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Abstract 

B-spline Collocation for Two-Dimensional, Time-Dependent, Parabolic PDEs 

By Zhi Li 

In this thesis, we consider B-spline collocation algorithms for solving two-dimensional 

in space, time-dependent parabolic partial differential equations (PDEs), defined over 

a rectangular region. We propose two ways to solve the problem: (i) The Method 

of Surfaces: Discretizing the problem in one of the spatial domains, we obtain a sys­

tem of one-dimensional parabolic PDEs, which is then solved using a one-dimensional 

PDE system solver, (ii) Two-dimensional B-spline collocation: The numerical solu­

tion is represented as a bi-variate piecewise polynomial with unknown time-dependent 

coefficients. These coefficients are determined by requiring the numerical solution to 

satisfy the PDE at a number of points within the spatial domain, i.e., we collocate 

simultaneously in both spatial dimensions. This leads to an approximation of the 

PDE by a large system of time-dependent differential algebraic equations (DAEs), 

which we then solve using a high quality DAE solver. 

Date: August 24, 2012 
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Chapter 1 

Introduction 

In this thesis, we discuss the development of two numerical algorithms for solving 

time-dependent parabolic PDEs in two space dimensions, x and y. We assume a 

problem class having the form 

u t (x ,  y ,  t )  =  f (x ,  y ,  t ,  u(x ,  y ,  t ) ,u x (x ,  y ,  t ) ,u y (x ,  y ,  t ) ,u x x (x ,  y ,  t ) ,u x y (x ,  y ,  t ) ,u y y {x ,  y ,  <)) ,  

(1.1) 
for (x ,  y ,  t )E  Q,  x (£0, tau t] ,  where u : R  x  R  x R —» R n ,  f  :  R  x  R  x  R  x  R n  x  R n  x  

R71 x RJ1 x RJ1 x Rn —>• Rn, and Q = {(x, y) \a  <  x  < b,  c  <  y  < d} .  
The boundary conditions at x  = a and x  = b are assumed to have the form 

g a (y , t ,u (a ,y , t ) ,u x (a ,y , t ) ,u y (a ,y , t ) )  = 0, g b (y , t ,u (b ,y , t ) ,u x (b ,y , t ) ,u y {b ,y , t ) )  =  0, 

while the boundary conditions at y  =  c  and y  =  d have the form 

g c (x , t ,  u (x ,c , t ) ,u x (x ,c , t ) ,u y (x ,c , t ) )  =  0, g d (x , t ,u (x ,d , t ) ,u x (x ,d , t ) ,u y (x ,d , t ) )  =  0, 

for t£  ( t 0 ,  tout] ,  where g a ,  g b ,  g c ,  gd  '• R  x R x  RJ 1  x RJ1 x RJ1 —^ RJ1. 

The initial conditions at t  = to  are given by 

u(x ,  y ,  t 0 )  =  u Q (x ,  y ) ,  (x ,  y )  G fit U dQ,  

where UQ : R x R —> RJ1. 

The first approach we consider is an approach we call the Method of Surfaces 
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(MOS). The MOS is obtained from a natural generalization of the method of lines 

(MOL) [Sch91] (We will briefly review the MOL in the next chapter). We obtain a 

sys tem of  ID parabol ic  PDEs f rom the  2D PDE by discre t iz ing  the  problem in  the  y  

domain. The solution of the ID system approximates the solution of the 2D problem. 

We can then make use of high quality software for ID parabolic PDEs in order to 

obtain an approximate solution to the 2D problem. An example of a software package 

for ID parabolic PDEs is BACOL [WKM04a, WKM04c]. We propose two ways to 

implement the MOS: one based on finite differences and the other based on B-spline 

collocation. 

The second approach we consider uses B-spline collocation in a tensor product 

framework to simultaneously discretize both spatial domains. The approximate so­

lution is represented as a bi-variate piecewise polynomial implemented in terms of a 

B-spline basis [dB77, dB78], with unknown time-dependent coefficients. By requir­

ing the approximate solution to satisfy the PDE and boundary conditions at certain 

points in the spatial domain, a system of differential algebraic equations (DAEs) is 

obtained. Since, in the two-dimensional case, the DAE system is usually large, we use 

DASPK [BHP94] to solve it. DASPK is a newer version of the well-known DASSL 

code [Pet83], and is able to solve large scale DAEs efficiently. Our preliminary imple­

mentation of this approach is called BACOL2D. Since BACOL2D is natural extension 

of BACOL, many of the algorithms employed in BACOL are applicable to BACOL2D. 

We also describe an algorithm that uses a fast block LU scheme with modified alter­

nate row and column elimination with partial pivoting for the treatment of certain 

almost block diagonal (ABD) [ACR81, DFK83b] linear systems that arise during the 

computation. 

In Chapter 2, we provide a review of the relevant literature. Chapter 3 discusses the 

MOS. Chapter 4 discusses 2D B-spline collocation and some numerical experiments. 

The BACOL2D code will be described in Chapter 5. We will present numerical results 
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in Chapter 6 using BACOL2D to demonstrate the existence of points within the spa­

tial domain where the collocation solution is superconvergent. Such superconvergent 

values may be useful for error estimation. Chapter 7 provides our conclusions and 

suggestions for future work. 

In the remainder of this chapter we describe the experimental determination of 

the order of convergence of a numerical solution and a matrix tensor product. 

1.1 Order of Convergence of a Numerical Solution 

In Chapter 4, we will numerically investigate the order of convergence of the 2D 

B-spline collocation solutions we obtain, and determine the order of convergence of 

the superconvergent points in Chapter 6. Here we explain how we experimentally 

determine the order of convergence of a numerical solution. 

Assume we have a problem with a known solution so that the error of an approx­

imate solution can be computed. Let E\ and E2 denote the errors of two solution 

approximations obtained from computations based on two different 2D uniform square 

spatial meshes having mesh sizes of hi and h2 (hi > h2). Here hi is the length of the 

side of each square of the mesh associated with Ei, h2 is the corresponding quantity 

associated with E2. 

Assume that 

Ei = 0(/if); then E 1  « Ch f,  

E 2  = 0(h 2 ) \  then E 2  « Ch 2 ,  

where C is a constant independent of hi  and h 2 ,  and R is the unknown order of con­

vergence of the numerical method that was used to obtain the approximate solutions. 

Then 
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Ei  
E 2  

which gives 

lo§ (  ̂ « R " lo§ 

Then the order of convergence of the numerical method is given (approximately) by 

loS (t) 
R 

loS (fe) 

1.2 Matrix Tensor Product 

At several places in the thesis, we will consider matrix tensor products. Let V be 

an m x n matrix and M be a p x q matrix.Then the tensor product (or Kronecker 

product) V®Mis the mp x nq block matrix given by 

vu  M V12 M 

V 2 \M V 2 2 M 

v i n M 

V 2  nM 

VmlM v m 2 M v r n n  A-f  

A property of the tensor product that will be used in Chapter 4 is 

{A 0  B)(C ®D)=AC® BD,  

where A,  B ,  C and D are matrices of appropriate sizes. 
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Chapter 2 

Literature Review 

In the chapter, we will briefly review some of the literature associated with the nu­

merical solution of ID and 2D PDEs. We will also review software packages for 

these problem classes. In the last section we will review, in more detail, the package 

BACOL-a high order B-spline adaptive collocation solver for ID PDEs. 

2.1 Numerical solution of ID PDEs 

The problem class 

We will consider ID PDEs of the form 

u t (x ,  t )  =  f (x ,  t ,  u (x ,  t ) ,u x (x ,  t ) ,  u x x (x ,  t ) ) ,  

for x  G (a, b) ,  t  € (to , +00), with u :  R  x R —> i?", / RJ 1 .  

The initial conditions at t  = to  are given by 

u(x ,  to)  =  uo(x) ,  x  e  [a, 6], 

and the separated boundary conditions are given by 

b L ( t ,  u (a ,  t ) ,u x (a ,  t ) )  — 0, b R ( t ,  u (b ,  t ) ,u x (b ,  t ) )  = 0, 
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where bL,bp, : R x Rn x RJ1 -> i?", and £ G (i0, +00) . 

There are many methods for solving ID PDEs - see, e.g., [HV03, MRB05, Goc02, 

LeV07, VWSS01], but in this thesis, we will consider the MOL. The MOL is a gen­

eral technique for solving time-dependent PDEs. The basic idea is that since there 

exist several good software packages for solving ordinary time-dependent differential 

equations (ODEs) or DAEs (i.e. a coupled system of ODEs and algebraic equations), 

we might approximate only the spatial derivatives, e.g., ux,uxx, instead of both the 

time derivative and spatial derivatives appearing in the PDE. This spatial discretiza­

tion process leads to a system of ODEs or DAEs, (once the boundary conditions are 

included) and we can solve this system using a high quality ODE or DAE solver. 

We next discuss the general MOL approach in more detail. First, the MOL algo­

rithm discretizes the spatial derivatives using, for example, finite difference methods, 

finite element methods, or collocation methods. This leads to a system of initial value 

ODEs that approximate the original PDE. There are two ways to deal with the bound­

ary conditions. In the earliest MOL codes, the numerical software available for the 

time integration could only handle ODE systems; therefore the boundary conditions 

had to be differentiated. That is the MOL software required the user to differenti­

ate the boundary conditions with respect to time. These ODEs were then combined 

with the ODE system arising from the discretization of the PDEs, and this combined 

ODE system was solved with an ODE solver. However, the boundary conditions were 

solved only approximately by the ODE solver. 

About thirty years ago, software packages which could handle DAEs began to 

appear. This meant that the boundary conditions could now be treated directly 

instead of requiring them to be differentiated. The boundary conditions are treated 

as algebraic equations, and are coupled with the ODEs which approximate the original 

PDEs, leading to a DAE system. There are many good quality DAE solvers, such as 

DASSL and RADAU5 [HW93], 
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The standard MOL approach fixes the mesh points that partition the spatial do­

main. The advantage is that the resulting system can be solved in a straight forward 

manner by an ODEs solvers with adaptive temporal error control. This means that 

the solver can adapt time steps and control an estimate of the temporal error. 

In the standard MOL, adaptive error control is limited to the time dimension, and 

it thus is difficult to resolve sharp spatial dimension features of a PDE solution, such 

as a traveling wave front. In such cases the spatial error may dominate the temporal 

error, and the MOL algorithm would need more mesh points in the spatial layer 

regions (where the solution has rapid variations) to achieve high accuracy approximate 

solutions. Without adaptive spatial error control, it is impossible to determine the 

appropriate number and locations of the spatial mesh points. 

Considering this limitation of the standard MOL, we observe that it is important 

to be able to move the mesh points to let them concentrate in the layer regions. 

The adaptive MOL (AMOL) [VWSS01] emerged to adapt the mesh in the space 

dimensions. The AMOL can be classified according to one or more of the following 

strategies: 

h -refinement: refining or coarsening of the spatial mesh based on, e.g., a posteriori 

error estimates [MooOl, AOOO], 

p-refinement: varying the order of the numerical method used to approximate the 

solution in each subinterval of the spatial mesh, 

r-refinement: also called the Moving Mesh Method (MMM) [HR11]; this involves 

relocating a fixed number of mesh points to layer regions of the physical domain. 

There are several AMOL software packages, that can adjust the locations of the 

mesh points based on a monitor function, putting more of the available points in layer 

regions where the solution changes dramatically. When the mesh adaption algorithm 

allows for changing the location of the spatial mesh points and the number of mesh 

points, the method can provide tolerance control of the spatial error. 
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2.2 Software for ID PDE 

In this section we review several MOL software packages for the numerical solution 

of ID PDEs. 

M3RK 

M3RK [Ver80b, Ver80a] is a software package based on an explicit three-step 

Runge-Kutta method for the time integration of discretized parabolic equations. The 

spatial dimension of the PDE is discretized using a Galerkin method [HV03] based 

on piecewise quadratic polynomials [Bak77]. The author later extended the software 

to solve 2D and 3D problems, including adaptive mesh refinement. 

PEDCOL 

PEDCOL [MS79] employs a fixed spatial mesh and uses a B-spline collocation 

method to discretize the PDEs. It requires the user to differentiate the boundary 

conditions to get ODEs. Since it uses a fixed spatial mesh, it has no control over the 

spatial errors. PDECOL calls the time integrator STIFIB, which is a slightly modified 

version of GEARIB [Gea71, Hin76]. GEARIB has two types of time integration 

formulas; the first is a family of Adams' methods [Goc02]; the second is a family of 

backward differentiation formulas (BDFs) [Gea71]. The authors suggest using the 

second class of methods because of the better stability properties. The linear systems 

that arise during the computation are assumed to have a band matrix structure and 

are solved by a band solver. 

EPDCOL 

EPDCOL [KM91] is an improvement of PDECOL. Based on the observation that 
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the Newton iteration matrix has an ABD structure, the use of the band linear system 

solver is replaced by COLROW [DFK83a, DFK83b], an ABD linear system solver. 

The authors show that this modification saves over 50 percent in total execution time. 

MOVCOL 

MOVCOL [HR96] uses a MMM based on cubic Hermite collocation to discretize 

the PDEs. The boundary conditions are treated as algebraic equations. DASSL is 

used to deal with the resulting DAE system. 

HPNEW 

HPNEW [MooOl], is an evolution of HPDASSL [Moo95], with spatial error control 

based on interpolation error estimates. The interpolation error estimates are based 

on a generalization of the error formula for the Lagrange interpolating polynomial. A 

finite-element Galerkin method is employed to implement the spatial discretization. 

The boundary conditions are treated as algebraic equations, and the resulting DAE 

system is solved by DASSL. HPNEW employs an adaptive hp-refinement strategy in 

space. 

BACOL 

BACOL uses B-spline collocation to discretize the PDEs, leading to a system of 

ODEs. The boundary conditions are treated directly as algebraic equations, and 

the resulting DAE system is solved using DASSL. Because DASSL uses BDFs, i.e., 

multistep methods, after a spatial remeshing, past solution values must be interpolated 

to get the required new values at previous time steps. DASSL controls the temporal 

error and at the end of each time step, BACOL computes a high-order estimate of 
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the spatial error and requires this estimate to satisfy the user tolerance. Numerical 

experiments [WKM04b] show that BACOL is more efficient than similar available 

codes such as PDECOL/EPDCOL, MOVCOL, and HPNEW, especially for solutions 

that have narrow spikes or boundary layers. We will describe BACOL in much more 

detail later in this chapter. 

BACOLR 

BACOLR [WKM08] is a new version of BACOL; the two codes share many of the 

same algorithms, such as the spatial discretization. The most significant difference is 

that BACOLR uses a modified version of RADAU5 which is based on a fifth-order 

implicit Runge-Kutta method of Radau type. The main modification of RADAU5 is 

to allow it to use the COLROW routines CRDCMP and CRSLVE (the ABD system 

solvers). Because RADAU5 is a one-step DAE solver, the solution from previous time 

steps no longer needs to be saved, and the interpolation of past solution values is 

not required. However for each time step, there is more work to do, since an implicit 

Runge-Kutta method is used. For problems for which the resultant DAE system has a 

Jacobian with eigenvalues near the imaginary axis, BACOLR is superior to BACOL. 

This happens because BACOL uses DASSL which is based on a BDFs which have 

stability issues for such problems [WKM08]. 

2.3 Numerical solution of 2D PDEs 

We are going to implement 2D B-spline collocation for 2D time-dependent parabolic 

PDE, and solve the resulting DAEs by DASPK. To our knowledge, nobody has done 

this before. Previous experience with ID parabolic PDE solvers has shown this to be 
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a promising approach. 

We now briefly identify related work. R.D. Russell and W. Sun [RS97] used Her-

mite cubic spline collocation combined with a tensor product spatial basis to solve 

elliptic PDEs. They also suggested a fast algorithm based upon a matrix block eigen­

value decomposition for the numerical solution of the linear systems that arise. Later 

W. Sun [SunOl] suggested tensor product B-spline collocation for elasticity problems 

(non-time-dependent). Y. Wang [Wan95] used a parallel B-spline collocation method 

for 2D linear parabolic, separable PDEs. He separated the boundary conditions from 

the system of collocation conditions, solved the boundary conditions first, and then 

substituted the solution values on the boundary back into the system of collocation 

conditions. S. Wendel [WMKL93] used a 2D B-spline finite element method for the 

numerical solution of 2D PDEs. 

There are many collocation methods that have been used to solve 2D problems. 

These include methods such as optimal Quadratic Spline Collocation (QSC) and Cubic 

Spline Collocation (CSC) that were extended to 2D elliptic BVPs for rectangular 

domains [HVR88, Chr94]. The advantage of these two methods is that since they 

use only one collocation point per subinterval, the linear systems that arise are the 

smallest among all types of piecewise polynomial collocation methods for this problem 

class. 

For a 2D PDE whose solution has rapid variation, one useful approach is to use 

a MMM. A MMM typically controls the mesh movement using a moving mesh PDE 

(MMPDE) [HR11]. K. S. Ng [Ng05] used CSC and algorithms from [HR98b, HR98a] 

that employ MMM. He used CSC to treat the MMPDE to take advantage of the high 

order convergence of the CSC algorithm and its lower computational costs. For more 

details about the MMPDE approach, please refer to the book by W. Huang and R. 

D. Russell [HR11]. 

E.N. Houstis, W. Mitchell and J.R. Rice consider special collocation algorithms 
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(GENCOL [HMR85a], HERMCOL, INTCOL [HMR85b, HMR85c]) for elliptic prob­

lems on rectangular domains. (GENCOL is applicable to quite general domains and 

is thus more general than the other collocation packages mentioned above.) These 

packages are included in the ELLPACK [DR87, BL90, DMPP86] library. W. Huang 

and R. D. Russell [HS94, HuaOl] introduced the MMPDE approach, and with W. 

Cao [CHR99, HR98b, HR98a, HR11], they studied the MMM for 2D problems. S. 

Adjerid et al. [AAF01, AFMW92, AM02], have constructed a posteriori estimates for 

the spatial errors of finite element MOL solutions of 2D parabolic PDEs. 

2.4 Software for 2D PDEs 

In this section we review selected software packages for 2D PDEs. 

ELLPACK 

ELLPACK [DR87, BL90, DMPP86] is an extension of a general framework for solv­

ing various elliptic PDEs in two-dimensions on general domains or in three-dimensions 

on rectangular domains. The ELLPACK system includes finite element methods 

(FEM), parallel execution, and a graphical user interface for problem specification 

and solution. 

VLUGR2 

VLUGR2 [BTV96] is an adaptive-grid software package for 2D systems of PDEs. 

It uses a finite difference method to implement the spatial discretization. Since large 

scale linear systems arise, this software package employs a Krylov subspace method 

to solve the linear systems. The linear systems can either be solved by BiCGStab 

[vdV92] with ILU preconditioning [Saa03] or GCRO [dSF93] with a simple (block) 

diagonal scaling. There is also an option to use a matrix-free implementation. While 
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VLUGR2 can deal with domains which can be described by right-angled polygons, 

the author has also extended the software to VLUGR3 [BV96] that can deal with an 

arbitrary "brick-structured" domains. 

CLAWPACK 

CLAWPACK [FL03, LeV96], can be used to solve 1-D and 2-D hyperbolic prob­

lems. CLAWPACK computes numerical solutions using a wave propagation approach 

that includes adaptive mesh refinement. 

KASKADE 

KASKADE 3.0 [BER95], adopts an object-oriented (00) approach, and was de­

veloped for the solution of PDEs in one, two, or three space dimensions. Adaptive 

FEM techniques are employed to compute numerical solutions. The software employs 

a posteriori error estimation, local mesh refinement and multilevel preconditioning. 

DIFFPACK 

DIFFPACK [BL97, Lan03] is a comprehensive set of tools for solving PDEs based 

on 00 programming. It supports FEM; the elements include the multilinear and 

multiquadratic type elements, 3D box elements, triangles and tetrahedrons. 

SPRINT2D 

M. Berzins et al. [BFP+98, BPPW97], developed the SPRINT2D software which 

solves time-dependent PDEs in two-space variables. The class of problems solved in­

cludes systems of parabolic, elliptic, and hyperbolic equations. It uses a finite volume 

method (FVM) to discretize the space domain. The software uses unstructured tri­
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angular meshes and adaptive local error control in both space and time; h-refinement 

is used to perform any spatial adaptivity. 

P2MESH 

P2MESH [BM02], developed by Enrico Bertolazzi et al, is a generic object-

oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers 

Thus it can perform (i) mesh generation, (ii) formulation of the discrete algebraic equa­

tions (i.e., discretization of the PDE) (iii) solution of the discrete algebraic equations, 

and (iv) visualization of the numerical solution. One of the most important features 

of P2MESH is that it employs 00 programming techniques, thus isolating the data 

structure design from the implementation. 

deal.II 

deal.II [BHK07] is an open source finite element library. It uses 00 concepts to 

break the implementation into smaller blocks such as defining meshes, linear algebra, 

input/output capabilities. It has support for the solution of PDEs in one, two, and 

three space dimensions, and h, p, and hp refinement is fully supported. A variety 

of FEMs are available. deal.II also has features such as: a complete linear algebra 

library including methods for sparse matrices and Krylov subspace solvers. 

Hermes 

Hermes [VvZ07] is a C++ library for adaptive hp-FEM solvers. It can solve ODEs, 

linear PDEs and time-dependent nonlinear PDEs. The central part of the solver is 

the FEM/hp-FEM module which contains algorithms for processing and adaptation 

of finite element meshes, numerical quadrature, solution of systems of linear and 
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nonlinear algebraic equations, a posteriori error estimation, etc. 

2.5 Overview of BACOL 

The BACOL package, mentioned earlier, is the basis for the two approaches we 

consider in this thesis. We therefore provide a detailed review of this package in this 

section. 

Spatial discretization 

The spatial discretization is the same as the one described earlier for the one-

dimensional time-dependent parabolic PDEs solvers PDECOL and EPDCOL. The 

spatial discretization is based on B-spline collocation at Gauss points. We assume a 

spatial mesh that partitions [a, 6] 

a = xo <  x i  <  • •  •  <  x/v  =  b.  

We associate with this mesh, piecewise polynomials of degree p,  i.e., we have a 

polynomial of degree p for each subinterval, x,}, i = l,--- ,N, and continuity 

v — 1. The approximation subspace is 

Sp •= {V{x) \V  G C u ~\  x  e  [a, 6]; V € Pp, x G x<],» = 1, • • • , N},  

where P p  is the space of polynomials of degree p,  and p >  v  > 0. The dimension of 

Sp is NC = (p — u+ 1 )N + v. In BACOL, C1—continuity at the internal mesh points 

is imposed. Consequently, v = 2, and the dimension of this piecewise polynomial 

subspace is NC = N(p—1) + 2. 

To represent the piecewise polynomials, BACOL employs a B-spline basis. Let 

{Bj(x)}f£1 be the B-splines basis associated with the above mesh with C1 —continuity 

a t  t h e  i n t e r n a l  m e s h  p o i n t s .  T h e  d e g r e e  o f  t h e  B - s p l i n e s  b a s i s  p o l y n o m i a l s ,  p , 3  < p  <  
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11, is specified by the user. The approximate vector solution, U(x, t ) ,  is expressed in 

the form 

N C  

U(x, t )  =  

where W j ( t) is the vector (W j ( t) : R  —> F C 1 )  of time-dependent B-spline coefficients 

multiplying the jth (scalar) B-spline basis function. 

An important property of the B-spline basis is that on any subinterval [xt_i, x2), 

at most p+ 1 basis functions are non-zero, namely, Note that we 

then have 

t(p-l)+2 

U(x,  t )  =  ^  ̂  w m ( t )B m (x} . ,  
m=(i—l)(p—1)+1 

t(p-l)+2 

U x (x , t )  = J] wm(i)Bm(:r), (2.1) 
m=(i-l)(p-l)+l 

i(p—1)4-2 

U x x (x , t )= w m(t) B m( x ) -
m=(i—l)(p—1)+1 

The B-splines are implemented through a collection of Fortran subroutines built 

around an algorithm for the stable evaluation of B-splines of arbitrary degree and 

arbitrary continuity (the B-spline package [dB77, dB78]). 

Let the mesh subinterval size sequences be where hi = Xi — Xj_i, and let 

{piYiZi be the Gaussian points [BS73] on [0,1] such that 

0 < p0 < pi < • • • < pp-1 < 1. 
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The collocation points in the x  domain are then defined by 

£1 — a ,  — x i - i  + hiPj ,  £NC = b,  

where I  = 1 + ( i  — 1) •  (p  — 1) + j ,  for i  — 1, •  •  •  ,  N ,  j  =  1, •  •  •  , p  — 1. 

The collocation method requires the approximate solution to satisfy the PDEs at 

the collocation point sequence, Substituting the approximate solution and 

its derivatives into the ID PDE and evaluating the resulting expression at £/ gives the 

collocation condition 

Utfa t )  =  f^ i , t ,U^i , t ) ,U x ^ i , t ) ,U x x (^ t ) ) .  (2.2) 

Substituting for U, U x  and U x x  from (2.1) in (2.2) then gives 

i (p—l)+2 

m=(i—l) (p—1)+1 

( i (p- 1)+2 i (p- l)+2 

&,t, (2.3) 
m=(i—l)(p—1)+1 m=(i—l)(p—1)4-1 

HP- 1)4-2 \ 

m=(i-l)(p-l)+l J 

where $ G [xi_i,xi), i  =  1, •  •  •  N ,  j  =  1, •  •  •  , p  -  1, I  =  1 + (» - 1) • (p - 1) + j .  

