
B-spline Collocation for Two Dimensional, Time-Dependent,

Parabolic PDEs

By

Zhi Li

A Thesis Submitted to
Saint Mary's University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

August, 2012, Halifax, Nova Scotia

Copyright Zhi Li

Approved: Dr. Paul Muir
Supervisor
Department of Mathematics and Computing Science

Approved: Dr. Christina C. Christara
External Examiner
Department of Computer Science

University of Toronto

Approved: Dr. Walt Finden
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved: Dr. Norma Linney
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved: Dr. Madine VanderPlaat
Graduate Student Representative

Department of Sociology and Criminology

Date: August 24, 2012

Library and Archives
Canada

Published Heritage
Branch

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 Wellington Street
Ottawa ON K1A0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference

ISBN: 978-0-494-89991-5

Our file Notre reference

ISBN: 978-0-494-89991-5

NOTICE:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distrbute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

Canada

B-spline Collocation for Two Dimensional, Time-Dependent,

Parabolic PDEs

By

Zhi Li

A Thesis Submitted to
Saint Mary's University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

August, 2012, Halifax, Nova Scotia

Copyright Zhi Li

Approved: :
Dr. Paul Muir
Supervisor
Department of Mathematics and Computing Science

Approved:
Dr. Christina C. Christara
External Examiner

Department of Computer Science
University of Toronto

Approved:
Dr. Walt Finden
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved:
Dr. Norma Linney
Supervisory Committee Member
Department of Mathematics and Computing Science

Approved:
Dr. Madine VanderPlaat
Graduate Student Representative
Department of Sociology and Criminology

Date:

Abstract

B-spline Collocation for Two-Dimensional, Time-Dependent, Parabolic PDEs

By Zhi Li

In this thesis, we consider B-spline collocation algorithms for solving two-dimensional

in space, time-dependent parabolic partial differential equations (PDEs), defined over

a rectangular region. We propose two ways to solve the problem: (i) The Method

of Surfaces: Discretizing the problem in one of the spatial domains, we obtain a sys­

tem of one-dimensional parabolic PDEs, which is then solved using a one-dimensional

PDE system solver, (ii) Two-dimensional B-spline collocation: The numerical solu­

tion is represented as a bi-variate piecewise polynomial with unknown time-dependent

coefficients. These coefficients are determined by requiring the numerical solution to

satisfy the PDE at a number of points within the spatial domain, i.e., we collocate

simultaneously in both spatial dimensions. This leads to an approximation of the

PDE by a large system of time-dependent differential algebraic equations (DAEs),

which we then solve using a high quality DAE solver.

Date: August 24, 2012

i

Acknowledgments

First of all, I would like to thank my supervisor, Dr. Paul Muir for his patience,

suggestions and assistance through out the whole process of doing the thesis. The

rigorous research attitude I learned from him will benefit my future study and work. I

also would like to thank my external examiner, Dr. Christina C. Christara (University

of Toronto), and my supervisory committee, Dr. Walt Finden (Saint Mary's Univer­

sity) and Dr. Norma Linney (Saint Mary's University), for their valuable comments

and suggestions on my thesis. Thank you to my entire family for your love, support.

ii

Contents

1 Introduction 1
1.1 Order of Convergence of a Numerical Solution . . , 3
1.2 Matrix Tensor Product 4

2 Literature Review 5
2.1 Numerical solution of ID PDEs 5
2.2 Software for ID PDE 8
2.3 Numerical solution of 2D PDEs 10
2.4 Software for 2D PDEs 12
2.5 Overview of BACOL 15

3 The Method of Surfaces (MOS) 25
3.1 A Finite Difference based MOS Scheme 26

3.1.1 Discretization of the y domain using Finite Differences 26
3.1.2 Finite Difference Based MOS Example 29

3.2 A B-spline Gaussian Collocation MOS Scheme 31
3.2.1 Discretization of the y domain using B-spline Gaussian Collo­

cation 31
3.2.2 Numerical Results for the B-spline Gaussian Collocation MOS

Scheme 41

4 B-spline Gaussian Collocation for 2D Time-Dependent Parabolic
PDEs 43
4.1 Introduction 43
4.2 Spatial Discretization 44

4.2.1 B-spline basis 44
4.2.2 Collocation at Gaussian Points 45

4.3 DASPK 50
4.4 Efficient Block Matrix Algorithms 52

4.4.1 2D B-spline Projection 53
4.4.2 A Fast Block Matrix System Solution Algorithm 54
4.4.3 Fast Block Matrix Multiplication 59

4.5 Numerical experiments 62

iii

5 BACOL2D 69
5.1 Description of the Software 69
5.2 User Supplied Subroutines 71
5.3 Sample Program 71
5.4 Structure of BACOL2D 71

6 Interpolation-based Error Estimation 73
6.1 ID interpolation-based error estimation 73

6.1.1 ID Superconvergent Interpolant (SCI)-based Spatial Error Es­
timation 74

6.1.2 ID Lower Order Interpolant (LOI)-based Spatial Error Estimation 75
6.2 Extension to 2D 76

7 Conclusion and Future Work 79
7.1 Conclusion 79

7.1.1 MOS 79
7.1.2 2D B-spline Collocation 80

7.2 Future Work 81

A Source Code 89
A.l A Finite Difference based MOS Scheme 89
A.2 A B-spline Gaussian Collocation based MOS Scheme 104

B Source Code (A B-spline Gaussian Collocation for 2D Time-dependent
Parabolic PDE) 165

iv

List of Figures

2.1 The ABD structure of A x appearing in (2.6). The top and bottom are
n by n blocks of zeros. Each block, Su is an n(p — 1) by n(p-f 1) matrix.
The overlap between the Si blocks is 2n, p is the degree of the piecewise
polynomials, N is the number of subintervals, n is the number of PDEs. 20

2.2 The ABD structure of the matrix, M x , appearing in (2.9). Each block
Si is a (p — 1) by (p + 1) matrix. The overlap between the Si blocks
is 2, p is the degree of the piecewise polynomials, N is the number of
subintervals 21

3.1 The Method of Lines: solution approximations for fixed Xi values are
obtained for t = 0 • • • 4. From [mol] 26

3.2 The Method of Surfaces: solution approximations for fixed yi values
are obtained for t = 0 • • • 1 27

3.3 Approximate solution of the 2D Burgers' equation, as computed by the
finite difference based MOS, for £ = 0.1 at t — 1 31

3.4 The ABD structure of G y . Each block Si is a (q — 1) by (q+ 1) matrix.
The overlap between the blocks, Si, is 2, q is the degree of the B-
spline basis polynomials, M is the number of subintervals. Comparing
with (3.27), all B-spline basis functions are zero except Bi(c) = 1.
Similarly, comparing with (3.28), all B-spline basis functions are zero
except BMc{d) = 1- These observations explain the form of the first
and last rows of G v 40

3.5 Approximate solution of 2D Burgers' equation, as computed by the
B-spline based MOS, £ = 0.25, t = 1 42

4.1 For the case p = 3, q = 3, the points inside each rectangle are the
collocation points. Note that the collocation points on the boundaries
are not shown in this figure. From [PW95] 46

4.2 The structure of the ABD matrix A appearing in (4.7). Each block,
Di, is a matrix of size MC{jp — 1) by MC(j>+ 1). The overlap between
the Di blocks i s 2MC, p i s the degree of the polynomials used in the x
domain, N is the number of subintervals in the x domain, MC is the
dimension of the piecewise polynomial subspace in the y domain. . . . 50

v

4.3 The structure of one of the block matrices inside D x . Each block inside
Di is of size MC x MC. The overlap between the Rj blocks is 2, q
is the degree of the polynomials in the y domain, M is the number of
subintervals in the y domain. Top and bot tom are rows of zeros 51

4.4 The banded preconditioner matrix employed by DASPK. The ABD
structure is included with the band structure 52

4.5 The ABD structure of the 2D B-spline projection Q in (4.12) (the
degree of the polynomials in the x and y domains is 3 in each case, the
number of subintervals is 3 in each case.) 53

4.6 Approximate solution for Problem 1, e = 0.01, KCOL=3, NINT=64. . . 63
4.7 Approximate solution of Problem 2. KCOL=3, NINT=16 65
4.8 Approximate solution of Problem 3,m=6, KCOL=5, NINT=20 67
4.9 Approximate solution of Problem 4. KCOL=3, NINT=16 67

5.1 Software structure of BACOL2D 72

vi

Chapter 1

Introduction

In this thesis, we discuss the development of two numerical algorithms for solving

time-dependent parabolic PDEs in two space dimensions, x and y. We assume a

problem class having the form

u t (x , y , t) = f (x , y , t , u(x , y , t) ,u x (x , y , t) ,u y (x , y , t) ,u x x (x , y , t) ,u x y (x , y , t) ,u y y {x , y , <)) ,

(1.1)
for (x , y , t)E Q, x (£0, tau t] , where u : R x R x R —» R n , f : R x R x R x R n x R n x

R71 x RJ1 x RJ1 x Rn —>• Rn, and Q = {(x, y) \a < x < b, c < y < d} .
The boundary conditions at x = a and x = b are assumed to have the form

g a (y , t ,u (a ,y , t) ,u x (a ,y , t) ,u y (a ,y , t)) = 0, g b (y , t ,u (b ,y , t) ,u x (b ,y , t) ,u y {b ,y , t)) = 0,

while the boundary conditions at y = c and y = d have the form

g c (x , t , u (x ,c , t) ,u x (x ,c , t) ,u y (x ,c , t)) = 0, g d (x , t ,u (x ,d , t) ,u x (x ,d , t) ,u y (x ,d , t)) = 0,

for t£ (t 0 , tout] , where g a , g b , g c , gd '• R x R x RJ 1 x RJ1 x RJ1 —^ RJ1.

The initial conditions at t = to are given by

u(x , y , t 0) = u Q (x , y) , (x , y) G fit U dQ,

where UQ : R x R —> RJ1.

The first approach we consider is an approach we call the Method of Surfaces

1

(MOS). The MOS is obtained from a natural generalization of the method of lines

(MOL) [Sch91] (We will briefly review the MOL in the next chapter). We obtain a

sys tem of ID parabol ic PDEs f rom the 2D PDE by discre t iz ing the problem in the y

domain. The solution of the ID system approximates the solution of the 2D problem.

We can then make use of high quality software for ID parabolic PDEs in order to

obtain an approximate solution to the 2D problem. An example of a software package

for ID parabolic PDEs is BACOL [WKM04a, WKM04c]. We propose two ways to

implement the MOS: one based on finite differences and the other based on B-spline

collocation.

The second approach we consider uses B-spline collocation in a tensor product

framework to simultaneously discretize both spatial domains. The approximate so­

lution is represented as a bi-variate piecewise polynomial implemented in terms of a

B-spline basis [dB77, dB78], with unknown time-dependent coefficients. By requir­

ing the approximate solution to satisfy the PDE and boundary conditions at certain

points in the spatial domain, a system of differential algebraic equations (DAEs) is

obtained. Since, in the two-dimensional case, the DAE system is usually large, we use

DASPK [BHP94] to solve it. DASPK is a newer version of the well-known DASSL

code [Pet83], and is able to solve large scale DAEs efficiently. Our preliminary imple­

mentation of this approach is called BACOL2D. Since BACOL2D is natural extension

of BACOL, many of the algorithms employed in BACOL are applicable to BACOL2D.

We also describe an algorithm that uses a fast block LU scheme with modified alter­

nate row and column elimination with partial pivoting for the treatment of certain

almost block diagonal (ABD) [ACR81, DFK83b] linear systems that arise during the

computation.

In Chapter 2, we provide a review of the relevant literature. Chapter 3 discusses the

MOS. Chapter 4 discusses 2D B-spline collocation and some numerical experiments.

The BACOL2D code will be described in Chapter 5. We will present numerical results

2

in Chapter 6 using BACOL2D to demonstrate the existence of points within the spa­

tial domain where the collocation solution is superconvergent. Such superconvergent

values may be useful for error estimation. Chapter 7 provides our conclusions and

suggestions for future work.

In the remainder of this chapter we describe the experimental determination of

the order of convergence of a numerical solution and a matrix tensor product.

1.1 Order of Convergence of a Numerical Solution

In Chapter 4, we will numerically investigate the order of convergence of the 2D

B-spline collocation solutions we obtain, and determine the order of convergence of

the superconvergent points in Chapter 6. Here we explain how we experimentally

determine the order of convergence of a numerical solution.

Assume we have a problem with a known solution so that the error of an approx­

imate solution can be computed. Let E\ and E2 denote the errors of two solution

approximations obtained from computations based on two different 2D uniform square

spatial meshes having mesh sizes of hi and h2 (hi > h2). Here hi is the length of the

side of each square of the mesh associated with Ei, h2 is the corresponding quantity

associated with E2.

Assume that

Ei = 0(/if); then E 1 « Ch f,

E 2 = 0(h 2) \ then E 2 « Ch 2 ,

where C is a constant independent of hi and h 2 , and R is the unknown order of con­

vergence of the numerical method that was used to obtain the approximate solutions.

Then

3

Ei
E 2

which gives

lo§ (̂ « R " lo§

Then the order of convergence of the numerical method is given (approximately) by

loS (t)
R

loS (fe)

1.2 Matrix Tensor Product

At several places in the thesis, we will consider matrix tensor products. Let V be

an m x n matrix and M be a p x q matrix.Then the tensor product (or Kronecker

product) V®Mis the mp x nq block matrix given by

vu M V12 M

V 2 \M V 2 2 M

v i n M

V 2 nM

VmlM v m 2 M v r n n A-f

A property of the tensor product that will be used in Chapter 4 is

{A 0 B)(C ®D)=AC® BD,

where A, B , C and D are matrices of appropriate sizes.

4

Chapter 2

Literature Review

In the chapter, we will briefly review some of the literature associated with the nu­

merical solution of ID and 2D PDEs. We will also review software packages for

these problem classes. In the last section we will review, in more detail, the package

BACOL-a high order B-spline adaptive collocation solver for ID PDEs.

2.1 Numerical solution of ID PDEs

The problem class

We will consider ID PDEs of the form

u t (x , t) = f (x , t , u (x , t) ,u x (x , t) , u x x (x , t)) ,

for x G (a, b) , t € (to , +00), with u : R x R —> i?", / RJ 1 .

The initial conditions at t = to are given by

u(x , to) = uo(x) , x e [a, 6],

and the separated boundary conditions are given by

b L (t , u (a , t) ,u x (a , t)) — 0, b R (t , u (b , t) ,u x (b , t)) = 0,

5

where bL,bp, : R x Rn x RJ1 -> i?", and £ G (i0, +00) .

There are many methods for solving ID PDEs - see, e.g., [HV03, MRB05, Goc02,

LeV07, VWSS01], but in this thesis, we will consider the MOL. The MOL is a gen­

eral technique for solving time-dependent PDEs. The basic idea is that since there

exist several good software packages for solving ordinary time-dependent differential

equations (ODEs) or DAEs (i.e. a coupled system of ODEs and algebraic equations),

we might approximate only the spatial derivatives, e.g., ux,uxx, instead of both the

time derivative and spatial derivatives appearing in the PDE. This spatial discretiza­

tion process leads to a system of ODEs or DAEs, (once the boundary conditions are

included) and we can solve this system using a high quality ODE or DAE solver.

We next discuss the general MOL approach in more detail. First, the MOL algo­

rithm discretizes the spatial derivatives using, for example, finite difference methods,

finite element methods, or collocation methods. This leads to a system of initial value

ODEs that approximate the original PDE. There are two ways to deal with the bound­

ary conditions. In the earliest MOL codes, the numerical software available for the

time integration could only handle ODE systems; therefore the boundary conditions

had to be differentiated. That is the MOL software required the user to differenti­

ate the boundary conditions with respect to time. These ODEs were then combined

with the ODE system arising from the discretization of the PDEs, and this combined

ODE system was solved with an ODE solver. However, the boundary conditions were

solved only approximately by the ODE solver.

About thirty years ago, software packages which could handle DAEs began to

appear. This meant that the boundary conditions could now be treated directly

instead of requiring them to be differentiated. The boundary conditions are treated

as algebraic equations, and are coupled with the ODEs which approximate the original

PDEs, leading to a DAE system. There are many good quality DAE solvers, such as

DASSL and RADAU5 [HW93],

6

The standard MOL approach fixes the mesh points that partition the spatial do­

main. The advantage is that the resulting system can be solved in a straight forward

manner by an ODEs solvers with adaptive temporal error control. This means that

the solver can adapt time steps and control an estimate of the temporal error.

In the standard MOL, adaptive error control is limited to the time dimension, and

it thus is difficult to resolve sharp spatial dimension features of a PDE solution, such

as a traveling wave front. In such cases the spatial error may dominate the temporal

error, and the MOL algorithm would need more mesh points in the spatial layer

regions (where the solution has rapid variations) to achieve high accuracy approximate

solutions. Without adaptive spatial error control, it is impossible to determine the

appropriate number and locations of the spatial mesh points.

Considering this limitation of the standard MOL, we observe that it is important

to be able to move the mesh points to let them concentrate in the layer regions.

The adaptive MOL (AMOL) [VWSS01] emerged to adapt the mesh in the space

dimensions. The AMOL can be classified according to one or more of the following

strategies:

h -refinement: refining or coarsening of the spatial mesh based on, e.g., a posteriori

error estimates [MooOl, AOOO],

p-refinement: varying the order of the numerical method used to approximate the

solution in each subinterval of the spatial mesh,

r-refinement: also called the Moving Mesh Method (MMM) [HR11]; this involves

relocating a fixed number of mesh points to layer regions of the physical domain.

There are several AMOL software packages, that can adjust the locations of the

mesh points based on a monitor function, putting more of the available points in layer

regions where the solution changes dramatically. When the mesh adaption algorithm

allows for changing the location of the spatial mesh points and the number of mesh

points, the method can provide tolerance control of the spatial error.

7

2.2 Software for ID PDE

In this section we review several MOL software packages for the numerical solution

of ID PDEs.

M3RK

M3RK [Ver80b, Ver80a] is a software package based on an explicit three-step

Runge-Kutta method for the time integration of discretized parabolic equations. The

spatial dimension of the PDE is discretized using a Galerkin method [HV03] based

on piecewise quadratic polynomials [Bak77]. The author later extended the software

to solve 2D and 3D problems, including adaptive mesh refinement.

PEDCOL

PEDCOL [MS79] employs a fixed spatial mesh and uses a B-spline collocation

method to discretize the PDEs. It requires the user to differentiate the boundary

conditions to get ODEs. Since it uses a fixed spatial mesh, it has no control over the

spatial errors. PDECOL calls the time integrator STIFIB, which is a slightly modified

version of GEARIB [Gea71, Hin76]. GEARIB has two types of time integration

formulas; the first is a family of Adams' methods [Goc02]; the second is a family of

backward differentiation formulas (BDFs) [Gea71]. The authors suggest using the

second class of methods because of the better stability properties. The linear systems

that arise during the computation are assumed to have a band matrix structure and

are solved by a band solver.

EPDCOL

EPDCOL [KM91] is an improvement of PDECOL. Based on the observation that

8

the Newton iteration matrix has an ABD structure, the use of the band linear system

solver is replaced by COLROW [DFK83a, DFK83b], an ABD linear system solver.

The authors show that this modification saves over 50 percent in total execution time.

MOVCOL

MOVCOL [HR96] uses a MMM based on cubic Hermite collocation to discretize

the PDEs. The boundary conditions are treated as algebraic equations. DASSL is

used to deal with the resulting DAE system.

HPNEW

HPNEW [MooOl], is an evolution of HPDASSL [Moo95], with spatial error control

based on interpolation error estimates. The interpolation error estimates are based

on a generalization of the error formula for the Lagrange interpolating polynomial. A

finite-element Galerkin method is employed to implement the spatial discretization.

The boundary conditions are treated as algebraic equations, and the resulting DAE

system is solved by DASSL. HPNEW employs an adaptive hp-refinement strategy in

space.

BACOL

BACOL uses B-spline collocation to discretize the PDEs, leading to a system of

ODEs. The boundary conditions are treated directly as algebraic equations, and

the resulting DAE system is solved using DASSL. Because DASSL uses BDFs, i.e.,

multistep methods, after a spatial remeshing, past solution values must be interpolated

to get the required new values at previous time steps. DASSL controls the temporal

error and at the end of each time step, BACOL computes a high-order estimate of

9

the spatial error and requires this estimate to satisfy the user tolerance. Numerical

experiments [WKM04b] show that BACOL is more efficient than similar available

codes such as PDECOL/EPDCOL, MOVCOL, and HPNEW, especially for solutions

that have narrow spikes or boundary layers. We will describe BACOL in much more

detail later in this chapter.

BACOLR

BACOLR [WKM08] is a new version of BACOL; the two codes share many of the

same algorithms, such as the spatial discretization. The most significant difference is

that BACOLR uses a modified version of RADAU5 which is based on a fifth-order

implicit Runge-Kutta method of Radau type. The main modification of RADAU5 is

to allow it to use the COLROW routines CRDCMP and CRSLVE (the ABD system

solvers). Because RADAU5 is a one-step DAE solver, the solution from previous time

steps no longer needs to be saved, and the interpolation of past solution values is

not required. However for each time step, there is more work to do, since an implicit

Runge-Kutta method is used. For problems for which the resultant DAE system has a

Jacobian with eigenvalues near the imaginary axis, BACOLR is superior to BACOL.

This happens because BACOL uses DASSL which is based on a BDFs which have

stability issues for such problems [WKM08].

2.3 Numerical solution of 2D PDEs

We are going to implement 2D B-spline collocation for 2D time-dependent parabolic

PDE, and solve the resulting DAEs by DASPK. To our knowledge, nobody has done

this before. Previous experience with ID parabolic PDE solvers has shown this to be

10

a promising approach.

We now briefly identify related work. R.D. Russell and W. Sun [RS97] used Her-

mite cubic spline collocation combined with a tensor product spatial basis to solve

elliptic PDEs. They also suggested a fast algorithm based upon a matrix block eigen­

value decomposition for the numerical solution of the linear systems that arise. Later

W. Sun [SunOl] suggested tensor product B-spline collocation for elasticity problems

(non-time-dependent). Y. Wang [Wan95] used a parallel B-spline collocation method

for 2D linear parabolic, separable PDEs. He separated the boundary conditions from

the system of collocation conditions, solved the boundary conditions first, and then

substituted the solution values on the boundary back into the system of collocation

conditions. S. Wendel [WMKL93] used a 2D B-spline finite element method for the

numerical solution of 2D PDEs.

There are many collocation methods that have been used to solve 2D problems.

These include methods such as optimal Quadratic Spline Collocation (QSC) and Cubic

Spline Collocation (CSC) that were extended to 2D elliptic BVPs for rectangular

domains [HVR88, Chr94]. The advantage of these two methods is that since they

use only one collocation point per subinterval, the linear systems that arise are the

smallest among all types of piecewise polynomial collocation methods for this problem

class.

For a 2D PDE whose solution has rapid variation, one useful approach is to use

a MMM. A MMM typically controls the mesh movement using a moving mesh PDE

(MMPDE) [HR11]. K. S. Ng [Ng05] used CSC and algorithms from [HR98b, HR98a]

that employ MMM. He used CSC to treat the MMPDE to take advantage of the high

order convergence of the CSC algorithm and its lower computational costs. For more

details about the MMPDE approach, please refer to the book by W. Huang and R.

D. Russell [HR11].

E.N. Houstis, W. Mitchell and J.R. Rice consider special collocation algorithms

11

(GENCOL [HMR85a], HERMCOL, INTCOL [HMR85b, HMR85c]) for elliptic prob­

lems on rectangular domains. (GENCOL is applicable to quite general domains and

is thus more general than the other collocation packages mentioned above.) These

packages are included in the ELLPACK [DR87, BL90, DMPP86] library. W. Huang

and R. D. Russell [HS94, HuaOl] introduced the MMPDE approach, and with W.

Cao [CHR99, HR98b, HR98a, HR11], they studied the MMM for 2D problems. S.

Adjerid et al. [AAF01, AFMW92, AM02], have constructed a posteriori estimates for

the spatial errors of finite element MOL solutions of 2D parabolic PDEs.

2.4 Software for 2D PDEs

In this section we review selected software packages for 2D PDEs.

ELLPACK

ELLPACK [DR87, BL90, DMPP86] is an extension of a general framework for solv­

ing various elliptic PDEs in two-dimensions on general domains or in three-dimensions

on rectangular domains. The ELLPACK system includes finite element methods

(FEM), parallel execution, and a graphical user interface for problem specification

and solution.

VLUGR2

VLUGR2 [BTV96] is an adaptive-grid software package for 2D systems of PDEs.

It uses a finite difference method to implement the spatial discretization. Since large

scale linear systems arise, this software package employs a Krylov subspace method

to solve the linear systems. The linear systems can either be solved by BiCGStab

[vdV92] with ILU preconditioning [Saa03] or GCRO [dSF93] with a simple (block)

diagonal scaling. There is also an option to use a matrix-free implementation. While

12

VLUGR2 can deal with domains which can be described by right-angled polygons,

the author has also extended the software to VLUGR3 [BV96] that can deal with an

arbitrary "brick-structured" domains.

CLAWPACK

CLAWPACK [FL03, LeV96], can be used to solve 1-D and 2-D hyperbolic prob­

lems. CLAWPACK computes numerical solutions using a wave propagation approach

that includes adaptive mesh refinement.

KASKADE

KASKADE 3.0 [BER95], adopts an object-oriented (00) approach, and was de­

veloped for the solution of PDEs in one, two, or three space dimensions. Adaptive

FEM techniques are employed to compute numerical solutions. The software employs

a posteriori error estimation, local mesh refinement and multilevel preconditioning.

DIFFPACK

DIFFPACK [BL97, Lan03] is a comprehensive set of tools for solving PDEs based

on 00 programming. It supports FEM; the elements include the multilinear and

multiquadratic type elements, 3D box elements, triangles and tetrahedrons.

SPRINT2D

M. Berzins et al. [BFP+98, BPPW97], developed the SPRINT2D software which

solves time-dependent PDEs in two-space variables. The class of problems solved in­

cludes systems of parabolic, elliptic, and hyperbolic equations. It uses a finite volume

method (FVM) to discretize the space domain. The software uses unstructured tri­

13

angular meshes and adaptive local error control in both space and time; h-refinement

is used to perform any spatial adaptivity.

P2MESH

P2MESH [BM02], developed by Enrico Bertolazzi et al, is a generic object-

oriented interface between 2-D unstructured meshes and FEM/FVM-based PDE solvers

Thus it can perform (i) mesh generation, (ii) formulation of the discrete algebraic equa­

tions (i.e., discretization of the PDE) (iii) solution of the discrete algebraic equations,

and (iv) visualization of the numerical solution. One of the most important features

of P2MESH is that it employs 00 programming techniques, thus isolating the data

structure design from the implementation.

deal.II

deal.II [BHK07] is an open source finite element library. It uses 00 concepts to

break the implementation into smaller blocks such as defining meshes, linear algebra,

input/output capabilities. It has support for the solution of PDEs in one, two, and

three space dimensions, and h, p, and hp refinement is fully supported. A variety

of FEMs are available. deal.II also has features such as: a complete linear algebra

library including methods for sparse matrices and Krylov subspace solvers.

Hermes

Hermes [VvZ07] is a C++ library for adaptive hp-FEM solvers. It can solve ODEs,

linear PDEs and time-dependent nonlinear PDEs. The central part of the solver is

the FEM/hp-FEM module which contains algorithms for processing and adaptation

of finite element meshes, numerical quadrature, solution of systems of linear and

14

nonlinear algebraic equations, a posteriori error estimation, etc.

