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ABSTRACT

We have investigated the effects of uniform rotation and a specific model for differential rotation on the pulsation
frequencies of 10 M� stellar models. Uniform rotation decreases the frequencies for all modes. Differential rotation
does not appear to have a significant effect on the frequencies, except for the most extreme differentially rotating
models. In all cases, the large and small separations show the effects of rotation at lower velocities than do the
individual frequencies. Unfortunately, to a certain extent, differential rotation mimics the effects of more rapid
rotation, and only the presence of some specific observed frequencies with well identified modes will be able to
uniquely constrain the internal rotation of pulsating stars.
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1. INTRODUCTION

Observationally detected stellar pulsation frequencies can
be used to place constraints on stellar models, giving us an
improved understanding of the interior structure and evolution
of stars. The most successful application has been the Sun,
where the large number of observed modes have placed strict
constraints on parameters such as the helium abundance (Y)
(Basu & Antia 2004; Antia & Basu 2006), the depth of the
convection zone (Christensen-Dalsgaard et al. 1989, 1991),
and the interior angular momentum distribution (Eff-Darwich
et al. 2002; Couvidat et al. 2003). Observations of pulsation
frequencies of other stars continue to improve, particularly
through dedicated satellites such as WIRE (Hacking et al. 1999),
MOST (Walker et al. 2003), CoRoT (Baglin et al. 2001), and
Kepler (Basri et al. 2005), as well as ground-based networks
such as STEPHI (Belmonte et al. 1993) and WET (Nather
et al. 1990). These improved observations, giving us long-term
coverage and improved accuracy, are the first steps in enabling
other stars to be constrained in a similar manner to the Sun.
Asteroseismology, then, has the potential to answer a number
of questions about the interior structure of stars throughout the
HR diagram. One aspect of stellar structure which could be
explored using asteroseismology is the internal rotation rate. It
is theoretically possible for stars to rotate with angular velocity
increasing or decreasing with distance from the rotation axis,
and there is some evidence that the latter may be true in massive
main-sequence stars, at least at the surface (Stoeckley 1968). A
third possibility is uniform rotation. It has been argued that
uniform rotation is unrealistic based on observations of the
Praesepe and Hyades clusters (Smith 1971). Of course, other,
less well structured rotation laws are possible. However, there
is little evidence in support of a specific rotation law, and the
large uncertainties prevent any of the possibilities from being
ruled out. We note in passing that the solar rotation rate in the
convection zone is primarily dependent on latitude (Schou et al.
1998; Thompson et al. 2003) and thus cannot be described by a
conservative rotation law.

Recently, interferometric observations of Achernar
(Domiciano de Souza et al. 2003) found that this star is far

3 Current address: Observatoire de Paris, LESIA, CNRS UMR 8109, F-92195
Meudon, France.

more oblate than is possible for a uniformly rotating star. This is
true because uniformly rotating stars reach critical rotation be-
fore they have sufficient angular momentum to produce such an
oblate object. However, Jackson et al. (2005) noted that models
in which the rotation rate increases inward from the surface can
produce the oblateness observed for Achernar and still match
the observed v sin i. While further study has proposed that the
oblateness may be due to a circumstellar envelope (Carcofi et al.
2008), the original conclusion does raise the interesting ques-
tion as to whether stars with rotation laws required to produce
such an oblate shape exist and, if so, whether these rotation laws
could be identified by possible pulsation modes. We investigate
this possibility in this paper.

Differential rotation with the rotation rate increasing inward,
as is considered in this paper, will have an impact on the deep
interior structure of the star, provided the differential rotation
is large enough. Rapid rotation in the outer layers of a star
has little to no effect on the gravitational potential and core
structure, as the envelope contains a relatively small fraction of
the stellar mass. In fact, many early attempts to model rotating
stars assumed that the mass in the envelope was negligible and
that the gravitational potential in this region could be modeled
using a Roche potential (Sackmann & Anand 1970). However,
it was recognized early on that this assumption was not always
valid. Efforts to model a wider variety of rotating stars were
made through the implementation of the self-consistent field
(SCF) method (Ostriker & Mark 1968), or through direct,
2D finite difference solutions to Poisson’s equation (Clement
1974, 1978, 1979). These methods allowed stars to be modeled
with differential rotation, at least under certain circumstances.
Concentrating angular momentum in the center, unlike uniform
rotation, can produce enough distortion to affect the core, and
consequently the evolution of the star. Only in this case can we
produce a model with interior properties significantly different
from the uniformly rotating model (Sackmann & Anand 1970).
Even restricting ourselves to this type of differential rotation
does not narrow the possibilities significantly. The rotation
could be shellular, as proposed by Zahn (1992), or cylindrical
(conservative rotation laws). In this paper, we have focused on
conservative rotation laws, either with uniform rotation or with
the rotation rate increasing toward the center of the star. Further
discussion of our models can be found in Section 2. In Section 3
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Figure 1. Rotation law used in differentially rotating models (Equation (2)). Curves show from bottom to top the rotation law for β = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, and 2.0 for a model with a surface equatorial velocity of 120 km s−1.

we consider the eigenfrequencies of rotating models as well as
the large and small separations in Sections 4 and 5, respectively.
Our conclusions are summarized in Section 6.

