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ABSTRACT

Detailed models of a Centauri A and B based on the Hipparcos, Yale, and Soderhjelm parallaxes are
compared. The consequences of the uncertainty in mass, luminosity, surface temperature, and composi-
tion on the structure and the p-mode pulsation spectrum of the models are presented. All of the models
were constructed using the most current stellar structure physics available to us, including helium and
heavy-element diffusion, OPAL (Lawrence Livermore Opacity Library) equation of state, and OPAL and
Alexander opacities. Self-consistent models of &« Cen A and B that satisfy the observational constraints
have an initial helium mass fraction Y,,ys = ~0.28. The age of the system depends critically on whether
or not o Cen A has a convective core. If it does (our best model), then « Cen AB is ~7.6 Gyr old, and if
it does not, then the binary system is ~6.8 Gyr old. Both ages and Y,y are accurate to + ~10%
owing to observational uncertainties. The Galactic enrichment parameter (AY/AZ) for our best model
pair is less than 1. Pulsation analyses of our best models yield an average large and small spacing of
101 + 3 uHz and 4.6 + 0.4 uHz, respectively, for « Cen A, and 173 + 6 pyHz and 15 + 1 yHz for « Cen
B. Some methodologies that use p-mode frequency observations to constrain the system further are out-
lined. We include a simple test to determine whether or not o Cen A has a convective core and intro-
duce a method to use the small frequency spacing to determine the age of system, overcoming the

limitation that it is also sensitive to composition.

Subject headings: binaries: visual — stars: fundamental parameters — stars: individual (« Centauri) —
stars: interiors — stars: oscillations

1. INTRODUCTION

To date the most stringent tests of the theory of stellar
structure and evolution have been carried out for the Sun.
We know the Sun’s mass, luminosity, and radius to better
than 1 part in 10°; we know its age, 4.53 Gyr, from meteor-
itic dating, to within 0.04 Gyr; and we know its observable
surface chemical composition to better than +5%
(Guenther 1989; Guenther & Demarque 1997). We also
now know the run of sound speed throughout most of the
interior, via seismological inversions of the p-modes, to
better than 1% (Guzik 1998). These constraints, especially
the p-mode frequencies, have enabled solar model builders
to test much of the input physics, including element diffu-
sion and convective transport. In the case of nearby stars,
observationally derived radii and luminosities are known,
even in the best of cases, to an accuracy of 1%-10%. For
visual binary systems with well-measured parallaxes, the
uncertainty in mass determinations is rarely less than 1%
and more typically of the order of 5%-10% (Demarque et
al. 1986). And, of course, we have no direct means of deter-
mining the ages of stars except through stellar evolutionary
modeling of stars in binary systems or in clusters. The con-
straints are not stringent enough to test the physical
assumptions of stellar structure and evolution to a level
better than +10%-25%. Astroseismology has the potential
to change this situation dramatically (Guenther 1998). For
example, the large spacing, which is derived from p-mode
oscillation data, can be used to determine the radius of a
star, which in turn can be used to test convective transport
theory. For a star with a well-determined mass, composi-
tion, distance, luminosity, and surface temperature, astro-
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seismology can help us test stellar structure theory. For a
star with less well-known observables, astroseismology can
provide us with information about the star that cannot be
obtained by any other means.

To illustrate the very real sensitivity of the p-modes to
stellar evolution, in Figure 1 we show the [ =1 p-mode
frequencies for an evolving 1 M, star. As the star evolves,
the frequencies collapse, that is, the spacing between adja-
cent p-modes decreases. When the hydrogen core of the
model nears exhaustion, at ~ 8 Gyr, the spacings (see defini-
tion of large spacing Av in § 5) of the low n-valued p-modes
become irregular. First the n = 1 modes are affected; then
as the star ages and the helium core mass increases, the
n = 2 modes are affected; and so on. The irregular spacing
is a consequence of mode bumping (also known as avoided
crossings), where the frequencies of g-modes, trapped in the
growing helium core, increase into the region occupied by
the lowest n-valued p-modes. The p-mode frequencies are
perturbed (“ bumped ”) by the close proximity of the g-mode
frequencies (Aizenman et al. 1977).

A primary candidate for astroseismology is a Cen A.
Because it is nearby and part of the visual binary system o
Cen AB, it has a well-determined mass, surface composi-
tion, luminosity, and effective temperature. Furthermore,
the mass of « Cen A, ~1.1 M, and the mass of « Cen B,
~0.9 M, conveniently bracket the mass of the Sun.

Flannery & Ayres (1978) were the first to produce models
specifically for « Cen A and B. They tried to construct
models of & Cen A and B assuming a solar composition but
could not achieve satisfactory fits to the observations. They
were able to fit the observational constraints only for
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F16. 1.—Several | = 1 p-mode frequencies of an evolving 1 M star
(solar composition) are plotted as a function of age. To aid the eye, lines
have been drawn through the n = 7, 8, and 9 data points.

models with twice the solar heavy-element abundance.
Today, more refined abundance analyses support their con-
clusion that the o Cen system is more metal-rich than the
Sun.

Following the report of Fossat et al. (1984) of a possible
detection of p-mode oscillations on o Cen A, Demarque et
al. (1986) constructed models of « Cen A to test the p-mode
identifications. They found no agreement between their
model-predicted frequencies, specifically the large spacing,
and the observed frequencies. They also analyzed existing
ground-based parallax and orbital measurements (circa
1986) to obtain the masses of the components. Their values,
in common use since, must now be revised owing to the new
parallax determinations.

Noels et al. (1991) introduced a general procedure for
fitting models to the binary system. They kept as free
parameters Z, Y, age, and o, which they assumed to be the
same for both stars, and used the observed values of effec-
tive temperature and luminosity to constrain the system. In
order to examine the parameter space, they calculated the
first-order partial derivative dependencies of luminosity and
effective temperature with respect to the four free param-
eters from a grid of evolutionary tracks with varying Y, Z,
and o.

Edmonds et al. (1992) relaxed the constraint, previously
assumed, that the mixing-length parameter, o, is the same
for o Cen A and a Cen B. Their models (for « Cen A and B)
were also the first to include the effects of helium diffusion.
They applied the observed value for Z (a free parameter in
Noels et al. 1991) to their models to make up for the
removed constraint. To fit their models to observation, they
first calibrated Y by fitting the models, with solar a, to the
observed luminosity, and then they calibrated o by fitting
the models, with the previously calibrated Y, to the ob-
served effective temperature. Unlike the Noels et al. (1991)
fitting strategy, their procedure does not provide a com-
pletely self-consistent determination of « and Y, in that once
o is calibrated, the original Y value needs to be recalibrated
for the new «, and the whole procedure iterated until the
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values converge. They found that the mixing-length param-
eter for o Cen A is slightly smaller than for « Cen B but did
not include an uncertainty analysis to determine if the dif-
ference is significant.

Lydon, Fox, & Sofia (1993) tested their formulation of
stellar convection on « Cen A and B. They parameterized
the convective and radiative energy flux, determined from
their three-dimensional simulations of deep, efficient con-
vection (Lydon, Fox, & Sofia 1992), as a function of stan-
dard thermodynamic variables. They then replaced the
mixing-length approximation and its adjustable parameter
o with their parameterless description of convection. They
obtained models that approximately fitted « Cen A and B’s
position in the H-R diagram and thereby were the first to
model a star with a description of convection that does not
include an adjustable free parameter to determine the
radius. Their simulation of convection does not follow the
important shallow convection regime where the greatest
sensitivity to radius occurs; hence, as expected, their models
only roughly match o« Cen A and B’s H-R diagram posi-
tions.

In their careful analysis, Frenandes & Neuforge (1995)
also use o Cen A and B to test models of convection, includ-
ing the Canuto and Mazzitelli formulation (Canuto &
Mazzitelli 1991, 1992). Of interest here is their attempt to
determine whether or not the two stellar components
require unique mixing-length parameters. Owing to the
uncertainties in their models (and the uncertainties in the
observational constraints), they were unable to determine if
the o’s are distinct.

Even though o Cen AB is one of the best-observed stellar
systems, one finds that the uncertainties in the model-
deduced physical characteristics of the stars are too large to
test stellar structure theory. This is exemplified by the large
variation in published ages for « Cen AB, which range from
4 to 8 Gyr. The broad range in derived characteristics are in
part caused by the relatively large uncertainties in some of
the observational constraints. The amount of scatter caused
by the stellar modeling physics itself is unknown and
untested in stars other than the Sun.

