
Use of Numerical PDE Software for the Solution of a Classic

Problem in Mathematical Finance

By

Jenna Young

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia

In Partial Fulfilment of the Requirements for

a Bachelor of Science, Honours Mathematics

April, 2014, Halifax, Nova Scotia

Copyright Jenna Young, 2014

Approved: Dr. Paul Muir

Supervisor

Approved: Dr. Walt Finden

Reader

Approved: Dr. Bert Hartnell

Reader

Date: April 22, 2014

Use of Numerical PDE Software for the Solution of a Classic

Problem in Mathematical Finance

by Jenna Young

Abstract

Mathematical modelling is an important part of the finance industry. These

models can be very complex and one often needs to use numerical methods and

numerical software packages to get approximate solutions to these models. In

this thesis we use a high quality numerical software package called EPDCOL

which is designed to solve systems of linear and non-linear partial differential

equations (PDEs) and has temporal error control. Specifically, we will use it to

numerically solve the Black-Scholes equation, a linear PDE, that can be used

to value a financial instrument known as an option. An option is a contract

which gives the holder the option to buy or sell a stock at a future time for

an agreed upon price. A stock represents ownership of a corporation’s assets

and gives the opportunity to share in the corporation’s earnings. EPDCOL

implements a combination of high quality numerical methods which allow us

to solve the Black-Scholes equation for two types of options (puts and calls)

involving various parameters. Additionally, we are able to get an estimate of

the spatial error associated with the numerical solutions.

April, 2014

1 Introduction

Mathematical modelling is an important part of the finance industry [14], [7]. Often

the financial models being considered are very complicated and do not have closed

form solutions that can be easily obtained by hand. People have often turned to

numerical methods and numerical software packages to get approximate solutions to

problems in finance.

High quality numerical software packages are usually developed over many years.

Algorithms are made increasingly efficient and the packages are highly tested. How-

ever, it is not uncommon for professionals and students to develop their own software

to solve problems in finance. These programs often do not measure up to the accuracy

and efficiency of the numerical software packages. In this thesis we use a high quality

numerical software package called EPDCOL [8] which is designed to solve systems of

linear and non-linear PDEs and has temporal error control.

To be specific, in this thesis we numerically solve the Black-Scholes equation,

a classic financial model. The Black-Scholes equation is used to value a financial

instrument known as an option. An option is a contract which gives the holder the

option to buy or sell a stock at a future time for an agreed upon price. A stock

represents ownership of a corporation’s assets and gives the opportunity to share in

the corporation’s earnings. The Black-Scholes equation is a PDE dependent on both

the value of the stock or asset, S, and the current time, t. We will consider both

European call and put options. European call options give the holder the option to

buy the stock when the contract expires and European put options give the holder

the right to sell the stock when the contract expires. One interesting consideration

with European options is that they have a non-smooth initial condition which has to

be taken into account when using EPDCOL.

EPDCOL implements a combination of high quality numerical methods. Firstly

it uses B-spline collocation in the spatial variable to reduce the PDE(s) to a system

1

of ordinary differential equations (ODEs). (B-spline collocation involves representing

the approximate solution as a linear combination of known piecewise polynomials,

represented in terms of what are known as B-splines, with unknown coefficients; the

coefficients are determined by requiring the approximate solution to exactly satisfy

the PDE at a set of points across the spatial domain, where S, the asset price, is

the “spatial” variable.) Then a high quality ODE solver is used to get a solution

to the ODE system from which the final solution to the PDE can then be obtained.

It is through the ODE solver that EPDCOL provides the adaptive temporal error

control. As we have observed, the problem depends on both a spatial and temporal

variable. This means that we have both a spatial and temporal contribution to the

error. EPDCOL is only able to control the temporal error. However, it is possible to

compute an estimate of the spatial error from which we can decide whether or not

our computed solution is sufficiently accurate. To do this we compute a solution that

is more accurate than the one we wish to consider and subtract from it the solution

we are interested in. This yields an estimate of the error in our original solution.

We are able to solve the Black-Scholes equation for both call and put options

involving various parameters. To do this, we have written a driver program that

includes all of the parameters and subroutines required by EPDCOL. The driver

program calls EPDCOL which solves the given problem and returns the computed

solution. We have written the driver program so that the non-smooth initial condition

does not cause an issue for EPDCOL. In this thesis we provide numerical results to

show how high quality PDE software performs on this classic problem in finance.

The European option problem generalizes to the American option problem which

is generally of more interest. American options are more complicated since the holder

can exercise the option at any time leading up to the expiry. The work done in this

thesis can be extended in a way that would allow us to consider the American option

problem. There are software packages such as BACOL [11] that have both spatial and

2

temporal error control and may be able to treat both the European and American

version of the problem.

In the next section of this thesis we give an introduction to the relevant finance

concepts. We derive the Black-Scholes equation and discuss its initial and boundary

conditions. In Section 3 we describe the numerical methods used by EPDCOL. We

consider important parameters and subroutines included in our driver program and

describe how to define them. In Section 4 we discuss the problem implementation

and numerical results. We close with a Conclusion section where we indicate further

directions of study.

2 Finance Background

The purpose of this chapter is to give the reader an overview of the important finance

concepts that relate to this thesis. We will go into some detail about options, what

they are, their properties and why they are important. A derivation of the Black-

Scholes equation, for the modelling of call and put options, along with the relevant

mathematical background will be presented. The primary source of this information

is the textbook [14].

2.1 Introduction to Terms and Concepts

A stock is a type of security that shows ownership in a corporation and represents how

much of the corporation’s assets and earnings the stockholder owns. The company

is owned by its shareholders and must pay them part of its profit if any is made.

Shareholders are paid by the company in a quantity called a dividend whose value

depends on how much profit the company makes. The value of a share depends on

how much profit the investors think the company will make. The price at which

shares are bought and sold on the stock market determines the stock’s value.

3

The situation can, of course, be more complicated than simply buying and selling

shares on a stock exchange. For example, complex contracts known as derivatives

can be formed. A derivative is a type of security that allows investors to modify the

contract to their specific wants and needs. An option, the financial instrument we are

interested in, is a type of derivative. Mathematical modelling and theory are used to

study derivatives.

2.2 Options: puts and calls

In this thesis we will consider the simplest type of options, European call and put

options. The call option has the following specific conditions:

• There is a set time in the future, the expiry date, when the holder of the

option may purchase the asset, which we call the underlying asset (or simply

the underlying) for a set amount known as the exercise price.

The holder can, but is not obligated to, purchase the asset at the expiry date for

the previously specified price. On the other side of the contract, the writer MUST

sell the asset, at the previously agreed upon price, if the holder chooses to buy it.

The value of the asset is associated with the fact that the holder has the option but

no obligation to purchase the asset. The holder must pay for this option when the

contract is opened.

Call options = the option to BUY an asset. If we are interested in purchasing an

asset there are two things we can do. We can buy the asset outright or purchase a call

option. When we buy a call option there are two things that can happen, either the

price of the underlying asset will rise or fall in the future. For example, let’s assume

that we purchased a call option for which the exercise price is $200, and that at expiry

the price of the share has risen to $240. This means the holder can exercise the option

and obtain a share that is worth $240 for only $200. Then she can immediately sell

4

the share and make a profit of $40. On the other hand, if the price of the share were

to fall to $160 at the expiration date the holder would not exercise the option. If she

did she would be paying $200 for a share that could be bought directly for $160.

If the share has only value either $160 or $240 at the expiration date then the

expected profit is:

(1/2)($0) + (1/2)($40) = $20.

From this we conclude that the value of the option is $20. If the share price is $240

at expiry this means that the holder should have paid $20 for the option and her net

profit is:

$40− $20 = $20.

In this case her net profit was her up-front premium. On the other hand if the share

price is less than $200 at expiry, the price paid for the option is lost. We see that

option prices respond in a drastic way to the underlying asset price, an effect that is

defined as gearing.

The greater the share price at the expiry date, the greater the profit. We don’t

know the future share price in advance but we can predict that if the share price is

higher today it will also be higher in the future. So, today’s call option value depends

on today’s share price. The value of a call option also depends on the exercise price.

A lower exercise price means we may possibly pay less than the market value for the

share at expiry and thus the option value is higher. Volatility is the fluctuation of

the price of the underlying asset between when the option is purchased and when

the option is exercised. Volatility of the underlying asset impacts the price of a call

option. We expect to pay more for an option on a volatile asset since the writer of

the option does not know how the value of the asset will change before expiry. In

5

addition, the option price also depends on the interest rate since the option is paid

for up front but payoff comes at a later time in the future. Thus the option price

needs to account for the profit from investing the premium in the bank.

Put Options = the right to SELL an asset. The profit comes when conditions are

opposite from those for a call option. A put option lets the holder sell the asset on a

specific date for a set amount. At this point the writer MUST sell the asset. So the

holder wants the asset price to fall as much as possible. If the exercise price is higher

one gets more for the asset at expiry and thus the value of a put option increases as

the exercise price increases.

2.3 The Financial Press

We can now read and understand the financial press generally given in tables that

show information about option prices at given times on a given exchange. Let us

consider Table 1 below showing the prices at expiry of options for the company BAA

on the London International Financial Futures. This table is taken from the Financial

Times on February 4th 1993; the prices we see for BAA are the option prices for

options that expire on the coming third Friday in February, May and August of 1993.

Calls Puts
Options Feb May Aug Feb May Aug

BAA 750 41 61 71 6 16 31
(o786) 800 11 33 45 29 41 55

Table 1: Example of the BAA option on the London International Financial Futures
[14].

On the left we see the acronym for the particular option and below, in brackets,

we see the closing price (786). Then to the right there are two rows. In the first

row, the number 750 represents an exercise price of the option. The six numbers to

the right of 750 represent the call option and put option prices respectively (three of

each) for expiry in February, March and April respectively. In the second row, we see

6

the same information for a BAA option with an exercise price of $800. The price of

the option is increasing with time because we are less sure about how the option will

behave in the future. We also note that call options cost less at higher exercise prices.

Since a call option gives the holder the option to buy the asset at the exercise price,

she is more likely to make profit when the exercise price is lower. We are less willing

to buy an option with a higher exercise price and hence the cost is lower. Conversely

if we hold a put option we are more likely to make a profit when the exercise price

is higher. So a put option with a higher exercise price is worth more and hence costs

more.

2.4 Two Main Uses of Options

2.4.1 Speculation: A use for holders of options

When deciding whether to buy an option we need to make some sort of prediction

about the direction and magnitude of the movement in asset price. If we don’t

properly predict both the the direction and magnitude of the movement of the asset

we can potentially incur a loss. On the other hand, if our predictions are good we

can potentially obtain a return. Due to the nature of options, speculation is risky

business.

2.4.2 Hedging: A use for writers of options

We note that holders of an option have the possibility to make a profit with their loss

limited by the initial premium they paid on the option. On the other hand, writers

of an option incur the possibility of a loss with their profit limited by the initial

premium. This must mean that writers of options are expecting the price of the asset

to fall. We can reduce the risk of a loss by hedging. When hedging, we construct a

portfolio that contains both both put and call options for the same asset. This way if

the price of the asset falls we don’t incur a large loss due to the combination of both

7

puts and calls in our portfolio.

