# Seasonal Changes in the Prevalence of Gastrointestinal Nematodes in Sheep in Nova Scotia, Canada.

By

Rebecca A. Betts

A thesis submitted to Saint Mary's University, Halifax, Nova Scotia in partial fulfilment of the requirements for the degree of Bachelors of Science (Honours) in Biology.

April 22, 2014, Halifax, Nova Scotia, Canada.

© Rebecca A. Betts, 2014

| Approved: | Dr. Gwyneth Jones<br>Supervisor |
|-----------|---------------------------------|
| Approved: | Dr. Ron Russell<br>Reader       |
| Date:     | April 22, 2014                  |

Saint Mary's University 923 Robie St Halifax, Nova Scotia, Canada B3H 3C3

## SIGNATURES OF THE EXAMINERS

## Seasonal Changes in the Prevalence of Gastrointestinal Nematodes in Sheep in Nova Scotia, Canada.

By

Rebecca A. Betts

A thesis submitted to Saint Mary's University, Halifax, Nova Scotia in partial fulfilment of the requirements for the degree of Bachelors of Science (Honours) in Biology.

April 22, 2014, Halifax, Nova Scotia, Canada.

© Rebecca A. Betts, 2014

Approved: Dr. Gwyneth Jones

Supervisor

Approved: Dr. Ron Russell

Reader

Date: April 22, 2014

Saint Mary's University 923 Robie St Halifax, Nova Scotia, Canada B3H 3C3

### Seasonal Changes in the Prevalence of Gastrointestinal Nematodes in Sheep in Nova Scotia, Canada.

By

Rebecca A. Betts

April 22, 2014

### ABSTRACT

Currently, there is a major lack of documentation regarding the seasonal changes in the prevalence of gastrointestinal nematodes (GINs) in sheep in Nova Scotia. Therefore, the objective of this study was to document the seasonal changes in the prevalence of GINs found in sheep in Nova Scotia so that farmers and researchers understand the trends in monthly and yearly infection. The primary focus was placed on the correlation between GIN levels and climate. It was predicted that the prevalence of GINs would increase in the early spring due to periparturient egg rise and cessation of winter larval hypobiosis, decrease during the late spring/early summer, remain low during a hot dry summer, increase in conjunction with the late summer/autumn rainfall and accumulated build-up of infective larvae (L3) and GIN ova on pasture, and decrease again as the GINs go into hypobiosis in the late autumn. For this study, particular attention was placed on the ova produced by *Haemonchus* spp., *Telodorsagia* (Ostertagia) spp., Trichostrongylus spp., Cooperia spp., Bunostomum spp., Nematodirus spp., and Trichuris spp. Faecal samples from a closed flock were taken in 2012 and 2013 that represented a typical flock encountered in Nova Scotia. Faecal egg counts (FEC) were used to monitor GIN prevalence, and were determined using the McMaster Technique. Larval cultures were used to identify certain GIN species. It was determined that the prediction was supported. However, prevalence increased from 2012 to 2013, which was not expected. This was likely caused by proliferative GINs dominating other GIN species, ova build up on pasture from month to month and year to year, or increasing anthelmintic resistance in GINs.

Date: April 22, 2014

## ACKNOWLEGMENTS

I would like to give my sincerest gratitude to Dr. G. Jones, K. Hipwell, D. Thibault, Dr. S. Meek, N. Osborne, Dr. D. Strongman, C. Cranley, M. Logan, J. Yang, B. Flynn, H. de Boer, C. Clarke, J. White and my friends and family for their time, expertise and support.

I would also like to thank Saint Mary's University, the Purebred Sheep Breeders Association of Nova Scotia, Agri-Futures, the Sheep Producers Association of Nova Scotia, and Agriculture and Agri-Food Canada for their contributions and funding.

## TABLE OF CONTENTS

| SIGNATURES OF THE EXAMINERS                                                                                                                                                       | ii  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| ABSTRACT                                                                                                                                                                          | iii |
| ACKNOWLEDGEMENTS                                                                                                                                                                  | iv  |
| TABLE OF CONTENTS                                                                                                                                                                 | v   |
| LIST OF TABLES                                                                                                                                                                    | vi  |
| LIST OF FIGURES                                                                                                                                                                   | vii |
| INTRODUCTION                                                                                                                                                                      | 1   |
| METHODS AND MATERIALS<br>-Sample Collection and Flock Characteristics.<br>-Faecal Egg Count (FEC) and McMaster Technique.<br>-Identification of Larvae.<br>-Statistical Analysis. | 7   |
| RESULTS<br>-Results for 2012.<br>-Results for 2013.                                                                                                                               | 12  |
| DISCUSSION                                                                                                                                                                        | 21  |
| BIBLIOGRAPHY                                                                                                                                                                      | 25  |
| APPENDIX I<br>-Details for commonly encountered GINs in sheep.                                                                                                                    | 28  |
| APPENDIX II<br>-Fecal egg count data for 2013.                                                                                                                                    | 31  |

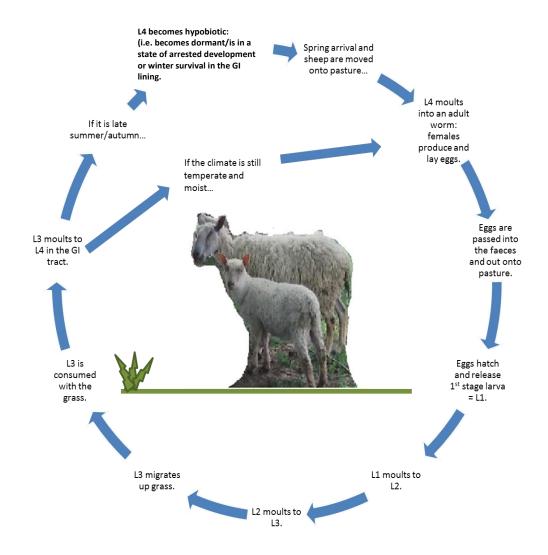
## LIST OF TABLES

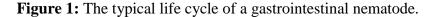
| Table 1. | Statistical analysis for FEC data collected from July to November, 2012.                 | PAGE<br>12 |
|----------|------------------------------------------------------------------------------------------|------------|
| Table 2. | Monthly data for maximum and minimum temperature and accumulated precipitation for 2012. | 14         |
| Table 3. | Statistical analysis for FEC data collected from April to November, 2013.                | 16         |
| Table 4. | Monthly data for maximum and minimum temperature and accumulated precipitation for 2013. | 18         |

## LIST OF FIGURES

| Figure 1. | The typical life cycle of a gastrointestinal nematode.                                                                                                                         | PAGE<br>3 |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 2. | Dr. G. Jones' flock at Nantymor farm as of 2012.                                                                                                                               | 7         |
| Figure 3. | a) McMaster Counting Chamber used for counting GIN ova,<br>and b) observation of contents within the McMaster Counting<br>Chamber with a microscope set at 100x magnification. | 9         |
| Figure 4. | GIN eggs observed within the gridlines of the counting chamber.                                                                                                                | 9         |
| Figure 5. | An example of recovered and cultured larvae ( <i>Haemonchus contortus</i> ) at 40x magnification and phase contrast.                                                           | 10        |
| Figure 6. | Baermann Funnel used to recover active larvae from faeces.                                                                                                                     | 11        |
| Figure 7. | Mean FEC per month for samples collected from July to November, 2012.                                                                                                          | 13        |
| Figure 8. | Maximum and minimum temperature per month collected from<br>the Debert weather station in Debert, Nova Scotia, in correlation<br>with mean FEC per month for 2012.             | 15        |
| Figure 9. | Accumulated precipitation per month collected from the Debert<br>weather station in Debert, Nova Scotia, in correlation with mean<br>FEC per month for 2012.                   | 15        |
| Figure 7. | Mean FEC per month for samples collected from April to November, 2013.                                                                                                         | 17        |
| Figure 8. | Maximum and minimum temperature per month collected from<br>the Debert weather station in Debert, Nova Scotia, in correlation<br>with mean FEC per month for 2013.             | 19        |
| Figure 9. | Accumulated precipitation per month collected from the Debert<br>weather station in Debert, Nova Scotia, in correlation with mean<br>FEC per month for 2013.                   | 19        |

### **INTRODUCTION**


With regards to sheepherding, Canada in general is not as heavily invested in the wool and meat industry as other countries such as the United Kingdom, Australia, South Africa and New Zealand (Guthrie *et al*, 2010; Terrill *et al*, 2012). Despite this, Canada still maintains lively sheepherding communities across the country. Within Canada, the majority of sheepherding can be found within the Eastern provinces (Terrill *et al*, 2012). However, there is currently a major lack of information regarding the presence of nematodes and parasites in sheep and other ruminants in Nova Scotia. This is surprising considering the amount of activity in the field of veterinary parasitology in other provinces such as Ontario and Quebec (Slocombe, 2009). This is quite problematic, as gastrointestinal nematodes (GINs) and parasites greatly impact the health of animals in which they reside and can in turn affect industry and agriculture.


According to the Handbook for the Control of Internal Parasites of Sheep and Goats (University of Guelph, 2012), commonly found GINs and parasites residing in sheep include: *Haemonchus* spp., *Telodorsagia* (*Ostertagia*) spp. and *Trichostrongylus* spp. found in the abomasum; *Cooperia* spp., *Trichostrongylus* spp., *Bunostomum* spp., *Nematodirus* spp., *Moniezia* spp., *Eimeria* spp. and *Strongyloides* spp. found in the small intestine; and *Oesophagostomum* spp., *Chabertia* spp., and *Trichuris* spp. found in the cecum and colon (Maal-Bared, 1998; Foreyt, 2001; Mederos *et al*, 2010; Abbot *et al*, 2012). Details about each GIN can be found in Tables 1, 2 and 3 in Appendix I.

In addition to the presence of GINs in different locations within the gastrointestinal tract of sheep, the presence of parasite species can differ regionally and locally as well. Common species of nematodes found in Ontario and Quebec are *Trichostrongylus* spp., *Haemonchus* spp. (globally common), and *Telodorsagia* 

(*Ostertagia*) spp. (Mederos *et al*, 2010; University of Guelph, 2012), whereas *Haemonchus* spp. and *Nematodirus* spp. are more common to Nova Scotia (Winter, 2002; University of Guelph, 2012). It is interesting to note that *Haemonchus* spp. is typically found in the topics and sub tropics, while *Nematodirus* spp. is typically found in more northern climates, yet both can be found in abundance together in Nova Scotia (Winter, 2002; Mapes and Coop, 2009; van Dijk and Morgan, 2010).