2.5 Overview of BACOL

The BACOL package, mentioned earlier, is the basis for the two approaches we

consider in this thesis. We therefore provide a detailed review of this package in this

section.

Spatial discretization

The spatial discretization is the same as the one described earlier for the one-

dimensional time-dependent parabolic PDEs solvers PDECOL and EPDCOL. The

spatial discretization is based on B-spline collocation at Gauss points. We assume a

spatial mesh that partitions [a, 6]

a = xo < x i < • • • < x/v = b.

We associate with this mesh, piecewise polynomials of degree p, i.e., we have a

polynomial of degree p for each subinterval, x,}, i = l,--- ,N, and continuity

v — 1. The approximation subspace is

Sp •= {V{x) \V G C u ~\ x e [a, 6]; V € Pp, x G x<],» = 1, • • • , N},

where P p is the space of polynomials of degree p, and p > v > 0. The dimension of

Sp is NC = (p — u+ 1)N + v. In BACOL, C1—continuity at the internal mesh points

is imposed. Consequently, v = 2, and the dimension of this piecewise polynomial

subspace is NC = N(p—1) + 2.

To represent the piecewise polynomials, BACOL employs a B-spline basis. Let

{Bj(x)}f£1 be the B-splines basis associated with the above mesh with C1 —continuity

a t t h e i n t e r n a l m e s h p o i n t s . T h e d e g r e e o f t h e B - s p l i n e s b a s i s p o l y n o m i a l s , p , 3 < p <

15

11, is specified by the user. The approximate vector solution, U(x, t) , is expressed in

the form

N C

U(x, t) =

where W j (t) is the vector (W j (t) : R —> F C 1) of time-dependent B-spline coefficients

multiplying the jth (scalar) B-spline basis function.

An important property of the B-spline basis is that on any subinterval [xt_i, x2),

at most p+ 1 basis functions are non-zero, namely, Note that we

then have

t(p-l)+2

U(x, t) = ^ ̂ w m (t)B m (x} . ,
m=(i—l)(p—1)+1

t(p-l)+2

U x (x , t) = J] wm(i)Bm(:r), (2.1)
m=(i-l)(p-l)+l

i(p—1)4-2

U x x (x , t)= w m(t) B m(x) -
m=(i—l)(p—1)+1

The B-splines are implemented through a collection of Fortran subroutines built

around an algorithm for the stable evaluation of B-splines of arbitrary degree and

arbitrary continuity (the B-spline package [dB77, dB78]).

Let the mesh subinterval size sequences be where hi = Xi — Xj_i, and let

{piYiZi be the Gaussian points [BS73] on [0,1] such that

0 < p0 < pi < • • • < pp-1 < 1.

16

The collocation points in the x domain are then defined by

£1 — a , — x i - i + hiPj , £NC = b,

where I = 1 + (i — 1) • (p — 1) + j , for i — 1, • • • , N , j = 1, • • • , p — 1.

The collocation method requires the approximate solution to satisfy the PDEs at

the collocation point sequence, Substituting the approximate solution and

its derivatives into the ID PDE and evaluating the resulting expression at £/ gives the

collocation condition

Utfa t) = f^ i , t ,U^i , t) ,U x ^ i , t) ,U x x (^ t)) . (2.2)

Substituting for U, U x and U x x from (2.1) in (2.2) then gives

i (p—l)+2

m=(i—l) (p—1)+1

(i (p- 1)+2 i (p- l)+2

&,t, (2.3)
m=(i—l)(p—1)+1 m=(i—l)(p—1)4-1

HP- 1)4-2 \

m=(i-l)(p-l)+l J

where $ G [xi_i,xi), i = 1, • • • N , j = 1, • • • , p - 1, I = 1 + (» - 1) • (p - 1) + j .

An important aspect of the BACOL code is that the boundary conditions are

treated in their original form. We substitute the approximate solution and its first

derivative into each of the boundary conditions; this gives

b L (t ,U(a , t) ,U x (a , t)) = 0, b R (t ,U(b , t) ,U x (b , t)) = 0.

17

Rewriting the above using (2.1) gives

(P+1 p+1 \

t, ̂ 2 w m (t)B m (a) , w m { t)B ' m {a) J , (2.4)
m=1 m= 1 /

(N { p - l) + 2 N (p - 1)+2 \

t , w m (t)B m (b) , £ w m (t)B m (b) . (2.5)
m=(./V-l)(p—1)+1 m — (N — l)(p—1)+1 /

Considering the boundary conditions and collocation conditions together ((2.4),

(2.3) and (2.5)), one obtains a DAE system (N(p— l)n ODEs coupled with 2n algebraic

equations) of the form

(P+ L P+1 \
t, ̂ 2 wm(t)Bm(a), w m (t)B ' m (a) j ,

m= 1 m=1 /

i (p - l)+2

m=(i-l)(p-l)+l

i (p - 1)+2 z(p—1)+2

/ (& . * . J] W m (i) B m (&) ,] T W m (t)B m (^ i) ,

m=(i—l)(p—1)+1 m — (i — l)(p—1)+1

i(p-1)+2

^ 1 w m(t)B m (£ l)
m=(i-l)(p-l)+l

£ [xj_j , 3^j) , / 1 -I- (z 1) • (p 1) "F j , i 1, • j iV, j 1, • • - , p 1,

18

(N i p - 1)+2 N { p - l)+2

t , w m(t)B m (b) | .
m=(iV—l)(p—1)+1 m=(iV-l)(p—1)+1

We can write the above DAE system in a matrix system form:

AxWjfy = F(t ,W{t)) . (2.6)

The top and bottom blocks of rows of A x corresponding to the boundary conditions

are zero. The internal block rows of Ax correspond to the collocation conditions.

Figure 2 .1 shows the ABD s t ruc ture of A x .

In Figure 2.1, the zth subblock, Si , i = 1, • • • , N , is a n(p - 1) x n(p + 1) matrix

of the form,

Bl(£ l+l) I n

Bl{£l + 2)In

Bi+i(Ci+i)In

B 1+1(^1+2) In

Bl+p(£l+l) In

Bl±p(£l+2)In
(2.7)

Bl(i l + p - \) I n -Si+l(£/+p—l) In ' ' ' •®i+p(£i+p-l)-^n

where I = 1 + (i — l)(p — 1), and In is the n x n identity matrix.

The software COLROW (CRDCMP and CRSLVE) is employed in BACOL to

implement an LU decomposition with modified alternate row and column elimination

with partial pivoting to solve the ABD systems that arise.

The vector of unknown coefficients, W_(t) , has the form

Mt) =

W i(t)

W2 (t)

w N C { t)

The right hand side vector of (2.6) is

19

"I Ml I

n(p-U s,

1

S. n(P-l| S.

Figure 2.1: The ABD structure of A x appearing in (2.6). The top and bottom are n
by n blocks of zeros. Each block, is an n(p — 1) by n(p + 1) matrix. The overlap
between the Si blocks is 2n, p is the degree of the piecewise polynomials, N is the
number of subintervals, n is the number of PDEs.

E{t ,W(t)) =

bL (t , Emil w m (t)B m (a))

m = (i - \) { p - l) + \ Em=(i-l)(p-l)+l WTn(t)Bm(^l),

i (p - 1)+2
m = (i m=(i-l)(p-l)+l W, .(i)Ctti)) .

bR (t , (»)• 2:
N(p-1)+2
m=(iV—l)(p—1)+1 wm ,(()B„(6)) _

ID B-spline Projection matrix

At the collocation points in the x domain,

NC

t=i

We can rewrite (2.8) in matrix form as

(2.8)

20

s.

S. H) S.

S.

L D '

Figure 2.2: The ABD structure of the matrix, M x , appearing in (2.9). Each block
is a (p — 1) by (p + 1) matrix. The overlap between the 5t blocks is 2, p is the degree
of the piecewise polynomials, N is the number of subintervals.

where £ =

€NC

Figure 2.2 shows t

6

6

m,t) = M x w(t) ,

U(Zut)

u fa , t)
, and£(£,t) =

U(^NC, t)

ie structure of the matrix, M x , appearing in (2.9)

(2.9)

In M x , the ith subblock, S i } i = 1 , • • • ,N , still has the form (2.7), but /„ is

replaced by 1.

Spatial Error Estimation

As we know, since error in the approximation of the PDE system is unavoidable,

it is essential to assess the accuracy of the approximate solution. It is important

to make a distinction between error control in time and error control in space. In

BACOL, DASSL controls an estimate of the local temporal error at each time step.

21

BACOL computes a high order estimate of the spatial error, after each successful time

step, and adjusts the spatial mesh so that the spatial error estimate satisfies the user

tolerance for each successful time step.

In addition to the solution approximation, U(x, t) , BACOL computes a second

global collocation solution, U(x,t), using degree p+ 1 piecewise polynomials on the

same spatial mesh. BACOL obtains a posteriori spatial error estimates by compar­

ing U(x,t) and U(x,t) (see below). If the estimated error does not satisfy the user

provided tolerance, then BACOL will generate a new mesh by approximately equidis-

tributing the estimated error over each subinterval of a new mesh. The total number

of mesh points may also be changed.

BACOL generally employs a warm restart after a remeshing, as suggested in

[AFMW92]. This means that BACOL interpolates the B-spline coefficients related

to degree p+ 1 solution, U(x,t), associated with the old mesh, to the new mesh at

the current time step. Since the BDF methods employed in DASSL have up to a

maximum order of 5, BACOL employs interpolation at the current step and, at most,

the last 5 time steps to obtain the updated coefficient values. After several warm

starts, if the spatial error estimate still does not satisfy the tolerance, BACOL will

perform a cold start. This means that BACOL will continue using the same spatial

mesh but will restart DASSL at order 1 using a very small time step.

BACOL computes two normalized spatial error estimates. The normalized spatial

error estimate, Ea(t), for the sth PDE component over the whole interval [a, 6], is

while the normalized error estimate for the ith subinterval over all s components is

U,(x , t) -U, (x , t)
ATOL a +RTOL a \U s (x , t) \ S = 1 Tl

U, (x , t) -U s (x , t)
ATOLa +RTOL,\U,(x,t)\

22

where t is the time at the end of the current time step, ATOL a , RTOL s are the abso­

lute and relative tolerances for the sth PDE component, Us(x,t) is the sth component

of the collocation solution of degree p, and Us{x, t) is the sth component of the second

collocation solution of degree p+ 1.

In order to assess the distribution of the error over the spatial subintervals, BACOL

calculates three parameters related to the Ej(t) and Ea(t) values,

and E(t) = max EJt) ,
1 < a < N P D E

where r\ is related to the maximum error estimate over all subintervals and r2 is

re la ted to the average e r ror es t imate over a l l the subin terva ls . Then the ra t io r \ / r 2

gives an indication of whether the error is distributed approximately equally over the

subin terva ls . The spa t ia l e r ror sa t i s f ies the to le rance when E(t) < 1.

Time integration

As mentioned earlier, BACOL employs a modification of DASSL, which uses the

BDF-linear multistep methods for the time integration of the DAEs arising from the

discretized PDEs and the boundary conditions. DASSL employs a Newton iteration

for the solution of the nonlinear systems that arise. The primary modifications to

DASSL are as follows:

• Because the Newton matrices have an ABD structure, a new option for a linear

solver was added to DASSL: COLROW (CRDCMP and CRSLVE) which implements

an LU decomposition with modified alternate row and column elimination with partial

pivoting to solve the ABD systems is now included as an option with DASSL.

23

• In DDASLV (one of the DASSL subroutines), the rows of the ABD system

corresponding to the algebraic equations are scaled by 1/Ai. This improves the

conditioning of the Newton matrices. (At is the current time step).

24

Chapter 3

The Method of Surfaces (MOS)

The MOS is, to our knowledge, a new approach for solving 2D problems; it is an ex­

tension of the well known MOL. In the MOL, as explained in Chapter 2, we discretize

the spatial domain, transforming a ID PDE into a system of time-dependent DAEs

and then use software for numerical time integration to integrate the DAE solution

forward in time t. In a simple MOL implementation, we use a mesh of points to par­

t i t ion the x domain and a t each mesh poin t , x , , we approximate the so lu t ion , u(x i , t) .

The function u(xi,t) is a curve perpendicular to the x axis running along the surface

u(x , t) .

The MOS is obtained from a natural generation of the MOL. In the 2D case, the

domain of the solution u(x,y,t) is a 3D volume (Figure 3.1). By discretizing, say,

the y domain, we then consider a collection of surfaces u(x, yt,t), where yi is a mesh

point in the y domain. Then we approximate each of the surfaces and together these

approximat ions g ive an approximat ion to u(x ,y , t) . When we d iscre t ize only the y

domain, we get a system of ID PDEs, and then we can use a ID PDE solver, e.g.,

BACOL, to solve this system of ID PDEs.

Any standard method can be used for the discretization of y domain, e.g., finite

difference methods, finite element methods, or collocation methods. We will next

25

Figure 3.1: The Method of Lines: solution approximations for fixed Xi values are
obtained for t = 0 • • • 4. From [mol]

discuss further details for a finite difference type of MOS algorithm.

3.1 A Finite Difference based MOS Scheme

3.1.1 Discretization of the y domain using Finite Differences

Assume the general form for a 2D PDE given by (1.1). We consider the case of

a uniform mesh in the y domain, but with a slight generalization of the approach a

non-uniform mesh can be treated.

In order to apply finite differences in the y domain, we divide the y domain into

M sections of equal length, Ay = , and then = c + iAy, i = 0,..., M. Let

Ui(x,t) be the numerical approximation to u(x,yi,t), i = 0, Then Ui(x,t) is

the ith surface (i.e., "slice") of u(x,y , t) .

26

MOS

Figure 3.2: The Method of Surfaces: solution approximations for fixed yi values are
obtained for t = 0 • • • 1

The 2D time-dependent parabolic PDE (1.1) can be discretized using central dif­

ference schemes for the f i r s t and second der iva t ives of y \ for the z th sur face , Ui(x , t) ,

we have

(Ui) t {x , t) = f ^x , y u t , Ui(x , t) , (Ui) x (x , t) , U t + 1 (x ' t 2 A y t ~^ X ' ̂ , (u i) x x (x , t) ,

(U j + l) x {x , t) - (Uj- i) x {x , t) U i + i (x , t) - 2 U j (x , t) + U j - i (x , t)
2A y ' Ay 2

(3.1)

for (x , t)e . (a,b) x (i, t^]. The initial conditions at t = t 0 associated with (3.1) are

given by

Ui(x , t) = uo(x ,y i) , x e[a ,b] , i = 1, • • • , M - 1. (3.2)

The boundary conditions associated with (3.1) are

(. . j . ^ / _ U i + i (a , t) - U i - i (a , t) \ n
9a f V i i \Ui)x \P") t }> 2Aj / / — v^*^)

i = 1, • • • , M — 1 ,

27

9b t , Ui(b , t) , (ui) x (b , t) , " ' + i (M) ^ " « = ° > (3 - 4)

where t G (t , t Q ut], i = — 1. Thus, the solution approximations Ui(x, t) ,

i = — 1, are defined by the above system of ID PDEs with associated

boundary and initial conditions.

The remaining boundary conditions (not yet considered) are

g c (x , t , u (x , c , t) , u x (x , c , t) ,u y (x , c , t)) = 0,

g d (x , t , u (x , d , t) , u x (x , d , t) ,u y (x , d , t)) = 0,

for t£ (t o , TAUT] . Substituting uo{x , t) « u(x , yo , t) = u(x , c , t) and UM(X , t) & u(x , YM, T) =

u(x, d, t) into these boundary conditions and employing one-sided finite differences,

we get

(* - t * \ d - t 4 \ u 2 (x , t) -u 0 (x , t \
g c I x , t , UO{x , t) , ~^ c

u o\ x > *)> 2Ay) = ' '

g d I x , t , u M {x , t) , t) , 2^) =

We wi l l assume that we can expl ic i t ly so lve the above equat ions , (3 .5) , (3 .6) , to obta in

u o (x , t) and UM(x , t) , and then these func t ions can be subs t i tu ted in the PDEs (3 .1)

and boundary condi t ions (3 .3) , (3 .4) . This assumpt ion requires tha t the boundary

condi t ions have the s impler form

g c (x , t , UQ(X , t)) = 0, g d (x , t , u M {x , t)) = 0.

28

(Alternatively, we could consider (3.5), (3.6), to be algebraic equations and com­

bine them with the PDEs (3.1). However, this algebraic/ID PDE system does not

have a form that can be solved by BACOL.)

In summary, we have a coupled system of (M — 1) ID time-dependent PDEs (3.1)

to be solved by BACOL, with initial conditions (3.2) and boundary conditions (3.3),

(3.4) (where we have explicitly obtained uo(x,t) and v,M{x,t) from (3.3), (3.4).)

In this section we consider an example, using BACOL to solve the system of ID time-

dependent parabolic PDEs arising from the application of the finite difference based

MOS.

Consider the 2D time-dependent parabolic PDE (the 2D Burgers' equation), (where

£ is a constant),

The problem domain is (x , y) £ (0,1) x (0,1), t > 0; the boundary and initial condi­

tions chosen so that the true solution is

The initial condition is

3.1.2 Finite Difference Based MOS Example

u(ar, 0) = (x , y) E [0,1] x [0,1],
1 + e

and the boundary conditions are

u (0 , y , t) L _ = o , t € (0 , 1) , y e (0 , 1) , (f f a = 0)
1 + e

29

u(1,y , t) "t+^t = 0, t e (0,1),?/ G (0,1), (g b = 0)
1 + e

u(x,0,t) ^rr=0, t G (0,1), x £ (0,1), (<?c = 0)
1 + e

u(x,l,i) = i€ (0,1),are (0,1). (g d = 0)
1 + e 2£

Assume we divide the y domain into M subintervals; let Ay = Then for

the internal points, y,, the discretization of the y domain using the finite difference

method gives the following system of ID parabolic time-dependent PDEs, involving

the unknown solution components, Ui(x,t), i = 1,... ,M — 1,

(ui)t = f(«i)xx-«»(wi)x+£ (^U'+2Ay8-1) = 1'''' 'M_1-

^ ^ ^ (3-7)
The corresponding initial conditions for Ui(x,t) are

1
x+y,.x , i = 1, • • • ,M — 1. (3.8)

The boundary conditions for Ui(x, t) are

U i { Q , t) - - 1
t N = 0 , t = l , - - - , M - l , (3 . 9)

(l + e ^ r j

Wi(l , t) -7 — 0) i = ! , • • • ,M — 1 . (3.10)
(l + e 2« J

To obtain Uo(x , t) and um(x , t) , we apply the remaining boundary conditions (g c =

0, gd = 0); we get,

1 1
i i 0 (x , t) = u M (x , t) = (3.11)

1 + e « 1 + e 2«

These can be substituted into (3.7).

Then the ID PDE system (3.7) (with the substitutions (3.11)) with initial condi­

tions (3.8) and boundary conditions (3.9), (3.10) can be provided to BACOL.

30

Figure 3.3: Approximate solution of the 2D Burgers' equation, as computed by the
f in i te d i f fe rence based MOS, for £ = 0.1 a t t = 1.

BACOL can then be used to solve the ID system from t = 0 to t = 1. This gives

the solution approximations Ui(x, t), i = 1, • • • , 11.

We set £ = 0.1, and M = 11. The solution components Ui(x, t) as u(x,yi , t) , for

i = 1, • • • , 11, at t = 1 are plotted in Figure 3.3. The source code for solving this

problem with BACOL is given in Appendix A.l.

3.2 A B-spline Gaussian Collocation MOS Scheme

Here we discuss details for a B-spline Gaussian Collocation MOS Scheme.

3.2.1 Discretization of the y domain using B-spline Gaussian

Collocation

Let {y i} f i 0 be a spatial mesh in [c, d], with c = y 0 < y\ < • • • < y \ i = d. We define

a piecewise polynomial of degree q on each subinterval y,], i = 1, • • • , M, and

require the piecewise polynomial to be C1—continuous at the internal mesh points.

We will implement the piecewise polynomials using a B-spline basis. Consequently

31

the dimension of this piecewise polynomial subspace is MC = M(q— 1) + 2.

Let be the canonical Gaussian points on [0,1]; 0 < rji < • • • < 7j9_i < 1.

The images of these points within each subinterval will be the collocation points in

the y domain. The collocation method requires the approximate solution to satisfy

the PDE at the internal collocation points and the boundary conditions at y = c and

y = d.

The approximate solution, U(x,y , t) , is represented in the form:
MC

U(x,y , t) = (3.12)
j=i

where Bj(y) is the jth B-spline basis function and Cj(x , t) is the corresponding (un­

known) x and t dependent B-spline basis coefficient. The B-spline basis has the

property that for any y such that y^\ < y < y{, 1 ^ i ^ M, at most q + 1 B-spline

basis functions, namely, #m(y)^T(i-t)(g-i)+i > have nonzero values.

We define the mesh subinterval size sequences {ki}f£x by ki = y i — y x - \ . The

collocation points in the y domain are defined to be

7i = c,

l i = Vi-1 + k i f j j , where I = 1 + (i - 1){q - 1) -f j , i = 1, • • • , M, j = 1, • • • , q - 1.

IMC = D.

The collocation conditions associated with the original 2D PDE yield the following

ID PDEs:

U t (x , 71, t) = f (x , 7i , t ,U(x , 71, t) , U x (x , 72, t) , U y {x , 7j, t) ,

U x x { , X 1 7/) U x y (x , 7i> U y y (x , 7I t £)) I (3.13)

where I = 1 + (i — 1)(<? — l)+j , i = 1, • • • , M, j = 1, • • • , q — 1, (I = 2, • • • , MC - 1).

Substitution of (3.12) into (3.13) gives (taking into account the special property

of the B-spline basis mentioned above)

32

i (q - 1)+2

^ ^ {pm{Xi ̂))t-6m(')'i) =

m=(i—l)(g-l)+l

(i(q-l)+2 »(<7—1)+2

^ ^ c m { x , ^ (cm(^> i))x-®m(7/) ,
m=(i-l)(9-l)+l m=(i—l)(g—1)H-1

i(g-l)+2 i(g-l)+2

S cm(x,*)£C(7i), XI xar
m=(i-l)(q-l)+l m=(i-l)(g-l)+l

1 (9—1)+2 i(g-l)+2 \

(Cm(X , t))x B m('y i) i J] J . (3-14)
m=(i-l)(<j-l)+l m=(i-l)(g-l)+l J

l i e [y i -u Vi) , I = l+(i - l) (q- l)+j , i = 1, • • • , M, j = 1, - • • , q-1, (l = 2, - - - , MC-1) ,

for (x , t)e (a,b) x (Mout]- The collocated initial conditions (obtained by requiring the
approximate so lu t ion to sa t i s fy the in i t ia l condi t ion a t the col loca t ion poin ts in the y
domain) at t = to are given by

U(x,n , t 0) = U 0 (x , - f i) , (3.15)

I = 1 + (i — l) (q — 1) + j , i = 1, - • • ,M,

j = l , - - - ,q - l , (I = 2 , • • • ,MC- 1), xe[a ,b] .

Substitution of (3.12) into (3.15) gives:

i (q - 1)+2

^2 c m (x , t)B m ('Y i) = U 0 (x , i i) , (3.16)
m=(»-l)(g—1)+1

71 e [y i - i , y i) , I = l+(z-l)(<?-l)+jf, i = l,-- ,M, j = l , - - - , q -1 , (1 = 2 , • • - ,MC-1).

The collocated boundary conditions are:

9a{lu t ,U(a , 7ut) , U x (a , t) , U y (a , 7i , t)) = 0, (3.17)

33

9b{l i , t ,U(b , 7/, t), U x (b , 7i , t) , U y {b , 71, t)) = 0, (3.18)

/ = l + (i - l) (g - l) + j , i = l , . . . , M , i = l , - , 9 - l , (l = 2 , - . , M C - l) .

Substitution of (3.12) into (3.17), (3.18) gives:

i (q -1)4-2 i(q-l)4-2

9a j Ulit, ^ "] Cm(d, ^ ^ (Cm(ci,
m=(j-l)(g-l)4-l m=(i—l)(<j—1)4-1

»(<J-l)4-2 \

]T crn(a,f)Sm(7i) j = 0, (3.19)
m=(f-l)(g-l)4-l /

i(9—l)4-2 i(g—1)4-2

9b | 7f> t-> ^ ' Cm(b, ^ ^ (Cm(^) ^))x-Sm(Ti)'
rn=(i—l)(g-l)4-l m=(i—l)(g—1)+1

>(9-1)4-2 \

J] =0, (3.20)
m=(»-l)(g-l)4-l /

Z = l + (i - l) (9 - l) + j , i = l 1 - , M , j = l , - , ? - l J (l = 2 , - - , M C - l) .

Thus (3.14) represents a system of (M —2) ID PDEs together with (M —2) initial

conditions (3.16), and 2(M — 2) boundary conditions (3.19), (3.20).

Since the dimension of the piecewise polynomial space is MC — M(q — 1) + 2, we

still need two more PDEs with corresponding initial and boundary conditions. And

we s t i l l have to cons ider the fo l lowing two boundary condi t ions assoc ia ted wi th y = c ,

y = d:

g c (x , t , u(: r, c , t) ,u x (x , c , t) , u y (x , c , t)) = 0, (3.21)

g d (x , t , u (x , d , t) , u x (x , d , t) , u y (x , d , t)) = 0. (3.22)

34

We can differentiate these two boundary conditions with respect to t to get two more

PDEs:

g c (x , t , U(x , c , i), U x (x , c, t) , U y (x , c , t)) t = 0, (3.23)

g d (x , t ,U(x ,d , t) ,U x (x ,d , t) ,U y (x ,d , t)) t = 0 . (3 . 2 4)

We assume that (3.23) and (3.24) can be rewritten in the form:

U t (x , c , t) = f c (x , t ,U(x ,c , t) ,U x {x ,c , t) ,U y (x ,c , t)) , (3.25)

U t (x ,d , t) = f d (x , t ,U(x ,d , t) ,U x (x ,d , t) ,U y (x ,d , t) . (3.26)

Substitution of (3.12) into (3.25), (3.26) gives:

i (q — l)+2 / i (g - l)+2

y : (C m (x , t)) t B m (c) = fc l x , t , ^ c m (x , t) B m (c) , (3.27)
m=(i-l)(g-l)+l \ m = (i—l)(g—1)+1

i (q - 1)+2 i(9-l)+2 \

^ ^ t)) x B m (c) , ^ ̂ C m (x , t)B m (c) J ,
m=(t-l)(g-l)+l m=(i—l)(q—1)+1 /

i(g—1)+2 / i(?-l)+2

J] (^„(a:,i))tSm((i) =/d j ^(x, t)Sm(d), (3.28)
m=(i—l)(q—1)4-1 \ m=(i-l)(g—1)+1

i(?-l)+2 i(q-l)+2

^ ^ (Cm(^) i))i5m(^): ^ ^ Cm(^! ̂)B m {d)
rn=(i-l)(g-l)+l m=(t-l)(g-l)+l

The initial conditions corresponding to (3.27), (3.28) at t = to are given by

U (x , c , t 0) = U 0 (x , c), (3.29)

[/(x, d, t o) = U o (x , d) . (3.30)

Substitution of (3.12) into (3.29), (3.30) gives:

35

ifa—1)+2
23 cm(a:,t)5m(c) = U 0 (x ,c) , (3.31)

m=(t—l)(g—1)+1

i(q-l)+2

y c m (x , t)B m (d) = U 0 (x ,d) . (3.32)
m=(i-l)(9—1)+1

The boundary conditions corresponding to (3.27), (3.28) are (respectively)

g a (c , t , U(a , c , t) , U x (a , c , t) , U y {a , c, t)) = 0, (3.33)

Sr6(c, t , U (b , c, t), t/x(6, c, t), U y {b , c , t)) = 0, (3.34)

g a {d , t , U(a , d , t) , U x (a , d , t) , U y (a , d , t)) = 0, (3.35)

g b (d , t ,U(b ,d , t) ,U x (b ,d , t) ,U y (b ,d , t)) = 0 . (3 . 3 6)

Substitution of (3.12) into (3.33), (3.35), (3.34) and (3.36) gives:

(i(<?-l)+2

C , t , ^ ̂ C m (o , t) 5 m (c) ,
m=(i-l)(qr-l)+l

i (q - 1)+2 i(g-l)+2 \

r (C m (a , t)) x B m (c), ^ c^M^^c) j = 0, (3.37)
m=(i—l)(g-l)+l m=(i—l)(q—l)+l J

(i { q - 1)+2

C, t , ^ ^ (^(6, £)2?m(c),
m=(i—l)(g—1)+1

t(g—1)+2 i(g-l)+2 \

y (cm(6,t))xsm(c), 23 0-Bm(c) J = 0; (3.38)
m = (i — l)(g—1)+1 m=(»—l)(g-l)-f-l /

(«(<j-l)+2
d, t , ^ ̂

m = (i - l) (q - l) + l

36

'(<?-1)+2 <(g-i)+2 \
Y. (cro(a,«))a;Bm(rf), c m (a , t)B m (d) 1=0, (3.39)

"»=(i-l)(?-l)4-l rn=(t—l)(q—1)+1 /

(i(?-l)+2

d ; t , ^ ̂ C r n i p i i) B m (d) ,
TO=(t—l)(g—1)4-1

i(g-l)+2 i(q-l)+2 \

J] (cm(6,t)jISm(d), cm(M)#m(eO J = 0. (3.40)
m=(i-l)(g-l)4-l m=(i—l)(g—1)4-1 J

Thus the system of PDEs (3.14) together with the PDEs (3.27) and (3.28) give a

ID system of MC PDEs with corresponding initial and boundary conditions.