2. NUMERICAL MODELS

The stellar models are computed using the 2D stellar structure
code ROTORC (Deupree 1990, 1995). The code uses the OPAL
opacities (Iglesias & Rogers 1996) and equation of state (Rogers
et al. 1996). Here we consider only 10 M� ZAMS models
with X = 0.7, Z = 0.02. These models solve the conservation
equations of mass, momentum, energy, and hydrogen abundance
along with Poisson’s equation for the gravitational potential on a
two-dimensional finite difference grid with the fractional surface
equatorial radius and the colatitude as the independent variables.
The surface equatorial radius is determined by requiring that the
integral of the density over the volume of the model equals the
stellar mass. The ZAMS models are taken to be time independent
and static, except for the imposed rotation law, so that the mass,
azimuthal momentum, and hydrogen composition conservation
equations drop out.

The only change required in the stellar evolution code for
nonuniform cylindrical rotation laws is the addition of an extra
term in the total potential (e.g., Tassoul 2000):

Ψ = Φ −
∫ �

0
Ω2(� ′)� ′d� ′ (1)

= Φ − Ω2� 2

2
+

∫ �

0
� ′2Ω(� ′)

dΩ(� ′)
d� ′ d� ′

where Ω is the rotation velocity (in radians per second) and �
is the distance from the rotation axis (x sin θ , where x is the

fractional surface equatorial radius and θ is the colatitude). The
extra term is the last term on the right-hand side of the equation.
Performing the integral is straightforward for an analytically
imposed rotation rate distribution in the ZAMS models. The total
potential is used only to determine the surface location at each
latitude by taking the surface to be an equipotential. Although
defining a total potential requires a conservative rotation law,
this is the only way in which a conservative rotation law is
utilized in the stellar structure code.

We have constructed uniformly rotating ZAMS models with
rotation velocities between 0 and 360 km s−1, with an approxi-
mate spacing of 30 km s−1. We have also computed a number of
differentially rotating models at two values of the surface equa-
torial rotation velocity, 120 and 240 km s−1. The differential
rotation law is as given by Jackson et al. (2005):

Ω(� ) = Ωo

1 + (a� )β
(2)

where β is a parameter ranging from 0 (uniform rotation) to 2,
the maximum allowed for stability. The parameters a and Ωo are
used to impose the desired surface equatorial velocity and shape
of the rotation law at small distances from the rotation axis. We
have arbitrarily chosen a = 2. Figure 1 shows the rotation rate
as a function of distance perpendicular to the rotation axis for a
surface equatorial rotation velocity of 120 km s−1 and a surface
equatorial radius for a uniformly rotating model at that speed.
Increasing β increases the rotation rate close to the rotation axis,
including in the core of the star. Increasing angular momentum
increases structural changes, and thus the structural changes
increase with increasing β. It is expected that increasing the
rotation rate through increasing β may, in some ways, mimic
more rapid uniform rotation.
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Figure 2. Surface shape for uniformly rotating models. The polar radius decreases relative to the equatorial radius as rotation increases from 0 km s−1 to 360 km s−1.

One major result produced by significant rotation is an
appreciable distortion of the surface of the model. We present the
surface shape for a set of uniformly rotating models with surface
equatorial velocities ranging from 0 to 360 km s−1 in Figure 2.
For each model the equatorial radius is taken to be unity.
The ratio between the polar and equatorial radius decreases
with increasing rotation, as the polar radius decreases slightly
while the equatorial radius increases considerably. Differential
rotation in which the rotation rate increases with decreasing
distance from the rotation axis amplifies this effect. We present
the surface shape for the differentially rotating models in
Figure 3. The solid curves are for a surface equatorial velocity of
120 km s−1, while the dashed curves denote a surface equatorial
velocity of 240 km s−1. As the parameter β in Equation (2)
increases, the fractional polar radius decreases. The change in
fractional radius with β is greatest at the pole and decreases
toward the equator. Note that the fractional polar radius for a
model rotating with a surface equatorial velocity of 120 km s−1

and a value of β of 1.8 has nearly the same fractional polar
radius as a model uniformly rotating at 240 km s−1.