The typical lifecycle of GINs can be summarized as follows (Figure 1): nematode eggs are passed into the faeces which are defecated onto pasture where the eggs hatch to release first stage larvae (L1). The L1 larvae moult to second stage larvae (L2), then moult to third stage larvae (L3, the infective stage), which then migrate up pasture vegetation. The L3 larvae are consumed along with the pasture vegetation by sheep and once established in the gastrointestinal tract, the L3 larvae moult to fourth stage larvae (L4). If the climate is still temperate and moist, as seen with spring or summer weather, the L4 larvae moult into adult worms within the gastrointestinal tract whereby female GINs produce and lay eggs. However, if the climate has begun to cool, as seen with autumn weather, sheep will be brought into barns for the winter and the L4 larvae will become hypobiotic (i.e. they go into a state of dormancy/arrested development). The L4 larvae will remain in the lining of the gastrointestinal tract until spring when sheep are moved out onto pasture again. Once spring has arrived, the L4 larvae moult into adult worms within the gastrointestinal tract whereby female GINs produce and lay eggs (Eysker, 1997; Eysker et al, 2005; University of Guelph, 2012). Also, a small percentage of the larvae and eggs on pasture will survive over winter and provide a light source of infection come the spring (Coop et al, 1991).





There are multiple factors that affect the prevalence of GINs in sheep (Kaplan and Vidyashankar, 2012). Such factors include regional presence of parasite species, climate, pasture and livestock management, a sheep's natural immunity to parasites, and anthelmintic resistance in GINs (i.e. drug resistance to medications that destroy GINs). For example, certain breeds and ages of sheep are more susceptible to parasitic infection than others (Mugambi *et al*, 1997; Miller *et al*, 1998). Lambs and yearlings typically exhibit high GIN infections due to underdeveloped immune systems, while elderly sheep exhibit high infections due to degraded immune systems (Israf *et al*, 1997). Also, larger

sheep tend to have a better tolerance towards parasitic infections than smaller sheep with a similar worm burden (Coltman *et al*, 2001). It is important to note that some sheep are genetically resistant to parasitic infection (i.e. their immune system is able to destroy and resist the establishment of infections), while other sheep are resilient to parasitic infection (i.e. an individual is able to survive and grow without disease symptoms in spite of a relatively high infection, but remain a prime source of pasture contamination) (University of Guelph, 2012).

However, it can be argued that climate and anthelmintic resistance in GINs are the primary variables that control GIN prevalence in sheep, regional presence of parasite species, pasture and livestock management, and can even influence a sheep's natural immunity to parasites regardless of breed, age, size or sex.

The local climate with regards to soil moisture, soil composition, rainfall amount and seasonal variation in temperature play vital roles in the lifecycle of GINs, especially in the survival of the larval stages on pasture (Agyei, 1997; O'Connor *et al*, 2007; Guthrie *et al*, 2010; van Dijk and Morgan, 2012). According to Khadijam *et al* (2013), increasing initial soil moisture provides a water film for larval stages to move in, and therefore results in an increased recovery of total L3 larva from pasture, as does increased amounts of rainfall. The increased recovery of L3 larva from pasture increases the likelihood that the larva will be eaten by sheep, and therefore can increase the severity of GIN infections should the L3 larva be consumed. However, the benefit from increased rainfall may reduce the benefit from increased soil moisture: if rainfall amounts are too great, the soil becomes oversaturated with water and the larvae and eggs on pasture may be swept away in rainfall run off (Stromberg, 1997). In contrast, if the climate is too dry, the larvae and eggs on pasture will likely experience prolonged desiccation and may die (Agyei, 1997).

Larvae will not develop at temperatures below 10°C, which allows for prolonged storage of nutrients within larval sheaths, while temperatures above 28°C cause increased metabolic activity which reduces the availability of stored nutrients (van Dijk and Morgan, 2008; University of Guelph, 2012). In general, temperatures between 25°C and 37°C provide an ideal range for the development of parasites and nematodes on pasture (Eysker, 1997; Waller and Chandrawathani, 2005; University of Guelph, 2012). Therefore, increased soil moisture in conjunction with increased rainfall amounts (enough to wet the soil and pasture vegetation but not enough to oversaturate the pasture), and temperatures between 25°C and 37°C create a perfect environment for increased larval activity on pasture.

The length of a grazing season is also a direct reflection of the climate (Jones, personal communication, 2013). Seasonal changes affect when sheep are let out onto pasture after wintering in barns and stables, exposing sheep to parasites that have survived on pasture over the winter. The length of time sheep are able to remain on pasture before once again returning to their barns/stables is also dependent on seasonal changes and will determine the flock's exposure time to infected pasture.

For example, sheep released onto pasture due to an early spring (or lack of feed) results in an early periparturient egg rise when nematodes come out of hypobiosis (i.e larval arrest) and pass parasitic eggs through the faeces of ewes a few weeks before giving birth, which increases initial pasture contamination (University of Guelph, 2012). The periparturient egg rise will continue throughout the eight week nursing period then decrease in late spring/early summer. An earlier build-up of larvae on pasture increases flock exposure to said parasites.

Sheep farmers and producers must also be concerned with anthelmintic resistance in GINs. The GINs themselves can have a genetic predisposition to drug resistance (Kaplan, 2004; Kaplan and Vidyashankar, 2012). It is believed that this is due to over use of anthelmintics, whereby parasites evolve and become immune to the wormer used. The presence of drug resistance in GINs is a far reaching and rapidly growing problem, especially considering that only two effective wormers are available in Canada (Terrill *et al*, 2012; Falzon *et al*, 2013).

The objective of this study is to provide documentation that focuses on the seasonal changes in prevalence of GINs encountered in sheep in Nova Scotia. Doing so will provide researchers and farmers/producers with a better understanding of the severity of GIN infections as they occur throughout the year. The primary focus was placed on the correlation between climate/seasonal changes and the prevalence of GINs. Experimentation on the increasing anthelmintic resistance of GIN in sheep in Nova Scotia is ongoing, and will only be briefly discussed in this research paper.

Considering patterns of pasture infection due to climate and exposure to the infected pasture, it would be expected that in Nova Scotia, the prevalence of GINs will increase slightly in the early spring due to the periparturient egg rise, decrease during the late spring/early summer, remain low during a hot dry summer, increase in conjunction with the late summer/autumn rainfall and accumulated build-up of infective larvae (L3) and GIN eggs on pasture, and decrease again as the GINs go into hypobiosis in the late autumn (Kenyon *et al*, 2009; Sargison *et al*, 2012).

For this study, particular focus was placed on the ova produced by *Haemonchus* spp., *Telodorsagia (Ostertagia)* spp., *Trichostrongylus* spp., *Cooperia* spp., *Bunostomum* spp., *Nematodirus* spp., and *Trichuris* spp.

### **MATERIALS AND METHODS**

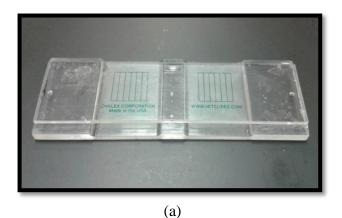
#### Sample Collection and Flock Characteristics

Faecal samples for this study were collected from the sheep flock at Nantymor Farm, located in Noel Shore, Nova Scotia (Figure 2). Samples were obtained by gathering droppings into a glove by Danielle Thibault or Dr. Gwyneth Jones. Droppings were either taken from the pasture shortly after defecation, or rectally during defecation, and were marked with the individual's identification number/name. Sample collection was opportunistic and occurred from July to November in 2012 (mostly lamb samples), and from April to November in 2013 (mostly ewe samples from April to June, and mostly lamb samples from July to November).



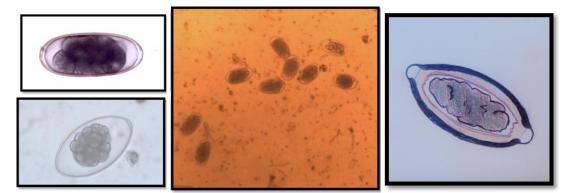
Figure 2: Dr. G. Jones' flock at Nantymor farm as of 2012.

The flock at Nantymor Farm consisted of 90 to 100 Clun Forest sheep (with a low number of crossbreeds), that ranged from one to twelve years of age. In 1997, Jones maintained a mix of genetic lines within her flock that consisted of Clun Forest sheep and crossbreeds, but currently maintains only five genetic lines within a purebred flock.


This particular flock was chosen due to several key characteristics: 1) samples were easily accessible, 2) well-kept records dating from 1997 were available for comparison, 3) pasture/dosing management and general characteristics have remained the same since 1997, 4) the flock is considered to be a closed flock (i.e. sheep within the flock belong to one breed of sheep and new sheep are rarely added), and 5) the flock is a good representation of a typical sheep flock encountered in Nova Scotia (i.e. the sheep were maintained on native pasture at low stocking density).

### Faecal Egg Count (FEC) and McMaster Technique

According to Foreyt (2001) and the UK Ministry of Agriculture, Fisheries and Food (1971), faecal egg count (FEC; the estimated number of GIN eggs per gram of faecal matter) is the most practical method used to monitor GIN prevalence within a population. For example, a high FEC score is indicative of a high prevalence of GINs. Therefore, FECs were used for this study to monitor seasonal changes in GIN prevalence.


In order to determine FECs, the McMaster Technique was used (Ministry of Agriculture, Fisheries and Food, 1971). Firstly, 3g of faecal matter was mixed with 45ml of over-saturated salt solution and then strained through a tea strainer (or drain strainer of similar hole size) to remove excess debris. Two sub-samples were drawn with a pipette as the filtrate was stirred and placed within a McMaster Counting Chamber (Chalex Corporation) (Figure 3a). After letting the chamber sit for several minutes, a microscope set at 100x magnification was used to count GIN eggs within the grid lines on the McMaster Counting Chamber (Figure 3.b and Figure 4) (Foreyt, 2001). The amount counted was then multiplied by a factor of 50 to determine FEC. An example calculation is as follows: (GIN egg count) x (50) = FEC (eggs/g of faecal matter).

Typically, *Nematodirus* spp. eggs were recorded separately from other GIN eggs. However, for the sake of statistical analysis chosen for this study, *Nematodirus* spp. eggs were recorded together with the other GIN eggs when eggs were counted.



(b)

**Figure 3:** a) McMaster Counting Chamber used for counting GIN ova, and b) observation of contents within the McMaster Counting Chamber with a microscope set at 100x magnification.



**Figure 4:** GIN eggs observed within the gridlines of the counting chamber. Top left: *Nematodirus battus*; Bottom left: *Nematodirus filicollis*; Middle: eggs that may belong to *Haemonchus* spp., *Telodorsagia (Ostertagia)* spp., *Trichostrongylus* spp., *Bunostomum* spp. or *Cooperia* spp. or a combination of these species; Right: *Trichuris* spp. (drawn).

### Identification of Larvae

Third stage larvae (L3) were also examined and identified, as the eggs from *Haemonchus* spp., *Telodorsagia (Ostertagia)* spp., *Trichostrongylus* spp., *Bunostomum* spp. and *Cooperia* spp. are difficult to distinguish from one another (Figure 5). It is important to note that eggs from *Nematodirus* spp. were not reared due to complicated rearing requirements.



**Figure 5:** An example of recovered and cultured larvae (*Haemonchus contortus*) at 40x magnification and phase contrast.