We arrange this system of ID PDEs in the following order ((3.27), (3.14), (3.28)):

i (q - 1)4-2 / i (q - 1)4-2

^ , (£m(-£ j O) t -^n(^) = fc I -^ i^ i ^ Cm(^) t)B m (c) ,

m=(i-l)(g-l)4-l ^ m = (i - l) (q — 1)4-1

i(g—1)4-2 t(<j—1)4-2 \

(C m (x , t)) x B m (c) , C m { x , t) B ' m (c) j (3.41)
m=(i—1) (q—1)4-1 m=(i—l)(g—1)4-1 J

i { q - \) + 2

m=(t-l)(g-l)4-l

(i (qr—1)4-2 i(?-l)4-2

x n l , t , Cm(x,t)JBm(7,), {Crn{x , t)) X Bm(~i l) ,
m=(t-l)(9-l)4-l m=(t-l)(g-l)+l

i(g-l)4-2 i { q - 1)4-2

^ ^ ^ ^ (Cm^X, t))xxBTn(/yi), (3.42)
m=(i-l)(g-l)4-l m=(i-l)(g—1)4-1

t(9-l)4-2 >(9-1)4-2 \

]T Cm(x, t)B '^{y i)) ,
m = (i - l) (q — 1)4-1 m = (i — l)(g-l)4-l J

37

i (q - l) + 2 / t(q-l)+2

^ fd J ^ ̂ Cmi-E;

m=(i-l)(q-l)+l ^ m=(i-l)(g-l)+l

i(g—1)+2 i(g—1)+2 \

(£n(s><))*£m(<0, X] Cm(a:,t)5m(d) I . (3.43)
m=(i-l)(g-l)+l m=(i-l)(<j-l)+l /

The initial conditions arranged in a consistent ordering ((3.31), (3.16), (3.32)) are:

t(<j-l)+2

c m (x , t) B m (- y i) = £70(z,7i)> (71 = c)

m=(t-l)(9-l)+l

t(q-l)+2

Y Cm{x , t) B m (J l) = C/Q(X, 7i),
m=(i—l)(g—1)+1

/ = 1 + {i - l) (q - 1)+j , i = 1 , - • • , M , j = 1 , • • • ,q - 1, (/ = 2, • • • ,MC - 1),

t(q—1)+2

Y c m (x , t)B m (^ M C) = U 0 {x ,-YM c) - (LMC = d)
m=(i-l)(g-l)+l

The boundary conditions arranged according to the same ordering are ((3.37), (3.19),

(3.39), (3.38), (3.20), (3.40)):

i (q -1)+2 i {q - l)+2

9a J 7l> ^ ̂ l)> ^ , { p m i f l i ̂))x-®m(7l)j

m=(i-l)(g-l)+l m=(t-l)(q-l)+l

»(9-l)+2 \
X] 5»(a, 0-5^,(7!)) =0, (71 =c)

m=(t-l)(g-l)+l /

38

t(9—1)4-2 i(g-1)4-2

9a I 7f) ^ ̂ ^ ^ (Cm(ai t))xBm (' y i) ,
m=(i- l) (q - l)+ l

i (q- 1)+2 ^ \

]T ^(0,4)5^(7/) =0,
m=(i-l)(9-l)4-l J

l = l + (i - l) {q- 1)+j , i = ! , • • • ,M, j = ! , • • • ,q - 1, (/ = 2, • • • ,MC - 1),

i(q—1)4-2 1(9-1)4-2

5a | 7MCJ £ > ^ ̂ Cm{ a i ^)B T n {pjMc) i ^ ̂ { c m{ a i t))xBm('yMc) i
m=(t-l)(9-l)4-l m=(i-l)(<j-l)4-l

1 (9—1)4-2

r cm(a,t)Bm(7Mc) J =0, (7MC = D)

i(9-l)4-2 i(g-l)+2

9b | 7l>^) ^ ̂ ^] (Cm(M))x-®m(7l)>

m=(i—l)(g—1)4-1 m=(t-l)(9—1)4-1

'(9-1)4-2 ^ \

cm(6,t)Bm(7i) I =0, (71 =c)
m=(i—1)(IJ—1)4-1 /

1 (9—1)4-2 i (qr—1)4-2

9b | 7(> ^ ^ ^ ^ "] {pm{b,ty)xBm{^ii),
m=(i-l)(g-l)4-l m=(i—l)(g—1)4-1

i(9—l)4-2

Cm(b, t)B ' m (7 i)) = 0 ,
m=(i-l)(g-l)4-l

/ = ! + (» ' - l) (q~ 1) +j , i = ! , • • • ,M, j = ! , • • • , 9 - 1 , (/ = 2 , • • • ,MC - 1),

1(9-1)4-2 1(9-1)4-2

9b I 7 MCi^i ^ ̂ Cm(^i ̂)-6m(7Mc)j ^ ̂ {cm{p,t))xBm{ 7Mc):
m=(i—l)(g—1)4-1 m=(i-l)(9-l)4-l

39

fl-ii

(<H> S.

Figure 3.4: The ABD structure of G y . Each block Si is a (q - 1) by (q + 1) matrix.
The overlap between the blocks, Si, is 2, q is the degree of the B-spline basis poly­
nomials, M is the number of subintervals. Comparing with (3.27), all B-spline basis
functions are zero except Bi(c) = 1. Similarly, comparing with (3.28), all B-spline
basis functions are zero except BMc(d) = 1. These observations explain the form of
the f i r s t and las t rows of G y .

The system of MC PDEs given above ((3.41), (3.42), (3.43)) in matrix form is

where G y is a square ABD matrix of the form given in Figure 3.4 and c(x , t) and

F(t, c(x, t)) are defined below. In Figure 3.4, each Si, i = 1 is a q — 1 by q + 1

G y (c{x , t)) t = F(t ,c (x , t)) , (3.44)

40

matrix of the form

Bi i f i+i) Bi+i(7i+i)

Bi{ 71+2) Bi+1 (7(4.2)

^/+g(7/+l)

Bl+q(-y i+2)

B l (j l+q- l) £?;+i(7i+,_1) ••• 5^(7/+^!)

where Z = 1 + (i — l) (q — 1), i = 1, • • • , M. The vectors c(x , t) and F(t , c (x , t)) are

c(x , t) =

Ci{x , t)

c 2 (x , t)

CMc(x , t)

F(t ,c (x , t)) =

Fi(t ,c (x , t))

F 2 { t ,c{x , t))

F M c(t , c (x , t))

where Fx(t,c(a:,t)) is the right hand side of (3.27), Fi(t ,c (x , t)) , I = 2, • • • , MC — 1,

is the right hand side of (3.14), and FMc{t,c(x,t)) is the right hand side of (3.28)

Then we give the ID time-dependent PDE system (3.44) to BACOL along with

the corresponding initial and boundary conditions indicated above.

3.2.2 Numerical Results for the B-spline Gaussian Collocation

MOS Scheme

As explained earlier, since BACOL can currently only handle a ID PDE system,

we have to differentiate the boundary conditions, (3.21), (3.22), and assume the result­

ing equations have the form (3.27), (3.28). As we mentioned in Chapter 2, before the

DAE solvers emerged, MOL software required the user to differentiate the boundary

conditions to get systems of ODEs. The use of the differentiated boundary conditions

introduces error, even in ID case, where the boundary conditions correspond to only

two points. In the 2D case, the boundary conditions we have to differentiate corre-

41

u

X

Figure 3.5: Approximate solution of 2D Burgers' equation, as computed by the B-
spl ine based MOS, £ = 0.25 , t = 1.

spond to two lines and are collocated. The differentiated boundary conditions are

solved together with the ID PDEs obtained from collocation of the 2D PDEs. This

introduces more error than in the ID case.

For the numerical results presented here, we simplify the computation by collo­

cating the PDE rather than the differentiated boundary conditions in order to obtain

the two extra PDEs that are required.

We consider the same problem as in Section 3.1.2. We set £ = 0.25, q = 4, M — 4.

The numerical solution is plotted in Figure 3.5, for f = 0.25 and t = 1. The source

code for solving this problem with BACOL is given in Appendix A.2.

42

Chapter 4

B-spline Gaussian Collocation for 2D

Time-Dependent Parabolic PDEs

4.1 Introduction

In this chapter, we consider a B-spline Gaussian collocation algorithm in which we

simultaneously discretize both spatial domains, x and y, transforming a 2D time-

dependent PDE (1.1) into a system of time-dependent DAEs. We then use a nu­

merical DAE integrator to integrate forward in time. (Thus this algorithm can be

viewed as the classic MOL algorithm applied to a 2D PDE.) The approximate solu­

tion is expressed in terms of a tensor product B-spline basis in x and y with unknown

time-dependent coefficients for the linear combination of the spatial basis elements.

To perform the spatial discretization, we use a mesh of points to partition the x and

y domains into spatial elements, and at selected points inside each rectangular ele­

ment, we require the approximate solution to satisfy the PDE. We also require the

approximate solution to satisfy the boundary conditions at selected points along the

boundary.

In the remainder of this chapter, we will describe the 2D B-spline collocation

43

algorithm and its implementation in a preliminary software package which we call

BACOL2D. Since, in the two-dimensional case, the DAE system resulting from the

spatial discretization is usually large, we use DASPK to solve it. DASPK is based on

BDFs and is a newer version of the well-known DASSL code, used in BACOL. Since

BACOL2D is a natural extension of BACOL, many of the algorithms employed in

BACOL are relevant to BACOL2D. We also describe a fast block LU algorithm with

modified alternate row and column elimination with partial pivoting for the treatment

of the ABD linear systems arising during the numerical solution of the DAEs. We

will present numerical results in this chapter to demonstrate convergence rates for the

collocation solution.

4.2 Spatial Discretization

We will assume n = 1 to simplify the discussion, but the algorithm can be used

for arbitrary n.

4.2.1 B-spline basis

We consider a 2D rectangular grid based on a mesh of N + 1 points (N > 1) in

[a, 6] and a mesh of M + 1 points (M > 1) in [c, d) such that

a = x0 < x i < • • • < x N = b, c = y 0 < yi < • • • < y M = d.

We associate with the mesh on the x domain, (^-continuous piecewise polynomials of

degree p, i.e., we have a polynomial of degree p for the zth subinterval, [xj_i, x*], i =

1, • • • ,N, with C1— continuity imposed at the internal mesh points. Consequently the

dimension of this piecewise polynomial subspace is NC = N(p—1) + 2. Similarly, in

the y domain , we have a polynomial of degree q for the i th subin terva l , [y^ i , y t] , i =

1, • • • ,M, with C1—continuity imposed at the internal mesh points. Consequently

the dimension of this piecewise polynomial subspace is MC = M{q—1) + 2.

44

To represent the piecewise polynomials, we employ B-spline bases. Let

{Di{y)}^, be the B-splines bases associated with the above meshes and continuity

requirements. We then write the numerical solution, U(x, y, t), as a linear combination

of the tensor product of the B-spline bases functions in x and y with time-dependent

coefficients, Wij(t), as follows:

NC MC

U(x,y , t) = ̂ j ^w i j (t) B i {x) D
j {y) . (4.1)

i=l j=1

4.2.2 Collocation at Gaussian Points

We define the mesh subinterval size sequences {/k}£Li by hi = x^ — Xi-i, and

{ki}iL\ by ki = yi — yi-\. We define {pij?"/ and to be the canonical Gaussian

points on [0,1] with 0 < p\ < • • • < pp_x < 1, and 0 < rj\ < • - • < 779_i < 1. The

collocation points in the x domain are then defined by

6 = a,

6 = Xi- i + hiPj , I = 1 + (i - 1) • (p - 1) +j , i = 1, • • • , N , j = 1, • • • , p - 1,

€N C = b.

The collocation points in the y domain are defined to be

7i = c,

7/ = Vi- i + kiVj i I = 1 + (» ~ 1) ' (? ~ 1) + * = 1)' ' ' > M, j = 1, • • • , q - 1,

7 MC = d.

In Figure 4.1, we show the collocation points that are inside each rectangle.

The PDE is discretized over the spatial domain by simultaneously collocating at

the points {£,in x and the points {7in y. The collocation conditions

yield the following ODEs in time:

7j) = /(£»> 7j> I j i U x { £ i , 7j t 7ji ̂)j

U X x(£ i) I j l ̂)> Uxyi^ i , Uyy{^ i , 7j, i)), (4-2)

45

• Collocation points

A >4 I
< M 1

—

1 1
| |

1 1
1 I

1 1
| |

11
11

<•«
•44-

- — * <44
•44-
44-

1 1
1 1
1 1

1 1
1 1
1 1

f 1
i 1
11

1 1
1 1
1 1

1 1 1 1 11 1 1
1 1
1 1
1 |

1 1
1 1
| |

11
11
11

1 1
1 1
| 1 u

4* ttt] - I . it — -4-
•44-

1 1 J 1 1 f 1 1

* *

Figure 4.1: For the case p = 3, q = 3, the points inside each rectangle are the
collocation points. Note that the collocation points on the boundaries are not shown
in this figure. From [PW95].

where i = 2, • • • ,NC — 1, and j = 2, • • • ,MC — 1. Note that these collocation

conditions do not involve fi,£;vc,7i, or 7MC- These latter points are associated with

applying collocation conditions along the boundaries. These conditions are

0 = g a (l j , t ,U(a, -y j , t) ,U x (a , 'y j , t) ,U y (a^ j , t)) , (£1 = a), (4.3)

0 = gb { l j , t ,U(b , 7 j , t) ,U x {b , ' i j , t) ,Uy(b , '> i j , t)) , (&c = b) , (4.4)

0 = g c (€ i , t ,U(Zi ,c , t) ,U x (£ i ,c , t) ,U v {£i ,c , t)) , (71 = c), (4.5)

0 = gd {£UT, U (€ i ,d , t) ,U x (€ i ,d , t) ,U y (£ i ,d , t)) , (IMC = d), (4.6)

where i = 1, • • - , NC, j = 1, • • • , MC.

We next describe the order in which the collocation conditions appear in the DAE

system provided to DASPK. The algebraic equations (4.3), (4.4) are the first and last

sets of equations of the DAE system. Note we separate the other two sets of boundary

conditions (4.5), (4.6), and combine them with the ODEs (4.2). Then the resulting

46

DAE system is (4.8).

Next by substituting (4.1) into (4.2), (4.3), (4.4), (4.5) and (4.6), we get equations

in the terms of the unknowns Wij(t). We can then rewrite these equations in matrix

form:

A(W(t)) t=E(t ,W(t)) . (4.7)

In (4.7), W(t) is the B-spline coefficient vector of size (NC • MC); it has the form,

W{t) =

m (<)

m .2 (t)

W.Nc(t)

, where w^t) =

The right hand side vector, F_(t ,W_(t)) =

w^t)

w i 2 (t)

WiMc{t)

Fi (t ,W(t))

F 2 (t ,W(t))
, where each F { (t , W(t))

F N C (t ,W(t))

has MC components. The expressions for F^t^Wd)) , i = 1, • • • ,NC, are given

in (4.9), (4.10) and (4.11). These expressions are not in terms of Wij(t), but such

expressions could easily be obtained by substituting (4.1) and its derivatives into the

following formulas.

47

0 = gJc/MC, t , U (£1,7ME, <)> £4(£I, 7MC, t) , U y (£ i , 7MC, 0)>

0 = &(&,*, tf(6,7i>*)>0x(6,7i,t)»^y(&»7i,O)>

U t { £ 2 , 72) 0 = /(&, 72,4, t^(^2, 72, £), U x { i2, 72, £), U y (£ 2 , 72, 0,

Uxxi&i 72, 0) Uxy(£2, 72, i), Uyy(£2, 72, ̂))>

^t(^2, 7MC-1, 0 = /(&2, U x (£2, jMC-l , t) ,

Uy(£,2, 7MC-1, £), U x x (^2 , 7MC-l,i), U x y (^2 , 7MC-1, *), Uyy(^2, 7MC-1, i)),

o = 9d{fL2, t ,U(£2, lMC,t) , U x (i2 , 7MC,t) , U y (^2 , l /MC,t)) ,

0 = 5C(^JVC-I, t , E/(£jvc-I, 7I,£) , UX(£NC—I , 7I, ̂), ^Y(Civc-i, 7i> 0)>

Uti^NC-1, 72, *) = f i^NC-1, 72, U (£nC~ 1, 72, ̂), U X (^NC-1, 72, £), Uy(!~NC-U72, t) ,

Uxx{£NC-1, 72, £), Uxv(€NC-1, 72, £)> ^yyCCiVC-l, 72, *)),

Ut{f iNC-l , lMC-\ , t) = /(fjVC-l5 7MC-1, t , U x (^NC-l , lMC-l , t) ,

Uyi^NC-l , 7MC—1, t) ,U x x (^NC-l , 7MC-l , t) , U X y{iNC-\- , lMC-l , i) i Uyy(^C-l , lMC-l , t)) ,

0 = Pdl&vc-i, T> U{£NC-\ ,7MC, T) , U X (£NC-I, 7A/C, £), U V {£NC-I , IMC, T)) ,

0 = ?&(7i, t , U {^NC , 7i> 0) U X {£NC, 7i, 0) U y (£NC, 7i,f)),

o = gb(l !MC , U (£/vC, IMC, t) , Uxi^NC, IMC, t) , Uy(^NC, IMC, <))•

(4.8)

48

F j (t . W (t)) . i = 2, • • • , N C - 1, has the form:

m m t))

Qc(£>ii U(£j, 7i, t), 7i, 0) Ti> 0)

/ (&, 72, t ,U(£i, 72, t), £/*(&, 72, t), Uy{£i, 72, i),

UXX(.£II 72, 0, UXY{£,I, 72, I), UYY(£I, 7J'2, ̂))

/(It, 7MC-I, i, (6, 7ATC-i, *), C4(&, 7MC-I,*), ̂ (fi, 7MC-I, i),

Uxx(&> 7MC—1, ^), Uxy(£ii 7MC-1, ̂), 7MC—1, ^))

5d(&, *, U(&, 7A/C, i), £4(&, 7A/C, <), £^(£i, 7MC, <))

Z!i(*,lZ(*)) has the form:

5a(71 > t , t7(6 > 71. *), ^ (6,71, <), Uy (6,71 ,«)) ,

9a{lMC, t ,U(£I, 7MC, I), U x (£ i ,7MC, t) , C/J,(FI, 7ATC, £))

FNCU, W(t)) has the form:

0 .9)

(4.10)

5'fc(7i, *> U(£NC, 7I, 4), U x(£NC , 7I, 0, U v(£NC , 7I, *))>

9 b (LMC , i , ̂ (l i ve , 7mc, i) , ̂ (I jvc , 7mc, i) , U Y (£XC, " IMC, t))

(4.11)

The matrix yl appearing in (4.7) has the form shown in Figure 4.2.

In Figure 4.2, each matrix D x has (p — 1) block rows and (p + 1) block columns,

where each block is an MC x MC matrix. The structure of each block inside Dt has

the form shown in Figure 4.3. From Figure 4.3, we can see that each block inside Di

is an ABD matrix. The ith subblock, Ri is equal to cikjSi, i = 1, • • • ,N, where the

49

f 0
•

MC •

* MCl'PHt
• *

\ i f
MCfr-h D.

V
1 1

MCfp-n D;

Ds

Figure 4.2: The structure of the ABD matrix A appearing in (4.7). Each block,
is a matrix of size MC(p — 1) by MC(p 4-1). The overlap between the Di blocks
is 2MC, p is the degree of the polynomials used in the x domain, N is the number
of subintervals in the x domain, MC is the dimension of the piecewise polynomial
subspace in the y domain.

Si has the form (2.7), with I n replaced by 1. The matrix A, appearing in (4.7), can

be written as

A = A x ® Ay,

where A x is the matrix shown in Figure 2.1, and A y is a matrix with a similar structure

to that of Ax, but for the y domain.

4.3 DASPK

The DAE system (4.7) is solved using DASPK, a high quality software package

for the numerical solution of large-scale systems of DAEs. DASPK discretizes the

DAE system, yielding a nonlinear system. This nonlinear system can be solved using,

for example, Newton's method, and a large linear system will arise in each Newton

50

Figure 4.3: The structure of one of the block matrices inside £)». Each block inside
Di is of size MC x MC. The overlap between the Rj blocks is 2, q is the degree of
the polynomials in the y domain, M is the number of subintervals in the y domain.
Top and bottom are rows of zeros.

step. The linear systems arising during the numerical solution of the DAE system

are too big to be solved with a direct method, so an iterative method must be used.

The most significant difference between DASPK and DASSL is that DASPK uses the

scaled preconditioned incomplete GMRES method (truncated GMRES) (an iterative

solver for solving a linear system) [Saa81, SS86, Saa93] combined with an inexact

Newton method [DES82] for the treatment of the linear and nonlinear systems that

arise.

We now discuss the linear system solver in more detail. The large linear systems are

solved iteratively rather than directly, as mentioned above. A banded preconditioner

matrix [Saa90] is used during the solution of the linear system arising during each

Newton iteration. The matrix preconditioner must try to approximate the Jacobian

matrix (which has an ABD form) arising during the calculation. The preconditioner

51

Figure 4.4: The banded preconditioner matrix employed by DASPK. The ABD struc­
ture is included with the band structure.

matrix is generated by DASPK. DASPK cannot generate a preconditioner with an

ABD structure. The closest sparse matrix structure it has available for the precon­

ditioner is a band matrix structure. Hence the preconditioner we employ has a band

matrix structure (See Figure 4.4). DASPK tries to reuse this preconditioner matrix

for as many time steps as possible, since the costs for building the preconditioners are

high.

The linear system involving the preconditioner matrix is solved by an incomplete

LU factorization [Saa03] based on routines from the SPARSKIT library [Saa90] (a

FORTRAN 77 library for sparse matrix computations).

4.4 Efficient Block Matrix Algorithms

As mentioned earlier, R. D. Russell and W. Sun [RS97] suggested a fast algorithm

based upon a matrix block eigenvalue decomposition for solving spline collocation

matrices. We use a similar fast algorithm based upon LU decomposition with modified

alternate row and column elimination with partial pivoting to take advantage of the

52

I I I 1 ' L.
0 10 30 X 40 SO 60

Figure 4.5: The ABD structure of the 2D B-spline projection Q in (4.12) (the degree
of the polynomials in the x and y domains is 3 in each case, the number of subintervals
is 3 in each case.)

structure of the matrices that arise. In addition, we also develop an efficient way to

deal with the matrix multiplication for these structured matrices.

4.4.1 2D B-spline Projection

Using the tensor product approach, the B-spline approximation in 2D has the form

(4.1), as mentioned earlier. The B-spline coefficients characterize the projection of the

approximate solution onto the B-spline tensor product basis. We can rewrite this 2D

B-spline projection in matrix form as:

U (t 7, t) = (M x ® M y) W (t) = Q W . i t) , (4.12)

where iZ(£, 7>£) is the evaluation of U (x , y , t) at all combinations of {&}£?[,

as prescribed by the following definitions for £ and 7:

53

£ =

6

&
1 CMC, 7 — eiVC

71

72

£NC J |_ IMC

where e^c is the vector of Is of length MC, e^c is the vector of Is of length NC, M x

(for the x domain) is an NC x NC matrix having the form shown in Figure 2.2, and

My is an MC x MC matrix having a similar structure to Mx, but for the y domain.

Note Q = Mx ® My has the form shown in Figure 4.5.

4.4.2 A Fast Block Matrix System Solution Algorithm

Referring to (4.12), we see that if we are given W_(t) , then we can obtain a vector

representing an evaluation of £/(£, 7, i), the approximate solution at the collocation

points , by mul t ip lying W(t) by Q. Similar ly , g iven £/ (£ , 7 : t) , we can obta in W(t)

by solving OW(t) — U(£, 7, t). To solve OW(t) = £/(£, 7, t), we use COLROW to

eff ic ient ly handle the ABD st ructure of the matr ices M x and M y .

The algorithm we use is as follows. We assume that M x and M y are factored as:

M X = L X U X , My - Lyl ly ,

where L x , L y are lower triangular matrices, and U x , U y are upper triangular matrices.

(The factorization performed by COLROW is actually more complicated than what

we have stated above - see [DFK83b]. It also includes row and column permutation

matrices associated with alternating row and column pivoting and is based on row

and column elimination. However in order to simplify the presentation we do not

include these components of the factorization here. Also modifications to some of the

COLROW routines were required in order to separate the back solve steps associated

with upper triangular matrices from the forward solve steps associated with lower

54

triangular matrices, as required in the algorithm given below. As well, L x , L y are

actually lower triangular ABD matrices and Ux, Uy are actually upper triangular

ABD matrices. This means that most of the lower triangle of Lx, Ly is zero and that

most of the upper triangle of Ux, Uy is zero. However, for simplicity, in the discussion

below we will simply represent Lx, Ly as lower triangular matrices and Ux, Uy are

upper triangular matrices.) Note that Lx, Ux are NC x NC matrices and Ly, Uy are

MC x MC matrices.

Let us simplify the notation by writing (4.12) as

(M x <g> M y)w = b, (4-13)

where w = W(t) and b = £/(£, 7 , t) . The above system can then be rewritten as

((L X U X) <8> (L y Uy))w = b.

Based on a property of the Kronecker product, we can rewrite the above system as

((L x 0 L y){U x 0 U y))w = b.

This system can then be solved in 4 steps:

(1)Solve (L x <g> IMC)V = B for V.

(2)Then solve (INC L y)v = v for v .

(3)Then solve (U x 0 IMC)W = v for w.