We have increased the radial resolution of the static models by
more than a factor of 2 over that used by Lovekin and Deupree
(2008). The intent is to reduce the scatter and uncertainty in the
pulsation mode calculations, particularly for the large and small
separations. By and large this has been successful.

The determination of the pulsational properties of these
models is made using the linear adiabatic pulsation code
developed by Clement (1998). We restrict our attention to
input models with conservative rotation laws so that we can
write the effective gravity (�g) as the derivative of the total
potential. The input models are axisymmetric spheroids, which
allows us to assume a ei[ωt+mφ] time and azimuthal dependence.
The equations to be linearized are the three components of

the momentum conservation equation, the mass conservation
equation, the adiabatic relation between the density (ρ) and the
pressure (P), and Poisson’s equation. The dependent variables
are the three components of the linearized displacements (�ξ ), the
linearized Eulerian displacements of the density (δρ), pressure
(δP ), and the gravitational potential (δφ). We start with the
perturbed momentum equation:

δ

(
d �v
dt

)
= δ

(
∂ �v
∂t

+ [�v · �]�v
)

= �(δφ) +

(
δρ

ρ2

)
�P − 1

ρ
�δP (3)

where �v is the velocity, which includes both the pulsational
perturbations and the velocity distribution of the unperturbed
model Here we assume this latter velocity results exclusively
from rotation, and is given by

�v = vφ̂ = Ωr sin(θ )φ̂. (4)

Here Ω is the rotation rate, and our assumption of a conservative
rotation law requires it to be a function only of the distance from
the rotation axis, � = r sin(θ ). We can write an expression
for the Eulerian perturbation of the velocity in terms of the
displacements because the Lagrangian time derivative of the
displacement is the Lagrangian velocity perturbation. Thus,

δ�v = ∂�ξ
∂t

+ (�v · �)�ξ − (�ξ · �)�v. (5)

Substituting this expression into the above perturbed momentum
equation and proceeding along the same lines as Clement (1998)
leads to the following expressions for the three individual
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Figure 3. Surface shape for differentially rotating models at 120 km s−1 (solid) and 240 km s−1 (dashed). As the rotation rate close to the rotation axis increases
(increasing β), the polar radius decreases relative to the uniformly rotating case.

components of the momentum equation:

σ 2ξr + 2iσΩξφ sin θ − � sin θ

[
ξr

∂Ω2

∂r
+

ξθ

r

∂Ω2

∂θ

]
− ∂δp

∂r

= −Agr (� · �ξ ) (6)

σ 2ξθ + 2iσΩξφ cos θ − � cos θ

[
ξr

∂Ω2

∂r
+

ξθ

r

∂Ω2

∂θ

]
− 1

r

∂δp

∂θ

= −Agθ (� · �ξ ) (7)

σ 2ξφ − 2iσΩ(ξr sin θ + ξθ cos θ ) − im

r sin θ
δp = 0, (8)

where σ = ω+mΩ, δp = δP/ρ−δφ, A = c2d ln ρ/dΨ−1, and
c2 = Γ1P/ρ. The quantity c is the adiabatic sound speed. The
other equations required are as listed in Clement (1998): mass
conservation, the adiabatic relationship between the density and
pressure perturbations, and Poisson’s equation for the perturbed
gravitational potential:

δρ = −� · ρξ (9)

δP = −Γ1P� · ξ − ξ · �P (10)

�2δφ = −4πGδρ. (11)

Differential rotation has introduced two new terms into each
of the radial and latitudinal momentum equations. The other
change is that σ , the eigenfrequency in the local rotating frame,
is no longer constant except for axisymmetric modes. This does
not alter the solution algorithm, however, because Clement’s
(1998) approach was to select σ (which now becomes selecting
ω and calculating σ locally as needed), solve all the equations,
and see if a discriminant was satisfied. Neither the added
terms nor the nature of the eigenvalue requires any further

modification to the approach, and the derivation of the final
equations proceeds as described by Clement (1998).

