al. 2007a; Mowade and Bhatta-charyya, 2000), 

allowing both microorganisms (Rodriguez and Fraga, 1999) and plants (Kuklinsky-Sobral 

et al. 2004) to have access those unavailable nutrients. G. diazotrophicus is also 

considered as a biocontrol agent for is characteristics of defending the plant from 

pathogens and nematodes (Muthukumarasamy et al. 2000; Blanco et al. 2005; Saravanan 

et al. 2007b). 

2.3.3 Co-innoculation 

It has been demonstrated that co-inoculation of diazotrophs resulted in greater increase 

of biomass in sugarcane compared to individual inoculation, up to 29.2%, proving 

inoculation with mixture of diazotroph species is a best means to improve crop 

productivity through more effective nitrogen fixation process (Oliveira et al. 2002). In 

the latest study, several endophytic diazotrophs were being tested, including G. 

diazotroph, to evaluate the role of mixture inoculations. It was suggested that consortium 

of endophytic diazotrophs maximizes N2 fixation and contribution of BNF in response to 

combined inoculation is affected by strain mixture of inoculum and plant genotype; soil 

and nitrogen fertiliziation are also considered additional influencing factors (de Oliveira 

et al. 2006). As for sugar beet, studies report that dual inoculation of nitrogen fixing and 

28 



phosphate solubilizing Bacillus strains have positive responses on yields of sugar beet 

compared to individual ones (Cakmakci et al. 1999, 2001,2006; Sahin et al. 2004). 

2.3.4 Association with vesicular-arbascular mycorrhiza (VAM) 

More than 95% of plant taxa form associations with certain soil fungi that aid in 

taking up phosphate from soil. These fungi that form symbiotic association with roots of 

plants are called mycorrhizal fungi and the association itself is referred to as mycorrhiza. 

Mycorrhizas are devided into three morphological different groups, depending on the 

penetration of the root cells or not: (arbvscular) endomycrorrhizas, ectomycohhizas and 

ectenomycorrhizas (Gianinazzi et al. 2006). The endomycohrriza characterized by inter-

and-intracellular fimga growth in root cortex, forming specific fungal structures, such as 

vesicles and arbuscles. This growth trait gives the arbascular endomycorrhiza the 

alternative name, vesicular arbuscular mycohrriza (VAM) (Quilambo, 2003). VAM is the 

most widespread plant root symbiosis, forming association with more than 80% of plant 

families (Smith and Read, 1997). In addition, mycorrhizal plants have higher tolerance to 

heavy metals, root pathogens, drought, high temperatures, lower soil pH and to 

transplantation shock (Bagyaraj, 1997). 

VAM is one of the most known factors in improving growth and nitrogen content in 

legumes (Barea and Azcon-Aguilar, 1983). Various bacteria have occurred within and on 

the surface of vesicular-arbuscular mycorrhizal fungus (VAM) (Mosse, 1962; Varma et al. 
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1981) and improvement of nitrogen fixation via associations of N fixing bacteria with 

spores of VAM is confirmed (Tilak et al. 1989), including G. diazotrophicus (Paula et al. 

1991). In many higher plants Gluconacetobacter and AM fungi form intercellular 

association (Barea et al. 1987), in which fungi increases both nitrogen and phosphate 

uptake; therefore it is speculated that enhanced plant growth is generated by providing 

significant amounts of N through P-medidated mechanism (Cooper and Tinker, 1978). 

Synergistic effects of G. diazotrophicus on AM fungi colonization of sucrose-rich plants, 

such as sugarcane, sweet potato and sweet sorghum have been recorded (Paula et al. 1991; 

Isopi et al. 1995; Reis et al. 1999). In additional, the entry of G. diazotrophicus and other 

diazotrophs into sugarcane and sweet sorghum roots is facilitated by mycorrhization, 

indicating the symbionts may also interact each other (Paula et al. 1992; Vessey, 2003). 

Further studies indicate that co-inoculation of VAM with three species, N-fixing, P and K 

solubilizing, of bacteria had significant positive effects on plant growth and biomass of 

maize compared to controls, resulting higher rate of root infection in the presence of 

bacterial inoculation (Wu et al. 2005). More interestingly, VAM also generates 

hydrolytic enzymes and it might possibly work together with cell degrading enzymes of 

G. diazotrophicus, which might be beneficial for one or both symbiosis (Adriana-Anaya 

etal. 2006). 
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2.3.5 Infection of the host plant 

It is necessary to elucidate the sites that bacteria enter the plant in understanding 

biological importance of where bacteria invade the plant. James et al. (1994) suggested 

that lateral root junctions and loose cell of root cap are the possible sites for infection. 

The very same result is confirmed by using immunogold labeling with antibodies specific 

to the bacteria (Reis J et al. 1995). Later studies reported that root hair and root tips are 

also possible infection sites for G. diazotrophicus (Bellone et al. 1997). In most recent 

plant-associated microorganisms study, using green florescent protein gene, gfp, marked 

G. diazotrophicus strain, it was further confirmed that lateral root emergence, the 

junctions between root cap and root axis in close to apex and root hairs in rice plants are 

possible sites that bacteria infect the plant (Rouwus et al. 2010). The exact same result is 

further confirmed using histochemical localization of gusA gene expression in sorghum 

and rice (Luna et al. 2010). 

2.3.6 Localization of bacteria 

It is of significant importance to examine where bacteria locate themselves and fix 

nitrogen. Even though endophytes generally colonize the intercellular spaces and 

vascular tissues, the exact location of major endophyte's of sugarcane, Gluconacetobacter 

diazotrophicus, is a quite controversial. James et al (1994, 1998) reported that they found 

the bacteria in the cortex of plant roots and in stem xylem vessels. They also proposed 

that root xylem might be potential infection route for stem and leaf xylem infection. 

31 



Moreover, it has been shown that G. diazotrophicus can grow and fix nitrogen on 1% 

concentration of sucrose (Boddy et al. 1991), supporting that G, diazotrophicus is not 

required to live only in sucrose-rich environment (Hawker, 1965; Dong et al. 1994, 1997) 

but also can grow and fix nitrogen in xylem where it contains 0-9% sucrose (Welbaum et 

al. 1992) and has lower pC>2 which allows for nitrogenase expression (Gallon, 1992). 

However, Dong et al. (1994) argued that G. diazotrophicus is confined only to the 

intercellular apoplast (spaces) of sugar cane where plentiful nutrients and pressure 

(Welbaum et al. 1990). They concluded that it is most unlikely to colonize the xylem 

vessel not only because of host defence reaction (Kao J et al. 1980; Olivares FL et al. 

1997) but due to discontinuity of xylem vessel, blocking transportation of G. 

diazotrophicus within xylem (Dong et al. 1997). Nevertheless, Fuentes-Rammirez et al. 

(1999) using GUS-labeled strain and SEM (scanning electron microscopy) asserted that 

G. diazotrophicus colonizes the stem xylem and intercellular spaces of sugar cane. 

Further, neither James et al. (1994), nor Fuentes-Rammirez et al. (1999) have found the 

host defence response of sugar cane toward G. diazotrophicus. It is well established that 

some cell wall degrading enzymes assist the penetration of rhizobia into plant root 

(Mateos et al. 1992, 2001; Jimenez-Zurdo et al. 1996) and it is also speculated that some 

plant morphological changes might occur, forming continuous vessels by hydrolyzing the 

cell walls, induced by G. diazotrophicus (Esau K. 1997; Adrinao- Anaya et al. 2006). 
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2.4 Conclusion 

It has been shown that endophytic diazotroph, G. diazotrophicus, is not only able to 

infect sugar cane but also infects sucrose-rich crops, such as sweet potato and sweet 

sorghum when the bacterium is co-inoculated with mycorrhizal fungus (Paula et al. 1991, 

1992). Also, the latest study showed that isolates of G. diazotrophicus from sugarcane, 

sweet potato, pineapple and wild cane showed appreciable amount of nitrogenase activity 

(Prabudoss and Stella, 2009). Plus, there is one report that G. diazotrophicus has been 

isolated from sugar beet (Madhaiyan et al. 2004). All of those studies give an insight that 

inoculation of sugar beet with nitrogen fixing endophyte, G. diazotrophicus spp., could 

most probably promote plant growth and increase yield through nitrogen fixation at lower 

cost compared to chemical fertilizers, making sugar beet a potential alternative to produce 

ethanol in Canada. Additionally, using nitrogen fixing endophytic bacteria as biofertilizer 

reduces the costs on expensive chemical fertilizers while decreases the carbon dioxide 

production and eliminates the environmental pollution, such as leaching of nitrates into 

groundwater, making the sugar beet is more viable plant to grow at cheaper price in more 

greener way. Further, sugar concentration of sugar beet is 25% higher than sugar cane 

(Singh et al. 1985; Martin et al. 2006; World Bank, 1998; Weeden, 2000) and yields can 

be 10 times greater than corn and wheat (Vessey, personal contact). 

Although sugar beet production cannot be compared to imported raw sugar cane in 

Canada, increased energy price and demand for ethanol production are positive signs that 

there is a future for sugar beet production in this country. 
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3.0 Objectives 

The fourteen strains of Gluconacetobacter spp. were screened for their capability of 

infecting sugar beet along with nitrogen fixiation. A commonly used strain, PAL5T, was 

selected for the rest of the studies. Based on some studies that are already published, 

inoculation at different growth stages and bacterial concentration of inoculum has 

significant importance in plant response to inoculation (Bashan, 1986). The inoculant 

strain was also isolated from plant tissue and was confirmed by a molecular PCR 

technique. In addition, the possible entry sites for bacteria into host plant were 

investigated by using GUS gene labelled strains. Following were specific research 

topics: 

• Testing 14 strains of Gluconacetobacter spp. for capacity of improving 
biomass of sugar beet. 

• Investigation of effect of different nitrogen concentrations on nitrogen 
fixation in sugar beet. 

• Assessment of the optimum inoculation stage. 

• Evaluation of the least inoculant number. 

• Molecular confirmation of bacteria isolates by PCR. 

• Determination the possible sites of bacteria entry the host plant with GUS 
strains. 
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4. Materials and Methods 

Fourteen strains of Gluconacetobacter spp. (Table. 1) were selected out of 30 strains 

for inoculation of sugar beet plants based on higher activity of acetylene reduction both 

in semisolid LGI-P medium and semisolid LGI-P mixed with ground beet tissue medium 

(Houman Fei, Saint Mary's university). 

4.1 Experiment I: Screening of Gluconacetobacter spp. 

In collaboration work with Dr. Houman Fei, 14 strains of Gluconacetobacter spp., 

including 11 strains of G. diazotrophicus and 3 strains of G. johannae (Table. 1), were 

screened for their nitrogen fixation capacity in sand soil pots in a greenhouse. 

4.1.1 Plant growth and soil 

Seeds o f ,  B e t a  v u l g a r i s  L. variety-Beta 5833R, from Betaseed Inc. (ON, Canada) 

were germinated in Petri dishes lined with one layer of filter paper wetted with distilled 

water at room temperature in dark. When seedlings reached about one inch in length, they 

were transferred into 3 L pots containing 3 kg of silica sand (one plant/pot). Plants were 

grown in the greenhouse of Saint Mary's University, Halifax, NS. 
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4.1.2 Greenhouse conditions 

The plants were grown in greenhouse during winter with a controlled temperature 

of 20-27°C (n/d) and with a photoperiod of 16/8 h (d/n). Supplemental light was supplied 

by High Pressure Sodium lamps at 350-370 m~2 s1. Plants were irrigated every day with 

the same volume of water (50 ml/pot) and the volume was increased to 100 ml/pot, 200 

ml/pot and 300 ml/pot over four months of growth period. Throughout the experiment, 

pots were rearranged to ensure exposure to light intensities. 

Plants were watered twice a week with a modified Knop's solution (Mohr and 

Schopfer, 1861) containing 1 mM NO3" and 10 mM NO3", respectively. Knop's solution 

contains: 0.656 g/L Ca(N03)2, 0.202 g/L KNO3, 0.250 g/L KH2P04, 0.120 g/L MgS04, 

2.86 mg/L H3B03> 1.81 mg/L MnCl2 • 4H20, 0.22 mg/L ZnS04 »7H2 O, 0.08 mg/L 

CuS04 • 5H20,0.02 mg/L H2Mo04 • H20, 6.95 mg/L FeS04 • H20; pH was adjusted to 

6.0 with 1% acetic acid solution. Each strain had five replicates both in 1 mM and 10 mM 

experiments. Treatment solution was enriched with 1% of 15N O3", while 15N was not 

added to control solutions. 

4.1.3 Harvest 

The plants were harvested after 12 weeks of growth. The shoots, beets (lower 

hypocotyls or upper root) and fibrous roots were collected separately. Around 2 g of 
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fresh beet tissue was sampled and kept at -80°C for detecting the presence of inoculated 

bacteria in the interior plant using polymerase chain reaction assay (PCR). All other 

tissues were dried at 80°C for 3 days to measure dry biomass. Dry biomass of roots, 

shoots and beets were compared, respectively. 

4.1.4 Culture of bacteria 

All 14 strains of Gluconacetobacter spp. were cultured in modified liquid LGI-P 

medium (Cavalcante and Dobereiner, 1988; Pan and Vessey, 2001) at 30°C until the 

broth OD value reached to 0.6, X 600 nm. Each sugar beet seedling was inoculated with 5 

ml of bacteria broth (OD=0.6, X 600 nm) after the emergence of the first true leaves. 

The modified LGIP liquid medium contains (quantities per litre): 0.2 g K2HP4; 0.6 g 

KH2PO4; 0.2 g MgS04.7H20; 0.02 g CaCl2. 2H20; 0.002 g Na2Mo04. 2H20; 0.01 g 

FeCl2. 6H20; 0.5% bromothymol blue solution in 0.2 M KOH; Biotin 0.000lg; Pyridoxal 

HC1 0.0002 g; (NH4)2S04 1.32 g; crystallized cane sugar lOOg; final pH 5.5 adjusted with 

1% acetic acid solution. Additional 15g L"1 of agar is used in solid medium and 

semisolid medium for isolation contained 2 g L"1 agar. The medium is autoclaved for 15 

min after adding all chemicals and pH is adjusted around 5.7 before autoclaving. 