(4)Then solve (INC <8 U y)w = w for w,

where IMC is the MC x MC identity matrix and INC is the NC x NC identity matrix.

(Recall that Mx is a matrix of dimension NC x NC and My is a matrix of dimension

MC x MC .)

Note that steps (1) and (2) solve the system

(L x 0 L y)v = b

for v .

To see this, substitute from step (2) into step (1); we get

55

(L x <8> IMC){INC & L y)v = b.

Then again using the property of the Kronecker product, we can rewrite this

equation as

and this reduces to

(L X INC ® IMCL v)V — b,

(L x <8> L y)v = b.

A similar argument can be used to show that steps (3) and (4) solve the linear

system

(U x <8 U y)w = v.

Let

L X —

^11

hi I22

INC, 1 INC,2 • • • INC,NC

Considering step (1) in block form, we have:

h\I \ ic 2.1 h

HL^MC HLLMC I2 = h .2

INC,I IMC INC,21MC • • INC,NCIMC _ UNC _ I tNC

56

where Vj =

V(J-1)MC+1

V(j - l)MC+2

VjMC

Since the above matrix is a block

—(j'-l)MC+l

—(j-l)A/C+2

kjMC
ower triangular matrix, we can solve the first left

upper block, IUIMC "HI = KI for ul5 then substitute into the second block row and

solve for jJ2 and so on.

Step (2) in block form is:

£1 Hi
J

—2 =
v 2

, where v_j =
V(J- l)MC+2

•

V -NC —NC VjMC

This system can be separated into NC subsystems of the form L y - v t = y_ i , i —

l , - - ,NC.

In steps (3) and (4), based on the same idea, we solve upper triangular systems.

Let

U x =

Cll C12 • • • CI,nc

C22 :

' • C (NC-1) (NC-1)

CNC,NC

Step (3) in block form is (the components of U x are called):

CHIMC CUIMC • • • CI ,NC!MC W.1 HI

C22^MC ' • '• W.2 —2

• • • C(jvC-l)(ATC-l)-^MC

CNC,NC!MC _ W-NC _ . ~NC .

57

where =

W(j - i)MC+l

®(j-l)MC+2
> 3>," =

V{ j - \)MC+1

%-l)MC+2

WjMC J I VjMC

We first solve the right bottom block, CNC ,NC IMC • MNC — V-NC> f°r ULNCI and then

substitute WNC back into the second last block equation, then solve for WNC-I A N < ^

so on.

Step (4) in block form is:

Uy Wi MI

Uy W 2

, where Wj =
W{j - \)MC+2

, where Wj =
W{j - \)MC+2

Uy w N C —NC WjMC

This system can be separated into NC subsystems of the form U y • Wi = w i , i =

I , - - - ,NC.

Thus the above algorithm implies that instead of solving a large (MC • NC) x

(.MC • NC) linear system (4.2), we only need to solve a sequence of MC x MC and

NC x NC linear systems. This allows us to save a large amount of storage and

computation.

We now take a closer look at the computational costs for this four step algorithm.

Based on the analysis given in [DFK83b] and referring to Figure 2.2, it follows

that the cost of factoring an NC x NC ABD system with coefficient matrix Mx is

0(Np3), while the solution step cost is 0(Np2). Both Mx and My have to be factored

and (assuming N = M and p = q) these factorization costs will be 0(Np3) for both

matrices. They are factored only once so these are the total costs for the factorizations.

In step (1) of the four step algorithm, we have to perform one lower triangular solve

but we are considering a block lower triangular matrix and the blocks are diagonal

matrices of size MC x MC. The cost for a lower triangular solve is 0(Np2) but

58

since we are working with elements that are diagonal matrices of size MC x MC,

we have to multiply this cost by MC = NC = O(Np). Thus the cost for step (1) is

0((Np)(Np 2)) = 0(N 2 p 3) .

In step (2), we have to perform NC lower triangular solves, each of which costs

0{Np 2) . Since NC = O(Np) , the to ta l cos t for s tep (2) i s 0((Np)(Np 2)) = 0(N 2 p 3) .

Similar arguments show that steps (3) and (4) also cost 0(N 2 p 3) . Thus the total

cost for the four step algorithm is also 0(N2p3). This dominates the cost of the

factorizations which is 0(Np3) and thus the total cost for the solution of (4.13) is

0(N 2 p 3) .

If we were to solve the ABD system (4.13) simply by treating the coefficient ma­

tr ix as an ABD matr ix wi th blocks of s ize 0(p(MC x MC)) = 0(p(Np x Np)) =

0(Np2 x Np2)), the cost of factoring this ABD matrix with blocks of this size would

be 0(N(Np2)3)) = 0(N4p6). Thus substantial savings are achieved by using the four

s tep a lgor i thm even for modest ly s ized values of n and p.

4.4.3 Fast Block Matrix Multiplication

At certain points in the algorithm, we know the B-spline coefficients, W_(t) , and

we need to evaluate the approximate solution at the collocation points £/(£, 7, t). This

corresponds to the computat ion, (M x <g> M y)w = b, where we know w, M x and M y

and we want to compute b, using a matrix multiplication.

Recall that both M x and M y have an ABD form. Thus Q = M x C5 M y has a block

ABD form, and each subblock is also an ABD matrix. Recall that the degree of the

B-spl ines bas is polynomials in x and y are p and q respect ively . The i and (i + l)s t

subblocks of Q, related to the N(p— 1) collocation points in the x domain, have the

form:

59

Cl—p-2,j My ••• Ci+p-2,j+p-lMy Ci±p-2j+pMy . .
(4.14)

Ci+p— 1 j+p— 1 My Ci+p—ij+pMy • •

Ci+2p—3j+p—lMy Ci+2p—3,j+pMy • • •

where Cij is the first non zero element on the ith line of M x . We note that the block

column CijMy, • • • ,Cij+p^2My appears in a column of a larger block that does not

overlap with the block below it; we refer to this as a non-overlap block. A close look

inside the CijMy block reveals that this block has an ABD form:

QJ'^2,1 ' ' ' Cj,j^2,l+g—1 Cij'^2,1+9

Ci jd2+q—2,1 ' ' " Cjj d 2 +q—2,1+g—1 Q,j^2+q—2,1+9
)

j d ,2+q— 1,1+<J— 1 C» j^2+g—1,1+f l " ' ' ^ i j^2+q—l , l+2q—l

C i , j d 2 +2q-3 , l+q- l (k jd 2 +2q-3 , l+q ' ' * c t j d2+2<j -3 , l+2g- l

(4.15)

where dtj are non zero elements in M y .

We next return to the matrix form (4.14) and consider multiplication by w:

60

c i , jMy Cjj+p-l-My Cij+pMy

Ci+p—2, jMy ' • • C^_|_p_2) j4-p— 1 C-i—p„„2,j p

Ci+p-lJ+p-\My Ci + p - l j + pMy

c i+2p-3, j~p- lMy Ci+2p—3,j+pMy

Wk

Wk+q— 1

Wk+q

Let w

w k

Wk+q— 1

Wfc+9

, and note that this vector is the part of the vector w which is

to be multiplied by the subblocks, CijMy, • • • ,Ci+p-2jMy. The key idea is to avoid

dupl ica te mul t ip l ica t ions involving M y • w .

Consider the 2nd row of the c^jM y block above multiplied by w. Using (4,15), we

obtain the expression

Cijd2 t lWk "(•••• "I" Cijd ,2 t \ - i r qWk+q — Cij (d ,2 , l 'Wk ~t~ • • • + ̂ 2,1+g^fc+g)•

Referring to the block column containing CijMy, • • • ,ci+p-2,jMy, for the 2nd row of

each subblock, we see a similar calculation:

Ci, j (d2, lWk + ' • • + d.2 , q Wk+q-1 + d2, l+qWk+q)

Ci+p-2j(d2, lWk + (" d2, q Wk+q-l + d2, l+qWk+q)

Thus we can compute d2,iWk + • • • + d2,qWk+q-i + d2,i+qWk+q once and use it p — 1

times.

61

For the overlap subblocks, for example:

C»J+p— lMy, , Ct-)-p_2j+p—1-My, Cj—p-1 J+p-1 A/y , • , Cj+2p— 3j+p— \My,

we can apply the same approach described above; the only difference is that the

calculation can be applied 2(p — 1) instead of (p — 1) times.

4.5 Numerical experiments

In this section, we will consider three different time-dependent 2D parabolic PDE

problems. We use GNU Fortran77 (GCC) 4.4.3 under Ubuntu (Kernel Linux 2.6.32-

40-server) running on an 7 Intel (Ft) Xeon (R) CPUs (E5420 @ 2.50GHz) system for

which the accessible memory is 2GB.

Recall that the degrees of the piecewise polynomial for the x-axis and the y-axis

are p and q respect ively . In our numerical exper iments , we use p = q.

The following notation will be used in representing the numerical results.

KCOL: the number of collocation points per subinterval , KCOL = p — 1;

NINT: the number of subintervals (NINT = N = M) ;

ATOL: the absolute tolerance (used by DASPK);

RTOL: the relative tolerance (used by DASPK);

TOL: the tolerance for the nonlinear solver in DASPK;

TOUT: the output time (taut)',

GE: the true error at a set of sample points equally distributed over the problem

domain at time TOUT.

In order to obtain the convergence results, we employed a number of different

choices for TOL, ATOL, and RTOL. These were chosen by trial and error so that

the temporal error was smaller than the observed spatial error. We ran a number

of experiments in which we gradually reduced the tolerances provided to DASPK

62

x y

Figure 4.6: Approximate solution for Problem 1, e = 0.01, KCOL=3, NINT=64.

until the spatial error was observed to be constant from one experiment to the next,

indicating that the temporal error was no longer contributing significantly to the

overall error.

Problem 1

We consider the 2D Burgers' equation [VB06],

du d 2 u d 2 u du du .

d t ~ U di~ U d^ ' ^

The problem domain is (x , y) € (0,1) x (0,1), t > 0; the boundary and initial condi­

tions are chosen so that the true solution is

u(x ,y , t) =

We set £ = 0.01. The numerical solution is plotted in Figure 4.6 (KCOL — 3, NINT

63

Table 4.1: Observed GE, GE ratios, and corresponding approximate convergence rates
for Problem 1.

KCOL NINT GE ratio rate
3 8 9.95 x 10~'2

- -

3 16 3.69 x 10-3 26.96 4.75
3 32 1.16 x 10~4 31.81 4.99
3 64 4.22 x 10~5 27.49 4.78
4 16 5.56 x 10-4

- -

4 32 1.05 x 10~5 52.95 5.73
4 64 1.90 x 10~7 55.33 5.79
5 10 2.40 x 10~3

- -

5 20 2.06 x 10~5 116.50 6.86
5 40 1.61 x 10~e 130.38 7.03

= 64).

Problem 2

Another example is the problem [Wan95]

Li = (x 2 + l) -^+x,

r / 2 ®
l2~ {y + 1) dy^ + y d^ + V'

du
— = (H + L 2)U + f(x , y , T) ,

(: r ,y , i)enx(0 , l] , = (0 ,1) x (0 ,1) .

The boundary and initial conditions and f (x , y , t) are chosen so that the true solution
is

u = (e 1 + 1) sin(7rx) sin(7ry).

The numerical solution is plotted in Figure 4.7 (KCOL = 3, NINT = 16).

Problem 3

For this problem, we consider the equation [Wan95]

64

tno

Figure 4.7: Approximate solution of Problem 2. KCOL-3, NINT—16.

du (d 2 d 2 . .
M = {dJ + w)tt + iiX,S,h

on [0,1] x [0,1].

The boundary and initial conditions and f (x , y , t) are chosen so that the true solution
is

u(x , y , t) = (e" ' + l) (x m + y m + xy m ~ x + 1).

We set m = 6. The numerical solution is plotted in Figure 4.8 (KCOL = 5, NINT =

20).

Problem 4

This example is a slight modification of Problem 2, in which we have added a
mixed derivative operator L3

L 1 = (X 2 +

r I 2 i\ ^ i2 = (!/ +i)g^ + V^ + V,

65

Table 4.2: Observed GE, GE ratios, and corresponding approximate convergence rates
for Problem 2.

KCOL NINT GE ratio rate
3 4 1.50 x 10~5

- -

3 8 4.51 x 10~7 33.22 5.05
3 16 1.36 x 10"8 33.23 5.05
3 32 4.14 x 10~1U 32.78 5.03
4 4 5.23 x 10"7

- -

4 8 8.58 x 10~9 60.88 5.93
4 16 1.36 x 10~10 63.26 5.98
4 32 2.13 x 10-12 63.63 5.99
5 10 3.06 x 10-11

- -

5 20 1.97 x 10~13 155.33 7.28

Table 4.3: Observed GE, GE ratios, and corresponding approximate convergence rates
for Problem 3.

KCOL NINT GE ratio rate
3 32 1.99 x 10~9

- -

3 64 6.38 x 10"11 31.19 4.96
4 20 1.67 x 10-10

- -

4 40 2.98 x 10~12 56.04 5.81
5 15 1.71 x HT11

- -

5 30 1.33 x 10-ia 128.57 7.01

L = —
3 dxdy

On
— = (L\ + £,2 + L 3)U + f (x ,y , t) ,

(x ,y , t)eS2x(0 ,1] , ft = (0,1) x (0,1).

The boundary and initial conditions and f (x , y , t) are chosen so that the true solution
is

u = (e_t + 1) sin(7nr) sin(7rj/).

The numerical solution is plotted in Figure 4.9 (KCOL = 3, NINT = 16).

Each of the four test problems has a known exact solution and thus it is possible to

estimate the maximum GE of a given numerical solution. We next compute the GE for

66

t=to
A

•t'A

<w

KJ.

Figure 4.8: Approximate solution of Problem 3,m=6, KCOL=5, NINT=20.

t = 1.0

Figure 4.9: Approximate solution of Problem 4. KCOL=3, NINT=16.

67

Table 4.4: Observed GE, GE ratios, and corresponding approximate convergence rates
for Problem 4.

KCOL NINT GE ratio rate
3 4 1.71 x 10~5

- -

3 8 4.85 x 10-7 35.24 5.14
3 16 1.41 x 10~8 34.38 5.10
3 32 4.22 x 1CT10 33.40 5.06
4 4 5.38 x 1(T7

- -

4 8 8.65 x 10~9 62.20 5.96
4 16 1.36 x 1CT10 63.43 5.99
4 32 2.39 x 10"" 57.00 5.83

a number of collocation solutions computed by BACOL2D, for a variety of KCOL and

NINT values, for the four test problems. By fixing KCOL and considering a sequence

of meshes obtained by doubling the NINT value we can compare the observed GE

and by considering the ratio of the GE of the collocation solutions obtained using this

sequence of meshes, we can experimentally determine the spatial order of convergence

of the collocation solution as a function of KCOL.

The convergence results for the corresponding ID case are known from the litera­

ture, e.g., [CP76] (the rate of convergence is KCOL + 2.) Since we are using a tensor

product framework, we anticipate that the corresponding result will also hold for the

2D case.

In Tables 4.1-4.4, we present, for the collocation solutions we compute at t = 1,

the observed GE, GE ratios, and corresponding approximate convergence rates for

Problems 1-4. From the four tables we observe that the expected rates of convergence

(based on the known results for the ID case) are indeed observed in the 2D case (i.e.,

the GE is order KCOL + 2.)

68

Chapter 5

BACOL2D

This chapter first describes the subroutines included in the BACOL2D software pack­

age. Then we discuss a sample program and present the corresponding user supplied

subroutines. Finally, we give the structure of the BACOL2D software. BACOL2D

was developed in Fortran 77 using the GNU Fortran77 (GCC) 4.4.3 compiler.

5.1 Description of the Software

This section describes the components of the BACOL2D software package.

BACOL2D. This subroutine is the main component of the software package. It

performs initialization tasks such as assigning values to parameters and defining the

length of the common storage arrays. It also checks the length of the work arrays which

serve as temporary storage. It also calls MESHSQ and COLPNT to complete the

initialization (see below for an explanation of MESHSQ and COLPNT). BACOL2D

will make repeated calls to the time-integrator DDASPK to take time steps. After

reaching the output time TOUT, BACOL2D will have the B-spline coefficients which

can be used to calcula te the values of U(x,y ,TOUT), where a < x < b, c < y < d.

Both the absolute tolerance, ATOL, and the relative tolerance, RTOL, are set by user

69

as the tolerances for DASPK.

KXYV. This subroutine takes as input the B-spline coefficients, and then calculates

the approximate solut ion a t the current t ime, for g iven x and y .

COLPNT. This subroutine calculates the collocation point sequence.

MESHSQ. This subroutine calculates the spatial mesh size sequence, as well as

generating the points and weights for the Gaussian quadrature rule.

BSCOE. This subroutine is called by main. It evaluates the B-spline basis (and

its first and second derivatives) and stores them in ABD form.

KRONXY1. This subroutine calculates the approximate solution at the current

t ime and a t any given spat ia l points , x and y .

INVKXY. This subroutine will call CRSLVELB, CRSLVEL, CRSLVEUB and

CRSLVEU to solve the linear system (4.13) using the algorithm described in Sec­

tion 4.4.2, and they are used in steps (l)-(4) separately.

Now we mention some subroutines which are included in BACOL2D but were

developed by others.

DASPK. This software package, developed by P. N. Brown, A. C. Hindmarsh,

and L. R. Petzold, was obtained from a modification of DASSL. The most significant

difference between the two solvers is that DASPK uses a sparse linear system solver

combined with an inexact Newton method. In Chapter 4, we described DASPK.

INTREV, BSPLVD, BSPLVN. [dB77, dB78] These routines are part of the B-

spline package. We use these subroutines to generate the values of the B-spline basis

functions and their derivatives.

GAULEG. This subroutine was developed by P. Keast [WKM04a]. For the Gauss-

Legendre quadrature rule, it calculates the points and weights in the interval [0,1] or

[-1,1]-

70

5.2 User Supplied Subroutines

The user needs to define the PDE by providing subroutines to give various kinds of

information. For given input values of x, y and t, and corresponding input values for

U, Ux, Uy, Uxy, Uxx, Uyy, the user needs to provide the following subroutines:

F. This subroutine computes the value

f (x , y , t , U(x , y , t) , U x (x , y , t) , U y (x , y , t) , U x x (x , y , t) , U x y (x , y , t) , U y y (x , y , t)) ,

representing the right-hand side of the problem PDE.

UINIT. This subroutine is used to provide the initial values U(x. y , to) for any

given x , y .

RES. This subroutine computes the residual of the DAE system (4.7) to be solved

by DASPK(The residual of (4.7) is A(W(t)\ — F_(t,\V_(t)).). In this subroutine, the

user needs to describe the boundary conditions.

5.3 Sample Program

We use the Problem 1: the 2D Burgers' equation, to show that these user-supplied

subroutines are usually easily constructed. (See Appendix B)

5.4 Structure of BACOL2D

71

f--- - — r

BAC0L2D!

KXYV

GALIEG

INVKXY

DASPK

KRONXYl

BSFLVD

RSH.VN

INTEBV

UINIT

RES

MESHSQ

COIPNT

BSCOE

CRSLVELB CRSLVEL

CRSLVEUB CRSLVEU

Figure 5.1: Software structure of BACOL2D

72

Chapter 6

Interpolation-based Error Estimation

6.1 ID interpolation-based error estimation

As we discussed earlier, in addition to the solution approximation, U(x,t), BACOL

computes a second global collocation solution, U(x, t), with a degree p + 1 piecewise

polynomial on the same spatial mesh at the same time t. The diflFerence between the

higher order solution and the lower order solution gives an approximate spatial error.

Based on the error estimation, BACOL can construct a new spatial mesh if necessary.

In this chapter, we first describe two interpolation based approaches, recently de­

veloped for use in BACOL, that remove the need to compute a second collocation

solution in order to obtain an error estimate. We then discuss some preliminary

work that (experimentally) establishes the existence of certain points in the 2D spa­

tial domain where the 2D collocation solutions exhibit superconvergence, i.e., "extra"

accuracy, that may be useful for generating a low cost spatial error estimate.

73

6.1.1 ID Superconvergent Interpolant (SCI)-based Spatial Er­

ror Estimation

This approach is described in more detail in [ASM09].

Instead of computing the second higher order solution, U(x,t), the new version

of BACOL (called BACOLI) uses a local interpolant to replace U(x,t) in the error

estimation. That is, only the lower order solution approximation, U(x, t) of degree

p, is computed and propagated forward in time for every time step. This cuts the

computational work approximately in half [ASM09].

The collocation solution at certain points such as mesh points is superconvergent,

because Gaussian collocation is employed as the spatial discretization scheme [CP76,

DD74], Also, it turns out that there are a number of special points within each

subinterval that are superconvergent. The existence of these points within the spatial

domain of a ID PDE was suggested by some theoretical results for BVODEs.

Applying a (p — 1)—point Gaussian collocation method to a standard BVODE,

based on appropriate assumptions, the following results regarding the collocation

error are known [AMR95, ASM09]. (Here u is the exact solution, U is the collocation

solution, Xi is the zth mesh point, h = max {/i*}, hi = x,- — x,_i, N is the number of
1 < i<N

subintervals.)

(1) At the mesh points:

| u(xi) - U(xi) |= Oih^-V), | u'(xi) - U\xi) \= 0(h2to-% i = 1, • • • , N.

(2) At the nonmesh points:

u^(x)-Uu\x) = hp+i~i.+0(hr+2-j)+0(h2i?-1)) =

(6.1)

74

where x £ i = 1, • • * , iV, j = 0,... ,p, and

£ p— i

= (^rryi /(' - e)n<s - <6'2'
0 r=1

and u^(x) is the jth derivative of u(x) and U^\x) is the jth derivative of U(x).

Thus at the roots of the polynomial, Pp{£) (p ^ 2), the collocation solution will have

a higher order of convergence.

The existence of these superconvergent points within each subinterval of the spatial

domain of a ID PDE was experimentally verified in [ASMKll].

BACOLI constructs a superconvergent interpolant for each subinterval. The inter­

polant is a C1-continuous, piecewise polynomial that uses the superconvergent solution

and derivative values at the endpoints of the subinterval, the superconvergent solution

values within the current subinterval, and the two closest superconvergent solution

values from the adjacent subintervals. (The interpolant uses p + 3 interpolant values

so that the interpolant error will be smaller than the data error of the interpolated

collocation solution values.)

6.1.2 ID Lower Order Interpolant (LOI)-based Spatial Error

Estimation

This approach is described in detail in [ASMP12].

In contrast to the SCI, the LOI computes only the higher order collocation solution

U(x,t), and uses an interpolant to approximate the lower order solution. That is,

only one collocation solution approximation, U(x, t), of degree p+ 1, is computed and

propagated forward in time. The basic idea is to develop an interpolant for which the

leading order term in the interpolation error is equal to the leading order term in the

collocation error of the lower order collocation solution[Moo01].

This requires the LOI to interpolate the solution and derivative values at the

75

endpoints and the points corresponding to the superconvergent solution values of the

lower order solution internal to each subinterval. In this case, fewer interpolation

points are used and the interpolation error dominates the data error.

6.2 Extension to 2D

It may be possible to extend the ID interpolation based error estimation to the 2D

case. The SCI approach will require the existence of superconvergent points within

the 2D domain. In this section we consider numerical experiments that give us some

evidence of the existence of such points.

In order to compute the superconvergent points in 2D, we use (6.1), (6.2) to

suggest the locations of the superconvergent points in x and y domain separately, and

use these values as coordinates to look for superconvergent points in 2D.

We consider the test problem,

d2 d2 d
£ • = + * . L ^ ^ + 1 ^ + % + y -

fjf = (Li + 1*2)11 + f(x, y, t), (x, t/,t)efix(0,l],fl = (0,1) x (0,1),

with the boundary and initial conditions chosen so that the true solution is

u = (e~l + 1) sin(7ra:) sin(7ry).

We calculate collocation solution errors across the entire problem domain (GE), at the

mesh points (ME), and at the superconvergent points (SE) internal to each rectangle

of the spatial domain. We also calculate the error for the spatial derivatives of the

collocation solution at the mesh points.

In the following tables,

• KCOL: the number of collocation points in each subinterval in both the x and

y domains (KCOL=p — l=q — 1).

76

• NINT: the number of subintervals in both x and y domain (NINT—M=N).

• The time integration is from 0 to 1.

• We consider error ratios as NINT is doubled.

• We set ATOL=RTOL= 2.0E-13 for DASPK, and TOL= 5.0E-14 for the non­

linear system solver in DASPK.

In the ID case the expected GE rate=KCOL+2, ME rate=2KC0L and SE rate=KCOL+3

[ASM09, CP76, DD74], so in the 2D case we expect the same convergence rates, be­

cause we are using a tensor product formulation. We also expect the convergence

rates for the spatial derivative errors at the mesh points to be the same as in the ID

case, 2KCOL.

Table 6.1: Expected GE rate = KCOL+2=5, ME rate = 2KC0L =6 and SE rate =
KCOL+3=6 (KCOL=3)

NINT GE ratio rate SE ratio rate
8 4.51 x 1(T7

- - 9.86 x HT8
- -

16 1.36 x 10~8 33.23 5.05 1.57 x 10~9 62.89 5.97
32 4.14 x 1CT10 32.78 5.03 2.50 x 10"11 62.64 5.97

ME ratio rate ME(Ck) ratio rate
9.83 x 10-9

- - 1.28 x 10~7
- -

1.61 x 10~1U 61.22 5.94 2.05 x 10~9 62.50 5.97
2.45 x 10-1* 65.61 6.04 3.10 x 10-11 65.91 6.04

ME (Uy) ratio rate
1.49 x 10~7

- -

2.36 x 1(T9 63.09 5.96
3.57 x 1(TU 66.08 6.05

From Tables 6.1, 6.2, we can observe the existence of superconvergence at the

internal superconvergent points (SE) and at the mesh points (ME), compared to

the GE and associated observed rate of convergence at an arbitrary point in the

spatial domain. The presence of such superconvergence values may be useful for error

77

Table 6.2: Expected GE rate = KCOL+2=6, ME rate = 2KC0L =8 and SE rate =
KCOL+3—7 (KCOL—4)

NINT GE ratio rate SE ratio rate
3 2.76 x 1CT6

- - 3.31 x 10-7
- -

6 4.77 x 10~8 57.90 5.86 2.72 x 10~9 121.66 6.93
12 7.61 x 10"10 62.61 5.97 2.09 x 10"11 129.95 7.02

ME ratio rate ME (U x) ratio rate
5.77 x 10~8

- - 1.66 x 10"7
- -

2.64 x 1(T1U 219.27 7.78 7.01 x 10~1U 236.22 7.88
9.81 x 10~ia 687.41 9.43 2.10 x 10_1Z 334.27 8.38

ME(C/j/) ratio rate
2.57 x 10-7

- -

1.81 x 10~9 141.88 7.15
1.22 x 10~u 148.89 7.22

estimation in the 2D case. Note that while we have observed the existence of the

internal superconvergent points in the 2D case, this result has not been proven in the

literature.

78

Chapter 7

Conclusion and Future Work

7.1 Conclusion

7.1.1 MOS

The MOS can be efficient for problems for which layer regions appear only in either

the x or y dimension since we use a non-adaptive spatial discretization in one of the

two dimensions. BACOL performs adaptive mesh refinement in the other dimension.

The MOS requires that one pair of boundary conditions be differentiated; this can

affect the accuracy of the numerical solution.

However, an improvement of the MOS algorithm could be possible if we were

to make a modification of BACOL to allow it to accept extra algebraic equations;

then none of the boundary conditions would need to be differentiated and this would

improve the accuracy of the numerical solution. If BACOL were to be modified in

this way and run with no spatial adaptivity, then the B-spline collocation version of

the MOS and 2D B-spline collocation algorithm would be mathematically equivalent.