How close are we, with regard to existing observational
constraints, to being able to test the physics of stellar struc-
ture and evolution? How exactly can astroseismology help
improve this situation? In this paper we will address these
questions. We will describe our renewed effort to produce
detailed models of « Cen A and B, constructed with the
latest physics, including helium and heavy-element diffu-
sion, and subject to the latest observational constraints,
including those derived from the new Hipparcos parallax,
which is significantly different from the formerly adopted
Yale parallax. Additionally, as we anticipate that p-modes
will soon be observed! on o Cen A (and B), we will investi-
gate the effects of uncertainties in the constraints on the
p-mode frequencies. This uncertainty analysis will enable us
to identify which features of the p-mode spectrum are best
suited to help further constrain the system.

Our study of « Cen AB is partly motivated by the tremen-
dous advances being made in modeling stellar convection
and adapting it to actual stellar structure and evolution
calculations. We believe that one of the first applications of
astroseismology will be to test stellar convection models

! Unfortunately, neither the COROT or MOST space missions will be
able to observe « Cen AB owing to the inclination of their orbits.
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and theory. Nearly all stellar models that have a convective
envelope, which includes the solar model and models of «
Cen A and B, are based on the mixing-length approx-
imation (hereafter MLA) as formulated by Bohm-Vitense
(Vitense 1953; Bohm-Vitense 1958). In the MLA convective
energy is assumed to be carried by an element of fluid of
fixed size that rises adiabatically a specific distance and then
is instantly absorbed by its surroundings through radiative
diffusion. In stellar structure the mixing-length distance, the
distance the fluid element rises, is assumed to be pro-
portional to the pressure scale height; the constant of pro-
portionality is called the mixing-length parameter o, which
is an adjustable parameter of the MLA. The MLA predicts
that the temperature gradient in most of the stellar convec-
tive envelope is very slightly superadiabatic. Near the
surface of the star, where convective transport efficiency
drops and radiative transport efficiency rises, there is a peak
in the temperature gradient that climbs well above the adia-
batic temperature gradient. This region, which is only
0.04% R, thick in the Sun, called the superadiabatic layer
(SAL), establishes the radii of stars that have convective
envelopes.

Although stellar astrophysicists are well aware of the lim-
itations of the MLA, it is only recently that both numerical
models of convection and seismological probes of the Sun’s
convective envelope have been used to test the theory in the
stellar astrophysical regime. Indeed, numerical convection
models show that for deep convection (efficient convection),
the temperature gradient is very nearly adiabatic (Chan &
Sofia 1987, 1989), as predicted by the MLA. But for shallow
convection, more appropriate for describing the SAL,
numerical convection models show that the SAL is not
accurately described by the MLA (Stein & Nordlund 1989;
Dravins & Nordlund 1990; Kim 1993; Kim et al. 1995,
1996a, 1996b; Nordlund & Stein 1996). Furthermore, the
frequencies of high-I p-modes calculated from solar models
based on the MLA do not match the observed frequencies
whereas models that are based on three-dimensional con-
vection simulations do (Demarque et al. 1999)

Because the SAL is very near the surface, high-/ p-modes,
which are currently undetectable in stars, are needed to fully
resolve the structure of the SAL. The low-I p-modes,
though, can discern gross features of the SAL and are
enough, for example, to show that the MLA is not adequate
for the Sun. And even though astroseismology may not be
able to provide enough information to predict the structure
of the SAL in stars, the observable low-/ p-modes do con-
strain the gross features of the outer layers, and they do fix
the radius.?

2 The depth of the convective envelope, and hence the radius of the star,
is determined by the specific entropy S (Schwarzschild 1958) of the convec-
tion zone, which is given by

Psurtace
S=fds=CpJ (V—=V,)dlnP,
Phase

where C, is the specific heat at constant pressure P, V is the temperature
gradient, V,, is the adiabatic temperature gradient, Py, is the pressure at
the base of the convective envelope, and P, is the pressure at the
surface. The integrand is effectively zero throughout all of the convection
zone except in the thin SAL, where the contribution to the integral is the
largest. Because the width, height, and shape of the superadiabatic peak
depends on the opacity, equation of state, surface boundary condition (set
by the atmosphere model), and the mixing-length parameter o, the depth of
the convective envelope itself, as set by the specific entropy, also depends
on these quantities.
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Another concern stellar theorists have with the MLA has
to do with the universality of the mixing-length parameter
itself: Does the solar-tuned value give correct radii when
applied to other stars? Although a “universal value” of the
mixing-length parameter is usually adopted when calcu-
lating stellar models, tracks, and isochrones for a specific
population of stars, there is no physical justification for this.
Because the MLA enables us to calculate stellar radii, which
determine a star’s position in the H-R diagram, the value of
o and its variation, as a function of mass, within a stellar
cluster affect our determination of the cluster’s age.

Most work to date on stellar convection has been focused
on the Sun. Because we anticipate p-mode data to become
available for other stars, we hope that soon we will be able
to test the applicability of the MLA and the new three-
dimensional models of convection on these stars. Ground-
based networks of telescopes, with instruments specifically
designed to see p-mode oscillation frequencies in the
Doppler shifts of spectral lines, such as the AFOE
(Advanced Fiber Optic Echelle; Brown et al. 1991), are
being tested on several nearby bright stars. In addition, two
space-platformed telescopes designed to observe small
luminosity variations in stars, MOST (Microvariability and
Oscillations of Stars) and COROT (Convection and Rota-
tion; Baglin & Auvergne 1997), are scheduled to be
launched by the year 2002. Most recently, Buzasi et al.
(2000) have reported seeing radial p-modes on « UMa using
the WIRE satellite. Their mode frequencies do appear to
match theoretical predictions (Guenther et al. 2000). Other
microsatellites, not as far along the funding process, are also
being developed to observe p-mode oscillations.

In the next section we describe the observational data
used to constrain our models of « Cen A and B, and in § 3
we describe the basic physical assumptions of our stellar
evolutionary models. In § 4 we describe the results of our
model calculations. In § 5 we discuss the p-mode spectra
and how they can be used to constrain the system. Finally,
in § 6 we summarize our results and conclusions.

2. OBSERVATIONAL CONSTRAINTS

2.1. Many Parallaxes

Owing to the high luminosity and large separation of the
stellar components of o Cen AB, it is technically difficult to
determine accurately the parallax and the orbital elements.
In addition, according to Pourbaix et al. (1999), the orbit is
slightly irregular, possibly because of an unseen component.
In this work we consider three distinct parallaxes for o Cen
AB: the parallax obtained from Hipparcos, 742.12 + 1.40
mas; our heretofore reference parallax from Demarque et
al. 1986 , 750.6 + 4.6 mas, which was based on the Yale
Parallax Catalog value, 749.9 + 5.4 mas, but derived from a
slightly different weighting given to the individual obser-
vations; and the recently published value by Soderhjelm
(1999) that combines Hipparcos and ground-based obser-
vations, 747.1 + 1.2 mas. A fourth parallax, which we are
not considering in this work, has recently been published by
Pourbaix et al. (1999), 737.0 + 2.6 mas, that is lower still
than the Hipparcos parallax. We must reserve judgment on
this parallax until further results can confirm or dismiss this
result. We do note the models that Pourbaix et al. con-
structed for o Cen A and B, based on their parallax determi-
nation, are widely separated in age, 2.7 Gyr and 6.2 Gyr,
respectively; hence, they are unlikely to be realistic models



506 GUENTHER & DEMARQUE

of o Cen A and B.

2.2. Masses

We continue to use the orbital data from Heintz (1982)
for the separation a = 177515+07015 and the period
P =79.920 yr. And we continue to use the mass ratio of
Kamper & Wesselink (1978) f= 0.454 4+ 0.002, a result
recently confirmed by Pourbaix et al. (1999). The masses
derived from these orbital elements and the Hipparcos,
Yale, and Soderhjelm parallaxes are listed in Table 1. The
lower parallax of Pourbaix et al. (1999) gives significantly
higher masses, My =1.16 +0.031 M, and Mgz=0.97
+0.032 M.