37 



4.1.5 Quantification of nitrogen fixation by15 N isotope dilution 

Several methods have been developed for quantification of plant-associated 

heterotrophic nitrogen fixation both in grasses and cereals, including 15N isotope dilution 

(McAuliffe et al. 1958), 15N natural aboundance (Shearer and Kohl, 1986), and acetylene 

reduction (Hardy et al. 1968). Each method has its unique a set of calculations which are 

subject to certain inaccuracy. However, stable isotope techniques (15N) have been 

generally considered the most popular due to the higher accuracy for quantitative 

measurements of symbiotic N fixation (Danso, 1995). The 15N -dilution technique was 

used in this thesis for its higher reliable quantification assumption. 

The principle of 15N isotope dilution technique (MacAuliffe et al. 1958) relies on 

the fact that use of 15N-labeled fertilizer, which is diluted in plants that assimilate 14N 

from atmosphere in symbiosis with microorganisms. Thus, 15N isotope dilution technique 

indirectly evaluates nitrogen fixation by estimating the dilution of 15N-labeled fertilizer 

by 14N2 derived from the atmosphere. The amount of dilution is proportional to the 

amount of fixed nitrogen. The fixed N in the plants or 15N can be measured by mass 

spectrometer based on isotope ratio (Mariotto, 1983; Knowles and Blackburn 1993; 

Unkovich et al. 2001). The estimation is more accurate and straightforward in sand 

cultures because of known amounts of enriched 15N in fertilizer, whereas in soil the 14N2 

released from soil organic materials is also absorbed by plants, causing errors in 

estimation (Boddy and Victoria, 1986). 
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Based on the following formula (Busse, 2000), if the 1SN content in certain parts of 

the inoculated plant tissue is lower than that found in control plants, this indicates the 

nitrogen in inoculated plant was derived from the air by biological nitrogen fixation via 

the aid of endophytic diazotroph. 

1) The percentage of N derived from atmosphere (Ndfa) for individual plant was 

calculated by folloing for equation: 

AT% Ndfa- [(AT% Ref- AT% Treat) / AT% Ref] * 100% 

Where AT refers to atom per centage of 15N. Ref is reference plant (control) and 

Treat is treatment plants. Reference plants were not labled with 15N isotope. 

2) Total nitrogen fixed (mg plant"1) was calculated by the following equation: 

Totoal N fixed= AT% Ndfa * Biomass (mg plant"1) x N % 

3) Nitrogen derived from atmosphere (Ndfa): 

Ndfa% = (Fixed Ndfa/Total N) * 100% 
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Table 1.14 strains of Gluconacetobacter spp., used for sugar beet inoculation. 

Species strain Source Instltut 
ion 

QeneticaMy 
•ngimend 

Country 
of origin 

Other 
designations 
fcuRurt 
Bsttoigt 

Reference 

Q. 
diazotrophcus 

SRT4 
LsdA' 

Lazaro 
Hernandez 

CGEB 
i 

Under 
expression of 
levari sucrase 
A 

Cuba Hernandez et 
al.. 2000. Arc* 
Microbiology, 
172:120-124 

G. 
diazotrophkcus 

SRT4 
L$<JB+ 
+ 

Lazaro 
Hernandez 

CGEB ( Over 
expression of 
levanase B 

Cuba 

G. 
diazotrophicus 

CFNE 
550 

Jesus 
Cabaflero-
Meitedo 

UNAM i Mexico Cabattero-
Melado et a]. 
1995. Appl. 
Environ. 
Microbiol. 
61:3008-3013. 

G. 
<fiazotrophicus 

PSP22 
EMBR 
APA1 

Brazil Cabalerch 
MeBado et aL 
1996. Appl. 
Environ. 
Microbiol. 
61:3008-3013. 

G. johartnae UAP-
CF51 

Jesus 
Cabalero-
Melado 

UNAM 
2 

Mexico Jimenez-
Salgado et aL 
1997. Appl. 
Environ, 
Microbiol. 
63:3876-3683. 

G. johannae CFN-
CF52 

Jesus 
Cabalero-
Melado 

UNAM 
i 

Mexico Jimenez-
Salgado et aL 
1997. Appl. 
Environ. 
Microbiol. 
63:3876-3683. 

G. johannae CFN-
CF76 

Jesus 
Cabalero-
Melado 

UNAM 
i 

Mexico Lute E. Fuentes-
Ramiirez. et al. 
2001. Intl. J. 
Syst. Evol. 
Micorbiol. 
51:1305-1314. 
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G. 
dlazotrophicus 

SRT4 lazaro 
Hernandez 

CGEB' Cuba CoegoA.etal. 
1992. Rev Lat-
amer 
Microbiol 
34:189-195 

G. 
diazotrophicus 

PALS 
T 

EMBRA 
PA1 

Brazil PAJ 5; PAL 
5; ATCC 
49037; 
CCUG 
37298; 
CIP 
103539; 
DSM 
5601; 
LMG 
7603; 
NCCB 
69154 

Cabattero-
Melado e( aL 
1994. Appl. 
Environ. 
MicroWoi, 
60:1532-1537. 

G. 
diazotrophicus 

PALS 
T 
IsdA-

Lazaro 
Hernandez 

CGEB' Under«xpreulon 
of to van sucras* 
A 

Cuba 

G. 
diazotrophiciis 

PAL5 
T 
LsdB 
++ 

Lazaro 
Hernandez 

CGEB' Overexpresston 
oflevarawB 

Cuba 

G. 
diazotrophicus 

PALS Lazaro 
Hernandez 

CGEB' Cuba PAI5; PAL 
5; ATCC 
49037; 
CCUG 
37298; 
CIP 
103539; 
DSM 
5601; 
LMG 
7603; 
NCCB 
89154 

Z.DONG,** 
1995. Appl. 
Enviro. Microbiol. 
61:1843-1846. 

G. 
cSazotropWcus 

PAL3 UNAM' Brazl Pal 3; PAL 
3; LMG 
8066 

Cabalero-
Mellado et al. 
1994. Appl. 
Environ. 
Microbiol. 
60:1532-1537. 
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G. 
diazotropWcws 

UAP 
AC7 

Jesus 
Caballero* 
Melado 

UNAW Mexi­
co 

Tapia-Hern4nde2 
A.etal. 2000, 
Microb Ecol 
39:49-55. 

G. 
diazotropWcus 

1772 Jesus 
CaballefQ-
Melado 

UNAM4 Austra 
-lli 

Cabalero-
Mefladoetai, 
1995. Appi. 
Environ. 
Microbiol. 
61:3006-3013. 

G. 
cfiazatrophicus 

T2 Lazaro 
Hernandez 

CGEB' Cuba F.G.Lojre^etai. 
2004. Journal of 
Applied 
MicroWotogy 
2004,97.504-
511 

1 Center for Genetic Engineering and Biotechnology, Havana, Cuba 
2Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos, Mexico 
3Empresa Brasileira de pesquisa Agropecuaria, Brazil 
4Sugar Research Institute, Queensland, Australia 

Strains containing the term LsdA- have been genetically engineered for the 
underexpression of levan sucrose A (IsdA) gene. 

Strains containing the term Lsd++ have been genetically engineered for the 
overexpression of levanase B (IsdB) gene. 
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4.2. Experiment II: Assessment of best inoculation stage experiment 

To evaluate if inoculation at different growth stages of sugar beet has impacts on plant 

biomass (Bashan, 1986), inoculation at four different growth stages (seed, seedling, seven 

leaves and 14 leaves) was carried out. The strain PAL5T was selected for inoculation due 

to the positive results it gave from screening experiment. 

4.2.1 Culture of bacteria 

Strain PAL5T was cultured in modified liquid LGI-P medium (Cavalcante and 

Dobereiner, 1988; Pan and Vessey, 2001 ) at 30°C until the broth OD value reached 0.7, 

X 600 nm. Bacteria growth curve was obtained by serial dilution at different OD values. 

4.2.2 Plant growth conditions 

Sugar beet seed was supplied from a seed distributer as the fruiting structure of sugar 

beet, the achene. Each achene contains a single sugar beet seed. Hensceforth, when the 

term sugar beet "seed" is used in this thesis, what is actually been referred to is the seed 

within the sugar beet achene. 

A commercial seed coating was removed by shaking the seeds in the 50 ml flasks 

with distilled water for five minutes. Then the seeds were washed thoroughly several 
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times with distilled water. Seeds were planted to the pots, each pot containing three seeds. 

Sugar beets were grown during summer with a minimum temperature regime of 18/22 

°C (n/d) in a greenhouse. Plants were watered every day with the same volume of water 

(50 ml/pot) or with Knop's solution and volume was increased to 100 ml/pot, 200 ml/pot 

and 300 ml/pot in over four months of growth. Treatments were watered twice a week 

with nutrition solution (Knop's) enriched with 1% of 15N and un-enriched nutrition 

solution was used for control plants. The nitrogen concentration of nutrition solution was 

5 mM. The nutrition solution had been applied 10 days after plantation (one seedling/pot). 

4.2.3 Inoculation 

The soil surface area immediately above where the sugar beets were planted was 

inoculated by application of 5 ml of broth, OD = 0.7, X 600 nm, at different growth stages 

(ie., seed, seedling, seven leaves and 14 leaves). Control plants were un-inoculated. 

4.2.4 Harvest 

Plants were harvested after for four months of growth, from the beginning of June to 

beginning of October in 2008. The shoots, beets (hypocotyls, the upper roots) and roots 

(fibrous roots) were collected separately and dried at 80°C for 3 days. 
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4.3. Experiment III: Titre experiment 

To determine whether inoculation with different bacteria concentrations results in 

differences in biomass, sugar beets were inoculated with three different concentrations of 

bacteria in the inoculant. Strain PAL5T of G. diazotrophicus was used in this greenhouse 

experiment. Additionally, to confirm the results of experiment II, sugar beets were 

inoculated at seed and seedling growth stages. 

4.3.1 Culture of bacteria 

The strain PAL5T was cultured in modified liquid LGI-P liquid medium at 30°C until 

the broth OD value reached to 0.5, X 600 nm. Bacteria number was confirmed by dilution 

plating at OD of 0.5, X 600 nm; each dilution had four replicates. The same dilution 

plating was repeated four times and the mean number from those four individual 

experiments has been used for titre experiments. 

4.3.2 Plant growth conditions 

Purchased sugar beet seeds had a seed coating which enhances seed germination and 

protection from pathogenic bacteria.. However, coatings were removed by rinsing with 

high pressure tap water for three to five minutes in order to minimize the interference of 
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seed coating with the inoculation. Then the seeds were washed thoroughly several times 

with distilled water. 

Sugar beet seeds were grown in sand-pots, each pot containing 3 kg of sand and three 

beet seeds, with a minimum temperature regime of 18/22 °C (n/d) at Saint Mary's 

University's greenhouse from May to September in 2009. Each plant was watered with 

same volume of water, 50 ml/ pot, every day in the first month of growth and the water 

volume had been gradually increased to 100 ml pot"1,200ml pot"1 and 300 ml pot"1 in four 

month of growth perioed in response to plant growth. Treatments were watered twice a 

week with Knop's nutrition solution enriched with 1% of 15N03" and un-enriched 

nutrition solution was applied to control plants. The nutrient solution was applied 10 days 

after plantation, after seedlings were thinned down to one plant in each pot. Nitrogen 

concentration of nutrition solution had been kept at 5 mM in entire experiment. 

4.3.3 Inoculation at seed and seedling stages 

Sugar beets were inoculated at seed and seedling stages with three different bacteria 

concentrations (102CFU ml"1,104CFU ml"1,106 CFU ml"1). However, at seed 

inoculation stage, the seeds were dipped into different concentration of bacteria broth for 

half an hour, and then the rhizosphere soil was inoculated with 5 ml/pot of broth for the 

second time after plantation. Thus, seeds were inoculated twice in different methods in 

the seed titre experiment. The second seed experiment was carried out in exact two weeks 

after the first seed experiment was set up. In second seed titre experiment, the 
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rhizosphere soil around the seeds was inoculated with 5 ml/pot of bacteria broth and seeds 

were inoculated only once. 

4.3.3.1 Seed inoculation (inoculated twice) 

After the commercial seed coatings were removed, the treatment seeds were dipped 

into three different inoculants (102 CFU ml"1' 104 CFU ml"1 and 106 CFU ml"1), 

respectively, for 30 min. Then seeds were transferred to pots, each pot containing three 

seeds. Then seeds were rhizosphere inoculated with 5 ml of additional broth at different 

concentrations, such as 102 CFU ml"1,104 CFU ml"1 and 106 CFU ml"1. Control seeds 

were dipped into pure LGI-P liquid medium, and then the rihzosphere soil of seeds were 

inoculated with additional 5 ml of pure LGI-P medium. 

4.3.3.2 Seedling inoculation (inoculated once) 

After the first pair of true leaves opened (15 days after planting), 5 ml of PAL5T 

broth at the concentrations of 102 CFU ml"1,104 CFU ml"1 and 106 CFU ml"'were applied 

to the sand around each stem, respectively. Control plants were inoculated with 5 ml of 

pure LGI-P medium. Ten days after plantation, the nutrition solution applied to treatment 

plants twice a week. Inoculant numbers were confirmed by serial dilution at OD of 0.5, X 

600nm. 
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4.3.3.3 Seed inoculation (inoculated once) 

Two weeks after the seed and seedling titre experiment started, another seed 

inoculation experiment was set up. Seeds were planted into the pots (three-seed/pot), then 

the soil surface as of seeds was inoculated with 5 ml of broth at different bacteria 

concentrations (102 CFU ml'1,104 CFU ml"1 and 106 CFU ml"1). Control was inoculated 

with pure LGI-P medium only. Bacteria number was confirmed by serial dilution at OD 

of 0.5, X 600nm, repeated four times. 

4.3.3.4 Harvest 

Plants were harvested after 12 weeks of growth. Approximately, 7.0 g of fresh beet 

tissues from each treatment was aseptically isolated and kept at -80°C for PCR analysis. 