Take the following situation for example. We own shares in a company XYZ but

we are worried about the short term performance of the company. We do still have

confidence in the long term performance of the company though and so we do not

want to sell our shares. Instead we buy put options for the company XYZ which will

allow us to sell shares in the company. This way if the stock prices do fall the losses

caused will be offset by the money we gain from the put options [1].

2.5 Other Types of Options

So far we have been discussing European options but these are not the only types of

options available. Another important type of option is the American option. This

option, unlike the European option, may be exercised at any given time before the

expiry date. More options such as Exotic, Path-dependent, Barrier, Asian and Look-

back options also exist. We will not go into detail about any of these types of options,

except to say a little more about American options at the end of this chapter.

2.6 Asset Prices: A Simple Model

It is important to note that we are not trying to predict the asset price. As in

most option pricing theory we do not know and cannot predict the price of an asset

tomorrow or into the future. However, we can study past behaviour of an asset to get

important information such as jumps in asset price, mean, variance and likely future

distribution.

The efficient market hypothesis is often said to cause asset prices to move

randomly. This hypothesis says two things:

• the present price of the asset fully reflects its past history

• any new information about an asset causes an immediate market response

8

Firstly we will note that knowledge of the absolute change of an asset price by

itself is not useful. Instead we must associate every change with a return. The return

is defined as the change in price divided by the original value and is denoted dS
S

. This

is the relative change in the asset price. If at time t we have an asset price S, we

can consider a small time step dt, and suppose over this time period, dt, the price of

the asset S changes to S + dS. To model the relative return of the asset dS
S

we begin

by decomposing it into two pieces. Firstly, the drift µ which is the average rate of

growth of the asset price and contributes the term µdt. Secondly we must consider

the random change in the asset price. This term is σdX where σ is the volatility

and dX is what is known as a Weiner process and is explained below. Together we

get

dS

S
= σdX + µdt. (1)

Taking σ = 0 in (1) gives an ODE which is easy to solve for S, the asset price, when

µ is constant; this gives

S = S0e
µ(t−t0)

where S0 is the value of the asset at the initial time t = t0.

The term dX, known as a Wiener process, has three properties:

• dX is a random variable,

• the mean of dX is 0,

• the variance of dX is dt.

To clarify, a random variable is a numerical value that represents the random outcomes

of an experiment. Exactly one random variable is assigned to each sample point

from the experiment. The probability distribution of a random variable gives the

9

probabilities associated with each numerical value the random variable can have. A

standardized normal distribution is the common bell-shaped curve representing the

probability distribution of a random variable. This distribution must have mean 0

and variance 1 [10]. We let φ be a random variable drawn from a standardized normal

distribution. Then one way of writing dX is

dX = φ
√
dt. (2)

As stated in [14], we scale dX by
√
dt in (2) since without it, or with any other value,

we get a meaningless or trivial problem as we consider the limit of dt as it goes to zero.

We discuss this further in the next section. This standardized normal distribution

with mean zero and unit variance has a probability density function given by

P (φ) =
1√
2π
e−

1
2
φ2 (3)

for real number φ. A probability density function is such that the area under it

between a and b corresponds to the probability that φ will assume a value on [a,b].

The given function P(φ) is the standard notation of the probability function for a

continuous random variable φ [10]. We define the expectation operator E[·] applied

to a given function F (·) by

E[F (·)] =

∫ ∞
−∞

F (φ)P (φ)dφ =
1√
2π

∫ ∞
−∞

F (φ)e−
1
2
φ2dφ (4)

for any function F that we choose. This is F(φ), multiplied by the corresponding

probability and “summed” over all possible φ values. We can show using standard

integration techniques and integration by parts that

E[φ] = 0

10

and

E[φ2] = 1.

To see this first we note that the Gaussian Integral [13]

∫ ∞
−∞

e−
1
2
φ2dφ =

√
2π.

Then we have

E[φ] =
1√
2π

∫ ∞
−∞

φe−
1
2
φ2dφ,

which we can solve using standard integration techniques. Also

E[φ2] =
1√
2π

∫ ∞
−∞

φ2e−
1
2
φ2dφ.

We solve this by parts letting u = φ and dv = φe−
1
2
φ2dφ.

Equation (1) is called a random walk. It can give useful probabilistic information

but cannot give a deterministic path for the share price. The random walk generates

a different path each time it is restarted. Each new path that is generated is called a

realization of the random walk. One important property of (1) is that the next asset

price after some time step S + dS depends on today’s asset price, but not on any

past information. This independence from the past is called the Markov Property.

Figure 1 shows that random fluctuations of stocks.

11

Figure 1: Graph showing the Financial Times Stock Exchange closing prices from
April 1987 to April 1988 [14].

2.7 Itô’s Lemma

Itô’s lemma is a very important result regarding random variables that relates a small

change in a function of a random variable to the variable itself. We are given that,

with probability 1, as

dt→ 0 we have dX2 → dt. (5)

Consider a continuous function f(S). Changing S by a small amount dS means

that f also changes by a small amount df . This gives

f(S + dS) = f(S) + df

⇒ df = f(S + dS)− f(S)

12

Using a Taylor series expansion for f(S + dS) about S we get

df = f(S + dS)− f(S)

=

[
f(S) +

df

dS
dS +

1

2

d2f

dS2
dS2 + · · ·

]
− f(S)

=
df

dS
dS +

1

2

d2f

dS2
dS2 + · · · (6)

But we know from (1) what dS is and we can square it to give

dS2 = (σdX + µdt)2

= σ2S2dX2 + 2σ µ dt dX + µ2S2dt2. (7)

Given how we defined dX in (2) we see that

dX = O(
√
dt).

This means that, considering (7), the first term dominates the other two for small dt

giving

dS2 → σ2S2dX2 + · · · .

We can now make this substitution in (6) and use the definition of dS from (1) to get

df =
df

dS
(σSdX + µSdt) +

1

2
σ2S2 d

2f

dS2
dt

= σS
df

dS
dX +

(
µS

df

dS
+

1

2
σ2S2 d

2f

dS2

)
dt. (8)

This result is what is known as Itô’s lemma for f = f(S) and we see that it relates a

small change in the function of a random variable to a small change in the variable

itself.

13

We would now like to further generalize this result in (8) by looking at a function

of both the random variable S and of time t. We denote this function by f(S, t). We

want to consider a small change df in f arising from small changes in S and t, dS

and dt respectively. This means

f(S + dS, t+ dt) = f(S, t) + df,

⇒ df = f(S + dS, t+ dt)− f(S, t).

Now we have two variables so we expand f(S + dS, t+ dt) about f(S, t) in a double

Taylor series expansion. To do this we do the Taylor series expansion first for S+ dS

and then for t+ dt. This yields the following

df =

[
f(S, t) +

d

dS
f(S + dS, t+ dt) +

d

dt
f(S + dS, t+ dt)

]
− f(S, t)

df =

[
∂f

∂S
dS +

1

2

∂2f

∂S2
dS2 + · · ·

]
+

[
∂f

∂t
dt+

1

2

∂2f

∂t2
dt2 + · · ·

]
df =

∂f

∂S
dS +

∂f

∂S
dt+

1

2

∂2f

∂S2
dS2 + · · ·

Now we can use (1) to substitute for dS and (5) to substitute for dX2 to get the

following expression for df

df = σS
∂f

∂S
dX +

(
µS

∂f

∂S
+

1

2
σ2S2 ∂

2f

∂S2
+
∂f

∂t

)
dt. (9)

This result is Itô’s lemma for f = f(S, t)

2.8 Eliminating Randomness

We have looked at two random walks that involve the random variable dX, the first

in S, (1), and the second in f, (9). From here we can construct a third variable, call

it g, with variation dg such that dg is wholly deterministic for the time step dt. That

14

is, dg does not depend on the random variable dX. To do this we define

g = f −∆S,

where ∆, to be specified shortly, is constant over the whole time step dt. Then we

consider dg :

dg = df −∆dS

= σS
∂df

∂dS
dX +

(
µS

∂df

∂dS
+

1

2
σ2S2 ∂d

2f

∂dS2
+
∂f

∂t

)
dt−∆(σSdX + µSdt)

= σS

((
∂f

∂S

)
−∆

)
dX +

(
µS

(
∂f

∂S
−∆

)
+

1

2
σ2S2 ∂

2f

∂S2
+
∂f

∂t

)
dt.

Next we choose ∆ = df
dS

(this means we assume df
dS

is constant over the time step dt).

We notice that by constructing g in this way we can remove the dX term from dg.

By making this substitution we have

dg = df −
(
df

dS

)
dS =

(
1

2
σ2S2 ∂

2f

∂S2
+
∂f

∂t

)
dt,

and we note that dg does not depend on dX.

2.9 Option Values and Payoffs

We next define some notation that will be used throughout the rest of this thesis.

• Let C(S,t) and P(S,t) denote the value of a call option and put option respec-

tively for an asset S and time t.

• Let σ denote the volatility.

• Let E denote the exercise price.

15

• Let T denote the expiry time.

• Let r denote the interest rate.

We shall first consider the value of a call option at time t = T, that is, just at the

moment of expiry. If we have S > E we can exercise the option and pay an amount

E for an asset that is worth S. A profit of S - E has been made. If we have S < E

we will not exercise the option because we would incur a loss of E - S. From here we

get that the value of a call option is

C(S, t) = max(S − E, 0). (10)

Graphing this in Figure 2 we have the payoff diagram for a call option shown by

the bold line and the value of the call option prior to expiry shown by the faint line.

Figure 2: The payoff diagram for a call option and the option value prior to expiry
[14].

For the payoff diagram of a put option we follow similar logic. We know that the

profit we can make is E - S if E > S and otherwise we make no profit. When the

exercise price is more than the value of the asset at expiry it means that the writer of

the put option will receive an amount E for an asset that is only worth an amount S.

In the other case when E < S at expiry the put option is worthless since the holder

16

of the option would be receiving an amount E for an asset that is worth a greater

value S. In this case she could just sell the asset directly for its value S. So in this

case the value of the put option is

P (S, t) = max(E − S, 0).

In Figure 3 we have the payoff diagram for a put option shown by the bold line and

the value of the put option prior to expiry shown by the faint line.

Figure 3: The payoff diagram for a put option and the option value prior to expiry
[14].

2.10 The Correlation Between Call and Put Options

In this section we will demonstrate the correlation between put and call options. Let

Π denote a portfolio. Suppose that in our portfolio we are set to buy one asset S,

buy one put option, P, and sell one call option, C. The put and call options have the

same expiry date, T, and the same exercise price, E. If we consider the value of the

portfolio Π to be a combination of the value of the assets and options in it then we

17

can describe it in the following way

Π = S + P − C.

The payoff of such a portfolio at time T is

S + max(E − S, 0)−max(S − E, 0).

Depending on whether S ≥ E or E ≥ S we have the following:

S + 0− (S − E) = E, if S ≥ E,

or

S + (E − S)− 0 = E, if E ≥ S.

Now what we want to know is how much we should pay for such a portfolio at expiry,

i.e., at time t = T. Since we will assume that interest rates are constant, our portfolio

has the value Π(t) and grows, in a relative sense, according to

dΠ

Π
= rdt, (11)

the same rate as it would if we deposited the same amount into a bank with interest

rate r. This is a differential equation with solution

Π = cert,

where c is a constant. Since, at expiry, we have the terminal condition Π(t) = E, this

gives a value of c = E
erT

. We then have that the value of the portfolio at time t before

18

t = T is

S + P − C = Ee−r(T−t). (12)

This relationship between the asset S and its put and call options is what we call the

put-call parity of the asset.