Using these equations we can calculate the pulsation prop-
erties of the stellar models on a 2D finite difference grid. This
is done through a change of variables, factoring out the be-
havior of ξr , ξθ , δp and δφ near the boundaries to eliminate
singularities. The coefficients of these equations can be put in
a band-diagonal matrix and solved. NRO can include up to nine
angular zones in the eigenfunction solution. This gives the so-
lution at N angles, where N is the number of angular zones,
which can subsequently be decomposed into the contributions
of individual spherical harmonics through the use of Fourier
transforms. Throughout this paper, we have used N = 6. Based
on the calculations of Lovekin & Deupree (2008), six spherical
harmonics are sufficient to accurately calculate the eigenfre-
quencies for the most rapidly rotating models discussed here.
Indeed, we have performed a few test calculations with N =
8 and have found that the effect on the frequencies is small,
typically a few hundredths of a percent.

As discussed in Lovekin & Deupree (2008), NRO, combined
with stellar structure models from ROTORC, allows us to calculate
the pulsation frequencies for rotating stars without making any
a priori assumptions about the structure, except that the rotation
law is conservative for NRO. For further discussion of the method
of solution used by NRO, see Clement (1998) or Lovekin &
Deupree (2008).

With spherical stellar models, the radial and angular compo-
nents of the perturbations separate, and the angular part can be
expressed as a spherical harmonic with specific values of the
quantum numbers l and m.

For rotating stars, the eigenfunction solution is not a single
spherical harmonic, and l is not a valid quantum number. Indeed,
NRO uses l only to specify the parity of the mode being calculated,
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Figure 4. First four harmonics of the lo = 2 mode for a uniformly rotating 10 M� model as a function of the rotation rate. The four curves represent the frequencies
for the f (diamond), p1 (×), p2 (square), and p3 (triangle) modes.

and includes the first k even or odd spherical harmonics, where
k is the number of angles included. We identify modes using a
quantum number lo, which is the l of the mode in the nonrotating
model to which a given mode can be traced. For spheroids, m
remains a valid quantum number. As in Lovekin & Deupree
(2008), we restrict ourselves to axisymmetric modes (m = 0)
and modes with small radial quantum number (n).

3. RELATIVE FREQUENCIES

In this paper, we consider low-order axisymmetric modes
for lo = 0, 1, 2, and 3. These modes are expected to have
the highest amplitudes and the smallest cancellation effects
across the visible surface of the star, and are hence expected
to be the most easily visible. Our structural models cover
velocities from 0 to 360 km s−1 and for two velocities, 120 and
240 km s−1, we have calculated differentially rotating models
with β varying from 0 to 2.0. Tracing the individual modes
becomes very difficult above rotation velocities of 360 km s−1

and for some higher values of β, and this represents a practical
limit to our study. Although the frequencies can be calculated
at these velocities, the resulting eigenfunctions are a mix of six
spherical harmonics, and no single harmonic dominates. As it
is very difficult to reliably assign a value of lo to these modes,
we exclude them from our analysis. It is probably feasible to
trace the modes accurately, but this could require an extremely
fine rotational velocity grid (1–5 km s−1). We decided not to
pursue this for this exploratory work. For differentially rotating
models, the limits are β = 1.8 for the 120 km s−1 model and
β = 1.0 for the 240 km s−1 model. Based on the curves shown
in Figure 1, it appears that the limit is related to the angular
velocity near the rotation axis. The curve representing β = 1.0
has approximately half the value at the center of the β = 2.0
curve. Therefore, if we double the velocities everywhere, the

limiting β should move from 1.8 at 120 km s−1 to 1.0 at 240
km s−1, which corresponds to approximately the same angular
velocity near the rotation axis.

3.1. Uniform Rotation

The trends produced by tracing a given mode through in-
creases in rotation velocity are illustrated in Figure 4 for the
lo = 2 mode, which shows the eigenfrequencies normalized by
the nonrotating frequency for each mode. Overall, the trends we
find for frequency agree with those calculated by previous work
(Lignières et al. 2006). These authors find that the frequencies
decrease as one increases the rotation rate, with higher fre-
quency modes decreasing more than lower modes. As discussed
in Lovekin & Deupree (2008), our results at low to moderate
rotation rates are also consistent with the frequency trends pre-
dicted by second-order perturbation theory (see, for example,
Saio 1981).