15N abundance was analyzed by mass spectral meter at Agriculture and Agri-Food 

Canada Research Centre at Lethbridge (AB, Canada). 
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4.4 Experiment IV: Assessment of sites of Gluconacetobacter infection 

by use of GUS labelled strains (GUS assay) 

To visualize the possible infection sites of sugar beet plants by G. diazotrophicus 

strains, a reporter gene assay was applied. Among six reporter genes that have been 

reported in studies of gene expression in higher plants, lacZ gene from Escherichia coli, 

encodes /?-galactosidase, is the most frequently used reporter gene. However, high levels 

of endogenous /?-galactosidase activity in plants make it difficult or impossible to detect 

chimeric /?-galactosidase by enzymatic methods (Jefferson, 1986). Nevertheless, a gene 

fusion marker that uses uidA, or gits A, as reporter gene that encodes the enzyme (3-

glucuronidase (GUS), was used in this thesis (Jefferson, 1986). 

The major advantage of GUS-reporter system is that the hydrolysation of the substrate 

X-gluc (5-bromo-4-chloro-3-indoly glucuronide) results in production of an insoluble 

blue colour in those cells displaying GUS activity (Jefferson, 1987). Since plant cells do 

not contain any GUS activity, the production of a blue color when stained with X-gluc 

indicates the activity of the promoter that drives the transcription of the gusA-chimeric 

gene in that GUS labeled strains of G. diazotrophicus (Jefferson, 1987). 

Sugar beet plants were grown in sand soil in greenhouse and harvested after 12 weeks 

of growth. All dry samples were ground and sieved thorugh 60 mesh screen. 15N 
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abundance was analyzed by mass spectral analysis at Stable Isotope Facility of University 

of Alberta (Alberta, Canada). 

4.4.1 Culture of GUS strains 

Two GUS labelled strains of Gluconacetobacter diazotrophicus (kindly provided by 

Dr. Jesus Caballero- Mellado) were used for this experiment; UAP-5541/PRGS561, 

which constitutively expresses GUS, and UAP-5541/PRGH562 with a nifH:: gusA 

transcriptional expression of GUS (Fuentes-Ramirez et al. 1999). Both strains were 

cultured in LGI-P liquid medium, containing 45 mg/L streptomycine (was added after 

autoclaving), at 30 °C until OD value reached to 0.5, X 600 nm. 

4.4.2 Confirmation of GUS strains 

The GUS gene marked G. diazotrophicus strains were constructed (Fuentes-Ramirez 

et al. 1999) to have intrinsic resistance towards streptomycin. Thus, GUS strains, UAP-

5541/PRGS561 and 5541/PRGH562, were pre-screened in LGI-P liquid medium 

containing streptomycin at 45mg L"1 (Fuentes-Ramirez et al 1999; Cocking et al. 2006). 

Then plated on LGIP solid medium, containing 50mg L"1 X-Gluc, with and without 

bromthymol blue, to confirm the inserted plasmids were not lost. The formation of dark 

blue colonies indicated gusA gene expression in bromthymol blue containing medium. 

Control plates either did not contain X-Gluc. 
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4.4.3 Sterilization of sugar beet seeds and germination 

Commercial seed coatings were flushed off seed with high pressure tap water, then 

quickly rinsed with 70% ethanol up to 10 seconds; followed by sterilization with 3% 

commercial bleach, containing 0.05% Twin 20 for three minutes and washed seven times 

with sterilized distilled water. Then seeds were aseptically transferred to Petri dishes with 

filter paper in the bottom. Each Petri dish contained 20-25 seeds and an adequate amount 

of sterilized water was added for germination. The Petri dishes were then sealed with 

parafilm and germinated in growth chamber in the dark at 18/22 °C (n/d) for up to 5-6 

days. 

4.4.4 Inoculation with GUS strains 

Germinated beet seeds were transplanted into 50 ml glass beakers, containing either 

MS medium or 1% agar medium under an airflow and at one plant per container. Then 

each seedling was inoculated with 0.1 ml of the GUS-labelled strains from culture broths 

with OD value of0.4, X 600nm. Finally, beakers were sealed with parafilm and place in 

growth chamber for further growth. Photoperiod was 16/8 h (d/n) at 18-22 °C (n/d). 

In another experiment, germinated seeds were transplanted into the small 300 ml 

plastic pots containing sterilized sands. Plants were watered with sterilized distilled water 

throughout experiment. Each pot containing one seedling was inoculated with 5 ml broth 
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of either with UAP-5541/PRGS561 strain or with 5541/PRGH562 strain with OD value 

of 0.4, X 600nm. Control plants were inoculated with PAL5T strain as positive control. 

Additionally, another set of control plants were inoculated with sterilized water. Plants 

from each treatment were grouped together and placed in bigger transparent plastic 

containers separately, preventing the seedlings from dehydration and cross-contamination. 

Then plants were incubated at growth chamber for four to six days, respectively. 

Photoperiod is 16/8 h (d/n), 22/18 °C (d/n). Each treatment had six replicates each time 

and the same experiment was repeated for five times to further confirm the results. 

4.4.5 GUS staining 

Plants were harvested four and seven days after inoculation and washed carefully to 

separate sands from roots. Then the seedlings were transferred into 5 ml clear autoclaved 

vials. Seedlings were fixed, washed and stained based on the procedures on kit (0-

glcuronidase (GUS) reporter gene staining kit, Sigma). 

Staining solution was added after washed with washing solution and vials were 

degassed for 20 minutes in vacuum desiccator. Then vials were covered with aluminum 

foil and placed in incubator at 37°C in the dark for 12 hours. At this point, blue colour 

develops over time; however, sometimes had to incubate up to 24 hours or more to allow 

the blue colour appear. Solutions were prepared fresh each time. After the blue coulour 
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developed, the green chlorophyll was removed by desiccating the samples with ethyl 

alcohol series, such as 25%, 35%, 50%, 70% and 90% for half hour. Samples can be 

stored at 4 °C for long periods now, or examined under the microscope. 

4. 4.6 Microscopic observation 

Samples were observed under dissecting microscope (OLYMPUS-SZ61, Japan) and 

pictures were taken with camera (INFINITY-lite, Japan) using INFINITY CAPTURE 

software. 

53 



4.5 Experiment V: Detection of isolated bacteria strain with 16S rRNA 

based PCR 

To further confirm that it was the inoculated bacteria contributing to the increased 

sugar beet biomass, inoculated bacteria were isolated aseptically from frozen plant tissues. 

The identity of isolated bacteria as G. diazotrophicus was confirmed using polymerase 

chain reaction (PCR) assay. 

4.5.1 Isolation of bacteria 

Frozen plant tissues were thawed and sterilized with 0.1% MgCh for five minutes. 

Then tissues were rinsed with sterilized distilled water for five times or more. The 

surface layer of beet was removed by a scalpel, and this piece was homogenized with 

sterilized plastic-tipped drilled bit in 0.5 ml of 10% sucrose. The homogenized beet tissue 

was passed through a 5 (im of syringe filter and was inoculated into tubes containing 5 ml 

semisolid LGI-P medium (Vladimir et al. 1998). Inoculated tubes were incubated at 30 °C 

for 10-15 days until yellowish colour was visible. Then bacteria were plated on Petri 

dishes to further purify. 

In addition, the homogenized beet tissue in 0.5 ml of 10% sterilized sucrose solution 

was filtered through 5 um of filtration, and then centrifuged for 10 minutes at 13,000 rpm. 

After the supernatant was discarded, 0.5 ml of 10% autoclaved sucrose was added and 

vortexed for immediate PCR analysis. 
54 



4.5.2 Amplication of 16S rRNA genes 

In this PCR experiment, species specific primers were used to identify the bacterium 

that was isolated from sugar beet. PCR for detection of Gluconacetobacter spp. was 

performed by genetic method based on 16S rRNA gene sequence with the species-

specific primers AC (5'- CTGTTTCCCGCAAGGGAC- 3') and DI (5' -

GCGCCCCATTGCTGGGTT- 3') due to 16S rRNA is highly conserved in different 

species of bacteria (Kirchhof et al. 1998). The primer pair AC-DI targets the 445 

amplicon (Sievers et al. 1998). Primer pair for all 16S rDNA is RB (5'-AGA GTT TGA 

TYM TGG CTC AG-3') and RM (5'-GGA CTA CCA GGG TAT CTA ATC C-3'), which 

is homologous to regions conserved in all 16 S rRNAs, was used in the same PCR 

reaction to prove the PCR approach. RB and RM universal primers target a fragment of 

800 bp (Mahhaiyan et la. 2004). 

4.5.3 PCR Condition 

Amplification was carried out in 50- jliI reactions. Suspension of the bacteria 

colonies in 1 ml of sterilized water or filtered sugar beet extraction was centrifuged at 

13000 rpm for 10 min. 2 j^l of supernatant was used for PCR. Then following 

components, which were kept on ice, were added in order: luM of each primer (AC, 

DI,RB and RM), 10 ul buffer, 1.25 mM dNTP and 1.5 mM MgCh. After 10 minutes of 

denaturation at 95 °C, 2 U of Taq-Polymrase was added, followed by 35 cycles: 95°C for 
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1 min, 52°C for 2min, 72°C for 2 min, and final cycle at 72°C for 10 min. The 

amplification products were anaylysed by electrophoresis in 1% agarose gels. Gel was 

run for 30 minutes at 100 volt. Ethidium bromide was pre-added to agrose gel. 

After separation of PCR products with 1% agarose gel, it was viewed and photographed 

using Algha imager TM1200 documentation and analysis system. 

4.6 Statistics 

Data was tested for normal distribution. Normally distributed data was analyzed by 

ANOVA with JPM (7) software. However, data that was not normally distributed 

analyzed by MANOVA using SYSTAT (12) software due to the robustness of MANOVA 

to the deviation from normality. Then data was further tested by ANOVA via SYSTAT 

12 software. In all analysis, the means were compared in a pair-wise fashion to the un-

inoculated control to maximize the potential of indicating if any individual strain 

stimulated plant biomass and contributed fixed N to the host plants. 

In the titre experiments, samples were further analysed by MANOVA with SYSTAT 

software due to its capability of processing un-parametric samples. As a result, the 

MANOVA test also showed that there was significant different between treatment and 

control, P < 0.05. Then samples further were analysed by Fisher's least-significant-

difference test. The results supported the MANOVA test outcome, P < 0.05, proving 

results of original analysis were correct. 
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5.0 Results 

5.1 Bacteria growth curve and enumeration of inoculums 

The growth curve of PAL5T strain in liquid L-GIP medium varied regardless of 

repetition of the same experiment for many times. Thus, all growth curves were combined 

to have one representative curve (Figure. 1). Plate counting was also conducted at a fixed 

OD value, OD=O.S,600nm. In four individual serial plate counting experiments, the 

result was almost the same each time. Thus, the mean number from those four different 

Q 
experiments was used for diluting the inoculant (10 /ml). Additionally, right after 

inoculating the sugar beet seeds and seedlings, the original inoculant used for inoculation 

was plated for further confirmation of previous results. Once again, all results were 

matched (108/ml). 
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Figure. 1 Growth Curve of the strain PAL5T. 
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5.2 Experiment (I): Screening of 14 strains of Gluconacetobacter 
spp. 

Fourteen strains of Gluconacetobacter spp., including three Gluconacetobacter 

johannae strains, were screened for their capability of stimulating fixing nitrogen in 

different nitrate concentrations. The dry biomass of beets, shoots and roots of treatments 

were compared to control plants in each of 1 mM and 10 mM NO3" concentration 

experiments. 

5.2.1 Biomass of sugar beet grown on 1 mM NO3". 

Six of fourteen strains of Gluconacetobacter spp. significantly increased biomass of 

the beets compared to the control, indicating inoculation by some strains did have positive 

impact on plant growth (Table. 2). The strain of G. d. PAL5T LsdB++ had the highest 

improvement for beet growth, reaching a significant increase of 110.6% (Table. 2). 
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Table. 2 Beet biomass of sugar beets treated with 1 mM NO3". 

Each value is a mean of 5 replicates. Significance was compared only between control 
and each treatment. Treatments listed with different levels of significance (a or b) are 
statistically different from each other with a =0.05, where (a) is not significantly different 
and (b) is significantly different from control. S.E = standard error. 

Gluconacetobacter 

spp. 

Beets Signif. 

a =0.05 

% 
increase Gluconacetobacter 

spp. DW (mg) S.E. 

Signif. 

a =0.05 

% 
increase 

Control(uninoculated) 1826.4 306.0 a 0.0 

G. d. SRT4 LsdA" 2266.2 300.1 a 24.1 

G. d. SRT4 LsdB^ 3129.6 481.2 b 71.4 

G. d. CFNE 550 2504.6 377.9 a 37.1 

G. d. PSP 22 2295.8 77.1 a 25.7 

G.j. UAP-Cf 51 3279.0 417.5 b 79.5 

G.j. CFN-Cf 52 2183.4 267.5 a 19.5 

G.j. CFN-cf76 2731.6 501.7 a 49.6 

G. d. SRT4 3247.2 363.7 b 77.8 

G. d. PAL5T 2731.8 322.2 a 49.6 

G. d. PAL5T LsdA" 3093.4 398.6 b 69.4 

G. d. PAL5T LsdB^ 3847.0 545.9 b 110.6 

G. d. UAP AC7 2500.0 328.3 a 36.9 

G. d. 1772 3087.8 227.1 b 69.1 

G. d. T2 1754.6 231.7 a -3.9 

In the shoots, the dry biomass increase ranged from 3.3% to 57% as compared to un-

inoculated control plants (Table. 3). Even though the percentage of increase in shoots was 

much lower than the beets, 12 out of 14 strains significantly increased shoot biomass. 
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Table 3. Shoot biomass of sugar beets treated with 1 mM NO3" 

Each value is a mean of 5 replicates. Significance was compared only between control 
and each treatment. Treatments listed with different levels of significance (a or b) are 
statistically different from each other with a =0.05, where (a) is not significantly different 
and (b) is significantly different from control. S.E = standard error. 

Gluconacetobacter 

spp. 