2.11 Black-Scholes Analysis

Before beginning this analysis we will list some assumptions made in [14] that we will

make throughout the remainder of this thesis:

• The asset price follows (1).

• Both r and σ are known and constant over the life of the option.

• The underlying asset does NOT pay dividends.

• There is no possibility of arbitrage. This means that there is no opportunity

for us to take advantage of different prices between markets to make risk-free

returns.

• There are no transaction costs associated with the buying and selling of assets.

Transaction costs are the added costs incurred when buying or selling an option.

They could be things such as market research into whether or not to buy the

option or the cost of negotiating with the buyer or seller.

• We can continually trade the underlying asset.

• Short selling is allowed and assets are divisible. Selling short means selling an

option that we may not actually own yet. Assets being divisible means that

we can buy or sell any number (even a non-integer amount) of the underlying

asset.

19

We will now consider a portfolio V(S,t) that can contain both puts and calls. To

simplify we can think of V(S,t) as containing just one simple call or put. Using Itô’s

lemma and replacing f with V in (8) we get

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt. (13)

We can now construct a portfolio of this one option V and some amount, ∆, of the

underlying asset S. We are allowed to consider this value ∆ of S since in one of our

assumptions we assumed that the underlying asset is divisible. We also note that

constructing our portfolio this way will allow us to use the elimination of randomness

technique introduced in section 2.8; we have

Π = V −∆S. (14)

We can now consider the change in the value of the portfolio over one small time step

dt:

dΠ = dV −∆dS. (15)

We next substitute (1), (12) and (13) into (15) to get

dΠ = σS

(
∂V

∂S
−∆

)
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µ∆S

)
dt. (16)

Now we can use the elimination of randomness technique that we discussed earlier.

We will let

∆ =
∂V

∂S
(17)

20

giving a wholly deterministic value for the portfolio after one time step. Simplifying

we get

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (18)

Since there is no arbitrage possibilities and no transaction costs associated with trad-

ing assets, the return that we would make on an investment of size Π after some

time step dt is rΠdt as given by (11). To see this consider the following argument.

If the right hand side of (18) was more than this amount, an investor could make a

guaranteed risk free profit by borrowing an amount Π from the bank and investing in

the portfolio. On the other hand, if the right hand side was less than this amount, the

investor would instead invest the amount Π in the bank. In either case the investor

would make a guaranteed risk free profit (which we have assumed to be impossible)

so the return on the portfolio and the return from a risk free bank account must be

equal. Hence,

rΠdt =

(
∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dt. (19)

By substituting (14) and (17) into (19) we obtain the Black-Scholes PDE,

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0. (20)

The Black-Scholes equation is very important as, under the assumptions made,

any option that is paid for up front and that depends only on S and t must satisfy

this equation.

21

2.12 Black-Scholes Final and Boundary Conditions

The Black-Scholes equation is what we call a backward parabolic PDE. The term

parabolic means that the highest derivative with respect to S is a second derivative

and the highest derivative with respect to t is a first derivative. It is said to be

a backward parabolic PDE since it is linear and the signs with respect to these

derivatives are the same when on the same side of the equation (see [14] pg 45).

A PDE itself can have many different solutions so we need to include some other

conditions to get the specific desired solution. Since the variable S appears with both

first and second derivatives, we need two conditions; since the variable t appears

only with a first derivative, we only need to impose one more condition. In our case

this time condition is a final condition at time t = T and we solve the problem in

the region where t < T. In most PDEs the time condition is imposed as an initial

condition at time t = 0. We note that this is not an issue since we can change from

moving forward to moving backward in time by a change of variable.

Next we will consider the specific conditions we need to place on European call

and put options. Let’s first look at a call option C(S,t) with exercise price E and

expiry date T. The final condition is imposed at time t = T and, as we discussed in

Section 2.11, the value of a call option is known to be the payoff:

C(S, T) = max(S − E, 0). (21)

Now we need to consider the boundary conditions applied to the call option. The

first is applied at S = 0 and the second as S→∞. First we can note that if S is zero

then by (1) dS is also zero and the value of S can never change. Hence if S = 0 then

we obtain the left boundary condition at S = 0:

C(0, t) = 0, for S = 0. (22)

22

As the price of an asset increases with no upper bound it becomes increasingly likely

that the option will be exercised since as the price gets larger the exercise price

becomes less meaningful. Thus we have the right boundary condition as S →∞:

C(S, t) ∼ S as S →∞. (23)

Similarly for a put option the payoff at time t = T is:

P (S, T) = max(E − S, 0). (24)

This is the final condition for a put option. Now we will consider the boundary

conditions for S = 0 and as S → ∞. As previously stated, if S is ever zero it will

remain zero and hence we will make a profit of E. To find P (0, t) we need to know

the present value of E that will be received at time T. As explained in Section 1.12

we get the value of the put with S = 0 to be:

P (0, t) = Ee−r(T−t), for S = 0. (25)

This gives the left boundary condition. As S →∞ we become less and less likely to

exercise the option because we have less chance to make a profit so the right boundary

condition is:

P (S, t) = 0 as S →∞. (26)

23

2.13 The Exact Solution to the Black-Scholes Equation for

European Options

It turns out there is a closed form solution for the value of European call and put

options when the interest rate, r and the volatility, σ are constant. The exact solution

for a call option is

C(S, t) = SN(d1)− Ee−r(T−t)N(d2) (27)

and for a put option the exact solution is

P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1) (28)

where N(·) is the cumulative distribution for a standard normal random variable.

The cumulative distribution for a standard normal random variable N(x) describes

the probability that a random variable X assumes a value in the range [0,x]. It is

given by

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2dy.

The quantities d1 and d2 are given by:

d1 =
log(S/E) + (r + 1

2
σ2)(T − t)

σ
√
T − t

and

d2 =
log(S/E) + (r − 1

2
σ2)(T − t)

σ
√
T − t

.

24

If we want to consider the value of ∆ to eliminate randomness for a European call

option we use

∆ =
∂C

∂S
= N(d1) (29)

and for a European put option we use

∆ =
∂P

∂S
= N(d1)− 1. (30)

2.14 Generalizing to the American Option

American options differ from European options in one important way. A European

option has a specific expiry date but an American option can be exercised at any

time up to and including expiry. This means that for the American option we cannot

just compare the asset price to the exercise price at the expiry date. There is a whole

range of prices that the asset can assume. This property means that the American

option problem is what we call a free boundary problem. Not only do we have to

determine the value of the option but we also have to determine whether or not the

option should be exercised for any given value of S. Typically for each time t there

is some value of S that determines the boundary condition. Being on one side of the

S value will imply that the option should be exercised and being on the other side

will imply that the option should not be exercised and therefore held until a later

period in time. We have what we call a free boundary because we do not know ahead

of time where the boundary condition should be applied. We will not consider this

option type further in this thesis.

25

3 Numerical Methods

In this section we will discuss the numerical methods that are implemented in the

software package that we used to obtain numerical solutions to the PDE models dis-

cussed in the pervious chapter. This software package, called EPDCOL, is designed

to solve systems of linear or nonlinear PDEs. The EPDCOL code is based on a nu-

merical approach called the method-of-lines. EPDCOL uses collocation techniques

(to be described shortly) for the treatment of the spatial variable x, or in our case S,

which reduces the PDE to a system of ODEs. Then EPDCOL computes an approxi-

mate solution to the system of ODEs and from there an approximate solution to the

original PDE. Also of interest are the linear algebra algorithms that are used within

the package to solve the systems of linear equations that arise. The EPDCOL code is

a modified version of a widely used package called PDECOL. The main difference be-

tween the two codes is the linear algebra software that is used. In EPDCOL superior

linear algebra software is employed to save both time and storage space.

3.1 PDE System Structure

As described in [9], PDECOL uses the method-of-lines approach with i = 1,2, . . . ,

N, nonlinear PDEs of second order or less, over an interval [xL,xR] in the x domain

for values of t ≥ t0. PDECOL assumes the following form of the PDE system:

∂u

∂t
= f(t, x,u,ux,uxx) where f = (f1, f2, . . . , fN) (31)

and where

u = (u1, u2, . . . , uN), ux =

(
∂u1
∂x

,
∂u2
∂x

, . . . ,
∂uN
∂x

)
, uxx =

(
∂2u1
∂x2

,
∂2u2
∂x2

, . . . ,
∂2uN
∂x2

)
.

26

Since the order of the PDEs can vary, PDECOL needs either 0, 1 or 2 boundary

conditions for each of the PDEs. These boundary conditions are imposed at xL

and/or xR for each equation and are of the form

b(u,ux) = z(t), (32)

where z(t) is some known function. An initial condition for each solution component

ui, i = 1,2, . . . , N at the initial time t = t0 is also required. These initial conditions

have the form

ui(x, t0) = αi(x)

where αi(x) is some known function of x.

The EPDCOL software package was obtained through a modification of PDECOL.

The paper [8] claims that PDECOL solves PDE systems of only second order. We

also note that all examples in both [8] and [9] treat only second order PDEs. The

interface for PDECOL allows for PDEs that involve only ux (hyperbolic PDEs) or

only u (ODEs), but the use of the software, to our knowledge, has only been for the

case of second order PDEs. EPDCOL assumes that the PDEs are all of second order.

This gives the same system of PDEs from (31) and the same initial conditions but

the boundary conditions can be specified more precisely. The boundary conditions

are imposed at the right and left hand endpoints of the spatial interval for each PDE

in the system. This gives the following conditions

bxL,i(u,ux) = zL,i(t), bxR,i(u,ux) = zR,i(t),

where i = 1,2, . . . , N, and zL,i(t) and zR,i(t) are known functions of time.

To perform the spatial discretization EPDCOL uses collocation with piecewise

27

polynomials. After the discretization the system of PDEs is represented by a system

of ODEs depending only on the time variable t which can then be solved to get an

approximate solution to the problem.

3.2 The Method-of-Lines and Collocation

EPDCOL represents the approximate solution to the PDE as a piecewise polynomial.

A piecewise polynomial is made up of many individual polynomials that are joined

together at a set of mesh points [4]. In the case of EPDCOL, the number of mesh

points is decided by the user upon input. The user is able to input the number of

subintervals, m, into which the domain [xL,xR] is partitioned. This gives m+ 1 mesh

points in total. The user also specifies these mesh points, which are stored in an array

of strictly increasing order with the following property

xL = x1 < x2 < · · · < xm < xm+1 = xR.

The degree of the piecewise polynomial is also specified by the user upon input

and is defined as the value k+1 where k is the degree of the polynomial. The user can

also specify the continuity of the piecewise polynomial. Let c be the continuity of the

polynomial pieces at each internal mesh point. For the case c = 2 (which is generally

the case with EPDCOL since the PDEs are of second order) the solution approxi-

mation that is constructed consists of piecewise polynomials that are continuous and

also have a continuous first derivative.