We have increased the radial resolution of the outer 30% of
the radius of the static models by more than a factor of 2 over
that used by Lovekin & Deupree (2008). This produces a radial
zoning finer than that currently allowed by the pulsation code, so
further increases in radial resolution in the 2D structure models
will only be effective if the pulsation code is modified to allow
more radial zones. The intent of the modified zoning is to reduce
the scatter and uncertainty in the mode calculations evident in
Lovekin & Deupree (2008). Figure 4 shows that a reasonable
estimate of our accuracy for the frequencies is a very few tenths
of a percent, although there are still a few frequencies, most
commonly but not exclusively for the higher radial orders and
higher rotation rates, which do not fit within this limit. One
might expect the radial resolution near the rotation axis and at
mid latitudes to be less than for lower rotation rates because
the fractional radius at these latitudes compared to the equator
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Figure 5. Plot of the pulsation constant for the radius of a sphere with the same volume as the rotating model (bottom) and the radius at colatitude of 40◦ (middle).
Also shown is the pulsation constant assuming there is no change to the mean density as the rotation rate increases (dashed curve).

is lower. The accuracy of the small separation appears well
within a μHz, while the large separation does show variations
on the order of one μHz, particularly at higher rotation velocities
and for higher radial order modes. This is compatible with the
notion that the radial resolution near the surface could continue
to benefit from refinement. However, these uncertainties do not
disguise trends in the results, even in the large separation, with
respect to rotation rate or the rotation law, and we consider these
trends significant.

One interesting line of inquiry is whether there is some analog
to the period–mean density relation which allows interpolation
of eigenfrequencies as functions of models and rotation rates.
Specifically, we have examined if there is a physically meaning-
ful radius which can be used in the period–mean density relation

Q = P

√
M

R3
(12)

(where M and R are in solar units, and P is the period) that would
allow Q to be approximately constant as a function of the rotation
rate. The comparatively small changes in the eigenfrequencies
shown in Figure 4 suggest that the surface equatorial radius,
with its fairly rapid increase as a function of rotation, will not
keep Q approximately constant, and it does not. The same is
true for an average radius, defined as either a straight average or
the effective radius required to contain the total volume of the
model. The polar radius would be more promising because it
only slowly varies with the rotation rate, but it actually decreases
slightly as the rotation rate increases. This is the wrong direction
to keep Q constant because the frequency decreases as well.
Because the polar radius decreases slightly and the equatorial
radius increases appreciably with increasing rotation, one might
guess there would be some latitude at which the radius increases
at a rate that nearly offsets the rate of period increase. This is

true, and occurs at a colatitude of 40◦. It is not obvious that this
has any physical significance because it is difficult to associate
any specific meaning to the radius at this latitude. We present the
pulsation constant for two definitions of an effective radius in
Figure 5. One way is to use the radius of a sphere with the same
volume as the model. The other uses the radius at a colatitude of
40◦. For comparison we show a “pulsation constant” that would
exist if we used the mean density of the nonrotating model. We
include this to give an idea of the size of the effect. Interestingly,
the variation in the pulsation constant is significantly larger,
allowing the mean density to be determined by the total volume
of the rotating model (the mass is the same for all models),
than it is when the mean density is assumed to be that of the
nonrotating model.

The frequencies can also be changed by the mass or evolu-
tionary state of the star, producing trends that could potentially
be confused with rotational effects. We wish to determine how
closely the frequencies of a rotating model can be mimicked by
a nonrotating model. First we calculated the Q values for each
model in the 10 and 12 M� nonrotating models. For each mode,
we then took the mean of the Q of the two models. We used this
average Q for the radial fundamental mode and the frequency of
the radial fundamental mode for the model rotating at 150 km
s−1 to calculate a mean density. This corresponds to the mean
density of a nonrotating model of unknown mass and radius pul-
sating in the radial fundamental mode with the same frequency
as the 10 M� model rotating at 150 km s−1. The mean density
found this way and the average Q’s for the other lo’s can be used
to predict the other frequencies of this presumed non-rotating
model. When these frequencies are compared to the calculated
frequencies for the rotating model, the differences are signif-
icant. Using Q to calculate the frequencies in this way forces
the radial fundamental mode to have the same frequency, so
the differences between frequencies should be solely a result of
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Figure 6. The fundamental and first three overtones of the lo = 0 mode for a model rotating at 120 km s−1as a function of the differential rotation parameter β (see
Equation (2)). The four curves represent the frequencies for the fundamental (diamond), 1H (×), 2H (square), and 3H (triangle) modes.

rotation. The frequencies predicted for the lo = 0 and 2 modes
are larger by 1–5%, with the differences increasing for higher
order modes. At the same time, the frequencies predicted for
the lo = 1 and 3 modes are smaller, by as much as 15% for the
lo = 1p1 mode. As the radial order increases, the differences
between the rotating model and the nonrotating calculation de-
crease for the lo = 1 modes, but increase for the lo = 3 modes.
The size and direction of these trends imply that the pulsation
spectrum of a rotating model is unlikely to be confused with
the pulsation spectrum of a more massive nonrotating model. It
also suggests that rotation must be included in the calculations
if observations indicate it might be present even at this moderate
amount.