Shoots Signif. 

a =0.05 

% 
increase Gluconacetobacter 

spp. DW(mg) S.E. 

Signif. 

a =0.05 

% 
increase 

Control(uninoculated) 1800.4 181.8 a 0.0 

G. d. SRT4 LsdA" 2134.8 89.2 a 18.6 

G. d. SRT4 LsdB++ 2441.2 104.8 b 35.6 

G. d. CFNE 550 2378.0 174.9 b 32.1 

G. d. PSP 22 2532.8 151.6 b 40.7 

G.j. UAP-Cf 51 2439.6 223.0 b 35.5 

G.j. CFN-Cf 52 2568.8 117.3 b 42.7 

G.j. CFN-cf 76 2488.4 121.4 b 38.2 

G. d. SRT4 2381.4 184.3 b 32.3 

G. d. PAL5T 2677.4 129.5 b 48.7 

G. d. PAL5T LsdA" 2415.0 175.3 b 34.1 

G. d. PAL5T LsdB^ 2589.2 170.9 b 43.8 

G. d. UAP AC7 2827.4 282.8 b 57.0 

G. d. 1772 2604.6 93.8 b 44.7 

G. d. T2 1859.8 150.5 a 3.3 
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A similar improvement of biomass accumulation occurred in roots inoculated with 

most of strains. The ranged of increase was from 16.1% to 59.3%; number of strains that 

had significant increase reached to 7 (Table. 4). 

Table 4. Fibrous root biomass of sugar beets treated with 1 mM NO3". 

Each value is a mean of 5 replicates. Significance was compared only between control 
and each treatment. Treatments listed with different levels of significance (a or b) are 
statistically different from each other with a =0.05, where (a) is not significantly different 
and (b) is significantly different from control. S.E = standard error. 

Gluconacetobacter 

spp. 

Fibrous Roots Signif. 

a =0.05 

% increase Gluconacetobacter 

spp. DW (mg) S.E. 

Signif. 

a =0.05 

% increase 

Control(uninoculated) 571.4 81.3 a 0.0 

G. d. SRT4 LsdA" 663.2 71.1 a 16.1 

G. d. SRT4 LsdB^ 703.8 95.4 a 23.2 

G. d. CFNE 550 827.8 72.6 b 44.9 

G. d. PSP 22 792.8 81.2 b 38.7 

G.j. UAP-Cf 51 691.8 46.4 a 21.1 

G.j. CFN-Cf 52 777.4 120.5 a 36.1 

G.j. CFN-cf76 912.0 45.5 b 59.6 

G. d. SRT4 727.0 118.6 a 27.2 

G. d. PAL5T 910.2 108.3 b 59.3 

G. d. PAL5T LsdA" 787.8 62.2 b 37.9 

G. d. PAL5T LsdB^ 878.2 35.3 b 53.7 

G. d. UAP AC7 765.4 90.5 a 34.0 

G. d. 1772 856.8 44.7 b 49.9 

G. d. T2 685.0 120.7 a 19.9 
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5.2.2 Biomass of sugar beet biomass grown on 10 mM NO3" 

The dry biomass of inoculated sugar beets grown on 10 mM NO3" was compared with 

control plants. Beets, shoots and roots were compared separately. 

In beets, 10 of 14 strains increased the dry biomass, proving that inoculation had 

direct growth impact on plant growth. The highest percentage of increase in dry beets was 

67.3%. 
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Table. 5 Beet biomass of sugar beets treated with 10 mM NO3". 
Each value is a mean of 5 replicates. Significance was compared only between control 

and each treatment. Treatments listed with different levels of significance (a or b) are 
statistically different from each other (a = 0.05), where (a) is not significantly different 
and (b) is significantly different from control. S.E= standard error. 

Gluconacetobacter 
spp. 

Beets Signif. 
a = 0.05 

% increase Gluconacetobacter 
spp. DW(mg) S.E. 

Signif. 
a = 0.05 

% increase 

Control(uninoculated) 15943.2 2338.1 a 0 

G. d. SRT4 LsdA" 21461.2 1583.9 b 34.6 

G. d. SRT4 LsdB^ 23352.6 280.4 b 46.5 

G. d. CFNE 550 20880.4 930.3 a 31 

G. d. PSP 22 22376.8 1445 b 40.4 

G.j. UAP-Cf 51 21183.6 3500.1 a 32.9 

G.j. CFN-Cf 52 21952.2 2438 b 37.7 

G.j. CFN-cf76 26035.4 1391.2 b 63.3 

G. d. SRT4 26671.4 1969.1 b 67.3 

G. d. PAL5T 22711.4 1879.3 b 42.5 

G. d. PAL5T LsdA" 19984 1789.2 a 25.3 

G. d. PAL5T LsdB^ 22736.4 3825.9 b 42.6 

G. d. UAP AC7 24248.6 2652.4 b 52.1 

G. d. Mil 21317 1916.7 a 33.7 

G. d. 12 22099.6 1959.4 b 38.6 
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In the shoots, the increased dry biomass of inoculated sugar beets was not significant 

except for the treatment that was inoculated with strain G. d. PAL5T, resulting 27.2 % 

dry biomass increase. Two strains, G. j. UAP-Cf 51 and G. d. PAL5T LsdB^, had 

negative growth effects on shoot. Interestingly, this negative growth effect of both stains 

had been not found on beets (Table. 5), where strain G. d. PAL5T LsdB^ significantly 

increased beet dry biomass. 

Table. 6 Shoot biomass of sugar beets treated with 10 mM NO3". 
Each value is a mean of 5 replicates. Significance was compared only between control 
and each treatment. Treatments listed with different levels of significance (a or b) are 
statistically different from each other with a =0.05, where (a) is not significantly different 

Gluconacetobacter 

spp. 

Shoots Signif. 

a =0.05 

% increase Gluconacetobacter 

spp. DW (mg) S.E. 

Signif. 

a =0.05 

% increase 

Control(uninoculated) 13532.4 959.2 a 0 

G. d. SRT4 LsdA" 13760.6 731.3 a 1.7 

G. d. SRT4 LsdB^ 13895.4 978 a 2.7 

G. d. CFNE 550 13635.4 1480.1 a 0.8 

G. d. PSP 22 14991.4 873.3 a 10.8 

G.j. UAP-Cf 51 12534.4 1810.9 a -7.4 

G.j. CFN-Cf 52 14373.6 1204.8 a 6.2 

G.j. CFN-cf 76 14441 866.3 a 6.7 

G. d. SRT4 14032.3 1033.1 a 3.7 

G. d. PAL5T 17215.4 1543.8 b 27.2 

G. d. PAL5T LsdA- 14731.4 766.8 a 8.9 

G. d PAL5T LsdB++ 13353.4 672.6 a -1.3 

G. d UAP AC7 14725 1736.2 a 8.8 

G. d. 1772 13641.4 374.7 a 0.8 

G. d. T2 12728 956.4 a -5.9 
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Four out of 14 strains significantly increased the fibrous root biomass. The increase 

ranged from 17.8% to 75.5% (Table. 7). 

Table 7. Fibrous root biomass of sugar beets treated with 10 mM NO3" 
Each value is a mean of 5 replicates. Significance was compared only between control and each 
treatment. Treatments listed with different levels of significance (a or b) are statistically 
different from each other with a =0.05, where (a) is not significantly different and (b) is 
both statistically different from control (a =0.05). S.E= standard error 

Gluconacetobacter 
spp. 

Roots Signif. 
a=0.05 

% increase Gluconacetobacter 
spp. DW (mg) S.E. 

Signif. 
a=0.05 

% increase 

Control(uninoculated) 3359.2 336.8 a 0 

G. d. SRT4 LsdA" 5439.6 1241.3 b 61.9 

G. d. SRT4 LsdB^ 3958.8 515.3 a 17.8 

G. d. CFNE 550 4448.2 344.1 a 32.4 

G. d. PSP 22 4457.4 593.6 a 32.7 

G.j. UAP-Cf 51 4164 616.9 a 24 

G.j. CFN-Cf 52 4065.8 233.5 a 21 

G.j. CFN-cf76 4432 652.1 a 31.9 

G. d. SRT4 4724.4 345 a 40.6 

G. d. PAL5T 5487.8 534 b 63.4 

G. d. PAL5T LsdA" 5130 599.6 b 52.7 

G. d. PAL5T LsdB^ 5896.4 802.3 b 5.5 

G. d. UAP AC7 4643.2 666.8 a 38.2 

G. d. Mil 4493.2 233.2 a 33.8 

G. d. T2 4670.8 709.8 a 39 
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Most of strains did not show a significant effect on shoot biomass accumulation at 

the 10 mM NO3" treatment; only the strain G. d. PAL5T had significant increase on beet 

shoots (Table. 6). Even though the magnititude of inoculation impact on fibrous roots at 

10 mM NO3" treatment was higher, fewer strains had significant biomass increase on 

fibrous roots (Table. 4 and Table. 7). 

The highest percentage of beet and shoot biomass increase occurred at the 1 mM 

treatment NO3", 110.6 % and 57%, respectively (Table .2 and Table. 3). However, the 

comparison of the increments between 1 mM NO3" and 10 mM NO3" treatments showed 

that the overall improvement of beet growth was much lower in the 1 mM NO3" 

treatment than on 10 mM NO3" (Table. 8). 

Table. 8 Comparison of tissues biomass from 1 mM NO3" and 10 mM NO3" 
treatments 

Biomass from 1 mM NO3" and 10 mM NO3" treatments were compared for each tissue. 
Data were analysied by t-test using SYSTAT 12 software (a=0.05). S.E=standard error. 

1 mM NO3" S.E 10 mM NO3" S.E P- value (a =0.05) 

Beet 
(mg) 2760.86 101.63 22643.61 515.42 P < 0.001 

Shoot 
(mg) 2452.74 43.18 14154.31 280.63 P < 0.001 

Root 
(mg) 784.23 20.64 4716.19 150.87 P < 0.001 
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5.2.3 Quantification of nitrogen fixation in sugar beet tissues 

Quantification of nitrogen fixation in sugar beet tissues was calculated based on 15N 

dilution technique. Nitrogen content of tissues from both the 1 mM NO3" and 10 mM 

NO3" treatments, as well as the control was tested to be able to compare the nitrogen 

fixation between treatments and control. 

The improvement of biomass accumulation by inoculation with 14 strains of 

Gluconacetobacter spp. in all beet tissues were well matched with corresponding nitrogen 

fixation in both treatments on 1 mM N and 10 mM N. The fixed nitrogen in the plant 

derived from atmosphere was higher in treatment on 1 mM NO3" than 10 mM NO3" 

treatment (Table. 11). The highest nitrogen fixation was found in the roots inoculated 

with the strain G. d. PAL5T LsdB++ in 1 mM NO3" treatment; the nitrogen derived from 

atmosphere reached to 24.4% (Table. 9). Interestingly enough, the fixed nitrogen in the 

sugar beet plants gradually increased in the order of shoots, beets and fibrous roots in 

both treatments and all inoculations (Table. 9 and Table. 10). 
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Table 9. Nitrogen fixation in sugar beet treated with 1 mM NO3 
(P<0.05). S.E-standard error. 

Gluconacetobacter Nitrogen Derived from 
Atmosphere (Ndfa) (%) 

Spp. Shoots S.E. Beets S.E. Roots S.E. 

Control(uninoculate 
d) 

0.0 0.0 0.0 0.0 0.0 0.0 

G. d. SRT4 LsdA" 9.5 2.7 10.8 2.4 15.3 3.8 

G. d. SRT4 LsdB^ 11.7 3.1 12.4 2.5 16.9 3.3 

G. d. CFNE 550 10.1 2.4 9.9 1.5 13.9 2.2 

G. d. PSP 22 10.0 0.9 11.0 0.7 15.5 0.7 

G.j. UAP-Cf 51 9.1 1.4 12.1 1.6 15.0 1.9 

G.j. CFN-Cf 52 10.5 0.7 11.7 0.8 16.2 1.6 

G.j. CFN-cf76 12.8 1.2 13.6 1.4 18.1 1.7 

G. d. SRT4 12.1 2.5 14.3 2.3 18.7 2.5 

G. d. PAL5T 15.8 1.2 16.8 1.1 21.9 1.4 

G. d. PAL5T LsdA" 13.8 2.0 13.7 3.2 21.4 1.9 

G. d. PAL5T 
LsdB^ 

17.9 1.8 18.6 2.1 24.6 2.7 

G. d. UAP AC7 16.0 2.6 17.4 2.6 21.7 1.9 

G. d. 1772 15.6 1.0 17.2 0.4 22.6 1.2 

G. d. T2 8.3 1.7 9.8 2.0 14.7 2.4 
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Table 10. Nitrogen fixation in sugar beet treated with 10 mM NO3 
(P<0.05). S.E=standard error. 

Gluconacetobacter 
Nitrogen Derived from 

Atmosphere (Ndfa) (%) 

Spp. Shoots S.E. Beets S.E. Roots S.E. 

Control(uninoculate 
d) 0.0 0.0 0.0 0.0 0.0 0.0 

G. d. SRT4 LsdA" 0.0 0.6 1.6 0.8 3.4 1.2 

G. d. SRT4 LsdB^ 0.0 0.6 1.0 0.7 3.2 1.4 

G. d. CFNE 550 0.0 0.4 0.8 0.4 3.1 0.9 

G. d. PSP 22 0.0 0.6 1.4 1.0 3.5 0.9 

G.j. UAP-Cf 51 0.0 0.9 1.1 1.1 4.6 1.9 

G.j. CFN-Cf 52 0.0 0.9 1.4 1.4 4.9 1.6 

G.j. CFN-cf 76 0.2 0.9 2.3 0.8 3.1 1.4 

G. d. SRT4 0.4 0.7 2.2 0.6 3.1 1.5 

G. d. PAL5T 0.0 0.5 1.4 0.6 3.6 1.2 

G. d. PAL5T LsdA" 0.0 0.6 2.3 1.4 4.5 1.3 

G. d. PAL5T 
LsdB^ 

0.0 0.4 1.6 0.6 3.9 0.9 

G. d. UAP AC7 0.5 0.4 2.7 0.8 5.0 0.7 

G. d. 1112 0.0 0.7 1.5 0.6 3.2 1.0 

G. d. T2 0.0 0.7 1.5 0.6 4.6 1.2 

Red colour on Table. 9 and Table. 10 indicates the significantly different samples 

compared to control in dry biomass. 
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As it is shown on the table (Table. 11), the overcall nitrogen fixation in shoots, beets 

and fibrous roots of sugar beet at 1 mM nitrogen treatment is higher than those that at 10 

mM treatment. This result statistically confirms that inoculated strains fix nitrogen more 

efficiently at lower nitrogen concentration (1 mM) compared to higher concentration (10 

mM). 