2.3. Effective Temperature

For estimates of T, we rely on the recent summary
of published values provided in Table 1 of Neuforge-
Verhechke & Magain (1997). Effective temperature determi-
nations for « Cen A range from a low of 5710 K to a high of
5830 K. The high value, we note, is the determination of
Neuforge-Verhechke and Magain based on high-resolution
and high signal-to-noise ratio spectra. We adopt Ty 5 =
5770 + 50 K. The surface temperature determinations for «
Cen B also vary over a range of approximately 100 K, from
5250 to 5350 K. We adopt a value T g = 5300 + 50 K.

2.4. Metallicity

The values of [ Fe/H] obtained from spectroscopic-based
analyses, of course, depend on the assumed values of surface
temperature. We ignore this dependency and simply adopt
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an extensive range in Z to account for all likely possibilities.
From Table 1 in Neuforge-Verhechke & Magain (1997) we
note that published values of [Fe/H], range from —0.01 to
+0.28 and values of [Fe/H] range from —0.05 to +0.38.
Because our models of « Cen A and B, as we will show,
depend critically on Z, we have chosen initially to analyze a
wide range of possible values for Z from solar to twice solar,
ie., from Z = 0.02 to Z = 0.04 for both o« Cen A and o Cen
B. Later, when we want to constrain a unique pair of
models for pulsation and uncertainty analysis, we will adopt
values near those reported by Chmielewski et al. (1992),
[Fe/H], = 0.22 + 0.02 and [Fe/H]; = 0.26 + 0.02. These
values, we note, are consistent with the adopted T With
(Z/X)e = 0.0245 (Grevesse et al. 1996) this gives (Z/X), =
0.041 + 0.002 and (Z/X)g = 0.045 + 0.002. Although we
assume the initial (zero-age main-sequence) values of X and
Y,ie., X aus and Z ;4\, are identical for both stars, helium
and heavy-element diffusion, which we include in our
models, well affect the surface abundance of X and Z for «
Cen A and o Cen B differently; hence, we do expect [Fe/H]
to be different for « Cen A and B.

2.5. Luminosities

The luminosities we derive here are based on the visual
magnitudes published in the Hipparcos catalog, which are
within 0.02 mag of those published in the 4th edition of the
Yale Bright Star Catalog (see Table 1). The bolometric cor-
rections were obtained by linearly interpolating the color-
correction tables of Green et al. (1987) in T, [Fe/H], and

TABLE 1
o CEN A B CONSTRAINTS

Name Value

Source

Parallax = (arcsec) ........

Separation a (arcsec)......

Period P [yr].............. 79.920
Mass ratio f ............... 0.454 + 0.002
Mgt (8) ceveniiiiiienen. 4.79
Vg e —0.01 +0.01
| 1.35 4 0.01
(B=V)p ceveeeneiinennaannnn 0.71 + 0.04
(B=V)g ceveeenennennannnns 0.90 + 0.02
[1316) PRI —0.059 + 0.041
(010 PN —0.194 + 0.021
My [Mg].oooiiiiiiinnn. 1.0844 + 0.008
1.1238 4+ 0.008
1.1015 + 0.008
Mg [Mg].ooooiiiiiininnnn. 0.9017 + 0.007

0.9344 + 0.007
0.9159 + 0.007
0.1924 + 0.017
0.2027 + 0.017
0.1969 + 0.017
—0.2977 £ 0.011
—0.2874 £+ 0.011
—0.2932 + 0.011

Toe A eeeeeeeeeeeneeeeennnns 5770 + 50 K
Y PR 5300 + 50 K
[Fe/Hy coevveeeeeeaaennn. 0.22 + 0.02
[Fe/Hlp ooeoneeeeeannnn... 0.26 + 0.02
(Z)X) e 0.041 + 0.002
(Z/X)g e, 0.045 + 0.002

0.7506 + 0.0046

0.74212 + 0.0014

0.7471 + 0.0012
17.515 + 0.002

Yale (Demarque et al. 1986)
Hipparcos Catalog
Soderhjelm 1999

Heintz 1982

Heintz 1982
Kamper&Wesselink 1978
Revised Yale Isochrones
Hipparcos Catalog

Hipparcos Catalog

Hipparcos Catalog

Hipparcos Catalog

Revised Yale Isochrones
Revised Yale Isochrones
Based on Yale Parallax

Based on Hipparcos Parallax
Based Soderhjelm Parallax
Based on Yale Parallax

Based on Hipparcos Parallax
Based on Soderhjelm Parallax
Based on Yale Parallax

Based on Hipparcos Parallax
Based on Soderhjelm Parallax
Based on Yale Parallax

Based on Hipparcos Parallax
Based on Hipparcos Parallax
Neuforge-Verhechke & Magain 1997
Neuforge-Verhechke & Magain 1997
Chmielewski et al. 1992
Chmielewski et al. 1992
Derived (see text)

Derived (see text)
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B—V. Here we assumed [Fe/H] = 0.25 for both a Cen A
and B, we adopted the Hipparcos values for (B— V), = 0.71
+ 0.04 and (B—V)g = 0.90 + 0.02, and took Ty , = 5770
K and T 5 = 5300 K. We obtained (BC), = —0.059 and
(BC)g = —0.194. Our final derived luminosities are listed
for each of the three parallaxes in Table 1.

The luminosities derived here are different from
Demarque et al. (1986), where we used log (L,/Lg) = 0.17
and log (Lg/Ly) = —0.32, but are very close to the recent
and commonly adopted values of Noels et al. (1991),
log (Ls/Lg) = 0.1853 £+ 0.015 and log (Lg/L) = —0.3065
+ 0.015. The new Hipparcos parallax compared to the Yale
parallax accounts for a +0.01 increase in the log of the
luminosity.

It is difficult to determine the overall uncertainty in the
luminosity. The uncertainty in the bolometric correction
(BC), which is dominated by the uncertainty in B—V, con-
tributes +0.016 for o Cen A and +0.008 for « Cen B to the
uncertainty in the log-luminosity derivation. The uncer-
tainty in V estimated to be +0.01 accounts for +0.004
uncertainty in the log-luminosity derivation. And finally,
the uncertainty in the parallax, which we assume is +5 mas
(to encompass the range of parallaxes we are considering),
contributes +0.005 to the uncertainty in the log-luminosity.
Assuming the contributing uncertainties are independent,
the total uncertainty by only these factors in log (L,/L) is
+0.017 and log (Lg/Le) is +0.011, with the error domi-
nated by the uncertainty in the BC.

3. STELLAR MODELING

3.1. Model Physics

We have attempted to carry out as complete and up-to-
date an evolutionary analysis of « Cen AB as is reasonably
possible. To that aim we have utilized the latest generation
of physics, now demanded by solar seismology, in our evo-
lutionary calculations of « Cen A and « Cen B.

All the models were calculated using the Yale stellar evo-
lution code (YREC; Guenther et al. 1992). The initial or
zero-age main-sequence (ZAMS) models for « Cen A and B
were obtained from pre-main-sequence evolutionary calcu-
lations to the ZAMS for stars with the appropriate mass
and near-solar composition. Post-ZAMS evolutionary
sequences for models with different compositions were
obtained by first rescaling the composition of these ZAMS
models.

We used the current equation-of-state tables from Law-
rence Livermore (Rogers 1986; Rogers, Swenson, & Iglesias
1996). For the interior opacities we used the Lawrence
Livermore (OPAL98; Iglesias and Rogers 1996) tables and
for the surface and atmosphere opacities we used the tables
of Alexander and Ferguson (1994). Both sets of tables are
provided in a form that enables interpolation in not only X
and Y, but also Z. The stellar evolution code, therefore, can
and does use opacities appropriate for the composition of
each shell in the model, even when Z varies from shell to
shell as it does when heavy-element diffusion is accounted
for. The equation of state is not as sensitive to changes in Z
as are the opacities. For the equation-of-state tables the
code uses a single Z composition table, Z,,ys, throughout
the model.

Because o Cen A and o Cen B are nearly solar-type stars,
we choose to use the Krishna-Swamy (1966) atmosphere
model rather than the more customary Eddington gray

o CEN AB 507

atmosphere. The Krishna-Swamy atmosphere provides an
analytical T-t relation that fits the observed T-t relation for
the Sun out to the temperature minimum in the solar
corona. Our choice of atmosphere model perturbs the
interior-structure variables by less than one part in 10* and,
hence, does not greatly affect our conclusions about the age
and the composition of o« Cen A and B (Guenther et al.
1992). It does, though, affect the p-mode frequencies, which
are sensitive to the structure of the outermost layers.