An important aspect of the BACOL code is that the boundary conditions are 

treated in their original form. We substitute the approximate solution and its first 

derivative into each of the boundary conditions; this gives 

b L ( t ,U(a , t ) ,U x (a , t ) )  =  0, b R ( t ,U(b , t ) ,U x (b , t ) )  =  0. 
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Rewriting the above using (2.1) gives 

(P+1 p+1 \ 

t, ̂ 2 w m ( t )B m (a) ,  w m { t )B ' m {a)  J , (2.4) 
m=1 m= 1 / 

( N { p - l ) + 2  N ( p - 1)+2 \ 

t ,  w m ( t )B m (b) ,  £  w m ( t )B m (b)  . (2.5) 
m=(./V-l)(p—1)+1 m — ( N — l)(p—1)+1 / 

Considering the boundary conditions and collocation conditions together ((2.4), 

(2.3) and (2.5)), one obtains a DAE system (N(p— l)n ODEs coupled with 2n algebraic 

equations) of the form 

(P+ L P+1 \ 
t, ̂ 2 wm(t)Bm(a), w m ( t )B ' m (a)  j , 

m= 1 m=1 / 

i ( p - l)+2 

m=(i-l)(p-l)+l 

i ( p - 1)+2 z(p—1)+2 

/ ( & . * .  J ]  W m ( i ) B m ( & ) ,  ] T  W m ( t )B m ( ^ i ) ,  

m=(i—l)(p—1)+1 m — ( i — l)(p—1)+1 

i(p-1)+2 

^ 1 w m(t)B m (£ l )  
m=(i-l)(p-l)+l 

£ [xj_j ,  3^j ) ,  /  1  -I-  (z  1)  •  (p  1)  "F j ,  i  1, • j iV, j 1, • • - , p 1, 
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( N i p - 1)+2 N { p - l)+2 

t ,  w m(t)B m (b)  |  . 
m=(iV—l)(p—1)+1 m=(iV-l)(p—1)+1 

We can write the above DAE system in a matrix system form: 

AxWjfy  =  F( t ,W{t ) ) .  (2.6) 

The top and bottom blocks of rows of A x  corresponding to the boundary conditions 

are zero. The internal block rows of Ax correspond to the collocation conditions. 

Figure  2 .1  shows the  ABD s t ruc ture  of  A x .  

In Figure 2.1, the zth subblock, Si ,  i  =  1, •  •  •  ,  N ,  is a n(p  -  1) x n(p  + 1) matrix 

of the form, 

Bl(£ l+l) I n  

Bl{£l + 2)In  

Bi+i(Ci+i)In 

B 1+1(^1+2)  In  

Bl+p(£l+l) In  

Bl±p(£l+2)In  
(2.7) 

Bl( i l + p - \ ) I n  -Si+l(£/+p—l ) In  '  '  '  •®i+p(£i+p-l)-^n 

where I = 1 + (i — l)(p — 1), and In is the n x n identity matrix. 

The software COLROW (CRDCMP and CRSLVE) is employed in BACOL to 

implement an LU decomposition with modified alternate row and column elimination 

with partial pivoting to solve the ABD systems that arise. 

The vector of unknown coefficients, W_(t ) ,  has the form 

Mt)  = 

W i( t )  

W2 (t) 

w N C { t )  

The right hand side vector of (2.6) is 
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"I Ml I 

n(p-U s, 

1 

S. n(P-l| S. 

Figure 2.1: The ABD structure of A x  appearing in (2.6). The top and bottom are n 
by n blocks of zeros. Each block, is an n(p — 1) by n(p + 1) matrix. The overlap 
between the Si blocks is 2n, p is the degree of the piecewise polynomials, N is the 
number of subintervals, n is the number of PDEs. 

E{t ,W(t ) )  =  

bL ( t ,  Emil w m ( t )B m (a) )  

m = ( i - \ ) { p - l ) + \  Em=(i-l)(p-l)+l WTn(t)Bm(^l), 

i ( p - 1)+2 
m = ( i  m=(i-l)(p-l)+l W, .(i)Ctti)) . 

bR (t , (»)• 2: 
N(p-1)+2 
m=(iV—l)(p—1)+1 wm ,(()B„(6)) _ 

ID B-spline Projection matrix 

At the collocation points in the x domain, 

NC 

t=i 

We can rewrite (2.8) in matrix form as 

(2.8) 
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s. 

S. H) S. 

S. 

L D '  

Figure 2.2: The ABD structure of the matrix, M x ,  appearing in (2.9). Each block 
is a (p — 1) by (p + 1) matrix. The overlap between the 5t blocks is 2, p is the degree 
of the piecewise polynomials, N is the number of subintervals. 

where £ = 

€NC 

Figure 2.2 shows t 

6 

6 

m,t )  = M x w(t ) ,  

U(Zut )  

u fa , t )  
, and£(£,t) = 

U(^NC, t )  

ie structure of the matrix, M x ,  appearing in (2.9) 

(2.9) 

In M x ,  the ith subblock, S i }  i  =  1 , • • •  ,N ,  still has the form (2.7), but /„ is 

replaced by 1. 

Spatial Error Estimation 

As we know, since error in the approximation of the PDE system is unavoidable, 

it is essential to assess the accuracy of the approximate solution. It is important 

to make a distinction between error control in time and error control in space. In 

BACOL, DASSL controls an estimate of the local temporal error at each time step. 
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BACOL computes a high order estimate of the spatial error, after each successful time 

step, and adjusts the spatial mesh so that the spatial error estimate satisfies the user 

tolerance for each successful time step. 

In addition to the solution approximation, U(x, t ) ,  BACOL computes a second 

global collocation solution, U(x,t), using degree p+ 1 piecewise polynomials on the 

same spatial mesh. BACOL obtains a posteriori spatial error estimates by compar­

ing U(x,t) and U(x,t) (see below). If the estimated error does not satisfy the user 

provided tolerance, then BACOL will generate a new mesh by approximately equidis-

tributing the estimated error over each subinterval of a new mesh. The total number 

of mesh points may also be changed. 

BACOL generally employs a warm restart after a remeshing, as suggested in 

[AFMW92]. This means that BACOL interpolates the B-spline coefficients related 

to degree p+ 1 solution, U(x,t), associated with the old mesh, to the new mesh at 

the current time step. Since the BDF methods employed in DASSL have up to a 

maximum order of 5, BACOL employs interpolation at the current step and, at most, 

the last 5 time steps to obtain the updated coefficient values. After several warm 

starts, if the spatial error estimate still does not satisfy the tolerance, BACOL will 

perform a cold start. This means that BACOL will continue using the same spatial 

mesh but will restart DASSL at order 1 using a very small time step. 

BACOL computes two normalized spatial error estimates. The normalized spatial 

error estimate, Ea(t), for the sth PDE component over the whole interval [a, 6], is 

while the normalized error estimate for the ith subinterval over all s  components is 

U,(x , t ) -U,  (x , t )  
ATOL a +RTOL a \U s (x , t ) \  S  =  1 Tl  

U, (x , t ) -U s (x , t )  
ATOLa +RTOL,\U,(x,t)\ 
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where t  is the time at the end of the current time step, ATOL a ,  RTOL s  are the abso­

lute and relative tolerances for the sth PDE component, Us(x,t) is the sth component 

of the collocation solution of degree p, and Us{x, t) is the sth component of the second 

collocation solution of degree p+ 1. 

In order to assess the distribution of the error over the spatial subintervals, BACOL 

calculates three parameters related to the Ej(t) and Ea(t) values, 

and E(t )  = max EJt) ,  
1  < a < N P D E  

where r\ is related to the maximum error estimate over all subintervals and r2 is 

re la ted  to  the  average  e r ror  es t imate  over  a l l  the  subin terva ls .  Then  the  ra t io  r \ / r 2  

gives an indication of whether the error is distributed approximately equally over the 

subin terva ls .  The  spa t ia l  e r ror  sa t i s f ies  the  to le rance  when E(t )  <  1.  

Time integration 

As mentioned earlier, BACOL employs a modification of DASSL, which uses the 

BDF-linear multistep methods for the time integration of the DAEs arising from the 

discretized PDEs and the boundary conditions. DASSL employs a Newton iteration 

for the solution of the nonlinear systems that arise. The primary modifications to 

DASSL are as follows: 

• Because the Newton matrices have an ABD structure, a new option for a linear 

solver was added to DASSL: COLROW (CRDCMP and CRSLVE) which implements 

an LU decomposition with modified alternate row and column elimination with partial 

pivoting to solve the ABD systems is now included as an option with DASSL. 
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• In DDASLV (one of the DASSL subroutines), the rows of the ABD system 

corresponding to the algebraic equations are scaled by 1/Ai. This improves the 

conditioning of the Newton matrices. (At is the current time step). 
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Chapter 3 

The Method of Surfaces (MOS) 

The MOS is, to our knowledge, a new approach for solving 2D problems; it is an ex­

tension of the well known MOL. In the MOL, as explained in Chapter 2, we discretize 

the spatial domain, transforming a ID PDE into a system of time-dependent DAEs 

and then use software for numerical time integration to integrate the DAE solution 

forward in time t. In a simple MOL implementation, we use a mesh of points to par­

t i t ion  the  x  domain  and  a t  each  mesh  poin t ,  x , ,  we  approximate  the  so lu t ion ,  u(x i , t ) .  

The function u(xi,t) is a curve perpendicular to the x axis running along the surface 

u(x ,  t ) .  

The MOS is obtained from a natural generation of the MOL. In the 2D case, the 

domain of the solution u(x,y,t) is a 3D volume (Figure 3.1). By discretizing, say, 

the y domain, we then consider a collection of surfaces u(x, yt,t), where yi is a mesh 

point in the y domain. Then we approximate each of the surfaces and together these 

approximat ions  g ive  an  approximat ion  to  u(x ,y , t ) .  When we d iscre t ize  only  the  y  

domain, we get a system of ID PDEs, and then we can use a ID PDE solver, e.g., 

BACOL, to solve this system of ID PDEs. 

Any standard method can be used for the discretization of y  domain, e.g., finite 

difference methods, finite element methods, or collocation methods. We will next 
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Figure 3.1: The Method of Lines: solution approximations for fixed Xi values are 
obtained for t = 0 • • • 4. From [mol] 

discuss further details for a finite difference type of MOS algorithm. 

3.1 A Finite Difference based MOS Scheme 

3.1.1 Discretization of the y  domain using Finite Differences 

Assume the general form for a 2D PDE given by (1.1). We consider the case of 

a uniform mesh in the y domain, but with a slight generalization of the approach a 

non-uniform mesh can be treated. 

In order to apply finite differences in the y domain, we divide the y domain into 

M sections of equal length, Ay = , and then = c + iAy, i = 0,..., M. Let 

Ui(x,t) be the numerical approximation to u(x,yi,t), i = 0, Then Ui(x,t) is 

the ith surface (i.e., "slice") of u(x,y , t ) .  
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MOS 

Figure 3.2: The Method of Surfaces: solution approximations for fixed yi values are 
obtained for t = 0 • • • 1 

The 2D time-dependent parabolic PDE (1.1) can be discretized using central dif­

ference  schemes  for  the  f i r s t  and  second der iva t ives  of  y \  for  the  z th  sur face ,  Ui(x , t ) ,  

we have 

(Ui) t {x , t )  =  f  ^x ,  y u  t ,  Ui(x ,  t ) ,  (Ui) x (x ,  t ) ,  U t + 1 ( x '  t 2 A y t ~^ X '  ̂ ,  (u i ) x x (x ,  t ) ,  

( U j + l ) x {x , t )  -  (Uj- i ) x {x , t )  U i + i (x , t )  -  2 U j (x , t )  + U j - i (x , t )  
2A y  '  Ay 2  

(3.1) 

for (x ,  t )e .  (a,b ) x (i, t^]. The initial conditions at t  =  t 0  associated with (3.1) are 

given by 

Ui(x , t )  =  uo(x ,y i ) ,  x  e[a ,b] ,  i  =  1, •  •  •  ,  M -  1. (3.2) 

The boundary conditions associated with (3.1) are 

( . .  j .  ^  / _  U i + i ( a , t )  - U i - i (a , t ) \  n  
9a f V i i  \Ui )x \P")  t }> 2Aj /  /  — v^*^)  

i  =  1,  •  •  •  ,  M — 1 ,  
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9b t ,  Ui(b ,  t ) ,  (ui) x (b ,  t ) ,  " ' + i ( M ) ^ " «  =  ° >  ( 3 - 4 )  

where t  G ( t , t Q ut], i = — 1. Thus, the solution approximations Ui(x, t ) ,  

i  = — 1, are defined by the above system of ID PDEs with associated 

boundary and initial conditions. 

The remaining boundary conditions (not yet considered) are 

g c (x ,  t ,  u (x ,  c ,  t ) ,  u x (x ,  c ,  t ) ,u y (x ,  c ,  t ) )  = 0, 

g d (x ,  t ,  u (x ,  d ,  t ) ,  u x (x ,  d ,  t ) ,u y (x ,  d ,  t )) = 0, 

for t£  ( t o ,  TAUT] .  Substituting uo{x ,  t )  «  u(x ,  yo ,  t )  =  u(x ,  c ,  t) and UM(X ,  t )  & u(x ,  YM,  T )  =  

u(x, d, t) into these boundary conditions and employing one-sided finite differences, 

we get 

(  *  -  t  * \  d  -  t  4 \  u 2 (x , t )  -u 0 (x , t \  
g c  I  x ,  t ,  UO{x ,  t ) ,  ~^ c

u o\ x > *)> 2Ay  )  =  '  '  

g d  I  x ,  t ,  u M {x ,  t ) ,  t ) ,  2^  ) =  

We wi l l  assume that  we  can  expl ic i t ly  so lve  the  above  equat ions ,  (3 .5) ,  (3 .6) ,  to  obta in  

u o (x , t )  and UM(x , t ) ,  and  then  these  func t ions  can  be  subs t i tu ted  in  the  PDEs (3 .1)  

and boundary  condi t ions  (3 .3) ,  (3 .4) .  This  assumpt ion  requires  tha t  the  boundary  

condi t ions  have  the  s impler  form 

g c  (x ,  t ,  UQ(X ,  t ) )  = 0, g d  (x ,  t ,  u M {x ,  t ) )  =  0. 
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(Alternatively, we could consider (3.5), (3.6), to be algebraic equations and com­

bine them with the PDEs (3.1). However, this algebraic/ID PDE system does not 

have a form that can be solved by BACOL.) 

In summary, we have a coupled system of (M — 1) ID time-dependent PDEs (3.1) 

to be solved by BACOL, with initial conditions (3.2) and boundary conditions (3.3), 

(3.4) (where we have explicitly obtained uo(x,t) and v,M{x,t) from (3.3), (3.4).) 

In this section we consider an example, using BACOL to solve the system of ID time-

dependent parabolic PDEs arising from the application of the finite difference based 

MOS. 

Consider the 2D time-dependent parabolic PDE (the 2D Burgers' equation), (where 

£ is a constant), 

The problem domain is ( x ,  y )  £ (0,1) x (0,1), t  > 0; the boundary and initial condi­

tions chosen so that the true solution is 

The initial condition is 

3.1.2 Finite Difference Based MOS Example 

u(ar, 0) = ( x , y )  E  [0,1] x [0,1], 
1 + e 

and the boundary conditions are 

u ( 0 , y , t )  L _  =  o ,  t €  ( 0 , 1 ) , y e  ( 0 , 1 ) ,  ( f f a  =  0 )  
1 + e 

29 



u(  1,y , t ) "t+^t = 0, t  e  (0,1),?/ G (0,1), (g b  = 0) 
1 + e 

u(x,0,t) ^rr=0, t  G (0,1), x £ (0,1), (<?c = 0) 
1 + e 

u(x,l,i) = i€ (0,1),are (0,1). (g d  = 0) 
1 + e 2£ 

Assume we divide the y  domain into M subintervals; let Ay = Then for 

the internal points, y,, the discretization of the y domain using the finite difference 

method gives the following system of ID parabolic time-dependent PDEs, involving 

the unknown solution components, Ui(x,t), i = 1,... ,M — 1, 

(ui)t = f(«i)xx-«»(wi)x+£ (^U'+2Ay8-1) = 1'''' 'M_1-

^ ^ ^ (3-7) 
The corresponding initial conditions for Ui(x,t) are 

1
x+y,.x , i = 1, • • • ,M — 1. (3.8) 

The boundary conditions for Ui(x, t) are 

U i { Q , t ) - -  1  
t N  = 0 ,  t  =  l , - - - , M - l ,  ( 3 . 9 )  

( l  +  e ^ r j  

Wi( l , t ) -7  — 0) i  = ! , • • •  ,M — 1 .  (3.10) 
(l + e 2« J 

To obtain Uo(x ,  t )  and um(x ,  t ) ,  we apply the remaining boundary conditions (g c  = 

0, gd = 0); we get, 

1 1 
i i 0 (x , t )  =  u M (x , t )  =  (3.11) 

1 + e « 1 + e 2« 

These can be substituted into (3.7). 

Then the ID PDE system (3.7) (with the substitutions (3.11)) with initial condi­

tions (3.8) and boundary conditions (3.9), (3.10) can be provided to BACOL. 
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Figure 3.3: Approximate solution of the 2D Burgers' equation, as computed by the 
f in i te  d i f fe rence  based  MOS,  for  £  =  0.1  a t  t  =  1.  

BACOL can then be used to solve the ID system from t  = 0 to t  =  1. This gives 

the solution approximations Ui(x, t), i = 1, • • • , 11. 

We set £ = 0.1, and M = 11. The solution components Ui(x, t ) as u(x,yi , t ) ,  for 

i = 1, • • • , 11, at t = 1 are plotted in Figure 3.3. The source code for solving this 

problem with BACOL is given in Appendix A.l. 

3.2 A B-spline Gaussian Collocation MOS Scheme 

Here we discuss details for a B-spline Gaussian Collocation MOS Scheme. 

3.2.1 Discretization of the y domain using B-spline Gaussian 

Collocation 

Let {y i} f i 0  be a spatial mesh in [c, d], with c = y 0  < y\  <  • • • < y \ i  =  d.  We define 

a piecewise polynomial of degree q on each subinterval y,], i = 1, • • • , M, and 

require the piecewise polynomial to be C1—continuous at the internal mesh points. 

We will implement the piecewise polynomials using a B-spline basis. Consequently 
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the dimension of this piecewise polynomial subspace is MC = M(q— 1) + 2. 

Let be the canonical Gaussian points on [0,1]; 0 < rji < • • • < 7j9_i < 1. 

The images of these points within each subinterval will be the collocation points in 

the y domain. The collocation method requires the approximate solution to satisfy 

the PDE at the internal collocation points and the boundary conditions at y = c and 

y  =  d.  

The approximate solution, U(x,y , t ) ,  is represented in the form: 
MC 

U(x,y , t ) = (3.12) 
j=i  

where Bj(y)  is the jth B-spline basis function and Cj(x , t ) is the corresponding (un­

known) x and t dependent B-spline basis coefficient. The B-spline basis has the 

property that for any y such that y^\ < y < y{, 1 ^ i ^ M, at most q + 1 B-spline 

basis functions, namely, #m(y)^T(i-t)(g-i)+i > have nonzero values. 

We define the mesh subinterval size sequences {ki}f£x by ki = y i  — y x - \ .  The 

collocation points in the y domain are defined to be 

7i = c, 

l i  =  Vi-1 + k i f j j ,  where I  =  1  +  ( i  -  1 ){q  -  1) -f j ,  i  =  1, •  •  •  ,  M,  j  =  1, •  •  •  , q -  1. 

IMC =  D.  

The collocation conditions associated with the original 2D PDE yield the following 

ID PDEs: 

U t (x ,  71,  t )  =  f  (x ,  7i , t ,U(x ,  71,  t ) ,  U x (x ,  72, t ) ,  U y {x ,  7j,  t ) ,  

U x x { , X 1  7/) U x y ( x ,  7i> U y y ( x ,  7I t  £)) I (3.13) 

where I  =  1 + ( i  — 1)(<? — l )+j ,  i  =  1, •  •  •  ,  M,  j  =  1, •  •  •  ,  q  — 1, ( I  = 2, • • • , MC -  1). 

Substitution of (3.12) into (3.13) gives (taking into account the special property 

of the B-spline basis mentioned above) 
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i ( q - 1)+2 

^ ^ {pm{Xi  ̂ ))t-6m(')'i) = 

m=(i—l)(g-l)+l 

(i(q-l )+2 »(<7—1 )+2 

^ ^ c m { x , ^  (cm(^> i))x-®m(7/) , 
m=(i-l)(9-l)+l m=(i—l)(g—1)H-1 

i(g-l)+2 i(g-l)+2 

S cm(x,*)£C(7i), XI xar 
m=(i-l)(q-l)+l m=(i-l)(g-l)+l 

1 (9—1 )+2 i(g-l )+2 \  

(Cm( X , t ) )x B m('y i ) i  J] J . (3-14) 
m=(i-l)(<j-l)+l m=(i-l)(g-l)+l J 

l i  e [y i -u  Vi ) ,  I  = l+( i - l ) (q- l )+j ,  i  =  1, •  •  •  ,  M,  j  = 1, - • • , q-1, ( l  =  2, - - -  ,  MC-1) ,  

for (x , t )e  (a,b ) x (Mout]- The collocated initial conditions (obtained by requiring the 
approximate  so lu t ion  to  sa t i s fy  the  in i t ia l  condi t ion  a t  the  col loca t ion  poin ts  in  the  y  
domain) at t = to are given by 

U(x,n , t 0 )  =  U 0 (x , - f i ) ,  (3.15) 

I  =  1 +  ( i  — l ) (q  — 1) + j ,  i  =  1,  -  •  •  ,M,  

j  =  l , - - - ,q - l ,  (I  =  2 ,  • • •  ,MC-  1), xe[a ,b] .  

Substitution of (3.12) into (3.15) gives: 

i ( q - 1)+2 

^2  c m (x , t )B m ( 'Y i )  =  U 0 (x , i i ) ,  (3.16) 
m=(»-l)(g—1)+1 

71 e [y i - i , y i ) ,  I  =  l+(z-l)(<?-l)+jf, i  =  l,-- ,M,  j  =  l , - -  -  , q -1 ,  (1  =  2 , •  •  -  ,MC-1). 

The collocated boundary conditions are: 

9a{lu  t ,U(a ,  7ut ) ,  U x (a ,  t ) ,  U y (a ,  7i , t ) )  =  0, (3.17) 
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9b{l i , t ,U(b ,  7/, t), U x (b ,  7i , t ) ,  U y {b , 71, t)) = 0, (3.18) 

/  =  l  +  ( i - l ) ( g - l ) + j ,  i  =  l , . . . , M , i  =  l , - , 9 - l ,  ( l  =  2 , - . , M C - l ) .  

Substitution of (3.12) into (3.17), (3.18) gives: 

i (q -1)4-2 i(q-l)4-2 

9a  j Ulit, ^ "] Cm(d, ^ ^ (Cm(ci, 
m=(j-l)(g-l)4-l m=(i—l)(<j—1)4-1 

»(<J-l)4-2 \ 

]T crn(a,f)Sm(7i) j = 0, (3.19) 
m=(f-l)(g-l)4-l / 

i(9—l)4-2 i(g—1)4-2 

9b  | 7f> t-> ^ ' Cm(b, ^ ^ (Cm(^) ^))x-Sm(Ti)' 
rn=(i—l)(g-l)4-l m=(i—l)(g—1)+1 

>(9-1)4-2 \ 

J] =0, (3.20) 
m=(»-l)(g-l)4-l / 

Z  =  l  +  ( i - l ) ( 9 - l ) + j ,  i  =  l 1 - , M , j  =  l , - , ? - l J  ( l  =  2 , - - , M C - l ) .  

Thus (3.14) represents a system of (M —2) ID PDEs together with (M —2) initial 

conditions (3.16), and 2(M — 2) boundary conditions (3.19), (3.20). 

Since the dimension of the piecewise polynomial space is MC — M(q — 1) + 2, we 

still need two more PDEs with corresponding initial and boundary conditions. And 

we s t i l l  have  to  cons ider  the  fo l lowing two boundary  condi t ions  assoc ia ted  wi th  y  =  c ,  

y  =  d:  

g c (x ,  t ,  u( : r, c ,  t ) ,u x (x ,  c ,  t ) ,  u y (x ,  c ,  t ) )  =  0, (3.21) 

g d (x ,  t ,  u (x ,  d ,  t ) ,  u x (x ,  d ,  t ) ,  u y (x ,  d , t )) = 0. (3.22) 
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We can differentiate these two boundary conditions with respect to t  to get two more 

PDEs: 

g c (x ,  t ,  U(x ,  c ,  i), U x (x ,  c, t ) ,  U y (x ,  c ,  t ) ) t  = 0, (3.23) 

g d (x , t ,U(x ,d , t ) ,U x (x ,d , t ) ,U y (x ,d , t ) ) t  = 0 .  ( 3 . 2 4 )  

We assume that (3.23) and (3.24) can be rewritten in the form: 

U t (x ,  c ,  t )  =  f c (x , t ,U(x ,c , t ) ,U x {x ,c , t ) ,U y (x ,c , t ) ) ,  (3.25) 

U t (x ,d , t )  =  f d (x , t ,U(x ,d , t ) ,U x (x ,d , t ) ,U y (x ,d , t ) .  (3.26) 

Substitution of (3.12) into (3.25), (3.26) gives: 

i ( q — l)+2 / i ( g - l)+2 

y :  ( C m (x , t ) ) t B m (c )  =  fc  l x , t ,  ^  c m ( x , t ) B m ( c ) ,  (3.27) 
m=(i-l)(g-l)+l \ m =  (i—l)(g—1)+1 

i ( q - 1)+2 i(9-l)+2 \ 

^  ^ t ) ) x B m (c ) ,  ^  ̂  C m (x ,  t )B m (c )  J ,  
m=(t-l)(g-l)+l m=(i—l)(q—1)+1 / 

i(g—1)+2 / i(?-l)+2 

J] (^„(a:,i))tSm((i) =/d j ^(x, t)Sm(d), (3.28) 
m=(i—l)(q—1)4-1 \ m=(i-l)(g—1)+1 

i(?-l)+2 i(q-l)+2 

^ ^ (Cm(^) i))i5m(^): ^ ^ Cm(^! ̂ )B m {d)  
rn=(i-l)(g-l)+l m=(t-l)(g-l)+l 

The initial conditions corresponding to (3.27), (3.28) at  t  =  to  are given by 

U (x ,  c ,  t 0 )  =  U 0 (x ,  c), (3.29) 

[/(x, d,  t o )  =  U o (x ,  d ) .  (3.30) 

Substitution of (3.12) into (3.29), (3.30) gives: 
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ifa—1)+2 
23 cm(a:,t)5m(c) = U 0 (x ,c ) ,  (3.31) 

m=(t—l)(g—1)+1 

i(q-l)+2 

y c m (x , t )B m (d)  =  U 0 (x ,d) .  (3.32) 
m=(i-l)(9—1)+1 

The boundary conditions corresponding to (3.27), (3.28) are (respectively) 

g a (c ,  t ,  U(a ,  c ,  t ) ,  U x (a ,  c ,  t ) ,  U y {a ,  c, t )) = 0, (3.33) 

Sr6(c, t ,  U (b , c, t), t/x(6, c, t), U y {b ,  c ,  t )) = 0, (3.34) 

g a {d ,  t ,  U(a ,  d ,  t ) ,  U x (a ,  d ,  t ) ,  U y (a ,  d ,  t )) = 0, (3.35) 

g b (d , t ,U(b ,d , t ) ,U x (b ,d , t ) ,U y (b ,d , t ) )  = 0 .  ( 3 . 3 6 )  

Substitution of (3.12) into (3.33), (3.35), (3.34) and (3.36) gives: 

(i(<?-l)+2 

C , t ,  ^  ̂  C m ( o , t ) 5 m ( c ) ,  
m=(i-l)(qr-l)+l 

i ( q - 1)+2 i(g-l)+2 \ 

r ( C m (a , t ) ) x B m (c ), ^ c^M^^c) j = 0, (3.37) 
m=(i—l)(g-l)+l m=(i—l)(q—l)+l J 

( i { q - 1)+2 

C, t ,  ^ ^ (^(6, £)2?m(c), 
m=(i—l)(g—1)+1 

t(g—1)+2 i(g-l)+2 \ 

y (cm(6,t))xsm(c), 23 0-Bm(c) J = 0; (3.38) 
m = ( i —  l)(g—1)+1 m=(»—l)(g-l)-f-l / 

(«(<j-l)+2 
d,  t ,  ^  ̂  

m = ( i - l ) ( q - l ) + l  
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'(<?-1)+2 <(g-i)+2 \ 
Y. (cro(a,«))a;Bm(rf), c m (a , t )B m (d)  1=0, (3.39) 

"»=(i-l)(?-l)4-l rn=(t—l)(q—1)+1 / 

(i(?-l)+2 

d ;  t ,  ^  ̂  C r n i p i  i ) B m ( d ) ,  
TO=(t—l)(g—1)4-1 

i(g-l)+2 i(q-l)+2 \ 

J] (cm(6,t)jISm(d), cm(M)#m(eO J = 0. (3.40) 
m=(i-l)(g-l)4-l m=(i—l)(g—1)4-1 J 

Thus the system of PDEs (3.14) together with the PDEs (3.27) and (3.28) give a 

ID system of MC PDEs with corresponding initial and boundary conditions. 