Table 11. Comparison of nitrogen fixation in tissues from 1 mM NO3" to 10 mM NO3 
treatments 

The %Ndfa from 1 mM and 10 mM treatment were compared for each tissue. Data were 
analysied by t-test using SYSTAT 12 software. S.E=standard error. 

1 mM 
(%Ndra) S.E 

10 mM 
(%Ndra) S.E P-value (a=0.05) 

Shoot 12.382 0.543 1.825 1.449 P < 0.001 

Beet 13.517 0.535 1.709 0.182 P < 0.002 

Fibrous Root 18.320 0.627 3.850 0.283 P < 0.001 
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5.3 Experiment II: Assessment of best inoculation stage 

To assess the effect of inoculation at different plant growth stages on accumulation of 

sugar beet biomass, beets were inoculated at four different stages (seed, seedling, seven 

leaves and fourteen leaves). 

The dry biomass of beets, shoots and fibrous roots were compared to the control. 

There were no significant differences among four treatments in terms of beet dry weight 

(Figure. 2), indicating inoculation at different stages did not have significant effect on 

growth. Interestingly, there was also no significant difference in beet dry biomass of 

control and treatment plants (Figure. 2); showing inoculation had no effect on plant 

growth. Given that inoculation with strain PAL5T did not result in a statistically 

significant increase in beet dry biomass in the 1 mM NO3" treatment (Table. 2), but had a 

positive increase in dry beet biomass of the 10 mM NO3" treatment indicating an 

interaction between G. diaztrophicus strain and nitrogen fertility. 

Interestingly, negative significant difference was found between shoots of fourteen-

leave stage and control plants, indicating the inoculation reduced the shoot biomass at the 

fourteen-leaves stage (Figure. 2). 
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Figure. 2 Dry biomass of beets, shoots and roots from different growth stages 
inoculation. A, B, D and E referring to seed, seedling, seven leaves and fourteen leaves 
inoculation stages (P<0.05). Statisticaly significance within treatments was compared, 
where (a) is not significant different and (b) is significantly different. Control was un-
inoculated. 8-9 replicates per treatment. Data were analysied by MANOVA using 
SYSTAT 12 software. 
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5.4 Experiment III: Titre experiment 

To assess if the concentration of bacteria in the inoculant was one of the factors that 

influences biomass increase, sugar beets were inoculated with different concentrations of 

bacteria (titre). Additionally, to confirm the different inoculation stages do not have any 

impact on plant biomass increase, the seed and seedling inoculation was added to titre 

experiment. 

5.4.1 Seed inoculation - titre 

In this seed inoculation-titre experiment, seeds were dipped into different 

concentrations (102 CFU ml"1,104 CFU ml"'and 106 CFU ml"1) of PAL5T broth before 

planting. After planting the seeds, the soil above the seed was additionally inoculated 

with 5 ml/ pot of bacteria broth (102 CFU ml"1,104 CFU ml"1 and 106 CFU ml"1). 

There was significant differences in dry biomass of beets compared to control plants 

(Table. 12 and Figure. 3), showing inoculation did have positive effect on the plant 

growth. It is speculated that this biomass increase was mostly probably from biological 

nitrogen fixation. Interestingly, no significant differences were observed among 

treatments (102 CFU ml"1,104 CFU ml"1 and 106 CFU ml"1) in terms of dry beet biomass 

(Table. 12), indicating that as low as 500 bacteria was enough to infect the plant to have 
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positive growth effect. The result also shows that growth effect caused by incoulant of 

500 bacteria was the same with the effect of 5 x 103 and 5 x 104. 

It is of biological importance that the lowest inoculant number resulted in the highest 

biomass increase (Figure. 3). 

Table 12. Biomass of beets in sugar beet inoculated at seed stage (inoculated twice). 
The mean number represents of 8-13 replicates. Significance was compared only between 
control and each treatment (P<0.05). S.E=standard error. 

Seed inoculation (twice) 
5 ml broth ; 5 m.M 

NO3-

Beets Signif. 

a=0.05 

Seed inoculation (twice) 
5 ml broth ; 5 m.M 

NO3- DW (ME) S.E. 

Signif. 

a=0.05 

Control (uninoculated) 17.8 1.5 a 

102/ml 26.1 1.9 b 

104/ml 25.5 1.7 b 

106/ml 24.9 2 b 
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Figure.3 Comparison of beet dry biomass of sugar beet 
Statistically significance of treatments was compared, where (a) is not significant 
different and (b) is significantly different. Control was un-inoculated. 8-9 replicates per 
treatment.The mean number represents of 8-13 replicates. Significance was compared 
only between control and each treatment (P <0.05). Dry hypocotyl biomass was 
increased 46.5%, 44.8% and 39.5%, respectively. 
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In shoots, significant difference was found between treatments and control (Figure. 4), 

proving seed inoculation also had positive growth effect on sugar beet shoots. The dry 

shoot increase ranged from 26.6% to 32.7%. The lowest inoculation number resulted in 
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the highest shoot increase, which is quite interesting considering the lowest inoculant 

number also gave the highest biomass increase in beets. 

In shoots, inoculation increased the shoot biomass by 32.7% in 102 CFU/ml inoculant, 

26.6% % in 104CFU ml"1 inoculant and 31.8% in 106CFU ml"1 inoculants, separately 

(Figure. 4). 

Figure. 4 Comparison of shoot dry biomass of sugar beets 
Statistically significance of treatments was compared, where (a) is not significant 
different and (b) is significantly different. Control (0) was un-inoculated (P <0.05). ^ ^ 
Treatments were inoculated with 5 ml of broth at the concentrations of 10 CFU ml , 10 
CFU ml"1 and 106CFU ml"1. Dry shoot biomass was increased 32.7%, 26.6% and 31.8%, 
respectively. 
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Similarly, the significant increase was also observed in fibrous roots and increase was 

46.3%, 46.3% and 41.3% in three different inoculants in the order of 102 CFU ml"1' 104 

CFU ml"1 and 106 CFU ml"1 (Figure. 5). The highest inoculant number resulted in the 

lowest root biomass increase in comparison to other titre treatments, while the lowest 

inoculant number gave higher increase than the lowest inoculants. 

Figure. 5 Comparison of fibrous root dry biomass of sugar beets 
Statistically significance of treatments was compared, where (a) is not significant 
different and (b) is significantly different. Control (0) was un-inoculated. Treatments 
were inoculated with 5 ml of broth at the concentrations of 102 CFU /ml, 104 CFU /ml and 
106CFU /ml. Dry root biomass was increased 46.3%, 46.3% and 41.3%, respectively (P 
<0.05). 
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Shoot and root samples were also re-analysed by MANOVA with SYSTAT 12 

software. The results came out exactly same with previous analysis that there was 

significant difference between shoots and roots of treatment compared to control plants, P 

< 0.05. 

In addition, beet, shoot and fibrous root samples were further analysed by Fisher's 

least-significant-difference test. The results were confirmed with MANOVA test by aid of 

SYSTAT 12 software, P < 0.05. 

Interesting fact that germination rate of inoculated seeds was higher than un-

inoculated seeds (roughly 30%, data not shown). 

5.4.2 Seedling- titre inoculation 

For seedling-titre experiment, seeds were germinated in pots and at the seedling stage, 

each plant was inoculated by applying 5 ml of broth on the soil surface around the stem 

with different bacteria concentrations (102 CFU ml"1,104 CFU ml"1 and 106 CFU ml"1). 

No significant beet biomass differences have been observed between treatments and 

control (Table. 13). Thus, samples were not analysed for 15N content. 
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Table 13. Blomass of beets in sugar beet inoculated at seedling stage 

Statistically significance of treatments was compared, where (a) is not significant 

different and (b) is significantly different. The mean number represents of 8 replicates. 

Significance was compared only between control and each treatment (P<0.05). S.E refers 

to standard error. 

Seedling inoculation 
5 ml broth ; 5 mM 

NO3" 

Beets P-value 

a<0.05 

Seedling inoculation 
5 ml broth ; 5 mM 

NO3" DW (mg) S.E. 

P-value 

a<0.05 

Control (uninoculated) 21.2 1.7 a 

102/ml 23 1.8 a 

104/ml 22.5 1.1 a 

106/ml 18.2 1.1 a 
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5.4.3 Seed inoculatlon-tltre: inoculated once 

In comparison to previous seed-titre experiment, in which seeds were inoculated 

twice in a different manner, seeds were only inoculated once right after planting with 5 

ml of three different concentrations of bacteria broth (102 CFU ml"1,104 CFU ml"1 and 

106CFU ml"1). Control was inoculated with pure L-GIP medium. 

Interestingly enough, the experiment failed to give positive results in terms of significant 

dry plant biomass increase in beets (Table. 14). Therefore, quantification of nitrogen 

fixation test was not conduced considering not any significant biomass increase was 

observed. 

Table 14. Biomass of beets inoculated at seed stage (inoculated once) 
The mean number represents of 8 replicates. Significance was compared only between 
control and each treatment (P<0.05). (Experiment was set up 15 days after than previous 
two experiments started). S.E - standard error. 

Seed inoculation (once) 
5 ml broth ; 5 mM 

NO3" 

Beets P-value 

a=0.05 

Seed inoculation (once) 
5 ml broth ; 5 mM 

NO3" DW(mg) S.E. 

P-value 

a=0.05 

Control (un-inoculated) 21.8 1.3 a 

102/ml 22.8 1.3 a 

104/ml 22.8 1.3 a 

106/ml 22.6 1.4 a 
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5.5 GUS assay (TV) 

5.5.1 Confirmation of GUS expression in GUS-transformed strains 

To confirm GUS expression in the GUS-transformed strains of Gluconacetobacter 

diazotrophicus (G. diazotrophicus), a series of individual experiments were conducted. 

GUS gene labeled G. diazotrophicus strains, UAP-5541/PRGS561 constitutively 

expressing GUS and 5541/PRGH562 with a w/H::gusA transcriptional fusion, were 

grown in liquid ATGUS medium [ 0.8% (w/v) agar, yeast extract (2.7g L"1), glucose 

(2.7g L'1), mannitol (1.8g L"1), MES buffer (4.4 g L'1), K2HP04 (065g L1), pH 6.5, 

containing 45 mg/L streptomycin] to test growth condition (Edward, 2006). 

Based on the fact that the optimal growth for G. diazotrophicus is 10% sucrose, we 

hypothesized that GUS strains might have faster in the original liquid LGI-P medium 

containing 10% sucrose (Gillis, 1989). The growth rate of GUS gene labelled G. 

diazotrophicus strains in liquid ATGUS medium (Cocking, 2006) was compared to liquid 

LGI-P medium based on OD values. Result indicated that the GUS strains grew faster in 

liquid LGI-P medium compared to ATGUS. Thus, liquid LGI-P medium is used for 

future culturing experiments. 

GUS labeled G. diazotrophicus strains, UAP-5541/PRGS561 and 5541/PRGH562, 

were grown in LGI-P medium with and without streptomycin at 45mg/L. In the 
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streptomycin containing LGI-P medium, bacteria grew well which further indicated that 

bacteria retained resistance to the antibiotic. 

Confirmation of GUS gene expression was tested on solid LGI-P medium containing 

X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid cyclohexylammonium salt), 

50 mg L"1, and control medium did not contain X-Gluc. PAL5T was used as a second 

control to compare GUS gene labeled strains. X-Gluc was added in two forms, as a 

powder after autoclaving the medium and after dissolving in ethylenediaminetetraacetic 

acid (EDTA). The results showed that the colonies of GUS gene labeled strains plated on 

LGI-P medium containing X-Gluc turned to dark colour (Figure. 7 and Figure. 10), while 

colonies of medium did not contain X-Gluc remained as yellow (Figure. 8, Figure. 9 and 

Figure. 11). Further, the colonies of PAL5T did not show any colour changes in neither 

in X-Gluc containing medium nor non-containing one. All of those factors contributing 

the confirmation of GUS strains did not lose the GUS gene containing plasmids and were 

viable. In terms of the forms of adding the X-Gluc, the powder method resulted in 

darker colour compared to EDTA -dissolved X-Gluc. Nevertheless, the colony colour 

was supposed to be dark blue rather than dark based on previous research (Edward, 2006). 

Thus, another set of experiment was conducted to obtain the blue colour to further 

confirm the GUS expression. It was concluded that bromothymol blue was responsible 

for colour change from dark blue to blue (Figure. 6). 

The experiment above was repeated adding one more factor, with and without a 

bromothymol blue. As expected, the colonies of medium did not containing 
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bromothymol blue gave a true blue colour compared to darker blue colour formed from 

bromothymol containing medium. Thus, the expression of GUS gene on L-GIP medium 

containing X-Gluc was finally confirmed and bacteria strains were viable. 
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Figure. 6 Expression of Gluconacetobacter diazotrophic us 5541/PRGH562 strain on 
solid LGI-P medium (I). 
The medium did not contain bromothymol blue but was treated with X-Gluc. Blue colour 
showing presence of inserted PRGH562 plasmid in the bacteria. 
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Figure. 7 Expression of Gluconacetobacter diazotrophicus 5541/PRGH562 strain on 
solid LGI-P medium (II). 
The medium did not contain bromothymol blue but was treated with X-Gluc. 
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Figure. 8 Colonies of Gluconacetobacter diazotrophicus 5541/PRGH562 strain on 
solid LGI-P medium (Control I). 
The medium contained bromothymol blue but was not treated with X-Gluc. Yellow is the 
original colour of bacteria colony on LGI-P medium, not developing any colour changes 
indicates GUS labelled strain, Gluconacetobacter diazotrophicus 5541/PRGH562, only 
expresses when the medium treated with X-Gluc. 
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Figure. 9 Colonies of Gluconacetohacter diazotrophicus 5541/PRGH562 strain on 
solid LGI-P medium (control II). 
The medium did not contain bromothymol blue, nor was treated with X-Gluc. 