Cultures were set up by placing 3-5g of faeces onto a strip of filter paper and placed on a microscope slide. Then, the slide was moved into a petri-dish and propped up at one end with a short, thin wooden stick. Enough water was added to the petri-dish to cover the non-elevated end of the slide. Larvae were gathered roughly a week later by pipetting a small amount of liquid from the petri-dish onto another microscope slide. A drop of iodine was added. L3 larvae were then observed and identified under a microscope set at 40x or 100x magnification (Foreyt, 2001; Gibbons *et al*, accessed 2013).

Alternatively, Baermann Funnels set up over petri dishes were used to recover active larvae from faeces (Ministry of Agriculture, Fisheries and Food, 1971). Between 35g of faecal matter was wrapped in a piece of cheese cloth, placed at the top of the Baermann Funnel, and covered in water (Figure 6). Roughly after a week, larvae were collected by pipetting a small amount of liquid from the petri-dish onto a microscope slide and a very small drop of iodine was added. Once again, L3 larvae were then observed and identified under a microscope set at 40x or 100x magnification.



Figure 6: Baermann Funnel used to recover active larvae from faeces.

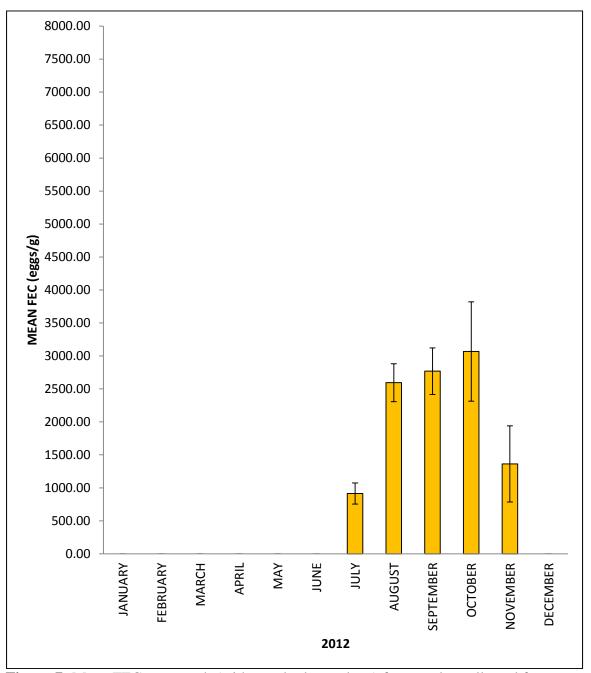
## Statistical Analysis

In order to perform statistical analysis on the FEC data collected in 2012 and 2013, the mean FEC for each sheep was tabulated for each month (Table 1 to 13 in Appendix II). Several measures were determined for each month in 2012 and 2013 using the tabulated data, which included: sample size, mean FEC, standard deviation and standard error.

Data pertaining to maximum and minimum temperature, as well as total accumulated precipitation, were collected for each month in 2012 and 2013 from the Debert weather station in Debert, Nova Scotia (The Weather Network, 2013).

#### RESULTS

The mean FEC for each sheep for each month was tabulated in order to perform statistical analysis on the FEC data collected in 2012 and 2013 (Table 1-13 in Appendix II). A total of 221 samples were analyzed for 2012, and a total of 372 samples were analyzed for 2013. Statistical analysis included determination of sample size, mean FEC, standard deviation and standard error (eggs/g). Although the sample size and standard deviation are not shown on the graphs produced, they were used to calculate the standard error of the mean FEC.


#### Results for 2012.

|           | Number of | Mean     | Standard  | Standard |
|-----------|-----------|----------|-----------|----------|
| 2012      | Samples   | FEC      | Deviation | Error    |
|           | (N)       | (eggs/g) | (eggs/g)  | (eggs/g) |
| January   | -         | -        | -         | -        |
| February  | -         | -        | -         | -        |
| March     | -         | -        | -         | -        |
| April     | -         | -        | -         | -        |
| May       | -         | -        | -         | -        |
| June      | -         | -        | -         | -        |
| July      | 48        | 913.85   | 1114.64   | 160.88   |
| August    | 97        | 2594.56  | 2831.18   | 287.46   |
| September | 51        | 2768.93  | 2526.83   | 353.83   |
| October   | 17        | 3067.65  | 3107.36   | 753.65   |
| November  | 8         | 1362.50  | 1634.01   | 577.71   |
| December  | -         | -        | -         | -        |
| Total     | 221       |          |           |          |

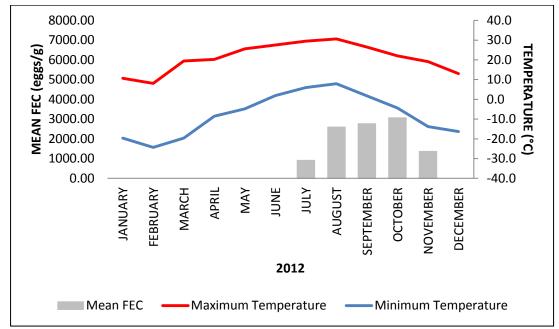
Table 1: Statistical analysis for FEC data collected from July to November, 2012.

As seen in Table 1, the mean FEC was determined to be  $913.85 \pm 160.88$  eggs per gram of faecal matter for the month of July (the lowest mean FEC). The mean FEC increased in August to  $2594.56 \pm 287.46$  eggs per gram of faecal matter, increased again in September to  $2768.93 \pm 353.83$  eggs per gram of faecal matter, and increased once

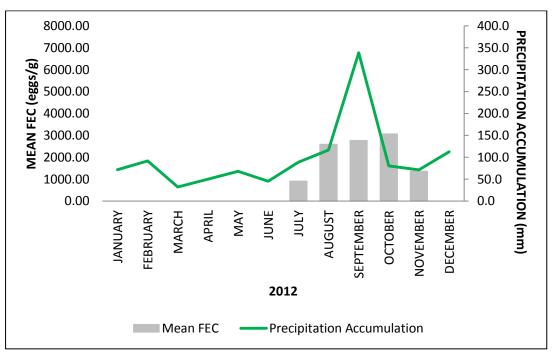
again in October to  $3067.65 \pm 753.65$  eggs per gram of faecal matter (the highest mean FEC). The mean FEC then decreased in November to  $1362.50 \pm 577.71$  eggs per gram of faecal matter. The change in mean FEC per month for 2012 can be seen in Figure 7.



**Figure 7:** Mean FEC per month (with standard error bars) for samples collected from July to November, 2012.


**Table 2:** Monthly data for maximum/minimum temperature and accumulated precipitation for 2012, collected from the Debert Weather Station in Debert, Nova Scotia (The Weather Network, 2013).

|           | Maximum     | Minimum     | Precipitation |
|-----------|-------------|-------------|---------------|
| 2012      | Temperature | Temperature | Accumulation  |
|           | (°C)        | (°C)        | ( <b>mm</b> ) |
| January   | 10.7        | -19.6       | 71.5          |
| February  | 8.1         | -24.3       | 91.7          |
| March     | 19.4        | -19.6       | 32.1          |
| April     | 20.2        | -8.5        | 49.9          |
| May       | 25.6        | -4.8        | 67.9          |
| June      | 27.5        | 1.9         | 45.3          |
| July      | 29.5        | 6.0         | 88.8          |
| August    | 30.6        | 7.9         | 116.4         |
| September | 26.5        | 1.8         | 338.8         |
| October   | 22.0        | -4.4        | 80.3          |
| November  | 19.1        | -13.8       | 71.4          |
| December  | 13.0        | -16.3       | 112.5         |


As seen in Table 2, maximum and minimum temperatures decreased from 10.7°C and -19.6°C in January to 8.1°C and -24.3°C in February (the lowest maximum and minimum temperatures, respectively), increased from 8.1°C and -24.3°C in February to 30.6°C and 7.9°C in August (the highest maximum and minimum temperatures, respectively), and decreased from 30.6°C and 7.9°C in August to 13.0°C and -16.3°C in December. The change in monthly maximum and minimum temperatures for 2012 can be seen in Figure 8.

Also seen in Table 2, the accumulated precipitation increased from 71.9mm in January to 91.7mm in February, decreased from 91.7mm in February to 32.1mm in March (the lowest accumulated precipitation), increased from 32.1mm in March to 67.9mm in May, decreased from 67.9mm in May to 45.3mm in June, increased from 45.3mm in June to 338.8mm in September (the highest accumulated precipitation), decreased from 388.8mm in September to 71.4mm in November, and finally increased from 71.4mm in November to 112.5mm in December. The change in monthly

precipitation accumulation can be seen in Figure 9.



**Figure 8:** Maximum and minimum temperature per month collected from the Debert weather station in Debert, Nova Scotia, presented along with the mean FEC per month for 2012 (The Weather Network, 2013).



**Figure 9:** Accumulated precipitation per month collected from the Debert weather station in Debert, Nova Scotia, presented along with the mean FEC per month for 2012 (The Weather Network, 2013).

The weather graphs for 2012 were also presented along with the monthly mean FEC data for 2012. Figure 8 demonstrates that the mean FEC increased as temperature increased from July to August, then mean FEC continued to increase from August to October as temperature decreased, and finally, mean FEC decreased from October to November as temperature continued to decrease. Figure 9 demonstrates that the mean FEC increased as precipitation increased from July to September, the mean FEC continued to increase as precipitation decreased from September to October, and finally, the mean FEC decreased as the precipitation continued to decrease from October to November.

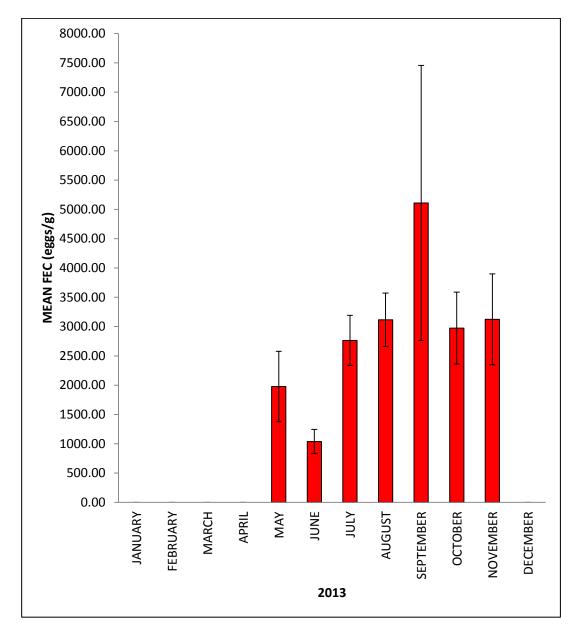
#### Results for 2013.