EPDCOL implements the piecewise polynomial approximate solution using B-

spline basis functions. These are piecewise polynomials that together span the re-

quired linear piecewise polynomial space, and are of degree k and continuity c, over

the mesh {xi}m+1
i=1 . The piecewise polynomial space has finite dimension given by the

parameter d = (k+1)m - c(m-1). For given k, m, and c values, as indicated by the

28

user, EPDCOL constructs the appropriate B-spline basis for the piecewise polynomial

space [4]. This B-spline basis consists of d known piecewise polynomial functions that

we will call Φj(x), for j = 1, 2, . . . , d.

EPDCOL represents the approximate solution as a linear combination of the B-

spline basis functions. At any time t, an approximate solution component ui is a

piecewise polynomial written in terms of the B-spline basis functions as follows

ui(t, x) =
d∑
j=1

ci,j(t)Φj(x), i = 1, 2, . . . , N. (33)

Here the coefficient ci,j is unknown and depends only on t and Φj(x) is a known

B-spline basis function and depends only on x. In order to find these unknown

coefficients, EPDCOL requires the approximate solution component ui in (33) to

satisfy the original system of PDEs in (31) and the boundary conditions in (32) at

a specific set of d collocation points. EPDCOL chooses the collocation points such

that,

xL = v1 < v2 < · · · < vd = xR.

By substituting (33) into (31) EPDCOL obtains the following collocation equations

at the interior collocation points

d∑
j=1

dci,j(t)

dt
Φj(zl) = fi(t, zl,u(t, zl),ux(zl),uxx(zl)),

where l = 2, 3, . . . , d − 1, and i = 1, 2, . . . , N . To be more specific, the collocation

points are chosen to be the endpoints of the problem domain xL, xR, and k+1 points

on each subinterval which are the images of the Gauss points [4] mapped onto each

subinterval.

This method-of-lines algorithm with collocation in the spatial variable leads to an

29

approximation of the system of PDEs by a system of ODEs. We must also consider the

boundary conditions. We notice that they are algebraic equations and not ODEs in

time. However the ODE solver used by EPDCOL requires that all of the equations are

ODEs. This means that the boundary conditions must be differentiated with respect

to time to obtain ODEs rather than algebraic equations. Thus the user is required to

provide subroutines that give the time derivatives of the boundary conditions.

3.3 Linear Algebra Techniques

In this section we consider the system of linear equations that arises during the process

of computing an approximate solution to the system of PDEs using EPDCOL. In

PDECOL, the systems of linear equations that arose were solved using a band matrix

solver. A band matrix is one where the nonzero entries are located in a band along

the main diagonal of the matrix. However with further investigation it was noticed

that, due to the properties of B-splines and the value used for c, the linear systems

that arise have what is known as an almost block diagonal (ABD) structure [2]. A

matrix with an ABD structure is one where the nonzero elements are within a pair of

blocks, of potentially different sizes, along the main diagonal of the matrix, except for

the top and bottom block rows that have only single blocks. In addition any column

intersects no more than two successive blocks and the overlap between blocks is not

necessarily constant [2].

There is a subroutine COLROW [5] that is specifically designed for the efficient

solution of ABD linear systems. This subroutine uses both row and column elimina-

tion. Unlike the methods used in PDECOL, COLROW employs an algorithm that

introduces no fill-in during the elimination process. (Fill-in happens when zero ele-

ments of a matrix become non-zero elements during the elimination process.) This is

an interesting observation that leads to a saving of 50 percent in both execution time

and storage requirements for the tested cases [8].

30

The following are images taken from [8]. Figure 4 is an ABD matrix where the

degree of the piecewise polynomials is 4 and the number of continuity conditions is

2. Figure 5 is the banded matrix that would have been considered in the PDECOL

code.

Figure 4: An ABD matrix with k = 4 and c = 2 [2].

Figure 5: The banded matrix representation for the same system [2].

The computations performed by COLROW inside EPDCOL represent the domi-

nant cost within the EPDCOL algorithm. For a system with 1 PDE, like the problem

we are solving, we have that the total cost is O(m×k3). In general for a system with

i = 1, 2, · · · , N, PDEs the error is O(m(k ×N)3) [3], [6].

3.4 EPDCOL Parameters and Subroutines

In this section we briefly describe the EPDCOL user interface. The user is tasked

31

with declaring parameters and writing subroutines that EPDCOL needs in order to

solve a given problem.

3.4.1 Parameters

We begin by giving EPDCOL a system of i =1, 2, . . . , N = NPDE nonlinear PDEs

over the x domain [xL, xR]. Through the variable m = NINT the user inputs the

number of subintervals into which [xL, xR] is partitioned. The NPTS = NINT+1

mesh points are stored in the array XBKPT; this array is passed to EPDCOL and

satisfies the following property

xL = XBKPT (1) < XBKPT (2) < · · · < XBKPT (NINT + 1) = xR.

The variable KORD specifies the degree of the piecewise polynomials that will be

used by EPDCOL. KORD is defined as k + 1 where k is the degree of the piecewise

polynomials. The user can change the number of continuity conditions that EPD-

COL will impose on the solution by changing the variable c = NCC. The piecewise

polynomial space in which the approximate solution is represented has dimension d

= NCPTS = KORD*NINT - NCC*(NINT-1). The parameter NCPTS also denotes

the number of collocation points that are used by EPDCOL.

Other parameters important to EPDCOL are TO, the initial time, DT, the initial

time step, EPS, the time tolerance and MF, the method flag. We will also set r, the

interest rate, σ, the volatility, E, the exercise price and TOUT, the expiry time. The

latter set of parameters have values determined by the mathematical description of

the problem.

3.4.2 Subroutines

There are a number of subroutines that the user must also provide to EPDCOL. The

32

subroutine F is where we describe the PDEs that we wish to solve. In the subroutine

BNDRY we specify the derivatives of the boundary conditions where DBDU and DB-

DUX correspond to the left hand side of the boundary conditions and the derivatives

respectively and DZDT corresponds to the right hand side of the boundary conditions

given in (32). The subroutine UINIT is where we specify the initial conditions for

the problem. In the optional subroutine DERIVF the user can supply the analytic

Jacobian of the functions defined in the subroutine F. After we have correctly chosen

and defined all of the necessary information described above, the driver program is

used in combination with EPDCOL to compute numerical solutions to the system of

PDEs that we have described.

3.5 Black-Scholes Driver Program

In this section we will discuss the software that we wrote specifically for the Black-

Scholes problem we are considering. This driver program specifies all of the relevant

parameters and subroutines and then calls EPDCOL to compute the approximate

solution. The code for this driver program can be found in the appendix of this

thesis. The following explains how values were assigned to the parameters described

in the above section.

3.5.1 Choosing the Parameter Values for the Driver Program

Both NINT and KORD are chosen by the user when the program is run and can be

anything within EPDCOL’s accepted range of values. For KORD this is a value larger

then 2 and smaller than 21. The only restriction on NINT is that it must be at least

1. The rest of the parameters that the user can control are defined within the driver

main program. We specify NPDE, the number of PDEs to be 1 (the Black-Scholes

equation) and NCC to be 2. TO is the initial time and we begin at the current time

TO = 0.0. The size of the initial time step size can be modified by the user through

33

the parameter DT and for this problem it was set to 1.0× 10−7. The time tolerance

EPS was determined experimentally to be 1.0× 10−5. These experimental details are

explained in the next chapter of this thesis. The method flag MF is associated with

the numerical methods used for the time integration and for this problem is set to

21. The time of expiry for the option, TOUT, is set to 1.0 and was chosen based on

the problem description and examples shown in [14]. For the specific problem we are

solving we choose r = 0.1, σ = 0.2 and E = 1.0 but note that these parameters can

easily be changed to solve a different instance of the Black-Scholes equation.

3.5.2 Problem Dependent Subroutines

Now we discuss how we wrote the subroutines required by EPDCOL. To reiterate,

the following is the general Black-Scholes equation

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

We will remember that the Black-Scholes equation is a backward parabolic PDE

with a final condition, as opposed to an initial condition. A linear parabolic PDE is

backward if signs with respect to the derivatives in S and t are the same when on

the same side of the equation. Otherwise it is a forward parabolic PDE. An issue

that arises here is that EPDCOL solves initial value systems and so we need to give

it a forward equation, not a backward equation. To do this we make the substitution

t = −t. This gives the following forward parabolic equation

−∂V
∂t

+
1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

We rearrange it in the following way so that it is in a form that can be used by

34

EPDCOL

∂V

∂t
=

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV.

Once we have the equation in this form we let V = U and S = X. Then we substitute

these values into the Black-Scholes equation and write the following equation in the

subroutine F

FV AL(1) = 0.5∗SIGMA∗∗2∗X∗∗2∗UXX(1) +R∗X∗UX(1)−R∗U(1).

Next we will consider the boundary conditions. As we described in Section 2.14,

in (21) and (22), the boundary conditions (for a European call option) are

C(0, t) = 0 and C(S, t) ∼ S as S →∞.

Since we know that EPDCOL considers boundary conditions of the form

b(u,ux) = z(t)

we write the above boundary conditions in the following way

At xL = XBKPT (0), U(1) = 0,

At xR = XBKPT (NINT + 1), U(1)−X = 0.

35

This means that in the subroutine BNDRY we have the following:

At xL = XBKPT (0) : DBDU(1, 1) = 1.0,

DBDUX(1, 1) = 0.0,

DZDT (1) = 0.0,

and

At xR = XBKPT (NINT + 1) : DBDU(1, 1) = 1.0,

DBDUX(1, 1) = 0.0,

DZDT (1) = 0.0,

where DBDU(1,1) is the partial derivative of the left hand side of of the boundary

condition with respect to U(1), DBDUX(1,1) is the partial derivative of the left hand

side of the boundary condition with respect to Ux(1) and DZDT is the derivative of

the right hand side of the boundary condition with respect to t.

Next we can consider the initial condition, or in our case the final condition,

specifically in terms of the variables used in our example problem. We know that the

final condition at expiry time T is

C(S, T) = max(S − E, 0).

In terms of our variables, where S = X, we have the following initial condition that

we write in the subroutine UINIT

U(1) = max(X − E, 0.0).

36

We can also input the analytic Jacobian by taking the partial derivatives of

FVAL(1) with respect to U , Ux and Uxx. This gives the following set of equations

that we write in the subroutine DERIVF

DFDU(1, 1) = −R

DFDUX(1, 1) = R∗X

DFDUXX(1, 1) = (0.5)∗SIGMA∗∗2∗X∗∗2.

4 Problem Implementation and Numerical Results

Now that we understand how EPDCOL works and the kinds of systems it can solve,

we will use it to get an approximation to the value of European call and put op-

tions. This means that we will use EPDCOL to compute an approximate solution

to the Black-Scholes equation. Note that all computations are performed on a Linux

2.6.32-52-server #114-Ubuntu SMP using the compiler GNU Fortran (Ubuntu 4.4.3-

4ubuntu5.1) 4.4.3. Based on what has been studied and explained in the second

section of this paper we know how European options behave and how they are mod-

elled by the Black-Scholes equation. We were also able to determine the boundary

and initial conditions for European options. Below is the graph showing the value of

a European call option, with the parameters r = 0.1, σ = 0.2 and E = 1.0 at different

times before its expiry. Our goal is to obtain numerical results that agree with those

given in Figure 6.

37

Figure 6: The value of a call option at various times before expiry with r = 0.1, σ =
0.2 and E = 1.0 [14].