The other basic physics of YREC are described in
Guenther et al. (1992) and will not be further described here.
For reference, in Table 2 we show the physical character-
istics of a solar model constructed with the above described
assumptions. Note that this solar model fits the low- and
intermediate-! p-mode frequencies (0 =/ = 100) to better
than 3 parts in 10*.

3.2. Constraining the Models: An Overview

In terms of stellar modeling the binary system is defined
by 14 parameters, seven for o Cen A: L,, luminosity; Ty 4,
effective temperature; M,, mass; Yzayg a, initial helium
mass fraction; Z,,ys 4, initial metal mass fraction; 4,, age;
and o,, mixing-length parameter, and a similar set of seven
parameters for o Cen B. The binary nature of the system
provides three constraints: Yzuus a = Yzams.B» Zzams.a =
Zzams, s> and A, = Ag. In standard stellar evolution Y, g,
Zsamss M, A, and o are input, and L and T are output.
Therefore, modeling « Cen A and « Cen B provides four
additional constraints L, = L(Yzams,.a> Zzams.a> Aa> Ma,
aa),  Tegr.a = Togr,a(Yzams, o> Zzams.as Aas My, 0a)y Ly =
Ly(Yzams,8> Zzawms, 8> Ap> Mp, 0p), and Tege g = Togr 5(Yzams, 55
Zzams. s> Ap, My, ag). We need an additional seven con-

straints to close the system. Six of these are normally taken
as the observed values for effective temperature, mass, and
luminosity.

We have 13 of the 14 constraints needed to uniquely
specify the o Cen AB system. We have chosen not to close
the system, as have others in the past, by assuming that the
mixing lengths are identical for « Cen A and B. We no
longer prefer this assumption because one of the goals of
our research, and possibly one of the first applications of
astroseismology, is to determine whether or not a single
mixing-length parameter is applicable to all stars regardless

TABLE 2
REFERENCE SOLAR MODEL
CHARACTERISTICS

Characteristic Value

XgAMS -vvevee 0.70623
TAMS << e eees 0.27377

ZAMS -+ veeee 0.02000

D, G 0.73798

) AP 0.24400

Zggg ovennenn 0.01802

Age ........... 4.55 Gyr

Mg .oooononoo. 0.0242 M,

Regovviennnnnn 0.7129 R

log Ty -...... 3.7619

My covenenne. 4.79

log P, ........ 17.374

log T,......... 7.1975

logp,.cenn... 2.1886

O eeeineeannnns 2.087
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of mass, composition, and age. We take as our final con-
straint Z .

We calculated an array of models in Y, 5 and Z,4 s for
o Cen A and an array of models in Y, ,ys and Z,, s for o
Cen B. We forced the models to fit the observed T and log
(L/L) by adjusting the mixing-length parameter of each of
the models. The two arrays of models, one for « Cen A and
one for « Cen B, were then compared and models with
common Yz,us and Z;,us as well as age were identified.
This yielded a one-dimensional sequence of model pairs
(o« Cen A and o Cen B). We choose Z,, s as the parameter
of this sequence, although we could just as easily have
chosen age or Y, ,ys. To obtain a unique pair of models, we
applied the last constraint to the system, i.e., we selected the
model pairs that have the observed Z ;.

3.3. Some Modeling Details

To produce a model of « Cen A (the procedure is similar
for « Cen B) that matches the observed Ty , and
log (Ls/Ly) for a given composition (Xzams, Zzams) We
rescale the composition in our ZAMS model, and then
evolve the model. If the evolutionary track does not pass
within +0.001 in log (L,/Ly) and +0.001 in log Ty A, We
adjust the mixing-length parameter «, which for a given
luminosity, controls the radius of the model (assuming the
model has a convective envelope). Then the track is recalcu-
lated. The process is iterated until the track passes within
the above noted tolerances of « Cen A’s position in the H-R
diagram. The entire iterative process is automated in
YREC, and thus, YREC produces a fitted model that estab-
lishes a, age, Y., and Z,, as a function of X ;sus, Zzams>
T4 and log (L,/Lg). Two two-dimensional grids (Yzaus
X Zzams), one for « Cen A and one for o Cen B, were
constructed using this process, with Y ,ys ranging from 0.23
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to 0.30 in increments of 0.01 and Z,, s ranging form 0.020
to 0.040 in increments of 0.002.

We then plotted age versus Z,,ys for each Y,,ys in the
array of models. Since the age increases monotonically with
increasing Z,,ys and since the rate of increase is different
for o Cen A and B, the age versus Z,,ys curves for « Cen A
cross the curves for « Cen B. At the points of intersection, if
they exist, « Cen A and « Cen B have identical age, Y, ys,
and Z,,\s- Because the points of intersection are obtained
by simple linear interpolation, and because the physical
characteristics of a stellar model, in particular its age, are
not linear functions of, for example, Y, s and Z;,ys, the
intersection data are only approximate.

Finally, we plotted the surface (Z/X), and (Z/X); as a
function of Z, s and applied the Z_, constraint to obtain
a unique pair of models for the « Cen AB system. The final
pair of models were used in our pulsation and uncertainty
analysis.

4. o CEN A AND o« CEN B MODELS

As outlined in the preceding section, we began by con-
structing a grid of models spanning a range in Y,y and
Zaus for both o Cen A and B. Even though the models
have distinct compositions, all were tuned, via adjustments
to the mixing-length parameter, to have the observed lumi-
nosity and effective temperature. The top two panels of
Figure 2 show the evolutionary tracks of several of the o
Cen A models. The location of & Cen A in the H-R diagram
is identified by the single data point with error bars. The
specific (Yzams, Zzams) compositions are identified in the
figure. The tracks are diverse, owing in part to the existence
or nonexistence of a convective core (see lower two panels
in Fig. 2). If a convective core develops during the evolution
of the model, fresh hydrogen is mixed into the core that
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Fi1G. 2.—Panels (a) and (b) show evolutionary tracks for a selected group of models of @ Cen A. The position of « Cen A in the H-R diagram is indicated by
the square data point with error bars. The models in panel (a) have Z, s = 0.034 and the models in panel (b) have Z,, s = 0.026. Plots of the time evolution
of the mass of the convective core, M, corresponding to the models plotted in panels (a) and (b) are shown below in panels (c) and (d), respectively.
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extends the star’s main-sequence lifetime. If not, core hydro-
gen exhaustion occurs earlier, and so does the star’s evolu-
tionary journey toward the giant branch. The lower two
panels in Figure 2 plot M, the mass of the convective core
in solar masses, versus age for the corresponding tracks in
the panels above. The models whose tracks are C shaped
correspond to models that have convective cores. These
models still have some hydrogen fuel left in their cores,
X, > 0.01, whereas the models that do not develop convec-
tive cores are nearly exhausted of hydrogen in their cores
with X, < 0.0001.

The convective cores develop shortly after the ignition of
CNO burning. Because the nuclear luminosity of CNO
burning depends on the temperature to a high power (~ 15),
it dumps heat into the core at a much greater rate than into
the cooler surrounding regions, and as a consequence con-
vection starts. CNO burning will begin when the tem-
peratures and densities in the core are high enough.
Increasing Y both increases the core density and the central
temperatures; hence, models of o Cen A with greater Y are
more likely to develop convective cores from CNO burning
than models with lower Y.

Having produced hundreds of models of « Cen A and B,
all with distinct Y, , s and Z;, s, We next need to apply the
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constraint of common age and ZAMS composition to the
models. This was accomplished graphically via plots similar
to those shown in Figure 3. In Figure 3, each panel shows a
plot of the age versus Z,,ys for a given Y,y All of the
models calculated for « Cen A and B are represented.
Models based on the Hipparcos, Yale, and Soderhjelm
parallaxes, which fix the mass and luminosity of the models,
are shown, distinguished by the different line styles.

From each plot we located the point of intersection, for a
specific parallax, of the « Cen A and « Cen B curves. This
intersection point, subject to the uncertainties of linear inter-
polation, corresponds to a pair of models for the « Cen AB
system that have common age, Y;,ys, and Z;,ys- The com-
bined set of intersection points from each plot forms a linear
sequence of & Cen AB model pairs as a function of Y, s.
The sequence could be equally as well characterized by
Z,aus O age. We chose to characterize the sequence by
Z,aus because it is closely tied to the final constraint Z .