We have also evolved a single nonrotating model, and
compared the ZAMS model with one part way through the main-
sequence evolution (Xc = 0.47). In this case, the frequencies
decreased sufficiently, even for a model with a large remaining
core hydrogen fraction, that confusion seems unlikely.

3.2. Differential Rotation

We have studied the change in the frequencies of 10 M�
ZAMS models differentially rotating at 120 km s−1 and
240 km s−1. Overall, the frequencies increase for lo = 0 and 1,
and decrease for lo = 2 and 3, a trend seen at both 120 km s−1

and 240 km s−1. Our results for lo = 0 are shown in Figure 6 for
the fundamental, 1H, 2H, and 3H modes for a model rotating
at 120 km s−1. In this case, the frequency changes are largest
for the 3H modes, but are noticeable for all modes by β ≈ 1.
Similar trends are found for the other values of lo considered
here. Still, the differences remain relatively small, and it seems
unlikely that even extreme differential rotation with this sur-
face rotation velocity will be detectable using the values of the
eigenfrequencies alone.

The frequency results for the 240 km s−1model, shown in
Figure 7 for lo = 0, are slightly more promising. Although
we were unable to reliably identify modes above β = 1.0, the
frequencies already differ by more than 1% by β = 1.0 for the
1H mode, and it seems the differences would be noticeable by
β = 0.4. If this trend continues, as seems likely at least for
the F and 1H modes, the frequency differences should be large
enough to be detectable in these more rapidly rotating stars.
As noted above, for some modes differential rotation causes the
frequencies to increase as in Figures 7 and 8, while for others the
frequencies decrease, as in Figure 9. These plots do not include
the 3H mode, as we found that the scatter in this mode remained
a significant fraction of the variation, despite the improved
radial zoning, and so have chosen not to include it in our
discussion.

The effects of differential rotation compared with uniform
rotation are shown in Figure 9 for the lo = 2 p2 mode.
Differential rotation can change the frequencies by about a
percent above and beyond the difference predicted based on
surface equatorial velocity alone. The differences are small,
about 1% for the most extreme differentially rotating model at
120 km s−1. Based on the frequencies we have calculated, it
may be possible to discriminate between uniform and this type
of differential rotation, given the right combination of properly
identified frequencies. Since frequencies increase relative to the
uniformly rotating case for some lo and decrease for others,
these differences could be used to constrain the rotation. This
would require a star with a few positively identified modes,
some of which were either lo = 0 or 1, and some of which
were either lo = 2 or 3. The number of modes required and
the challenges presented by accurate mode identification in
massive main-sequence stars may make this extremely difficult
in practice.
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Figure 7. Relative frequencies of the lo = 0 modes versus differential rotation parameter β for a model rotating at 240 km s−1. The curves show the relative frequencies
for the fundamental (diamond), 1H (×), and 2H (square) modes.
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Figure 8. Relative frequencies of the lo = 1 modes versus differential rotation parameter for a model rotating at 240 km s−1. Shown are the p1 (diamond), p2 (×), and
p3 (square) modes.

4. LARGE SEPARATIONS

If one considers two stellar models that are in the same
evolutionary phase, and appear reasonably close to each other
in the HR diagram, the frequencies can be approximately

determined from the relevant pulsation constant, Q. As the mass
and radius change with position in the HR diagram, so will the
frequencies. It is expected that for small changes in mass and
radius the frequency differences (either frequency separations or
ratios) will change, like Q, much more slowly than the individual
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Figure 9. Relative effects of differential rotation for the l0 = 2 p2 mode. The frequencies for differentially rotating models as a function of β at 120 km s−1 and
240 km s−1(squares) are superimposed on the uniformly rotating frequencies (diamonds).

frequencies. As a result, the large and small separations are
probably more useful than individual frequencies as they are
less sensitive to small changes in the models.

4.1. Uniform Rotation

The large separation, defined as

Δνl = νl,n+1 − νl,n, (13)

can provide information about the outer layers of the stellar
envelope. The large separation for the lo = 0 mode is shown
as a function of the rotation rate in Figure 10. We note that
the overall trend of the large separation for this mode is to
decrease as the rotation rate increases. At other lo the trend
is the same and the large separation decreases for every pair
of modes considered. The magnitude of the decrease in large
separation does increase slightly with increasing lo, as can be
seen by comparing Figures 10 and 11. For nonrotating ZAMS
models, both the frequencies and the large separations decrease
as the mass (hence the radius, luminosity, and effective tem-
perature) increases. The decrease in the large separation oc-
curs not only because the frequencies decrease, but also be-
cause the period ratios increase for increasing ZAMS mass.
However, for stars observed approximately equator on, rotation
decreases the perceived luminosity and effective temperature.
This offset between the perceived luminosity and temperature
and the large separation may be useful as a rotation discrim-
inant. Of course, stars observed nearly pole on show an in-
crease in perceived luminosity and effective temperature (e.g.,
Gillich et al. 2008) which is in line with the decreasing large
separation as the rotation rate increases. Any discriminant of
rotation may only be a matter of degree for low inclination
objects.