To begin the numerical experiments we will follow the example in Figure 6. That

means we will have r = 0.1, σ = 0.2 and E = 1.0. We first run EPDCOL on a standard

instance of the problem where we set xR = 20, TOUT = 1.0, EPS = 1.0×10−6, KORD

= 4, NINT = 40 and a uniform mesh. Recall that the left boundary is fixed at xL

while the right boundary theoretically goes to ∞ and thus has to be approximated

by a“large” number, in this case xR = 20. TOUT is the output time, EPS is the

temporal error tolerance, NINT is the number of subintervals in the spatial mesh and

KORD - 1 is the degree of the B-spline basis functions. The graph of the numerical

solution computed by EPDCOL is given below in Figure 7 and Figure 8 shows the

graph zoomed in to the region [0,2].

38

2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 5 10 15 20

firsttest

Figure 7: Graph of the solution to the Black-Scholes problem on [0,20] where r = 0.1,
σ = 0.2 and E = 1 at time TOUT = 1.0.

0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

(0,2)

Figure 8: Graph of the solution to the Black-Scholes problem on [0,2] where r = 0.1,
σ = 0.2 and E = 1 at time TOUT = 1.0.

39

From these figures we can see that on a basic level, EPDCOL is giving suitable

results. We now disuss a number of issues associated with the computation.

4.1 Parameter Choice Issues

Now we move on to consider the problem dependent and software dependent pa-

rameters that may cause issues for EPDCOL or may impact on the accuracy of the

solution. The values that we chose above for the parameters xR, TOUT, EPS, NINT,

and KORD and the use of a uniform mesh can all affect the accuracy of the solution

that EPDCOL computes.

The first parameter we consider is the value of T, the expiry time, that we will

use in our calculations. In EPDCOL this is the variable TOUT that we must set.

We see in Figure 6 the value of a call option at a few different times before expiry.

From here we can conclude that setting TOUT to 1.0 is reasonable. It will give us a

snapshot of the value of an option at time TOUT = 1.0 before expiry. We can always

change TOUT if we wish to see the value of an option at some different time before

it expires.

The next parameter to consider is the right hand endpoint of the problem domain

xR. As the boundary conditions are defined in (23) we see that the left boundary

condition is always imposed at xL = 0 and thus does not cause any issues for EPD-

COL. The right hand boundary condition, though, is imposed (theoretically) as xR

approaches infinity. This is an issue from a computational standpoint since we have

to choose xR to be finite. This could potentially limit the accuracy of the problem

because we are forced to restrict the domain. We discuss the choice of xR in the next

section.

The next parameter that we need to consider is EPS, the time tolerance. This

parameter controls the time error in the solution at every time step. The software

package PDECOL, from which EPDCOL was developed, uses time integration meth-

40

ods that use an adaptively chosen time step sequence and integration formula to

efficiently solve the problem to within the user specified time tolerance of EPS [9].

The issue here is that we want EPS to be strict enough that our solutions are suffi-

ciently accurate but not so strict that the run time of the program will be significantly

increased. Setting a strict tolerance causes EPDCOL to spend increased time trying

to compute a solution that satisfies the given tolerance.

There are two more parameters that also affect accuracy. The first is the parameter

KORD = k +1 where k is the degree of the piecewise polynomials being used. We

want to choose a large enough degree that the error is reasonably small but not so

large a degree that EPDCOL’s runtime is greatly increased. We also realize that we

have a non-smooth initial condition which does not have a first derivative at S =

E. Hence using high degree piecewise polynomials in that area will not give more

accurate results there and high degree piecewise polynomials will be less efficient.

The second parameter associated with the accuracy versus computational time

tradeoff is NINT, which is used to tell EPDCOL how many subintervals the spatial

domain should be partitioned into. Again, we want enough subintervals that EPD-

COL computes a sufficiently accurate solution but not so many that EPDCOL will

take too long to run.

During the collocation process EPDCOL uses a set of points called Gauss points.

We note that the Black-Scholes equation is a 1D parabolic PDE and that analysis

in [3] and [6] has investigated the spatial error associated with Gaussian collocation

applied to this type of PDE. The analysis states that the spatial error is O(hk+1)

where k is the degree of the polynomial (which implies k − 1 collocation points) and

h is the maximum spatial subinterval size. Associated with the choice of NINT is

the type of mesh we are using. That is, we can have a uniform or nonuniform mesh

depending on whether the subintervals are all of the same size or not. EPDCOL

conveniently lets us define the mesh. Another important thing to note is that every

41

mesh must include the point S = E due to the non-smoothness in the initial condition

at that point. These observations and analyses give us important information that

will allow us to choose appropriate values for these parameters.

4.2 Choice of Parameters

Now that we have identified the issues associated with the choice of the parameters

we need to run some numerical experiments to determine which values we should

choose so that we get sufficiently accurate results with reasonable computation times.

We note that EPDCOL has error control only in the time domain and since we do

not have an exact solution to the problem it is hard to identify exactly how much

spatial error there is. There are ways to get an estimate of the error, which we will

consider later in this section, once we have experimentally determined some of the

parameters.

The first parameter we will look to determine experimentally is xR. We recognize

that the interesting results are for S around the exercise price E since we already know

how the value of the option behaves far away from this point. If S is much less than

the exercise price the option is worthless and as S gets much larger than the exercise

price the value of the option is approximately equal to S. For us this means that we

are not particularly interested in the value of the option away from the exercise price.

We begin by picking a large xR that should not impact the solution around E. We

keep a strict time tolerance of EPS = 1.0× 10−12 and choose NINT so that there are

9 mesh points between each integer in the range [xL,xR]. For example between 0 and

1 we have 0.1, 0.2, · · · , 0.9 as mesh points as well as the mesh points 0.0 and 1.0. We

choose a strict time tolerance and a relatively large number of mesh points so that

influence from these parameters is minimal in comparison with the effect of changing

xR. This will help us choose a problem domain that does not negatively impact on

the accuracy of the computed solution.

42

Performing this experimental analysis showed us that that size of the interval does

not have much effect on the solution values. Specifically, the solution around E = 1,

where we are most interested, is not affected by the size of the interval unless xR is

very close to E. The following tables show the solutions at xR = 3 (Table 2) and xR

= 10 (Table 3) when KORD = 4. We see here that even when reducing the right hand

end point down to xR = 3 there are small differences in the solution values compared

with the results for xR = 10 near S = E. We note from our numerical experiments

that significant differences are not observed until xR = 1.6.

S-value Solution value
0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000002
0.40000000 0.00000112
0.50000000 0.00006051
0.60000000 0.00108245
0.70000000 0.00748455
0.80000000 0.02789626
0.90000000 0.06948256
1.00000000 0.13268963
1.10000000 0.21248394
1.20000000 0.30258442
1.30000000 0.39815743
1.40000000 0.49631100

1.50000000 0.59556939
1.60000000 0.69524643
1.70000000 0.79501998
1.80000000 0.89469992
1.90000000 0.99411556
2.00000000 1.09306656
2.10000000 1.19130801
2.20000000 1.28855567
2.30000000 1.38450385
2.40000000 1.47884961
2.50000000 1.57131804
2.60000000 1.66168402
2.70000000 1.74978743
2.80000000 1.83554056
2.90000000 1.91892794
3.00000000 2.00000000

Table 2: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
3.0 and EPS = 1.0×10−12 at time TOUT = 1.0

43

S-value Solution value
0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000002
0.40000000 0.00000112
0.50000000 0.00006051
0.60000000 0.00108245
0.70000000 0.00748455
0.80000000 0.02789626
0.90000000 0.06948256
1.00000000 0.13268963
1.10000000 0.21248397
1.20000000 0.30258462
1.30000000 0.39815864
1.40000000 0.49631675

1.50000000 0.59559153
1.60000000 0.69531777
1.70000000 0.79521764
1.80000000 0.89518186
1.90000000 0.99516927
2.00000000 1.09516489
2.10000000 1.19516338
2.20000000 1.29516286
2.30000000 1.39516268
2.40000000 1.49516262
2.50000000 1.59516259
2.60000000 1.69516259
2.70000000 1.79516258
2.80000000 1.89516258
2.90000000 1.99516258
3.00000000 2.09516258

Table 3: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0 and EPS = 1.0×10−12 at time TOUT = 1.0 on the interval [0,3].

In general, any difference that we see between solution values on different sized

intervals differs only at values near the end of the interval. This is good since it

implies that unless the right hand end point is very near E, the solution there will

not be affected. If we choose xR = 10 when E = 1, the size of the interval will have

very little impact on the values of the solution we get near E. Since EPDCOL can

handle other variations of this problem where E, r, and σ are changed, xR = 10 allows

accurate solutions for a large range of different E values. That is, if E = 0, · · · , 8 we

should not have to modify the value for xR in our computations.

The next thing we want to determine experimentally is the time tolerance EPS.

Since we have already determined all of the other necessary parameters we will start

with the strict time tolerance of EPS = 1.0×10−11 and repeatedly increase it until we

see unwanted changes in our solution approximations. We will keep the same number

of subintervals that we used when determining xR. Since we use 9 mesh points

between each integer, in total when xR = 10, that means we have 100 subintervals.

We will also consider a few different KORD values at each time tolerance to see

44

the effect of higher order piecewise polynomials on the solution. We will consider

KORD = 4, 6 and 8. As we make EPS less strict we see that the solution values

begin to change. Noting the values near E we begin to see very small changes when

EPS = 1.0×10−9. Increasing EPS to 1.0×10−5 shows that the difference between the

solutions values with EPS = 1.0×10−11 is within the 5th decimal place for KORD =

4, 6 and 8. Increasing EPS by a factor of 10 to EPS = 1.0×10−4, we see that for

all values of KORD the difference in the solution values is in the 4th decimal place

for values around E = 1. Thus, the most coarse time tolerance we can choose and

still have sufficiently accurate solutions is EPS = 1.0×10−5. In Tables 4, 5 and 6 we

see the solution values to the problem for the different cases described above. That

is, solution values around S = 1.0 for EPS = 1.0×10−12, 1.0×10−5 and 1.0×10−4 at

KORD = 4, 6 and 8.

45

KORD = 4 EPS = 1.0×10−11

S-value Solution value
0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000002
0.40000000 0.00000112
0.50000000 0.00006051
0.60000000 0.00108245
0.70000000 0.00748455
0.80000000 0.02789627
0.90000000 0.06948256
1.00000000 0.13268963
1.10000000 0.21248397
1.20000000 0.30258462
1.30000000 0.39815864
1.40000000 0.49631675
1.50000000 0.59559153
1.60000000 0.69531777
1.70000000 0.79521764
1.80000000 0.89518186
1.90000000 0.99516927
2.00000000 1.09516489
2.10000000 1.19516338
2.20000000 1.29516286
2.30000000 1.39516268
2.40000000 1.49516262
2.50000000 1.59516259
2.60000000 1.69516259
2.70000000 1.79516258
2.80000000 1.89516258
2.90000000 1.99516258
3.00000000 2.09516258

EPS = 1.0×10−5

Solution value
0.00000000
0.00000000
0.00000000
0.00000002
0.00000132
0.00006176
0.00107705
0.00748220
0.02790989
0.06948536
0.13267932
0.21247836
0.30258675
0.39816213
0.49631822
0.59559139
0.69531720
0.79521722
0.89518166
0.99516921
1.09516488
1.19516338
1.29516285
1.39516267
1.49516260
1.59516258
1.69516257
1.79516256
1.89516256
1.99516256
2.09516256

EPS = 1.0×10−4

Solution value
0.00000000
0.00000000
0.00000000
0.00000005
0.00000293
0.00009031
0.00117359
0.00748970
0.02776793
0.06944838
0.13275421
0.21251187
0.30254656
0.39810208
0.49627293
0.59556228
0.69529576
0.79519747
0.89516134
0.99514797
1.09514296
1.19514105
1.29514030
1.39514001
1.49513989
1.59513984
1.69513982
1.79513981
1.89513980
1.99513980
2.09513979

Table 4: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0 and TOUT = 1.0 for various values of EPS and KORD = 4.