We caution that the « Cen A curves for each parallax,
plotted in Figure 3, should only be matched with the o Cen
B curves of the same parallax. The intersection of one paral-
lax curve with a different one does not define, for example,
an error region associated with the parallaxes. This is
because the published uncertainties for each parallax mea-

age [Gyr]

15 T

—
o

age [Gyr]

~~~~~~~~~~~ Yale
— — — Hipparcos
Soderhjelm

Y=0.29

111

0.02 0.03 0.04 0.03

Zzpms Zzpms

0.04 0.03 0.04 0.03 0.04
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Fi1G. 3.—Plots of age versus Z,,, for models of « Cen A and o Cen B are shown. Each panel contains models for a specific Y, ,ys. Three different sets of
models were constructed, one each for the Yale, Hipparcos, and Soderhjelm parallaxes. For a given parallax, the points of intersection of the lines in each
panel corresponds to a pair of models (@ Cen A and « Cen B) that have common age, Z, s, and Yy, ys-
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surement are smaller than the spread of parallaxes con-
sidered and because it is improbable that the parallax of «
Cen A is different from the parallax of « Cen B, which is
what one would be assuming if one measures the intersec-
tion points from two distinct parallax curves.

The uncertainties associated with the parallax are rep-
resented in Figure 4, which plots age versus Z,,yg for just
the intersection points. There is a jump that occurs in the
common age of « Cen A and B between Z,,ys = ~ 0.027
and Z,, s = 030. This marks the transition from models of
o Cen A that do not develop a convective core during their
evolution, to the left, to models that do, to the right. Con-
vection in the core extends the main-sequence lifetime of «
Cen A models, which, as a consequence, raises the age of the
intersection points. Figure 4 shows that even accepting the
broader uncertainty defined by the spread in published
parallaxes, rather than the tighter uncertainties quoted for
each individual parallax, the age of the system is confined to
a small 1 Gyr range centered on 7.2 Gyr. It appears that the
age uncertainty could be refined still further given a precise
Zaus Value, but, as we discuss next, the uncertainties in
Yourt, Zourts Toge>» mass, and luminosity ultimately prevent a
more precise determination of the age.

To estimate the effect of uncertainties in mass, luminosity,
effective temperature, helium abundance, and metallicity on
the models, we selected the pair of models that lie on the
curve for the Soderhjelm parallax in Figure 4 and that have
(Z/X)gure closest to the observed values (see Table 1). The
physical characteristics of these models are listed in the first
row of Tables 3 and 4, for « Cen A and B, respectively. The
initial composition values for these models are: Y,y =
0.280 and Z,,ys = 0.034. With these models as reference,
we calculated new models perturbing individually the L, M,
Toess Yzams, and Z;,us- The magnitude of the perturbation is
listed in the second column. The L perturbation is in units
of log L/L, the M perturbation is in units of M o, the T s
perturbation is in units of K. For example, the model identi-
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F1G. 4—Age versus Z,, s is shown for the (interpolated) models at the
points of intersection identified in Fig. 3.

fied as “ A-AL” in Table 3 is similar to the reference model
A, except that it was constrained, during the evolutionary
modeling, to have a final log-luminosity 0.01 less than the
reference model. Below the first line of data in Tables 3 and
4, corresponding to the perturbed models, the columns list
the magnitude of the effect that the perturbations have on
Xurts Zoure> Age (in Gyr), o, M, M., (mass of the convec-
tive envelope in units of M), X.,, (radius fraction location
of the base of the convective envelope), log P, (log central
pressure in dyne cm~2), log T, (log central temperature in
K), log p. (log central density in g cm™3), (Av) (averaged
large p-mode spacing in uHz), {dv,) (averaged [ = 0 small
spacing in yHz), and {Jv,) (averaged | = 1 small spacing in
uHz).

With respect to the age, uncertainties in the composition
(models A + AY, A + AZ in Table 3 and models B + AY,
B + AZ in Table 4) appear to have the biggest effect. Indeed,
the combined rms error in age for « Cen B from Z,,, and
Y, ams 18 more than +2 Gyr, 4 times the age scale shown in
Figure 4! This may explain the great variation in published
ages for « Cen AB. From our vantage point, and as we
discuss in the next section, we believe that astroseismology
has the potential to reduce the volume of the error space.

In Figure 5 we plot « for « Cen A and B, obtained by
linear interpolation, opposite Z,,ys. For each parallax, o
Cen A and B maintain distinct values of o for all Z,s.
Referring to Tables 3 and 4, we see, though, that the effect of
uncertainties in Ty¢, Yzams, a0d Zy s (~ 0.2 for o Cen A
and ~ 0.3 for « Cen B) are so large that it is not possible
to state definitively whether or not « Cen A and B do indeed
have distinct mixing-length parameters.

In Figure 6 we plot Z;,ys versus Y, s, where Yy, ys for
the intersection points was obtained by linear interpolation.
The relationship is nearly linear: Y;,ys = 2.657 X Zyans +
0.187.

The connection between Z,,ys and the observed metal-
licity for « Cen A and B is shown in Figure 7, which plots
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Fi1G. 5—Mixing-length parameter o versus Z,,ys is shown for the
(interpolated) models at the points of intersection identified in Fig. 3.
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F1G. 6.—Y, o5 Versus Z,,y;s is shown for the (interpolated) models at
the points of intersection identified in Fig. 3.

(Z/X)guee for o Cen A and B as a function of Z,,ys. The
observed (Z/X),¢ values and error range (also shown in
Fig. 7) were derived from the [Fe/H] values of Chmielewski
et al. (1992) calibrated to the solar abundances of Grevesse
et al. (1995). Ignoring observational uncertainties for the
moment, our models, which do include both helium and
heavy-element diffusion, demonstrate that « Cen B retains
more of its primordial metals at the surface than « Cen A.
Within the observational uncertainties though, this differ-
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F1G. 7—Surface metal to hydrogen mass fraction ratio (Z/X),, vs.
Z 4 ams 18 shown for the intersection-point models of « Cen A and « Cen B
identified in Fig. 3. The observed values and error bar range of (Z/X),,, for
o Cen A and o« Cen B (Chmielewski et al. 1992) are indicated by the
horizontal lines.
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ence is not distinguishable. Our reference models, A and B,
lie within the error bars of the observed surface metallicities
for o Cen A and B.

In summary, we have presented a viable methodology for
determining the structural and evolutionary state of « Cen
A and B. Unfortunately, the uncertainties in current obser-
vational constraints prevents us from narrowing in on a
small range of possible models. The uncertainties in com-
position and T, are particularly troublesome with regard
to pinning down the age and mixing-length parameters.
Although the age of our reference models A and B is 7.6
Gyr, the observational uncertainties expand the uncertainty
of this determination to +2 Gyr. And, although we do
derive distinct mixing-length parameters for models of o
Cen A and B, again, the effect of observational uncertainties
prevents us for conclusively stating whether or not this dif-
ference is significant.

We have conservatively assumed that the observational
uncertainties are themselves independent and that the
uncertainties associated with « Cen A are independent of
those associated with o Cen B, except in the case of the
parallaxes. This is not completely valid and a relaxation of