We arrange this system of ID PDEs in the following order ((3.27), (3.14), (3.28)): 

i ( q - 1)4-2 / i ( q - 1)4-2 

^ ,  (£m(-£ j  O) t -^n(^)  =  fc  I -^ i^ i  ^  Cm(^)  t )B m (c ) ,  

m=(i-l)(g-l)4-l ^ m = ( i - l ) ( q — 1)4-1 

i(g—1)4-2 t(<j—1)4-2 \ 

( C m ( x , t ) ) x B m ( c ) ,  C m { x , t ) B ' m ( c )  j (3.41) 
m=(i—1) (q—1)4-1 m=(i—l)(g—1)4-1 J 

i { q - \ ) + 2  

m=(t-l)(g-l)4-l 

(i (qr—1)4-2 i(?-l)4-2 

x n l , t ,  Cm(x,t)JBm(7,), {Crn{x , t ) ) X Bm(~i l )  ,  
m=(t-l)(9-l)4-l m=(t-l)(g-l)+l 

i(g-l)4-2 i { q - 1)4-2 

^ ^ ^ ^ (Cm^X, t))xxBTn(/yi), (3.42) 
m=(i-l)(g-l)4-l m=(i-l)(g—1)4-1 

t(9-l)4-2 >(9-1)4-2 \ 

]T Cm(x, t )B '^{y i )  ) , 
m = ( i - l ) ( q — 1)4-1 m = ( i —  l)(g-l)4-l J 
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i ( q - l ) + 2  / t(q-l)+2 

^ fd J ^  ̂  Cmi-E;  

m=(i-l)(q-l)+l ^ m=(i-l)(g-l)+l 

i(g—1)+2 i(g—1)+2 \ 

(£n(s><))*£m(<0, X] Cm(a:,t)5m(d) I . (3.43) 
m=(i-l)(g-l)+l m=(i-l)(<j-l)+l / 

The initial conditions arranged in a consistent ordering ((3.31), (3.16), (3.32)) are: 

t(<j-l)+2 

c m ( x , t ) B m ( - y  i) = £70(z,7i)> (71 = c) 

m=(t-l)(9-l)+l 

t(q-l)+2 

Y Cm{x , t ) B m (  J l )  = C/Q(X, 7i), 
m=(i—l)(g—1)+1 

/  =  1  + {i  -  l) (q  -  1  )+j ,  i  =  1 , -  •  •  , M ,  j  =  1 ,  •  •  •  ,q  -  1, (/ = 2, • • • ,MC - 1), 

t(q—1)+2 

Y c m (x , t )B m (^ M C )  =  U 0 {x ,-YM c) -  (LMC = d ) 
m=(i-l)(g-l)+l 

The boundary conditions arranged according to the same ordering are ((3.37), (3.19), 

(3.39), (3.38), (3.20), (3.40)): 

i (q -1)+2 i {q - l)+2 

9a J 7l> ^ ̂  l)> ^ , { p m i f l i  ̂ ))x-®m(7l)j 

m=(i-l)(g-l)+l m=(t-l)(q-l)+l 

»(9-l)+2 \ 
X] 5»(a, 0-5^,(7!) ) =0, (71 =c) 

m=(t-l)(g-l)+l / 
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t(9—1)4-2 i(g-1)4-2 

9a  I 7f) ^ ̂  ^ ^ (Cm(ai t))xBm ( ' y i ) , 
m=(i- l ) (q - l )+ l  

i (q- 1)+2 ^ \ 

]T ^(0,4)5^(7/) =0, 
m=(i-l)(9-l)4-l J 

l  =  l  + ( i -  l ) {q-  1 )+j ,  i  =  ! , • • •  ,M,  j  =  ! , • • •  ,q -  1, (/ = 2, • • • ,MC - 1), 

i(q—1)4-2 1(9-1)4-2 

5a | 7MCJ £ >  ^  ̂  Cm{ a i ^ )B T n {pjMc) i  ^  ̂  { c m{ a i t ) )xBm( 'yMc) i  
m=(t-l)(9-l)4-l m=(i-l)(<j-l)4-l 

1 (9—1)4-2 

r cm(a,t)Bm(7Mc) J =0, (7MC =  D)  

i(9-l)4-2 i(g-l)+2 

9b  | 7l>^) ^ ̂  ^ ] (Cm(M))x-®m(7l)> 

m=(i—l)(g—1)4-1 m=(t-l)(9—1)4-1 

'(9-1)4-2 ^ \  

cm(6,t)Bm(7i) I =0, (71 =c) 
m=(i—1)(IJ—1)4-1 / 

1 (9—1)4-2 i (qr—1)4-2 

9b | 7(> ^ ^ ^ ^ "] {pm{b,ty)xBm{^ii), 
m=(i-l)(g-l)4-l m=(i—l)(g—1)4-1 

i(9—l)4-2 

Cm(b, t )B ' m (7 i )  )  = 0 ,  
m=(i-l)(g-l)4-l 

/  =  !  + (» ' -  l ) (q~  1 )  +j ,  i  = ! , • • •  ,M,  j  =  ! , • • •  , 9  -  1 ,  ( /  =  2 ,  •  •  •  ,MC -  1), 

1(9-1)4-2 1(9-1)4-2 

9b  I 7 MCi^i ^ ̂  Cm(^i ̂ )-6m(7Mc)j ^ ̂  {cm{p,t))xBm{ 7Mc): 
m=(i—l)(g—1)4-1 m=(i-l)(9-l)4-l 
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fl-ii 

(<H> S. 

Figure 3.4: The ABD structure of G y .  Each block Si  is a (q  -  1) by (q  + 1) matrix. 
The overlap between the blocks, Si, is 2, q is the degree of the B-spline basis poly­
nomials, M is the number of subintervals. Comparing with (3.27), all B-spline basis 
functions are zero except Bi(c) = 1. Similarly, comparing with (3.28), all B-spline 
basis functions are zero except BMc(d) = 1. These observations explain the form of 
the  f i r s t  and  las t  rows  of  G y .  

The system of MC PDEs given above ((3.41), (3.42), (3.43)) in matrix form is 

where G y  is a square ABD matrix of the form given in Figure 3.4 and c(x , t ) and 

F(t, c(x, t)) are defined below. In Figure 3.4, each Si, i = 1 is a q — 1 by q + 1 

G y (c{x , t ) ) t  = F(t ,c (x , t ) ) ,  (3.44) 
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matrix of the form 

Bi i f i+i )  Bi+i(  7i+i) 

Bi{ 71+2) Bi+1 (7(4.2) 

^/+g(7/+l) 

Bl+q( -y i+2)  

B l ( j l+q- l ) £?;+i(7i+,_1) ••• 5^(7/+^!) 

where Z = 1 + ( i  — l ) (q  — 1), i  =  1, •  •  •  ,  M.  The vectors c(x ,  t )  and F(t ,  c (x ,  t )) are 

c(x , t )  =  

Ci{x , t )  

c 2 (x , t )  

CMc(x , t )  

F( t ,c (x , t ) )  =  

Fi( t ,c (x , t ) )  

F 2 { t ,c{x , t ) )  

F M c( t , c (x , t ) )  

where Fx(t,c(a:,t)) is the right hand side of (3.27), Fi( t ,c (x ,  t ) )  , I  =  2, • • • , MC — 1, 

is the right hand side of (3.14), and FMc{t,c(x,t)) is the right hand side of (3.28) 

Then we give the ID time-dependent PDE system (3.44) to BACOL along with 

the corresponding initial and boundary conditions indicated above. 

3.2.2 Numerical Results for the B-spline Gaussian Collocation 

MOS Scheme 

As explained earlier, since BACOL can currently only handle a ID PDE system, 

we have to differentiate the boundary conditions, (3.21), (3.22), and assume the result­

ing equations have the form (3.27), (3.28). As we mentioned in Chapter 2, before the 

DAE solvers emerged, MOL software required the user to differentiate the boundary 

conditions to get systems of ODEs. The use of the differentiated boundary conditions 

introduces error, even in ID case, where the boundary conditions correspond to only 

two points. In the 2D case, the boundary conditions we have to differentiate corre-
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Figure 3.5: Approximate solution of 2D Burgers' equation, as computed by the B-
spl ine  based  MOS,  £  =  0.25 ,  t  =  1.  

spond to two lines and are collocated. The differentiated boundary conditions are 

solved together with the ID PDEs obtained from collocation of the 2D PDEs. This 

introduces more error than in the ID case. 

For the numerical results presented here, we simplify the computation by collo­

cating the PDE rather than the differentiated boundary conditions in order to obtain 

the two extra PDEs that are required. 

We consider the same problem as in Section 3.1.2. We set £ = 0.25, q = 4, M — 4. 

The numerical solution is plotted in Figure 3.5, for f = 0.25 and t = 1. The source 

code for solving this problem with BACOL is given in Appendix A.2. 
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Chapter 4 

B-spline Gaussian Collocation for 2D 

Time-Dependent Parabolic PDEs 

4.1 Introduction 

In this chapter, we consider a B-spline Gaussian collocation algorithm in which we 

simultaneously discretize both spatial domains, x and y, transforming a 2D time-

dependent PDE (1.1) into a system of time-dependent DAEs. We then use a nu­

merical DAE integrator to integrate forward in time. (Thus this algorithm can be 

viewed as the classic MOL algorithm applied to a 2D PDE.) The approximate solu­

tion is expressed in terms of a tensor product B-spline basis in x and y with unknown 

time-dependent coefficients for the linear combination of the spatial basis elements. 

To perform the spatial discretization, we use a mesh of points to partition the x and 

y domains into spatial elements, and at selected points inside each rectangular ele­

ment, we require the approximate solution to satisfy the PDE. We also require the 

approximate solution to satisfy the boundary conditions at selected points along the 

boundary. 

In the remainder of this chapter, we will describe the 2D B-spline collocation 
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algorithm and its implementation in a preliminary software package which we call 

BACOL2D. Since, in the two-dimensional case, the DAE system resulting from the 

spatial discretization is usually large, we use DASPK to solve it. DASPK is based on 

BDFs and is a newer version of the well-known DASSL code, used in BACOL. Since 

BACOL2D is a natural extension of BACOL, many of the algorithms employed in 

BACOL are relevant to BACOL2D. We also describe a fast block LU algorithm with 

modified alternate row and column elimination with partial pivoting for the treatment 

of the ABD linear systems arising during the numerical solution of the DAEs. We 

will present numerical results in this chapter to demonstrate convergence rates for the 

collocation solution. 

4.2 Spatial Discretization 

We will assume n = 1 to simplify the discussion, but the algorithm can be used 

for arbitrary n. 

4.2.1 B-spline basis 

We consider a 2D rectangular grid based on a mesh of N + 1 points (N > 1) in 

[a, 6] and a mesh of M + 1 points (M > 1) in [c, d) such that 

a = x0 < x i  <  • •  •  <  x N  = b,  c  =  y 0  < yi  <  • •  •  <  y M  = d.  

We associate with the mesh on the x  domain, (^-continuous piecewise polynomials of 

degree p, i.e., we have a polynomial of degree p for the zth subinterval, [xj_i, x*], i = 

1, • • • ,N, with C1— continuity imposed at the internal mesh points. Consequently the 

dimension of this piecewise polynomial subspace is NC = N(p—1) + 2. Similarly, in 

the  y  domain ,  we have  a  polynomial  of  degree  q for  the  i th  subin terva l ,  [y^ i ,  y t ] ,  i  =  

1, • • • ,M, with C1—continuity imposed at the internal mesh points. Consequently 

the dimension of this piecewise polynomial subspace is MC = M{q—1) + 2. 
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To represent the piecewise polynomials, we employ B-spline bases. Let 

{Di{y)}^, be the B-splines bases associated with the above meshes and continuity 

requirements. We then write the numerical solution, U(x, y, t), as a linear combination 

of the tensor product of the B-spline bases functions in x and y with time-dependent 

coefficients, Wij(t), as follows: 

NC MC 

U(x,y , t ) = ̂ j ^w i j ( t ) B i {x ) D
j {y) .  (4.1) 

i=l j=1 

4.2.2 Collocation at Gaussian Points 

We define the mesh subinterval size sequences {/k}£Li by hi = x^  — Xi-i, and 

{ki}iL\ by ki = yi — yi-\. We define {pij?"/ and to be the canonical Gaussian 

points on [0,1] with 0 < p\ < • • • < pp_x < 1, and 0 < rj\ < • - • < 779_i < 1. The 

collocation points in the x domain are then defined by 

6 = a,  

6  = Xi- i  +  hiPj ,  I  =  1 + (i  - 1) • (p - 1) +j ,  i  =  1, •  •  •  ,  N ,  j  =  1, •  •  •  , p -  1, 

€N C  = b.  

The collocation points in the y  domain are defined to be 

7i = c, 

7/ = Vi- i  +  kiVj i  I  =  1 + (» ~  1) '  (?  ~  1) + * =  1)' ' '  > M,  j  =  1, •  •  •  ,  q  -  1, 

7 MC = d.  

In Figure 4.1, we show the collocation points that are inside each rectangle. 

The PDE is discretized over the spatial domain by simultaneously collocating at 

the points {£,in x and the points {7in y. The collocation conditions 

yield the following ODEs in time: 

7j) = /(£»> 7j> I j i  U x { £ i ,  7j t  7ji ̂ )j 

U X  x(£ i )  I j l  ̂ )> Uxyi^ i ,  Uyy{^ i ,  7j, i)), (4-2) 
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• Collocation points 
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Figure 4.1: For the case p = 3, q = 3, the points inside each rectangle are the 
collocation points. Note that the collocation points on the boundaries are not shown 
in this figure. From [PW95]. 

where i  = 2, • • • ,NC — 1, and j  =  2, • • • ,MC — 1. Note that these collocation 

conditions do not involve fi,£;vc,7i, or 7MC- These latter points are associated with 

applying collocation conditions along the boundaries. These conditions are 

0 = g a ( l j , t ,U(a, -y j , t ) ,U x (a , 'y j , t ) ,U y (a^ j , t ) ) ,  (£1 = a),  (4.3) 

0 = gb { l j , t ,U(b , 7 j , t ) ,U x {b , ' i j , t ) ,Uy(b , '> i j , t ) ) ,  (&c = b) ,  (4.4) 

0 = g c (€ i , t ,U(Zi ,c , t ) ,U x (£ i ,c , t ) ,U v {£i ,c , t ) ) ,  (71 = c), (4.5) 

0 = gd {£UT,  U (€ i ,d , t ) ,U x (€ i ,d , t ) ,U y (£ i ,d , t ) ) ,  ( IMC = d),  (4.6) 

where i  = 1,  •  •  -  ,  NC,  j  =  1,  • •  •  ,  MC.  

We next describe the order in which the collocation conditions appear in the DAE 

system provided to DASPK. The algebraic equations (4.3), (4.4) are the first and last 

sets of equations of the DAE system. Note we separate the other two sets of boundary 

conditions (4.5), (4.6), and combine them with the ODEs (4.2). Then the resulting 
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DAE system is (4.8). 

Next by substituting (4.1) into (4.2), (4.3), (4.4), (4.5) and (4.6), we get equations 

in the terms of the unknowns Wij(t). We can then rewrite these equations in matrix 

form: 

A(W(t) ) t=E(t ,W(t) ) .  (4.7) 

In (4.7), W(t)  is the B-spline coefficient vector of size (NC • MC); it has the form, 

W{t)  = 

m (<) 

m .2  ( t )  

W.Nc(t )  

, where w^t) = 

The right hand side vector, F_(t ,W_(t ) )  =  

w^t)  

w i 2 ( t )  

WiMc{t)  

Fi ( t ,W(t ) )  

F 2 ( t ,W(t ) )  
, where each F { ( t ,  W(t ) )  

F N C ( t ,W(t ) )  

has MC components. The expressions for F^t^Wd)) ,  i  = 1,  •  •  •  ,NC,  are given 

in (4.9), (4.10) and (4.11). These expressions are not in terms of Wij(t), but such 

expressions could easily be obtained by substituting (4.1) and its derivatives into the 

following formulas. 
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0 = gJc/MC,  t ,  U (£1,7ME, <)> £4(£I, 7MC, t ) ,  U y (£ i ,  7MC,  0)> 

0 = &(&,*, tf(6,7i>*)>0x(6,7i,t)»^y(&»7i,O)> 

U t { £ 2 ,  72) 0 = /(&, 72,4, t^(^2, 72, £), U x { i2, 72, £), U y ( £ 2 ,  72, 0, 

Uxxi&i 72, 0) Uxy(£2, 72, i), Uyy(£2, 72, ̂ ))> 

^t(^2, 7MC-1, 0 = /(&2, U x (£2, jMC-l , t ) ,  

Uy(£,2, 7MC-1, £), U x x (^2 ,  7MC-l,i), U x y (^2 ,  7MC-1, *), Uyy(^2,  7MC-1, i)), 

o = 9d{fL2, t ,U(£2, lMC,t ) ,  U x ( i2 ,  7MC,t) ,  U y (^2 , l /MC,t ) ) ,  

0 = 5C(^JVC-I, t ,  E/(£jvc-I, 7I,£ ) ,  UX(£NC—I , 7I, ̂ ), ^Y(Civc-i, 7i> 0)> 

Uti^NC-1, 72, *) = f i^NC-1, 72, U (£nC~ 1, 72, ̂ ), U X (^NC-1, 72, £), Uy(!~NC-U72,  t ) ,  

Uxx{£NC-1, 72, £), Uxv(€NC-1, 72, £)> ^yyCCiVC-l, 72, *)), 

Ut{f iNC-l , lMC-\ , t )  = /(fjVC-l5 7MC-1, t ,  U x (^NC-l , lMC-l , t ) ,  

Uyi^NC-l ,  7MC—1, t ) ,U x x (^NC-l ,  7MC-l , t ) ,  U X y{iNC-\- , lMC-l , i ) i  Uyy(^C-l , lMC-l , t ) ) ,  

0 = Pdl&vc-i, T> U{£NC-\ ,7MC, T) ,  U X (£NC-I, 7A/C, £), U V {£NC-I ,  IMC,  T)) ,  

0 = ?&(7i, t ,  U {^NC , 7i> 0) U X {£NC,  7i, 0) U y (£NC,  7i,f)), 

o = gb(l !MC , U (£/vC, IMC,  t ) ,  Uxi^NC,  IMC,  t ) ,  Uy(^NC,  IMC,  <))•  

(4.8) 

48 



F j ( t .  W ( t ) ) .  i  = 2, • • • , N C  -  1, has the form: 

m m t ) )  

Qc(£>ii U(£j, 7i, t), 7i, 0) Ti> 0) 

/ (&,  72,  t ,U(£i, 72, t), £/*(&, 72, t), Uy{£i, 72, i), 

UXX(.£II 72, 0, UXY{£,I, 72, I), UYY(£I, 7J'2, ̂ )) 

/(It, 7MC-I, i, (6, 7ATC-i, *), C4(&, 7MC-I,*), ̂ (fi, 7MC-I, i), 

Uxx(&> 7MC—1, ^), Uxy(£ii 7MC-1, ̂ ), 7MC—1, ^)) 

5d(&, *, U(&, 7A/C, i), £4(&, 7A/C, <), £^(£i, 7MC, <)) 

Z!i(*,lZ(*)) has the form: 

5a(71 > t , t7(6 > 71. *), ^ (6,71, <), Uy (6,71 ,«) ) ,  

9a{lMC,  t ,U(£I, 7MC,  I), U x (£ i ,7MC,  t ) ,  C/J,(FI, 7ATC, £)) 

FNCU, W(t)) has the form: 

0 .9) 

(4.10) 

5'fc(7i, *> U(£NC,  7I, 4), U x(£NC , 7I, 0, U v(£NC , 7I, *))> 

9 b (LMC ,  i ,  ̂ ( l i ve ,  7mc,  i ) ,  ̂ ( I jvc ,  7mc,  i ) ,  U Y (£XC,  " IMC, t ) )  

(4.11) 

The matrix yl appearing in (4.7) has the form shown in Figure 4.2. 

In Figure 4.2, each matrix D x  has (p — 1) block rows and (p  + 1) block columns, 

where each block is an MC x MC matrix. The structure of each block inside Dt has 

the form shown in Figure 4.3. From Figure 4.3, we can see that each block inside Di 

is an ABD matrix. The ith subblock, Ri is equal to cikjSi, i = 1, • • • ,N, where the 
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Figure 4.2: The structure of the ABD matrix A appearing in (4.7). Each block, 
is a matrix of size MC(p — 1) by MC(p 4-1). The overlap between the Di blocks 
is 2MC, p is the degree of the polynomials used in the x domain, N is the number 
of subintervals in the x domain, MC is the dimension of the piecewise polynomial 
subspace in the y domain. 

Si  has the form (2.7), with I n  replaced by 1. The matrix A,  appearing in (4.7), can 

be written as 

A = A x  ® Ay,  

where A x  is the matrix shown in Figure 2.1, and A y  is a matrix with a similar structure 

to that of Ax, but for the y domain. 

4.3 DASPK 

The DAE system (4.7) is solved using DASPK, a high quality software package 

for the numerical solution of large-scale systems of DAEs. DASPK discretizes the 

DAE system, yielding a nonlinear system. This nonlinear system can be solved using, 

for example, Newton's method, and a large linear system will arise in each Newton 
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Figure 4.3: The structure of one of the block matrices inside £)». Each block inside 
Di is of size MC x MC. The overlap between the Rj blocks is 2, q is the degree of 
the polynomials in the y domain, M is the number of subintervals in the y domain. 
Top and bottom are rows of zeros. 

step. The linear systems arising during the numerical solution of the DAE system 

are too big to be solved with a direct method, so an iterative method must be used. 

The most significant difference between DASPK and DASSL is that DASPK uses the 

scaled preconditioned incomplete GMRES method (truncated GMRES) (an iterative 

solver for solving a linear system) [Saa81, SS86, Saa93] combined with an inexact 

Newton method [DES82] for the treatment of the linear and nonlinear systems that 

arise. 

We now discuss the linear system solver in more detail. The large linear systems are 

solved iteratively rather than directly, as mentioned above. A banded preconditioner 

matrix [Saa90] is used during the solution of the linear system arising during each 

Newton iteration. The matrix preconditioner must try to approximate the Jacobian 

matrix (which has an ABD form) arising during the calculation. The preconditioner 
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Figure 4.4: The banded preconditioner matrix employed by DASPK. The ABD struc­
ture is included with the band structure. 

matrix is generated by DASPK. DASPK cannot generate a preconditioner with an 

ABD structure. The closest sparse matrix structure it has available for the precon­

ditioner is a band matrix structure. Hence the preconditioner we employ has a band 

matrix structure (See Figure 4.4). DASPK tries to reuse this preconditioner matrix 

for as many time steps as possible, since the costs for building the preconditioners are 

high. 

The linear system involving the preconditioner matrix is solved by an incomplete 

LU factorization [Saa03] based on routines from the SPARSKIT library [Saa90] (a 

FORTRAN 77 library for sparse matrix computations). 

4.4 Efficient Block Matrix Algorithms 

As mentioned earlier, R. D. Russell and W. Sun [RS97] suggested a fast algorithm 

based upon a matrix block eigenvalue decomposition for solving spline collocation 

matrices. We use a similar fast algorithm based upon LU decomposition with modified 

alternate row and column elimination with partial pivoting to take advantage of the 
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Figure 4.5: The ABD structure of the 2D B-spline projection Q in (4.12) (the degree 
of the polynomials in the x and y domains is 3 in each case, the number of subintervals 
is 3 in each case.) 

structure of the matrices that arise. In addition, we also develop an efficient way to 

deal with the matrix multiplication for these structured matrices. 