88 



Figure 10 Expression of Gluconacetobacter diazotrophicus 5541/PRGS561 strain 
on solid LGI-P medium (HI). The medium did not contain bromothymol blue but was 

treated with X-Gluc. 
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Figure. 11 Colonies of Gluconacetobacter diazotrophicus 5541/PRGS561 strain on 
solid LGI-P medium (Control I). The medium contained bromothymol blue but was 

not treated with X-Gluc. 
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5.5.2 Assessment of sugar beet infection with GUS-labeled stains of G. 

diazo trophic us 

To visualize the infectious sites of sugar beets by G. diazotrophicus, beets were 

inoculated with GUS labeled strains of G. diazotrophicus. Visualization was made 

possible through GUS staining. 

Most of seedlings inoculated on MS medium and agar plates looked unhealthy 

regardless of repetition of the experiment with slight changes of procedures for more than 

four times. However, alternative seedling rhizosphere inoculation in sand pots generated 

healthy plants for further staining experiment. Thus, seedling inoculation in sand pots was 

conclusively carried out in the rest of GUS staining experiments. The GUS-inoculation of 

sugar beet seedlings was repeated for seven times. More than 80% of plants out of 80 

seedlings resulted in positive blue colour. The inoculation with higher OD value of 

bacteria broth resulted in deeper blue colour. Stained healthy sugar beet seedlings were 

observed under dissecting microscope using the INFINITY software program. 

Based on sites and patterns of blue staining's, both GUS gene labelled strains 

confirmed that root tips (Figure. 12, Figure. 16 and Figure. 19), the intersection of lateral 

roots (Figure. 13, Figure. 15 and Figure. 18) and root hairs (Figure. 14, Figure. 17 and 

Figure. 20) were potential sites for bacteria to enter the plant. Samples stained after seven 
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days of inoculation showed the same results with stained four days of inoculation, 

demonstrating that four days was enough for bacteria to infect the host plant. 

Interestingly, the leaves of one sugar beet plant that inoculated with GUS strain 

resulted blue colour (Figure. 21). Considering the fact that those sugar beet seedlings 

were rhizosphere inoculated, an explanation for GUS activity in sugar beet leaves is that 

inoculated GUS strains travelled through from roots to all the way up to leaves. 

Colonization of leaves by GUS labelled strain has an important biological importance 

when it comes to nitrogen fixation, however, some studies reported that bacteria number 

in sugar cane leaves decreases dramatically during vegetative growth stage compared to 

shoots and roots (Hallman and Berg, 2006). Given the fact that only one out of more 

than 60 plants had positive GUS activity in leaves, the result is not statistically significant 

but biologically interesting. 
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(1) GUS-labeled strain one: Gluconacetobacter diazotrophicus UAP-5541/PRGS561 

Figure. 12 Light micrographs of lateral root tips of sugar beet inoculated with GUS-
labelled Gluconacetobacter diazotrophicus UAP-5541/pRGS561. 
Root tip regions show blue stain from GUS activity associated with colonization by G. 
diazotrophicus UAP-5541/pRGH561. Bars= 1 mm 
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Figure. 13 Light micrographs of lateral root of sugar beet inoculated with GUS-
labeled Gluconacetobacter diazotrophicus UAP-5541/pRGS561. 

Arrows indicating blue stain from GUS activity associated with colonization by G. diazotrophicus 
UAP-5541/pRGH561 at the intersection of lateral roots. Bars = 1 mm. 



Figure. 14 Light micrograph of root hairs of sugar beet inoculated with GUS 
labelled Gluconacetobacter diazotrophicus UAP-5541/pRGS561. 

Arrows indicating mature root hairs showing blue stain associated from GUS activity associated 
with colonization by G. diazotrophicus UAP-5541/pRGH561. Bars = 1 mm. 

95 



(2) GUS-labeled strain two: Gluconacetobacter diazotrophicus 5541/PRGH562 

Figure. 15 Light micrographs of lateral root of sugar beet inoculated with GUS-
labelled Gluconacetobacter diazotrophicus UAP-5541/pRGH562 
Arrows indicating blue stain from GUS activity associated with colonization by G. 
diazotrophicus UAP-5541 /pRGH561 at the intersection of lateral roots. Bars = 1 mm 
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Figure. 16 Light micrograph of lateral root tips of sugar beet inoculated with GUS-
labeled Gluconacetobacter diazotrophicus UAP-5541/pRGH562. 

Root tip regions show blue stain from GUS activity associated with colonization by G. 
diazotrophicus UAP-5541/pRGH561. Bars = 1 mm 
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Figure. 17 Light micrograph of root hairs of sugar beet inoculated with GUS-
labelled Gluconacetobacter diazotrophicus UAP-5541/pRGH562. 

Arrows indicating mature root hairs showing blue stain associated from GUS activity associated 
with colonization by G. diazotrophicus UAP-5541/pRGH562. Bars = 1 mm 
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(3) Control strains: GUS parental strain UAP 5541. 

Figure. 18 Light micrographs of lateral root junctions of sugar beet inoculated with 
parental Gluconacetobacter diazotrophicus. 

Inoculation with parental strain gave the same result. Staining did not result in blue 
colour, indicating lack of B-glucuronidase activity and providing the specificity of the 
visualization procedures. Bars=l mm 



Figure. 19 Light micrographs of lateral root tips of sugar beet inoculated with 
parental Gluconacetobacter diazotrophicus. 

Inoculation with parental strain resulted in the same colourless staining. Arrows 
indicating staining did not result in blue colours at root tip zone, proving only GUS 
lablled strains were capable of giving blue colour from GUS activity. Bars=l mm 
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Figure. 20 Light micrographs of root hairs of sugar beet inoculated with parental 
Gluconacetobacter diazotrophicus. 

Inoculation with parental strain generated the same result. Arrows indicating staining did 
not result in blue colours on root hairs, proving only GUS lablled strains were capable of 
giving blue colour from GUS activity. Bars=l mm 

101 



Figure. 21 Light micrographs of sugar beet leaf inoculated with GUS labeled strain. 

Blue colours indicating GUS activity associated with colonization of GUS labelled G. 
diazotrophicus. 
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5.6 Isolation of G. diazotrophicus (V) 

To confirm that bacteria isolated from beet tissues were G. diazotrophicus, the 

polymerase chain reaction (PCR) was applied. 

Two weeks after incubation of isolated strains in semi-solid LGI-P medium at 30 °C, 

the yellowish colour started to appear. The semi-solid LGI-P medium did not contain 

ammonium sulphate, nor the yeast extract. Appearance of a yellow colour indicated 

increasing acidity of the semi-solid medium, confirming the isolated bacteria was acid 

producing bacteria. Additionally, the medium did not contain much mineral nitrogen 

except the small amount of biotin (0.1 mg L"1), which further supports that the isolated 

bacteria were most probably nitrogen fixing bacteria. Then, the bacteria were plated on 

standard LGI-P solid medium for PCR testing. After a week of incubation at 30 °C, 

yellow colonies appeared on the LGI-P solid medium, which were directly used for PCR. 

It is worth mentioning that the morphology of some of the isolated colonies differed from 

typical G. diazotrophicus, such as colonies in colour and the shape. 
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5.5 Confirmation of G. diazotrophicus by PCR (VI) 

PCR products were visualized by electrophoresis in a 1% agrose gel containing 

ethidium bromide for 30 min and viewed under UV light. The correct PCR products from 

colonies of isolates show bands at 800 pb region, which is common to all bacteria, and at 

445 pb region that is specific to the G. diazotrophicus. 

In seed inoculation titre experiment (inoculated once), the homogenized sugar beet 

tissues suspended in 10% sucrose were filtered and directly used for PCR. The PCR 

generated positive bands at 455 bp and 800 bp regions in 102 treatment (Figure. 22), 

indicating the isolated bacteria was G. diazotrophicus. The same bands were not 

observed in rest of treatments, 104 and 106. As a band at 800 bp region on gel indicates 

that control sample was contaminated with unspecific bacteria. A repeatition of the 

experiments showed similar results. However, purified bacteria DNA generated better 

results ipers. comm. Dr. H. Fei, December, 2011). 
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Figure. 22 PCR products from isolates of seed inoculation (inoculated twice) (I). 

Left to right (seed inoculation- twice): 102,104,106 and control. Each marker is 100 bp. 

PCR products are showing 445 bp and 800 bp. 
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Yellow colonies of isolates from the seed inoculation (inoculated once) treatment were 

cultured in liquid medium for purification and treated to the PCR analsis. Culturing of the 

bacteria took 10-15 days, 5-10 days more than the regular time to culture G. 

diazotrophicus. OD value of broth culture did not increase above 0.2, A=600 nm. 

105 



However, all 102 CFU ml'^lO4 CFU ml"1, 106 CFU ml"1 samples resulted 800 bp bands 

but 445 bp bands were completely missing (data not shown). 

However, re-cultured bacteria broth from stock gave proper PCR results at 445 bp and 

800 bp when the same PCR procedures were applied (Figure. 23), indicating a problem 

might have occurred during isolation or culturing process. 

Figure. 23 PCR products from cultured cells from stock. 
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In the seedling inoculation titre experiment (inoculated once), the homogenized sugar 

beet tissues suspended in 10% sucrose were filtered and directly used for PCR. Results 

show some controversial data (Figure. 24). As bands on gel indicate that control sample 

of seedling experiment was contaminated with the same bacteria, PAL5T . It might be 

possible that contamination might have happened at greenhouse or during PCR process. 

Since inoculation did not significantly increase the biomass of beets in treatments, further 

conducting PCR was abandoned. 

Figure. 24 PCR products from isolates of seedling inoculation. Left to right: 

102,104 andlO6. PCR products were showing at 800 bp. 
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However, in the seed inoculation titre study (inoculated twice), positive bands were 

observed (Figure. 22). Contamination of control might have caused either from isolation 

or during conducting PGR considering the seed inoculation treatment resulted positive 

biomass increased data. 

In the second seed- titer study (inoculated once), even though control was not 

contaminated and had positive band from one of treatment samples (Figure. 25), however, 

there was no significant biological difference in dry biomass. Thus, importance of PCR 

result as for the twice-seed inoculation experiment is negligible. 

Fig. 25 PCR products from isolates of seed inoculation (inoculated once) (V). 

Left to right (seed inoculation- twice): 102,104 andlO6. Each marker is 100 bp. PCR 

products are showing at 800 bp. 
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6. Discussion 

6.1 Screening of 14 strains of Gluconacetobacter spp. (I) 

The greenhouse screening experiment showed that 12 of 14 strains of 

Gluconacetobacter spp. improved sugar beet growth to different extents. The increase 

was higher at lower concentrations of applied nitrate. This result was most probably due 

to the fact that higher concentrations of nitrate limited the infection of bacteria (Fuentes-

Ramirez et al. 1993). The infection level of sugar cane by G. diazotrophicus was 

diminished by application of high nitrogen fertilization, due to possible change in the 

plant's physiology, which further negatively affected the association between host and 

endyphote (Fuentes-Ramirez et al. 1999). Further, the limitation of high levels of N-

fertilization on population of G. diazotrophicus was reported in sugar cane plants 

(Muthukumarasamy, 1999; Reis Junior et al. 2000). Thus, the result that higher growth 

effect of endophytic nitrogen fixing bacteria at lower nitrogen concentration supports the 

finding that higher concentration of nitrogen limits the growth of the bacteria (Caballero-

Mellado et al. 1995). Logically, fewer bacteria at the higher nitrogen concentration may 

explain the biomass differences between two treatments. Therefore, a moderate level of 

nitrogen concentration was used for later study, i.e; 5 mM NO3". 

Screening of nitrogen fixing bacteria experiment also confirmed that infection of sugar 

beet by Gluconacetobacter spp. can be achieved. As for the strain of G. diazotrophicus, 

one of the main components for establishment of symbiosis with sugar beet might be 
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attributed to the fact that the optimal growth of bacteria requires higher levels of sugar 

(10%) in the host plant (Cavalcante and Dobereiner, 1988) and sugar beet is capable of 

providing the G. diazotrophicus with 25% more sugar than sugar cane (Martin et al. 2006; 

World Bank, 1998). Establishment of sugar beet infection by Gluconacetobacter spp. 

indicates that there is a huge potential for developing bio-fertilizers, which will reduce 

the dependence on costly chemical fertilizers. Thus, the application of bio-fertilizers 

reduces the costs on chemical fertilizers, making the sugar beet more cost-effective 

biofuel stock in Canada. Therefore, greenhouse gas emissions can be further reduced. 

Comparison of beet biomass increase induced by inoculation of different bacteria 

strains at different nitrogen treatments showed that the strain G. d PAL5T LsdB++ 

performed best among all the strains which were treated with 1 mM NO3", reaching to 

110.6 % of beet biomass increase (Table. 2). Even though, the shoot and fibrous biomass 

increase generated by the strain G. dPALST LsdB++ was not the highest at 1 m M NO3" 

treatment (Table 3 and Table 4), the fixed nitrogen in beets, shoots and fibrous roots were 

the highest in the same treatment group (Table. 11). Interestingly, the inoculation of this 

strain negatively influenced the shoot biomass increase at 10 mM NO3" treatment (Table. 

6). Additionally, nitrogen fixation observed in defferent parts of the host plant was not 

the highest in the same group (Table. 9). 

Analysis of different sugar beet parts for occurrence of 15N demonstrated that the 

biomass increase is highly associated with biological nitrogen fixation (Table. 8 and 

Table. 9). As it is shown on the table (Table. 8), the overall biomass increase with 14 
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strains of G.diazotrophicus at 10 mM treatment was significantly higher than overall 

biomass increase at 1 mM treatment. However, the percentage of nitrogen derived from 

atmosphere (%Ndfa) was significantly higher at 1 mM NO3" treatment than those that at 

10 mM NO3" treatment (Table. 11). Having significantly higher %Ndfa at the 1 mM NO3" 

treatment indicates that the inoculation is more effective at lower nitrogen concentration. 