46

KORD = 6 EPS = 1.0×10−11

S-value Solution value
0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000000
0.40000000 0.00000059
0.50000000 0.00005774
0.60000000 0.00107673
0.70000000 0.00748090
0.80000000 0.02789921
0.90000000 0.06948980
1.00000000 0.13269677
1.10000000 0.21248772
1.20000000 0.30258472
1.30000000 0.39815674
1.40000000 0.49631448
1.50000000 0.59558972
1.60000000 0.69531659
1.70000000 0.79521697
1.80000000 0.89518150
1.90000000 0.99516909
2.00000000 1.09516481
2.10000000 1.19516334
2.20000000 1.29516284
2.30000000 1.39516267
2.40000000 1.49516261
2.50000000 1.59516259
2.60000000 1.69516259
2.70000000 1.79516258
2.80000000 1.89516258
2.90000000 1.99516258
3.00000000 2.09516258

EPS = 1.0×10−5

Solution value
0.00000000
0.00000000
0.00000000
0.00000000
0.00000081
0.00005911
0.00107095
0.00747806
0.02791405
0.06949310
0.13268533
0.21248163
0.30258721
0.39816060
0.49631606
0.59558954
0.69531597
0.79521652
0.89518131
0.99516905
1.09516481
1.19516335
1.29516285
1.39516267
1.49516261
1.59516259
1.69516258
1.79516257
1.89516257
1.99516257
2.09516257

EPS = 1.0×10−4

Solution value
0.00000000
0.00000000
0.00000000
0.00000002
0.00000274
0.00009132
0.00117689
0.00747675
0.02774079
0.06945117
0.13278376
0.21253025
0.30254640
0.39809501
0.49626702
0.59555911
0.69529445
0.79519706
0.89516129
0.99514803
1.09514305
1.19514113
1.29514038
1.39514008
1.49513996
1.59513991
1.69513988
1.79513987
1.89513987
1.99513986
2.09513986

Table 5: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0 and TOUT = 1.0 for various values of EPS and KORD = 6.

47

KORD = 8 EPS = 1.0×10−11

S-value Solution value
0.00000000 0.00000000
0.10000000 -0.00000000
0.20000000 0.00000000
0.30000000 0.00000000
0.40000000 0.00000059
0.50000000 0.00005774
0.60000000 0.00107673
0.70000000 0.00748090
0.80000000 0.02789921
0.90000000 0.06948980
1.00000000 0.13269677
1.10000000 0.21248772
1.20000000 0.30258472
1.30000000 0.39815674
1.40000000 0.49631448
1.50000000 0.59558972
1.60000000 0.69531659
1.70000000 0.79521697
1.80000000 0.89518150
1.90000000 0.99516909
2.00000000 1.09516481
2.10000000 1.19516334
2.20000000 1.29516284
2.30000000 1.39516267
2.40000000 1.49516261
2.50000000 1.59516259
2.60000000 1.69516259
2.70000000 1.79516258
2.80000000 1.89516258
2.90000000 1.99516258
3.00000000 2.09516258

EPS = 1.0×10−5

Solution value
0.00000000
0.00000000
0.00000000
0.00000000
0.00000084
0.00005983
0.00107186
0.00747559
0.02791140
0.06949276
0.13268764
0.21248319
0.30258760
0.39816051
0.49631573
0.59558927
0.69531589
0.79521659
0.89518142
0.99516916
1.09516491
1.19516344
1.29516293
1.39516275
1.49516268
1.59516266
1.69516265
1.79516265
1.89516265
1.99516265
2.09516265

EPS = 1.0×10−4

Solution value
0.00000000
0.00000000
0.00000000
0.00000003
0.00000310
0.00009297
0.00116731
0.00743034
0.02770385
0.06946252
0.13281571
0.21256528
0.30256973
0.39810556
0.49627337
0.59556627
0.69530319
0.79520682
0.89517150
0.99515842
1.09515348
1.19515157
1.29515082
1.39515051
1.49515038
1.59515033
1.69515030
1.79515029
1.89515028
1.99515028
2.09515027

Table 6: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0 and TOUT = 1.0 for various values of EPS and KORD = 8.

We note that EPDCOL outputs a value called TOTAL STEPS which indicates

the total number of time steps it had to take before obtaining the solution at TOUT.

The analysis for choosing EPS also shows us that KORD being 4 or 6 give sufficiently

accurate solutions when EPS = 1.0×10−5. When KORD = 8 we see that the solutions

48

have the same order of accuracy but the number of time steps (TOTAL STEPS) taken

by EPDCOL is increased. The small amount of accuracy we gain does not outweigh

the increase of work required by EPDCOL; hence using KORD = 4 or KORD = 6

appears to be preferable. This result is not surprising since, as we mentioned before,

we do not expect a higher degree polynomial to give more accurate results for this

problem due to the non-smooth initial condition at S = E.

The next thing we have to consider is the value for NINT, the number of subinter-

vals. We want the number of subintervals to be as small as possible without affecting

the accuracy of the solution. We have been using NINT = 100 (and a uniform mesh)

so we will decrease NINT until the error in the solution is unsatisfactory. Reducing

NINT to 80 shows a discrepancy in the fifth decimal place for the solution at x = 1.0.

For KORD = 4 reducing NINT from 100 to 80 only reduced the total number of time

steps from 36 to 34 and for KORD = 6 the total number of time steps was reduced

from 45 to 44. The number of time steps saved does not outweigh the increase in the

error in the solution and hence it is best to continue to use NINT = 100 subintervals

to ensure a sufficiently accurate solution. When a uniform mesh is employed, output

for KORD = 4 and KORD = 6 as we change NINT is displayed below in Tables 7

and 8.

49

NINT=80,KORD=4 Total Steps=34
S-value Solution value

0.00000000 0.00000000
0.12500000 0.00000000
0.25000000 0.00000002
0.37500000 0.00000100
0.50000000 0.00006505
0.62500000 0.00189026
0.75000000 0.01537890
0.87500000 0.05695056
1.00000000 0.13266639
1.12500000 0.23425789
1.25000000 0.34991483
1.37500000 0.47163855
1.50000000 0.59559379

NINT=80,KORD=6 Total Steps=44
S-value Solution value

0.00000000 0.00000000
0.12500000 0.00000000
0.25000000 0.00000000
0.37500000 0.00000022
0.50000000 0.00005935
0.62500000 0.00187476
0.75000000 0.01537510
0.87500000 0.05696928
1.00000000 0.13268292
1.12500000 0.23426508
1.25000000 0.34991316
1.37500000 0.47163335
1.50000000 0.59558945

Table 7: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0, NINT = 80 and TOUT = 1.0 for KORD = 4 and KORD = 6.

NINT=100,KORD=4 Total Steps=36
S-value Solution value

0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000002
0.40000000 0.00000132
0.50000000 0.00006176
0.60000000 0.00107705
0.70000000 0.00748220
0.80000000 0.02790989
0.90000000 0.06948536
1.00000000 0.13267932
1.10000000 0.21247836
1.20000000 0.30258675
1.30000000 0.39816213
1.40000000 0.49631822
1.50000000 0.59559139

NINT=100,KORD=6 Total Steps=45
S-value Solution value

0.00000000 0.00000000
0.10000000 0.00000000
0.20000000 0.00000000
0.30000000 0.00000000
0.40000000 0.00000081
0.50000000 0.00005911
0.60000000 0.00107095
0.70000000 0.00747806
0.80000000 0.02791405
0.90000000 0.06949310
1.00000000 0.13268533
1.10000000 0.21248163
1.20000000 0.30258721
1.30000000 0.39816060
1.40000000 0.49631606
1.50000000 0.59558954

Table 8: Solution to the Black-Scholes problem where r = 0.1, σ = 0.2, E = 1, xR =
10.0, NINT = 100 and TOUT = 1.0 for KORD = 4 and KORD = 6.

50

4.3 Estimation of the Spatial Error for a Uniform Mesh

Now that we have determined appropriate values for the parameters, we can get an

estimate of the spatial error. To perform this analysis we set EPS = 1.0× 10−7. This

way we know that the time error is at most EPS and is small enough that it will allow

us to see the spatial error. To get an estimate of the spatial error we will proceed

in the following way. We would like to compare our solution to the exact solution as

given in Section 2. The issue is that this exact solution involves a improper integral

that does not have a closed form solution and hence would have to be approximated

numerically. Instead, we use an even larger number of mesh points to reduce the size

of the subintervals since we know that the spatial error is O(hk+1). We will compute

a solution for NINT = 200 and let this be our more accurate solution. To get an

estimate of the spatial error when NINT = 100 we consider the absolute value of the

difference between the solution values at the mesh points obtained from EPDCOL

using NINT = 100 and NINT = 200. It turns out that the maximum spatial error

for KORD = 4 is 6.82× 10−6. This gives us an estimate of how close our computed

solution is to the actual solution. A more detailed explanation of how to do this can

be found in the appendix.

4.4 A Non-Uniform Mesh

As we have already mentioned we are particularly interested in the solution around

S = E. We are also aware that the size of the subintervals has an impact on the

computed solution. Since we are able to define the mesh that is passed to EPDCOL,

we will construct a mesh that has points clustered around S = E = 1. We also

need to ensure that S = 1 is one of the mesh points to avoid issues with the afore

mentioned non-smooth initial condition. Additionally we want to be able to use the

same number of subintervals (NINT = 100) and the same KORD values that we used

on the uniform mesh to get some sense of how the solutions compare.

51

To construct a mesh that is clustered around S = 1 we use the inverse of the

function

f = 1 +
100

12

(
1 + S + tanh

(
S − 1

4× 10−2

))
.

This function maps from [0,10] onto [1,101] and has a sharp vertical layer region at S

= 1. The mesh generation function we desire must map from the mesh point indexes,

1 to 101, to the spatial domain [0,10]. The inverse of f provides this capability since

the nearly vertical layer region in f corresponds to a nearly horizontal layer region in

f−1, leading to a clustering of mesh points near S = 1. Since f−1 is not available in

closed form (to our knowledge) we approximated the f−1 values, for the mesh index

inputs, to obtain the mesh points as outputs. The mesh points are given in Table 9.