this assumption would probably reduce the error space,
possibly by up to a factor of 2.

5. PULSATION ANALYSIS

Low-I p-mode frequencies were calculated for all of the
models in Tables 3 and 4 using Guenther’s stellar pulsation
code (Guenther 1994). The calculation of p-mode fre-
quencies includes nonadiabatic corrections for radiation in
the Eddington approximation. The numerical accuracy of
the calculation is better than +0.1 pHz for models with
~2000 shells, as are our models of @ Cen A and B. We
estimate that the uncertainties associated with the pulsation
physics, based on studies of models of the Sun, are less than
approximately +0.3 yHz at low frequencies, increasing to
approximately +3 puHz at higher frequencies, where unac-
counted for nonadiabatic effects due to convection-
oscillation interactions take place (Guenther & Demarque
1997). Indeed, it is believed that the solar p-modes are
driven by turbulence near the SAL, and presumably a
similar driving mechanism exists in the near solar-like o
Cen A and B.

The large spacings, Av=v(n,]) —v(n — 1, 1), and the
small spacings, v, = v(n, [) — v(n — 1, [ + 2), for the models
listed in Tables 3 and 4 were calculated. Here, n is the radial
order, | is the azimuthal order, and v is the frequency. Aver-
ages of the large and small spacings were also calculated.
For the large spacing, the average {(Av) was obtained over
n = 14-24 and [ = 0-3 for a Cen A, corresponding to the
frequency range ~1500 uHz to ~2500 puHz, and over
n = 7-13 and | = 0-3 for a Cen B, also corresponding to the
frequency range ~ 1500 pHz to ~2500 uHz. For the small
spacings, the average {dv,> was obtained over n = 14-24
and [ =0 for « Cen A, and over n = 7-13 and [ = 0 for «
Cen B. The average {dv,) is similar to <{év,) except that
I = 1 modes were selected. The averaged spacings are listed
in Tables 3 and 4. From these tables we estimate the large
spacing {Av), = 101 + 3 yHz for o Cen A, and {(Av)y =
173 + 6 uHz for o Cen B.

Figure 8 shows the large spacing plotted as a function of
frequency for all of the models in Tables 3 and 4. In each
panel along the top row, the reference A model is plotted
with a solid line, and the perturbed models, as indicated in
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Fi1G. 8.—Large spacings Av versus frequency v are shown for the | = 0, 1, 2 and 3 p-modes. The top row of panels show plots for « Cen A. The p-mode
spacings for the reference model A in Table 3 are indicated by solid lines. The p-mode spacings for the perturbed models, e.g., A + AL and A — AL, are
indicated by dashed lines, with the AL panel displaying the A + AL (and reference model) p-mode spacings, and the AM, AT, AY, and AZ panels showing
p-mode spacings for the A + AM, A + AT, A + AY, and A + AZ perturbed models. The bottom row of panels are similar to the top row except that they

correspond to models for « Cen B.

the legend, are plotted with dashed lines. Along the bottom
row, the reference B model is plotted with a solid line.

The large spacing is well known, from asymptotic theory,
to be primarily sensitive to the stellar radius. Therefore, it
comes as no surprise that perturbations to the luminosity
and T, (L oc R?T%;) produce the greatest effect on Av. Fur-
thermore, the AY and AZ panels show that changes to
Y ams and Z s have little affect on Av.

When the p-mode spectrum is first observed on o« Cen A
(similarly for « Cen B), the large spacing will probably be
the first characteristic of the spectrum identified (Guenther
1998)—seen as a peak in the Fourier transform of the power
spectrum. The large spacing provides a very precise means
of determining the radius of the star, uncontaminated to
any significant degree by uncertainties in the star’s composi-
tion.

The small spacing, also revealed as a peak in the Fourier
transform of the power spectrum, is sensitive to the struc-
ture of the core, specifically the derivative of the sound
speed. Figure 9 shows the small spacings plotted as a func-
tion of frequency for all of the models in Tables 3 and 4,
using the same key as in Figure 8. Because so many factors
can alter the density stratification in the core, it is not too
surprising that all the perturbations affect the small spac-
ings to some extent. The largest effects are produced by
changes to Y;,ys and Z,.ys. Curiously, for « Cen A,
changes to Y;,ys mostly affect the [ = 0 small spacing, and
changes to Z,, s mostly affect the [ = 1 small spacings.

Historically, it was initially believed that the small
spacing could be used to constrain the age of a star, but
later it was realized that this is true only if the composition
is known (Ulrich 1986). As we see from Figure 9, the small
spacing is too sensitive to other uncertainties, in particular,
the composition, to serve exclusively as an age constraint.
Minimally the small spacing can be used to reduce the
volume of the total error space, as noted by Brown et al.
(1991). But we believe there is a way to use the small spac-
ings of both stars in a binary system to determine the age of
the system. The method, which uses the fact that the two
stars have a common age and composition, is outlined in
the summary and conclusions section.

The small spacing can be useful in constraining the
model, if it is applied to a star in a particular phase of
evolution. For o Cen A, all of the models in Table 3 have
convective cores. We see, as shown in Figure 10, which plots
{bv, )y opposite M, for all the o Cen A models in Table 3,
that the small spacing is proportional, with negative slope,
to the mass in the convective core. In fact, this relationship
is maintained for all the perturbed models. Therefore, if o
Cen A is near the evolutionary phase that our models indi-
cate, (v, can be used to determine the mass of the convec-
tive core.

There is another feature of the p-mode spectrum of « Cen
A that can be used to constrain the system. It is the uneven
large spacing at low-/ and low-n (for nonradial modes only)
caused by mode mixing or mode bumping. As a star
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shown plotted as a function of convective core mass for the reference and
perturbed models (see Table 3) for o Cen A.

evolves, its core density increases, and as a consequence the
frequencies of its g-mode spectrum increase bumping into
the p-mode spectrum (Guenther 1991). For a specific
evolved stellar model, one sees, as a consequence of mode
bumping, p-modes that have dual or mixed mode character.
That is, the eigenfunction of the p-mode exhibits the phase
characteristics of a g-mode near the core, and a p-mode
throughout the rest of the star. The g-mode/p-mode mix
perturbs the frequencies of the affected p-mode. In Figure
11, similar to Figure 8, we plot the large spacings as a
function of frequency for lower frequencies. In this fre-
quency range, some of the | = 1, 2, and 3 p-modes are mixed
(see Tables 5 and 6), and as a consequence, their frequencies
are perturbed. As shown the large spacing, which defines the
frequency separation between adjacent p-modes, can be sig-
nificantly perturbed. The effect of the model perturbations
on the location of the mode-bumped spacings (ie., the
downward spikes in Fig. 11) is unique for each perturbation.
As expected, T,¢, which does not directly affect the core, has
no effect on the mode bumping. Mode bumping, on the
other hand, is extremely sensitive to composition.

How can the mode bumpings be used to constrain the
models, assuming one can actually observe individual
p-modes at low frequencies? We can imagine several appli-
cations. We believe mode bumping can be used to help
identify the individual modes in the p-mode spectrum.
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Fi1c. 11.—Large spacings v versus frequency v are shown for the [ = 0, 1, 2, and 3 p-modes for the reference and perturbed models of @ Cen A (see Table 3).