It can also be concluded that the significant biomass increase at 10 mM NO3" treamtment 

may largely induced by the higher concentration of NO3", which likely inhibits the 

bacteria population. In order to further confirm the conclustion above, it is highly 

recommended to quantify the bacteria number in different tissues of the sugar beet grown 

at different levels of NO3". 

The similar biomass increase and nitrogen recovery was reported in sugarcane plants 

inoculated with G. diazotrophicus (Archna et al. 2005). It was confirmed that inoculation 

resulted in those differences. Thus, results proving the improvement of biomass 

accumulation in sugar beet might be resulted from activity of introduced nitrogen fixing 

endophytes. However, it is also possible that plant hormones produced by 

Gluconacetobacter spp. might attribute to this increase by stimulating root growth in 

sugar beets (Sevilla et al. 1998; Bastian et al. 2000; Fuentes- Ramirez et al. 1993). Thus, 

morphological changes of roots, such as elongation and generating more root hairs, might 

have played a positive role in increasing acquisition of plant nutrition. Further, the 

capability of solubilising mineral nutrients by bacteria cannot also be neglected in this 

biomass increase (Saravanan et al. 2007a; Mowade and Bhatta-charyya, 2000). Lastly, 

the defence mechanisms of bacteria species against pathogens and nematodes might also 
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have played a role during plant growth (Ariel et al. 2006; Blanco et al. 2005; Saravanan et 

al 2007b) 

Most exiting result was that the highest valued for increase in sugar beet biomass 

induced by Gluconacetobacter spp. was occurred in beet tissues (Table. 2 and Table. 5). 

Considering beet is the main harvesting part of sugar beet, the result consists with 

expectation of making the sugar beet more viable biofuel feed stock. It is also interesting 

that the nitrogen derived from atmosphere in beet tissues were increased from shoot, beet 

to root in both nitrogen concentration treatments (Table. 9 and Table. 10). This result was 

well correlated with the study of population dynamics of enyphytic bacteria, G. 

diazotrophicus, in sugarcane plant (Archna et al. 2005). In which, the bacteria number 

was higher in roots and shoots. However, in order to make correct assumption, the 

quantification of bacteria in different tissues of sugar beet is highly recommended. 

6.2 Assessment of best inoculation stage (II) 

Results from the best inoculation growth stage experiment indicated that there were 

no significant increases in dry beet biomass (Figure. 2). However, it might be possible 

that plants might have suffered from heat shock, a serious threat to crop production (Hall, 

2001), due to high temperatures in the greenhouse. The greenhouse temperature reached 

to above 50 °C for couple hours some summer days, which was 10-15 °C higher than 

ambient temperature and enough to cause heat stress. The heat stress might have caused 
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irreversible damage to plant physiology and development (SchoffI et al. 1999; Howarth, 

2005), which further negatively impacted on the plant growth and yields (Wahid et al. 

2007). Additionally, the similar reduction has been reported in sugar cane production 

(Ebrahim et al. 1998). Further, the heat stress has been reported as one of most important 

detrimental factors of reduction in yield in corn (Giaveno and Ferrero, 2003) and that may 

be the case for the sugar beet in this study. Even though the plant response to high heat 

stress is varying with plant species and developmental stages, the reproductive phases 

reported to be the most markedly affected by high temperatures (Foolad, 2005). 

In our previous experiment of screening fourteen strains for nitrogen fixation, the 

growth effect of PAL5T on beet was proportionally higher at lower (1 mM NO3) nitrogen 

treatment compared to the higher (10 mM NO3") treatment. Nevertheless, under 1 mM 

nitrogen concentration, the beet increase was not statistically significant compared to 

control plants. Therefore, these results support the hypothesis that it might be the nitrogen 

concentration level that caused current result of no significant differences between control 

and treatment plants were observed under 5 mM NO3" concentration. Beet samples were 

not grinded for further analysis of nitrogen fixation simply because inoculation did not 

have significant effect on growth of beets. 

Both in shoots and roots, significant differences of dry beet biomass were not found 

among treatments, and no significant biomass differences were observed between 

treatment and control plants (Figure. 2). Based on positive results both in 1 mM NO3" and 

10 mM NO3" concentrations of our previous screening experiment, theoretically, sugar 
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beets treated with 5 mM NO3" should generate positive shoot biomass results. 

Interestingly, negative significant difference was found between shoots of fourteen-leave 

stage and control plants, indicating the inoculation did reduce the shoot biomass at 

fourteen-leves stages (Figure. 2). Nevertheless, this experiment was conducted at 

different times of the year compared to previous one and greenhouse temperature was as 

high as 50 °C. Thus, some different factors, such as temperature and lights, might have 

played a role in resulting different shoot and root biomass. 

It is also possible that the heat stress also had detrimental impacts on plant-microbe 

interaction. It was noted that plants closer to greenhouse door, where better air circulation 

occurred, appeared to have detrimental impact on plants. Although, it is reported that 

microorganisms can play a role in mitigating resistance to abiotic stresses in plant-

microbe interactions through variety of mechanisms, such as triggering osmotic response 

and induction of novel genes in plants (Minakshi et al. 2010), we were unable to measure 

the magnitude of effect of inoculated bacteria on plant heat stress. More importantly, 

nitrogenase activity can be inhibited by excessive heat (Ortega et al. 2001). Further, 

G.diazotrophicus is very sensitive to heat and dryness, decreasing bacteria population 

more than 60% between 40 °C -50 °C (Tejera et al. 2003). Based on these reports, high 

temperature at greenhouse, coupled with dryness of sandy soil, might have been 

detrimental to the survivability of G. diazotrophicus. Thus, these abiotic factors might 

have resulted in the lack of positive effects of inoculation. Additionally, since endophytes 

depend on nutritional supply provided by host plant, any changes in any of those 
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parameters that affect plant nutritional status could consequently influence the endophyte 

growth and population (Hallmann et al. 1997). 

It should also be noted that some of the plants were damaged by grazing by rats at the 

seedling stage. This may have been another compounding factor that contributed to the 

lack of a positive effece of inoculation and growth of the beets. 

6.3 Titer experiment (III) 

In the titre experiment, sugar beets were inoculated at different concentrations (10 

CFU ml"1, 104CFU ml"1 and 106CFU ml"1) at seed and seedling stages. 

6.3.1 Seed inoculation- inoculated twice 

The data showed that there were no significant differences in beet dry weight among 

the treatments (102 CFU ml"1,104 CFU ml"1 and 106CFU ml"1) in seed inoculation (Table. 

12). However, significant biomass differences between treatments and the un-inoculated 

control plants were observed (Figure. 3). This suggests that an inoculant number as low as 

102 CFU ml"1 had the same growth effect as the 106 CFU ml"1 treatment. It was reported 

that a rice response to the high levels of rhizosphere bacteria inoculation, 108-10n CFU 
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ml"1, was negative and suggested the optimal inoculant number was 105-106 CFU/ml 

(Kapulnik et al. 1985; Bashan, 1986). Also studies have shown that increasing the 

rhizobium population from 10 /seed to 10 /seed increased the grain yield of soybean 

(Kurundkar et al. 1991). However, more recently, Luna et al. (2010) reported that the 

inoculum level of G. diazotrophicus as low as 102 CFU ml"1 per seed were enough for 

root endophytic colonization and for further spreading in aerial tissues in sorghum and 

rice plants. Based on this report, the finding that 500 CFU was enough to infect a sugar 

beet seed is logical. However, given the result that different bacteria concentrations did 

not result in any significant increase in beet dry biomass within the treatment, it can be 

concluded that it was not increasing bacteria number that induced the positive biomass 

increase in treatment plants. Further, considering the fact that the seed germination was 

higher in double inoculated seeds, it might be the seed imbibition played a major role 

during the seed dipping process, in which water uptake by the dry seed awakened the seed 

dormancy and activated the metabolic processes (Atia et al., 2011). Therefore, the seed 

dipping method both created an opportunity for the endophytes to obtain a direct close 

contact with the host plant seeds and activated the dormant embryo. 

Nevertheless, seeds were first dipped into broth for half hour, and then the topsoil of 

seed planting area was inoculated with additional 5 ml broth. Thus, considering a certain 

amount of bacteria would definitely attach on the surface of seeds during the dip-

inoculation, the actual number of bacteria used for inoculating seeds exceeded 500 CFU 

per seed. It is impossible to know the number of bacteria that would attached to seed 

surface during dip inoculation. In some studies, the host was inoculated twice (Albrecht 
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et al. 1981) or even three times (Millet et al. 1984). However, for practical reasons, most 

inoculation experiments were only inoculated once (Kloepper, 1983; Smith et al. 1984). 

Bashan (1986) found a significant plant growth in response to four successive 

inoculations. Although some multiple inoculation experiments resulted a marginal 

effect on plant growth (Bashan, 1986), the current successive seed inoculation experiment 

promoted the beet growth at significant level (Figure. 3, Figure. 4 and Figure. 5). 

The biological nitrogen fixation was unable to be assessed by analyzing the ground 

samples with mass spectrometry due to missing data. Thus, it was not possible to 

speculate if the beneficial growth effect of inoculation on plant growth originated from 

biological nitrogen fixation. Previous screening experiment in sand culture supports this 

point. The bacteria-induced plant hormone production, such as indole-acetic acid (IAA) 

and gibberellins (Sevilla et al. 1998; Bastian et al. 2000; Fuentes- Ramirez et al. 1993), 

might also have contributed to enhanced plant growth. Those plant hormones affected 

plant morphology and enhanced plant nutrient uptake (Bastian et al. 1998; Sevilla et al. 

1998; Bastian et al. 2000). It was also reported that G. diazotrophicus contributes to 

solubilisation of plant macro and micronutrients like P and Zn, which might be another 

plant growth promoting factor (Saravanan et al. 2007). 

Interesting fact that germination rate of inoculated seeds was higher than un-inoculated 

seeds, roughly 30%, (data not shown). Nejad and Johnson (2000) reported isolates of 

endophytic bacteria that significantly improved seed germination and plant growth of 
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oilseed rape and tomato. This can be explained that endophytic bacteria positively affect 

plant growth by pathogen defence mechanism. 

The biomass of shoots and roots of treatments were also increased at significant level 

(Figure. 4 and Figure. 5), indicating inoculation also had positive growth effect both on 

shoots and roots. The result was consistent with data from previous experiment of 

screening Gluconacetobacter spp. strains, in which both shoots and roots of treatments 

from 1 mM NO3" (Table. 3 and Table. 4) and 10 mM NO3" (Table. 6 and Table. 7) 

concentration experiments resulted the significant increase in dry biomass. 

6.3.2 Seedling inoculation 

The seedling inoculation study found that no significant affects on beet biomass 

between treatments and control (Table. 13). It might be because of the fact that the 

experiment either failed due to some confounding factors or inoculation at the seedling 

stage did not have any positive growth effects on plant growth. Interestingly, there were 

also no significant differences in terms of beet biomass among treatments (Table. 13), 

showing the inoculum number did not have any effect on increasing plant biomass in 

seedling stage inoculation. 

In our previous experiment of screening the fourteen strains of Gluconacetobacter 

spp., the same strain, PAL5T, resulted in a significant increase in beet biomass in 10 mM 
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NO3" treatment (Table. 5). However, the statistical significant increase in beet biomass 

was not observed at 1 mM NO3" treatment, which was inoculated with the strain PAL5T 

(Table. 2). Further, the screening of fourteen strains was also inoculated at seedling stage. 

Considering those results and ruling out other confound factors, it can be extrapolated that 

it might be the nitrogen level that limited the effect of inoculation on plant growth. 

Nevertheless, the PCR result shows that control plant was contaminated with the strain of 

G. diazotrophicus PAL5T (Figure. 22) and this fact well explains the unobserved biomass 

difference between treatment and control plants. 

Most previous publications argued that the effect of inoculation is higher at low N 

level due to the alteration of physiological state of plant by high nitrogen, which further 

affects the association of the plant with the endophyte (Fuentes-Ramirez et al. 1993, 1999; 

Muthukumarasamy 1999; Reis Junior et al. 2000; Archma et al. 2005). However, some 

studies showed that some strains still have higher significant positive effect at higher 

nitrogen level (Archna et al. 2005). The similar results have been reported for 

Azospirillum that some strains of Azospirillum are very efficient at high levels of nitrogen 

concentration (Millet and Fieldman, 1986; Gunarto et al. 1999). Additionally, it has been 

reported that some G. diazotrophicus strains are efficient both at high and low nitrogen 

conditions (Oliveira et al. 2002). Thus, the result from current study can be well 

accepted. To further confirm the nitrogen was the limiting factor for inoculation, the 

association of isolated bacteria number in the beet tissues with I5N content of should be 

assessed in future work. 
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6.3.3 Seed inoculation - inoculated once 

The study of a single inoculation of seed generated similar results as the seedling 

inoculation experiment that had no significant biomass increase in beets found between 

treatment and control plants (Table. 13 and Table. 14). Nor did the different inoculant 

numbers resulted in any difference in beet biomass. The results indicate that not only 

inoculation had no any impact on plant growth, but different levels of inoculants also did 

not result in any difference in beet biomass. Interestingly, in previous experiment of 

screening Gluconacetobacter spp., the strain PAL5T generated significant increase at beet 

of 10 mM NO3" treatment. However, such significant increase was not obtained in 1 mM 

NCVtreatment. 

Compared to the previous double seed inoculation study, sugar beets were only 

inoculated once using rhizosphere inoculation method. Thus, one might onclude that the 

factors that caused the different test results may be attributed to a higher number of 

accumulated bacteria dur to double inoculation. However, int the double inoculation 

treatments, higher inoculant number (106 CFU ml"1) had no significantly increase the beet 

biomass compared to lower inoculant numbers (104 CFU ml"1 and 102 CFU ml"1). Thus, it 

can be concluded that it was not the bacteria number from the double inoculation that 

caused the significant increase of beet biomass. 