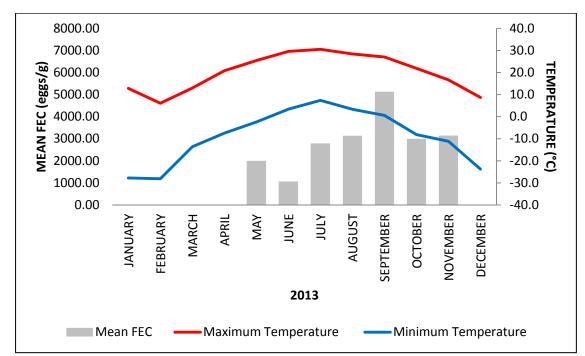
| 2013      | Number of<br>Samples | Mean<br>FEC | Standard<br>Deviation | Standard<br>Error |
|-----------|----------------------|-------------|-----------------------|-------------------|
|           | (N)                  | (eggs/g)    | (eggs/g)              | (eggs/g)          |
| January   | -                    | -           | -                     | -                 |
| February  | -                    | -           | -                     | -                 |
| March     | -                    | -           | -                     | -                 |
| April     | 1                    | 0           | 0                     | 0                 |
| May       | 65                   | 1977.69     | 4851.22               | 601.72            |
| June      | 91                   | 1039.50     | 1959.11               | 205.37            |
| July      | 85                   | 2764.87     | 3929.34               | 426.20            |
| August    | 79                   | 3115.82     | 4056.12               | 456.35            |
| September | 11                   | 5110.23     | 7779.79               | 2345.70           |
| October   | 38                   | 2974.34     | 3778.95               | 613.03            |
| November  | 2                    | 3125.00     | 1096.02               | 775.00            |
| December  | -                    | -           | -                     | -                 |
| Total     | 372                  |             |                       |                   |

**Table 3:** Statistical analysis for FEC data collected from April to November, 2013.

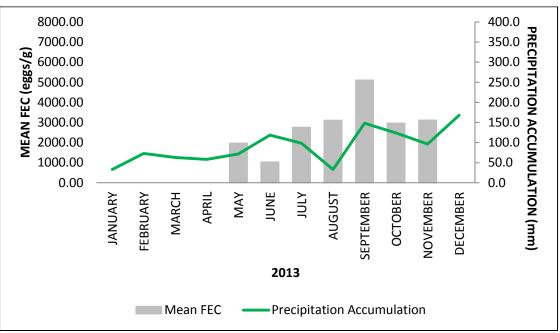
As seen in Table 3, the mean FEC was determined to be 0 eggs per gram of faecal matter for the month of April. The mean FEC increased to  $1977.69 \pm 601.72$  eggs per gram of faecal matter for May, but decreased to  $1039.50 \pm 205.37$  eggs per gram of faecal

matter for June. The mean FEC increased to  $2764.87 \pm 426.20$  eggs per gram of faecal matter in July, increased again in  $3115.82 \pm 456.35$  eggs per gram of faecal matter in August, and increased again to  $5110.23 \pm 2345.70$  eggs per gram of faecal matter in September. The mean FEC then decreased in October to  $2974.34 \pm 613.03$  eggs per gram of faecal matter, and increased again in November to  $3125.00 \pm 775.00$  eggs per gram of faecal matter. The change in the mean FEC for 2012 can be seen in Figure 10.





Figure 10: Mean FEC per month for samples collected from April to November, 2013.

**Table 4:** Monthly data for maximum and minimum temperature and accumulated precipitation for 2013, collected from the Debert Weather Station in Debert, Nova Scotia (The Weather Network, 2013).


|           | Maximum     | Minimum     | Precipitation |
|-----------|-------------|-------------|---------------|
| 2013      | Temperature | Temperature | Accumulation  |
|           | (°C)        | (°C)        | ( <b>mm</b> ) |
| January   | 12.8        | -27.8       | 33.3          |
| February  | 6.1         | -28.1       | 73.0          |
| March     | 13.0        | -13.6       | 63.0          |
| April     | 20.8        | -7.5        | 58.4          |
| May       | 25.4        | -2.4        | 71.6          |
| June      | 29.6        | 3.4         | 118.8         |
| July      | 30.5        | 7.4         | 98.6          |
| August    | 28.4        | 3.3         | 33.2          |
| September | 27.0        | 0.6         | 148.1         |
| October   | 21.9        | -8.1        | 123.7         |
| November  | 16.7        | -11.2       | 96.5          |
| December  | 8.7         | -23.8       | 168.0         |

As seen in Table 4, maximum and minimum temperatures decreased from 12.8°C and -27.8°C in January to 6.1°C and -28.1°C in February (the lowest maximum and minimum temperatures, respectively), increased from 6.1°C and -28.1°C in February to 30.5°C and 7.4°C in July (the highest maximum and minimum temperatures, respectively), and decreased from 30.5°C and 7.4°C in July to 8.7°C and -23.8°C in December. The change in monthly maximum and minimum temperature for 2012 can be seen in Figure 11.

Also seen in Table 2, the accumulated precipitation increased from 33.3mm in January to 73.0mm in February, decreased from 73.0mm in February to 58.4mm in April, increased from 58.4mm in April to 118.8mm in June, decreased from 118.8mm in June to 33.2mm in August (the lowest accumulated precipitation), increased from 33.2mm in August to 148.1mm in September, decreased from 148.1mm in September to 96.5mm in November, and finally increased from 96.5mm in November to 168.0mm in December (the highest accumulated precipitation). The change in monthly precipitation accumulation can be seen in Figure 12.



**Figure 11:** Maximum and minimum temperature per month collected from the Debert weather station in Debert, Nova Scotia, presented along with the mean FEC per month for 2013 (The Weather Network, 2013).



**Figure 12:** Accumulated precipitation per month collected from the Debert weather station in Debert, Nova Scotia, presented along with the mean FEC per month for 2013 (The Weather Network, 2013).

The weather graphs for 2013 were also correlated against monthly mean FEC data for 2013. Figure 11 demonstrates that the mean FEC increased from April to May as temperature increased, the mean FEC decreased from May to June as temperature continued to increase, the mean FEC increased from June to July as temperature continue to increase, the mean FEC continued to increase from July to September as temperature decreased, the mean FEC decreased from September to October as Temperature continued to decrease, and finally, the mean FEC increased from October to November as the temperature continued to decreases. Figure 12 demonstrates that the mean FEC increased from April to May as precipitation increased, the mean FEC decreased from May to June as precipitation continued to increase, the mean FEC increased from July to August as the precipitation decreased, the mean FEC continued to increase from August to September as the precipitation increased, the mean FEC decreased from October to October as the precipitation decreased, and finally, the mean FEC increased from September to October as the precipitation decreased, and finally, the mean FEC increased from October to November as the precipitation continued to decrease.

#### DISCUSSION

It can be argued that climate and anthelmintic resistance in GINs are the primary variables that control GIN prevalence in sheep, regional presence of parasite species, pasture and livestock management, and can even influence a sheep's natural immunity to parasites regardless of breed, age, size or sex.

Soil moisture, soil composition, rainfall amount and seasonal variation in temperature play vital roles in the lifecycle of GINs, especially in the survival of the larval stages on pasture (Agyei, 1997; O'Connor *et al*, 2007; Guthrie *et al*, 2010; van Dijk and Morgan, 2012). Increasing initial soil moisture provides a water film for larvae to move in, and results in increased recovery of L3 larva from pasture, as does increasing amounts of rainfall (Khadijam *et al*, 2013). However, if rainfall amounts are too great, the soil becomes oversaturated with water and the larvae and eggs on pasture may be swept away in rainfall run off (Stromberg, 1997). If the climate is too dry, the larvae and eggs on pasture will likely experience prolonged desiccation and may die (Agyei, 1997).

The time required for GINs to reach infective L3 stage is highly dependent on temperature, where temperatures between 25°C and 37°C provide an ideal range for the development of parasites and nematodes on pasture (Eysker, 1997; Waller and Chandrawathani, 2005; University of Guelph, 2012). Therefore, increased soil moisture in conjunction with increased rainfall amounts (enough to wet the soil and pasture vegetation but not enough to oversaturate the pasture), and temperatures between 25°C and 37°C create a perfect environment for increased larvae activity on pasture.

Seasonal changes affect when sheep are let out onto pasture after wintering in barns and stables, exposing sheep to parasites that have survived on pasture over the winter (Jones, personal communication, 2013). Sheep released onto pasture due to an

early spring (or lack of feed) results in an early periparturient egg rise when nematodes come out of hypobiosis (i.e. larval arrest) and pass eggs through the faeces of ewes a few weeks before giving birth, which increases initial pasture contamination (University of Guelph, 2012). The periparturient egg rise will continue throughout the eight week nursing period then decrease in late spring/early summer.

Considering patterns of pasture infection due to climate and exposure to the infected pasture, it was expected that in Nova Scotia, the prevalence of GINs would increase slightly in the early spring due to the periparturient egg rise/cessation of larval hypobiosis, decrease during the late spring/early summer, remain low during a hot dry summer, increase in conjunction with the late summer/autumn rainfall and accumulated build-up of infective larvae (L3) and GIN eggs on pasture, and decrease again as the GINs go into hypobiosis in the late autumn (Kenyon *et al*, 2009; Sargison *et al*, 2012). Therefore, according to the results found, the prediction for this study was supported.

However, there were several unexpected results during this study. Firstly, the maximum and minimum temperatures recorded for 2012 were very similar to the maximum and minimum temperatures recorded for 2013. Secondly, the peak prevalence of GINs occurred in October of 2012, whereas the peak prevalence of GINs occurred in September of 2013. The high volume of precipitation recorded for September in 2012 was likely too great to support larval and egg survival on pasture, which would cause peak GIN prevalence to occur in a month that had a lower accumulated precipitation, such as October. Lastly, there was a major discrepancy in the association between monthly mean FEC and precipitation when mean FEC data and accumulated precipitation data from 2012 and 2013 were compared. In general, as precipitation decreases, GIN prevalence

decreases. However, the GIN prevalence increased from 2012 to 2013, despite accumulated precipitation decreasing from 2012 to 2013.

This discrepancy may be caused by the following: As of 1997, *H. contortus* was not a commonly encountered GIN in Nova Scotia, and was therefore not a major problem (Maal-Bared, 1998). Yet, *Haemonchus* spp. (specifically *H. contortus*) was found to be the dominant species of GIN found during this study (Hipwell and Jones, personal communication, 2013). By nature, *H. contortus* produces more eggs than other species of GINs found in sheep (Foreyt, 2001). It produces thousands of eggs are per day versus tens/hundreds of eggs produced per day by other species. Therefore, increased monthly mean FEC data seen in 2013 may only be indicative of rising *H. contortus* levels. This would infer that an increasing number of *H. contortus* larvae and eggs are surviving on pasture during the winter, providing a higher level of initial pasture infection come the spring (i.e. GIN levels build up on pasture not only form month to month, but also from year to year) (Coop *et al*, 1991; University of Guelph, 2012).

The discrepancy may also be caused by increasing anthelmintic resistance in GINs (Kaplan and Vidyashankar. 2012). When farmers/producers dose sheep without fully understanding the consequences of their action on GINs, they are inadvertently selecting for drug resistant nematodes (Kaplan, 2004). Susceptible nematodes are killed by anthelmintics, but the resistant GINs remain without competition from the susceptible GINs.