4.4.1 2D B-spline Projection 

Using the tensor product approach, the B-spline approximation in 2D has the form 

(4.1), as mentioned earlier. The B-spline coefficients characterize the projection of the 

approximate solution onto the B-spline tensor product basis. We can rewrite this 2D 

B-spline projection in matrix form as: 

U ( t  7, t )  =  ( M x  ®  M y ) W ( t )  =  Q W . i t ) ,  (4.12) 

where iZ(£, 7>£) is the evaluation of U ( x , y , t )  at all combinations of {&}£?[, 

as prescribed by the following definitions for £ and 7:  
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£ = 

6 

& 
1 CMC, 7 — eiVC 

71 

72 

£NC J |_ IMC 

where e^c is the vector of Is of length MC, e^c  is the vector of Is of length NC, M x  

(for the x domain) is an NC x NC matrix having the form shown in Figure 2.2, and 

My is an MC x MC matrix having a similar structure to Mx, but for the y domain. 

Note Q = Mx ® My has the form shown in Figure 4.5. 

4.4.2 A Fast Block Matrix System Solution Algorithm 

Referring to (4.12), we see that if we are given W_(t) ,  then we can obtain a vector 

representing an evaluation of £/(£, 7, i), the approximate solution at the collocation 

points ,  by  mul t ip lying W(t)  by Q. Similar ly ,  g iven £/ (£ ,  7 :  t ) ,  we can obta in  W(t)  

by solving OW(t) — U(£, 7, t). To solve OW(t) = £/(£, 7, t), we use COLROW to 

eff ic ient ly  handle  the  ABD st ructure  of  the  matr ices  M x  and M y .  

The algorithm we use is as follows. We assume that M x  and M y  are factored as: 

M X  = L X U X ,  My -  Lyl ly ,  

where L x ,  L y  are lower triangular matrices, and U x ,  U y  are upper triangular matrices. 

(The factorization performed by COLROW is actually more complicated than what 

we have stated above - see [DFK83b]. It also includes row and column permutation 

matrices associated with alternating row and column pivoting and is based on row 

and column elimination. However in order to simplify the presentation we do not 

include these components of the factorization here. Also modifications to some of the 

COLROW routines were required in order to separate the back solve steps associated 

with upper triangular matrices from the forward solve steps associated with lower 
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triangular matrices, as required in the algorithm given below. As well, L x ,  L y  are 

actually lower triangular ABD matrices and Ux, Uy are actually upper triangular 

ABD matrices. This means that most of the lower triangle of Lx, Ly is zero and that 

most of the upper triangle of Ux, Uy is zero. However, for simplicity, in the discussion 

below we will simply represent Lx, Ly as lower triangular matrices and Ux, Uy are 

upper triangular matrices.) Note that Lx, Ux are NC x NC matrices and Ly, Uy are 

MC x MC matrices. 

Let us simplify the notation by writing (4.12) as 

(M x  <g> M y )w = b,  (4-13) 

where w = W(t)  and b = £/(£,  7 ,  t ) .  The above system can then be rewritten as 

( (L X U X )  <8> (L y Uy))w = b.  

Based on a property of the Kronecker product, we can rewrite the above system as 

( (L x  0 L y ){U x  0 U y ) )w = b.  

This system can then be solved in 4 steps: 

(1)Solve (L x  <g> IMC)V = B for V. 

(2)Then solve (INC L y )v  = v for v .  

(3)Then solve (U x  0 IMC)W = v for w. 

(4)Then solve ( INC <8 U y )w = w for w, 

where IMC is the MC x MC identity matrix and INC is the NC x NC identity matrix. 

(Recall that Mx is a matrix of dimension NC x NC and My is a matrix of dimension 

MC x MC .)  

Note that steps (1) and (2) solve the system 

(L x  0 L y )v  = b 

for v .  

To see this, substitute from step (2) into step (1); we get 

55 



(L x  <8> IMC){INC & L y )v  = b.  

Then again using the property of the Kronecker product, we can rewrite this 

equation as 

and this reduces to 

(L X INC ® IMCL v)V — b,  

(L x  <8> L y )v  = b.  

A similar argument can be used to show that steps (3) and (4) solve the linear 

system 

(U x  <8 U y )w = v.  

Let 

L X  — 

^11 

hi  I22 

INC,  1 INC,2 • • • INC,NC 

Considering step (1) in block form, we have: 

h\I \ ic  2.1  h  

HL^MC HLLMC I2 = h .2  

INC,I IMC INC,21MC • •  INC,NCIMC _ UNC _ I tNC 

56 



where Vj = 

V(J-1 )MC+1 

V( j - l )MC+2 

VjMC 

Since the above matrix is a block 

—(j'-l)MC+l 

—(j-l)A/C+2 

kjMC 
ower triangular matrix, we can solve the first left 

upper block, IUIMC "HI = KI for ul5 then substitute into the second block row and 

solve for jJ2 and so on. 

Step (2) in block form is: 

£1 Hi 
J  

—2 = 
v 2  

, where v_j = 
V(J- l )MC+2 

• 

V -NC —NC VjMC 

This system can be separated into NC subsystems of the form L y  -  v t  = y_ i ,  i  — 

l , - -  ,NC.  

In steps (3) and (4), based on the same idea, we solve upper triangular systems. 

Let 

U x  = 

Cll  C12 • • • CI,nc  

C22 : 

'  •  C (NC-1) (NC-1)  

CNC,NC 

Step (3) in block form is (the components of U x  are called ): 

CHIMC CUIMC • •  •  CI ,NC!MC W.1 HI 

C22^MC ' • '• W.2 —2 

• • • C(jvC-l)(ATC-l)-^MC 

CNC,NC!MC _ W-NC _ . ~NC . 
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where = 

W(j - i )MC+l  

®(j-l)MC+2 
> 3>," = 

V{ j - \ )MC+1 

%-l)MC+2 

WjMC J I VjMC 

We first solve the right bottom block, CNC ,NC IMC • MNC — V-NC> f°r ULNCI and then 

substitute WNC back into the second last block equation, then solve for WNC-I A N < ^ 

so on. 

Step (4) in block form is: 

Uy Wi MI  

Uy W 2  

, where Wj = 
W{j - \ )MC+2 

, where Wj = 
W{j - \ )MC+2 

Uy w N C  —NC WjMC 

This system can be separated into NC subsystems of the form U y  •  Wi  =  w i ,  i  = 

I , - - -  ,NC.  

Thus the above algorithm implies that instead of solving a large (MC • NC)  x 

(.MC • NC) linear system (4.2), we only need to solve a sequence of MC x MC and 

NC x NC linear systems. This allows us to save a large amount of storage and 

computation. 

We now take a closer look at the computational costs for this four step algorithm. 

Based on the analysis given in [DFK83b] and referring to Figure 2.2, it follows 

that the cost of factoring an NC x NC ABD system with coefficient matrix Mx is 

0(Np3), while the solution step cost is 0(Np2). Both Mx and My have to be factored 

and (assuming N = M and p = q) these factorization costs will be 0(Np3) for both 

matrices. They are factored only once so these are the total costs for the factorizations. 

In step (1) of the four step algorithm, we have to perform one lower triangular solve 

but we are considering a block lower triangular matrix and the blocks are diagonal 

matrices of size MC x MC. The cost for a lower triangular solve is 0(Np2) but 
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since we are working with elements that are diagonal matrices of size MC x MC, 

we have to multiply this cost by MC = NC = O(Np). Thus the cost for step (1) is 

0((Np)(Np 2 ) )  = 0(N 2 p 3 ) .  

In step (2), we have to perform NC lower triangular solves, each of which costs 

0{Np 2 ) .  Since NC = O(Np) ,  the  to ta l  cos t  for  s tep  (2)  i s  0((Np)(Np 2 ) )  = 0(N 2 p 3 ) .  

Similar arguments show that steps (3) and (4) also cost 0(N 2 p 3 ) .  Thus the total 

cost for the four step algorithm is also 0(N2p3). This dominates the cost of the 

factorizations which is 0(Np3) and thus the total cost for the solution of (4.13) is 

0(N 2 p 3 ) .  

If we were to solve the ABD system (4.13) simply by treating the coefficient ma­

tr ix  as  an  ABD matr ix  wi th  blocks  of  s ize  0(p(MC x MC))  = 0(p(Np x Np))  = 

0(Np2 x Np2)), the cost of factoring this ABD matrix with blocks of this size would 

be 0(N(Np2)3)) = 0(N4p6). Thus substantial savings are achieved by using the four 

s tep  a lgor i thm even for  modest ly  s ized values  of  n and p.  

4.4.3 Fast Block Matrix Multiplication 

At certain points in the algorithm, we know the B-spline coefficients, W_(t) ,  and 

we need to evaluate the approximate solution at the collocation points £/(£, 7, t). This 

corresponds  to  the  computat ion,  (M x  <g> M y )w = b,  where  we know w, M x  and M y  

and we want to compute b, using a matrix multiplication. 

Recall that both M x  and M y  have an ABD form. Thus Q = M x  C5 M y  has a block 

ABD form, and each subblock is also an ABD matrix. Recall that the degree of the 

B-spl ines  bas is  polynomials  in  x  and y  are  p and q respect ively .  The i  and ( i  +  l )s t  

subblocks of Q, related to the N(p— 1) collocation points in the x domain, have the 

form: 
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Cl—p-2,j My ••• Ci+p-2,j+p-lMy Ci±p-2j+pMy .  . 
(4.14) 

Ci+p— 1 j+p— 1 My Ci+p—ij+pMy • • 

Ci+2p—3j+p—lMy Ci+2p—3,j+pMy •  •  •  

where Cij is the first non zero element on the ith line of M x .  We note that the block 

column CijMy, • • • ,Cij+p^2My appears in a column of a larger block that does not 

overlap with the block below it; we refer to this as a non-overlap block. A close look 

inside the CijMy block reveals that this block has an ABD form: 

QJ'^2,1 ' ' ' Cj,j^2,l+g—1 Cij'^2,1+9 

Ci jd2+q—2,1 ' ' " Cjj d 2 +q—2,1+g—1 Q,j^2+q—2,1+9 
) 

j d ,2+q— 1,1+<J— 1  C» j^2+g—1,1+f l  "  '  '  ^ i j^2+q—l , l+2q—l  

C i , j d 2 +2q-3 , l+q- l  (k jd 2 +2q-3 , l+q  '  '  *  c t j d2+2<j -3 , l+2g- l  

(4.15) 

where dtj are non zero elements in M y .  

We next return to the matrix form (4.14) and consider multiplication by w: 
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c i , jMy Cjj+p-l-My Cij+pMy 

Ci+p—2, jMy ' • • C^_|_p_2 ) j4-p— 1 C-i—p„„2,j p 

Ci+p-lJ+p-\My Ci + p - l j + pMy 

c i+2p-3, j~p- lMy Ci+2p—3,j+pMy 

Wk 

Wk+q— 1 

Wk+q 

Let w 

w k  

Wk+q— 1 

Wfc+9 

, and note that this vector is the part of the vector w which is 

to be multiplied by the subblocks, CijMy, • • • ,Ci+p-2jMy. The key idea is to avoid 

dupl ica te  mul t ip l ica t ions  involving M y  •  w .  

Consider the 2nd row of the c^jM y  block above multiplied by w. Using (4,15), we 

obtain the expression 

Cijd2 t lWk "(••••  "I" Cijd ,2 t \ - i r qWk+q — Cij (d ,2 , l 'Wk ~t~ • • • + ̂ 2,1+g^fc+g)• 

Referring to the block column containing CijMy, • • • ,ci+p-2,jMy, for the 2nd row of 

each subblock, we see a similar calculation: 

Ci, j (d2, lWk + '  • •  + d.2 , q Wk+q-1 + d2, l+qWk+q)  

Ci+p-2j(d2, lWk + (" d2, q Wk+q-l  +  d2, l+qWk+q) 

Thus we can compute d2,iWk + • • • + d2,qWk+q-i + d2,i+qWk+q once and use it p — 1 

times. 
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For the overlap subblocks, for example: 

C»J+p— lMy,  , Ct-)-p_2j+p—1-My, Cj—p-1 J+p-1 A/y , • , Cj+2p— 3j+p— \My,  

we can apply the same approach described above; the only difference is that the 

calculation can be applied 2(p — 1) instead of (p — 1) times. 

4.5 Numerical experiments 

In this section, we will consider three different time-dependent 2D parabolic PDE 

problems. We use GNU Fortran77 (GCC) 4.4.3 under Ubuntu (Kernel Linux 2.6.32-

40-server) running on an 7 Intel (Ft) Xeon (R) CPUs ( E5420 @ 2.50GHz) system for 

which the accessible memory is 2GB. 

Recall that the degrees of the piecewise polynomial for the x-axis and the y-axis 

are  p and q respect ively .  In  our  numerical  exper iments ,  we use  p = q.  

The following notation will be used in representing the numerical results. 

KCOL: the number of collocation points per subinterval , KCOL = p — 1; 

NINT: the number of subintervals (NINT =  N  =  M ) ;  

ATOL: the absolute tolerance (used by DASPK); 

RTOL: the relative tolerance (used by DASPK); 

TOL: the tolerance for the nonlinear solver in DASPK; 

TOUT: the output time (taut)', 

GE: the true error at a set of sample points equally distributed over the problem 

domain at time TOUT. 

In order to obtain the convergence results, we employed a number of different 

choices for TOL, ATOL, and RTOL. These were chosen by trial and error so that 

the temporal error was smaller than the observed spatial error. We ran a number 

of experiments in which we gradually reduced the tolerances provided to DASPK 
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x y 

Figure 4.6: Approximate solution for Problem 1, e = 0.01, KCOL=3, NINT=64. 

until the spatial error was observed to be constant from one experiment to the next, 

indicating that the temporal error was no longer contributing significantly to the 

overall error. 

Problem 1 

We consider the 2D Burgers' equation [VB06], 

du d 2 u d 2 u du du .  

d t  ~ U di~ U d^ '  ^ 

The problem domain is (x , y)  € (0,1) x (0,1), t  > 0; the boundary and initial condi­

tions are chosen so that the true solution is 

u(x ,y , t )  = 

We set £ = 0.01. The numerical solution is plotted in Figure 4.6 (KCOL — 3, NINT 
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Table 4.1: Observed GE, GE ratios, and corresponding approximate convergence rates 
for Problem 1. 

KCOL NINT GE ratio rate 
3 8 9.95 x 10~'2 

- -

3 16 3.69 x 10-3 26.96 4.75 
3 32 1.16 x 10~4 31.81 4.99 
3 64 4.22 x 10~5 27.49 4.78 
4 16 5.56 x 10-4 

- -

4 32 1.05 x 10~5 52.95 5.73 
4 64 1.90 x 10~7 55.33 5.79 
5 10 2.40 x 10~3 

- -

5 20 2.06 x 10~5 116.50 6.86 
5 40 1.61 x 10~e 130.38 7.03 

= 64). 

Problem 2 

Another example is the problem [Wan95] 

Li  = (x 2  + l ) -^+x,  

r / 2 ® 
l2~ {y + 1 ) dy^ + y d^ + V'  

du  
— = (H + L 2)U + f(x ,  y ,  T) ,  

( : r ,y , i )enx(0 , l ] ,  =  (0 ,1)  x  (0 ,1) .  

The boundary and initial conditions and f (x ,  y ,  t )  are chosen so that the true solution 
is 

u = (e  1  + 1) sin(7rx) sin(7ry). 

The numerical solution is plotted in Figure 4.7 (KCOL = 3, NINT = 16). 

Problem 3 

For this problem, we consider the equation [Wan95] 

64 



tno 

Figure 4.7: Approximate solution of Problem 2. KCOL-3, NINT—16. 

du (  d 2  d 2  .  .  
M = {dJ + w)tt + iiX,S,h 

on [0,1] x [0,1]. 

The boundary and initial conditions and f (x ,  y ,  t )  are chosen so that the true solution 
is 

u(x ,  y ,  t )  = (e" '  +  l ) (x m  + y m  + xy m ~ x  + 1).  

We set m = 6. The numerical solution is plotted in Figure 4.8 (KCOL = 5, NINT = 

20). 

Problem 4 

This example is a slight modification of Problem 2, in which we have added a 
mixed derivative operator L3 

L 1 = (X 2  + 

r I 2 i\ ^ i2 = (!/ +i )g^ + V^ + V, 
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Table 4.2: Observed GE, GE ratios, and corresponding approximate convergence rates 
for Problem 2. 

KCOL NINT GE ratio rate 
3 4 1.50 x 10~5 

- -

3 8 4.51 x 10~7 33.22 5.05 
3 16 1.36 x 10"8 33.23 5.05 
3 32 4.14 x 10~1U 32.78 5.03 
4 4 5.23 x 10"7 

- -

4 8 8.58 x 10~9 60.88 5.93 
4 16 1.36 x 10~10 63.26 5.98 
4 32 2.13 x 10-12 63.63 5.99 
5 10 3.06 x 10-11 

- -

5 20 1.97 x 10~13 155.33 7.28 

Table 4.3: Observed GE, GE ratios, and corresponding approximate convergence rates 
for Problem 3. 

KCOL NINT GE ratio rate 
3 32 1.99 x 10~9 

- -

3 64 6.38 x 10"11 31.19 4.96 
4 20 1.67 x 10-10 

- -

4 40 2.98 x 10~12 56.04 5.81 
5 15 1.71 x HT11 

- -

5 30 1.33 x 10-ia 128.57 7.01 

L =  — 
3  dxdy 

On 
— = (L\  +  £,2  +  L 3)U + f (x ,y , t ) ,  

(x ,y , t )eS2x(0 ,1] ,  ft = (0,1) x (0,1). 

The boundary and initial conditions and f (x ,  y ,  t ) are chosen so that the true solution 
is 

u = (e_t + 1) sin(7nr) sin(7rj/). 

The numerical solution is plotted in Figure 4.9 (KCOL = 3, NINT = 16). 

Each of the four test problems has a known exact solution and thus it is possible to 

estimate the maximum GE of a given numerical solution. We next compute the GE for 
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•t'A 

<w 

KJ. 

Figure 4.8: Approximate solution of Problem 3,m=6, KCOL=5, NINT=20. 

t = 1.0 

Figure 4.9: Approximate solution of Problem 4. KCOL=3, NINT=16. 
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Table 4.4: Observed GE, GE ratios, and corresponding approximate convergence rates 
for Problem 4. 

KCOL NINT GE ratio rate 
3 4 1.71 x 10~5 

- -

3 8 4.85 x 10-7 35.24 5.14 
3 16 1.41 x 10~8 34.38 5.10 
3 32 4.22 x 1CT10 33.40 5.06 
4 4 5.38 x 1(T7 

- -

4 8 8.65 x 10~9 62.20 5.96 
4 16 1.36 x 1CT10 63.43 5.99 
4 32 2.39 x 10"" 57.00 5.83 

a number of collocation solutions computed by BACOL2D, for a variety of KCOL and 

NINT values, for the four test problems. By fixing KCOL and considering a sequence 

of meshes obtained by doubling the NINT value we can compare the observed GE 

and by considering the ratio of the GE of the collocation solutions obtained using this 

sequence of meshes, we can experimentally determine the spatial order of convergence 

of the collocation solution as a function of KCOL. 

The convergence results for the corresponding ID case are known from the litera­

ture, e.g., [CP76] (the rate of convergence is KCOL + 2.) Since we are using a tensor 

product framework, we anticipate that the corresponding result will also hold for the 

2D case. 

In Tables 4.1-4.4, we present, for the collocation solutions we compute at t = 1, 

the observed GE, GE ratios, and corresponding approximate convergence rates for 

Problems 1-4. From the four tables we observe that the expected rates of convergence 

(based on the known results for the ID case) are indeed observed in the 2D case (i.e., 

the GE is order KCOL + 2.) 
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Chapter 5 

BACOL2D 

This chapter first describes the subroutines included in the BACOL2D software pack­

age. Then we discuss a sample program and present the corresponding user supplied 

subroutines. Finally, we give the structure of the BACOL2D software. BACOL2D 

was developed in Fortran 77 using the GNU Fortran77 (GCC) 4.4.3 compiler. 

5.1 Description of the Software 

This section describes the components of the BACOL2D software package. 

BACOL2D. This subroutine is the main component of the software package. It 

performs initialization tasks such as assigning values to parameters and defining the 

length of the common storage arrays. It also checks the length of the work arrays which 

serve as temporary storage. It also calls MESHSQ and COLPNT to complete the 

initialization (see below for an explanation of MESHSQ and COLPNT). BACOL2D 

will make repeated calls to the time-integrator DDASPK to take time steps. After 

reaching the output time TOUT, BACOL2D will have the B-spline coefficients which 

can be  used to  calcula te  the  values  of  U(x,y ,TOUT),  where  a < x  < b,  c  < y < d.  

Both the absolute tolerance, ATOL, and the relative tolerance, RTOL, are set by user 
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as the tolerances for DASPK. 

KXYV. This subroutine takes as input the B-spline coefficients, and then calculates 

the  approximate  solut ion a t  the  current  t ime,  for  g iven x  and y .  

COLPNT. This subroutine calculates the collocation point sequence. 

MESHSQ. This subroutine calculates the spatial mesh size sequence, as well as 

generating the points and weights for the Gaussian quadrature rule. 

BSCOE. This subroutine is called by main. It evaluates the B-spline basis (and 

its first and second derivatives) and stores them in ABD form. 

KRONXY1. This subroutine calculates the approximate solution at the current 

t ime and a t  any given spat ia l  points ,  x  and y .  

INVKXY. This subroutine will call CRSLVELB, CRSLVEL, CRSLVEUB and 

CRSLVEU to solve the linear system (4.13) using the algorithm described in Sec­

tion 4.4.2, and they are used in steps (l)-(4) separately. 

Now we mention some subroutines which are included in BACOL2D but were 

developed by others. 

DASPK. This software package, developed by P. N. Brown, A. C. Hindmarsh, 

and L. R. Petzold, was obtained from a modification of DASSL. The most significant 

difference between the two solvers is that DASPK uses a sparse linear system solver 

combined with an inexact Newton method. In Chapter 4, we described DASPK. 

INTREV, BSPLVD, BSPLVN. [dB77, dB78] These routines are part of the B-

spline package. We use these subroutines to generate the values of the B-spline basis 

functions and their derivatives. 

GAULEG. This subroutine was developed by P. Keast [WKM04a]. For the Gauss-

Legendre quadrature rule, it calculates the points and weights in the interval [0,1] or 

[-1,1]-
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5.2 User Supplied Subroutines 

The user needs to define the PDE by providing subroutines to give various kinds of 

information. For given input values of x, y and t, and corresponding input values for 

U, Ux, Uy, Uxy, Uxx, Uyy, the user needs to provide the following subroutines: 

F. This subroutine computes the value 

f (x ,  y ,  t ,  U(x ,  y ,  t ) ,  U x (x ,  y ,  t ) ,  U y (x ,  y ,  t ) ,  U x x (x ,  y ,  t ) ,  U x y (x ,  y ,  t ) ,  U y y (x ,  y ,  t ) ) ,  

representing the right-hand side of the problem PDE. 

UINIT. This subroutine is used to provide the initial values U(x.  y ,  to)  for any 

given x ,  y .  

RES. This subroutine computes the residual of the DAE system (4.7) to be solved 

by DASPK(The residual of (4.7) is A(W(t)\ — F_(t,\V_(t)). ). In this subroutine, the 

user needs to describe the boundary conditions. 

5.3 Sample Program 

We use the Problem 1: the 2D Burgers' equation, to show that these user-supplied 

subroutines are usually easily constructed. (See Appendix B) 

5.4 Structure of BACOL2D 
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Figure 5.1: Software structure of BACOL2D 
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Chapter 6 

Interpolation-based Error Estimation 

6.1 ID interpolation-based error estimation 

As we discussed earlier, in addition to the solution approximation, U(x,t), BACOL 

computes a second global collocation solution, U(x, t), with a degree p + 1 piecewise 

polynomial on the same spatial mesh at the same time t. The diflFerence between the 

higher order solution and the lower order solution gives an approximate spatial error. 

Based on the error estimation, BACOL can construct a new spatial mesh if necessary. 

In this chapter, we first describe two interpolation based approaches, recently de­

veloped for use in BACOL, that remove the need to compute a second collocation 

solution in order to obtain an error estimate. We then discuss some preliminary 

work that (experimentally) establishes the existence of certain points in the 2D spa­

tial domain where the 2D collocation solutions exhibit superconvergence, i.e., "extra" 

accuracy, that may be useful for generating a low cost spatial error estimate. 
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6.1.1 ID Superconvergent Interpolant (SCI)-based Spatial Er­

ror Estimation 

This approach is described in more detail in [ASM09]. 

Instead of computing the second higher order solution, U(x,t), the new version 

of BACOL (called BACOLI ) uses a local interpolant to replace U(x,t) in the error 

estimation. That is, only the lower order solution approximation, U(x, t) of degree 

p, is computed and propagated forward in time for every time step. This cuts the 

computational work approximately in half [ASM09]. 

The collocation solution at certain points such as mesh points is superconvergent, 

because Gaussian collocation is employed as the spatial discretization scheme [CP76, 

DD74], Also, it turns out that there are a number of special points within each 

subinterval that are superconvergent. The existence of these points within the spatial 

domain of a ID PDE was suggested by some theoretical results for BVODEs. 

Applying a (p — 1)—point Gaussian collocation method to a standard BVODE, 

based on appropriate assumptions, the following results regarding the collocation 

error are known [AMR95, ASM09]. (Here u is the exact solution, U is the collocation 

solution, Xi is the zth mesh point, h = max {/i*}, hi = x,- — x,_i, N is the number of 
1  < i<N 

subintervals.) 

(1) At the mesh points: 

| u(xi) - U(xi) |= Oih^-V), | u'(xi) - U\xi) \= 0(h2to-% i = 1, • • • , N. 

(2) At the nonmesh points: 

u^(x)-Uu\x) = hp+i~i.+0(hr+2-j)+0(h2i?-1)) = 

(6.1) 
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where x £ i = 1, • • * , iV, j = 0,... ,p, and 

£ p— i 

= (^rryi /(' - e)n<s - <6'2' 
0 r=1 

and u^(x) is the jth derivative of u(x) and U^\x) is the jth derivative of U(x). 