It might also be possible that the nitrogen level of 5 mM NO3"might be the one of the 

limiting factors for the plant-microbe interactions (Muthukumarasamy, 1999; Reis Junior 
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et al. 2000). Given the fact that certain strains perform better at higher concentrations of 

nitrogen (Archna et al. 2005; Oliveira et al. 2002) and the strain PAL5T resulted 

significant positive increase in beet biomass at high level of nitrogen (10 mM NO3"), the 

response of strain PAL5T to high nitrogen conditions might be the another factor that 

influences inoculation effect. 

Most inoculations are performed before, during or shortly after sowing (Baldani et al. 

1983; Millet et al. 1984) or a few days after seedling emergence (Okon et al. 1983; 

Thomas-Bauzon et al. 1982). However, Kapulnik et al. (1985) concluded that the optimal 

inoculation was the first 24 h after seed imbibition and 20 days after emergence was 

ineffective. Those studies well explains the significant growth differences between single 

and successive-double inoculation of beet seeds. In the latter experiment, seeds were 

washed in sterilized water for five minutes and were dipped into the different 

concentrations of broth for half hour. Thus, the seed imbibition might have occurred at 

this stage, creating an opportunity for bacteria to easily colonize the seed. Then the 

second inoculation might have further enhanced the colonization. The published studies 

also confirmed that the early inoculation increases the root colonization and the bacteria 

effect on seed germination, while the affect was less at root colonization stage and much 

lower in three or four leaf stages (Kapulnik et al. 1985; Bashan, 1986). Those results 

clearly proves that inoculation of seeds twice at seed stage with strain PAL5T was major 

threshold to have positive biomass increase in experiments treated with 5 mM NO3"; most 

probably because of seed imbibition happened during the dipping period of the seeds into 

broth. 
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Lastly, it has been reported that the nitrogen, especially in the form of NH4+, inhibited 

the colonization and acetylene reduction activity while the NO3" form did not show any 

significant suppression (Muthukumarasamy et al. 2002). Thus, the nitrogen source, 

(NH^SO^ might be another confound factors that influences that plant-microbe 

interactions. It is also worth mentioning that infection of the host plant by G. 

diazotrohicus is affected by the plant genotype (de Silva et al. 1995). Thus, the testing the 

infection level with different strains of G. diazotrophicus and as well as with other 

cultivars of sugar beet is also recommended. 

Our results clearly shown that inoculation of seeds twice at seed stage with strain 

PAL5T was major factor to have positive increase in experiments treated with 5 mM 

NO3", possibly because of seed imhibition during the period that the seeds were dipped 

into broth. 

6.4 Assessment of sugar beet infection with GUS labeled stains of G. 
diazotrophicus (IV) 

Microscopic observation of GUS stained samples showed that root tips, root hairs 

and junctions of lateral root emergence were the most possible infectious sites for bacteria. 

The entry of bacteria via lateral root emergence sites indicating that the colonization 

pattern of G. diazotrophicus in sugar beet is similar to that of sugar cane (James and 

Olivares, 1997; Reis et al. 1995), which also was confirmed in sorghum and rice plantlets 

(Luna etal. 2010; Rouws etal. 2010). In sugarcane, the cracks at root branching sites and 
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wounds on roots were suggested to be the possible entry points for G.diazotrophicus 

(Sevilla et al. 1998,2001; James et al. 2001). 

Penetration of bacteria through root tips, mainly the cells of root cap and meristem, is 

a major entry site for endophytes (Hurek et al. 1994). James et al. (1994) reported that 

some bacteria entered the root tips through infection thread-like structures, and stated that 

these bacteria most probably were lysed by the host. But then Bellone et al. (1997) 

reported the similar infection-threads and proposed that the G. diazotrophicus cells were 

not lysed upon entering the host, however, were encapsulated by a host cell membrane. 

More recently, Rouws et al. (2010) confirmed that lateral root emergence and root apices 

were major entry sites for G. diazotrophicus in rice, which were also heavily colonized 

sites in previous several studies conducted with different microorganisms (Hurek et al. 

1994; James et al. 2002; Govindarajan et al. 2008). Colonization of root hairs suggests 

that G. diazotrophicus could also enter the host plant through fibrous root-hairs. James et 

al. (1994) and Reis et al. (1995) have found no such infection sites. However, Bellone et 

al. (1997) showed that root-hairs are also one of main infections sites. Further, it has been 

reported in sorghum and rice plants as well as with other some species of endophytic 

Azospirillum (Hallmann et al. 1997; Luna et al. 2010). 
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6.5.1 Isolation of G. diazotrophocus (V) 

The aseptically isolated bacteria strains from sterilized sugar beet tissues were able to 

grow in nitrogen free, semi-solid medium, which was first confirmation that the sugar 

beet isolated endophytic strains were nitrogen fixing bacteria (Vladimir et al. 1998). 

Further, the acidification of the semi-solid LGI-P medium confirmed that the isolated 

bacterium was an acid producing bacteria (Vladimir et al. 1998). Additionally, all the 

isolated strains in the semi-solid LGI-P medium grew approximately 1 cm from the 

surface area, indicating it is the mico-aerobic bacteria and also motile (Vladimir et al. 

1998). Further, the forming of pellicles on the surface of semi-solid LGI-P medium 

further confirmed that the isolated strains might be G. diazotrophicus (Vladimir et al. 

1998). Also, those characteristics are necessary for the G. diazotrohpicus to fix nitrogen 

and growth in semi-solid medium (Dobereiner, 1992). 

The formation of orange bacteria colonies on solid LGI-P medium containing 10% 

sucrose and round colony shapes were the morphological characteristics of G. 

diazotrophicus (Cavalcante and Dobereiner, 1998). Interestingly, re-culturing of those 

colonies in liquid LGI-P medium failed to induce the bacteria growth. Muthukumarasamy 

et al. (2002) reported that high levels of nitrogen, especially NH/, induced the 

morphological changes on cells of G. diazotrophicus, resulting in un-culturable state of 

long pleomorphic cells. Thus, it might be possible that G. diazotrophicus cells had 

already become pleomorphic during treatment of beets with 5 mM NO3". 
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6.5.2 Confirmation of G. diazotrophocus by PCR (VI) 

Identification of isolates from inoculated sugar beet plants was confirmed with PCR 

assays based on species-specific 16 S rRNA fragments. The specific primer AC and DI 

targeted the 445 amplicon, which is specific to the G. diazotrophicus (Sievers et al. 1998). 

The primer pair of RB and RM, however, amplified the 800 bp region that was common 

to all the bacteria (Madhaiyan et al. 2004). In seed-titre experiment, only the lowest 

concentration (102 CFU ml"1) treatment generated PCR products at 800 bp and 445 bp 

regions. Based on the fact that separation of amplicon at 445 bp is a typical trait of G. 

diazotrophicus, the isolated strain was identified as G. diazotrophicus, proving that it was 

the inoculated bacteria that contributed to plant biomass increase. Although, the PCR 

products from 104CFU ml"1 and 106CFU ml"1 treatments of twice seed inoculation 

experiment failed to give proper bands on gel, the same significant biomass increase of 

those treatments compared to 102 CFU ml"1 treatment already confirmed that it was the 

PCR procedures caused the loss of 445 bands. 

In later trials, the 445 pb band was totally lost, generating only 800 bp PCR products. 

Since mixed-template PCRs and the frequent cycling of template reanealing easily 

induces the bias in the final products (Ishii and Fukui et al. 2001; Suzuki and Giovannoni, 

1996), the optimization of PCR protocol is highly recommended, such as lowering the 

annealing temperature and running a low number of PCR cycles (Ishii and Fukui et al. 

2001; Suzuki and Giovannoni, 1996). Also, it might be possible that DNA band was 
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denatured during the PCR process. Further, the purification of bacteria DNA before 

amplification is suggested in future PCR experiments. 

In the latest PCR work, the cultured PAL5T bacterial broth was added to homogenized 

sugar beet tissues, however, positive bands at 445 bp and 800 bp were not observed after 

the samples were filtered through syringe-filter (pers.comm. Dr. Vessey's lab). On the 

other hand, the unfiltered cultured bacterial broth generated the positive bands on gel. 

This result might be attributed to the fact that bacteria were blocked by filter along with 

homogenized tissues. 

Interestingly, the certain morphology traits of some isolates were unlike the 

characteristics of G. diazotrophicus. However, those morphological characteristics, such 

as the colony coulor and colony shape, fit the previously described recovered strains of 

nitrogen fixing acetobacters from Coffea Arabica L (Jimenez-salgado et al. 1997). The 

strain PAL5T was also isolated from the same coffee plant (Jimenez-salgado et al. 1997). 

It might be possible that 800 bp bands were products of those acetobacters. However, 

molecular sequencing and biochemical studies are needed for further confirmation of 

those unknown strains. Nevertheless, those facts indicate that endophytic diazotrophic 

bacteria may be more prevalent in nature, and possibly there are more potential nitrogen 

fixing bacteria which can be isolated from sugar beet. 
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Conclusion 

The results of screening 14 strains of Gluconacetobacter spp. demonstrated that 

inoculation with nitrogen fixing endophytes did increase plant dry biomass. Further, the 

biomass increase in screening experiment was correlated with quantified nitrogen fixation 

in both ImM and 10 mM NO3" treatments. All of those results indicating that infectious of 

sugar beet by 14 strains of Gluconacetobacter spp. establishes, however, the significant 

effect on inoculation on biomass is contingent to NO3" level and strain specificity. The 

higher concentration of NO3" most likely inhibits the population of Gluconacetobacter 

spp.. Therefore, reduces the biological nitrogen fixation in the plant. 

Based on the results of different growth stage inoculation experiment, it was concluded 

that the level of nitrogen concentration (5 mM NO3") play a determining role in having 

successful infection as for the certain specific strains of Gluconacetobacter spp.. Even 

though inoculation at different growth stages of sugar beets treated with 5 mM NO3" did 

not result in any difference in dry biomass, the result supports the previous data from 

screening of fourteen strains of Gluconacetobacter spp. experiment that inoculation with 

PAL5T strain did not significantly contributed to plant biomass increase in 1 mM NO3" 

treatment. Therefore, conducting the experiment in different nitrogen concentrations with 

a few more strains is highly recommended. 
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The titre experiments clearly agreed the results of different-stage inoculation 

experiment that inoculation at seed and seedling stages did not influence the plant growth 

0 1 
in terms of biomass increase. Further, different inoculant concentrations (10 CFU ml", 

104CFU ml"1, 106CFU ml"1) did not contribute to different plant biomass increase. In 

addition, results also support the hypothesis that 5 mM NO3" concentration might be the 

limiting factor to have positive effects on plant growth. However, double inoculation of 

sugar beets at seed stage clearly showed significant biomass increase in beets, shoots and 

roots compared to control plants. Considering the fact that the different levels of bacteria 

inoculum did not result in any differences in beet biomass, it is concluded that seed 

imbibition induced by seed dipping inoculation method may have been the main factor 

that contributed to the positive plant growth effects at 5 mM NO3" treatment plants. For 

future studies, it is highly recommended that titre experiment should be conducted under 

different nitrogen concentrations at different growth stages with different inoculation 

methods along with different bacteria strains. It is also interesting to look at if double 

inoculation results better plant growth effects than single inoculation at seedling growth 

stage. 

Also synergic effects of different nitrogen fixing endophytes on sugar beet growth is 

biologically important, including synergic effects with phosphate and zinc solubilising 

nitrogen fixing bacteria. Sugar beet being a VAM-negative plant, testing for synergic 

effects with VAM is not recommended. However, co-inoculation with other nitrogen 

fixing bacteria strains to test synergic effects of combined nitrogen fixing bacteria strains 

on plant growth has both biological and economical importance in future research. Given 
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the fact that the optimum growth condition for G. diazotrophicus needs higher percentage 

of sucrose, 10%, it is promising to introduce this bacterium to other sugar rich crops, such 

as sweet potato and sweet sorghum. Finally, the soil experiments are necessary to further 

confirm the bacteria effect on plant growth in the field. 

GUS staining experiments with GUS labelled stains clearly proved that root tips, root 

hairs and the intersection of lateral roots were possible sites of infection of sugar beet by 

G. diazotrophicus. Further microscopic studies are necessary to determine the bacteria 

localization in the plant to elucidate if G. diazotrophicus colonize the sugar beet tissues 

intracellular^ or intercellularly. 

Even though PCR results did not show absolute confirmation from each isolate of 

PAL5T strain, the DNA bands from the isolate of 102 CFU ml"1 double-seed-inoculation 

experiment matched with PCR result of stocked PAL5T strain. Given the fact that 

treatments of 104 CFU ml'1 and 106 CFU ml"1 seed inoculation gave the similar biomass 

increase as with 102 CFU ml"1 treatment compared to un-inoculated plants, it might be 

the technical problem in PCR process that caused disappearing of445 bp band. As 

filtering the homogenized tissues might be one of the reasons accounting for disappeared 

the right bands on gel, filtering procedure should be removed or appropriately modified. 

Also, purification of bacteria DNA before amplification is highly recommended for future 

molecular confirmation of isolated strains. Quantification of bacteria numbers in different 

parts of sugar beet using real time PCR has biological importance in future research. 
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In future work, it is highly suggested not to freeze the plant tissue samples, isolating 

the bacteria when plant tissue is fresh recommended. Quantifying isolated bacteria 

numbers from different titre experiment has a significant biological importance in future 

work. Additionally, quantifying the bacteria in different plant parts at different growth 

stages is even more interesting, and provides more detailed information regarding 

dynamics and distributions of bacteria population. 

In conclusion, those results further suggested that G. diazotrophicus colonizes the 

sugar beet plant other than its original host of sugar cane. Also, the current studies 

confirmed that certain strains of Gluconacetobacter spp. were quite effective in fixing 

nitrogen at a lower concentration of NO3". Root tips, root hairs and lateral root junctions 

were the infection sites. To further confirm its endophytic association with sugar beet, 

transverse section of roots should be analyzed for its specific localization in the plant. 
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