In contrast, if farmers/producers do not dose their sheep at all, their flock may die from untreated GIN infection, while the volume of GIN larvae and eggs on pasture increase (Kaplan, 2004). According to Jones (personal communication, 2013), farmers will neglect to dose their sheep thinking that they have escaped the initial onset of

parasites during the periparturient rise when their sheep do not exhibit signs of pathogenic nematode infection in the spring and early summer (Kenyon *et al*, 2009; Sargison *et al*, 2012). However, signs of infection are not usually observed in spring and early summer. Nematode levels build up on pasture over the spring and summer, and sheep will only exhibit health problems caused by high nematode infections, such as diarrhea, in the late summer/autumn. Farmers then assume that if they do not see diarrhea from their sheep, that their sheep are not infected with nematodes. Farmers are subsequently left baffled when anemia strikes rapidly from *H. contortus* infections (the only GIN that does not cause diarrhea) (Waller and Chandrawathani, 2005). Once again, *H. contortus* infections have not been problematic until the last fifteen to sixteen years, so farmers/producers are still unused to its presence (Maal-Bared, 1998).

With the use of the information gained by documenting seasonal changes in the prevalence of GINs in sheep in Nova Scotia, researchers and farmers/producers have now been provided with a current outlook of GIN prevalence, and will be able to better understand the severity of GIN infections as they occur throughout the year. However, it is important to note that there is an inherent variability in GIN prevalence for any field study and that the results found in this study may or may not be the norm. Further monitoring is required. Future research in this field should focus on pasture management strategies needed to prepare for and later combat seasonal changes in GIN prevalence in sheep according to climatic conditions encountered. Future research should also focus on increasing drug resistance in GINs, especially in *H. contortus*, before the GINs become resistant to the already small number of anthelmintics available in Canada. (University of Guelph, 2013).

### BIBLIOGRAPHY

Abbott, K. A., M. Taylor and L. A. Stubbings, 2012. Sustainable Worm Control Strategies for Sheep: A Technical Manual for Veterinary Surgeons and Advisors, Fourth Edition. SCOPS and Contest Publications, Santa Rosa, pp. 10-13.

Agyei, A. D. 1997. Seasonal Changes in the Level of Infective Strongylate Nematode Larvae on Pasture in the Coastal Savanna Regions of Ghana. *Vet. Parasitol.* (70): 175-182.

Coltman, D. W., J. Pilkington, L. E. B. Kruuk, K. Wilson and J. M. Pemberton. 2001. Positive Genetic Correlation Between Parasite Resistance and Body Size in a Free-Living Ungulate Population. *Evo*. (55): 2116-2125.

Coop, R. L., F. Jackson and E. Jackson. 1991. Relative Contribution of Cattle to Contamination of Pasture with *Nematodirus battus* Under an Alternative Grazing System of Husbandry. *Res. In Vet. Sci.* (50): 211-215.

Eysker, M. 1997. Some Aspects of Inhibited Developments of Trichostrongylids in Ruminants. *Vet. Parasitol.* (72): 265-283.

Eysker, M., N. Bakker, F. N. J. Kooyman, D. van der Linden, C. Schrama and H. W. Ploger. 2005. Consequences of the Unusually Warm and Dry Summer of 2003 in the Netherlands: Poor Development of Free Living Stages, Normal Survival of Infective Larvae and Long Survival of Adult Gastrointestinal Nematodes in Sheep. *Vet. Parasitol.* (133): 313-321.

Falzon, L. C., P. I. Menzies, K. P. Shakya, A. Jones-Bitton, J. Vanleeuwen, J. Avula, H. Stewart, J. T. Jansen, M. A. Taylor, J. Learmount and A. S. Peregrine. 2013. Anthelmintic Resistance in Sheep Flocks in Ontario, Canada. *Vet. Parasitol.* (193): 150-162.

Foreyt, W. J. 2001. Veterinary Parasitology Reference Manual, Fifth Edition. Iowa State Press, Iowa, pp. 69-109.

Gibbons, L. M., D. E. Jacobs, M. T. Fox and J. Hansen. No publication date available. The RVC/FAO Guide to Veterinary Diagnostic Parasitology, Faecal Examination of Farm for Helminth Parasites. <u>http://www.rvc.ac.uk/Review/Parasitology/Index/Index.htm</u>. (accessed 25.06.13).

Guthrie, A. D., J. Learmount, J. VanLeeuwen, A. S. Peregrine, D. Kelton, P. I. Menzies, S. Fernández, R. C., A. Mederos and M. A. Taylor. 2010. Evaluation of a British Computer Model to Simulate Gastrointestinal Nematodes in Sheep on Canadian Farms. *Vet. Parasitol.* (174): 92-105.

Israf, D. A., F. Jackson, L. M. Stephenson, D. G. Jones, E. Jackson, J. F. Huntley and R. L. Coop. 1997. Persistence of immunity of *Nematodirus battus* Infection in Lambs. *Vet. Parasitol.* (71): 39-52.

Kaplan, R. M. 2004. Drug Resistance in Nematodes of Veterinanry Importance: a Status Report. *Trends in Parisitol*. (20): 477-481.

Kaplan, R. M. and A. N. Vidyashankar. 2012. An Inconvenient Truth: Global Worming and Anthelminthic Resistance. *Vet. Parasitol.* (186): 70-78.

Kenyon, F., N. D. Sargison, P. J. Skuce and F. Jackson. 2009. Sheep Helminth Parasitic Disease in South Eastern Scotland Arising as a Possible Consequence of Climate Change. *Vet. Parasitol.* (163): 293-297.

Khadijam, S., L. P. Kahn, S. W. Walkden-Brown, J. N. Bailey and S. F. Bowers. 2013. Soil Moisture Influences the Development of *Haemonhus contortus* and *Trichostrongylus colubriformis* to Third Stage Larvae. *Vet. Parasitol.* (196): 161-171.

Maal-Bared, R. 1998. Patterns of Nematode Infection in Lambs on Three Farms in Nova Scotia. Biology Honours Thesis written for the Department of Biology, Saint Mary's University, Halifax, NS.

Mapes, C. J. and R. L. Coop. 2009. The Effect of Various Periods of Infection with the Nematode *Haemonchus contortus* on the Development of the Nematode *Nematodirus battus*. *Parsitol*. (66): 85-94.

Mederos, A., S. Fernández, J. VanLeeuwen, A. S. Peregrine, D. Kelton, P. Menzies, A. LaBoeuf and R. Martin. 2010. Prevalence and Distribution of Gastrointestinal Nematodes on 32 Organic and Conventional Commercial Sheep Farms in Ontario and Quebec, Canada (2006-2008). *Vet. Parasitol.* (170): 244-252.

Miller, J. E., M. Bahirathan, S. L. Lemarie, F. Hembry, M. T. Kearney and S. R. Barras. 1998. Epidemiology of Gastrointestinal Nematode Parasitism in Suffolk and Gulf Coast Native Sheep with Special Emphasis on Relative Susceptibility to *Haemonchus contortus* Infection. *Vet. Parasitol.* (74): 55-74.

Ministry of Agriculture, Fisheries and Food. 1971. Manual of Veterinary Parasitological Laboratory Techniques, Her Majesty's Stationary Office, London, pp. 2-67.

Mugambi, J. M., R. K. Bain, S. W. Wanyangu, M. A. Ihiga, J. L. Duncan, M. Murray and M. J. Stear. 1997. Resistance of Four Sheep Breeds to Natural and Subsequent Artificial *Haemonchus contortus* Infection. *Vet. Parasitol.* (69): 265-273.

O'Connor, L. J., L. P Kahn, and S. W. Walkden-Brown. 2007. The Effects of Amount, Timing and Distribution of Simulated Rainfall on the Development of *Haemonchus contortus* to the Infective Larval Stage. *Vet. Parasitol.* (146): 90-101.

Sargison, N. D., D. J. Wilson and P. R. Scott. 2012. Observations on the Epidemiology of Autumn Nematodirosis in Weaned Lambs in a Scottish Sheep Flock. *Vet. Rec.* (15): 391.

Slocombe, J. O. D. 2009. Canada and Veterinary Parasitology. *Vet. Parasitol.* (163): 250-261.

Stromberg, B. E. 1997. Environmental Factors Influencing Transmission. *Vet. Parasitol.* (72): 247-264.

Sustainable Control of Parasites in Sheep (SCOPS) – Endoparasites, 2012. Available from: <u>http://www.scops.org.uk/endoparasites-worm-species.html.</u> (accessed 04.10.13).

Terrill, T. H., J. E. Miller, J. M. Burke, J. A. Mosjidis and R. M. Kaplan. 2012. Experiences with Integrated concepts for the Control of *Haemonchus contortus* in Sheep and Goats in the United States. *Vet. Parasitol*. (186): 28-37.

The Weather Network. 2013. Historical Weather: Debert, NS. <u>http://www.theweathernetwork.com/weather/historical-weather/canada/nova</u>scotia/debert. (accessed 10.01.14).

University of Guelph. 2012. Handbook for the Control of Internal Parasites in Sheep and Goats. <u>http://www.uoguelph.ca/~pmenzies/Handbook Home.html</u>. (accessed 25.06.13).

Van Dijk, J. and E. R. Morgan. 2008. The Influence of Temperature on the Development, Hatching and Survival of *Nematodirus battus* larvae. *Parasitol*. (135): 269-283.

Van Dijk, J. and E. R. Morgan. 2010. Variation in the Hatching Behaviour of *Nematodirus battus*: Polymorphic Bet Hedging? *Int. J. of Parasitol.* (40): 675-681.

Van Dijk, J. and E. R. Morgan. 2012. The Influence of Water and Humidity on the Hatching of *Nematodirus battus* eggs. *J. of Helminth*. (86): 287-292.

Waller, P. J. and P. Chandrawathani. 2005. *Haemonchus contortus*: Parasite Problem Number One from the Tropics to the Polar Circle, Problem and Prospects for Control Based on Epidemiology. *Trop. Biomed.* (22): 131-137.

Winter, M. D. 2002. *Nematodirus battus*, 50 Years on – a Realistic Vaccine Candidate? *Trends in Parasitol*. (18): 298-301.