These plots are similar to those shown along the top row of Fig. 8, except that a lower frequency range is shown, where mode bumping (see text) occurs.

Observers have no means of identifying the azimuthal and
radial order of p-modes on stars except by comparisons to
model predictions. But because the modes are regularly
spaced, with one frequency range looking almost the same
as another, it is extremely difficult to “zero” the n and [
order of the spectrum (for the Sun we can spatially resolve
the modes across the disk, which makes the mode identifica-
tions, by comparison, easy). The spectrum in the region of
the mode bumping is not regularly spaced, and therefore,
we believe it can be used to identify the lowest order
p-modes, from which the rest of the spectrum can be fixed.
The mode-bumped spacings can be used to determine the
phase of evolution of the star. As noted in the discussion of
Figure 1, the upper limit of the n-value of the affected
p-modes increases with increasing stellar age, hence, by
noting at which n-value the irregularly spaced p-modes
begin one can then determine the age of the model, via
diagrams similar to Figure 1. Another application, which is
less clear to us at this stage, is the possibility of “inverting ”
the p-mode frequencies in this region to constrain the core
regions.

For reference purposes we include Tables 5 and 6, which
list the individual frequencies for model A, in Table 5, and
model B, in Table 6. The table lists, from left to right, I the
azimuthal order, n the radial order, n, the component of the
radial order that is p-mode in character, n, the component
of the radial order that is g-mode in character, v,4 the adia-
batic frequency, Vg.nonaa the real component of the non-
adiabatic frequency, v;.,,n.4 the imaginary component of the
nonadiabatic frequency, Av, and dv.

In summary, we have outlined how we imagine the
p-mode frequencies can be used to help constrain our
models of & Cen A and B. Specifically, we note that the large
spacing, being relatively insensitive to everything but the
radius, will be useful in constraining the radius of « Cen A
and B. The situation for the small spacing is more cumber-
some. Regardless, we point out that for models of @ Cen A
the I = 0 small spacing could be useful in constraining the
mass of the convective core. Finally, we point out that if our
models of « Cen A are correct, then the lowest frequency
p-modes exhibit mode bumping. We suggest that the irregu-
lar frequency spacing between adjacent p-modes caused by
the mode bumping will be useful in fixing the absolute iden-
tification of the radial and azimuthal order of the p-modes,

where no other method currently exists, and can be used to
determine the age of the system. At this stage, we are neces-
sarily vague about how these mode bumpings can be used
to constrain the structure of the core, to which they are
indeed very sensitive.

6. SUMMARY AND CONCLUSIONS

We have produced a reference model for & Cen A and B
and have estimated the effect of observational uncertainties
on the physical characteristics of the models. In addition,
we have discussed the potential usefulness of future p-mode
observations to further constrain the models.

Our models indicate that « Cen AB is approximately 6-8
Gyr old. Currently observational uncertainties, primarily in
composition, limit the accuracy of our age determination.
Although the quoted error for [Fe/H] is +0.02, the
published values of [ Fe/H] encompass a much larger range
with a scatter of +0.1. If we adopt the value and error bar
of Chmielewski et al. (1992; see Tables 1 and 3) then the age
of & Cen A is well determined at 7.6 + 0.8 Gyr, where we
have also included the contributions to the uncertainty
from Y. But if we more conservatively accept the larger
scatter of published [Fe/H] values as representative of the
typical uncertainty in [Fe/H], then the age determination
becomes bimodal because of the presence or absence of a
convective core in models of « Cen A. If o Cen A does not
have a convective core, corresponding to Z,,us < ~0.03,
then o Cen AB is 6.8 +0.8 Gyr old. We suspect that the wide
range of ages associated with previously published models
of @ Cen A and B are a consequence of the uncertainties in
composition. The total contribution to the age uncertainty
from uncertainties in the parallax and the BC’s are much
smaller by comparison.

We find that the mixing-length parameter, o, in our o Cen
A models is ~10% smaller than « in our o Cen B models,
but we also find that the effect of the composition and
surface temperature uncertainties on o is greater than this
difference. Therefore, we are unable to state whether or not
o Cen A and B have similar mixing-length parameters. The
uncertainties in composition and T need to be reduced by
a factor of four to begin to allow us to test convection
theory.

Because the large p-mode frequency spacing is primarily
sensitive to the radius of a star and insensitive to composi-



TABLE 5
o CEN A (MoDEL A) P—MODE DATA

l n ny ng vad A‘)R:nonad VI:nonad v 5‘)

...... 4 4 0 626.3 626.3 0.00

...... 5 5 0 733.8 733.8 0.00 107.5

...... 6 6 0 8424 842.4 0.00 108.6

...... 7 7 0 949.7 949.7 0.00 107.3

...... 8 8 0 1056.0 1056.0 0.01 106.3

...... 9 9 0 1159.7 1159.7 0.01 103.7

...... 10 10 0 1260.5 1260.4 0.03 100.7

...... 12 11 0 1361.2 1361.2 0.07

...... 13 12 0 1462.8 1462.7 0.14 101.5 7.00
...... 14 13 0 1563.7 1563.6 0.25 100.8 6.68
...... 15 14 0 1663.9 1663.6 0.43 100.1 6.18
...... 16 15 0 1763.7 1763.3 0.68 99.6 5.88
...... 17 16 0 1863.4 1862.9 0.95 99.6 5.59
...... 18 17 0 1964.3 1963.5 1.30 100.6 5.15
...... 19 18 0 2065.9 2064.8 1.74 101.3 4.75
...... 20 19 0 2167.1 2165.6 2.25 100.8 4.33
...... 21 20 0 2268.4 2266.4 2.85 100.8 3.81
...... 22 21 0 2370.4 2367.9 348 101.4 3.33
...... 23 22 0 2472.3 2469.3 4.15 101.4 2.86
...... 24 23 0 2574.6 2570.9 4.96 101.6 2.30
...... 25 24 0 2677.5 2672.9 5.90 102.0 1.75
...... 26 25 0 2780.1 2774.5 6.94 101.7 121
...... 27 26 0 2882.8 2876.0 8.20 101.5 0.63
...... 28 27 0 2985.9 2977.9 9.66 101.8 0.06
...... 3 4 1 563.5 563.5 0.00

...... 4 5 1 672.7 672.7 0.00 109.2 18.81
...... 5 6 1 780.6 780.6 0.00 107.9 16.73
...... 7 8 1 889.0 889.0 0.00

...... 8 8 0 996.6 996.6 0.00 107.6 13.85
...... 9 9 0 1101.4 1101.4 0.01 104.8 12.57
...... 10 10 0 1203.9 1203.9 0.02 102.5 11.44
...... 11 11 0 1304.9 1304.8 0.05 100.9 10.99
...... 12 12 0 1405.6 1405.6 0.09 100.7 10.49
...... 13 13 0 1507.4 1507.3 0.18 101.7 9.86
...... 14 14 0 1608.6 1608.4 0.32 101.1 9.43
...... 15 15 0 1708.2 1708.0 0.53 99.6 8.90
...... 16 16 0 1808.2 1807.7 0.80 99.8 8.37
...... 17 17 0 1909.1 1908.5 1.10 100.8 8.10
...... 18 18 0 20104 2009.5 1.48 101.0 7.72
...... 19 19 0 2112.1 2110.8 1.97 101.3 7.18
...... 20 20 0 22140 2212.3 2.53 101.5 6.80
...... 21 21 0 2315.8 2313.6 3.13 101.3 6.45
...... 22 22 0 2418.1 2415.3 3.80 101.7 5.98
...... 23 23 0 2521.0 2517.6 4.55 102.3 5.61
...... 24 24 0 2623.9 2619.7 5.39 102.1 5.27
...... 25 25 0 2727.0 2721.9 6.42 102.2 4.84
...... 26 26 0 2830.5 2824.3 7.58 102.4 4.47
...... 27 27 0 2933.9 2926.5 8.90 102.1 4.16
...... 3 4 1 613.8 613.8 0.00

...... 4 5 1 723.1 723.1 0.00 109.3

...... 5 5 0 759.9 759.9 0.00 36.8

...... 6 6 0 833.0 833.0 0.00 73.1

...... 7 7 0 940.8 940.8 0.00 107.8

...... 8 8 0 1047.8 1047.8 0.00 107.0

...... 9 9 0 11519 11519 0.01 104.1

...... 10 10 0 1253.0 1253.0 0.03 101.1

...... 1 11 0 1354.1 1354.0 0.07 101.1

...... 12 12 0 1455.8 1455.7 0.13 101.7

...... 13 13 0 1557.0 1556.9 0.24 101.2

...... 14 14 0 1657.7 1657.5 0.42 100.6

...... 15 15 0 1757.8 1757.4 0.66 99.9

...... 16 16 0 1857.8 1857.3 0.93 99.9

...... 17 17 0 1959.2 1958.4 1.28 101.1
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TABLE 5—Continued

l n np ng Vad vR:nonad vI:nonad AV 6‘)
2...... 18 18 0 2061.2 2060.1 1.71 101.7
2.0 19 19 0 2162.8 2161.3 222 101.2
2.0in. 20 20 0 2264.6 2262.6 2.82 101.4
2.0 21 21 0 2367.1 2364.6 344 101.9