Thus at the roots of the polynomial, Pp{£) (p ^ 2), the collocation solution will have 

a higher order of convergence. 

The existence of these superconvergent points within each subinterval of the spatial 

domain of a ID PDE was experimentally verified in [ASMKll]. 

BACOLI constructs a superconvergent interpolant for each subinterval. The inter­

polant is a C1-continuous, piecewise polynomial that uses the superconvergent solution 

and derivative values at the endpoints of the subinterval, the superconvergent solution 

values within the current subinterval, and the two closest superconvergent solution 

values from the adjacent subintervals. (The interpolant uses p + 3 interpolant values 

so that the interpolant error will be smaller than the data error of the interpolated 

collocation solution values.) 

6.1.2 ID Lower Order Interpolant (LOI)-based Spatial Error 

Estimation 

This approach is described in detail in [ASMP12]. 

In contrast to the SCI, the LOI computes only the higher order collocation solution 

U(x,t), and uses an interpolant to approximate the lower order solution. That is, 

only one collocation solution approximation, U(x, t), of degree p+ 1, is computed and 

propagated forward in time. The basic idea is to develop an interpolant for which the 

leading order term in the interpolation error is equal to the leading order term in the 

collocation error of the lower order collocation solution[Moo01]. 

This requires the LOI to interpolate the solution and derivative values at the 
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endpoints and the points corresponding to the superconvergent solution values of the 

lower order solution internal to each subinterval. In this case, fewer interpolation 

points are used and the interpolation error dominates the data error. 

6.2 Extension to 2D 

It may be possible to extend the ID interpolation based error estimation to the 2D 

case. The SCI approach will require the existence of superconvergent points within 

the 2D domain. In this section we consider numerical experiments that give us some 

evidence of the existence of such points. 

In order to compute the superconvergent points in 2D, we use (6.1), (6.2) to 

suggest the locations of the superconvergent points in x and y domain separately, and 

use these values as coordinates to look for superconvergent points in 2D. 

We consider the test problem, 

d2 d2 d 
£ •  =  + * .  L ^ ^ + 1 ^ + % + y -

fjf = (Li + 1*2)11 + f(x, y, t), (x, t/,t)efix(0,l],fl = (0,1) x (0,1), 

with the boundary and initial conditions chosen so that the true solution is 

u = (e~l + 1) sin(7ra:) sin(7ry). 

We calculate collocation solution errors across the entire problem domain (GE), at the 

mesh points (ME), and at the superconvergent points (SE) internal to each rectangle 

of the spatial domain. We also calculate the error for the spatial derivatives of the 

collocation solution at the mesh points. 

In the following tables, 

• KCOL: the number of collocation points in each subinterval in both the x and 

y domains (KCOL=p — l=q — 1). 
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• NINT: the number of subintervals in both x and y domain (NINT—M=N). 

• The time integration is from 0 to 1. 

• We consider error ratios as NINT is doubled. 

• We set ATOL=RTOL= 2.0E-13 for DASPK, and TOL= 5.0E-14 for the non­

linear system solver in DASPK. 

In the ID case the expected GE rate=KCOL+2, ME rate=2KC0L and SE rate=KCOL+3 

[ASM09, CP76, DD74], so in the 2D case we expect the same convergence rates, be­

cause we are using a tensor product formulation. We also expect the convergence 

rates for the spatial derivative errors at the mesh points to be the same as in the ID 

case, 2KCOL. 

Table 6.1: Expected GE rate = KCOL+2=5, ME rate = 2KC0L =6 and SE rate = 
KCOL+3=6 (KCOL=3) 

NINT GE ratio rate SE ratio rate 
8 4.51 x 1(T7 

- - 9.86 x HT8 
- -

16 1.36 x 10~8 33.23 5.05 1.57 x 10~9 62.89 5.97 
32 4.14 x 1CT10 32.78 5.03 2.50 x 10"11 62.64 5.97 

ME ratio rate ME(Ck) ratio rate 
9.83 x 10-9 

- - 1.28 x 10~7 
- -

1.61 x 10~1U 61.22 5.94 2.05 x 10~9 62.50 5.97 
2.45 x 10-1* 65.61 6.04 3.10 x 10-11 65.91 6.04 

ME (Uy)  ratio rate 
1.49 x 10~7 

- -

2.36 x 1(T9 63.09 5.96 
3.57 x 1(TU 66.08 6.05 

From Tables 6.1, 6.2, we can observe the existence of superconvergence at the 

internal superconvergent points (SE) and at the mesh points (ME), compared to 

the GE and associated observed rate of convergence at an arbitrary point in the 

spatial domain. The presence of such superconvergence values may be useful for error 
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Table 6.2: Expected GE rate = KCOL+2=6, ME rate = 2KC0L =8 and SE rate = 
KCOL+3—7 (KCOL—4) 

NINT GE ratio rate SE ratio rate 
3 2.76 x 1CT6 

- - 3.31 x 10-7 
- -

6 4.77 x 10~8 57.90 5.86 2.72 x 10~9 121.66 6.93 
12 7.61 x 10"10 62.61 5.97 2.09 x 10"11 129.95 7.02 

ME ratio rate ME ( U x )  ratio rate 
5.77 x 10~8 

- - 1.66 x 10"7 
- -

2.64 x 1(T1U 219.27 7.78 7.01 x 10~1U 236.22 7.88 
9.81 x 10~ia 687.41 9.43 2.10 x 10_1Z 334.27 8.38 

ME(C/j/) ratio rate 
2.57 x 10-7 

- -

1.81 x 10~9 141.88 7.15 
1.22 x 10~u 148.89 7.22 

estimation in the 2D case. Note that while we have observed the existence of the 

internal superconvergent points in the 2D case, this result has not been proven in the 

literature. 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

7.1.1 MOS 

The MOS can be efficient for problems for which layer regions appear only in either 

the x or y dimension since we use a non-adaptive spatial discretization in one of the 

two dimensions. BACOL performs adaptive mesh refinement in the other dimension. 

The MOS requires that one pair of boundary conditions be differentiated; this can 

affect the accuracy of the numerical solution. 

However, an improvement of the MOS algorithm could be possible if we were 

to make a modification of BACOL to allow it to accept extra algebraic equations; 

then none of the boundary conditions would need to be differentiated and this would 

improve the accuracy of the numerical solution. If BACOL were to be modified in 

this way and run with no spatial adaptivity, then the B-spline collocation version of 

the MOS and 2D B-spline collocation algorithm would be mathematically equivalent. 
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7.1.2 2D B-spline Collocation 

Direct application of 2D B-spline collocation appears to be an interesting approach 

for the numerical solution of 2D parabolic PDEs because there is no need to make 

the restrictive assumptions regarding the boundary conditions that we have made in 

the MOS algorithm, and we do not need to differentiate the boundary conditions. In 

this thesis we have implemented a static (non-adaptive) 2D collocation algorithm and 

used it to successfully solve several test problems. In addition, we have observed the 

existence of superconvergent points that may be useful for error estimation. 

Since we are using a tensor product framework to extend the B-spline collocation 

algorithm to 2D, the number of collocation points per subrectangle is (p — l)(q — 1) 

(assuming that the polynomials in the x and y domain have degree p and q respec­

tively). While our 2D B-spline collocation algorithm usually produces an accurate 

solution, it needs substantially more computer time than in the ID case. However, 

we introduced an algorithm to do a fast linear projection and its inverse, based on 

the tensor product form of the two ABD matrices and their LU decompositions. The 

amount of computation and memory is substantially reduced. 

From our experience with the two algorithms considered in this thesis, i.e., the 

MOS and the 2D B-spline collocation algorithm, it appears that the latter approach 

is significantly better than the former approach (as it is now implemented). We have 

observed that the 2D B-spline collocation algorithm is able to solve much more difficult 

problems than the MOS algorithm. The parameter £ which controls the difficulty of 

the 2D Burgers equation had to be set to a fairly large value (0.1 or 0.25) in order 

for the MOS algorithm to be able to solve the problem whereas the 2D B-spline 

collocation algorithm could solve the same problem with a significantly smaller value 

for f (0.01). 
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7.2 Future Work 

Since the 2D B-spline collocation algorithm appears to be superior to the MOS al­

gorithm, we limit our comments regarding future work to the former. Since PDEs 

frequently have large variations occurring over small regions of the physical domain, 

the next step will be effectively solving such problems by introducing mesh adaptivity 

to put more mesh points in the layer regions. Approaches that have been employed 

in MMM may be useful here. Such approaches use a MMPDE to transfer the PDE 

from the physical domain to a computational domain where tensor product B-spline 

collocation can be easily applied. 
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Appendix A 

Source Code 

A.l A Finite Difference based MOS Scheme 

These are the user-supplied subroutines for the 2D Burgers' equation. 

SUBROUTINE F(T, X, U, UX, UXX, FVAL, NPDE) 

C 

C PURPOSE: 

C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE 

C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION 

C UT = F(T, X, U, UX, UXX). 

c 
c 
C SUBROUTINE PARAMETERS: 

C INPUT: 

INTEGER NPDE 

C THE NUMBER OF PDES IN THE SYSTEM. 

C 

DOUBLE PRECISION T 

C THE CURRENT TIME COORDINATE. 

C 
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DOUBLE PRECISION 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

DOUBLE PRECISION 

COMMGN /TWCD/ 

X 

THE CURRENT SPATIAL COORDINATE. 

U(NPDE) 

U(1:NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 

UX(NPDE) 

UX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X). 

UXX(NPDE) 

UXX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SECOND SPATIAL DERIVATIVE OF THE 

SOLUTION AT THE POINT (T,X). 

UO 

UO IS THE EXACT 

SOLUTION AT THE POINT (Y0,T,X). 

(Y0=0.D0) 

UNPDE_1 

UNPDE_1 IS THE EXACT 

SOLUTION AT THE POINT (Y(NPDE+1) ,T,X). 

(Y (NPDE+1) = 1 .DO) 

FVAL(NPDE) 

FVAL(1:NPDE) IS THE RIGHT HAND SIDE 

VECTOR F(T, X, U, UX, UXX) OF THE PDE. 

COEFF, H 

COEFF, H 
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INTEGER I 

C 

C SOLUTION AT THE POINT (Y0,T,X). (Y0=0.D0) 

UO = 1.0D0 / (1.ODO+DEXP((X—T) / (2*COEFF))) 

C SOLUTION AT THE POINT (Y(NPDE+1),T,X). (Y(NPDE+1) = 1.D0) 

UNPDE l = 1.0D0 / (1 ,ODO+DEXP((X+1.0D0—T) / (2*COEFF))) 

FVAL(l) = COEFF * UXX(l) - U(l) * UX(1) 

& + COEFF / (H*H) * (U(2) -2*U(1)+U0) 

& -  U(l) * (U(2) —UO) /  (2*H) 

DO 10 1 = 2, NPDE-1 

C CENTRAL FINITE DIFFERENCE, SO THREE PIONTS ARE NON-ZERO 

FVAL(I) = COEFF * UXX( I)  -  U( I)  * UX(I) 

& + COEFF / (H*H) * (U( 1+1)—2*U( I)+U( I -1)) 

& -  U(I)*(U(I+1)-U(I-1))/(2*H) 

10 CONTINUE 

FVAL(NPDE) = COEFF * UXX(NPDE) - U(NPDE) * UX(NPDE) 

& + COEFF /  (H*H) * (UNPDE_ 1— 2*U(NPDE) +U(NPDE— 1)) 

& - U(NPDE)*(UNPDE_WJ(NPDE-1))/(2*H) 

C 

RETURN 

END 

C 

SUBROUTINE DERTVF(T, X, U, UX, UXX, DFDU, DFDUX, DFDUXX, NPDE) 

C 

C PURPOSE: 

C THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE 
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c 
c 
c 
c 
c 
c 
o 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE 

OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM 

UT = F(T, X, U, UX, UXX) 

THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(U) , D(F)/D(UX) , AND 

D(F)/D(UXX). 

SUBROUTINE PARAMETERS: 

INPUT: 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

NPDE 

THE NUMEOl OF PDES IN THE SYSTEM. 

THE CURRENT TIME COORDINATE. 

X 

THE CURRENT SPATIAL COORDINATE. 

U (NPDE) 

U(1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X).  

UX(NPDE) 

UX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X).  

UXX(NPDE) 

UXX( 1 -.NPDE) IS THE APPROXIMATION OF THE 

SECOND SPATIAL DERIVATIVE OF THE 

SOLUTION AT THE POINT (T,X).  
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C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

CCMMCN /IWCD/ 

INTEGER 

DFDU (NPDE, NPDE) 

DFDU(I, J) IS THE PARTIAL DERIVATIVE 

OF THE I—TH aWPWENT OF THE VECTOR F 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE UNKNOWN FUNCTION U. 

DFDUX (NPDE, NPDE) 

DFDUX( I, J) IS THE PARTIAL DERIVATIVE 

OF THE I—TH COMPONENT OF THE VECTOR F 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION U. 

DFDUXX( NPDE, NPDE) 

DFDUXX( I, J) IS THE PARTIAL DERIVATIVE 

OF THE I—TH COMPONENT OF THE VECTOR F 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SECOND SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION U. 

COEFF, H 

COEFF, H 

I, J 

C CENTERED FINITE DIFFERENCE, 

C THE FRIST ROW HAS TWO NON-ZERO ELEMENTS 

DFDU(1 ,1) = -UX(1) - COEFF / (H*H)* 2 

& -  (U(2) -  DEXP((X—T) /  COEFF))/  (2*H) 

DFDU( 1,2) = COEFF / (H*H) - U(l) / (2*H) 

DO 10 J = 3, NPDE 

DFDU(1,J) = 0.D0 
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10 CONTINUE 

DO 20 1 = 2, NPDE-1 

DO 11 J = 1,  1-2 

DFDU(I,J) = 0.D0 

11 CONTINUE 

C CENTERED FINITE DIFFERENCE, SO THREE PIONTS ARE NON-ZERO 

DFDU(I,I —1) = COEFF /  (H*H) + U(I) /  (2*H) 

DFDU(I, I)  = -UX(I) -  COEFF /  (H*H)* 2 -  (U( I+l)-U( I-1)) /  (2*H) 

DFDU(1,1 + 1) = COEFF /  (H*H)-U(I) /  (2*H) 

DO 12 J =1+2, NPDE 

DFDU(I , J)  = 0.D0 

12 CONTINUE 

20 CONTINUE 

C CENTERED FINITE DIFFERENCE, THE LAST ROW HAS TWO NON-ZERO ELEMENTS 

DO 30 J = 1, XPDE-2 

DFDU(NPDE, J) = 0.D0 

30 CONTINUE 

DFDU(NPDE,NPDE-1) = COEFF / (H*H) + U(NPDE) / (2*H) 

DFDU(NPDE,NPDE) = -UX(NPDE) - COEFF / (H*H)» 2 

& -  (DEXP( (X—T) /  COEFF) -  U(NPDE-l)) /  (2*H) 

DO 40 1 = 1, NPDE 

DO 31 J = 1, NPDE 

IF (J .EQ. I) THEN 

DFDUX( I,J) = -U(I) 

ELSE 

DFDUX(I, J) = 0.D0 
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ENDIF 

31 CONTINUE 

40 CONTINUE 

DO 50 I = 1, NPDE 

DO 41 J = 1, NPDE 

IF (J .EQ. I)  THEN 

DFDUXX( I, J) = COEFF 

ELSE 

DFDUXX(I , J) = 0.D0 

ENDIF 

41 CONTINUE 

50 CONTINUE 

RETURN 

END 

C 

SUBROUTINE BNDXA(T, U, UX, BVAL, NPDE) 

C 

C PURPOSE: 

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE 

C LEFT SPATIAL END POINT X = XA. 

C B(T, U, UX) = 0 

c 
c 

C SUBROUTINE PARAMETERS: 

C INPUT: 

INTEGER NPDE 

C THE NUMBER OF PDES IN THE SYSTEM. 

C 

DOUBLE PRECISION T 

C THE CURRENT TIME COORDINATE. 
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DOUBLE PRECISION 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

DOUBLE PRECISION 

CCMMCN /TWCD/ 

INTEGER 

U(NPDE) 

U(1:NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UX(NPDE) 

UX(1:NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,XA). 

BVAL(NPDE) 

BVAL( 1 :NPDE) IS THE BOUNDARY CONTTDITION 

AT THE LEFT BOUNDARY POINT. 

COEFF, H 

COEFF, H 

I 

DO 10 I = 1, NPDE 

BVAL(I) = (l .ODO + DEXP((I*H-T) /  (2*COEFF))) * U(I) -  1.0D0 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE BNDXB(T, U, UX, BVAL, NPDE) 

C 

C PURPOSE: 

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE 

C RIGHT SPATIAL END POINT X = XB. 

C B(T, U, UX) = 0 

C 
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c-
c 
c 

c 
c 

c 
c 

c 
c 
c 

c 
c 
c 
c 
c 

c 
c 

SUBROUTINE PARAMETERS: 

INPUT: 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

OUTPUT: 

DOUBLE PRECISION 

DOUBIE PRECISION 

CCMMCN /IWD/ 

INTEGER 

NPDE 

THE NUMEER OF PDES IN THE SYSTEM. 

THE CURRENT TIME COORDINATE. 

U (NPDE) 

U(1:NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XB). 

UX(NPDE) 

UX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,XB). 

BVAL(NPDE) 

BVAL( 1 :NPDE) IS THE BOUNDARY CONTIDITION 

AT THE RIGHT BOUNDARY POINT. 

COEFF, H 

COEFF, H 

I 

DO 10 I = 1,  NPDE 

BVAL(I) = (1.0D0 + DEXP( (1.0D0+I*H-T) /  (2+COEFF))) * U(I) -  l.ODO 

10 CONTINUE 

RETURN 

END 
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c-
c 
c 
c 
c 
c 
c 
c 
c 
c-
c 
c 

c 
c 

c 
c 

c 
c 
c 

c 
c 
c 
c 
c 

SUBROUTINE DIFBXA(T, U, UX, DBDU, DBDUX, DBDT, NPDE) 

PURPOSE: 

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY 

CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE 

BOUNDARY CONDITION EQUATION 

B(T, U, UX) = 0 

THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED 

BY THIS ROUTINE. 

SUBROUTINE PARAMETERS: 

INPUT: 

INTEGER NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

OUTPUT: 

DOUBLE PRECISION 

THE CURRENT TIME COORDINATE. 

U (NPDE) 

U( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X).  

UX(NPDE) 

UX(1:NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X).  

DBDU(NPDE,NPDE) 

DBDU( I, J) IS THE PARTIAL DERIVATIVE 
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c 
c 
c 
c 

c 
c 
c 
c 
c 
c 

c 
c 
c 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

OCMVEN /IWCD/ 

INTEGER 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE UNKNOWN FUNCTION U. 

DBDUX(NPDE,NPDE) 

DBDUX( I, J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION U. 

DBDT(NPDE) 

DBDT(I) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO TIME T. 

COEFF, H 

COEFF, H 

I, J 

DO 10 I = 1, NPDE 

DO 1 J = 1, NPDE 

IF (J .EQ. I)  

D B D U (  I , J )  =  

ELSE 

DBDU(I,J) = 

ENDIF 

1 CONTINUE 

10 CONTINUE 

THEN 

= 1.0D0 + DEXP((I*H-T) /  (2*COEFF)) 

= 0 .D0 

DO 20 I = 1, NPDE 

DO 11 J = 1, NPDE 

DBDUX(I, J) = 0.D0 
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11 

20 

CONTINUE 

CONTINUE 

DO 30 I = 1, NPDE 

DBDT(I) = 1.0D0/(2*COEFF) * DEXP((I*H-T) / (2*COEFF)) * U( I) 

30 CONTINUE 

RETURN 

END 

SUBROUTINE DIFBXB(T, U, UX, DBDU, DBDUX, DBDT, NPDE) 

C-

C 

C 

C 

C 

C 

C 

C 

C 

C-

C 

C 

C 

C 

c 
c 

c 
c 

PURPOSE: 

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY 

CONDITIONS AT THE RIGHT SPATIAL END POINT 1 = XB. FOR THE 

BOUNDARY CONDITION EQUATION 

B(T, U, UX) = 0 

THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED 

BY THIS ROUTINE. 

SUBROUTINE PARAMETERS: 

INPUT: 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

THE CURRENT TIME COORDINATE. 

U (NPDE) 

U(1:NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 
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DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

OCMMCN /TWCD/ 

INTEGER 

DOUBLE PRECISION 

UX(NPDE) 

UX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X). 

DBDU(NPDE, NPDE) 

DBDU(I, J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE UNKNOWN FUNCTION U. 

DBDUX (NPDE, NPDE) 

DBDUX( I , J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION U. 

DBDT(NPDE) 

DBDT( I) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO TIME T. 

COEFF, H 

COEFF, H 

I, J 

DO 10 1 = 1, NPDE 

DO 1 J = 1, NPDE 

IF (J .EQ. I) 

DBDU(I,J) = 

THEN 

= 1.0D0 + DEXP((1 .ODO-t-I*H-T) / (2*COEFF)) 
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ELSE 

DBDU( I,J) = O.DO 

ENDIF 

1 CONTINUE 

10 CONTINUE 

DO 20 I = 1, NPDE 

DO 11 J = 1, NPDE 

DBDUX(I, J) = O.DO 

CONTINUE 

CONTINUE 

DO 30 I = 1, NPDE 

DBDT(I) = 1.0D0/(2.0*COEFF) * 

* DEXP((1.0DO-f I*B-T) / (2.0*(X)EFF)) * U(I) 

30 CONTINUE 

RETURN 

END 

C 

SUBROUTINE UINIT(X, U, NPDE) 

C 

C PURPOSE: 

C THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL 

C CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = TO 

C AT THE SPATIAL COORDINATE X. 

C 

C 

C SUBROUTINE PARAMETERS: 

C INPUT: 

DOUBLE PRECISION X 

C THE SPATIAL COORDINATE. 
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INTEGER NPDE 

C IHE NUMEER OF PDES IN THE SYSTEM. 

C 

C OUTPUT: 

DOUBLE PRECISION U (NPDE) 

U( 1 :NPDE) IS VECTOR OF INITIAL VALUES OF 

THE UNKNOWN FUNCTION AT T = TO AND THE 

GIVEN VALUE OF X. 

C 

C 

C 

DOUBLE PRECISION 

CCMMCN /IWCD/ 

INTEGER 

COEFF, H 

COEFF, H 

I 

C 

c 
c ASSIGN U( 1 :NPDE) THE INITIAL VALUES OF U(T0,X). 

DO 10 1 = 1, NPDE 

U(I) = l.ODO / (1.0D0+DEXP((X+I *H) / (2*COEFF))) 

10 CONTINUE 

RETURN 

END 

C 

SUBROUTINE TRUU(T, X, U, NPDE) 

C PURPOSE: 

C THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE. 

C 

C SUBROUTINE PARAMETERS: 

C INPUT: 

INTEGER NPDE 

C THE NUMBER OF PDES IN THE SYSTEM. 

C 
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DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C-

DOUBLE PRECISION 

OUTPUT: 

DOUBLE PRECISION 

THE CURRENT TIME COORDINATE. 

THE CURRENT SPATIAL COORDINATE. 

U (NPDE) 

U (1:NPDE) IS THE EXACT SOLUTION AT THE 

POINT (T,X). 

DOUBLE PRECISION 

CCMM3ST /IWCD/ 

INTEGER 

COEFF, H 

COEFF, H 

I 

DO 10 I = 1, NPDE 

U(I) = l.ODO / (1.ODO+DEXP((X+I *H-T) / (2*COEFF))) 

10 CONTINUE 

RETURN 

END 

A.2 A B-spline Gaussian Collocation based MOS Scheme 

These are the user-supplied subroutines for the 2D Burgers' equation. 

C DRIVING PROGRAM FOR THE SYSTEM OF NPDE EQUATIONS DESCRIBED IN THE 

c PAPER. 

CU = 1.0D0/ (1.0DQfDEXP( (X+Y—T) / (2*COEFF))) 

C 
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C CONSTANTS: 

DOUBLE PRECISION 

PARAMETER 

ZERO 

(ZERO = 0.0D0) 

C 

C-

DOUBLE PRECISION 

PARAMETER 

NBGONE 

(NEGONE = — 1.0D0) 

C 

C 

c-

INTEGER 

PARAMETER 

NCONTI 

(NCONll = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

C 

C 

C 

C 

C 

Y DIMENSION 

INTEGER 

PARAMETER 

YKCOL 

YKCOL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PIECEWISE POLYNOMIALS MINUS ONE. 

1 < YKCOL < 11. 

(YKCOL = 3) 

C 

c 
c 

c 
c 
c 

INTEGER 

PARAMETER 

INTEGER 

PARAMETER. 

YNINT 

(YNINT = 4) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YNCPTS 

(YNCPTS= (YKCOL* YNINT+NCONTI)) 

YNCPTS IS THE NUMBER 

OF COLLOCATION POINTS. 
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INTEGER 

C 

C 

C 

PARAMETER 

NPDE 

NUMBER OF PDES 

=THE NUMBER OF COLLOCATION POINTS 

IN Y DOMAIN 

(NPDE -- YKCOL*YNINT+MX)NTI) 

C 

C 

C 

C-

C 

INTEGER 

PARAMETER 

YNELS 

(YNELS=YKCOL * (YKCOLfNCONTI)) 

THE NUMBER OF ELEMENTS IN ONE 

COLLOCATION BLOCK OF WORK. 

Y DIMENSION 

DOUBLE PRECISION 

PARAMETER 

DOUBLE PRECISION 

PARAMETER 

YA 

THE LEFT BOUNDARY POINT 

(YA = 0.0D0) 

YB 

THE RIGHT BOUNDARY POINT 

(YB = 1.0D0) 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

Y(YNINT+1) 

Y IS THE SPATIAL MESH WHICH DIVIDES THE 

INTERVAL [Y_A,Y_B] AS: Y_A = Y(1) < 

Y(2) < Y(3) < ... < Y(NINT+1) = Y_B. 

YBS (YNCPTS+YKCOL+-NCONTI) 

THE BREAKPOINT SEQUENCE. 