## **APPENDIX I**

**Table 1:** Detailed summary of gastrointestinal nematode species encountered in sheep (Foreyt, 2001).

| Commonly<br>Encountered GIN<br>in Sheep                                   | Common Name                                                                                                                | Location                     | Si                                                                            | ze         |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------|------------|
| <b>^</b>                                                                  |                                                                                                                            |                              | Egg (µm)                                                                      | Adult (mm) |
| Haemonchus spp.:<br>H. contortus                                          | Barber's Pole Worm                                                                                                         | abomasum                     | 80 x 45                                                                       | 10-30      |
| <b>Telodorsagia</b><br>( <b>Ostertagia</b> ) <b>spp.:</b><br>O. ostertagi | Brown Stomach<br>Worm                                                                                                      | abomasum                     | 80 x 45                                                                       | 6-10       |
| Trichostrongylus<br>spp.:<br>T. axei<br>T. colubriformis                  | <i>T. axei</i> :<br>Bankrupt Worm,<br>Small Stomach<br>Worm<br><i>T. colubriformis</i> :<br>Hair Worm, Black<br>Scour Worm | abomasum,<br>small intestine | <i>T. axei</i> :<br>80 x 40<br><i>T.</i><br><i>colubriformis</i> :<br>85 x 40 | 4-8        |
| Cooperia spp.:<br>C. punctata<br>C. pectinata                             | Cattle Bankrupt<br>Worm                                                                                                    | small intestine              | 77 x 34                                                                       | 4-8        |
| Bunostomum spp.:<br>B. trigonocephalum                                    | Hookworm                                                                                                                   | small intestine              | 95 x 50                                                                       | 10-28      |
| Nematodirus spp.:<br>N. battus<br>N. filicollis<br>N. spathiger           | Thin-necked<br>Intestinal worm                                                                                             | small intestine              | N. battus:<br>175 x 75<br>N. filicollis:<br>200 x 90                          | 10-25      |
| Moniezia spp.:<br>M. benedeni                                             | Tapeworm                                                                                                                   | small intestine              | 60 x 60                                                                       | 1000       |
| Eimeria spp.                                                              | Coccidia                                                                                                                   | small intestine              | Oocyst:<br>16-47 x 13-32                                                      | n/a        |
| <i>Strongyloides</i> spp.:<br>S. papillosus                               | Thread Worm                                                                                                                | small intestine              | 50 x 22                                                                       | 3-6        |
| Oesophagostomum<br>spp.:<br>O. columbianum<br>O. venulosum                | Nodular Worm                                                                                                               | cecum and<br>colon           | 80 x 40                                                                       | 14-22      |
| Chabertia spp.:<br>C. ovina                                               | Large-mouth Bowel<br>Worm                                                                                                  | cecum and<br>colon           | 100-120 x 40-<br>50                                                           | 13-20      |
| <i>Trichuris</i> spp.:<br><i>T. Ovis</i>                                  | Whip Worm                                                                                                                  | cecum and<br>colon           | 75 x 35                                                                       | 2-3        |

**Table 2:** Pathogenicity ratings of gastrointestinal nematode species encountered in sheep(Foreyt, 2001; Abbott *et al*, 2012)

| Gastrointestinal Nematode | Pathological Effects          | Pathogenicity        |
|---------------------------|-------------------------------|----------------------|
| Haemonchus spp.           | Anemia, bottlejaw, death,     | High                 |
|                           | weight loss.                  |                      |
| Telodorsagia (Ostertagia) | Weight loss, gastric gland    | High                 |
| spp.                      | destruction, scours,          |                      |
|                           | anorexia.                     |                      |
| Trichostrongylus spp.     | Bottlejaw, scours,            | Medium               |
|                           | dehydration, emaciation,      |                      |
|                           | growth restriction.           |                      |
| Cooperia spp.             | Scours, anorexia, growth      | Low                  |
|                           | restriction.                  |                      |
| Bunostomum spp.           | Anemia, diarrhea, weight      | Medium               |
|                           | loss, death.                  |                      |
| <i>Nematodirus</i> spp.   | Death, scours.                | N. battus: High      |
|                           |                               | N. spathiger: Medium |
|                           |                               | N. filicollis: Low   |
| <i>Moniezia</i> spp.      | Not highly pathogenic.        | Low                  |
| <i>Eimeria</i> spp.       | Bloody diarrhea, death,       | Low                  |
|                           | decrease in production.       |                      |
| Strongyloides spp.        | Scours, foot rot.             | Low                  |
| Oesophagostomum spp.      | Scours, increase              | Low                  |
|                           | susceptibility to fly strike. |                      |
| Chabertia spp.            | Anemia.                       | Low                  |
| Trichuris spp.            | Hemorrhage.                   | Low                  |

| Gastrointestinal Nematode       | FEC (eggs/g)  |                |                    |
|---------------------------------|---------------|----------------|--------------------|
|                                 | Low Infection | Mild Infection | Heavy<br>Infection |
| Haemonchus spp.                 | <500          | 1000 - 5000    | >5000              |
| Mixed spp. (with<br>Haemonchus) | <500          | 500 - 1500     | >1500              |
| Nematodirus spp.                | 50 - 150      | 150 - 300      | >300               |

**Table 3:** Infection ratings for ratings of gastrointestinal nematode species encountered in sheep (SCOPS, 2012).

## **APPENDIX II**

|                 | JULY              |      |
|-----------------|-------------------|------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC  |
| JONES Y         |                   |      |
| 61              | 25                | 1250 |
| JONES Z (lambs) |                   |      |
| 5               | 5.5               | 275  |
| 7               | 13                | 650  |
| 10              | 8                 | 400  |
| 15              | 39                | 1950 |
| 17              | 17                | 850  |
| 18              | 6.5               | 325  |
| 21              | 14                | 700  |
| 22              | 17                | 850  |
| 26              | 11                | 550  |
| 27              | 2                 | 100  |
| 30              | 6.3               | 315  |
| 31              | 6                 | 300  |
| 38              | 11                | 550  |
| 43              | 17                | 850  |
| 45              | 54.5              | 2725 |
| 46              | 6                 | 300  |
| 47              | 5                 | 250  |
| 48              | 10                | 500  |
| 49              | 5                 | 250  |
| 55              | 75                | 3750 |
| 58              | 26                | 1300 |
| 50              | 22                | 1100 |
| 61              | 5                 | 250  |
| 64              | 4                 | 200  |
| 65              | 26                | 1300 |
| 58              | 42                | 2100 |
| 69              | 1                 | 50   |
| 70              | 15                | 750  |
| 71              | 14                | 700  |
| 80              | 1.5               | 75   |
| 82              | 11                | 550  |
| 83              | 7                 | 350  |

**Table 1:** Tabulated GIN egg data and FEC for July, 2012.

| 85          | 3    | 150  |
|-------------|------|------|
| 86          | 14   | 700  |
| 90          | 1    | 50   |
| 97          | 70   | 3500 |
| 99          | 25   | 1250 |
| 102         | 0.5  | 25   |
| 112         | 4    | 200  |
| 147         | 23.5 | 1175 |
| 251         | 7    | 350  |
| 257         | 1    | 50   |
| 262         | 12   | 600  |
| 263         | 31   | 1550 |
| 267 (WM)    | 120  | 6000 |
| 269         | 18   | 900  |
| 275         | 19   | 950  |
| JONES Other |      |      |
| n/a         |      |      |

|                 | AUGUST            |        |  |
|-----------------|-------------------|--------|--|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC    |  |
| JONES Y         |                   |        |  |
| 2               | 105.5             | 5275   |  |
| 23              | 6                 | 300    |  |
| 41              | 18                | 900    |  |
| 45              | 67                | 3350   |  |
| 47              | 6                 | 300    |  |
| 61              | 1                 | 50     |  |
| 77              | 10                | 500    |  |
| 78              | 130               | 6500   |  |
| 681             | 39                | 1950   |  |
| JONES Z (lambs) |                   |        |  |
| 1               | 68.25             | 3412.5 |  |
| 2               | 1                 | 50     |  |
| 3               | 179               | 8950   |  |
| 4               | 86                | 4300   |  |
| 7               | 17.5              | 875    |  |
| 11              | 42.83             | 2141.5 |  |
| 15              | 28                | 1400   |  |
| 17              | 15                | 750    |  |
| 18              | 39.5              | 1975   |  |
| 19              | 30.67             | 1533.5 |  |
| 20              | 37                | 1850   |  |
| 21              | 36                | 1800   |  |
| 22              | 26.67             | 1333.5 |  |
| 23              | 12                | 600    |  |
| 24              | 50.5              | 2525   |  |
| 26              | 42                | 2100   |  |
| 27              | 27.5              | 1375   |  |
| 30              | 53.5              | 2675   |  |
| 31              | 35.83             | 1791.5 |  |
| 32              | 57                | 2850   |  |
| 34              | 56.25             | 2812.5 |  |
| 36              | 24                | 1200   |  |
| 37              | 3                 | 150    |  |
| 38              | 62.25             | 3112.5 |  |
| 39              | 58.5              | 2925   |  |
| 40              | 9.8               | 490    |  |

**Table 2:** Tabulated GIN egg data and FEC for August, 2012.

| 43       | 64.5   | 3225   |
|----------|--------|--------|
| 46       | 10.75  | 537.5  |
| 47       | 170.5  | 8525   |
| 48       | 55.5   | 2775   |
| 49       | 7      | 350    |
| 50       | 44     | 2200   |
| 53       | 18     | 900    |
| 54       | 117.5  | 5875   |
| 55       | 49     | 2450   |
| 56       | 69     | 3450   |
| 58       | 36.5   | 1825   |
| 59       | 50.67  | 2533.5 |
| 60       | 45     | 2250   |
| 61       | 11     | 550    |
| 62       | 84     | 4200   |
| 64       | 20     | 1000   |
| 65       | 88.5   | 4425   |
| 66       | 32     | 1600   |
| 67       | 69     | 3450   |
| 68       | 91.5   | 4575   |
| 69       | 26.15  | 1307.5 |
| 70       | 20     | 1000   |
| 71       | 49.5   | 2475   |
| 72       | 30     | 1500   |
| 75       | 49     | 2450   |
| 77       | 209    | 10450  |
| 80       | 24.5   | 1225   |
| 82       | 8      | 400    |
| 83       | 38     | 1900   |
| 84       | 351.5  | 17575  |
| 85       | 37.5   | 1875   |
| 86       | 126.75 | 6337.5 |
| 89       | 59     | 2950   |
| 93       | 63     | 3150   |
| 95       | 58.5   | 2925   |
| 97       | 115    | 5750   |
| 99       | 33.5   | 1675   |
| 100      | 274.5  | 13725  |
| 102 (XB) | 15     | 750    |
| 103      | 28.5   | 1425   |
| 237      | 8      | 400    |

| 251                | 9.5   | 475    |
|--------------------|-------|--------|
| 257                | 162.5 | 8125   |
| 269 (BLACK)        | 30    | 1500   |
| 293                | 13.75 | 687.5  |
| 294                | 90    | 4500   |
| 510                | 30    | 1500   |
| 612 (BROWN FACE)   | 45.83 | 2291.5 |
| 823                | 0     | 0      |
| 832                | 19    | 950    |
| 877                | 15    | 750    |
| JONES Other        |       |        |
| 4M                 | 0     | 0      |
| NCC                | 15.5  | 775    |
| NCC Y              | 5     | 250    |
| BROWN LONGTAIL     | 40    | 2000   |
| KNOBHORN           |       |        |
| BROWN RAM          | 42    | 2100   |
| FEMALE IVO 2 WKS   | 41    | 2050   |
| MALE IVO MON MUCKY | 8.5   | 425    |
| SM LAMB WORMED MON | 6     | 300    |
| MUCKY              |       |        |
| MALE BLUE SPOT     | 94    | 4700   |
| NO TAG             | 9     | 450    |
| B2W LAMB           | 116   | 5800   |
|                    |       |        |

|                 | SEPTEMBER         |        |
|-----------------|-------------------|--------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC    |
| JONES Y         |                   |        |
| 12              | 9                 | 450    |
| 20              | 5                 | 250    |
| 35              | 2                 | 100    |
| 56              | 0                 | 0      |
| 59              | 46                | 2300   |
| 64              | 1                 | 50     |
| 68              | 0                 | 0      |
| 98              | 0                 | 0      |
| 99              | 1                 | 50     |
| 657             | 0                 | 0      |
| JONES Z (lambs) |                   |        |
| 1               | 79                | 3950   |
| 11              | 33                | 1650   |
| 18              | 100               | 5000   |
| 19              | 106               | 5300   |
| 21              | 103.75            | 5187.5 |
| 22              | 72                | 3600   |
| 26              | 72.33             | 3616.5 |
| 27              | 52                | 2600   |
| 30              | 50                | 2500   |
| 31              | 38.9              | 1945   |
| 38              | 46                | 2300   |
| 39              | 56                | 2800   |
| 40              | 64                | 3200   |
| 46              | 10.5              | 525    |
| 47              | 165.33            | 8266.5 |
| 48              | 140               | 7000   |
| 49              | 20                | 1000   |
| 50              | 52                | 2600   |
| 53              | 44                | 2200   |
| 60              | 162               | 8100   |
| 61              | 14                | 700    |
| 64              | 62                | 3100   |
| 65              | 5                 | 250    |
| 66              | 15                | 750    |
| 67              | 13                | 650    |