79

7.1.2 2D B-spline Collocation

Direct application of 2D B-spline collocation appears to be an interesting approach

for the numerical solution of 2D parabolic PDEs because there is no need to make

the restrictive assumptions regarding the boundary conditions that we have made in

the MOS algorithm, and we do not need to differentiate the boundary conditions. In

this thesis we have implemented a static (non-adaptive) 2D collocation algorithm and

used it to successfully solve several test problems. In addition, we have observed the

existence of superconvergent points that may be useful for error estimation.

Since we are using a tensor product framework to extend the B-spline collocation

algorithm to 2D, the number of collocation points per subrectangle is (p — l)(q — 1)

(assuming that the polynomials in the x and y domain have degree p and q respec­

tively). While our 2D B-spline collocation algorithm usually produces an accurate

solution, it needs substantially more computer time than in the ID case. However,

we introduced an algorithm to do a fast linear projection and its inverse, based on

the tensor product form of the two ABD matrices and their LU decompositions. The

amount of computation and memory is substantially reduced.

From our experience with the two algorithms considered in this thesis, i.e., the

MOS and the 2D B-spline collocation algorithm, it appears that the latter approach

is significantly better than the former approach (as it is now implemented). We have

observed that the 2D B-spline collocation algorithm is able to solve much more difficult

problems than the MOS algorithm. The parameter £ which controls the difficulty of

the 2D Burgers equation had to be set to a fairly large value (0.1 or 0.25) in order

for the MOS algorithm to be able to solve the problem whereas the 2D B-spline

collocation algorithm could solve the same problem with a significantly smaller value

for f (0.01).

80

7.2 Future Work

Since the 2D B-spline collocation algorithm appears to be superior to the MOS al­

gorithm, we limit our comments regarding future work to the former. Since PDEs

frequently have large variations occurring over small regions of the physical domain,

the next step will be effectively solving such problems by introducing mesh adaptivity

to put more mesh points in the layer regions. Approaches that have been employed

in MMM may be useful here. Such approaches use a MMPDE to transfer the PDE

from the physical domain to a computational domain where tensor product B-spline

collocation can be easily applied.

81

Bibliography

[AAF01] S. Adjerid, M. Aiffa, and J. E. Flaherty. Hierarchical finite element bases
for triangular and tetrahedral elements. Computer Methods in Applied
Mechanics and Engineering, 190(22-23) :2925-2941, 2001.

[ACR81] U. Ascher, J. Christiansen, and R. D. Russell. Collocation software for
boundary-value odes. ACM Trans. Math. Softw., 7(2):209-222, 1981.

[AFMW92] S. Adjerid, J. E. Flaherty, P. K. Moore, and Y. J. Wang. High-order
adaptive methods for parabolic systems. Phys. D, 60(l-4):94-lll, 1992.

[AM02] S. Adjerid and T. C. Massey. A posteriori discontinuous finite element
error estimation for two-dimensional hyperbolic problems. Comput. Meth­
ods Appl. Mech. Engrg., 191(51-52) :5877-5897, 2002.

[AMR95] U. M. Ascher, R. M. M. Mattheij, and R. D. Russell. Numerical solution
of boundary value problems for ordinary differential equations, volume 13
of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1995.

[AOOO] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite
element analysis. Pure and Applied Mathematics (New York). Wiley-
Interscience [John Wiley & Sons], New York, 2000.

[ASM09] T. Arsenault, T. Smith, and P. H. Muir. Superconvergent interpolants
for efficient spatial error estimation in ID PDE collocation solvers. Can.
Appl. Math. Q., 17(3):409-431, 2009.

[ASMK11] T. Arsenault, T. Smith, P.H. Muir, and P. Keast. Efficient interpolation-
based error estimation for Id time-dependent pde collocation codes. Tech­
nical Report 2011_001, Department of Mathematics and Computing Sci­
ence, Saint Mary's University, Halifax, NS, 2011.

[ASMP12] T. Arsenault, T. Smith, P. H. Muir, and J. Pew. Asymptotically correct
interpolation-based estimation in ID PDE collocation solvers, to appear
in Can. Appl. Math. Q., 2012.

82

[Bak77] M. Bakker. Software for semi-discretization of time dependent partial dif­
ferential equations in one space variable. Mathematisch Centrum, Afdel-
ing Numerieke Wiskunde. Stichting Mathematisch Centrum, 1977.

[BER95] R. Beck, B. Erdmann, and R. Roitzsch. Kaskade 3.0 - an object-oriented
adaptive finite element code. In International workshop, pages 105-124.
Birkhaeuser, 1995.

[BFP~98] M. Berzins, R. Fairlie, S. V. Pennington, J. M. Ware, and L. E.
Scales. Sprint2d: adaptive software for pdes. ACM Trans. Math. Softw.,
24(4):475-499, 1998.

[BHK07] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II—a general-purpose
object-oriented finite element library. ACM Trans. Math. Softw., 33(4),
2007.

[BHP94] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Using Krylov methods
in the solution of large-scale differential-algebraic systems. SIAM J. Sci.
Comput., 15(6) :1467—1488, 1994.

[BL90] G. Birkhoff and R. E. Lynch. Iterative methods for large linear systems.
chapter ELLPACK and ITPACK as research tools for solving elliptic
problems, pages 41-63. Academic Press Professional, Inc., San Diego,
CA, USA, 1990.

[BL97] A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for
solving partial differential equations; diffpack. In M. Dhlen and A. Tveito,
editors, Numerical Methods and Software Tools in Industrial Mathemat­
ics, pages 61-90. Birkhauser, Boston, 1997.

[BM02] E. Bertolazzi and G. Manzini. Algorithm 817: P2mesh: generic object-
oriented interface between 2-d unstructured meshes and fem/fvm-based
pde solvers. ACM Trans. Math. Softw., 28(1):101-132, 2002.

[BPPW97] M. Berzins, S. V. Pennington, P. R. Pratt, and J. M. Ware. Modern
software tools for scientific computing, chapter SPRINT2D software for
convection dominated PDEs, pages 63-80. Birkhauser Boston Inc., Cam­
bridge, MA, USA, 1997.

[BS73] C. de Boor and B. Swartz. Collocation at gaussian points. SIAM Journal
on Numerical Analysis, 10(4):582-606, 1973.

[BTV96] J. G. Blom, R. A. Trompert, and J. G. Verwer. Algorithm 758: Vlugr2:
a vectorizable adaptive-grid solver for pdes in 2d. ACM Trans. Math.
Softw., 22(3):302-328, 1996.

83

[BV96] J. G. Blom and J. G. Verwer. Algorithm 759: Vlugr3: a vectorizable
adaptive-grid solver for pdes in 3d part ii. code description. ACM Trans.
Math. Softw., 22(3):329-347, 1996.

[Chr94] C. C. Christara. Quadratic spline collocation methods for elliptic partial
differential equations. BIT, 34(1):33-61, 1994.

[CHR99] W. Cao, W. Huang, and R. D. Russell. A study of monitor functions
for two-dimensional adaptive mesh generation. SIAM J. Sci. Comput.,
20(6):1978-1994 (electronic), 1999.

[CP76] J. H. Cerutti and S. V. Parter. Collocation methods for parabolic partial
differential equations in one space dimension. Numer. Math., 26(3):227-
254, 1976.

[dB77] C. de Boor. Package for calculating with S-splines. SIAM J. Numer.
Anal, 14(3):441-472, 1977.

[dB78] C. de Boor. A practical guide to splines, volume 27 of Applied Mathemat­
ical Sciences. Springer-Verlag, New York, 1978.

[DD74] Jr. J. Douglas and T. Dupont. Collocation methods for parabolic equa­
tions in a single space variable. Lecture Notes in Mathematics, Vol. 385.
Springer-Verlag, Berlin, 1974.

[DES82] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods.
SIAM J. Numer. Anal., 19(2):400-408, 1982.

[DFK83a] J. C. Diaz, G. Fairweather, and P. Keast. Algorithm 603. COLROW and
ARCECO: FORTRAN packages for solving certain almost block diagonal
linear systems by modified alternate row and column elimination. ACM
Trans. Math. Software, 9(3):376-380, 1983.

[DFK83b] J. C. Diaz, G. Fairweather, and P. Keast. FORTRAN packages for solv­
ing certain almost block diagonal linear systems by modified alternate
row and column elimination. ACM Trans. Math. Software, 9(3):358-375,
1983.

[DMPP86] L. M. Delves, A. McKerrell, S. A. Peters, and C. Phillips. Performance
of GEM2 on the ELLPACK problem population. Internat. J. Numer.
Methods Engrg., 23(2):229-238, 1986.

[DR87] W. R. Dyksen and C. J. Ribbens. Interactive ELLPACK: an interac­
tive problem-solving environment for elliptic partial differential equations.
ACM Trans. Math. Software, 13(2):113—132, 1987.

84

[dSF93] E. de Sturler and D. R. Fokkema. Nested krylov methods and preserv­
ing the orthogonality. Sixth Copper Mountain Conference on Multigrid
Methods, NASA Conference Publication 3224, Part 1, pages 111-125,
1993.

[FL03] R. Fazio and R. J. LeVeque. Moving-mesh methods for one-dimensional
hyperbolic problems using CLAWPACK. Comput. Math. Appl., 45(1-
3):273-298, 2003.

[Gea71] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential
Equations. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1971.

[Goc02] M.S. Gockenbach. Partial Differential Equations: Analytical and Numer­
ical Methods. Number v. 1 in Partial Differential Equations: Analytical
and Numerical Methods. Society for Industrial and Applied Mathematics,
2002.

[Hin76] A.C. Hindmarsh. Preliminary Documentation of GEARIB: Solution of
implicit system of ordinary differential equations with banded with banded
Jacobian. Lawrence Livermore Laboratory, 1976.

[HMR85a] E. N. Houstis, W. F. Mitchell, and J. R. Rice. Algorithm 637: Gencol:
collocation of general domains with bicubic hermite polynomials. ACM
Trans. Math. Softw., 11(4):413-415, 1985.

[HMR85b] E. N. Houstis, W. F. Mitchell, and J. R. Rice. Algorithm 638: Intcol
and hermcol: collocation on rectangular domains with bicubic hermite
polynomials. A CM Trans. Math. Softw., 11(4):416—418, 1985.

[HMR85c] E. N. Houstis, W. F. Mitchell, and J. R. Rice. Collocation software for
second-order elliptic partial differential equations. ACM Trans. Math.
Softw., 11(4):379-412, 1985.

[HR96] W. Huang and R. D. Russell. A moving collocation method for solving
time dependent partial differential equations. Appl. Numer. Math., 20(1-
2):101-116, 1996.

[HR98a] W. Huang and R. D. Russell. A high-dimensional moving mesh strategy.
Appl. Numer. Math., 26(l-2):63-76, 1998.

[HR98b] W. Huang and R. D. Russell. Moving mesh strategy based on a gradient
flow equation for two-dimensional problems. SI AM J. Sci. Comput., 1998.

[HRll] W. Huang and R. D. Russell. Adaptive moving mesh methods, volume
174 of Applied Mathematical Sciences. Springer, New York, 2011.

[HS94] W. Huang and D. M. Sloan. A simple adaptive grid method in two
dimensions. SI AM J. Sci. Comput., 15(4):776-797, 1994.

85

[HuaOl] W. Huang. Practical aspects of formulation and solution of moving mesh
partial differential equations. J. Comput. Phys., 171(2):753-775, 2001.

[HV03] W. Hundsdorfer and J. Verwer. Numerical solution of time-dependent
advection-diffusion-reaction equations, volume 33 of Springer Series in
Computational Mathematics. Springer-Verlag, Berlin, 2003.

[HVR88] E. N. Houstis, E. A. Vavalis, and J. R. Rice. Convergence of 0(h4) cubic
spline collocation methods for elliptic partial differential equations. SIAM
J. Numer. Anal, 25(l):54-74, 1988.

E. Hairer and G. Wanner. Solving Ordinary Differential EquationsII:
Stiff and differential-algebraic problems. Springer Series in Computational
Mathematics. Springer, 1993.

P. Keast and P. H. Muir. Algorithm 688:EPDCOL: a more efficient
PDECOL code. ACM Trans. Math. Softw., 17(2):153-166, 1991.

H. P. Langtangen. Computational partial differential equations, volume 1
of Texts in Computational Science and Engineering. Springer-Verlag,
Berlin, second edition, 2003.

R. J. LeVeque. Clawpack—a software package for solving multi­
dimensional conservation laws. In Hyperbolic problems: theory, numerics,
applications (Stony Brook, NY, 1994), pages 188-197. World Sci. Publ.,
River Edge, NJ, 1996.

R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Dif­
ferential Equations: Steady-State and Time-Dependent Problems. Clas­
sics in Applied Mathematics Classics in Applied Mathemat. Society for
Industrial and Applied Mathematics, 2007.

htt p: //reference .wolfram. com/legacy / v 52/builtinfunct ions / ad vanceddoc-
umentation / differentialequations / ndsolve/part ialdifferentialequations / th-
enumericalmethodoflines / introduction. ht ml.

P. K. Moore. Comparison of adaptive methods for one-dimensional
parabolic systems. Applied Numerical Mathematics, 16(4):471 - 488,
1995.

P. K. Moore. Interpolation error-based a posteriori error estimation for
two-point boundary value problems and parabolic equations in one space
dimension. Numer. Math., 90(1):149-177, 2001.

[MRB05] R. M.M. Mattheij, S. W. Rienstra, and J.H.M.T.T. Boonkkamp. Partial
Differential Equations: Modeling, Analysis, Computation. SIAM Mono­
graphs on Mathematical Modeling and Computation. Society for Indus­
trial and Applied Mathematics, 2005.

[HW93]

[KM91]

[Lan03]

[LeV96]

[LeV07]

[mol]

[Moo95]

[MooOl]

86

[MS79] N. K. Madsen and R. F. Sincovec. Algorithm 540: PDECOL, general
collocation software for partial differential equations [d3]. ACM Trans.
Math. Softw., 5(3):326-351, 1979.

[Ng05] K. S. Ng. Spline collocation on adaptive grids and non-rectangular regions.
PhD thesis, Department of Computer Science, University of Toronto,
Toronto, ON, 2005.

[Pet83] L. R. Petzold. A description of DASSL: a differential/algebraic system
solver. In Scientific computing (Montreal, Que., 1982), IMACS Trans.
Sci. Comput., I, pages 65-68. IMACS, New Brunswick, NJ, 1983.

[PW95] I. Patlashenko and T. Weller. Two-dimensional spline collocation method
for nonlinear analysis of laminated panels. Computers Structures,
57(1) :131—139, 1995.

[RS97] R. D. Russell and W. Sun. Spline collocation differentiation matrices.
SI AM J. Numer. Anal., 34(6):2274-2287, 1997.

[Saa81] Y. Saad. Krylov subspace methods for solving large unsymmetric linear
systems. Math. Comp., 37(155):105-126, 1981.

[Saa90] Y. Saad. Sparskit: a basic tool-kit for sparse matrix computations. Tech­
nical Report RIACS9020, Research Institute for Advanced Computer Sci­
ence, NASA Ames Research Center, Moffett Field, CA, 1990.

[Saa93] Y. Saad. A flexible inner-outer preconditioned GMRES algorithm. SIAM
J. Sci. Comput., 14(2):461-469, 1993.

[Saa03] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial
and Applied Mathematics, Philadelphia, PA, second edition, 2003.

[Sch91] W. E. Schiesser. The Numerical Method of Lines: Integration of Partial
Differential Equations. Academic Press, 1991.

[SS86] Y. Saad and M. H. Schultz. GMRES: a generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 7(3):856-869, 1986.

[SunOl] W. Sun. B-spline collocation methods for elasticity problems. In Scientific
computing and applications (Kananaskis, AB, 2000), volume 7 of Adv.
Comput. Theory Pract., pages 133-141. Nova Sci. Publ., Huntington,
NY, 2001.

[VB06] A. C. Velivelli and K. M. Bryden. Parallel performance and accuracy
of lattice boltzmann and traditional finite difference methods for solving
the unsteady two-dimensional burger's equation. Physica A: Statistical
Mechanics and its Applications, 362(1):139-145, 2006.

87

[vdV92] H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci.
Statist. Comput., 13(2):631—644, 1992.

[Ver80a] J. G. Verwer. Algorithm 553: M3rk, an explicit time integrator for
semidiscrete parabolic equations. ACM Trans. Math. Softw., 6(2):236 -
239, 1980.

[Ver80b] J. G. Verwer. An implementation of a class of stabilized explicit methods
for the time integration of parabolic equations. ACM Trans. Math. Softw.,
6(2): 188-205, 1980.

[VvZ07] T. Vejchodsky, P. Solln, and M. Zftka. Modular hp-fem system hermes
and its application to maxwell's equations. Math. Comput. Simul., 76(1-
3):223-228, 2007.

[VWSS01] A. Vande Wouwer, Ph. Saucez, and W. E. Schiesser, editors. Adaptive
method of lines. Chapman & Hall/CRC, Boca Raton, FL, 2001.

[Wan95] Y. Wang. A Parallel Collocation Method for Two Dimensional Linear
Parabolic Separable Partial Differential Equations. PhD thesis, Depart­
ment of Mathematics and Statistics, Dalhousie University, Halifax, NS,
1995.

[WKM04a] R. Wang, P. Keast, and P. H. Muir. BACOL: B-spline adaptive col­
location software for 1-d parabolic pdes. ACM Trans. Math. Softw.,
30(4):454-470, 2004.

[WKM04b] R. Wang, P. Keast, and P. H. Muir. A comparison of adaptive software
for ID parabolic PDEs. J. Comput. Appl. Math., 169(1):127-150, 2004.

[WKM04c] R. Wang, P. Keast, and P. H. Muir. A high-order global spatially adap­
tive collocation method for 1-d parabolic pdes. Appl. Numer. Math.,
50(2):239-260, 2004.

[WKM08] R. Wang, P. Keast, and P. H. Muir. Algorithm 874: BACOLR: spatial
and temporal error control software for pdes based on high-order adaptive
collocation. ACM Trans. Math. Softw., 34(3):15:1-15:28, 2008.

[WMKL93] S. Wendel, H. Maisch, H. Karl, and G. Lehner. Two-dimensional b-
spline finite elements and their application to the computation of solitons.
Electrical Engineering (Archiv fur Elektrotechnik), 76:427-435, 1993.

88

Appendix A

Source Code

A.l A Finite Difference based MOS Scheme

These are the user-supplied subroutines for the 2D Burgers' equation.

SUBROUTINE F(T, X, U, UX, UXX, FVAL, NPDE)

C

C PURPOSE:

C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE

C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION

C UT = F(T, X, U, UX, UXX).

c
c
C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

C

89

DOUBLE PRECISION

C

C

DOUBLE PRECISION

C

C

C

DOUBLE PRECISION

C

C

C

C

DOUBLE PRECISION

C

C

C

C

DOUBLE PRECISION

C

C

C

DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

DOUBLE PRECISION

COMMGN /TWCD/

X

THE CURRENT SPATIAL COORDINATE.

U(NPDE)

U(1:NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

UXX(NPDE)

UXX(1 :NPDE) IS THE APPROXIMATION OF THE

SECOND SPATIAL DERIVATIVE OF THE

SOLUTION AT THE POINT (T,X).

UO

UO IS THE EXACT

SOLUTION AT THE POINT (Y0,T,X).

(Y0=0.D0)

UNPDE_1

UNPDE_1 IS THE EXACT

SOLUTION AT THE POINT (Y(NPDE+1) ,T,X).

(Y (NPDE+1) = 1 .DO)

FVAL(NPDE)

FVAL(1:NPDE) IS THE RIGHT HAND SIDE

VECTOR F(T, X, U, UX, UXX) OF THE PDE.

COEFF, H

COEFF, H

90

INTEGER I

C

C SOLUTION AT THE POINT (Y0,T,X). (Y0=0.D0)

UO = 1.0D0 / (1.ODO+DEXP((X—T) / (2*COEFF)))

C SOLUTION AT THE POINT (Y(NPDE+1),T,X). (Y(NPDE+1) = 1.D0)

UNPDE l = 1.0D0 / (1 ,ODO+DEXP((X+1.0D0—T) / (2*COEFF)))

FVAL(l) = COEFF * UXX(l) - U(l) * UX(1)

& + COEFF / (H*H) * (U(2) -2*U(1)+U0)

& - U(l) * (U(2) —UO) / (2*H)

DO 10 1 = 2, NPDE-1

C CENTRAL FINITE DIFFERENCE, SO THREE PIONTS ARE NON-ZERO

FVAL(I) = COEFF * UXX(I) - U(I) * UX(I)

& + COEFF / (H*H) * (U(1+1)—2*U(I)+U(I -1))

& - U(I)*(U(I+1)-U(I-1))/(2*H)

10 CONTINUE

FVAL(NPDE) = COEFF * UXX(NPDE) - U(NPDE) * UX(NPDE)

& + COEFF / (H*H) * (UNPDE_ 1— 2*U(NPDE) +U(NPDE— 1))

& - U(NPDE)*(UNPDE_WJ(NPDE-1))/(2*H)

C

RETURN

END

C

SUBROUTINE DERTVF(T, X, U, UX, UXX, DFDU, DFDUX, DFDUXX, NPDE)

C

C PURPOSE:

C THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE

91

c
c
c
c
c
c
o

c
c

c
c

c
c

c
c

c
c
c

c
c
c
c

c
c
c
c

PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE

OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM

UT = F(T, X, U, UX, UXX)

THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(U) , D(F)/D(UX) , AND

D(F)/D(UXX).

SUBROUTINE PARAMETERS:

INPUT:

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

NPDE

THE NUMEOl OF PDES IN THE SYSTEM.

THE CURRENT TIME COORDINATE.

X

THE CURRENT SPATIAL COORDINATE.

U (NPDE)

U(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

UXX(NPDE)

UXX(1 -.NPDE) IS THE APPROXIMATION OF THE

SECOND SPATIAL DERIVATIVE OF THE

SOLUTION AT THE POINT (T,X).

92

C OUTPUT:

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

CCMMCN /IWCD/

INTEGER

DFDU (NPDE, NPDE)

DFDU(I, J) IS THE PARTIAL DERIVATIVE

OF THE I—TH aWPWENT OF THE VECTOR F

WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

DFDUX (NPDE, NPDE)

DFDUX(I, J) IS THE PARTIAL DERIVATIVE

OF THE I—TH COMPONENT OF THE VECTOR F

WITH RESPECT TO THE J-TH COMPONENT

OF THE SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION U.

DFDUXX(NPDE, NPDE)

DFDUXX(I, J) IS THE PARTIAL DERIVATIVE

OF THE I—TH COMPONENT OF THE VECTOR F

WITH RESPECT TO THE J-TH COMPONENT

OF THE SECOND SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION U.

COEFF, H

COEFF, H

I, J

C CENTERED FINITE DIFFERENCE,

C THE FRIST ROW HAS TWO NON-ZERO ELEMENTS

DFDU(1 ,1) = -UX(1) - COEFF / (H*H)* 2

& - (U(2) - DEXP((X—T) / COEFF))/ (2*H)

DFDU(1,2) = COEFF / (H*H) - U(l) / (2*H)

DO 10 J = 3, NPDE

DFDU(1,J) = 0.D0

93

10 CONTINUE

DO 20 1 = 2, NPDE-1

DO 11 J = 1, 1-2

DFDU(I,J) = 0.D0

11 CONTINUE

C CENTERED FINITE DIFFERENCE, SO THREE PIONTS ARE NON-ZERO

DFDU(I,I —1) = COEFF / (H*H) + U(I) / (2*H)

DFDU(I, I) = -UX(I) - COEFF / (H*H)* 2 - (U(I+l)-U(I-1)) / (2*H)

DFDU(1,1 + 1) = COEFF / (H*H)-U(I) / (2*H)

DO 12 J =1+2, NPDE

DFDU(I , J) = 0.D0

12 CONTINUE

20 CONTINUE

C CENTERED FINITE DIFFERENCE, THE LAST ROW HAS TWO NON-ZERO ELEMENTS

DO 30 J = 1, XPDE-2

DFDU(NPDE, J) = 0.D0

30 CONTINUE

DFDU(NPDE,NPDE-1) = COEFF / (H*H) + U(NPDE) / (2*H)

DFDU(NPDE,NPDE) = -UX(NPDE) - COEFF / (H*H)» 2

& - (DEXP((X—T) / COEFF) - U(NPDE-l)) / (2*H)

DO 40 1 = 1, NPDE

DO 31 J = 1, NPDE

IF (J .EQ. I) THEN

DFDUX(I,J) = -U(I)

ELSE

DFDUX(I, J) = 0.D0

94

ENDIF

31 CONTINUE

40 CONTINUE

DO 50 I = 1, NPDE

DO 41 J = 1, NPDE

IF (J .EQ. I) THEN

DFDUXX(I, J) = COEFF

ELSE

DFDUXX(I , J) = 0.D0

ENDIF

41 CONTINUE

50 CONTINUE

RETURN

END

C

SUBROUTINE BNDXA(T, U, UX, BVAL, NPDE)

C

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

C LEFT SPATIAL END POINT X = XA.

C B(T, U, UX) = 0

c
c

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

DOUBLE PRECISION T

C THE CURRENT TIME COORDINATE.

95

DOUBLE PRECISION

C

C

C

DOUBLE PRECISION

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

DOUBLE PRECISION

CCMMCN /TWCD/

INTEGER

U(NPDE)

U(1:NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,XA).

BVAL(NPDE)

BVAL(1 :NPDE) IS THE BOUNDARY CONTTDITION

AT THE LEFT BOUNDARY POINT.

COEFF, H

COEFF, H

I

DO 10 I = 1, NPDE

BVAL(I) = (l .ODO + DEXP((I*H-T) / (2*COEFF))) * U(I) - 1.0D0

10 CONTINUE

RETURN

END

C

SUBROUTINE BNDXB(T, U, UX, BVAL, NPDE)

C

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

C RIGHT SPATIAL END POINT X = XB.

C B(T, U, UX) = 0

C

96

c-
c
c

c
c

c
c

c
c
c

c
c
c
c
c

c
c

SUBROUTINE PARAMETERS:

INPUT:

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

OUTPUT:

DOUBLE PRECISION

DOUBIE PRECISION

CCMMCN /IWD/

INTEGER

NPDE

THE NUMEER OF PDES IN THE SYSTEM.

THE CURRENT TIME COORDINATE.

U (NPDE)

U(1:NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XB).

UX(NPDE)

UX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,XB).

BVAL(NPDE)

BVAL(1 :NPDE) IS THE BOUNDARY CONTIDITION

AT THE RIGHT BOUNDARY POINT.

COEFF, H

COEFF, H

I

DO 10 I = 1, NPDE

BVAL(I) = (1.0D0 + DEXP((1.0D0+I*H-T) / (2+COEFF))) * U(I) - l.ODO

10 CONTINUE

RETURN

END

97

c-
c
c
c
c
c
c
c
c
c-
c
c

c
c

c
c

c
c
c

c
c
c
c
c

SUBROUTINE DIFBXA(T, U, UX, DBDU, DBDUX, DBDT, NPDE)

PURPOSE:

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE

BOUNDARY CONDITION EQUATION

B(T, U, UX) = 0

THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED

BY THIS ROUTINE.

SUBROUTINE PARAMETERS:

INPUT:

INTEGER NPDE

THE NUMBER OF PDES IN THE SYSTEM.