2.0in. 22 22 0 2469.5 2466.4 4.12 101.9
2.0 23 23 0 2572.4 2568.6 4.94 102.1
2.0in. 24 24 0 2675.8 2671.1 5.87 102.5
2.0, 25 25 0 2779.0 2773.3 6.92 102.2
2.in. 26 26 0 2882.2 2875.4 8.18 102.1
2.0 27 27 0 2985.9 2977.8 9.65 102.4
3. 3 4 1 653.9 653.9 0.00
3. 4 5 1 763.9 763.9 0.00 110.0
3. 5 6 1 874.1 874.1 0.00 110.1
3. 6 6 0 903.5 903.5 0.00 29.5
3. 7 7 0 982.8 982.8 0.00 79.3
3. 8 8 0 1088.8 1088.8 0.01 106.1
3. 9 9 0 1192.5 1192.5 0.02 103.7
3. 10 10 0 1293.9 1293.8 0.04 101.4
3. 11 11 0 1395.1 1395.1 0.09 101.2
3. 12 12 0 1497.5 1497.4 0.17 102.3
3. 13 13 0 1599.1 1599.0 0.30 101.6
3. 14 14 0 1699.3 1699.1 0.51 100.1
3. 15 15 0 1799.8 1799.3 0.77 100.3
3. 16 16 0 1901.0 1900.4 1.06 101.0
3. 17 17 0 2002.7 2001.7 1.43 101.4
3. 18 18 0 2104.9 2103.6 1.92 101.9
3. 19 19 0 2207.2 2205.5 2.46 101.9
3. 20 20 0 2309.4 2307.1 3.06 101.6
3. 21 21 0 24121 2409.3 3.72 102.2
3. 22 22 0 2515.4 2512.0 4.45 102.7
3. 23 23 0 2618.7 2614.5 529 102.5
3. 24 24 0 2722.2 27171 6.31 102.6
3. 25 25 0 2826.1 2819.9 7.45 102.8
3. 26 26 0 2929.8 2922.3 8.75 102.5
3. 27 27 0 3033.6 3024.7 10.39 102.4

tion, it and a well-established parallax could provide the
necessary factor of four improvement in the T determi-
nations. Since [Fe/H] determinations depend sensitively on
the assumed values of T, with better atmosphere models
that include a more realistic treatment of convection (which
affects the line profiles), one should in principle be able to
reduce the uncertainties in the observed composition. We
therefore see no obstacles, once p-modes are observed, in
carrying out tests of stellar convection on « Cen A and B.

We find that « Cen A is in a unique evolutionary phase
where a small perturbation to the composition of the model
determines whether or not the model has a convective core.
As noted above, the presence of a convective core affects the
age determination—a convective core lengthens the main-
sequence (core hydrogen burning phase) lifetime and, as a
consequence, increases the derived age of « Cen AB by ~1
Gyr.

We examined three unique parallax determinations: the
Yale parallax, upon which nearly all models of « Cen A and
B have been based; the Hipparcos parallax; and, halfway
between them, the recently published Soderhjlem parallax,
which blends together ground and Hipparcos observations.
Our reference models are based on the Soderhjelm parallax.
We are able to produce self-consistent models of « Cen A
and o Cen B that match the observed metallicity and have
Y, ams = 0.28. This composition is consistent with the expec-
tations of Galactic nucleosynthesis modeling. We cannot
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rule out the Yale and Hipparcos parallaxes because obser-
vational uncertainties in other parameters, such as com-
position, dominate the uncertainties in our calculations. A
fourth parallax (Pourbaix et al. 1999) was brought to our
attention as we were writing up the results of this work that
is different enough from the parallaxes we have
considered—it is 5 mas smaller than the Hipparcos parallax
and 10 mas smaller than the Soderhjelm parallax—that it
might be testable by precise models. Indeed, when we
extrapolate our models to their parallax (the models calcu-
lated by Pourbaix et al. 1999 are too crude to be useful for
comparisons here), we estimate that Y, ,us = ~ 0.25. This
value is certainly on the low side of what one would expect
for a slightly metal-rich star in our Galaxy and suggests to
us that the Pourbaix parallax may be too low. We also note
that the models that Pourbaix et al. constructed for « Cen A
and B, based on their parallax determination, are too
widely separated in age to be realistic models of « Cen A
and B.

It is our opinion that p-mode observations will aid con-
siderably our ability to test stellar structure and stellar evol-
ution theory. Using « Cen AB as an example, we have
outlined specific methodologies that use the p-mode large
and small frequency spacings to help constrain the radius
and convective core mass, respectively, of « Cen A. And we
discuss the possibility of using the irregular frequency spac-
ings between adjacent modes at low frequencies, which is
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TABLE 6
o CEN B (MODEL B) P—MODE DATA

l n np ng Vad vR:nonad vI:nonad AV (SV

0...... 2 2 0 642.2 642.2 0.00

0...... 4 3 0 827.5 827.5 0.00 18.60
0...... 5 4 0 1009.9 1009.9 0.00 182.4 18.01
0...... 6 5 0 1191.3 1191.3 0.00 181.4 1691
0...... 7 6 0 1372.5 1372.5 0.00 181.2 16.90
0...... 8 7 0 1550.7 1550.7 0.00 178.2 16.59
0...... 9 8 0 1727.8 1727.8 0.00 1771 15.75
0...... 10 9 0 1902.2 1902.2 0.00 174.4 15.18
0...... 11 10 0 2072.5 2072.5 0.01 170.3 14.32
0...... 12 11 0 2240.8 2240.8 0.01 168.4 13.49
0...... 13 12 0 2408.2 2408.1 0.03 167.3 13.03
0...... 14 13 0 2575.0 2575.0 0.05 166.8 12.45
0...... 15 14 0 2742.0 2742.0 0.09 167.0 11.79
0...... 16 15 0 2907.7 2907.5 0.17 165.6 11.28
0...... 17 16 0 3071.8 3071.5 0.29 164.0 10.71
1...... 2 2 0 539.5 539.5 0.00

1...... 3 3 0 726.3 726.3 0.00 186.8 42.04
1...... 4 4 0 910.2 910.2 0.00 183.8 34.56
1...... 5 5 0 1094.3 1094.3 0.00 184.2 32.67
1...... 6 6 0 1274.5 1274.5 0.00 180.2 30.82
1...... 7 7 0 1454.5 1454.5 0.00 180.0 28.82
1...... 8 8 0 1633.3 1633.3 0.00 178.9 28.08
1...... 9 9 0 1808.9 1808.9 0.00 175.6 26.63
1...... 10 10 0 1982.2 1982.2 0.00 173.2 25.12
1...... 11 1 0 2152.0 2152.0 0.01 169.9 24.23
1...... 12 12 0 2319.5 2319.5 0.02 167.5 23.16
1...... 13 13 0 2487.2 2487.2 0.04 167.7 22.29
1...... 14 14 0 2654.7 2654.6 0.07 167.5 21.66
1...... 15 15 0 2821.0 2820.9 0.13 166.2 20.64
1...... 16 16 0 2986.3 2986.1 0.22 165.3 19.69
2. 2 2 0 618.9 618.9 0.00

2. 3 3 0 808.9 808.9 0.00 190.0

2. 4 4 0 991.9 991.9 0.00 183.0

2. 5 5 0 1174.4 1174.4 0.00 182.5

2. 6 6 0 1355.6 1355.6 0.00 181.2

2. 7 7 0 1534.1 1534.1 0.00 178.5

2. 8 8 0 17121 17121 0.00 178.0

2. 9 9 0 1887.0 1887.0 0.00 175.0

2.0 10 10 0 2058.2 2058.2 0.00 1711

2. 11 11 0 22274 22274 0.01 169.2

2., 12 12 0 2395.1 2395.1 0.02 167.8

2. 13 13 0 2562.6 2562.5 0.05 167.4

2., 14 14 0 2730.2 2730.2 0.09 167.6

2. 15 15 0 2896.4 2896.3 0.16 166.1

2., 16 16 0 3061.0 3060.8 0.28 164.6

3. 2 2 0 684.3 684.3 0.00

3. 3 3 0 875.6 875.6 0.00 191.3

3. 4 4 0 1061.6 1061.6 0.00 186.0

3...... 5 5 0 1243.6 1243.6 0.00 182.0

3. 6 6 0 1425.7 1425.7 0.00 182.0

3...... 7 7 0 1605.2 1605.2 0.00 179.6

3. 8 8 0 1782.3 1782.3 0.00 177.0

3...... 9 9 0 1957.0 1957.0 0.00 174.7

3. 10 10 0 2127.8 2127.8 0.01 170.8

3...... 11 1 0 2296.4 2296.4 0.02 168.6

3. 12 12 0 2464.9 2464.9 0.03 168.5

3. 13 13 0 2633.0 2633.0 0.06 168.1

3. 14 14 0 2800.3 2800.2 0.12 167.3

3...... 15 15 0 2966.6 2966.5 0.21 166.2

associated with mode bumping, to constrain the core struc-
ture and the age of the system. We also note that the mode-
bumped frequencies could be extremely useful in
establishing the /- and n-values of the observed p-modes.
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We find that the small spacing is sensitive to both the
composition and age and therefore cannot be directly used
to infer the age of any individual star. But we point out that
because « Cen A and B have the same age and ZAMS
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composition, the small spacing may yet be useful as an age
indicator. Here one would adjust the composition of the
models of « Cen A and B until the small spacings of the
models predict the same age for o« Cen A as for « Cen B.
When the composition is off, one would expect the ages
predicted by the small spacings of « Cen A and B to be
different. After some iteration one would end up with both
an age and composition determination.

From our reference models (A and B in Tables 3 and 4,
respectively) we estimate the large spacing (Av), = 101

+ 3 uHz for « Cen A, and {Av)y = 173 + 6 uHz for a Cen
B.
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