YBS( I)=X( 1) , 1=1, KCOLfNCONTI; 

YBS( (I -1) *KCOL+-NCONTM)=Y( I) , 

1=2, NINT; J = l, KCOL 

YBS(YNCPTSfI)=Y(NINT+l), I = 1 ,KCOLmCONTI. 
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c 
c 

c 
c 
c 

c 
c 
c 
c-
c 

c 
c 
c 
c 
c 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

YH(YNINT) 

YH IS THE MESH STEP SIZE SEQUENCE 

(B-SPLINE). 

EXCOL(YNINT * (YKCOL+3)) 

EXCOL IS THE COLLOCATION POINT SEQUENCE 

WHICH IS USED FOR ERROR ESTIMATE. 

EWTS(YNINT* (YKCOL+3)) 

EWTS IS THE GAUSSIAN WEIGHT SEQUENCE 

WHICH IS USED FOR ERROR ESTIMATE. 

X DIMENSION 

INTEGER 

PARAMETER 

XKCOL 

KCOL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL, WHICH IS 

EQUAL TO THE DEGREE OF THE PEECEWISE 

POLYNOMIALS MINUS ONE. 

1 < KCOL < 11. 

(XKCOL = 5) 

C 

C 

C 

C-

C 

INTEGER 

PARAMETER 

XNINT 

(XNINT = 4) 

NINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH X. 

X DIMENSION 

INTEGER 

PARAMETER 

NINTMX 

MAXIMAL NUMBER OF INTEVALS ALLOWED 

(NINTMX = 1000) 
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INTEGER MAXVEC 

C THE DIMENSION OF THE VECTOR OF 

C BSPLENE COEFFICIENTS 

PARAMEIER (MAXVEC = NPDE*(NINTMX*XKCOL+2)) 

C 

INTEGER NXOUT 

PARAMETER (NXOUT = 21) 

C NXOUT IS THE NUMER OF A SET OF SPATIAL 

C POINTS FOR OUTPUT 

C 

INTEGER NUOUT 

C THE DIMENSION OF UOUT 

PARAMETER (NUOUT = NPDE+NXOUT) 

C 

INTEGER 

C 

PARAMEIER. 

+ 

+ 

+ 

+ 

C 

INTEGER 

C 

PARAMEIER 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

INTEGER IPAR(LIP) 

LRP 

SEE THE COMMENT FOR RPAR 

(LRP = 134+MNTMX*(35+35*XKCOL+31+NPDE 

+38*NPDE*XKCOL+8*XKCOL*XKOOL) 

+ 14*XKCOL+79*NPDE+«PDE*NPDE* (21 

+4*NJNTMX*XKCOL*XKCOL 

+12*NlNIMX*XKCOL-(-6*NINTMX)) 

LIP 

SEE THE COMMENT FOR EPAR 

(LIP = 115+NPDE*((2*XKCOL+l)*NINTMX+4)) 

RPAR(LRP) 

RPAR IS A FLOATING POINT WGRK ARRAY 

OF SIZE LRP. 
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c 
c 
c 

c 
c 

c 
c-
c 

INTEGER 

PARAMETER 

IPAR IS AN INTEGER WCRK ARRAY 

OF SIZE LIP. 

LENWRK 

THE DIMENSION OF ARRAY WORK WHEN WE 

CALL VALUES 

(LENWRK = (XKCOL+2)+XKCOL*(NINTMX+l)-f4) 

X DIMENSION 

DOUBLE PRECISION 

PARAMETER 

DOUBLE PRECISION 

PARAMETER 

XA 

THE LEFT BOUNDARY POINT 

(XA = O.ODO) 

XB 

THE RIGHT BOUNDARY POINT 

(XB = 1.0D0) 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C 

C-

DOUBLE PRECISION 

X(NINTMX+1) 

X IS THE SPATIAL MESH WHICH DIVIDES THE 

INTERVAL [X_A,X_B] AS: X_A = X(l) < 

X(2) < X(3) < ... < X(NINT+1) = X_B. 

W(MAXVEC) 

ON SUCCESSFUL RETURN FROM BACOL, Y IS 

THE VECTOR OF BSPLINE 

COEFnCIENTS AT THE CURRENT TIME TO. 

C 

C 

DOUBLE PRECISION 

DOUBLE PRECISION 

TO 

TO < TOUT IS THE INITIAL TIME. 

TOUT 
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c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

TOUT IS THE DESIRED FINAL OUTPUT TIME. 

ATOL(NPDE) 

ATOL IS THE ABSOLUTE ERROR TOLERANCE 

REQUEST AND IS A SCALAR QUANTITY IF 

MFLAG(2) = 0. 

RTOL(NPDE) 

RTOL IS THE RELATIVE ERROR TOLERANCE 

REQUEST AND IS A SCALAR QUANTITY IF 

MFLAG(2) = 0. 

MFLAG(7) 

THIS VECTOR OF USER INPUT DETERMINES 

THE INTERACTION OF BACOL WITH DASSL. 

C 

INTEGER IDID 

C IDID IS THE BACOL EXIT STATUS FLAG 

C WHICH IS BASED ON THE EXIT STATUS FRCM 

C DASSL ON ERROR CHECKING PERFORMED BY 

C BACOL ON INITIALIZATION. 

C 

C 

C 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

EXACTU (NFDE) 

EXACT SOLUTION AT CERTAIN POINT 

UOUT(NUOLT) 

THE APPROXIMATION SOLUTIONS AT A SET 

OF POINTS 

VALWRK(LENWRK) 

VALWEK IS A WJfK ARRAY IN VALUES 

110 



DOUBLE PRECISION 

C 

C 

c 

c 
c 

c 
c 

c 
c 

c 
c 

c 
c 
o 

c 
c 

c 
c 
c 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

XOOT(NXOUT) 

XOUT IS A SET OF SPATIAL POINTS FOR 

OUTPUT 

URAROLTM( NPDE, NXOUT) 

THE APPROXIMATION SOLUTIONS AT A SET 

OF POINTS (MATRIX FORM) 

UOUTM( NPDE, NXOUT) 

THE APPROXIMATION SOLUTIONS AT A SET 

OF POINTS (MATRIX FORM) 

TRY(NPDE,NXOUT) 

THE APPROXIMATION SOLUTIONS AT A SET 

OF POINTS (MATRIX FORM) 

EXACIUM(NPDE, NXOUT) 

THE EXACT SOLUTIONS AT A SET 

OF POINTS (MATRIX FORM) 

ERRORM( NPDE, NXOUT) 

THE ERROR MAIRIXM = EXACIUM - UOLTM 

ERRQR1NORM 

1-NQRM OF THE ERROR MATRK 

ERRORINFNORM 

INFINITE-NORM OF THE ERROR MATRK 

ERRCRMAXNORM 

MAX-NORM OF THE ERROR MATRK 

WCRK STORAGE: 

DOUBLE PRECISION WORKl( (YKCOL+ 3) * (YKCOL-3)) 

WCRK IS A FLOATING POINT WCRK STORAGE 

ARRAY. 
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DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

c 
c 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

INTEGER 

DOUBLE PRECISION 

WORK22(YKCOL*YKCOL) 

WCRK IS A FLOATING POINT WCRK STORAGE 

ARRAY. 

ICFLAG 

THIS IS THE STATUS FLAG FRCM COLROW 

WHICH IS CALLED BY CRDCMP. 

ICFLAG = 0, INDICATES NON-SINGULARITY. 

ICFLAG = -1, INDICATES SINGULARITY. 

ICFLAG = 1, INDICATES INVALID INPUT. 

YFB ASIS ( *) 

BASIS FUNCTION VALUES AT THE COLLOCATION 

POINTS. FB ASIS (K, J , I) CONTAINS THE 

VALUES OF THE (J-l)ST DERIVATIVE 

(J = 1,2 ,3) OF THE K-TH NON-ZERO BASIS 

FUNCTION (K= 1 ,KCOL+NCONTI) AT THE 

I-TH COLLOCATION POINT. 

COEFF 

COEFF IS THE COEFFOENT OF UXX IN THE 

BURGERS' EQUATION 

IPIVOT(NPDE) 

iprvoT(*) 

PIVOTING INFORMATION FRCM THE 

FACTORIZATION OF THE TEMPORARY MATRIX. 

YABD(*) 

ABD 

INTEGER IABDTP 
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C WCRK(IABDTP) CONTAINS A COPY OF THE TOP 

C BLOCK WHICH IS REQUIRED SINCE CRDCMP 

C OVERWRIIES THE INPUT COLLOCATION MATRIX. 

C 

INTEGER IABDBK 

C WCRK( IABDBK) CONTAINS A COPY OF ABDBLK 

C WHICH IS REQUIRED SINCE CRDCMP 

C OVERWRITES THE INPUT COLLOCATION MATRIX. 

C 

INTEGER IABDBT 

C WQRK( IABDBT) CONTAINS A COPY OF THE 

C BOTTOM BLOCK WHICH IS REQUIRED SINCE 

C CRDCMP OVERWRIIES THE INPUT COLLOCATION 

C MATRIX. 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PIECEWISE POLYNOMIAIS MINUS ONE. 

C 1 < YKCOL < 11. 

C PARAMETER (KCOLY = YKCOL) 

C 

INTEGER NINTY 

C PARAMETER (NINTY = YNINT) 

C YNINT IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH Y. 

C 

C DOUBLE PRECISION YCOL(YNCPTS) 

DOUBLE PRECISION YCOL (*) 

C THE SEQUENCE OF COLLOCATION POINTS ON 
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c 
c 
c-
c 

THE INTERVAL [Y_A, Y_B]. 

& 

OCMVKN /BURGER/ 

CaVMCN /YBSPLINE/ 

CCMMCN /ABDLU/ 

CEMM3V /YBCOEFF/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

YABD(8804) , 

IPIVOT (442) , LABDTP, IABDBK, IABDBT 

YFBASIS (29172) 

C 

C LOCAL VARIABLES: 

C 

C LOOP INDICES: 

INTEGER 

INTEGER 

INTEGER 

C 

C 

C 

C SUBROUTINES CALLED: 

C 

C 

C 

C 

C HAS TO DO THIS, BECAUSE OF THE USE OF OCMMCK BLOCK PASS DATA 

C COULD NOT BE USED AS VARIABLE 

KCOLY = YKCOL 

NINTY = YNINT 

C SET THE POINTERS INTO THE FLOATING POINT WGRK ARRAY. 

LABDTP = 1 

IABDBK = LABDTP + NCONTI 

I 

J 

II 

BACOL 

VALUES 

TRUU 
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IABDBT = IABDBK + YNINT *YKCOL* (YKCOUNCONTI) 

C 

C INITIALIZE ABDBLK, THE TCP BLOCK AND THE BOTTOM BLOCK TO ZERO. 

DO 11 1 = 1, YNINT +YKCOL* (YKCOL+NCONTI)+2 •NCONTI 

YABD( I) = ZERO 

11 CONTINUE 

DO 12 1 = 1, (YKCOL+NCONTI) *3*YNCPTS 

YFBASIS(I) = ZERO 

12 CONTINUE 

C SET THE REMAINING INPUT PARAMETERS. 

TO = 0.0 DO 

TOUT = 1.0D+0 

ATOL(l) = l.D-3 

ATOL(NPDE) = l.D-3 

DO I = 2, NPDE-1 

ATOL(I) = l.D-3 

END DO 

DO I = 1, NPDE 

RTOL(I) = ATOL(I) 

END DO 

COEFF = 2.5D—1 

C 

C DEFINE THE MESH BASED ON A UNIFORM STEP SIZE. 

Y( 1) = YA 

DO 10 1 = 2, YNINT 

Y(I) = YA + ((I—1) * (YB - YA)) / YNINT 

10 CONTINUE 

Y(YNEMT+1) = YB 
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CALL MESHSQ(YKCOL, YNINT, Y, WORK1, YH, 

& EXCOL, EWIS) 

CALL COLPNT(YKCOL, YNINT, YNCPTS, Y, YH, 

& W0RK22, YCOL, 

& YBS) 

C 

C DISCRETIZE Y DOMAIN (USE PARAMEIER TO PASS THE ID ARRAY YFBASIS 

C TO 3D FBASIS, AND GET YABD(3 PARTS)) 

CALL BSPLINECOEFF (YKCOL, YNINT, YCOL, YBS, YFBASIS) 

C LU DECOMPOSITION OF THE MATRIX. 

CALL CRDQVIP(YNCPTS,YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,YKCOL, 

& (YKCOL+NCONTI), YNINT,YABD(IABDBT) , 1, IPIVOT, 

& ICFLAG) 

IF (ICFLAG .NE. 0) GOTO 9999 

C 

C USE BACOL 

C DEFINE THE MESH BASED ON A UNIFORM STEP SIZE. 

X(l) = XA 

DO 20 1 = 2, XNINT 

X(I) = XA + ((I —1) * (XB - XA)) / XNINT 

20 CONTINUE 

X(XNINT+1) = XB 

C INITIALIZE THE MFLAG VECTOR. 

D O  2 1  1 = 1 ,  7  

MFLAG(I) = 0 
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21 CONTINUE 

MFIAG(2) = 1 

C INITIALIZE IPAR AND RPAR. 

DO I = 1, LIP 

IPAR(I) = 0 

END DO 

DO I = 1, LRP 

RPAR(I) = 0.0D0 

END DO 

C 

OPEN(7 , FILE- '2DBURGER.TEXT' , ACCESS='SEQUENTIAL', 

& FQRM= TORMATIED') 

WRIIE(7 , '(/A) ') 'THE INPUT IS ' 

WRXIE(7,'(/A, 13, A, 14, 2(A, E8.2))') 'XKCOL =', XKCOL, 

k ', XNINT =', XNINT, ATOL(l) 

& ATOL(l), ', RTOL(l) = ',RTOL(l) 

WRTIE(7 , '(/A, E8.2) ') 'TOUT = ', TOUT 

CALL BACOL(TO, TOUT, ATOL, RTOL, NPDE, XKCOL, NINTMX, XNINT, X, 

& MFIAG, RPAR, LRP, IPAR, LIP, W, IDID) 

C CHECK FOR AN ERROR FROM BACOL. 

WR]TE(7, '(/A, 15)') 'IDID =', IDID 

IF (IDID .LT. 2) GOTO 100 

C OUTPUT APPROXIMATE SOLUTION 

XOUT(l) = XA 

DO 30 1 = 2, NXOUT-1 

XOUT(I) = XA + DBLE( I - 1) * (XB - XA)/DBLE(NXOUT-l) 
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30 CONTINUE 

XOUT(NXOLT) = XB 

CALL VALUES(XKCOL, XOUT, XNINT, X, NPDE, NXOUT, 0, 

& UOUT, W, VALWRK) 

WRIIE(7 , '(/A) ') "THE OUTPUT IS ' 

WR1TE(7, '(/A, 13, A, 14)') 'XKCOL =', XKCOL, ', XNINT = ', XNINT 

WWTE(7, '(/A, 4A) ') ' XOUT ', ' UOUT(l) 

& ' UOUT(2) ', • UOUT(3) 

& ' UOUT( 4) ' 

DO 40 I - 1, NXOUT 

II = (I - 1) * NPDE 

C REFORM UOUT INTO NPDE*NXOUT MATRIX 

DO 41 J = 1, NPDE 

UBAROUIM( J , I) = UOUT( II+J) 

41 CONTINUE 

C DO THE PROJECTION 

C 98 PQRMAT(E14.6 , ADVANCE = NO) 

40 CONTINUE 

DO 42 I = 1, NXOUT 

CALL YEVALl (KCOLY, NINTY, YFB ASIS ,UBAROUTM( 1,1), 

& UBAROUTM( 1,1), UOUTM( 1,1) ,TRY( 1,1)) 

42 CONTINUE 

DO 43 I — 1, NXOUT 

WRHE( 7,'(13E14.6) ') XOUT(I), (UOUIM( J, I) , J = 1, NPDE) 

43 CONTINUE 

C OUTPUT EXACT SOLUTION. 

WR1TE(7,'(/A, 1A)') ' 
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WRTIE(7,'(/A, 4A) ') ' XOUT ' EXACTU(l) 

& ' EXACITJ(2) ' EXACTU(3) 

& ' EXACTU(4) ' 

DO 50 I = 1, NXOUT 

CALL TRUU(TOUT, X017T( I), EXACTU, NPDE) 

STORE EXACTU INTO NPDE+NXOUT MATRIX 

DO 51 J = 1, NPDE 

EXACrUM(J. I )  =  EXACTU(J) 

51 CONTINUE 

WRITE(7 , '(13E14.6) ') XOUT(I) , (EXAdUM( J, I) , J = l, NPDE) 

50 CONTINUE 

COMPUTES 1—NORM OF THE EEROR MATRIX 

DO 60 I — 1, NXOUT 

DO 61 J = 1, NPDE 

ERRQRM( J , I) = UOUIM(J,I)-EXACIUM(J,I) 

61 CONTINUE 

60 CONTINUE 

OUTPUT THE ERROR MATRIX. 

WRITE(7, '(/A, 1A)') ' 

WRITE(7, '(/A, 4A) ') ' XOUT ' 

& ' ERRORM(2) ' 

& ' EERORM(4)' 

DO 70 1 = 1, NXOUT 

WRTIE(7 , '(13E14.6) ') XOUT( I) , (ERRORM( J, I) , J = l, NPDE) 

70 CONTINUE 

EERORM(l) 

EERC»M(3) 
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CLOSE(7) 

GOTO 9999 

100 CONTINUE 

WRITE(6 , '(A) ') 'CANNOT PROCEED DUE TO ERROR FROM BACOL. ' 

9999 STOP 

END 

C 

CC END OF MAIN 

SUBROUTINE BSPLINECOEFF(YKCOL,YNINT.YCOL,YBS,FBASIS) 

C 

C SUBROUTINE PARAMETERS: 

C 

c CONSTANTS: 

DOUBLE PRECISION 

PARAMETER 

ZERO 

(ZERO = 0.0D0) 

C 

C-

DOUBLE PRECISION 

PARAMETER 

NEGONE 

(NEGONE = — 1.0D0) 

C 

C 

C-

C 

C 

INTEGER 

PARAMblkK 

NCONTI 

(NCONTT = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

INPUT: 

Y DIMENSION 
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INTEGER 

PARAMETER 

PARAMETER 

YKCOL 

YKCOL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PIECEWISE POLYNOMIALS MINUS ONE. 

1 < YKCOL < 11. 

(YKCOL = 2) 

(YKCOL = WQRK2( IYKCOL)) 

INTEGER 

PARAMETER. 

PARAMETER 

YNINT 

(YNINT = WQRK2( IYNINT)) 

(YNINT = 2) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

INTEGER 

PARAMETER 

YNCPTS 

(YNCPTS= (YKCOL*YNTN'T—NCONTI)) 

YNCPTS IS THE NUME5ER 

OF COLLOCATION POINTS. 

INTEGER 

PARAMETER 

NPDE 

NUMBER OF PDES 

=THE NUMBER OF COLLOCATION POINTS 

IN Y DOMAIN 

(NPDE = YKCOL*YN1NT+NCONTI) 

INTEGER 

PARAMETER 

YNELS 

(YNELS=YKCOL* (YKCOLfNCONTI)) 

THE NUMBER OF ELEMENTS IN ONE 

COLLOCATION BLOCK OF WCBK. 
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C Y DIMENSION 

C INPUT: 

DOUBLE PRECISION YCOL(YNCPTS) 

C DOUBLE PRECISION YCOL(*) 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

C 

DOUBLE PRECISION YBS (YNCPTSfYKCOLfNCONTI) 

C THE BREAKPOINT SEQUENCE. 

C YBS( I)=X( 1) , 1=1, KCOLmCONTI; 

C YBS( (I -1) *KCOLfNCONTM) =Y (I) , 

C I =2, NINT; J = l, KCOL 

C YBS(YNCPTSfI)=Y(NINT+l), 1 = 1 ,KCOLfNCONTI. 

C 

C 

c 
C OUTPUT: 

DOUBLE PRECISION FBASIS (YKCOLfNCONTI, 3, YNCPTS) 

C BASIS FUNCTION VALUES AT THE COLLOCATION 

C POINTS. FBASIS (K, J , I) CONTAINS THE 

C VALUES OF THE (J-l)ST DERIVATIVE 

C (J = 1, 2 , 3) OF THE K-TH NON-ZERO BASIS 

C FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE 

C I-TH COLLOCATION POINT. 

C 

c 
C INTEGER IPIVOT(NPDE) 

INTEGER IPIVOT (*) 

C PIVOTING INFORMATION FROM THE 

C FACTORIZATION OF THE TEMPORARY MATRIX. 

C 

C 
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c 
c 

c 
c 
c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c-
c-

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

INTEGER 

INTEGER 

YABD(YNINT*YNELS+2*NCONTI) 

YABD(*) 

ABD 

IABDTP 

WORK( IABDTP) CONTAINS A COPY OF THE TOP 

BLOCK WHICH IS REQUIRED SINCE CRDCMP 

OVERWRITES THE INPUT COLLOCATION MATRIX. 

IABDBK 

WCRK(IABDBK) CONTAINS A COPY OF ABDBLK 

WHICH IS REQUIRED SINCE CRDCMP 

OVERWRITES THE INPUT COLLOCATION MATRIX. 

IABDBT 

WCEK(IABDBT) CONTAINS A COPY OF THE 

BOTTOM BLOCK WHICH IS REQUIRED SINCE 

CRDCMP OVERWRHES THE INPUT COLLOCATION 

MATRIX. 

CCMM3V /ABDLU/ 

& 

YABD(8804), 

IPIVOT(442) , IABDTP, IABDBK, IABDBT 

C 

C LOCAL VARIABLES: 

INTEGER ILEFT 

C BREAKPOINT INFORMATION. 

C 

C 

C LOOP INDICES: 

INTEGER I 
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INTEGER J 

INTEGER L 

INTEGER II 

INTEGER LL 

C 

G 

G 

C SUBROUTINES CALLED: 

C BSPLVD 

C 

C 

C***END PROLOGUE BSPLINECOEFF 

C BSPLVD IS CALLED TO COMPUIE THE COMPOiNENTS OF FBASIS(K, I, J) 

C ASSOCIATED THE FIRST COLLOCATION POINT. NOW ILEFT = KCOL + NCONTI. 

CALL BSPLVD(YBS,YKCOL+NCONH,YCOL( 1) , YKCOLmCONTI, FBASIS (1 ,1,1) ,3) 

C MAKEING USE OF THE FACT THAT ONLY THE FIRST BSPLINE HAS A NONZERO 

C VALUE AT THE LEFT END POINT, SET UP THE TOP BLOCK IN WCKK. 

YABD(IABDTP) = FBASIS (1,1,1) 

C 

C THE NINT BLOCKS AT THE MIDDLE OF THE MATRIX WILL NOW BE SET UP. 

DO 80 I = 1, YNINT 

C MAKE USE OF THE FACT THAT THERE ARE KCOL COLLOCATION POINTS IN 

C EACH SUBINTERVAL TO FIND THE VALUE OF ILEFT. 

ILEFT = YKCOL + NCONTI + (I - 1) * YKCOL 

DO 70 J = 1, YKCOL 

C II IS THE POSITION IN YCOL OF THE J-TH COLLOCATION POINT OF THE 
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C I-TH SUBINTERVAL. 

C II IS THE POSITION IN THE URAR VECTOR WHERE THE VALUES FOR THE 

C RIGHT HAND SIDE OF THE INITIAL CONDITIONS, EVALUATED AT THE II -TH 

C COLLOCATION POINT ARE STORED. 

II = (I —1) * YKCOL + 1 + J 

CALL BSPLVD (YBS, YKCOLhNCONTI , YCOL (II) , ILEFT, 

& FBASIS(1,1 ,11) ,3) 

DO 60 L = 1, YKCOL + NCONTI 

C GENERATE THE SUBBLOCK IN AEDBLK CORRESPONDING TO THE II -TH 

C COLLOCATION POINT. 

C 

LL = (L—l)*YKCOL + (I-1)*YNELS + (J-l) 

YABD(IABDBKfLL) = FBASIS(L, 1 , II) 

60 CONTINUE 

70 CONTINUE 

80 CONTINUE 

C 

C NOW, SET UP THE BOTTOM BLOCK, USING THE FACT THAT ONLY THE 

C LAST BSPLINE BASIS FUNCTION IS NON-ZERO AT THE RIGHT END POINT. 

C SIMULTANEOUSLY, SET UP THE CORRESPONDING PART OF THE RIGHT HAND 

C SIDE. 

C 

CALL BSPLVD (YBS, YKCOL-N CONTI, YCOL (YNCPTS) ,YNCPTS, 

k FBASIS(1 ,1 ,YNCPTS) ,3) 

YABD(IABDBT+1) = FBASIS(YKCOLfNCONTI, 1 , YNCPTS) 

998 RETURN 
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END 

C 

C EM) OF SUBROUTINE BSPLINECOEFF-

SUBROUTINE DERIVF(T, X, UBAR, UBARX, UBARXX, DFDUBAR, 

& DFDUBARX, DFDUBARXX, NPDE) 

C PURPOSE: 

C 

C 

C 

C 

C 

C 

C 

THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE 

PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE 

OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM 

U T  =  F ( T ,  X ,  U B A R ,  U B A R X ,  U B A R X X )  

THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(UBAR) , D(F)/D(UBARX), 

AND D(F) /D(UBARXX). 

C SUBROUTINE PARAMETERS: 

C 

C CONSTANTS: 

DOUBLE PRECISION 

PARAMETER. 

ZERO 

(ZERO = O.ODO) 

C 

C-

DOUBLE PRECISION NEGONE 

PARAMETER (NEGONE -1.0D0) 

C 

c 
o-

INTEGER 

PARAMETER 

NCONTI 

(NCONTI = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

C INPUT: 
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INTEGER 

C 

C 

DOUBLE PRECISION 

C 

C 

DOUBLE PRECISION 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

T 

THE CURRENT TIME COORDINATE. 

X 

THE CURRENT SPATIAL COORDINATE. 

UBAR(NPDE) 

UBAR(1:NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 

UBARX(NPDE) 

UBARX( 1 :NPDE) IS THE APPROXIMATION OF 

THE SPATIAL DERIVATIVE OF THE SOLUTION 

AT THE POINT (T,X). 