52

Mesh Points
0.0

0.1200000000
0.2400000000
0.3600000000
0.4800000000
0.5999999959
0.7199983371
0.8393507169
0.9214240563
0.9471422875
0.9601382971
0.9690535379
0.9760558198
0.9819953133
0.9872976591
0.9922145724
0.9969172220
1.001539192
1.006201160
1.011030121
1.016181222
1.021872503
1.028455400
1.036590441
1.047808847
1.067185501
1.124042134
1.240012281
1.360000030
1.480000000
1.600000000
1.720000000
1.840000000

1.960000000
2.080000000
2.200000000
2.320000000
2.440000000
2.560000000
2.680000000
2.800000000
2.920000000
3.040000000
3.160000000
3.280000000
3.400000000
3.520000000
3.640000000
3.760000000
3.880000000
4.000000000
4.120000000
4.240000000
4.360000000
4.480000000
4.600000000
4.720000000
4.840000000
4.960000000
5.080000000
5.200000000
5.320000000
5.440000000
5.560000000
5.680000000
5.800000000
5.920000000

6.040000000
6.160000000
6.280000000
6.400000000
6.520000000
6.640000000
6.760000000
6.880000000
7.000000000
7.120000000
7.240000000
7.360000000
7.480000000
7.600000000
7.720000000
7.840000000
7.960000000
8.080000000
8.200000000
8.320000000
8.440000000
8.560000000
8.680000000
8.800000000
8.920000000
9.040000000
9.160000000
9.280000000
9.400000000
9.520000000
9.640000000
9.760000000
9.880000000
10.00000000

Table 9: The non-uniform mesh we have generated; note the clustering of mesh points
near S = 1.

The only thing missing from this mesh is the point E = S = 1. We will take the

mesh point that is closest to it and assign it the value 1.0. That means we change

the mesh point S = 1.001539192 to S = 1.0. Now we have a mesh with the 101

53

points needed for NINT = 100 with a mesh point at E to deal with the issue of the

non-smooth initial condition. We pass this mesh to EPDCOL through the driver

program and EPDCOL computes a solution using these mesh points. The changes

made to the driver program so that EPDCOL receives this non-uniform mesh can be

found in the appendix.

4.5 Estimation of the Spatial Error for a Non-Uniform Mesh

In order to estimate the spatial error for the computed solution on the non-uniform

mesh using NINT = 100 and KORD = 4, we will compute a second numerical solution

on the same mesh but choose KORD = 6. We expect the solution with KORD = 6

to be more accurate since the spatial error is O(hk+1). (Recall that KORD = k+1).

Since h, the maximum size of the subintervals is less than 1, increasing k, the degree

of the piecewise polynomials, will decrease the spatial error. To get an estimate of the

spatial error for the solution where KORD = 4 we consider the absolute value of the

difference between the solution values at the mesh points obtained from EPDCOL

for KORD = 6 and KORD = 4. Again, we will set EPS = 1.0× 10−7 so the temporal

error is less prominent and we can focus on the spatial error. The largest difference

is the maximum spatial error which turns out to be 1.224 × 10−5. This gives us an

idea of how close the computed solution on a non-uniform mesh with NINT = 100

and KORD = 4 is to the exact solution to the problem. A more detailed explanation

of how to do this can be found in the appendix.

4.6 “Exact” Spatial Error

We have computed estimates of the spatial error for the approximate solutions com-

puted on both a uniform and non-uniform mesh. Now we will determine a high

accuracy approximation to the exact spatial error. To do this we create a high pre-

cision reference solution and compare the approximate solutions for the uniform and

54

non-uniform meshes to it. To get this high precision reference solution we take the

uniform mesh case with NINT = 800, KORD = 10 and EPS = 1.0×10−8 and sampled

the solution at 10001 points along the domain. This means we were not just sampling

at the mesh points and NINT, KORD and EPS are such that the subintervals are

small, the degree is large and the time error is sufficiently small. Then we compute a

solution on a uniform mesh with NINT = 100, KORD = 4 and EPS = 1.0× 10−7 at

10001 points along the domain. We compare this solution to the reference solution

to find that the maximum error is 1.645× 10−5. We do the same thing sampling the

solution on a non-uniform mesh where NINT = 100, KORD = 4 and EPS = 1.0×10−7

at 10001 points along the domain and then compare it with the reference solution.

This gives a maximum error of 3.453× 10−5 for the non-uniform mesh case.

4.7 An Analysis of the Results

We wanted to look at a non-uniform mesh where the mesh points were clustered near

S = 1.0. We were hoping that putting more mesh points in this area of the domain

would give more accurate results.

The fact that the spatial error estimates indicate that the approximate solution

on the uniform mesh has a smaller spatial error than the approximate solution on

the non-uniform mesh seem contradictory to what we expect. We considered a non-

uniform mesh with the intention of making the solution more accurate but our error

estimates indicate that the opposite is true.

We also generated a highly accurate reference solution that is very close to the

exact solution. This enables us to compare the solution on the uniform mesh and

the solution on the non-uniform mesh to what we consider the exact solution to

the problem. Comparing these solutions to the reference solution gave the “exact”

spatial error for both the uniform and non-uniform mesh solution approximations.

Interestingly, again, the uniform mesh gives a smaller error than the non-uniform

55

mesh.

The fact that the spatial error is larger for the non-uniform mesh is contradictory

to what we expect. This is an issue that can be looked into further in future work.

4.8 Solutions to Other Variations of the Problem

The code that was written will not only solve the specific problem we have been

discussing where r = 0.1, σ = 0.2, E = 1, xR = 10 and EPS = 1.0 × 10−5 at time

TOUT = 1.0. For example, we can consider the problem for different TOUT values.

From Figure 6 we know what the problem should look like at different times before

expiry. We can use EPDCOL to solve the problem when TOUT = 0.5, 1.0 and 1.5.

The following figure shows the graph of the computed solutions for all three TOUT

values where we have zoomed in on the solutions on [0.0,2.0]. This plot corresponds

very well to what the theoretical results indicate that we should get.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5 2

[0,2] tout=0.5
[0,2] tout=1

[0,2] tout=1.5

Figure 9: Graph of the solution to the Black-Scholes problem where r = 0.1, σ = 0.2,
E = 1 and xR = 10.0 at time TOUT = 0.5, 1.0 and 1.5

56

In addition, EPDCOL and the driver program can handle problems where param-

eters other than TOUT are also changed. An explanation of how compute the data

that generates Figure 9 can be found in the appendix.

4.9 European Put Options

In addition to being able to solve different instances of the European call option,

EPDCOL can also solve the European put option. As we have previously discussed,

the boundary and initial conditions for a put option are different than for a call option.

To deal with this, we have to change only the subroutines BNDRY and UINIT to

correspond to the boundary and initial conditions for the put option. The section of

code that was changed can be found in the appendix.

The following are graphs for the put option for the same instance of the problem

we have been considering throughout the thesis. We have r = 0.1, σ = 0.2, E = 1.0

and xR = 10.0, EPS = 1.0 × 10−5, KORD = 4 and NINT = 100 for a uniform and

a non-uniform mesh. A more detailed explanation of how to do this can be found in

the appendix.

57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

putuniform

Figure 10: Graph of the solution to the Black-Scholes put option problem on a uniform
mesh where r = 0.1, σ = 0.2, E = 1 and xR = 10.0 at time TOUT = 1.0.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

NonUniformPut

Figure 11: Graph of the solution to the Black-Scholes put option problem on a non-
uniform mesh where r = 0.1, σ = 0.2, E = 1 and xR = 10.0 at time TOUT =
1.0.

58

5 Conclusion

We have successfully used EPDCOL to solve the Black-Scholes equation which values

European call and put options. Several parameter selection issues have been consid-

ered, addressed and chosen experimentally to give a solution with a good time versus

accuracy trade-off. We were successfully able to deal with the issue of the non-smooth

initial condition by placing a mesh point at the location of the discontinuity of the

first derivative of the initial condition. We noted that there were two contributors

to the error in the computed solution; the temporal and spatial error. The time tol-

erance was defined and passed to EPDCOL which adaptively produced a computed

solution to within that indicated tolerance. We were able to compute an estimate of

the spatial error and we considered both uniform and non-uniform spatial meshes.

We also computed the “exact” spatial error for the two types of meshes. The results

we received were contradictory to what we were expecting. We were hoping that us-

ing a non-uniform mesh would increase the accuracy of the solution but our analyses

indicated that the non-uniform mesh gave solutions with a larger spatial error.

The contradictory results regarding the spatial error would be an interesting next

step to pursue. More analyses would hopefully help to explain the results we are

seeing. Another interesting next step would be to consider using a numerical software

package such as BACOL which has both spatial and temporal error control. From

here we could consider the American option version of the problem which still has the

imposition of a non-smooth initial condition. Since BACOL does not let us specify the

mesh ourselves we cannot use it directly on the American option problem. However,

we could use EPDCOL to take the first few time steps and place a mesh point on the

non-smooth point of the domain. Then we could pass the computation on to BACOL.

Although the first part of the solution computed by EPDCOL would not have spatial

error control we could get an estimate of the spatial error the same way we did for

the European option in this thesis. Since the American option can be exercised at

59

any time before expiry it has a moving right boundary condition. This is an issue we

would have to consider in order to use BACOL to solve this problem.

References

[1] A Beginner’s Guide To Hedging. Retrieved from: http://www.investopedia.com

/articles/basics/03/080103.asp. (Feb 19, 2010).

[2] P. Amodio, J.R. Cash, G. Roussos, R.W. Wright, G. Fairweather, I. Gladwell,

G.L. Kraut and M.Paprzycki. Almost block diagonal linear systems: sequential

and parallel solution techniques, and applications. Numer. Linear Algebra Appl.,

7:275-317, 2000.

[3] J.H. Cerutti and S.V. Parter. Collocation methods for parabolic partial differential

equations in one space dimension. Numer. Math., 26(3):227-254, 1976.

[4] Carl deBoor. On calculating with B-splines. J. Approx. Theory, 6:50-62, 1972.

[5] J. C. Diaz , G. Fairweather and P. Keast. FORTRAN packages for solving cer-

tain almost block diagonal linear systems by modified alternate row and column

elimination. ACM Trans. Math. Softw.. 9(3): 358-375, 1983.

[6] J. Douglas, Jr. and T. Dupont. Collocation Methods for Parabolic Equations in a

Single Space Variable. Lecture Notes in Mathematics, 385. Springer-Verlag, Berlin,

1974.

[7] Norbert Hilber, Oleg Riechmann, Christoph Schwab, Christoph Winter. Compu-

tational Methods for Quantitative Finance. Springer, 2013.

[8] P. Keast and P. Muir. Algorithm 688 EPDCOL: a more efficient PDECOL code.

ACM Trans. Math. Softw., 17:153-166, 1991.

60

[9] N.K. Madsen and R.F. Sicovec. ALGORITHM 540 PDECOL, general collocation

software for partial differential equations. ACM Trans. Math. Softw., 5:326-351,

1979.

[10] James T. McClave and Terry Sincich. A First Course in Statistics(10th Edition).

Pearson, 2009.

[11] R. Wang, P. Keast and P.H. Muir. BACOL: B-spline adaptive COL-location

software for 1-D parabolic PDEs. ACM Trans. Math. Software, 30(4):454-470,

2004.

[12] Eric W. Weisstein. Normal Distribution Function. Retrieved from: http:// math-

world.wolfram.com/NormalDistributionFunction.html

[13] Eric W. Weisstein. Gaussian Integral. Retrieved from: http://mathworld. wol-

fram.com/GaussianIntegral.html

[14] Paul Wilmott, Sam Howison and Jeff Dewynne. The Mathematics of Financial

Derivatives: A Student Introduction. Cambridge University Press, 1995.