We noted in Section 3.1 that the decrease in the frequencies
with increasing rotation cannot be explained purely by the

decrease in the mean density (i.e., a constant Q). The mean
density decreases faster than the pulsation periods increase as
the rotation rate increases. Interestingly, the decrease in the large
separation for lo = 0 in Figure 10 is almost entirely offset by
the mean density so that Δν(ρ�/ρ)1/2 is nearly constant, as
discussed by Ulrich (1986) and Reese et al. (2008). The mean
density does not offset the steeper decline in the large separation
for the lo = 2 modes shown in Figure 11.

4.2. Differential Rotation

The large separations provide information about the region
near the surface of the star, while the frequencies provide
information on more global properties. As discussed above,
the separations are less sensitive to small changes in the mass
or radius of the star but, since they probe the surface region,
may provide information about changes in this region as a
result of rotation. A comparison of Figures 2 and 3 shows that
the polar radius is significantly more affected by differential
rotation than the radius at lower latitudes. This kind of effect
may be detectable using the large separations. Indeed, based
on the results in the previous section, we expect there to be
significant changes in the period differences as we have found
that differential rotation can sometimes introduce a significant
shift in only one or two of the harmonics.

Although the individual frequencies can show significant
relative differences, this does not carry over to the large
separations. The large separations for the lo = 0 modes of a
differentially rotating model with surface equatorial velocity
of 120 km s−1are shown in Figure 12. The large separations
shown in this plot show very little change with increasing
β, much less than the differences shown in Figure 10. The
same lack of variation is seen for all modes. Given that the
large separation probes the surface regions, this might be
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Figure 10. Large separation between the 3H and 2H (square), the 2H and 1H (×), and 1H and F modes (diamonds) for modes with lo = 0.
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Figure 11. Large separation for the lo = 2 modes as a function of rotation velocity. Shown are the separations between the p1 and f modes (diamonds), the p2 and p1
modes (×), and the p3 and p2 modes (squares).

regarded as somewhat surprising because changing the β does
change the surface configuration, particularly near the rotation
axis.

At 240 km s−1, the large separations shown in Figure 13 are
again quite constant over the region shown. Most separations
either remain constant or show a slight increase, at least to
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Figure 12. The large separation for the lo = 0 modes of a differentially rotating model with a surface equatorial velocity of 120 km s−1 plotted as a function of
differential rotation parameter β. Symbols are the same as Figure 10.
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Figure 13. The large separation of the lo = 0 modes for a differentially rotating model with a surface equatorial velocity of 240 km s−1. Symbols are the same as in
Figure 10.

β = 0.6, at which point some of the higher-order separations
decrease slightly. Again, this is different from the trend seen

in the uniformly rotating models. Particularly at high β, the
separations moving in different directions may allow constraints
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Figure 14. Small separation for the lo = 0 and 2 modes as a function of surface equatorial velocity. Shown are the separations between the lo = 0, 3H − lo = 2,
p2 modes (squares), lo = 0, 2H − lo = 2, p1 modes (×), and lo = 0, 1H − lo = 2, f modes (diamonds).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
4

5

6

7

8

9

10

β

S
m

a
ll 

se
p
a
ra

tio
n
 (

μH
z)

Figure 15. Small separations for the even modes for a differentially rotating model with a surface equatorial velocity of 120 km s−1 plotted as a function of differential
rotation parameter β. Symbols are defined as in Figure 14.

to be placed on observed stars. The differences begin to become
noticeable at β ≈ 0.6 for most of the high-order modes

considered. However, for most modes the large separation never
differs by more than a few μHz. As for the frequencies, it seems
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Figure 16. Small separations for the even modes of a differentially rotating model with a surface equatorial velocity of 240 km s−1. Symbols are defined as in Figure 14.

that the large separations are unlikely to produce any very refined
constraints on the internal rotation rate, at least for this particular
rotation law.