**Table 3:** Tabulated GIN egg data and FEC for September, 2012.

| 69          | 41   | 2050 |
|-------------|------|------|
| 70          | 42.5 | 2125 |
| 72          | 27   | 1350 |
| 80          | 106  | 5300 |
| 83          | 150  | 7500 |
| 84          | 137  | 6850 |
| 85          | 31   | 1550 |
| 88          | 0    | 0    |
| 89          | 137  | 6850 |
| 95          | 67   | 3350 |
| 97          | 8    | 400  |
| 99          | 121  | 6050 |
| 100         | 154  | 7700 |
| 251         | 106  | 5300 |
| 265         | 54   | 2700 |
| JONES Other |      |      |
| 81X         | 3    | 150  |

|                 | OCTOBER           |       |
|-----------------|-------------------|-------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC   |
| JONES Y         |                   |       |
| n/a             |                   |       |
| JONES Z (lambs) |                   |       |
| 18              | 152               | 7600  |
| 20              | 44                | 2200  |
| 26              | 114               | 5700  |
| 27              | 67                | 3350  |
| 40              | 86                | 4300  |
| 47              | 219               | 10950 |
| 53              | 25.5              | 1275  |
| 58              | 65                | 3250  |
| 61              | 6                 | 300   |
| 66              | 2                 | 100   |
| 67              | 3                 | 150   |
| 68              | 29                | 1450  |
| 80              | 63                | 3150  |
| 91              | 7                 | 350   |
| 98              | 8.5               | 425   |
| 101             | 133               | 6650  |
| 192             | 19                | 950   |
| JONES Other     |                   |       |
| n/a             |                   |       |

**Table 4:** Tabulated GIN egg data and FEC for October, 2012.

|                 | NOVEMBER          |      |
|-----------------|-------------------|------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC  |
| JONES Y         |                   |      |
| n/a             |                   |      |
| JONES Z (lambs) |                   |      |
| 18              | 88.5              | 4425 |
| 27              | 59.5              | 2975 |
| 39              | 10                | 500  |
| 53              | 6                 | 300  |
| 60              | 43                | 2150 |
| 61              | 1                 | 50   |
| 68              | 7                 | 350  |
| 80              | 3                 | 150  |
| JONES RANDOM    |                   |      |
| n/a             |                   |      |

| Table 5: Tabulated GIN egg data and FEC for November, 201 | 2. |
|-----------------------------------------------------------|----|
|-----------------------------------------------------------|----|

|                 | APRIL             |     |  |
|-----------------|-------------------|-----|--|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC |  |
| JONES A (lambs) |                   |     |  |
| n/a             |                   |     |  |
| JONES Y         |                   |     |  |
| n/a             |                   |     |  |
| JONES Z         |                   |     |  |
| 93              | 0                 | 0   |  |
| JONES Other     |                   |     |  |
| n/a             |                   |     |  |

**Table 6:** Tabulated GIN egg data and FEC for April, 2013.

|                 | MAY               |       |
|-----------------|-------------------|-------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC   |
| JONES A (lambs) |                   |       |
| 8               | 0                 | 0     |
| 9               | 0                 | 0     |
| 10              | 0                 | 0     |
| 12              | 0                 | 0     |
| 25              | 3                 | 150   |
| 28              | 0                 | 0     |
| 29              | 0                 | 0     |
| 30              | 0                 | 0     |
| 36              | 2                 | 100   |
| 37              | 0                 | 0     |
| 43              | 0.5               | 25    |
| 52              | 0                 | 0     |
| 54              | 0                 | 0     |
| 65              | 0                 | 0     |
| 82              | 1                 | 50    |
| 94              | 0                 | 0     |
| 111             | 0                 | 0     |
| 463             | 48                | 2400  |
| 539             | 3                 | 150   |
| 819             | 53                | 2650  |
| 871             | 5                 | 250   |
| 926             | 3                 | 150   |
| 3117            | 13                | 650   |
| JONES Y         |                   |       |
| 2               | 61                | 3050  |
| 23              | 7                 | 350   |
| 31              | 22                | 1100  |
| 35              | 55                | 2750  |
| 41              | 96                | 4800  |
| 61              | 4                 | 200   |
| 64              | 209               | 10450 |
| 68              | 82                | 4100  |
| 70              | 7                 | 350   |
| 71              | 7                 | 350   |
| 72              | 171               | 8550  |
| 78              | 685               | 34250 |

**Table 7:** Tabulated GIN egg data and FEC for May, 2013.

| 79                     | 10  | 500   |
|------------------------|-----|-------|
| 93                     | 257 | 12850 |
| 98                     | 71  | 3550  |
| 99                     | 54  | 2700  |
| 106                    | 151 | 7550  |
| JONES Z                |     |       |
| 22                     | 0   | 0     |
| 27                     | 1   | 50    |
| 29                     | 5   | 250   |
| 38                     | 3   | 150   |
| 39                     | 7   | 350   |
| 49                     | 2   | 100   |
| 53                     | 29  | 1450  |
| 58                     | 1   | 50    |
| 64                     | 1.5 | 75    |
| 65                     | 1   | 50    |
| 66                     | 7   | 350   |
| 68                     | 3   | 150   |
| 70                     | 50  | 2500  |
| 88                     | 2   | 100   |
| JONES Other            |     |       |
| 8L                     | 121 | 6050  |
| 4W                     | 1   | 50    |
| 63W                    | 15  | 750   |
| 67W                    | 0   | 0     |
| 982W                   | 11  | 550   |
| 45X                    | 103 | 5150  |
| 59X                    | 79  | 3950  |
| 81X                    | 28  | 1400  |
| RAM                    | 18  | 900   |
| Black Long Tail (BLT)  | 2   | 100   |
| Black Short Tail (BST) | 0   | 0     |

|                 | JUNE              |       |
|-----------------|-------------------|-------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC   |
| JONES A (lambs) | 000111            |       |
| 1               | 19                | 950   |
| 7               | 5.5               | 275   |
| 8               | 5                 | 250   |
| 9               | 3.5               | 175   |
| 11              | 2.33              | 116.5 |
| 12              | 1                 | 50    |
| 13              | 3.5               | 175   |
| 15              | 4                 | 200   |
| 16              | 3                 | 150   |
| 17              | 0                 | 0     |
| 19              | 2                 | 100   |
| 22              | 0                 | 0     |
| 25              | 1                 | 50    |
| 26              | 0                 | 0     |
| 35              | 1.33              | 66.5  |
| 36              | 5.5               | 275   |
| 37              | 4                 | 200   |
| 41              | 2                 | 100   |
| 44              | 3.33              | 166.5 |
| 47              | 6                 | 300   |
| 50              | 7.33              | 366.5 |
| 51              | 0.67              | 33.5  |
| 53              | 4                 | 200   |
| 54              | 0.165             | 8.25  |
| 55              | 6                 | 300   |
| 56              | 4.5               | 225   |
| 59              | 1.5               | 75    |
| 60              | 0                 | 0     |
| 63              | 0                 | 0     |
| 64              | 4.67              | 233.5 |
| 65              | 1.33              | 66.5  |
| 70              | 3                 | 150   |
| 76              | 0                 | 0     |
| 77              | 10                | 500   |
| 79              | 3                 | 150   |
| 80              | 0.33              | 16.5  |

**Table 8:** Tabulated GIN egg data and FEC for June, 2013.

| 83          | 0     | 0     |
|-------------|-------|-------|
| 84          | 2     | 100   |
| 88          | 0     | 0     |
| 90          | 5     | 250   |
| 91          | 0     | 0     |
| 94          | 3     | 150   |
| 104         | 1     | 50    |
| 105         | 5     | 250   |
| 132         | 9     | 450   |
| 424         | 0     | 0     |
| JONES Y     |       |       |
| 2           | 3.5   | 175   |
| 23          | 10    | 500   |
| 35          | 2     | 100   |
| 41          | 122   | 6100  |
| 45          | 150   | 7500  |
| 47          | 33.5  | 1675  |
| 56          | 207.9 | 10395 |
| 61          | 13    | 650   |
| 62          | 15    | 750   |
| 67          | 63    | 3150  |
| 68          | 88    | 4400  |
| 70          | 8     | 400   |
| 72          | 119   | 5950  |
| 76          | 11    | 550   |
| 78          | 3     | 150   |
| 99          | 105   | 5250  |
| 251 (BLACK) | 0     | 0     |
| JONES Z     |       |       |
| 3           | 14    | 700   |
| 5           | 18    | 900   |
| 20          | 7     | 350   |
| 22          | 22    | 1100  |
| 27          | 2     | 100   |
| 29          | 7     | 350   |
| 30          | 49    | 2450  |
| 31          | 118   | 5900  |
| 36          | 1     | 50    |
| 53          | 67    | 3350  |
| 58          | 122   | 6100  |
| 64          | 37    | 1850  |
| ~ ·         | 51    | 1000  |

| 66                     | 49   | 2450 |
|------------------------|------|------|
| 69                     | 107  | 5350 |
| 70                     | 18   | 900  |
| 71                     | 7    | 350  |
| 88                     | 10.5 | 525  |
| 93                     | 0    | 0    |
| JONES Other            |      |      |
| 23T                    | 23   | 1150 |
| 39U                    | 58   | 2900 |
| 63W                    | 10   | 500  |
| 45X                    | 5    | 250  |
| 238 (XB)               | 0    | 0    |
| 300 (XB)               | 5    | 250  |
| NUT                    | 23   | 1150 |
| 39 MALE                | 9    | 450  |
| Random (OTTN Blue Line | 2    | 100  |
| 1A)                    |      |      |
| RX                     | 4    | 200  |

|                 | JULY              |         |
|-----------------|-------------------|---------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC     |
| JONES A (lambs) |                   |         |
| 1               | 34                | 1700    |
| 2               | 2.5               | 125     |
| 3               | 13.25             | 662.5   |
| 7               | 37.33             | 1866.5  |
| 8               | 33.5              | 1675    |
| 9               | 66.75             | 3337.5  |
| 10              | 361               | 18050   |
| 11              | 12.5              | 625     |
| 13              | 5                 | 250     |
| 15              | 3.5               | 175     |
| 16              | 43.5              | 2175    |
| 17              | 6.5               | 325     |
| 26              | 81                | 4050    |
| 28              | 280.67            | 14033.5 |
| 29              | 0                 | 0       |
| 30              | 53.5              | 2675    |
| 35              | 1                 | 50      |
| 36              | 9.5               | 475     |
| 37              | 12.5              | 625     |
| 38              | 24                | 1200    |
| 39              | 30.75             | 1537.5  |
| 41              | 0                 | 0       |
| 42              | 123               | 6150    |
| 43              | 8.2               | 410     |
| 44              | 21.5              | 1075    |
| 50              | 49                | 2450    |
| 51              | 44.5              | 2225    |
| 52              | 10.5              | 525     |
| 54              | 18.5              | 925     |
| 55              | 6                 | 300     |
| 56              | 8                 | 400     |
| 58              | 26                | 1300    |
| 62              | 34                | 1700    |
| 63              | 17.33             | 866.5   |
| 64              | 5                 | 250     |
| 65              | 90                | 4500    |