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

OUTPUT:

DOUBLE PRECISION

THE CURRENT TIME COORDINATE.

U (NPDE)

U(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UX(NPDE)

UX(1:NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

DBDU(NPDE,NPDE)

DBDU(I, J) IS THE PARTIAL DERIVATIVE

98

c
c
c
c

c
c
c
c
c
c

c
c
c

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

OCMVEN /IWCD/

INTEGER

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

DBDUX(NPDE,NPDE)

DBDUX(I, J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION U.

DBDT(NPDE)

DBDT(I) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO TIME T.

COEFF, H

COEFF, H

I, J

DO 10 I = 1, NPDE

DO 1 J = 1, NPDE

IF (J .EQ. I)

D B D U (I , J) =

ELSE

DBDU(I,J) =

ENDIF

1 CONTINUE

10 CONTINUE

THEN

= 1.0D0 + DEXP((I*H-T) / (2*COEFF))

= 0 .D0

DO 20 I = 1, NPDE

DO 11 J = 1, NPDE

DBDUX(I, J) = 0.D0

99

11

20

CONTINUE

CONTINUE

DO 30 I = 1, NPDE

DBDT(I) = 1.0D0/(2*COEFF) * DEXP((I*H-T) / (2*COEFF)) * U(I)

30 CONTINUE

RETURN

END

SUBROUTINE DIFBXB(T, U, UX, DBDU, DBDUX, DBDT, NPDE)

C-

C

C

C

C

C

C

C

C

C-

C

C

C

C

c
c

c
c

PURPOSE:

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

CONDITIONS AT THE RIGHT SPATIAL END POINT 1 = XB. FOR THE

BOUNDARY CONDITION EQUATION

B(T, U, UX) = 0

THE PARTIAL DERIVATIVES DB/DU, DB/DUX, AND DB/DT ARE SUPPLIED

BY THIS ROUTINE.

SUBROUTINE PARAMETERS:

INPUT:

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

NPDE

THE NUMBER OF PDES IN THE SYSTEM.

THE CURRENT TIME COORDINATE.

U (NPDE)

U(1:NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

100

DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C

C

C

C

C

DOUBLE PRECISION

OCMMCN /TWCD/

INTEGER

DOUBLE PRECISION

UX(NPDE)

UX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

DBDU(NPDE, NPDE)

DBDU(I, J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

DBDUX (NPDE, NPDE)

DBDUX(I , J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION U.

DBDT(NPDE)

DBDT(I) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO TIME T.

COEFF, H

COEFF, H

I, J

DO 10 1 = 1, NPDE

DO 1 J = 1, NPDE

IF (J .EQ. I)

DBDU(I,J) =

THEN

= 1.0D0 + DEXP((1 .ODO-t-I*H-T) / (2*COEFF))

101

ELSE

DBDU(I,J) = O.DO

ENDIF

1 CONTINUE

10 CONTINUE

DO 20 I = 1, NPDE

DO 11 J = 1, NPDE

DBDUX(I, J) = O.DO

CONTINUE

CONTINUE

DO 30 I = 1, NPDE

DBDT(I) = 1.0D0/(2.0*COEFF) *

* DEXP((1.0DO-f I*B-T) / (2.0*(X)EFF)) * U(I)

30 CONTINUE

RETURN

END

C

SUBROUTINE UINIT(X, U, NPDE)

C

C PURPOSE:

C THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL

C CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = TO

C AT THE SPATIAL COORDINATE X.

C

C

C SUBROUTINE PARAMETERS:

C INPUT:

DOUBLE PRECISION X

C THE SPATIAL COORDINATE.

102

11

20

INTEGER NPDE

C IHE NUMEER OF PDES IN THE SYSTEM.

C

C OUTPUT:

DOUBLE PRECISION U (NPDE)

U(1 :NPDE) IS VECTOR OF INITIAL VALUES OF

THE UNKNOWN FUNCTION AT T = TO AND THE

GIVEN VALUE OF X.

C

C

C

DOUBLE PRECISION

CCMMCN /IWCD/

INTEGER

COEFF, H

COEFF, H

I

C

c
c ASSIGN U(1 :NPDE) THE INITIAL VALUES OF U(T0,X).

DO 10 1 = 1, NPDE

U(I) = l.ODO / (1.0D0+DEXP((X+I *H) / (2*COEFF)))

10 CONTINUE

RETURN

END

C

SUBROUTINE TRUU(T, X, U, NPDE)

C PURPOSE:

C THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.

C

C SUBROUTINE PARAMETERS:

C INPUT:

INTEGER NPDE

C THE NUMBER OF PDES IN THE SYSTEM.

C

103

DOUBLE PRECISION

C

C

C

C

C

C

C

C-

DOUBLE PRECISION

OUTPUT:

DOUBLE PRECISION

THE CURRENT TIME COORDINATE.

THE CURRENT SPATIAL COORDINATE.

U (NPDE)

U (1:NPDE) IS THE EXACT SOLUTION AT THE

POINT (T,X).

DOUBLE PRECISION

CCMM3ST /IWCD/

INTEGER

COEFF, H

COEFF, H

I

DO 10 I = 1, NPDE

U(I) = l.ODO / (1.ODO+DEXP((X+I *H-T) / (2*COEFF)))

10 CONTINUE

RETURN

END

A.2 A B-spline Gaussian Collocation based MOS Scheme

These are the user-supplied subroutines for the 2D Burgers' equation.

C DRIVING PROGRAM FOR THE SYSTEM OF NPDE EQUATIONS DESCRIBED IN THE

c PAPER.

CU = 1.0D0/ (1.0DQfDEXP((X+Y—T) / (2*COEFF)))

C

104

C CONSTANTS:

DOUBLE PRECISION

PARAMETER

ZERO

(ZERO = 0.0D0)

C

C-

DOUBLE PRECISION

PARAMETER

NBGONE

(NEGONE = — 1.0D0)

C

C

c-

INTEGER

PARAMETER

NCONTI

(NCONll = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

C

C

C

C

C

Y DIMENSION

INTEGER

PARAMETER

YKCOL

YKCOL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PIECEWISE POLYNOMIALS MINUS ONE.

1 < YKCOL < 11.

(YKCOL = 3)

C

c
c

c
c
c

INTEGER

PARAMETER

INTEGER

PARAMETER.

YNINT

(YNINT = 4)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YNCPTS

(YNCPTS= (YKCOL* YNINT+NCONTI))

YNCPTS IS THE NUMBER

OF COLLOCATION POINTS.

105

INTEGER

C

C

C

PARAMETER

NPDE

NUMBER OF PDES

=THE NUMBER OF COLLOCATION POINTS

IN Y DOMAIN

(NPDE -- YKCOL*YNINT+MX)NTI)

C

C

C

C-

C

INTEGER

PARAMETER

YNELS

(YNELS=YKCOL * (YKCOLfNCONTI))

THE NUMBER OF ELEMENTS IN ONE

COLLOCATION BLOCK OF WORK.

Y DIMENSION

DOUBLE PRECISION

PARAMETER

DOUBLE PRECISION

PARAMETER

YA

THE LEFT BOUNDARY POINT

(YA = 0.0D0)

YB

THE RIGHT BOUNDARY POINT

(YB = 1.0D0)

DOUBLE PRECISION

C

C

C

C

C

C

C

C

C

C

DOUBLE PRECISION

Y(YNINT+1)

Y IS THE SPATIAL MESH WHICH DIVIDES THE

INTERVAL [Y_A,Y_B] AS: Y_A = Y(1) <

Y(2) < Y(3) < ... < Y(NINT+1) = Y_B.

YBS (YNCPTS+YKCOL+-NCONTI)

THE BREAKPOINT SEQUENCE.

YBS(I)=X(1) , 1=1, KCOLfNCONTI;

YBS((I -1) *KCOL+-NCONTM)=Y(I) ,

1=2, NINT; J = l, KCOL

YBS(YNCPTSfI)=Y(NINT+l), I = 1 ,KCOLmCONTI.

106

c
c

c
c
c

c
c
c
c-
c

c
c
c
c
c

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

YH(YNINT)

YH IS THE MESH STEP SIZE SEQUENCE

(B-SPLINE).

EXCOL(YNINT * (YKCOL+3))

EXCOL IS THE COLLOCATION POINT SEQUENCE

WHICH IS USED FOR ERROR ESTIMATE.

EWTS(YNINT* (YKCOL+3))

EWTS IS THE GAUSSIAN WEIGHT SEQUENCE

WHICH IS USED FOR ERROR ESTIMATE.

X DIMENSION

INTEGER

PARAMETER

XKCOL

KCOL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL, WHICH IS

EQUAL TO THE DEGREE OF THE PEECEWISE

POLYNOMIALS MINUS ONE.

1 < KCOL < 11.

(XKCOL = 5)

C

C

C

C-

C

INTEGER

PARAMETER

XNINT

(XNINT = 4)

NINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH X.

X DIMENSION

INTEGER

PARAMETER

NINTMX

MAXIMAL NUMBER OF INTEVALS ALLOWED

(NINTMX = 1000)

107

INTEGER MAXVEC

C THE DIMENSION OF THE VECTOR OF

C BSPLENE COEFFICIENTS

PARAMEIER (MAXVEC = NPDE*(NINTMX*XKCOL+2))

C

INTEGER NXOUT

PARAMETER (NXOUT = 21)

C NXOUT IS THE NUMER OF A SET OF SPATIAL

C POINTS FOR OUTPUT

C

INTEGER NUOUT

C THE DIMENSION OF UOUT

PARAMETER (NUOUT = NPDE+NXOUT)

C

INTEGER

C

PARAMEIER.

+

+

+

+

C

INTEGER

C

PARAMEIER

C

C

DOUBLE PRECISION

C

C

C

INTEGER IPAR(LIP)

LRP

SEE THE COMMENT FOR RPAR

(LRP = 134+MNTMX*(35+35*XKCOL+31+NPDE

+38*NPDE*XKCOL+8*XKCOL*XKOOL)

+ 14*XKCOL+79*NPDE+«PDE*NPDE* (21

+4*NJNTMX*XKCOL*XKCOL

+12*NlNIMX*XKCOL-(-6*NINTMX))

LIP

SEE THE COMMENT FOR EPAR

(LIP = 115+NPDE*((2*XKCOL+l)*NINTMX+4))

RPAR(LRP)

RPAR IS A FLOATING POINT WGRK ARRAY

OF SIZE LRP.

108

c
c
c

c
c

c
c-
c

INTEGER

PARAMETER

IPAR IS AN INTEGER WCRK ARRAY

OF SIZE LIP.

LENWRK

THE DIMENSION OF ARRAY WORK WHEN WE

CALL VALUES

(LENWRK = (XKCOL+2)+XKCOL*(NINTMX+l)-f4)

X DIMENSION

DOUBLE PRECISION

PARAMETER

DOUBLE PRECISION

PARAMETER

XA

THE LEFT BOUNDARY POINT

(XA = O.ODO)

XB

THE RIGHT BOUNDARY POINT

(XB = 1.0D0)

DOUBLE PRECISION

C

C

C

C

C

C

C

C

C-

DOUBLE PRECISION

X(NINTMX+1)

X IS THE SPATIAL MESH WHICH DIVIDES THE

INTERVAL [X_A,X_B] AS: X_A = X(l) <

X(2) < X(3) < ... < X(NINT+1) = X_B.

W(MAXVEC)

ON SUCCESSFUL RETURN FROM BACOL, Y IS

THE VECTOR OF BSPLINE

COEFnCIENTS AT THE CURRENT TIME TO.

C

C

DOUBLE PRECISION

DOUBLE PRECISION

TO

TO < TOUT IS THE INITIAL TIME.

TOUT

109

c
c

c
c
c
c

c
c
c
c

c
c

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

TOUT IS THE DESIRED FINAL OUTPUT TIME.

ATOL(NPDE)

ATOL IS THE ABSOLUTE ERROR TOLERANCE

REQUEST AND IS A SCALAR QUANTITY IF

MFLAG(2) = 0.

RTOL(NPDE)

RTOL IS THE RELATIVE ERROR TOLERANCE

REQUEST AND IS A SCALAR QUANTITY IF

MFLAG(2) = 0.

MFLAG(7)

THIS VECTOR OF USER INPUT DETERMINES

THE INTERACTION OF BACOL WITH DASSL.

C

INTEGER IDID

C IDID IS THE BACOL EXIT STATUS FLAG

C WHICH IS BASED ON THE EXIT STATUS FRCM

C DASSL ON ERROR CHECKING PERFORMED BY

C BACOL ON INITIALIZATION.

C

C

C

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

EXACTU (NFDE)

EXACT SOLUTION AT CERTAIN POINT

UOUT(NUOLT)

THE APPROXIMATION SOLUTIONS AT A SET

OF POINTS

VALWRK(LENWRK)

VALWEK IS A WJfK ARRAY IN VALUES

110

DOUBLE PRECISION

C

C

c

c
c

c
c

c
c

c
c

c
c
o

c
c

c
c
c

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

XOOT(NXOUT)

XOUT IS A SET OF SPATIAL POINTS FOR

OUTPUT

URAROLTM(NPDE, NXOUT)

THE APPROXIMATION SOLUTIONS AT A SET

OF POINTS (MATRIX FORM)

UOUTM(NPDE, NXOUT)

THE APPROXIMATION SOLUTIONS AT A SET

OF POINTS (MATRIX FORM)

TRY(NPDE,NXOUT)

THE APPROXIMATION SOLUTIONS AT A SET

OF POINTS (MATRIX FORM)

EXACIUM(NPDE, NXOUT)

THE EXACT SOLUTIONS AT A SET

OF POINTS (MATRIX FORM)

ERRORM(NPDE, NXOUT)

THE ERROR MAIRIXM = EXACIUM - UOLTM

ERRQR1NORM

1-NQRM OF THE ERROR MATRK

ERRORINFNORM

INFINITE-NORM OF THE ERROR MATRK

ERRCRMAXNORM

MAX-NORM OF THE ERROR MATRK

WCRK STORAGE:

DOUBLE PRECISION WORKl((YKCOL+ 3) * (YKCOL-3))

WCRK IS A FLOATING POINT WCRK STORAGE

ARRAY.

I l l

DOUBLE PRECISION

C

C

C

C

C

C

C

C

C

C

C

c
c
c
c
c

c
c
c
c

c
c
c

c
c

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

INTEGER

DOUBLE PRECISION

WORK22(YKCOL*YKCOL)

WCRK IS A FLOATING POINT WCRK STORAGE

ARRAY.

ICFLAG

THIS IS THE STATUS FLAG FRCM COLROW

WHICH IS CALLED BY CRDCMP.

ICFLAG = 0, INDICATES NON-SINGULARITY.

ICFLAG = -1, INDICATES SINGULARITY.

ICFLAG = 1, INDICATES INVALID INPUT.

YFB ASIS (*)

BASIS FUNCTION VALUES AT THE COLLOCATION

POINTS. FB ASIS (K, J , I) CONTAINS THE

VALUES OF THE (J-l)ST DERIVATIVE

(J = 1,2 ,3) OF THE K-TH NON-ZERO BASIS

FUNCTION (K= 1 ,KCOL+NCONTI) AT THE

I-TH COLLOCATION POINT.

COEFF

COEFF IS THE COEFFOENT OF UXX IN THE

BURGERS' EQUATION

IPIVOT(NPDE)

iprvoT(*)

PIVOTING INFORMATION FRCM THE

FACTORIZATION OF THE TEMPORARY MATRIX.

YABD(*)

ABD

INTEGER IABDTP

112

C WCRK(IABDTP) CONTAINS A COPY OF THE TOP

C BLOCK WHICH IS REQUIRED SINCE CRDCMP

C OVERWRIIES THE INPUT COLLOCATION MATRIX.

C

INTEGER IABDBK

C WCRK(IABDBK) CONTAINS A COPY OF ABDBLK

C WHICH IS REQUIRED SINCE CRDCMP

C OVERWRITES THE INPUT COLLOCATION MATRIX.

C

INTEGER IABDBT

C WQRK(IABDBT) CONTAINS A COPY OF THE

C BOTTOM BLOCK WHICH IS REQUIRED SINCE

C CRDCMP OVERWRIIES THE INPUT COLLOCATION

C MATRIX.

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PIECEWISE POLYNOMIAIS MINUS ONE.

C 1 < YKCOL < 11.

C PARAMETER (KCOLY = YKCOL)

C

INTEGER NINTY

C PARAMETER (NINTY = YNINT)

C YNINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH Y.

C

C DOUBLE PRECISION YCOL(YNCPTS)

DOUBLE PRECISION YCOL (*)

C THE SEQUENCE OF COLLOCATION POINTS ON

113

c
c
c-
c

THE INTERVAL [Y_A, Y_B].

&

OCMVKN /BURGER/

CaVMCN /YBSPLINE/

CCMMCN /ABDLU/

CEMM3V /YBCOEFF/

COEFF

NINTY, KCOLY, YCOL(442)

YABD(8804) ,

IPIVOT (442) , LABDTP, IABDBK, IABDBT

YFBASIS (29172)

C

C LOCAL VARIABLES:

C

C LOOP INDICES:

INTEGER

INTEGER

INTEGER

C

C

C

C SUBROUTINES CALLED:

C

C

C

C

C HAS TO DO THIS, BECAUSE OF THE USE OF OCMMCK BLOCK PASS DATA

C COULD NOT BE USED AS VARIABLE

KCOLY = YKCOL

NINTY = YNINT

C SET THE POINTERS INTO THE FLOATING POINT WGRK ARRAY.

LABDTP = 1

IABDBK = LABDTP + NCONTI

I

J

II

BACOL

VALUES

TRUU

114

IABDBT = IABDBK + YNINT *YKCOL* (YKCOUNCONTI)

C

C INITIALIZE ABDBLK, THE TCP BLOCK AND THE BOTTOM BLOCK TO ZERO.

DO 11 1 = 1, YNINT +YKCOL* (YKCOL+NCONTI)+2 •NCONTI

YABD(I) = ZERO

11 CONTINUE

DO 12 1 = 1, (YKCOL+NCONTI) *3*YNCPTS

YFBASIS(I) = ZERO

12 CONTINUE

C SET THE REMAINING INPUT PARAMETERS.

TO = 0.0 DO

TOUT = 1.0D+0

ATOL(l) = l.D-3

ATOL(NPDE) = l.D-3

DO I = 2, NPDE-1

ATOL(I) = l.D-3

END DO

DO I = 1, NPDE

RTOL(I) = ATOL(I)

END DO

COEFF = 2.5D—1

C

C DEFINE THE MESH BASED ON A UNIFORM STEP SIZE.

Y(1) = YA

DO 10 1 = 2, YNINT

Y(I) = YA + ((I—1) * (YB - YA)) / YNINT

10 CONTINUE

Y(YNEMT+1) = YB

115

CALL MESHSQ(YKCOL, YNINT, Y, WORK1, YH,

& EXCOL, EWIS)

CALL COLPNT(YKCOL, YNINT, YNCPTS, Y, YH,

& W0RK22, YCOL,

& YBS)

C

C DISCRETIZE Y DOMAIN (USE PARAMEIER TO PASS THE ID ARRAY YFBASIS

C TO 3D FBASIS, AND GET YABD(3 PARTS))

CALL BSPLINECOEFF (YKCOL, YNINT, YCOL, YBS, YFBASIS)

C LU DECOMPOSITION OF THE MATRIX.

CALL CRDQVIP(YNCPTS,YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,YKCOL,

& (YKCOL+NCONTI), YNINT,YABD(IABDBT) , 1, IPIVOT,

& ICFLAG)

IF (ICFLAG .NE. 0) GOTO 9999

C

C USE BACOL

C DEFINE THE MESH BASED ON A UNIFORM STEP SIZE.

X(l) = XA

DO 20 1 = 2, XNINT

X(I) = XA + ((I —1) * (XB - XA)) / XNINT

20 CONTINUE

X(XNINT+1) = XB

C INITIALIZE THE MFLAG VECTOR.

D O 2 1 1 = 1 , 7

MFLAG(I) = 0

116

21 CONTINUE

MFIAG(2) = 1

C INITIALIZE IPAR AND RPAR.

DO I = 1, LIP

IPAR(I) = 0

END DO

DO I = 1, LRP

RPAR(I) = 0.0D0

END DO

C

OPEN(7 , FILE- '2DBURGER.TEXT' , ACCESS='SEQUENTIAL',

& FQRM= TORMATIED')

WRIIE(7 , '(/A) ') 'THE INPUT IS '

WRXIE(7,'(/A, 13, A, 14, 2(A, E8.2))') 'XKCOL =', XKCOL,

k ', XNINT =', XNINT, ATOL(l)

& ATOL(l), ', RTOL(l) = ',RTOL(l)

WRTIE(7 , '(/A, E8.2) ') 'TOUT = ', TOUT

CALL BACOL(TO, TOUT, ATOL, RTOL, NPDE, XKCOL, NINTMX, XNINT, X,

& MFIAG, RPAR, LRP, IPAR, LIP, W, IDID)

C CHECK FOR AN ERROR FROM BACOL.

WR]TE(7, '(/A, 15)') 'IDID =', IDID

IF (IDID .LT. 2) GOTO 100

C OUTPUT APPROXIMATE SOLUTION

XOUT(l) = XA

DO 30 1 = 2, NXOUT-1

XOUT(I) = XA + DBLE(I - 1) * (XB - XA)/DBLE(NXOUT-l)

117

30 CONTINUE

XOUT(NXOLT) = XB

CALL VALUES(XKCOL, XOUT, XNINT, X, NPDE, NXOUT, 0,

& UOUT, W, VALWRK)

WRIIE(7 , '(/A) ') "THE OUTPUT IS '

WR1TE(7, '(/A, 13, A, 14)') 'XKCOL =', XKCOL, ', XNINT = ', XNINT

WWTE(7, '(/A, 4A) ') ' XOUT ', ' UOUT(l)

& ' UOUT(2) ', • UOUT(3)

& ' UOUT(4) '

DO 40 I - 1, NXOUT

II = (I - 1) * NPDE

C REFORM UOUT INTO NPDE*NXOUT MATRIX

DO 41 J = 1, NPDE

UBAROUIM(J , I) = UOUT(II+J)

41 CONTINUE

C DO THE PROJECTION

C 98 PQRMAT(E14.6 , ADVANCE = NO)

40 CONTINUE

DO 42 I = 1, NXOUT

CALL YEVALl (KCOLY, NINTY, YFB ASIS ,UBAROUTM(1,1),

& UBAROUTM(1,1), UOUTM(1,1) ,TRY(1,1))

42 CONTINUE

DO 43 I — 1, NXOUT

WRHE(7,'(13E14.6) ') XOUT(I), (UOUIM(J, I) , J = 1, NPDE)

43 CONTINUE

C OUTPUT EXACT SOLUTION.

WR1TE(7,'(/A, 1A)') '

118

WRTIE(7,'(/A, 4A) ') ' XOUT ' EXACTU(l)

& ' EXACITJ(2) ' EXACTU(3)

& ' EXACTU(4) '

DO 50 I = 1, NXOUT

CALL TRUU(TOUT, X017T(I), EXACTU, NPDE)

STORE EXACTU INTO NPDE+NXOUT MATRIX

DO 51 J = 1, NPDE

EXACrUM(J. I) = EXACTU(J)

51 CONTINUE

WRITE(7 , '(13E14.6) ') XOUT(I) , (EXAdUM(J, I) , J = l, NPDE)

50 CONTINUE

COMPUTES 1—NORM OF THE EEROR MATRIX

DO 60 I — 1, NXOUT

DO 61 J = 1, NPDE

ERRQRM(J , I) = UOUIM(J,I)-EXACIUM(J,I)

61 CONTINUE

60 CONTINUE

OUTPUT THE ERROR MATRIX.

WRITE(7, '(/A, 1A)') '

WRITE(7, '(/A, 4A) ') ' XOUT '

& ' ERRORM(2) '

& ' EERORM(4)'

DO 70 1 = 1, NXOUT

WRTIE(7 , '(13E14.6) ') XOUT(I) , (ERRORM(J, I) , J = l, NPDE)

70 CONTINUE

EERORM(l)

EERC»M(3)

119

CLOSE(7)

GOTO 9999

100 CONTINUE

WRITE(6 , '(A) ') 'CANNOT PROCEED DUE TO ERROR FROM BACOL. '

9999 STOP

END

C

CC END OF MAIN

SUBROUTINE BSPLINECOEFF(YKCOL,YNINT.YCOL,YBS,FBASIS)

C

C SUBROUTINE PARAMETERS:

C

c CONSTANTS:

DOUBLE PRECISION

PARAMETER

ZERO

(ZERO = 0.0D0)

C

C-

DOUBLE PRECISION

PARAMETER

NEGONE

(NEGONE = — 1.0D0)

C

C

C-

C

C

INTEGER

PARAMblkK

NCONTI

(NCONTT = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

INPUT:

Y DIMENSION

120

INTEGER

PARAMETER

PARAMETER

YKCOL

YKCOL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PIECEWISE POLYNOMIALS MINUS ONE.

1 < YKCOL < 11.

(YKCOL = 2)

(YKCOL = WQRK2(IYKCOL))

INTEGER

PARAMETER.

PARAMETER

YNINT

(YNINT = WQRK2(IYNINT))

(YNINT = 2)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

INTEGER

PARAMETER

YNCPTS

(YNCPTS= (YKCOL*YNTN'T—NCONTI))

YNCPTS IS THE NUME5ER

OF COLLOCATION POINTS.

INTEGER

PARAMETER

NPDE

NUMBER OF PDES

=THE NUMBER OF COLLOCATION POINTS

IN Y DOMAIN

(NPDE = YKCOL*YN1NT+NCONTI)

INTEGER

PARAMETER

YNELS

(YNELS=YKCOL* (YKCOLfNCONTI))

THE NUMBER OF ELEMENTS IN ONE

COLLOCATION BLOCK OF WCBK.

121

C Y DIMENSION

C INPUT:

DOUBLE PRECISION YCOL(YNCPTS)

C DOUBLE PRECISION YCOL(*)

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

C

DOUBLE PRECISION YBS (YNCPTSfYKCOLfNCONTI)

C THE BREAKPOINT SEQUENCE.

C YBS(I)=X(1) , 1=1, KCOLmCONTI;

C YBS((I -1) *KCOLfNCONTM) =Y (I) ,

C I =2, NINT; J = l, KCOL

C YBS(YNCPTSfI)=Y(NINT+l), 1 = 1 ,KCOLfNCONTI.

C

C

c
C OUTPUT:

DOUBLE PRECISION FBASIS (YKCOLfNCONTI, 3, YNCPTS)

C BASIS FUNCTION VALUES AT THE COLLOCATION

C POINTS. FBASIS (K, J , I) CONTAINS THE

C VALUES OF THE (J-l)ST DERIVATIVE

C (J = 1, 2 , 3) OF THE K-TH NON-ZERO BASIS

C FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE

C I-TH COLLOCATION POINT.

C

c
C INTEGER IPIVOT(NPDE)

INTEGER IPIVOT (*)

C PIVOTING INFORMATION FROM THE

C FACTORIZATION OF THE TEMPORARY MATRIX.

C

C

122

c
c

c
c
c
c

c
c
c
c

c
c
c
c
c-
c-

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

INTEGER

INTEGER

YABD(YNINT*YNELS+2*NCONTI)

YABD(*)

ABD

IABDTP

WORK(IABDTP) CONTAINS A COPY OF THE TOP

BLOCK WHICH IS REQUIRED SINCE CRDCMP

OVERWRITES THE INPUT COLLOCATION MATRIX.