A Appendix

A.1 Driver Program Code

A.1.1 Call Option Uniform Mesh

The source code for the driver program that gives solution approximations for a call

option at uniformly spaced mesh points.

C

C THE INPUT REQUIRED CONSISTS OF :

C NINT : THE NUMBER OF SUBINTERVALS TO BE USED IN THE

C VARIABLE.

61

C KORD : THE ORDER OF THE B-SPLINES TO BE USED

C

implicit none

DOUBLE PRECISION XLEFT,DTUSED,XBKPT(1001),U(1,1001),SCTCH(1001),

* WORK(110000),T0,TOUT,DT,EPS,DX,SIGMA,R,E

INTEGER NQ,NSTEPS,NF,NJ,IWORK(5000),NPDE,NINT,NPTS,KORD,NCC,

* MF,I,K,INDEX

COMMON /ENDPT/ XLEFT

COMMON /GEAR0/ DTUSED,NQ,NSTEPS,NF,NJ

COMMON /PROBPARAMS/ SIGMA,R,E

NPDE = 1

READ(5,9100,END=9000) NINT, KORD

NPTS = NINT + 1

NCC = 2

T0 = 0.0

TOUT = 1.0

DT = 1.D-7

EPS = 1.0D-5

MF = 21

SIGMA = 0.2

R = 0.1

E = 1.0

WRITE(6,9200)NINT,KORD,EPS

INDEX = 1

IWORK(1) = 110000

IWORK(2) = 5000

C DEFINES THE UNIFORM MESH

DO 10 I = 1,NPTS

DX = 10.0/(DBLE(NPTS-1))

XBKPT(I) = DBLE(I-1) * DX

10 CONTINUE

XLEFT = XBKPT(1)

CALL PDECOL(T0,TOUT,DT,XBKPT,EPS,NINT,KORD,NCC,NPDE,MF,INDEX,

* WORK,IWORK)

IF (INDEX .NE. 0) GO TO 70

WRITE(6,9150) TOUT,DTUSED,NSTEPS

CALL VALUES(XBKPT,U,SCTCH,NPDE,NPTS,NPTS,0,WORK)

DO 60 K = 1,NPDE

WRITE(6,9300)K

62

WRITE(6,9400)(XBKPT(I), U(K,I), I=1,NPTS)

60 CONTINUE

70 WRITE(6,9500) INDEX

9000 STOP

9100 FORMAT(2I4)

9150 FORMAT(’ T = ’,E10.3,’ DT = ’,E10.3,’ TOTAL STEPS = ’,I6)

9200 FORMAT(’NO. OF SUBINTERVALS = ’,I3,’ KORD = ’,I2,

*’ EPS = ’,D10.2)

9300 FORMAT(10X,’PDE COMPONENT = ’,I3)

9400 FORMAT(10X,2F15.8)

9500 FORMAT(’ INDEX = ’,I3)

END

SUBROUTINE F(T,X,U,UX,UXX,FVAL,NPDE)

C

C THIS IS THE USER SUPPLIED SUBROUTINE TO SPECIFY THE DIFFERENTIAL

C EQUATIONS.

C

DOUBLE PRECISION U(NPDE),UX(NPDE),UXX(NPDE),FVAL(NPDE),T,X,SIGMA,R,E

INTEGER NPDE

COMMON /PROBPARAMS/ SIGMA,R,E

FVAL(1) = 0.5*SIGMA**2*X**2*UXX(1) + R*X*UX(1)

* - R*U(1)

RETURN

END

SUBROUTINE BNDRY(T,X,U,UX,DBDU,DBDUX,DZDT,NPDE)

C

C THIS ROUTINE SPECIFIES THE DERIVATIVES OF THE BOUNDARY CONDITION EQUATIONS.

C

INTEGER NPDE

DOUBLE PRECISION T,X,U(NPDE),UX(NPDE),DZDT(NPDE),

* DBDU(NPDE,NPDE), DBDUX(NPDE,NPDE),

* XLEFT

COMMON /ENDPT/ XLEFT

IF (X .NE. XLEFT) GO TO 10

DBDU(1,1) = 1.0

DBDUX(1,1) = 0.0

DZDT(1) = 0.0

RETURN

10 CONTINUE

DBDU(1,1) = 1.0

DBDUX(1,1) = 0.0

DZDT(1) = 0.0

63

RETURN

END

SUBROUTINE UINIT(X,U,NPDE)

C

C UINIT GIVES THE INITIAL CONDITIONS AT T=T0.

C

INTEGER NPDE

DOUBLE PRECISION X,U(NPDE), SIGMA, R, E

COMMON /PROBPARAMS/ SIGMA,R,E

U(1) = max(X - E, 0.0)

RETURN

END

SUBROUTINE DERIVF(T,X,U,UX,UXX,DFDU,DFDUX,DFDUXX,NPDE)

C

C THIS IS THE OPTIONAL ROUTINE PROVIDED IF THE USER WISHES TO

C SUPPLY AN ANALYTIC JACOBIAN.

C

INTEGER NPDE

DOUBLE PRECISION T,X,U(NPDE),UX(NPDE),UXX(NPDE),

* DFDU(NPDE,NPDE),DFDUX(NPDE,NPDE),DFDUXX(NPDE,NPDE),

* SIGMA,R,E

COMMON /PROBPARAMS/ SIGMA,R,E

DFDU(1,1) = -R

DFDUX(1,1) = R*X

DFDUXX(1,1) = (0.5)*SIGMA**2*X**2

RETURN

END

A.1.2 Put Option Uniform Mesh

The subroutines from the driver program that have been modified to solve the put

option on a uniform mesh.

SUBROUTINE BNDRY(T,X,U,UX,DBDU,DBDUX,DZDT,NPDE)

C

C THIS ROUTINE SPECIFIES THE DERIVATIVES OF THE BOUNDARY CONDITION EQUATIONS

C

INTEGER NPDE

DOUBLE PRECISION T,X,U(NPDE),UX(NPDE),DZDT(NPDE),

64

* DBDU(NPDE,NPDE), DBDUX(NPDE,NPDE),

* XLEFT,TOUT, SIGMA, R, E

COMMON /ENDPT/ XLEFT

COMMON /EXPIRTYTIME/ TOUT

COMMON /PROBPARAMS/ SIGMA,R,E

IF (X .NE. XLEFT) GO TO 10

DBDU(1,1) = 1.0

DBDUX(1,1) = 0.0

DZDT(1) = E*R*exp(R*T - R*TOUT)

RETURN

10 CONTINUE

DBDU(1,1) = 1.0

DBDUX(1,1) = 0.0

DZDT(1) = 0.0

RETURN

END

SUBROUTINE UINIT(X,U,NPDE)

C

C UINIT GIVES THE INITIAL CONDITIONS AT T=T0.

C

INTEGER NPDE

DOUBLE PRECISION X,U(NPDE)

REAL SIGMA, R, E

COMMON /PROBPARAMS/ SIGMA,R,E

U(1) = max(E - X, 0.0)

RETURN

A.1.3 Call and Put Option Non-Uniform Mesh

The assignment statements for the nonuniform mesh used for both the call and put

option problems

DO I = 1,6

XBKPT(I) = (I-1)*0.12

END DO

XBKPT(7) = .7199983371

XBKPT(8) = .8393507169

XBKPT(9) = .9214240563

XBKPT(10) = .9471422875

XBKPT(11) = .9601382971

65

XBKPT(12) = .9690535379

XBKPT(13) = .9760558198

XBKPT(14) = .9819953133

XBKPT(15) = .9872976591

XBKPT(16) = .9922145724

XBKPT(17) = .9969172220

XBKPT(18) = 1.0

XBKPT(19) = 1.006201160

XBKPT(20) = 1.011030121

XBKPT(21) = 1.016181222

XBKPT(22) = 1.021872503

XBKPT(23) = 1.028455400

XBKPT(24) = 1.036590441

XBKPT(25) = 1.047808847

XBKPT(26) = 1.067185501

XBKPT(27) = 1.124042134

XBKPT(28) = 1.240012281

DO 10 I = 29,101

XBKPT(I) = (I-1)*0.12 - 2

10 CONTINUE

A.1.4 Code for Determining the Exact Error

First declare the array XOUT(10001) as double precision in the main program and

then make the following change in the call to the subroutine VALUES

DO K = 1,10001

XOUT(K) = (K-1)*0.001

END DO

CALL VALUES(XOUT,U,SCTCH,1,10001,10001,0,WORK)

DO 60 K = 1,10001

WRITE(7,9400) XOUT(K), U(1,K)

60 CONTINUE

A.2 Determining the Relevant Data for Chapter 4

A.2.1 Section 4 - Introduction

The data for Figures 7 and 8 in Section 4 showing a preliminary test can be obtained

by running the driver program for a uniform mesh with xR = 20, NINT = 40, EPS

66

= 1.0× 10−6, r = 0.1, σ = 0.2 and E = 1.0.

A.2.2 Section 4.3

To determine the spatial error estimation for an approximate solution on a uniform

mesh from Section 4.3 we run the uniform mesh driver program with EPS = 1.0×10−7,

r = 0.1, σ = 0.2, E = 1.0, KORD = 4 and NINT = 100 and 200. Then we take the

absolute value of the difference between corresponding solution values for NINT =

100 and NINT = 200. The largest of these errors is the maximum spatial error and

gives us a sense of how close our computed solution is to the exact solution.

A.2.3 Section 4.5

To determine the spatial error estimation in solutions on a non-uniform mesh from

Section 4.5 we run the non-uniform mesh version of the driver for a call option with

EPS = 1.0 × 10−7, r = 0.1, σ = 0.2, E = 1.0, NINT = 100 and KORD = 4 and

6. Then we take the absolute value of the difference between corresponding solution

values for KORD = 6 and KORD = 4. The largest of these errors is the maximum

spatial error giving us an estimate of how close our computed solution is to the exact

solution.

A.2.4 Section 4.7

To generate the data used to compute the exact spatial error we began by computing

the reference solution. To do this we ran the code with the changes indicated in A.1.4

made to the uniform mesh driver program with r = 0.1, σ = 0.2, E = 1.0, EPS =

1.0× 10−8, KORD = 10, NINT = 800 and TOUT = 1.0. To generate the solution on

the uniform mesh we repeated the last step but instead set EPS = 1.0×10−7, KORD

= 4 and NINT = 100. To generate the solution on the non-uniform mesh we made

the changes indicated in A.1.4 to the non-uniform mesh driver program with r = 0.1,

67

σ = 0.2, E = 1.0, EPS = 1.0×10−7, KORD = 4, NINT = 100 and TOUT = 1.0. We

now have the reference solution and the approximate solutions on both the uniform

and non-uniform meshes can now be compared.

A.2.5 Section 4.8

The data for Figure 9 in Section 4.7 showing three different solution approximations

at different expiry times can be found by running the driver program for a call option

with a uniform mesh where r = 0.1, σ = 0.2, E = 1.0, EPS = 1.0× 10−5, KORD =

4, NINT = 100 and TOUT = 0.5, 1.0 and 1.5.

A.2.6 Section 4.9

The generate the data for the put option graphs in Figure 10 and Figure 11 showing

the approximate solutions on both a uniform and a non-uniform mesh, we ran the

driver code with r = 0.1, σ = 0.2, E = 1.0, EPS = 1.0× 10−5, KORD = 4, NINT =

100 and TOUT = 1.0.

68