**Table 9:** Tabulated GIN egg data and FEC for July, 2013.

| 67                   | 39.5  | 1975   |
|----------------------|-------|--------|
| 70                   | 238   | 11900  |
| 73                   | 9.5   | 475    |
| 75                   | 172   | 8600   |
| 77                   | 29    | 1450   |
| 81                   | 0     | 0      |
| 82                   | 328   | 16400  |
| 83                   | 47.25 | 2362.5 |
| 84                   | 40    | 2000   |
| 85                   | 8     | 400    |
| 86                   | 24    | 1200   |
| 87                   | 4     | 200    |
| 91                   | 255   | 12750  |
| 94                   | 19.67 | 983.5  |
| 95                   | 25    | 1250   |
| 96                   | 34    | 1700   |
| 97                   | 3.5   | 175    |
| 99                   | 181.5 | 9075   |
| 100                  | 135   | 6750   |
| 101                  | 99.5  | 4975   |
| 102                  | 6     | 300    |
| 300                  | 29    | 1450   |
| 507                  | 209   | 10450  |
| JONES Y              |       |        |
| n/a                  |       |        |
| JONES Z              |       |        |
| 2                    | 27    | 1350   |
| 61                   | 6     | 300    |
| 65                   | 1     | 50     |
| 70                   | 51    | 2550   |
| 83                   | 0     | 0      |
| JONES Other          |       |        |
| 2R                   | 0     | 0      |
| DEC.                 | 34    | 1700   |
| BLACK MALE           | 8.33  | 416.5  |
| 0 TAG MALE           | 11    | 550    |
| 0 TAG (6) MALE 34 KG | 129   | 6450   |
| 0 TAG FEMALE         | 111   | 5550   |
| SM. WHITE FEMALE     | 12    | 600    |
| BLACK FEMALE CX      | 213   | 10650  |
| BL FEMALE            | 131   | 6550   |

| 83 O TAG     | 10   | 500   |
|--------------|------|-------|
| 84 XX NO TAG | 4    | 200   |
| 88 XB        | 2.75 | 137.5 |
| 88 XB FEMALE | 22   | 1100  |
| TAG 10       | 78   | 3900  |
| TAG 84       | 22   | 1100  |
| TAG 85       | 3    | 150   |
| TAG 87       | 4    | 200   |
| TAG 88       | 50   | 2500  |
| TAG 89       | 5    | 250   |
| TAG 91       | 177  | 8850  |
| TAG 2 102    | 78   | 3900  |

|                 | AU                | GUST  |
|-----------------|-------------------|-------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC   |
| JONES A (lambs) | 000111            |       |
| 2               | 33                | 1650  |
| 3               | 1                 | 50    |
| 7               | 151.5             | 7575  |
| 8               | 63.5              | 3175  |
| 9               | 138               | 6900  |
| 13              | 27.5              | 1375  |
| 15              | 64                | 3200  |
| 16              | 58                | 2900  |
| 17              | 61                | 3050  |
| 22              | 3                 | 150   |
| 26              | 0                 | 0     |
| 28              | 25                | 1250  |
| 35              | 1                 | 50    |
| 36              | 14                | 700   |
| 37              | 42                | 2100  |
| 39              | 107               | 5350  |
| 41              | 3                 | 150   |
| 42              | 291               | 14550 |
| 43              | 3                 | 150   |
| 44              | 14                | 700   |
| 50              | 237               | 11850 |
| 52              | 164               | 8200  |
| 54              | 35                | 1750  |
| 55              | 89.5              | 4475  |
| 56              | 1                 | 50    |
| 59              | 295               | 14750 |
| 61              | 24                | 1200  |
| 62              | 44                | 2200  |
| 64              | 9                 | 450   |
| 65              | 55.5              | 2775  |
| 73              | 41.5              | 2075  |
| 75              | 176               | 8800  |
| 77              | 29                | 1450  |
| 79              | 227               | 11350 |
| 80              | 109.5             | 5475  |
| 81              | 62                | 3100  |

**Table 10:** Tabulated GIN egg data and FEC for August, 2013.

| 02              |      |       |
|-----------------|------|-------|
| 83              | 0    | 0     |
| 87              | 5.5  | 275   |
| 90              | 0    | 0     |
| 91              | 69   | 3450  |
| 92              | 80   | 4000  |
| 94              | 41.5 | 2075  |
| 96              | 92.5 | 4625  |
| 99              | 229  | 11450 |
| 100             | 79   | 3950  |
| 101             | 75   | 3750  |
| 103             | 53   | 2650  |
| 105             | 278  | 13900 |
| DEC             | 1    | 50    |
| JONES Y         |      |       |
| 76              | 5    | 250   |
| JONES Z         |      |       |
| 2               | 1    | 50    |
| 13              | 3    | 150   |
| 27              | 3    | 150   |
| 31              | 8    | 400   |
| 38              | 1    | 50    |
| 39              | 1    | 50    |
| 53              | 11   | 550   |
| 58              | 18   | 900   |
| 61              | 12   | 600   |
| 66              | 15   | 750   |
| 68              | 2    | 100   |
| 88              | 4    | 200   |
| JONES Other     |      |       |
| 4H LAMB         | 12   | 600   |
| TAG 15          | 101  | 5050  |
| TAG 21          | 364  | 18200 |
| TAG 83 - 289    | 34   | 1700  |
| TAG 84          | 32   | 1600  |
| TAG 88          | 31   | 1550  |
| TAG 91          | 122  | 6100  |
| SMALL BLACK     | 83   | 4150  |
| BL FEMALE LT    | 12   | 600   |
| BLACK FEMALE MT | 52   | 2600  |
| SOUTH DOWN      | 140  | 7000  |
| RANDOM UNHAPPY  | 138  | 6900  |
| SHEEP 1 (64)    |      |       |
| SHEEP 1 (64)    |      |       |

| Random Unhappy Sheep 2 (1) | 0  | 0   |
|----------------------------|----|-----|
| DEC.                       | 1  | 50  |
| SMALL WHITE FEMALE         | 11 | 550 |
| NO LABEL                   | 0  | 0   |
| BL ST                      | 3  | 150 |

|                 | SEPTEMBER         |         |
|-----------------|-------------------|---------|
| SHEEP ID        | ORIGINAL<br>COUNT | FEC     |
| JONES A (lambs) |                   |         |
| 23              | 452.25            | 22612.5 |
| 36              | 12                | 600     |
| 52              | 25                | 1250    |
| 64              | 347               | 17350   |
| 87              | 2                 | 100     |
| 92              | 3                 | 150     |
| 6637            | 32                | 1600    |
| JONES Y         |                   |         |
| n/a             |                   |         |
| JONES Z         |                   |         |
| n/a             |                   |         |
| JONES Other     |                   |         |
| В               | 33                | 1650    |
| SM BLACK        | 0                 | 0       |
| 0 TAG (NO TAG)  | 161               | 8050    |
| XB MALE         | 57                | 2850    |

 Table 11: Tabulated GIN egg data and FEC for September, 2013.

| SHEEP ID        | OCTOBER           |       |
|-----------------|-------------------|-------|
|                 | ORIGINAL<br>COUNT | FEC   |
| JONES A (lambs) |                   |       |
| 9               | 20                | 1000  |
| 11              | 26.5              | 1325  |
| 15              | 41                | 2050  |
| 25              | 1                 | 50    |
| 30              | 45.5              | 2275  |
| 36              | 18                | 900   |
| 41              | 5                 | 250   |
| 51              | 10                | 500   |
| 53              | 10                | 500   |
| 56              | 37.5              | 1875  |
| 59              | 35.5              | 1775  |
| 61              | 39                | 1950  |
| 64              | 182               | 9100  |
| 70              | 86                | 4300  |
| 75              | 122               | 6100  |
| 77              | 36.5              | 1825  |
| 78              | 39                | 1950  |
| 82              | 46                | 2300  |
| 88              | 15.5              | 775   |
| 90              | 59.5              | 2975  |
| 91              | 69.5              | 3475  |
| 92              | 37                | 1850  |
| 99              | 54                | 2700  |
| 100             | 52                | 2600  |
| 298             | 9                 | 450   |
| 811 322         | 42                | 2100  |
| JONES Y         |                   |       |
| n/a             |                   |       |
| JONES Z         |                   |       |
| n/a             |                   |       |
| JONES Other     |                   |       |
| SM 0 Tag        | 88                | 4400  |
| Sm M            | 190               | 9500  |
| Small Black     | 0                 | 0     |
| Blue Spot       | 58                | 2900  |
| 0 TAG tail      | 305               | 15250 |

 Table 12: Tabulated GIN egg data and FEC for October, 2013.

| 0 TAG male        | 41   | 2050  |
|-------------------|------|-------|
| 0 TAG tail male   | 27   | 1350  |
| TAG 298           | 4    | 200   |
| 0 TAG tail female | 337  | 16850 |
| S. BL.            | 6    | 300   |
| L. BL.            | 34   | 1700  |
| Tag 84            | 31.5 | 1575  |

| SHEEP ID        | NOVEMBER          |      |
|-----------------|-------------------|------|
|                 | ORIGINAL<br>COUNT | FEC  |
| JONES A (lambs) |                   |      |
| 15              | 47                | 2350 |
| 82              | 78                | 3900 |
| JONES Y         |                   |      |
| n/a             |                   |      |
| JONES Z         |                   |      |
| n/a             |                   |      |
| JONES Other     |                   |      |
| n/a             |                   |      |

 Table 13: Tabulated GIN egg data and FEC for November, 2013.