UBARXX(NPDE) 

UBARXX( 1 :NPDE) IS THE APPROXIMATION OF 

THE SECOND SPATIAL DERIVATIVE OF THE 

SOLUTION AT THE POINT (T,X). 

DFDURAR(NPDE.NPDE) 

DFDUBAR(I,J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR F 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE UNKNOWN FUNCTION U. 

DFDUBARX(NPDE, NPDE) 

DFDUBARX(I, J) IS THE PARTIAL DERIVATIVE 
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C OF THE I-TH COVIPONEOT OF THE VECTOR F 

C WITH RESPECT TO THE J-TH COMPONENT 

C OF THE SPATIAL DERIVATIVE OF THE 

C UNKNOWN FUNCTION U. 

C 

DOUBLE PRECISION DFDURARXX(NPDE,NPDE) 

C DFDUBARXX( I , J) IS THE PARTIAL DERIVATIVE 

C OF THE I-TH COMPONENT OF THE VECTOR F 

C WITH RESPECT TO THE J-TH COMPONENT 

C OF THE SECOND SPATIAL DERIVATIVE OF THE 

C UNKNOWN FUNCTION U. 

C 

c 

C LOCAL: 

DOUBLE PRECISION U(442) 

C UBAR IS THE APPROXIMATION OF THE 

C SOLUTION AT THE POINT (T,XA). 

C 

DOUBLE PRECISION UX(442) 

C UBARX IS THE APPROXIMATION OF THE 

C SPATIAL DERIVATIVE X OF THE SOLUTION AT 

C THE POINT (T,XA). 

C 

DOUBLE PRECISION UY(442) 

C UBARX IS THE APPROXIMATION OF THE 

C SPATIAL DERIVATIVE X OF THE SOLUTION AT 

C THE POINT (T,XA). 

C 

C LOCAL: 

INTEGER YNCPTS 

C PARAMETER (YNCPTS=(YKCOL*YNINT+NCONTI)) 

C YNCPTS= (YKCOL*YMNT+NCONTI) IS THE 
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c 
c 

c 
c 
c-

INTEGER 

NUMBER OF COLLOCATION POINTS. 

ICPT 

THE INDEX OF THE COLLOCATION POINT. 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

c 

c 
c 
c 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

YFBASIS (*) 

BASIS FUNCTION VALUES AT THE COLLOCATION 

POINTS. FBASIS (K, J , I) CONTAINS THE 

VALUES OF THE (J-l)ST DERIVATIVE 

(J = 1,2,3) OF THE K-TH NON-ZERO BASIS 

FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE 

I-TH COLLOCATION POINT. 

COEFF 

COEFF IS THE COEFFOENT OF UXX IN THE 

BURGERS' EQUATION 

IPrVOT(NPDE) 

EPIVOT(*) 

PIVOTING INFORMATION FROM THE 

FACTORIZATION OF THE TEMPORARY MATRIX. 

YABD(YNINT*YNELS+2*NCONTI) 

YABD(*) 

ABD 

IABDTP 

WCRK(IABDTP) CONTAINS A COPY OF THE TOP 

BLOCK WHICH IS REQUIRED SINCE ORDCMP 

OVERWRITES THE INPUT COLLOCATION MATRIX. 
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c 
INTEGER IABDBK 

C WORK( IABDBK) CONTAINS A COPY OF ABDBLK 

C WHICH IS REQUIRED SINCE ORDCMP 

C OVERWRITES THE INPUT COLLOCATION MATRIX. 

C 

INTEGER IABDBT 

C WORK(IABDBT) CONTAINS A COPY OF THE 

C BOTTOM BLOCK WHICH IS REQUIRED SINCE 

C CRDCMP OVERWRITES THE INPUT COLLOCATION 

C MATRIX. 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PIECEWISE POLYNOMIALS MINUS ONE. 

C 1 < YKCOL <11. 

C PARAMETER. (KCOLY = YKCOL) 

C 

INTEGER NINTY 

C PARAMETER (NINTY = YNINT) 

C YNINT IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH Y. 

C 

C DOUBLE PRECISION YCOL(YNCPTS) 

DOUBLE PRECISION YCOL(*) 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

C 

O 
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c 

& 

CCMMCN /YBCOEFF/ 

OCMMCN /BURGER/ 

OCMMCN /YBSPLINE/ 

COMMCN /ABDLU/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

YABD(8804), 

IPIVOT(442) , IABDTP, lABDBK, LABDBT 

YFBASIS(29172) 

C 

C LOOP INDICES: 

INTEGER 

INTEGER J 

INTEGER K 

INTEGER IJ 

INTEGER M 

C 

C***END PROLOGUE DERIVF 

YNCFIS^C0LY*NINTY4NC0NT1 

DO 10 1=1, YNCPTS 

DO 11 J = 1,YNCPTS 

11 CONTINUE 

10 CONTINUE 

C CALCULATE U UX 

CALL YEVAL3(KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX,UY) 

C 

ICPT = 1 

K = 0 

DFDUBAR(I , J) = ZERO 

DFDUBARX( I, J) = ZERO 

DFDUBARXX(I,J) = ZERO 
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PIONTER 

IJ = (ICPT — 1) * (K(X)LY+NCONTI) * 3 

DO 12 M = 1 ,KOOLY+NCONTI 

DFDUBAR(ICPT ,K+M) = COEFF*YFBASIS( IJ-+M+2* (KOOLY+NCONTI)) 

k - YFBASIS (IJ -+M) *UX( ICPT) 

k - YFBASIS(IJ-+M)*UY(ICPT) 

k - U (ICPT) * YFBASIS (IJ -+M-+ (KCOLY+NCONTI)) 

DFDUBARX( ICPT, K+M) = - U( ICPT) * YFBASIS (I J-fM) 

DFDUBARXX(ICPT,K+M) - COEFF* YFBASIS (IJ-tM) 

12 CONTINUE 

ICPT = 2, ... , YNCPTS-1 

DO 20 I = 1 ,NINTY 

K = (I -1) +KOOLY 

DO 30 J = l.KCOLY 

ICPT = K + J + 1 

PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 40 M = 1, KCOLY + NCONTI 

DFDUBAR(ICPT,K+M) = COEFF * YFBASIS (IJ -M+- 2 * (KCOLY+NCONTI)) 

k - YFBASIS (IJ+M) *UX( ICPT) 

k - YFBASIS (IJ +M) *UY(ICPT) 

k - U (ICPT) * YFBASIS (IJ 4M+- (KCOLY+NCONTI)) 

DFDUBARX( ICPT, K+M) = - U (ICPT) * YFBASIS (IJ -+M) 

DFDUBARXX( ICPT, K+M) = COEFF* YFBASIS ( I.HM) 

40 CONTINUE 
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30 CONTINUE 

20 CONTINUE 

ICPT = YNCPTS 

K = (NINTY — 1) *KCOLY 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 50 M = 1 ,KCOLY+NCONTI 

DFDUBAR(ICPT,K4M) = COEFF*YFBASB(IJ-tM+2*(KOOLY-fNCONTI)) 

& - YFBASIS(IJ+M)*UX(ICPT) 

k - YFBASIS( IJ-jM) *UY(ICPT) 

& - U (ICPT) * YFB ASIS (IJ -n\l+ (KCOLY+NCONTI)) 

DFT)UBARX( ICPT, K+M) = - U(ICPT) * YFB ASIS (IJ +M) 

DFDUBARXX(ICPT,K-fM) = COEFF*YFBASIS( IJ-fM) 

50 CONTINUE 

C 

C SOLVE THE LINEAR SYSTEM. 

DO 60 I = 1, NPDE 

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,KCOLY* 1, 

& (KCOLY+NCONTI) * 1,NINTY,YABD(IABDBT) , 1 , 

& IPIVOT,DFDUBAR( 1,1) ,0) 

IF (ICFLAG .NE. 0) GOTO 999 

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,KCOLY*l, 

& (KCOLY+NCONTI) * 1,NINTY,YABD(IABDBT) , 1 , 

& IPIVOT,DFDUBARX(1,1) ,0) 

IF (ICFLAG .NE. 0) GOTO 999 

CALL CRSLVE (YABD (IABDTP) ,1 ,2*1, YABD (IABDBK) ,KCOLY*l, 
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& (KC0LY+NC0NT1) * 1 ,NINTY,YABD(IABDBT) , 1 , 

& IPIVOT ,DFDUBARXX( 1,1) ,0) 

IF (ICFLAG .NE. 0) GOTO 999 

60 CONTINUE 

999 RETURN 

END 

C END OF SUBROUTINE DERIVF 

SUBROUTINE DIFBXA(T, UBAR, UBARX, DBDUBAR, DBDUBARX, DBDT, NPDE) 

C-

C 

C 

C 

C 

C 

C 

C 

C 

G-

C 

O 

C 

PURPOSE: 

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY 

CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE 

BOUNDARY CONDITION EQUATION 

B(T, UBAR, UBARX) = 0 

THE PARTIAL DERIVATIVES DB/DUBAR, DB/DUBARX, AND DB/DT ARE 

SUPPLIED BY THIS ROUTINE. 

SUBROUTINE PARAMETERS: 

CONSTANTS: 

DOUBLE PRECISION 

PARAMETER 

ZERO 

(ZERO = O.ODO) 

C 

C-

DOUBLE PRECISION NEGONE 

PARAMETER (NEGONE -1.0D0) 

INTEGER 

PARAMETER 

NCONTT 

(NCONTT = 2) 

NCONTT CONTINUITY CONDITIONS ARE IMPOSED 
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c 
c-

AT THE INTERNAL MESH POINTS. 

DOUBLE PRECISION 

C INPUT: 

INTEGER 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

THE CURRENT TIME COORDINATE. 

UBAR(NPDE) 

UBAR( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 

UBARX(NPDE) 

UBARX( 1 :NPDE) IS THE APPROXIMATION OF 

THE SPATIAL DERIVATIVE OF THE SOLUTION 

AT THE POINT (T,X). 

DBDUBAR( NPDE, NPDE) 

DBDUBAR( I , J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-1H COMPONENT 

OF THE UNKNOWN FUNCTION UBAR. 

DBDUBARX (NPDE, NPDE) 

DBDUBARX(I ,J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION UBAR. 
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DOUBLE PRECISION 

C 

C 

C 

C 

C LOCAL: 

C 

C 

C 

DBDT(NPDE) 

DBDT(I) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WHH RESPECT TO TIME T. 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

DOUBLE PRECISION 

LOCAL: 

INTEGER 

PARAMETER 

INTEGER 

DOUBLE PRECISION 

DOUBLE PRECISION 

U(442) 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UX(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 

YNCPTS 

(YNCPTS= (YKCOL*YNINT+NCONTI)) 

YNCPTS— (YKCOL*YNINT+NCONTI) IS THE 

NUMBER OF COLLOCATION POINTS. 

ICPT 

THE INDEX OF THE COLLOCATION POINT. 

TEMP 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

ALPHA 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 
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DOUBLE PRECISION YFBASIS ( *) 

C BASIS FUNCTION VALUES AT THE COLLOCATION 

C POINTS. FBASIS(K, J, I) CONTAINS THE 

C VALUES OF THE (J-l)ST DERIVATIVE 

C (J = 1,2,3) OF THE K-TH NON-ZERO BASIS 

C FUNCTION (K=l ,KCOLfNCONTI) AT THE 

C I—TH COLLOCATION POINT. 

C 

DOUBLE PRECISION COEFF 

C COEFF IS THE COEFFOENT OF UXX IN THE 

C BURGERS' EQUATION 

C 

C 

C Y DIMENSION 

INTEGER 

C 

C 

C 

C 

C 

C PARAMETER 

C 

INTEGER 

C PARAMETER 

C 

C 

C 

C DOUBLE PRECISION 

DOUBLE PRECISION 

C 

C 
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KCOLY 

YKOOL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PIECE WISE POLYNOMIALS MINUS ONE. 

1 < YKCOL <11. 

(KCOLY = YKCOL) 

NINTY 

(NINTY = YNINT) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YCOL(YNCPTS) 

YCOL( *) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B1. 



CCMM3V /BURGER/ 

CCMVEN /YBSPLINE/ 

CCMMK /YBCOEFF/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

YFBASIS(29172) 

C 

C LOOP INDICES: 

INTEGER 

INTEGER J 

INTEGER K 

INTEGER IJ 

INTEGER M 

C 

C***END PROLOGUE DIFBXA 

YNCPTfcKCOLY *NINTY+NCONTI 

DO 10 1 = 1, YNCPTS 

DO 11 J = 1,YNCPTS 

DBDUBAR(I,J) = ZERO 

DBDUBARX( I, J) = ZERO 

11 CONTINUE 

DBDT(I) = ZERO 

10 CONTINUE 

C CALCULATE U UX 

CALL YEVALl (KCOLY, NINTY, YFB ASIS, UBAR, UBARX, U,UX) 

C 

ICPT = 1 

TEMP = DEXP((YCOL(ICPT)-T) / (2.0D0*COEFF)) 

ALPHA = l.ODO + TIM3 
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K = 0 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 12 M = 1, KCOLY+NCONTI 

DBDUBAR( ICPT, K+M) = ALPHA *YFBASIS( IJ-tM) 

12 CONTINUE 

DBDT(ICPT) = 1.0DO/(2,ODO*COEFF)*TEMP*U(ICPT) 

C ICPT = 2, ... , YNCPTS-1 

DO 20 I = 1 ,NINTY 

K = (I — l)*KCOLY 

DO 30 J - l.KCOLY 

ICPT = K + J + 1 

TEMP = DEXP((YCOL(ICPT)-T) / (2,ODO*COEFF)) 

ALPHA = l.ODO + TEMP 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 40 M = 1, KCOLY + NCONTT 

DBDUBAR( ICPT, K-+M) = ALPHA* YFBASIS (IJ-tM) 

40 CONTINUE 

DBDT(ICPT) = 1.0DO/(2-ODO*COEFF)*TEMP*U(ICPT) 

30 CONTINUE 

20 CONTINUE 

ICPT = YNCPTS 

TEMP = DEXP((YCOL(ICPT)-T) / (2.0DO*COEFF)) 

ALPHA = l.ODO + TEMP 
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K = (NINTY— 1) •KCQLY 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 50 M = 1 ,KCOLY+NCONTI 

DBDUBAR(ICPT ,K-fM) = ALPHA* YFBASIS (IJ4M) 

50 CONTINUE 

DBDT (ICPT) = 1. 0D0 / (2.0 D0*COEFF) *UMP*U (ICPT) 

RETURN 

END 

C 

C END OF SUBROUTINE DIFBXA 

SUBROUTINE DIFBXB (T, UBAR, UBARX, DBDUBAR, DBDUBARX, DBDT, NPDE) 

C 

C PURPOSE: 

C THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY 

C CONDITIONS AT THE RIGHT SPATIAL END POINT X = XB. FOR THE 

C BOUNDARY CONDITION EQUATION 

C B(T, UBAR, UBARX) = 0 

C THE PARTIAL DERIVATIVES DB/DUBAR, DB/DUBARX, AND DB/DT ARE 

C SUPPLIED BY THIS ROUTINE. 

C 

C 

C SUBROUTINE PARAMETERS: 

C 

C CONSTANTS: 

PARAMETER 

DOUBLE PRECISION ZERO 

(ZERO = 0.0 DO) 

C 

PARAMETER 

DOUBLE PRECISION NEGONE 

(NEGONE = — l.ODO) 
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INTEGER 

PARAMETER 

C 

C 

C-

NCONTI 

(NCON1T = 2) 

NCONTT CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

DOUBLE PRECISION 

C INPUT: 

INTEGER 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBIE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

THE CURRENT TIME COORDINATE. 

UBAR(NPDE) 

UBAR( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 

UBARX(NPDE) 

UBARX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X). 

DBDUBAR( NPDE,NPDE) 

DBDUBAR( I , J) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE UNKNOWN FUNCTION UBAR. 

DBDUBARX (NPDE, NPDE) 

DBDUBARX( I , J) IS THE PARTIAL DERIVATIVE 
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c 
c 
c 
c 
c 

c 
c 
c 
c-
c 
c 
c 

c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c 

c 
c 

DOUBLE PRECISION 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO THE J-TH COMPONENT 

OF THE SPATIAL DERIVATIVE OF THE 

UNKNOWN FUNCTION UBAR. 

DBDT(NPDE) 

DBDT( I) IS THE PARTIAL DERIVATIVE 

OF THE I-TH COMPONENT OF THE VECTOR B 

WITH RESPECT TO TIME T. 

LOCAL: 

YCOL(YNCPTS) YNCPTS -

YCOL( 442 ) YNCPTS = 

DOUBLE PRECISION 

DOUBLE PRECISION 

LOCAL: 

INTEGER 

PARAMETER 

INTEGER 

YNINT * (YKCOL+NCONTI) +NCONTI 

20 *(  20 + 2 )+2) 

U(442) 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UX(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 

YNCPTS 

(YNCPTS=(YKCOL*YNlNT+NCONTI)) 

YNCPTS=:(YKOOL*YNINT+NCONTI) IS THE NUMBER 

OF COLLOCATION POINTS. 

ICPT 

THE INDEX OF THE COLLOCATION POINT. 

DOUBLE PRECISION TEMP 
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C UBAR IS THE APPROXIMATION OF THE 

C SOLUTION AT THE POINT (T,XA). 

C 

DOUBLE PRECISION ALPHA 

C UBARX IS THE APPROXIMATION OF THE 

C SPATIAL DERIVATIVE X OF THE SOLUTION AT 

C THE POINT (T,XA). 

C 

DOUBLE PRECISION YFB ASIS ( *) 

C BASIS FUNCTION VALUES AT THE COLLOCATION 

C POINTS. FBASIS(K, J , I) CONTAINS THE 

C VALUES OF THE (J-l)ST DERIVATIVE 

C (J = 1,2 ,3) OF THE K—TH NON-ZERO BASIS 

C FUNCTION (K= 1 ,KCOLrNCONTI) AT THE 

C I—TH COLLOCATION POINT. 

C 

DOUBLE PRECISION COEFF 

C COEFF IS THE COEFFCIENT OF UXX IN THE 

C BURGERS' EQUATION 

C 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PIECEWISE POLYNOMIALS MINUS ONE. 

C 1 < YKCOL < 11. 

C 

INTEGER NINTY 

C PARAMETER (NINTY = YNINT) 

C YNINT IS THE NUMBER OF SUBINTERVALS 
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c 
c 

c 
c 
c 
c-
c 

DOUBLE PRECISION 

DEFINED BY THE SPATIAL MESH Y. 

YCOL( *) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B]. 

CCMMCN /BURGER/ 

OCMVCN /YBSPLINE/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

COMMON /YBCOEFF/ YFB ASIS (29172) 

C LOOP INDICES: 

INTEGER 

INTEGER 

INTEGER 

INTEGER 

INTEGER 

I 

J 

K 

IJ 

M 

C***END PROLOGUE DIFBXB 

YNCPTS=KCQLY *NINTY+NCONTI 

DO 10 1 = 1, YNCPTS 

DO 11 J = 1,YNCPTS 

DBDUBAR(I ,J) = ZERO 

DBDUBARX( I, J) = ZERO 

11 CONTINUE 

DBDT(I) = ZERO 

144 



10 CONTINUE 

C CALCULATE U UX 

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX) 

C 

ICPT = 1 

1EMP = DEXP((1.0DG+YCOL(ICPT)-T) / (2,ODO*COEFF)) 

ALPHA = l.ODO + TEMP 

K = 0 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 12 M = 1 ,KCOLY+NCONTI 

DBDUBAR( ICPT, K-+M) = ALPHA * YFB ASIS (IJ-+M) 

12 CONTINUE 

DBDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT) 

C ICPT = 2, ... , YNCPTS-1 

DO 20 I = 1,NINTY 

K = (I — 1) +KCOLY 

DO 30 J = 1,KCOLY 

ICPT = K + J + 1 

IEMP = DEXP((1.ODO-f-YCOL(ICPT)-T) / (2.0DO*COEFF)) 

ALPHA = l.ODO + TEVIP 

C PIONTER 

IJ = (ICPT-1)* (KCXXY+NCONTI) *3 

DO 40 M = 1, KCOLY + NCONTI 

DBDUBAR(ICPT ,K-fM) = ALPHA* YFB ASIS (IJ -fM) 

40 CONTINUE 
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DRDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT) 

30 CONTINUE 

20 CONTINUE 

ICPT = YNCPTS 

TEMP = DEXP(( 1.0DOfYCOL(ICPT)-T) / (2.0D0*COEFF)) 

ALPHA = 1.0D0 + TEMP 

K = (NINTY — 1) *KOOLY 

C PIONTER 

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3 

DO 50 M = 1,KCOLY+NCONTI 

DBDUBAR( ICPT, K+M) = ALPHA* YFBASIS (IJ+M) 

50 CONTINUE 

DBDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT) 

RETURN 

END 

C 

C END OF SUBROUTINE DIFBXB 

SUBROUTINE BNDXA(T, UBAR, UBARX, BVAL, NPDE) 

C 

C PURPOSE: 

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE 

C LEFT SPATIAL END POINT X = XA. 

C B(T, UBAR, UBARX) = 0 

C 

C 

C SUBROUTINE PARAMETERS: 

C 

C CONSTANTS: 
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DOUBLE PRECISION ZERO 

PARAMETER (ZERO 0.0D0) 

DOUBLE PRECISION 

PARAMETER 

NBGONE 

(NEGONE = —1.0D0) 

C 

C-

INTEGER 

PARAMETER 

C 

C 

C-

NCON1I 

(NCONn = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

DOUBLE PRECISION 

C INPUT: 

INTEGER 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

NPDE 

YNCPTS THE NUMBER OF PDES IN THE SYSIEM. 

THE CURRENT TIME COORDINATE. 

UBAR(NPDE) 

UBAR( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UBARX(NPDE) 

UBARX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,XA). 

BVAL(NPDE) 

BVAL( 1 :NPDE) IS THE BOUNDARY CONnDITION 

AT THE LEFT BOUNDARY POINT. 
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C LOCAL: 

DOUBLE PRECISION U(442) 

C UBAR IS THE APPROXIMATION OF THE 

C SOLUTION AT THE POINT (T,XA). 

C 

DOUBLE PRECISION UX(442) 

C UBARX IS THE APPROXIMATION OF THE 

C SPATIAL DERIVATIVE X OF THE SOLUTION AT 

C THE POINT (T,XA). 

C 

c 
DOUBLE PRECISION YFBASIS( *) 

C BASIS FUNCTION VALUES AT THE COLLOCATION 

C POINTS. FBASIS(K, J , I) CONTAINS THE 

C VALUES OF THE (J-l)ST DERIVATIVE 

C (J = l ,2,3) OF THE K-TH NON-ZERO BASIS 

C FUNCTION (K=l ,KCOLmCONTI) AT THE 

C I-TH COLLOCATION POINT. 

C 

DOUBLE PRECISION COEFF 

C COEFF IS THE COEFFCEENT OF UXX IN THE 

C BURGERS' EQUATION 

C 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PEECEWISE POLYNOMIALS MINUS ONE. 

C 1 < YKCOL < 11. 

C PARAMETER (KCOLY = YKCOL) 
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c 
c 
c 
c 
c 

c 
c 
c 

INTEGER 

PARAMETER 

DOUBLE PRECISION 

DOUBLE PRECISION 

NINTY 
I 

(NINTY = YNINT) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YCOL(YNCPTS) 

YCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B]. 

CCMvCN /BURGER/ 

0CMM3V /YBSPLINE/ 

CCMvOV /YBCOEFF/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

YFBASIS (29172) 

C LOOP INDICES: 

INTEGER 

C 

C***END PROLOGUE BNDXA 

C 

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX) 

DO 10 I = 1, NPDE 

BVAL(I) = (l.ODO + DEXP((YCOL(I)-T) / (2.ODO*COEFF))) * U(I) 

& - l.ODO 

10 CONTINUE 

RETURN 

END 
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-END OF SUBROUTINE BNDXA-

SUBROUTINE BNDXB(T, UBAR, UBARX, BVAL, NPDE) 

C 

C 

C 

C 

C 

C 

C 

C SUBROUTINE PARAMETERS: 

C — 

C CONSTANTS: 

DOUBLE PRECISION 

PARAMETER 

PURPOSE: 

THE SUBROUTINE IS 

RIGHT SPATIAL END 

USED TO DEFINE THE BOUNDARY CONDITIONS AT THE 

POINT X = XB. 

B(T, UBAR, UBARX) = 0 

ZERO 

(ZERO = 0.0D0) 

C 

C-

DOUBLE PRECISION 

PARAMETER 

NEGONE 

(NEGONE = —1.0D0) 

INTEGER 

PARAMETER 

C 

C 

C 

C INPUT: 

C 

C 

NCONTT 

(NCONT1 = 2) 

NCONIT CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

INTEGER NPDE 

YNCPTS THE NUMBER OF PDES IN THE SYSTEM. 

DOUBLE PRECISION 

THE CURRENT TIME COORDINATE. 
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DOUBLE PRECISION 

C 

C 

c 
DOUBLE PRECISION 

C 

C 

C 

C 

C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C LOCAL: 

DOUBLE PRECISION 

C 

C 

C 

DOUBLE PRECISION 

C 

C 

C 

C 

UBAR(NPDE) 

UBAR( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UBARX(NPDE) 

UBARX(1:NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,XA). 

BVAL(NPDE) 

BVAL( 1 :NPDE) IS THE BOUNDARY CONHDITION 

AT THE LEFT BOUNDARY POINT. 

U(442) 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UX(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

YFBASIS ( *) 

BASIS FUNCTION VALUES AT THE COLLOCATION 

POINTS. FBASIS(K, J , I) CONTAINS THE 

VALUES OF THE (J-l)ST DERIVATIVE 

(J = l ,2,3) OF THE K-TH NON-ZERO BASIS 

FUNCTION (K=l ,... ,KCOLfNCONTI) AT THE 

I-TH COLLOCATION POINT. 
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c 
DOUBLE PRECISION COEFF 

C COEFF IS THE COEFFOENT OF UXX IN THE 

C BURGERS' EQUATION 

C 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PEECEWISE POLYNOMIALS MINUS ONE. 