IABDBK

WCRK(IABDBK) CONTAINS A COPY OF ABDBLK

WHICH IS REQUIRED SINCE CRDCMP

OVERWRITES THE INPUT COLLOCATION MATRIX.

IABDBT

WCEK(IABDBT) CONTAINS A COPY OF THE

BOTTOM BLOCK WHICH IS REQUIRED SINCE

CRDCMP OVERWRHES THE INPUT COLLOCATION

MATRIX.

CCMM3V /ABDLU/

&

YABD(8804),

IPIVOT(442) , IABDTP, IABDBK, IABDBT

C

C LOCAL VARIABLES:

INTEGER ILEFT

C BREAKPOINT INFORMATION.

C

C

C LOOP INDICES:

INTEGER I

123

INTEGER J

INTEGER L

INTEGER II

INTEGER LL

C

G

G

C SUBROUTINES CALLED:

C BSPLVD

C

C

C***END PROLOGUE BSPLINECOEFF

C BSPLVD IS CALLED TO COMPUIE THE COMPOiNENTS OF FBASIS(K, I, J)

C ASSOCIATED THE FIRST COLLOCATION POINT. NOW ILEFT = KCOL + NCONTI.

CALL BSPLVD(YBS,YKCOL+NCONH,YCOL(1) , YKCOLmCONTI, FBASIS (1 ,1,1) ,3)

C MAKEING USE OF THE FACT THAT ONLY THE FIRST BSPLINE HAS A NONZERO

C VALUE AT THE LEFT END POINT, SET UP THE TOP BLOCK IN WCKK.

YABD(IABDTP) = FBASIS (1,1,1)

C

C THE NINT BLOCKS AT THE MIDDLE OF THE MATRIX WILL NOW BE SET UP.

DO 80 I = 1, YNINT

C MAKE USE OF THE FACT THAT THERE ARE KCOL COLLOCATION POINTS IN

C EACH SUBINTERVAL TO FIND THE VALUE OF ILEFT.

ILEFT = YKCOL + NCONTI + (I - 1) * YKCOL

DO 70 J = 1, YKCOL

C II IS THE POSITION IN YCOL OF THE J-TH COLLOCATION POINT OF THE

124

C I-TH SUBINTERVAL.

C II IS THE POSITION IN THE URAR VECTOR WHERE THE VALUES FOR THE

C RIGHT HAND SIDE OF THE INITIAL CONDITIONS, EVALUATED AT THE II -TH

C COLLOCATION POINT ARE STORED.

II = (I —1) * YKCOL + 1 + J

CALL BSPLVD (YBS, YKCOLhNCONTI , YCOL (II) , ILEFT,

& FBASIS(1,1 ,11) ,3)

DO 60 L = 1, YKCOL + NCONTI

C GENERATE THE SUBBLOCK IN AEDBLK CORRESPONDING TO THE II -TH

C COLLOCATION POINT.

C

LL = (L—l)*YKCOL + (I-1)*YNELS + (J-l)

YABD(IABDBKfLL) = FBASIS(L, 1 , II)

60 CONTINUE

70 CONTINUE

80 CONTINUE

C

C NOW, SET UP THE BOTTOM BLOCK, USING THE FACT THAT ONLY THE

C LAST BSPLINE BASIS FUNCTION IS NON-ZERO AT THE RIGHT END POINT.

C SIMULTANEOUSLY, SET UP THE CORRESPONDING PART OF THE RIGHT HAND

C SIDE.

C

CALL BSPLVD (YBS, YKCOL-N CONTI, YCOL (YNCPTS) ,YNCPTS,

k FBASIS(1 ,1 ,YNCPTS) ,3)

YABD(IABDBT+1) = FBASIS(YKCOLfNCONTI, 1 , YNCPTS)

998 RETURN

125

END

C

C EM) OF SUBROUTINE BSPLINECOEFF-

SUBROUTINE DERIVF(T, X, UBAR, UBARX, UBARXX, DFDUBAR,

& DFDUBARX, DFDUBARXX, NPDE)

C PURPOSE:

C

C

C

C

C

C

C

THIS SUBROUTINE IS USED TO DEFINE THE INFORMATION ABOUT THE

PDE REQUIRED TO FORM THE ANALYTIC JACOBIAN MATRIX FOR THE DAE

OR ODE SYSTEM. ASSUMING THE PDE IS OF THE FORM

U T = F (T , X , U B A R , U B A R X , U B A R X X)

THIS ROUTINE RETURNS THE JACOBIANS D(F)/D(UBAR) , D(F)/D(UBARX),

AND D(F) /D(UBARXX).

C SUBROUTINE PARAMETERS:

C

C CONSTANTS:

DOUBLE PRECISION

PARAMETER.

ZERO

(ZERO = O.ODO)

C

C-

DOUBLE PRECISION NEGONE

PARAMETER (NEGONE -1.0D0)

C

c
o-

INTEGER

PARAMETER

NCONTI

(NCONTI = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

C INPUT:

126

INTEGER

C

C

DOUBLE PRECISION

C

C

DOUBLE PRECISION

C

C

DOUBLE PRECISION

C

C

C

DOUBLE PRECISION

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

NPDE

THE NUMBER OF PDES IN THE SYSTEM.

T

THE CURRENT TIME COORDINATE.

X

THE CURRENT SPATIAL COORDINATE.

UBAR(NPDE)

UBAR(1:NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UBARX(NPDE)

UBARX(1 :NPDE) IS THE APPROXIMATION OF

THE SPATIAL DERIVATIVE OF THE SOLUTION

AT THE POINT (T,X).

UBARXX(NPDE)

UBARXX(1 :NPDE) IS THE APPROXIMATION OF

THE SECOND SPATIAL DERIVATIVE OF THE

SOLUTION AT THE POINT (T,X).

DFDURAR(NPDE.NPDE)

DFDUBAR(I,J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR F

WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION U.

DFDUBARX(NPDE, NPDE)

DFDUBARX(I, J) IS THE PARTIAL DERIVATIVE

127

C OF THE I-TH COVIPONEOT OF THE VECTOR F

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

C

DOUBLE PRECISION DFDURARXX(NPDE,NPDE)

C DFDUBARXX(I , J) IS THE PARTIAL DERIVATIVE

C OF THE I-TH COMPONENT OF THE VECTOR F

C WITH RESPECT TO THE J-TH COMPONENT

C OF THE SECOND SPATIAL DERIVATIVE OF THE

C UNKNOWN FUNCTION U.

C

c

C LOCAL:

DOUBLE PRECISION U(442)

C UBAR IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,XA).

C

DOUBLE PRECISION UX(442)

C UBARX IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE X OF THE SOLUTION AT

C THE POINT (T,XA).

C

DOUBLE PRECISION UY(442)

C UBARX IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE X OF THE SOLUTION AT

C THE POINT (T,XA).

C

C LOCAL:

INTEGER YNCPTS

C PARAMETER (YNCPTS=(YKCOL*YNINT+NCONTI))

C YNCPTS= (YKCOL*YMNT+NCONTI) IS THE

128

c
c

c
c
c-

INTEGER

NUMBER OF COLLOCATION POINTS.

ICPT

THE INDEX OF THE COLLOCATION POINT.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

c
c
c

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

YFBASIS (*)

BASIS FUNCTION VALUES AT THE COLLOCATION

POINTS. FBASIS (K, J , I) CONTAINS THE

VALUES OF THE (J-l)ST DERIVATIVE

(J = 1,2,3) OF THE K-TH NON-ZERO BASIS

FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE

I-TH COLLOCATION POINT.

COEFF

COEFF IS THE COEFFOENT OF UXX IN THE

BURGERS' EQUATION

IPrVOT(NPDE)

EPIVOT(*)

PIVOTING INFORMATION FROM THE

FACTORIZATION OF THE TEMPORARY MATRIX.

YABD(YNINT*YNELS+2*NCONTI)

YABD(*)

ABD

IABDTP

WCRK(IABDTP) CONTAINS A COPY OF THE TOP

BLOCK WHICH IS REQUIRED SINCE ORDCMP

OVERWRITES THE INPUT COLLOCATION MATRIX.

129

c
INTEGER IABDBK

C WORK(IABDBK) CONTAINS A COPY OF ABDBLK

C WHICH IS REQUIRED SINCE ORDCMP

C OVERWRITES THE INPUT COLLOCATION MATRIX.

C

INTEGER IABDBT

C WORK(IABDBT) CONTAINS A COPY OF THE

C BOTTOM BLOCK WHICH IS REQUIRED SINCE

C CRDCMP OVERWRITES THE INPUT COLLOCATION

C MATRIX.

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PIECEWISE POLYNOMIALS MINUS ONE.

C 1 < YKCOL <11.

C PARAMETER. (KCOLY = YKCOL)

C

INTEGER NINTY

C PARAMETER (NINTY = YNINT)

C YNINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH Y.

C

C DOUBLE PRECISION YCOL(YNCPTS)

DOUBLE PRECISION YCOL(*)

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

C

O

130

c

&

CCMMCN /YBCOEFF/

OCMMCN /BURGER/

OCMMCN /YBSPLINE/

COMMCN /ABDLU/

COEFF

NINTY, KCOLY, YCOL(442)

YABD(8804),

IPIVOT(442) , IABDTP, lABDBK, LABDBT

YFBASIS(29172)

C

C LOOP INDICES:

INTEGER

INTEGER J

INTEGER K

INTEGER IJ

INTEGER M

C

C***END PROLOGUE DERIVF

YNCFIS^C0LY*NINTY4NC0NT1

DO 10 1=1, YNCPTS

DO 11 J = 1,YNCPTS

11 CONTINUE

10 CONTINUE

C CALCULATE U UX

CALL YEVAL3(KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX,UY)

C

ICPT = 1

K = 0

DFDUBAR(I , J) = ZERO

DFDUBARX(I, J) = ZERO

DFDUBARXX(I,J) = ZERO

131

PIONTER

IJ = (ICPT — 1) * (K(X)LY+NCONTI) * 3

DO 12 M = 1 ,KOOLY+NCONTI

DFDUBAR(ICPT ,K+M) = COEFF*YFBASIS(IJ-+M+2* (KOOLY+NCONTI))

k - YFBASIS (IJ -+M) *UX(ICPT)

k - YFBASIS(IJ-+M)*UY(ICPT)

k - U (ICPT) * YFBASIS (IJ -+M-+ (KCOLY+NCONTI))

DFDUBARX(ICPT, K+M) = - U(ICPT) * YFBASIS (I J-fM)

DFDUBARXX(ICPT,K+M) - COEFF* YFBASIS (IJ-tM)

12 CONTINUE

ICPT = 2, ... , YNCPTS-1

DO 20 I = 1 ,NINTY

K = (I -1) +KOOLY

DO 30 J = l.KCOLY

ICPT = K + J + 1

PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 40 M = 1, KCOLY + NCONTI

DFDUBAR(ICPT,K+M) = COEFF * YFBASIS (IJ -M+- 2 * (KCOLY+NCONTI))

k - YFBASIS (IJ+M) *UX(ICPT)

k - YFBASIS (IJ +M) *UY(ICPT)

k - U (ICPT) * YFBASIS (IJ 4M+- (KCOLY+NCONTI))

DFDUBARX(ICPT, K+M) = - U (ICPT) * YFBASIS (IJ -+M)

DFDUBARXX(ICPT, K+M) = COEFF* YFBASIS (I.HM)

40 CONTINUE

132

30 CONTINUE

20 CONTINUE

ICPT = YNCPTS

K = (NINTY — 1) *KCOLY

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 50 M = 1 ,KCOLY+NCONTI

DFDUBAR(ICPT,K4M) = COEFF*YFBASB(IJ-tM+2*(KOOLY-fNCONTI))

& - YFBASIS(IJ+M)*UX(ICPT)

k - YFBASIS(IJ-jM) *UY(ICPT)

& - U (ICPT) * YFB ASIS (IJ -n\l+ (KCOLY+NCONTI))

DFT)UBARX(ICPT, K+M) = - U(ICPT) * YFB ASIS (IJ +M)

DFDUBARXX(ICPT,K-fM) = COEFF*YFBASIS(IJ-fM)

50 CONTINUE

C

C SOLVE THE LINEAR SYSTEM.

DO 60 I = 1, NPDE

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,KCOLY* 1,

& (KCOLY+NCONTI) * 1,NINTY,YABD(IABDBT) , 1 ,

& IPIVOT,DFDUBAR(1,1) ,0)

IF (ICFLAG .NE. 0) GOTO 999

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK) ,KCOLY*l,

& (KCOLY+NCONTI) * 1,NINTY,YABD(IABDBT) , 1 ,

& IPIVOT,DFDUBARX(1,1) ,0)

IF (ICFLAG .NE. 0) GOTO 999

CALL CRSLVE (YABD (IABDTP) ,1 ,2*1, YABD (IABDBK) ,KCOLY*l,

133

& (KC0LY+NC0NT1) * 1 ,NINTY,YABD(IABDBT) , 1 ,

& IPIVOT ,DFDUBARXX(1,1) ,0)

IF (ICFLAG .NE. 0) GOTO 999

60 CONTINUE

999 RETURN

END

C END OF SUBROUTINE DERIVF

SUBROUTINE DIFBXA(T, UBAR, UBARX, DBDUBAR, DBDUBARX, DBDT, NPDE)

C-

C

C

C

C

C

C

C

C

G-

C

O

C

PURPOSE:

THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

CONDITIONS AT THE LEFT SPATIAL END POINT X = XA. FOR THE

BOUNDARY CONDITION EQUATION

B(T, UBAR, UBARX) = 0

THE PARTIAL DERIVATIVES DB/DUBAR, DB/DUBARX, AND DB/DT ARE

SUPPLIED BY THIS ROUTINE.

SUBROUTINE PARAMETERS:

CONSTANTS:

DOUBLE PRECISION

PARAMETER

ZERO

(ZERO = O.ODO)

C

C-

DOUBLE PRECISION NEGONE

PARAMETER (NEGONE -1.0D0)

INTEGER

PARAMETER

NCONTT

(NCONTT = 2)

NCONTT CONTINUITY CONDITIONS ARE IMPOSED

134

c
c-

AT THE INTERNAL MESH POINTS.

DOUBLE PRECISION

C INPUT:

INTEGER

C

C

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C

C

NPDE

THE NUMBER OF PDES IN THE SYSTEM.

THE CURRENT TIME COORDINATE.

UBAR(NPDE)

UBAR(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UBARX(NPDE)

UBARX(1 :NPDE) IS THE APPROXIMATION OF

THE SPATIAL DERIVATIVE OF THE SOLUTION

AT THE POINT (T,X).

DBDUBAR(NPDE, NPDE)

DBDUBAR(I , J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-1H COMPONENT

OF THE UNKNOWN FUNCTION UBAR.

DBDUBARX (NPDE, NPDE)

DBDUBARX(I ,J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION UBAR.

135

DOUBLE PRECISION

C

C

C

C

C LOCAL:

C

C

C

DBDT(NPDE)

DBDT(I) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WHH RESPECT TO TIME T.

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

DOUBLE PRECISION

DOUBLE PRECISION

LOCAL:

INTEGER

PARAMETER

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

U(442)

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UX(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

YNCPTS

(YNCPTS= (YKCOL*YNINT+NCONTI))

YNCPTS— (YKCOL*YNINT+NCONTI) IS THE

NUMBER OF COLLOCATION POINTS.

ICPT

THE INDEX OF THE COLLOCATION POINT.

TEMP

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

ALPHA

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

136

DOUBLE PRECISION YFBASIS (*)

C BASIS FUNCTION VALUES AT THE COLLOCATION

C POINTS. FBASIS(K, J, I) CONTAINS THE

C VALUES OF THE (J-l)ST DERIVATIVE

C (J = 1,2,3) OF THE K-TH NON-ZERO BASIS

C FUNCTION (K=l ,KCOLfNCONTI) AT THE

C I—TH COLLOCATION POINT.

C

DOUBLE PRECISION COEFF

C COEFF IS THE COEFFOENT OF UXX IN THE

C BURGERS' EQUATION

C

C

C Y DIMENSION

INTEGER

C

C

C

C

C

C PARAMETER

C

INTEGER

C PARAMETER

C

C

C

C DOUBLE PRECISION

DOUBLE PRECISION

C

C

137

KCOLY

YKOOL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PIECE WISE POLYNOMIALS MINUS ONE.

1 < YKCOL <11.

(KCOLY = YKCOL)

NINTY

(NINTY = YNINT)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YCOL(YNCPTS)

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B1.

CCMM3V /BURGER/

CCMVEN /YBSPLINE/

CCMMK /YBCOEFF/

COEFF

NINTY, KCOLY, YCOL(442)

YFBASIS(29172)

C

C LOOP INDICES:

INTEGER

INTEGER J

INTEGER K

INTEGER IJ

INTEGER M

C

C***END PROLOGUE DIFBXA

YNCPTfcKCOLY *NINTY+NCONTI

DO 10 1 = 1, YNCPTS

DO 11 J = 1,YNCPTS

DBDUBAR(I,J) = ZERO

DBDUBARX(I, J) = ZERO

11 CONTINUE

DBDT(I) = ZERO

10 CONTINUE

C CALCULATE U UX

CALL YEVALl (KCOLY, NINTY, YFB ASIS, UBAR, UBARX, U,UX)

C

ICPT = 1

TEMP = DEXP((YCOL(ICPT)-T) / (2.0D0*COEFF))

ALPHA = l.ODO + TIM3

138

K = 0

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 12 M = 1, KCOLY+NCONTI

DBDUBAR(ICPT, K+M) = ALPHA *YFBASIS(IJ-tM)

12 CONTINUE

DBDT(ICPT) = 1.0DO/(2,ODO*COEFF)*TEMP*U(ICPT)

C ICPT = 2, ... , YNCPTS-1

DO 20 I = 1 ,NINTY

K = (I — l)*KCOLY

DO 30 J - l.KCOLY

ICPT = K + J + 1

TEMP = DEXP((YCOL(ICPT)-T) / (2,ODO*COEFF))

ALPHA = l.ODO + TEMP

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 40 M = 1, KCOLY + NCONTT

DBDUBAR(ICPT, K-+M) = ALPHA* YFBASIS (IJ-tM)

40 CONTINUE

DBDT(ICPT) = 1.0DO/(2-ODO*COEFF)*TEMP*U(ICPT)

30 CONTINUE

20 CONTINUE

ICPT = YNCPTS

TEMP = DEXP((YCOL(ICPT)-T) / (2.0DO*COEFF))

ALPHA = l.ODO + TEMP

139

K = (NINTY— 1) •KCQLY

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 50 M = 1 ,KCOLY+NCONTI

DBDUBAR(ICPT ,K-fM) = ALPHA* YFBASIS (IJ4M)

50 CONTINUE

DBDT (ICPT) = 1. 0D0 / (2.0 D0*COEFF) *UMP*U (ICPT)

RETURN

END

C

C END OF SUBROUTINE DIFBXA

SUBROUTINE DIFBXB (T, UBAR, UBARX, DBDUBAR, DBDUBARX, DBDT, NPDE)

C

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE DIFFERENTIATED BOUNDARY

C CONDITIONS AT THE RIGHT SPATIAL END POINT X = XB. FOR THE

C BOUNDARY CONDITION EQUATION

C B(T, UBAR, UBARX) = 0

C THE PARTIAL DERIVATIVES DB/DUBAR, DB/DUBARX, AND DB/DT ARE

C SUPPLIED BY THIS ROUTINE.

C

C

C SUBROUTINE PARAMETERS:

C

C CONSTANTS:

PARAMETER

DOUBLE PRECISION ZERO

(ZERO = 0.0 DO)

C

PARAMETER

DOUBLE PRECISION NEGONE

(NEGONE = — l.ODO)

140

INTEGER

PARAMETER

C

C

C-

NCONTI

(NCON1T = 2)

NCONTT CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

DOUBLE PRECISION

C INPUT:

INTEGER

C

C

DOUBLE PRECISION

C

C

C

C

C

DOUBIE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

NPDE

THE NUMBER OF PDES IN THE SYSTEM.

THE CURRENT TIME COORDINATE.

UBAR(NPDE)

UBAR(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UBARX(NPDE)

UBARX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

DBDUBAR(NPDE,NPDE)

DBDUBAR(I , J) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE UNKNOWN FUNCTION UBAR.

DBDUBARX (NPDE, NPDE)

DBDUBARX(I , J) IS THE PARTIAL DERIVATIVE

141

c
c
c
c
c

c
c
c
c-
c
c
c

c
c
c

c
c
c
c
c

c
c
c
c

c
c

DOUBLE PRECISION

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO THE J-TH COMPONENT

OF THE SPATIAL DERIVATIVE OF THE

UNKNOWN FUNCTION UBAR.

DBDT(NPDE)

DBDT(I) IS THE PARTIAL DERIVATIVE

OF THE I-TH COMPONENT OF THE VECTOR B

WITH RESPECT TO TIME T.

LOCAL:

YCOL(YNCPTS) YNCPTS -

YCOL(442) YNCPTS =

DOUBLE PRECISION

DOUBLE PRECISION

LOCAL:

INTEGER

PARAMETER

INTEGER

YNINT * (YKCOL+NCONTI) +NCONTI

20 *(20 + 2)+2)

U(442)

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UX(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

YNCPTS

(YNCPTS=(YKCOL*YNlNT+NCONTI))

YNCPTS=:(YKOOL*YNINT+NCONTI) IS THE NUMBER

OF COLLOCATION POINTS.

ICPT

THE INDEX OF THE COLLOCATION POINT.

DOUBLE PRECISION TEMP

142

C UBAR IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,XA).

C

DOUBLE PRECISION ALPHA

C UBARX IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE X OF THE SOLUTION AT

C THE POINT (T,XA).

C

DOUBLE PRECISION YFB ASIS (*)

C BASIS FUNCTION VALUES AT THE COLLOCATION

C POINTS. FBASIS(K, J , I) CONTAINS THE

C VALUES OF THE (J-l)ST DERIVATIVE

C (J = 1,2 ,3) OF THE K—TH NON-ZERO BASIS

C FUNCTION (K= 1 ,KCOLrNCONTI) AT THE

C I—TH COLLOCATION POINT.

C

DOUBLE PRECISION COEFF

C COEFF IS THE COEFFCIENT OF UXX IN THE

C BURGERS' EQUATION

C

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PIECEWISE POLYNOMIALS MINUS ONE.

C 1 < YKCOL < 11.

C

INTEGER NINTY

C PARAMETER (NINTY = YNINT)

C YNINT IS THE NUMBER OF SUBINTERVALS

143

c
c

c
c
c
c-
c

DOUBLE PRECISION

DEFINED BY THE SPATIAL MESH Y.

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B].

CCMMCN /BURGER/

OCMVCN /YBSPLINE/

COEFF

NINTY, KCOLY, YCOL(442)

COMMON /YBCOEFF/ YFB ASIS (29172)

C LOOP INDICES:

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

I

J

K

IJ

M

C***END PROLOGUE DIFBXB

YNCPTS=KCQLY *NINTY+NCONTI

DO 10 1 = 1, YNCPTS

DO 11 J = 1,YNCPTS

DBDUBAR(I ,J) = ZERO

DBDUBARX(I, J) = ZERO

11 CONTINUE

DBDT(I) = ZERO

144

10 CONTINUE

C CALCULATE U UX

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX)

C

ICPT = 1

1EMP = DEXP((1.0DG+YCOL(ICPT)-T) / (2,ODO*COEFF))

ALPHA = l.ODO + TEMP

K = 0

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 12 M = 1 ,KCOLY+NCONTI

DBDUBAR(ICPT, K-+M) = ALPHA * YFB ASIS (IJ-+M)

12 CONTINUE

DBDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT)

C ICPT = 2, ... , YNCPTS-1

DO 20 I = 1,NINTY

K = (I — 1) +KCOLY

DO 30 J = 1,KCOLY

ICPT = K + J + 1

IEMP = DEXP((1.ODO-f-YCOL(ICPT)-T) / (2.0DO*COEFF))

ALPHA = l.ODO + TEVIP

C PIONTER

IJ = (ICPT-1)* (KCXXY+NCONTI) *3

DO 40 M = 1, KCOLY + NCONTI

DBDUBAR(ICPT ,K-fM) = ALPHA* YFB ASIS (IJ -fM)

40 CONTINUE

145

DRDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT)

30 CONTINUE

20 CONTINUE

ICPT = YNCPTS

TEMP = DEXP((1.0DOfYCOL(ICPT)-T) / (2.0D0*COEFF))

ALPHA = 1.0D0 + TEMP

K = (NINTY — 1) *KOOLY

C PIONTER

IJ = (ICPT — 1) * (KCOLY+NCONTI) * 3

DO 50 M = 1,KCOLY+NCONTI

DBDUBAR(ICPT, K+M) = ALPHA* YFBASIS (IJ+M)

50 CONTINUE

DBDT(ICPT) = 1.0 DO / (2.0 DO *COEFF) *TEMP*U (ICPT)

RETURN

END

C

C END OF SUBROUTINE DIFBXB

SUBROUTINE BNDXA(T, UBAR, UBARX, BVAL, NPDE)

C

C PURPOSE:

C THE SUBROUTINE IS USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

C LEFT SPATIAL END POINT X = XA.

C B(T, UBAR, UBARX) = 0

C

C

C SUBROUTINE PARAMETERS:

C

C CONSTANTS:

146

DOUBLE PRECISION ZERO

PARAMETER (ZERO 0.0D0)

DOUBLE PRECISION

PARAMETER

NBGONE

(NEGONE = —1.0D0)

C

C-

INTEGER

PARAMETER

C

C

C-

NCON1I

(NCONn = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

DOUBLE PRECISION

C INPUT:

INTEGER

C

C

DOUBLE PRECISION

C

C

C

C

C

DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

NPDE

YNCPTS THE NUMBER OF PDES IN THE SYSIEM.

THE CURRENT TIME COORDINATE.

UBAR(NPDE)

UBAR(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UBARX(NPDE)

UBARX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,XA).

BVAL(NPDE)

BVAL(1 :NPDE) IS THE BOUNDARY CONnDITION

AT THE LEFT BOUNDARY POINT.

147

C LOCAL:

DOUBLE PRECISION U(442)

C UBAR IS THE APPROXIMATION OF THE

C SOLUTION AT THE POINT (T,XA).

C

DOUBLE PRECISION UX(442)

C UBARX IS THE APPROXIMATION OF THE

C SPATIAL DERIVATIVE X OF THE SOLUTION AT

C THE POINT (T,XA).

C

c
DOUBLE PRECISION YFBASIS(*)

C BASIS FUNCTION VALUES AT THE COLLOCATION

C POINTS. FBASIS(K, J , I) CONTAINS THE

C VALUES OF THE (J-l)ST DERIVATIVE

C (J = l ,2,3) OF THE K-TH NON-ZERO BASIS

C FUNCTION (K=l ,KCOLmCONTI) AT THE

C I-TH COLLOCATION POINT.

C

DOUBLE PRECISION COEFF

C COEFF IS THE COEFFCEENT OF UXX IN THE

C BURGERS' EQUATION

C

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PEECEWISE POLYNOMIALS MINUS ONE.

C 1 < YKCOL < 11.

C PARAMETER (KCOLY = YKCOL)

148

c
c
c
c
c

c
c
c

INTEGER

PARAMETER

DOUBLE PRECISION

DOUBLE PRECISION

NINTY
I

(NINTY = YNINT)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YCOL(YNCPTS)

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B].