5. SMALL SEPARATION

Asymptotic theory (Tassoul 1980), which predicts that the
large separation should be approximately constant as n gets
large, also predicts near degeneracy between modes with the
same value of n + l/2:

νl,n � νl+2,n−1. (14)

The deviations from this degeneracy are defined as the small
separation,

dl,n = νl,n − νl+2,n−1 � −(4l + 6)
Δν

4π2νl,n

∫ R

0

dc

dr

dr

r
, (15)

where c is the sound speed. The sound speed changes in
the core are sufficiently large that the (1/r) variation dominates
the integral on the right-hand side of Equation (15), and hence
the small separation is dominated by the structure in the core.

5.1. Uniform Rotation

At slow uniform rotation, the size and shape of the convective
core are nearly unaltered by the rotation, and one would expect
the effects on the small separation to be minimal. Figure 14
shows this to be true, but also shows that the small separation
for higher n increases markedly with the rotation rate once the
rotation exceeds approximately 150 km s−1. There are slight
changes to both the shape and relative size of the convective
core with rotation, although the absolute mass and radius of
the core change only slightly. It is not obvious why the small

separation increases so markedly. This effect has also been noted
by Lignières et al. (2006)

Small separations are frequently used as probes of the core
structure of stars, and can be used to constrain overshooting
and core composition (Soriano & Vauclair 2008). Their results
indicate that convective core overshooting causes a slight
decrease in the small separations, with the effect becoming more
pronounced as the star evolves. This slight trend is opposite to
that produced by at least moderate rotation, which appreciably
increases the small separation. Clearly this is a situation in
which caution must be exercised when using observed modes
to constrain conditions deep in the stellar interior.

5.2. Differential Rotation

For differentially rotating models, the overall trend is the
same, with small separations increasing with increasing dif-
ferential rotation. However, Figures 15 and 16 show that the
variation in small separation is much less than for uniformly
rotating models. The trends are consistent with the relationship
between the effects of β and those of increasing the uniform
rotation rate, as shown in Figure 9. The effects of increasing β
on the convective core mimic to some extent those of increasing
the uniform rotation rate, although high values of β do make the
convective core more oblate. The different effects of β on the
large and small separations is understandable in that increasing
β increases the rotation and its effects near the rotation axis, and
this certainly includes the convective core. However, this trend
of increasing β producing similar trends to increasing uniform
rotation rate does not give us confidence that we have a useful
tool for diagnosing a rotation law of the kind we have considered
through the small separation.
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6. CONCLUSION

We have investigated the effects of uniform and differential
rotation on pulsational eigenfrequencies. For uniformly rotating
models, we have found that the frequencies decrease as the
rotation rate increases for all values of lo and n considered here,
although the rate of decrease varies with the mode in question.
While this frequency behavior is expected assuming the period–
mean density relation applies, the frequency changes are much
smaller than the period–mean density relation would suggest.
We do find a pulsation constant being approximately constant
if we use the surface radius at a colatitude of about 40◦ in
the period–mean density relation, although this radius does not
represent the mean density.

For the differential rotation law considered here, we find the
frequencies at a given velocity may either increase or decrease,
depending on lo, with increasing differential rotation, relative
to the uniformly rotating model. However, the overall effects in
all cases are comparatively small, with maximum differences
typically on the order of 1% when compared to the uniformly
rotating case.

Uniform rotation decreases the large separation by several
μHz (< 10 μHz) over the entire range of rotation (0–360
km s−1) considered here. The large separation was virtually
unchanged (< 1 μHz) from that of uniform rotation for
the range of differential rotation parameters considered here,
despite the noticeable change in the surface shape. Although
this change in shape is noticeable, it is still considerably
smaller than the change produced by uniform rotation. Both
uniform and differential rotation increase the small separation.
The small separation can change markedly over the range
of uniform rotation considered, while the dependence of the
small separation on the rotation profile is more modest but not
inconsistent with the other effects produced when comparing
uniform and differential rotation. The effects of rotation on
the frequencies and separations are generally large enough that
rotation must be considered in the asteroseismology of these
upper main-sequence stars. While the precise rotation rate at
which one must be concerned with rotation depends on the level
of accuracy achievable, it is certainly no larger than 100 km s−1

for our 10 M� ZAMS models.
Although we have shown there can be significant differences

in the pulsation properties of rotating stars, it is not clear that
these results can actually be used to constrain the interior rota-
tion rate. Given the possible combinations of effects from the
rotation rate and distribution, the mass of the star, convective
overshoot, evolutionary stage, etc., it seems unlikely that pul-
sation properties will give a unique solution, particularly if the
number of observed modes is modest or cannot be properly
identified. However, we have found that some combinations of
modes constrain some of these properties.
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