C 1 < YKCOL < 11. 

C PARAMETER (KCOLY = YKCOL) 

C 

INTEGER NINTY 

C PARAMETER (NINTY = YNINT) 

C YNINT IS THE NUMBER OF SUBES'TERVALS 

C DEFINED BY THE SPATIAL MESH Y. 

C 

C DOUBLE PRECISION YCOL(YNCPTS) 

DOUBLE PRECISION YCOL(*) 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

C 

C 

C 

OCMVKN /BURGER/ COEFF 

CCMVEN /YBSPLINE/ NINTY, KCOLY, YCOL(442) 

CCMMCN /YBCOEFF/ YFBASIS(29172) 

C 

C LOOP INDICES: 
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INTEGER I 

C 

C 

C***END PROLOGUE BNDXB 

C 

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX) 

C 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

DO 10 I = 1, NPDE 

BVAL(I) = (1.0D0 + DEXP((1.0D(>fYCOL(I)-T) / (2-ODO*COEFF))) 

& * U(I) - 1.0D0 

10 CONTINUE 

RETURN 

END 

C —— 

C END OF SUBROUTINE BNDXB 

SUBROUTINE F(T, X, UBAR, UBARX, UBARXX, FVAL, NPDE) 

C 

C PURPOSE: 

C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE 

C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION 

C UT = F(T, X, UBAR, UBARX, UBARXX). 

C UT = F(T, X, U, UX, UXX). 

C 

C 

C SUBROUTINE PARAMETERS: 

C — — 

C CONSTANTS: 

DOUBLE PRECISION ZERO 

PARAMETER (ZERO = O.ODO) 
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DOUBLE PRECISION 

PARAMETER. 

C 

C-

NEGONE 

(NEGONE = —1.0D0) 

INTEGER 

PARAMETER 

C 

C 

C-

NCONTI 

(NCONn = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

C INPUT: 

C 

C 

C 

c 

c 
c 

c 
c 
c 

c 
c 
c 
c 

c 
c 

INTEGER 

DOUBLE PRECBION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

NPDE 

THE NUMBER OF PDES IN THE SYSIEM. 

THE CURRENT TIME COORDINATE. 

X 

THE CURRENT SPATIAL COORDINATE. 

UBAR(NPDE) 

U( 1 :NPDE) IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,X). 

UBARX(NPDE) 

UX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE OF THE SOLUTION AT 

THE POINT (T,X). 

UBARXX(NPDE) 

UXX( 1 :NPDE) IS THE APPROXIMATION OF THE 

SECOND SPATIAL DERIVATIVE OF THE 
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c 
c 
C OUTPUT: 

DOUBLE PRECISION 

C 

C 

C 

SOLUTION AT THE POINT (T,X). 

FVAL(NPDE) 

FVAL( 1 :NPDE) IS THE RIGHT HAND SIDE 

VECTOR F(T, X, U, UX, UXX) OF THE PDE. 

C LOCAL: 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

c 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBIE PRECISION 

DOUBIE PRECISION 

U(442) 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UX(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 

UXX(442) 

UBAR IS THE APPROXIMATION OF THE 

SOLUTION AT THE POINT (T,XA). 

UY(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 

UYY(442) 

UBARX IS THE APPROXIMATION OF THE 

SPATIAL DERIVATIVE X OF THE SOLUTION AT 

THE POINT (T,XA). 
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DOUBLE PRECISION YFB ASIS (*) 

BASIS FUNCTION VALUES AT THE COLLOCATION 

POINTS. FBASIS (K, J , I) CONTAINS THE 

VALUES OF THE (J-l)ST DERIVATIVE 

(J = 1,2,3) OF THE K-TH NON-ZERO BASIS 

FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE 

I—TH COLLOCATION POINT. 

DOUBLE PRECISION COEFF 

COEFF IS THE COEFFOENT OF UXX IN THE 

BURGERS' EQUATION 

INTEGER 

INTEGER 

IPIVOT (NPDE) 

IPIVOT (*) 

PIVOTING INFORMATION FROM THE 

FACTORIZATION OF THE TEMPORARY MATRIX. 

DOUBLE PRECISION YABD( *) 

ABD 

INTEGER IABDTP 

WORK(IABDTP) CONTAINS A COPY OF THE TOP 

BLOCK WHICH IS REQUIRED SINCE CRDCMP 

OVERWRHES THE INPUT COLLOCATION MATRIX. 

INTEGER IABDBK 

WCRK(IABDBK) CONTAINS A COPY OF ABDBLK 

WHICH IS REQUIRED SINCE CRDCMP 

OVERWRITES THE INPUT COLLOCATION MATRIX. 

INTEGER IABDBT 
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c 
c 
c 
c 
c-
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 

C-

c 

WCKK(IABDBT) CONTAINS A COPY OF THE 

BOTTOM BLOCK WHICH IS REQUIRED SINCE 

CRDCMP OVERWRIIES THE INPUT COLLOCATION 

MATRIX. 

Y DIMENSION 

INTEGER 

PARAMETER 

INTEGER 

PARAMETER 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

KCOLY 

YKCOL IS THE NUMBEE. OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE E 

PIECEWIS POLYNOMIALS MINUS ONE. 

1 < YKCOL < 11. 

(KCOLY = YKCOL) 

NINTY 

(NINTY = YNINT) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YCOL (YNCPTS) 

YCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B]. 

TTMP 

& 

CCMM3N /BURGER/ 

CCMMCN /YBSPLINE/ 

CCMVCN /ABDLU/ 

CCMNCN /YBCOEFF/ 

COEFF 

NINTY, KCOLY, YCOL(442) 

YABD(8804), 

IPIVOT(442) , IABDTP, IABDBK, IABDBT 

YFBASIS(29172) 
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c 

C LOOP INDICES: 

INTEGER I 

C 

CC* * *END PROLOGUE F 

C CALCULATE U UX 

CALL YEVAL1 (KCOLY,NINTY, YFBASIS,UBAR,UBARX, U,UX) 

C 

C CALCULATE UXX UY UYY 

CALL YEVAL2(KCOLY,NINTY,YFBASIS,UBAR,UBARXX, UXX,UY,UYY) 

C ASSUMING PDES HOLD ON GC = U(X,0 ,T) GD = U(X,1 ,T) 

DO 10 I = 1, NPDE 

FVAL(I) = COEFF * UXX(I) + COEFF * UYY(I) 

& - U(I) * UX(I) - U(I) * UY(I) 

10 CONTINUE 

C 

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK),KCOLY* 1, 

& (KCOLYmCONTI) * 1,NINTY,YABD(IABDBT) , 1 , 

& IPIVOT,FVAL,0) 

RETURN 

END 

C 

C END OF SUBROUTINE F 

SUBROUTINE UINIT(X, U, NPDE) 

C 

C PURPOSE: 

C THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL 

C CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = TO 

C AT THE SPATIAL COORDINATE X. 
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c 
c 
C SUBROUTINE PARAMETERS: 

C 

C CONSTANTS: 

DOUBLE PRECISION 

PARAMETER 

ZERO 

(ZERO = O.ODO) 

DOUBLE PRECISION 

PARAMETER 

C 

C-

NEGONE 

(NEGONE = —1.0D0) 

INTEGER 

PARAMETER 

C 

c 
c 
C INPUT: 

C 

C 

NCONTI 

(NCONTI = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

DOUBLE PRECISION 

C 

C 

C 

C 

C 

C 

C 

C-

INTEGER 

OUTPUT: 

DOUBLE PRECISION 

X 

THE SPATIAL COORDINATE. 

NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 

U (NPDE) 

U( 1 :NPDE) IS VECTOR OF INITIAL VALUES OF 

THE UNKNOWN FUNCTION AT T = TO AND THE 

GIVEN VALUE OF X. 

DOUBLE PRECISION COEFF 
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C COEFF IS THE COEFFCIENT OF UXX IN THE 

C BURGERS' EQUATION 

C 

INTEGER IPIVOT(*) 

C PIVOTING INFORMATION FROVI THE 

C FACTORIZATION OF THE TEMPORARY MATRIX. 

C 

DOUBLE PRECISION YABD (*) 

C ABD 

C 

INTEGER IABDTP 

C WCRK( IABDTP) CONTAINS A COPY OF THE TOP 

C BLOCK WHICH IS REQUIRED SINCE CRDCMP 

C OVERWRITES THE INPUT COLLOCATION MATRIX. 

C 

INTEGER IABDBK 

C WCKK( IABDBK) CONTAINS A COPY OF ABDBLK 

C WHICH IS REQUIRED SINCE CRDCMP 

C OVERWRITES THE INPUT COLLOCATION MATRIX. 

C 

INTEGER IABDBT 

C WCRK(IABDBT) CONTAINS A COPY OF THE 

C BOTTOM BLOCK WHICH IS REQUIRED SINCE 

C CRDCMP OVERWRITES THE INPUT COLLOCATION 

C MATRIX. 

C 

C Y DIMENSION 

INTEGER KCOLY 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBEMTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PEECEWISE POLYNOMIALS MINUS ONE. 
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c 
c 
c 

c 
c 
c 
c 
c 

c 
c 
c 
c-
c 

PARAMETER 

INTEGER 

PARAMETER 

DOUBLE PRECISION 

DOUBLE PRECISION 

1 < YKCOL < 11. 

(KCOLY = YKCOL) 

NINTY 

(NINTY = YNINT) 

YNINT IS THE NUMBOl OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YCOL(YNCPTS) 

YCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B]. 

OCMVSCN /BURGER/ 

OCMMCN /YBSPLINE/ 

OCMVOSr /ABDLU/ 

& 

COEFF 

NINTY, KCOLY, YCOL(442) 

YABD(8804), 

IPIVOT(442), IABDTP, IABDBK, IABDBT 

C 

C LOOP INDICES: 

INTEGER I 

C 

CC***END PROLOGUE UINIT 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

DO 10 1 = 1, NPDE 

U(I) = l.ODO / (1-OD(HDEXP((X4YCOL(I)) / (2*COEFF))) 

10 CONTINUE 

161 



CALL CRSLVE(YABD(IABDTP), 1 ,2 * 1,YABD(IABDBK) ,KC0LY*1, 

& (KCOLY+NCONTI) * 1 , NINTY, YABD (IABDBT) , 1 , 

& IPIVOT ,U,0) 

RETURN 

END 

G-

C- -END OF SUBROUTINE UINIT-

PURPOSE: 

THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE. 

SUBROUTINE TRUU(T, X, U, NPDE) 

C 

C 

c 
c 

c SUBROUTINE PARAMEIERS: 

C 

C CONSTANTS: 

DOUBLE PRECISION 

PARAMEIER 

C 

C 

C-

DOUBLE PRECISION 

PARAMEIER 

ZERO 

(ZERO = 0.0D0) 

NEGONE 

(NEGONE -l.ODO) 

INTEGER 

PARAMEIER 

C 

C 

C 

C INPUT: 

NCONTI 

(NCONTI = 2) 

NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

INTEGER NPDE 

THE NUMBER OF PDES IN THE SYSTEM. 
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c 
c 

c 
c 
c 

c 
c 
c-

DOUBLE PRECISION 

DOUBLE PRECISION 

OUTPUT: 

DOUBLE PRECISION 

THE CURRENT TIME COORDINATE. 

THE CURRENT SPATIAL COORDINATE. 

U(NPDE) 

U( 1 :NPDE) IS THE EXACT SOLUTION AT THE 

POINT (T,X). 

C 

C 

C 

C-

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DOUBLE PRECISION COEFF 

COEFF IS THE COEFFOENT OF UXX IN THE 

BURGERS' EQUATION 

Y DIMENSION 

INTEGER 

INTEGER 

PARAMETER. 

DOUBLE PRECISION 

KCOLY 

YKCOL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PEECEWISE POLYNOMIALS MINUS ONE. 

1 < YKCOL < 11. 

NINTY 

(NINTY = YNINT) 

YNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH Y. 

YCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 
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C THE INTERVAL [Y_A, Y_B]. 

C 

C 

c 
0CMM3S' /'BURGER/ COEFF 

CnVDVCN /YBSPLINE/ NINTY, KCOLY, YCOL(442) 

G 

C LOOP INDICES: 

INTEGER I 

C 

C***END PROLOGUE IRUU 

DO 10 I = 1, NPDE 

U(I) = l.ODO / (1.0DO4DEXP((X+YCOL(I)-T) / (2*COEFF))) 

10 CONTINUE 

RETURN 

END 

C 

C END OF SUBROUTINE TRUU 
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Appendix B 

Source Code (A B-spline Gaussian 

Collocation for 2D Time-dependent 

These are the user-supplied subroutines for the 2D Burgers' equation. 

C MODULE BSPLINE GLOBAL U = 1.0D0 / (1 .OD(HDEXP((X+Y-T) / (2*C0EFF))) 

C 

SUBROUTINE UINIT (W, WPRIME, RPAR, EPAR) 

C THIS ROUTINE COMPUTES AND LOADS THE VECTOR OF INITIAL VALUES. 

C 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 

DIMENSION W(*) , WPRIME(*) , RPAR(4) , IPAR(34) 

DOUBLE PRECISION PI 

C INTRINSIC COS, SIN 

PARAMEIER( PI =3.14159265) 

C 

C CONSTANTS: 

INTEGER NCONTt 

Parabolic 
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PARAMETER (NCONTI = 2) 

NCONII CONTINUITY CONDITIONS ARE IMPOSED 

AT THE INTERNAL MESH POINTS. 

INTEGER NPDE 

NUMBER OF PDES 

PARAMEIHl (NPDE = 1) 

X DEMENSION 

INTEGER XKCDL 

XKCOL IS THE NUMBER. OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL, WHICH IS 

EQUAL TO THE DEGREE OF THE PIECEWISE 

POLYNOMIALS MINUS ONE. 

INTEGER XNINT 

XNINT IS THE NUMBER OF SUBINTERVALS 

DEFINED BY THE SPATIAL MESH X. 

INTEGER XNCPTS 

XNCPTS IS THE NUMBER 

OF COLLOCATION POINTS. 

Y DEMENSION 

INTEGER YKCOL 

YKCDL IS THE NUMBER OF COLLOCATION POINTS 

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PIECEWISE POLYNOMIALS MINUS ONE. 

INTEGER YNINT 

YNINT IS THE NUMBER OF SUBINTERVALS 
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C DEFINED BY THE SPATIAL MESH Y. 

C 

INTEGER YNCPTS 

C YNCPTS IS THE NUMBER 

C OF COLLOCATION POINTS. 

INTEGER NEQ 

C NEQ IS 

C THE NUMBER OF BSPLINES 

C COEFFICIENTS (ORDAES). 

C 

C OGMMCN 

INTEGER KCOLX 

C KCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL, WHICH IS 

C EQUAL TO THE DEGREE OF THE PIECEWISE 

C POLYNOMIALS MINUS ONE. 

INTEGER NTNTX 

C NINTX IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH X. 

C 

INTEGER KCOLY 

C KCOLY IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PIECEWISE POLYNOMIALS MINUS ONE. 

INTEGER NINTY 

C YNINT IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH Y. 
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DOUBLE PRECISION XCOL(*) 

C THE SEQUENCE OF COLLOCATION POINTS ON 

C THE INTERVAL [Y_A, Y_B]. 

C 

C 

DOUBLE PRECISION YCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_A, Y_B]. 

C 

C 

DOUBLE PRECISION COEFF 

COEFF IS THE COEFFC3ENT OF UXX IN THE 

BURGERS' EQUATION 

C LOOP INDICES: 

INTEGER I 

INTEGER J 

INTEGER K 

CCMMCN /BSPLINE/ KCOLX, NINTX, KCOLY, NINTY 

CEMMCN /COLP/ XCDL(402) , YCOL(4Q2), COEFF 

XKCOL = KCOLX 

XNINT = NINTX 

YKCOL = KCOLY 

YNINT = NINTY 

XNCPTS= (XKCOL*XNINT+NCONTI) 

YNCFIS= (YKCOL* YNINT+NCONTI) 

NEQ=YNCPTS *XNCPTS 

DO 11 I = 1, NEQ 
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11 

W(K) = O.ODO 

WPRIME(K) = O.ODO 

CONTINUE 

DO 20 1 = 1, XNCPTS 

DO 10 J = 1, YNCPTS 

K = (I — 1) *YNCPTSfJ 

IEMP = DEXP((XCOL(I)+YCOL(J)) / (2.0DO*COEFF)) 

IF (REAL(1.0DO/TEMP) .NE. 0.) THEN 

W(K)= 1.0D0 / (1 .ODO+-TEMP) 

WPRIME(K) = 1.0D0/(2.0D0*COEFF)*HM> / 

& ((1 .ODO+TEMP) * (1.0D04-TEMP)) 

ENDIF 

10 CONTINUE 

20 CONTINUE 

999 RETURN 

C END OF SUBROUTINE UINIT 

END 

SUBROUTINE TRUU(T, X, XNPTS, Y, YNPTS, UTRUE) 

C 

IMPLICIT DOUBLE PRECISION (A-H.O-Z) 

DIMENSION UTRUE (*) 

DOUBLE PRECISION PI 

INTRINSIC COS, SIN 

PARAMEIER(PI =3.14159265) 

C 

C CONSTANTS: 

INTEGER NCONTI 

PARAMEUR (NCONTI = 2) 
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C NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

C AT THE INTERNAL MESH POINTS. 

C 

C X DEMENSION 

INTEGER XNPTS 

C XNPTS IS THE NUMBER OF POINTS 

DOUBLE PRECISION X(XNPTS) 

C X IS THE SPATIAL POINTS 

C 

C 

C Y DEMENSION 

INTEGER YNPTS 

C YNPTS IS THE NUMBER OF POINTS 

DOUBLE PRECISION 

C 

C-

Y(YNPTS) 

Y IS THE SPATIAL POINTS 

C OCMMCN: 

DOUBLE PRECISION 

C 

C 

XCOL(*) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [X_A, X_B]. 

C 

C 

DOUBLE PRECISION YCOL( *) 

THE SEQUENCE OF COLLOCATION POINTS ON 

THE INTERVAL [Y_C, Y_D]. 

DOUBLE PRECISION 

C 

C 

C 

C LOOP INDICES: 

COEFF 

COEFF IS THE COEFFOENT OF UXX IN THE 

BURGERS' EQUATION 
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INTEGER I 

INTEGER J 

INTEGER K 

C 

OCMMCN / COLP/ X(X)L(402) , YCOL(402), COEFF 

C 

C LOAD U INTO DELTA, IN ORDER TO SET BOUNDARY VALUES. 

DO 10 I = 1, XNPTS * YNPTS 

10 UTRUE(I) = 0.0D0 

C LOOP OVER ALL POINTS, AND LOAD RESIDUAL VALUES. 

DO 20 I = 1, XNPTS 

DO 11 J = 1, YNPTS 

K = (I-1)*YNPTS4-J 

TEMP = DEXP((X(I)+Y(J)-T) / (2*COEFF)) 

UIRUE(K)= 1.0D0 / (l.ODOf-TEM5) 

11 CONTINUE 

20 CONTINUE 

SUBROUTINE RESH (T, W, WPRIME, CJ, DELTA, IRES, RPAR, IPAR) 

C 

IMPLICIT DOUBLE PRECISION (A-H,0-Z) 

DIMENSION W(*) , WPRIME(*) , DELTA(*) , RPAR(4) ,IPAR(34) 

RETURN 

C END OF SUBROUTINE TRUU 

END 

DOUBLE PRECISION PI 

INTRINSIC COS,SIN 

PARAMEIER( PI = 3.14159265) 
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c 

C CONSTANTS: 

INTEGER NCONTI 

PARAMETER (NCONTI = 2) 

C NCONTI CONTINUITY CONDITIONS ARE IMPOSED 

C AT THE INTERNAL MESH POINTS. 

INTEGER LENGTH 

PARAMETER (LENGTH = 161604) 

C 

C X DEMENSION 

INTEGER XKCOL 

C KCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL, WHICH IS 

C EQUAL TO THE DEGREE OF THE PIECEWISE 

C POLYNOMIALS MINUS ONE. 

INTEGER XNINT 

C PARAMETER (XNINT = 2) 

C NINT IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH X. 

C 

INTEGER XNCPTS) 

C XNCPTS IS THE NUMBER 

C OF COLLOCATION POINTS. 

C 

C Y DEMENSION 

INTEGER YKCOL 

C YKCOL IS THE NUMBER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN, 

C WHICH IS EQUAL TO THE DEGREE OF THE 

C PIECEWISE POLYNOMIALS MINUS ONE. 
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INTEGER YNINT 

C YNINT IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH Y. 

C 

INTEGER YNCPTS 

C YNCPTS IS THE NUMBER 

C OF COLLOCATION POINTS. 

C 

C LOCAL 

DOUBLE PRECISION 

DOUBLE PRECISION 

DOUBLE PRECISION 

INTEGER 

C 

C 

C 

C 

C CCMMXJ 

INTEGER KCOLX 

C KOOLX IS THE NUMBSER OF COLLOCATION POINTS 

C TO BE USED IN EACH SUBINTERVAL, WHICH IS 

C EQUAL TO THE DEGREE OF THE PIECEWISE 

C POLYNOMIALS MINUS ONE. 

INTEGER NINTX 

C NINTX IS THE NUMBER OF SUBINTERVALS 

C DEFINED BY THE SPATIAL MESH X. 

C 

INTEGER KCOLY 

C KCOLY IS THE NUMESER OF COLLOCATION POINTS 

UXX(LENGTH) .UX(LENGTH) 

UYY(LENGTH) ,UY(LENGTH) 

U(LENGIH) ,UPRIME(LENGTH) 

NEQ 

NEQ IS 

THE NUMBER OF BSPLINES 

COEFFICIENTS (ORDAES). 
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c 
c 
c 

TO BE USED IN EACH SUBBNTERVAL IN Y DOMAIN, 

WHICH IS EQUAL TO THE DEGREE OF THE 

PIECE WISE POLYNOMIALS MINUS ONE. 

INTEGER NINTY 

c NINTY IS THE NUMBER OF SUBINTERVALS 

c DEFINED BY THE SPATIAL MESH Y. 

c 
DOUBLE PRECISION XCOL(*) 

c THE SEQUENCE OF COLLOCATION POINTS ON 

c THE INTERVAL [X_A, X_B]. 

DOUBLE PRECISION YCOL(*) 

c THE SEQUENCE OF COLLOCATION POINTS ON 

c THE INTERVAL [Y_C, Y D]. 

DOUBLE PRECISION COEFF 

c COEFF IS THE COEFFCIENT OF UXX IN THE 

c BURGERS' EQUATION 

n 

DOUBLE PRECISION XFBASIS (*) , YFBASIS (*) 

C LOOP INDICES: 

INTEGER I 

INTEGER J 

INTEGER IJ 

c 

INTEGER K 

V 

0CMM3V /BSPLINE/ KCOLX, NINTX, KCOLY, NINTY 

0CMM3NT /COLP/ XCOL(402) , YCOL(402), COEFF 

CJCMVEN /FBASIS/ XFBASIS(26532) ,YFBASIS(26532) 

r 
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c 
XKCOL = KCOLX 

XNINT = NINTX 

YKCX)L = KOOLY 

YNINT = NEMTY 

XNCPTS— (XKCOL * XNINT-fN CONTI) 

YNCPIS= (YKCOL* YNINT-mCONTI) 

NEQ=YNCPTS*XNCPTS 

C 

C LOAD U INTO DELTA, IN ORDEH TO SET BOUNDARY VALUES. 

DO 10 I = 1 ,NEQ 

DELTA(I) = 0.0 

10 CONTINUE 

CALL KRONXY(XKCOL, XNINT, XFBASIS, YKCOL, YNINT, YFBASIS, 

& W, WPRIME, U, UPRIME, 

& UX, UXX, UY, UYY) 

C HERE DELTA = F 

DO 20 I = 1, XNCPTS 

DO 11 J = 1, YNCPTS 

K = (I — 1) *YNCPTSf J 

DELTA(K) = —U(K) *UX(K)—U(K)*UY(K) 

& -fCOEFF*(UXX(K)+UYY(K)) 

11 CONTINUE 

20 CONTINUE 

DO 70 I = 1 ,NEQ 

DELTA(I) = UPRIME( I) - DELTA( I) 

70 CONTINUE 

C LOAD UPRIME ON THE BOUNDARY INTO DELTA. 

C TP 
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C X = A (XCOL(l) = 0) 

DO 30 I = 1 ,YNCPTS 

TEMP = DEXP((YCX)L(I)-T) / (2.0DO+COEFF)) 

DELTA(I) =U(I) - 1.0D0/(1.0D0 + TEMP) 

DELTA(I) = DELTA( I) * CJ 

30 CONTINUE 

C BK 

DO 50 I = 1 ,XNINT 

DO 40 J = 1 ,XKCOL 

IJ = (I - l)*XKCOL + J + 1 

C Y = C (YCOL(l) = 0) 

K = YNCPTS + (I — 1) *XKCOL* YNCPTS + (J-1)*YNCPTS + 1 

TEMP = DEXP((XCOL(IJ)-T) / (2,ODO*COEFF)) 

DELTA(K) = U(K) - 1.0D0/(1.0D0 + TEMP) 

DELTA(K) = DELTA(K) * CJ 

C Y = D (YCOL(YNCPTS) = 1) 

K = YNCPTS + (I -1)*XKCOL*YNCPTS + J+YNCPTS 

TEMP = DEXP(( 1.0 + XCOL(IJ)—T) / (2,ODO*COEFF)) 

DELTA(K) = U(K) - 1.0DO/(1,ODO + TEMP) 

DELTA(K) = DELTA(K) * CJ 

40 CONTINUE 

50 CONTINUE 

C BT 

C X = B (XCOL(XNCPTS) = 1) 

K = YNCPTS + XNINT *XKOOL*YNCPTS 

DO 60 I = 1,YNCPTS 

TEMP = DEXP(( 1.0 +YCOL(I)-T) / (2,ODO*COEFF)) 

DELTA(K+I) =U(K+I) - 1.0D0/(1.0D0 + TEMP) 

DELTA(K+I) = DELTA(K+I) * CJ 

60 CONTINUE 
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RETURN 

C END OF SUBROUTINE RESH 

END 
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