CCMvCN /BURGER/

0CMM3V /YBSPLINE/

CCMvOV /YBCOEFF/

COEFF

NINTY, KCOLY, YCOL(442)

YFBASIS (29172)

C LOOP INDICES:

INTEGER

C

C***END PROLOGUE BNDXA

C

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX)

DO 10 I = 1, NPDE

BVAL(I) = (l.ODO + DEXP((YCOL(I)-T) / (2.ODO*COEFF))) * U(I)

& - l.ODO

10 CONTINUE

RETURN

END

149

-END OF SUBROUTINE BNDXA-

SUBROUTINE BNDXB(T, UBAR, UBARX, BVAL, NPDE)

C

C

C

C

C

C

C

C SUBROUTINE PARAMETERS:

C —

C CONSTANTS:

DOUBLE PRECISION

PARAMETER

PURPOSE:

THE SUBROUTINE IS

RIGHT SPATIAL END

USED TO DEFINE THE BOUNDARY CONDITIONS AT THE

POINT X = XB.

B(T, UBAR, UBARX) = 0

ZERO

(ZERO = 0.0D0)

C

C-

DOUBLE PRECISION

PARAMETER

NEGONE

(NEGONE = —1.0D0)

INTEGER

PARAMETER

C

C

C

C INPUT:

C

C

NCONTT

(NCONT1 = 2)

NCONIT CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

INTEGER NPDE

YNCPTS THE NUMBER OF PDES IN THE SYSTEM.

DOUBLE PRECISION

THE CURRENT TIME COORDINATE.

150

DOUBLE PRECISION

C

C

c
DOUBLE PRECISION

C

C

C

C

C OUTPUT:

DOUBLE PRECISION

C

C

C LOCAL:

DOUBLE PRECISION

C

C

C

DOUBLE PRECISION

C

C

C

C

UBAR(NPDE)

UBAR(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UBARX(NPDE)

UBARX(1:NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,XA).

BVAL(NPDE)

BVAL(1 :NPDE) IS THE BOUNDARY CONHDITION

AT THE LEFT BOUNDARY POINT.

U(442)

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UX(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

DOUBLE PRECISION

C

C

C

C

C

C

YFBASIS (*)

BASIS FUNCTION VALUES AT THE COLLOCATION

POINTS. FBASIS(K, J , I) CONTAINS THE

VALUES OF THE (J-l)ST DERIVATIVE

(J = l ,2,3) OF THE K-TH NON-ZERO BASIS

FUNCTION (K=l ,... ,KCOLfNCONTI) AT THE

I-TH COLLOCATION POINT.

151

c
DOUBLE PRECISION COEFF

C COEFF IS THE COEFFOENT OF UXX IN THE

C BURGERS' EQUATION

C

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PEECEWISE POLYNOMIALS MINUS ONE.

C 1 < YKCOL < 11.

C PARAMETER (KCOLY = YKCOL)

C

INTEGER NINTY

C PARAMETER (NINTY = YNINT)

C YNINT IS THE NUMBER OF SUBES'TERVALS

C DEFINED BY THE SPATIAL MESH Y.

C

C DOUBLE PRECISION YCOL(YNCPTS)

DOUBLE PRECISION YCOL(*)

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

C

C

C

OCMVKN /BURGER/ COEFF

CCMVEN /YBSPLINE/ NINTY, KCOLY, YCOL(442)

CCMMCN /YBCOEFF/ YFBASIS(29172)

C

C LOOP INDICES:

152

INTEGER I

C

C

C***END PROLOGUE BNDXB

C

CALL YEVAL1 (KCOLY,NINTY,YFBASIS,UBAR,UBARX, U,UX)

C

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

DO 10 I = 1, NPDE

BVAL(I) = (1.0D0 + DEXP((1.0D(>fYCOL(I)-T) / (2-ODO*COEFF)))

& * U(I) - 1.0D0

10 CONTINUE

RETURN

END

C ——

C END OF SUBROUTINE BNDXB

SUBROUTINE F(T, X, UBAR, UBARX, UBARXX, FVAL, NPDE)

C

C PURPOSE:

C THIS SUBROUTINE DEFINES THE RIGHT HAND SIDE VECTOR OF THE

C NPDE DIMENSIONAL PARABOLIC PARTIAL DIFFERENTIAL EQUATION

C UT = F(T, X, UBAR, UBARX, UBARXX).

C UT = F(T, X, U, UX, UXX).

C

C

C SUBROUTINE PARAMETERS:

C — —

C CONSTANTS:

DOUBLE PRECISION ZERO

PARAMETER (ZERO = O.ODO)

153

DOUBLE PRECISION

PARAMETER.

C

C-

NEGONE

(NEGONE = —1.0D0)

INTEGER

PARAMETER

C

C

C-

NCONTI

(NCONn = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

C INPUT:

C

C

C

c

c
c

c
c
c

c
c
c
c

c
c

INTEGER

DOUBLE PRECBION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

NPDE

THE NUMBER OF PDES IN THE SYSIEM.

THE CURRENT TIME COORDINATE.

X

THE CURRENT SPATIAL COORDINATE.

UBAR(NPDE)

U(1 :NPDE) IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,X).

UBARX(NPDE)

UX(1 :NPDE) IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE OF THE SOLUTION AT

THE POINT (T,X).

UBARXX(NPDE)

UXX(1 :NPDE) IS THE APPROXIMATION OF THE

SECOND SPATIAL DERIVATIVE OF THE

154

c
c
C OUTPUT:

DOUBLE PRECISION

C

C

C

SOLUTION AT THE POINT (T,X).

FVAL(NPDE)

FVAL(1 :NPDE) IS THE RIGHT HAND SIDE

VECTOR F(T, X, U, UX, UXX) OF THE PDE.

C LOCAL:

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

c

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBIE PRECISION

DOUBIE PRECISION

U(442)

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UX(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

UXX(442)

UBAR IS THE APPROXIMATION OF THE

SOLUTION AT THE POINT (T,XA).

UY(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

UYY(442)

UBARX IS THE APPROXIMATION OF THE

SPATIAL DERIVATIVE X OF THE SOLUTION AT

THE POINT (T,XA).

155

DOUBLE PRECISION YFB ASIS (*)

BASIS FUNCTION VALUES AT THE COLLOCATION

POINTS. FBASIS (K, J , I) CONTAINS THE

VALUES OF THE (J-l)ST DERIVATIVE

(J = 1,2,3) OF THE K-TH NON-ZERO BASIS

FUNCTION (K= 1 ,... ,KCOLfNCONTI) AT THE

I—TH COLLOCATION POINT.

DOUBLE PRECISION COEFF

COEFF IS THE COEFFOENT OF UXX IN THE

BURGERS' EQUATION

INTEGER

INTEGER

IPIVOT (NPDE)

IPIVOT (*)

PIVOTING INFORMATION FROM THE

FACTORIZATION OF THE TEMPORARY MATRIX.

DOUBLE PRECISION YABD(*)

ABD

INTEGER IABDTP

WORK(IABDTP) CONTAINS A COPY OF THE TOP

BLOCK WHICH IS REQUIRED SINCE CRDCMP

OVERWRHES THE INPUT COLLOCATION MATRIX.

INTEGER IABDBK

WCRK(IABDBK) CONTAINS A COPY OF ABDBLK

WHICH IS REQUIRED SINCE CRDCMP

OVERWRITES THE INPUT COLLOCATION MATRIX.

INTEGER IABDBT

156

c
c
c
c
c-
c

c
c
c
c
c
c
c

c
c
c
c
c

c
c
c

C-

c

WCKK(IABDBT) CONTAINS A COPY OF THE

BOTTOM BLOCK WHICH IS REQUIRED SINCE

CRDCMP OVERWRIIES THE INPUT COLLOCATION

MATRIX.

Y DIMENSION

INTEGER

PARAMETER

INTEGER

PARAMETER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

KCOLY

YKCOL IS THE NUMBEE. OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE E

PIECEWIS POLYNOMIALS MINUS ONE.

1 < YKCOL < 11.

(KCOLY = YKCOL)

NINTY

(NINTY = YNINT)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YCOL (YNCPTS)

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B].

TTMP

&

CCMM3N /BURGER/

CCMMCN /YBSPLINE/

CCMVCN /ABDLU/

CCMNCN /YBCOEFF/

COEFF

NINTY, KCOLY, YCOL(442)

YABD(8804),

IPIVOT(442) , IABDTP, IABDBK, IABDBT

YFBASIS(29172)

157

c

C LOOP INDICES:

INTEGER I

C

CC* * *END PROLOGUE F

C CALCULATE U UX

CALL YEVAL1 (KCOLY,NINTY, YFBASIS,UBAR,UBARX, U,UX)

C

C CALCULATE UXX UY UYY

CALL YEVAL2(KCOLY,NINTY,YFBASIS,UBAR,UBARXX, UXX,UY,UYY)

C ASSUMING PDES HOLD ON GC = U(X,0 ,T) GD = U(X,1 ,T)

DO 10 I = 1, NPDE

FVAL(I) = COEFF * UXX(I) + COEFF * UYY(I)

& - U(I) * UX(I) - U(I) * UY(I)

10 CONTINUE

C

CALL CRSLVE(YABD(IABDTP) ,1,2*1 ,YABD(IABDBK),KCOLY* 1,

& (KCOLYmCONTI) * 1,NINTY,YABD(IABDBT) , 1 ,

& IPIVOT,FVAL,0)

RETURN

END

C

C END OF SUBROUTINE F

SUBROUTINE UINIT(X, U, NPDE)

C

C PURPOSE:

C THIS SUBROUTINE IS USED TO RETURN THE NPDE-VECTOR OF INITIAL

C CONDITIONS OF THE UNKNOWN FUNCTION AT THE INITIAL TIME T = TO

C AT THE SPATIAL COORDINATE X.

158

c
c
C SUBROUTINE PARAMETERS:

C

C CONSTANTS:

DOUBLE PRECISION

PARAMETER

ZERO

(ZERO = O.ODO)

DOUBLE PRECISION

PARAMETER

C

C-

NEGONE

(NEGONE = —1.0D0)

INTEGER

PARAMETER

C

c
c
C INPUT:

C

C

NCONTI

(NCONTI = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

DOUBLE PRECISION

C

C

C

C

C

C

C

C-

INTEGER

OUTPUT:

DOUBLE PRECISION

X

THE SPATIAL COORDINATE.

NPDE

THE NUMBER OF PDES IN THE SYSTEM.

U (NPDE)

U(1 :NPDE) IS VECTOR OF INITIAL VALUES OF

THE UNKNOWN FUNCTION AT T = TO AND THE

GIVEN VALUE OF X.

DOUBLE PRECISION COEFF

159

C COEFF IS THE COEFFCIENT OF UXX IN THE

C BURGERS' EQUATION

C

INTEGER IPIVOT(*)

C PIVOTING INFORMATION FROVI THE

C FACTORIZATION OF THE TEMPORARY MATRIX.

C

DOUBLE PRECISION YABD (*)

C ABD

C

INTEGER IABDTP

C WCRK(IABDTP) CONTAINS A COPY OF THE TOP

C BLOCK WHICH IS REQUIRED SINCE CRDCMP

C OVERWRITES THE INPUT COLLOCATION MATRIX.

C

INTEGER IABDBK

C WCKK(IABDBK) CONTAINS A COPY OF ABDBLK

C WHICH IS REQUIRED SINCE CRDCMP

C OVERWRITES THE INPUT COLLOCATION MATRIX.

C

INTEGER IABDBT

C WCRK(IABDBT) CONTAINS A COPY OF THE

C BOTTOM BLOCK WHICH IS REQUIRED SINCE

C CRDCMP OVERWRITES THE INPUT COLLOCATION

C MATRIX.

C

C Y DIMENSION

INTEGER KCOLY

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBEMTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PEECEWISE POLYNOMIALS MINUS ONE.

160

c
c
c

c
c
c
c
c

c
c
c
c-
c

PARAMETER

INTEGER

PARAMETER

DOUBLE PRECISION

DOUBLE PRECISION

1 < YKCOL < 11.

(KCOLY = YKCOL)

NINTY

(NINTY = YNINT)

YNINT IS THE NUMBOl OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YCOL(YNCPTS)

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B].

OCMVSCN /BURGER/

OCMMCN /YBSPLINE/

OCMVOSr /ABDLU/

&

COEFF

NINTY, KCOLY, YCOL(442)

YABD(8804),

IPIVOT(442), IABDTP, IABDBK, IABDBT

C

C LOOP INDICES:

INTEGER I

C

CC***END PROLOGUE UINIT

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

DO 10 1 = 1, NPDE

U(I) = l.ODO / (1-OD(HDEXP((X4YCOL(I)) / (2*COEFF)))

10 CONTINUE

161

CALL CRSLVE(YABD(IABDTP), 1 ,2 * 1,YABD(IABDBK) ,KC0LY*1,

& (KCOLY+NCONTI) * 1 , NINTY, YABD (IABDBT) , 1 ,

& IPIVOT ,U,0)

RETURN

END

G-

C- -END OF SUBROUTINE UINIT-

PURPOSE:

THIS FUNCTION PROVIDES THE EXACT SOLUTION OF THE PDE.

SUBROUTINE TRUU(T, X, U, NPDE)

C

C

c
c

c SUBROUTINE PARAMEIERS:

C

C CONSTANTS:

DOUBLE PRECISION

PARAMEIER

C

C

C-

DOUBLE PRECISION

PARAMEIER

ZERO

(ZERO = 0.0D0)

NEGONE

(NEGONE -l.ODO)

INTEGER

PARAMEIER

C

C

C

C INPUT:

NCONTI

(NCONTI = 2)

NCONTI CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

INTEGER NPDE

THE NUMBER OF PDES IN THE SYSTEM.

162

c
c

c
c
c

c
c
c-

DOUBLE PRECISION

DOUBLE PRECISION

OUTPUT:

DOUBLE PRECISION

THE CURRENT TIME COORDINATE.

THE CURRENT SPATIAL COORDINATE.

U(NPDE)

U(1 :NPDE) IS THE EXACT SOLUTION AT THE

POINT (T,X).

C

C

C

C-

C

C

C

C

C

C

C

C

C

C

C

DOUBLE PRECISION COEFF

COEFF IS THE COEFFOENT OF UXX IN THE

BURGERS' EQUATION

Y DIMENSION

INTEGER

INTEGER

PARAMETER.

DOUBLE PRECISION

KCOLY

YKCOL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PEECEWISE POLYNOMIALS MINUS ONE.

1 < YKCOL < 11.

NINTY

(NINTY = YNINT)

YNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH Y.

YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

163

C THE INTERVAL [Y_A, Y_B].

C

C

c
0CMM3S' /'BURGER/ COEFF

CnVDVCN /YBSPLINE/ NINTY, KCOLY, YCOL(442)

G

C LOOP INDICES:

INTEGER I

C

C***END PROLOGUE IRUU

DO 10 I = 1, NPDE

U(I) = l.ODO / (1.0DO4DEXP((X+YCOL(I)-T) / (2*COEFF)))

10 CONTINUE

RETURN

END

C

C END OF SUBROUTINE TRUU

164

Appendix B

Source Code (A B-spline Gaussian

Collocation for 2D Time-dependent

These are the user-supplied subroutines for the 2D Burgers' equation.

C MODULE BSPLINE GLOBAL U = 1.0D0 / (1 .OD(HDEXP((X+Y-T) / (2*C0EFF)))

C

SUBROUTINE UINIT (W, WPRIME, RPAR, EPAR)

C THIS ROUTINE COMPUTES AND LOADS THE VECTOR OF INITIAL VALUES.

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION W(*) , WPRIME(*) , RPAR(4) , IPAR(34)

DOUBLE PRECISION PI

C INTRINSIC COS, SIN

PARAMEIER(PI =3.14159265)

C

C CONSTANTS:

INTEGER NCONTt

Parabolic

165

PARAMETER (NCONTI = 2)

NCONII CONTINUITY CONDITIONS ARE IMPOSED

AT THE INTERNAL MESH POINTS.

INTEGER NPDE

NUMBER OF PDES

PARAMEIHl (NPDE = 1)

X DEMENSION

INTEGER XKCDL

XKCOL IS THE NUMBER. OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL, WHICH IS

EQUAL TO THE DEGREE OF THE PIECEWISE

POLYNOMIALS MINUS ONE.

INTEGER XNINT

XNINT IS THE NUMBER OF SUBINTERVALS

DEFINED BY THE SPATIAL MESH X.

INTEGER XNCPTS

XNCPTS IS THE NUMBER

OF COLLOCATION POINTS.

Y DEMENSION

INTEGER YKCOL

YKCDL IS THE NUMBER OF COLLOCATION POINTS

TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PIECEWISE POLYNOMIALS MINUS ONE.

INTEGER YNINT

YNINT IS THE NUMBER OF SUBINTERVALS

166

C DEFINED BY THE SPATIAL MESH Y.

C

INTEGER YNCPTS

C YNCPTS IS THE NUMBER

C OF COLLOCATION POINTS.

INTEGER NEQ

C NEQ IS

C THE NUMBER OF BSPLINES

C COEFFICIENTS (ORDAES).

C

C OGMMCN

INTEGER KCOLX

C KCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL, WHICH IS

C EQUAL TO THE DEGREE OF THE PIECEWISE

C POLYNOMIALS MINUS ONE.

INTEGER NTNTX

C NINTX IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH X.

C

INTEGER KCOLY

C KCOLY IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PIECEWISE POLYNOMIALS MINUS ONE.

INTEGER NINTY

C YNINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH Y.

167

DOUBLE PRECISION XCOL(*)

C THE SEQUENCE OF COLLOCATION POINTS ON

C THE INTERVAL [Y_A, Y_B].

C

C

DOUBLE PRECISION YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_A, Y_B].

C

C

DOUBLE PRECISION COEFF

COEFF IS THE COEFFC3ENT OF UXX IN THE

BURGERS' EQUATION

C LOOP INDICES:

INTEGER I

INTEGER J

INTEGER K

CCMMCN /BSPLINE/ KCOLX, NINTX, KCOLY, NINTY

CEMMCN /COLP/ XCDL(402) , YCOL(4Q2), COEFF

XKCOL = KCOLX

XNINT = NINTX

YKCOL = KCOLY

YNINT = NINTY

XNCPTS= (XKCOL*XNINT+NCONTI)

YNCFIS= (YKCOL* YNINT+NCONTI)

NEQ=YNCPTS *XNCPTS

DO 11 I = 1, NEQ

168

11

W(K) = O.ODO

WPRIME(K) = O.ODO

CONTINUE

DO 20 1 = 1, XNCPTS

DO 10 J = 1, YNCPTS

K = (I — 1) *YNCPTSfJ

IEMP = DEXP((XCOL(I)+YCOL(J)) / (2.0DO*COEFF))

IF (REAL(1.0DO/TEMP) .NE. 0.) THEN

W(K)= 1.0D0 / (1 .ODO+-TEMP)

WPRIME(K) = 1.0D0/(2.0D0*COEFF)*HM> /

& ((1 .ODO+TEMP) * (1.0D04-TEMP))

ENDIF

10 CONTINUE

20 CONTINUE

999 RETURN

C END OF SUBROUTINE UINIT

END

SUBROUTINE TRUU(T, X, XNPTS, Y, YNPTS, UTRUE)

C

IMPLICIT DOUBLE PRECISION (A-H.O-Z)

DIMENSION UTRUE (*)

DOUBLE PRECISION PI

INTRINSIC COS, SIN

PARAMEIER(PI =3.14159265)

C

C CONSTANTS:

INTEGER NCONTI

PARAMEUR (NCONTI = 2)

169

C NCONTI CONTINUITY CONDITIONS ARE IMPOSED

C AT THE INTERNAL MESH POINTS.

C

C X DEMENSION

INTEGER XNPTS

C XNPTS IS THE NUMBER OF POINTS

DOUBLE PRECISION X(XNPTS)

C X IS THE SPATIAL POINTS

C

C

C Y DEMENSION

INTEGER YNPTS

C YNPTS IS THE NUMBER OF POINTS

DOUBLE PRECISION

C

C-

Y(YNPTS)

Y IS THE SPATIAL POINTS

C OCMMCN:

DOUBLE PRECISION

C

C

XCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [X_A, X_B].

C

C

DOUBLE PRECISION YCOL(*)

THE SEQUENCE OF COLLOCATION POINTS ON

THE INTERVAL [Y_C, Y_D].

DOUBLE PRECISION

C

C

C

C LOOP INDICES:

COEFF

COEFF IS THE COEFFOENT OF UXX IN THE

BURGERS' EQUATION

170

INTEGER I

INTEGER J

INTEGER K

C

OCMMCN / COLP/ X(X)L(402) , YCOL(402), COEFF

C

C LOAD U INTO DELTA, IN ORDER TO SET BOUNDARY VALUES.

DO 10 I = 1, XNPTS * YNPTS

10 UTRUE(I) = 0.0D0

C LOOP OVER ALL POINTS, AND LOAD RESIDUAL VALUES.

DO 20 I = 1, XNPTS

DO 11 J = 1, YNPTS

K = (I-1)*YNPTS4-J

TEMP = DEXP((X(I)+Y(J)-T) / (2*COEFF))

UIRUE(K)= 1.0D0 / (l.ODOf-TEM5)

11 CONTINUE

20 CONTINUE

SUBROUTINE RESH (T, W, WPRIME, CJ, DELTA, IRES, RPAR, IPAR)

C

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION W(*) , WPRIME(*) , DELTA(*) , RPAR(4) ,IPAR(34)

RETURN

C END OF SUBROUTINE TRUU

END

DOUBLE PRECISION PI

INTRINSIC COS,SIN

PARAMEIER(PI = 3.14159265)

171

c

C CONSTANTS:

INTEGER NCONTI

PARAMETER (NCONTI = 2)

C NCONTI CONTINUITY CONDITIONS ARE IMPOSED

C AT THE INTERNAL MESH POINTS.

INTEGER LENGTH

PARAMETER (LENGTH = 161604)

C

C X DEMENSION

INTEGER XKCOL

C KCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL, WHICH IS

C EQUAL TO THE DEGREE OF THE PIECEWISE

C POLYNOMIALS MINUS ONE.

INTEGER XNINT

C PARAMETER (XNINT = 2)

C NINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH X.

C

INTEGER XNCPTS)

C XNCPTS IS THE NUMBER

C OF COLLOCATION POINTS.

C

C Y DEMENSION

INTEGER YKCOL

C YKCOL IS THE NUMBER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL IN Y DOMAIN,

C WHICH IS EQUAL TO THE DEGREE OF THE

C PIECEWISE POLYNOMIALS MINUS ONE.

172

INTEGER YNINT

C YNINT IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH Y.

C

INTEGER YNCPTS

C YNCPTS IS THE NUMBER

C OF COLLOCATION POINTS.

C

C LOCAL

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

INTEGER

C

C

C

C

C CCMMXJ

INTEGER KCOLX

C KOOLX IS THE NUMBSER OF COLLOCATION POINTS

C TO BE USED IN EACH SUBINTERVAL, WHICH IS

C EQUAL TO THE DEGREE OF THE PIECEWISE

C POLYNOMIALS MINUS ONE.

INTEGER NINTX

C NINTX IS THE NUMBER OF SUBINTERVALS

C DEFINED BY THE SPATIAL MESH X.

C

INTEGER KCOLY

C KCOLY IS THE NUMESER OF COLLOCATION POINTS

UXX(LENGTH) .UX(LENGTH)

UYY(LENGTH) ,UY(LENGTH)

U(LENGIH) ,UPRIME(LENGTH)

NEQ

NEQ IS

THE NUMBER OF BSPLINES

COEFFICIENTS (ORDAES).

173

c
c
c

TO BE USED IN EACH SUBBNTERVAL IN Y DOMAIN,

WHICH IS EQUAL TO THE DEGREE OF THE

PIECE WISE POLYNOMIALS MINUS ONE.

INTEGER NINTY

c NINTY IS THE NUMBER OF SUBINTERVALS

c DEFINED BY THE SPATIAL MESH Y.

c
DOUBLE PRECISION XCOL(*)

c THE SEQUENCE OF COLLOCATION POINTS ON

c THE INTERVAL [X_A, X_B].

DOUBLE PRECISION YCOL(*)

c THE SEQUENCE OF COLLOCATION POINTS ON

c THE INTERVAL [Y_C, Y D].

DOUBLE PRECISION COEFF

c COEFF IS THE COEFFCIENT OF UXX IN THE

c BURGERS' EQUATION

n

DOUBLE PRECISION XFBASIS (*) , YFBASIS (*)

C LOOP INDICES:

INTEGER I

INTEGER J

INTEGER IJ

c

INTEGER K

V

0CMM3V /BSPLINE/ KCOLX, NINTX, KCOLY, NINTY

0CMM3NT /COLP/ XCOL(402) , YCOL(402), COEFF

CJCMVEN /FBASIS/ XFBASIS(26532) ,YFBASIS(26532)

r

174

c
XKCOL = KCOLX

XNINT = NINTX

YKCX)L = KOOLY

YNINT = NEMTY

XNCPTS— (XKCOL * XNINT-fN CONTI)

YNCPIS= (YKCOL* YNINT-mCONTI)

NEQ=YNCPTS*XNCPTS

C

C LOAD U INTO DELTA, IN ORDEH TO SET BOUNDARY VALUES.

DO 10 I = 1 ,NEQ

DELTA(I) = 0.0

10 CONTINUE

CALL KRONXY(XKCOL, XNINT, XFBASIS, YKCOL, YNINT, YFBASIS,

& W, WPRIME, U, UPRIME,

& UX, UXX, UY, UYY)

C HERE DELTA = F

DO 20 I = 1, XNCPTS

DO 11 J = 1, YNCPTS

K = (I — 1) *YNCPTSf J

DELTA(K) = —U(K) *UX(K)—U(K)*UY(K)

& -fCOEFF*(UXX(K)+UYY(K))

11 CONTINUE

20 CONTINUE

DO 70 I = 1 ,NEQ

DELTA(I) = UPRIME(I) - DELTA(I)

70 CONTINUE

C LOAD UPRIME ON THE BOUNDARY INTO DELTA.

C TP

175

C X = A (XCOL(l) = 0)

DO 30 I = 1 ,YNCPTS

TEMP = DEXP((YCX)L(I)-T) / (2.0DO+COEFF))

DELTA(I) =U(I) - 1.0D0/(1.0D0 + TEMP)

DELTA(I) = DELTA(I) * CJ

30 CONTINUE

C BK

DO 50 I = 1 ,XNINT

DO 40 J = 1 ,XKCOL

IJ = (I - l)*XKCOL + J + 1

C Y = C (YCOL(l) = 0)

K = YNCPTS + (I — 1) *XKCOL* YNCPTS + (J-1)*YNCPTS + 1

TEMP = DEXP((XCOL(IJ)-T) / (2,ODO*COEFF))

DELTA(K) = U(K) - 1.0D0/(1.0D0 + TEMP)

DELTA(K) = DELTA(K) * CJ

C Y = D (YCOL(YNCPTS) = 1)

K = YNCPTS + (I -1)*XKCOL*YNCPTS + J+YNCPTS

TEMP = DEXP((1.0 + XCOL(IJ)—T) / (2,ODO*COEFF))

DELTA(K) = U(K) - 1.0DO/(1,ODO + TEMP)

DELTA(K) = DELTA(K) * CJ

40 CONTINUE

50 CONTINUE

C BT

C X = B (XCOL(XNCPTS) = 1)

K = YNCPTS + XNINT *XKOOL*YNCPTS

DO 60 I = 1,YNCPTS

TEMP = DEXP((1.0 +YCOL(I)-T) / (2,ODO*COEFF))

DELTA(K+I) =U(K+I) - 1.0D0/(1.0D0 + TEMP)

DELTA(K+I) = DELTA(K+I) * CJ

60 CONTINUE

176

RETURN

C END OF SUBROUTINE RESH

END

177

