Chemical provenance of pre- to post-contact period copper and copper-rich alloy artifacts from archaeological sites in Nova Scotia, Canada: a laser ablation ICP-MS study

By J.L. Whattam

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Honours) (Geology)

August 29, 2014, Halifax, Nova Scotia

©J.L. Whattam, 2014

Approved: Dr Jacob Hanley Associate Professor

Date September 1st 2014

Chemical provenance of pre- to post-contact period copper and copper – rich alloy artifacts from archaeological sites in Nova Scotia, Canada: a laser ablation ICP-MS study

By J.L. Whattam, August 29th 2014

Copper had cultural significance to the Mi'kmaq peoples of the Maritimes, and was used in the fabrication of tools and personal, ceremonial, gift, and trade wares. In this study, LA-ICP-MS was used to characterize the trace elemental composition of artifacts from archaeological sites in Nova Scotia ranging from Early Woodland (2500-2400BP) to Protohistoric (450-350 BP) to European contact (1500+BP) periods in age, and samples of natural copper from potential sources with goals of: (i) differentiating artifacts derived from natural copper from those made from synthetic (refined) European (trade) copper and its alloys, and (ii) identifying the specific natural sources of copper that were exploited. The methodology used in this study improves on previous bulk analytical methods (e.g., INAA, XRF) that suffer from the presence of contaminating mineral phases within the copper volume analyzed and are more destructive. LA-ICP-MS analysis of 57 artifacts identified groupings compositional with specific elemental 10 enrichment/depletions/ratios, notably involving Ag, Pb, Hg, Bi, Zn and As. Most single artifacts are compositionally homogeneous with respect to the majority of elements with <20% relative variation in concentration over 8-10 ablation spots. Patinas show preferential enrichment (e.g., Fe, Sn, Zn, Au) and depletion (e.g., Ni, Co, Ge, Ag) relative to the fresh metal. However, differences in source composition are significant enough that the patina can be diagnostic of provenance. Three groups have definitive provenance determined: six artifacts from Cap d'Or, Nova Scotia (natural Cu), six from Margaretsville, Nova Scotia (natural Cu), and nine artifacts of European origin (refined Cu or Cu-Zn-Sn alloys). Seven remaining artifact groups have unknown provenance and, importantly, sources analyzed from Michigan, USA (Keweenaw Peninsula) are ruled out. Contrary to the Lake Superior model, copper deposits from the Bay of Fundy were important but many other sources of the metal are likely and require further investigation.

Acknowledgments

This entire study could not be completed without significant contributions from a wide variety of sources. Thanks must first be given to Dr. Jacob Hanley, for giving me some interesting work for the summer of 2013, as well as for agreeing to convert this study into my undergraduate thesis, and supervise it. Secondly to the Nova Scotia Museum and Cultural Resource Management for allowing us to use their collections, however more specifically: to Dr. Katie Cottreau-Robins, who has worked side by side with me throughout this project from beginning to end, who has shown me that there is more to life than geology, and how great it intertwines with other disciplines. And to Deborah Skilliter, also of the Nova Scotia Museum, for allowing me to access native copper samples in the Museum collections.

Thanks must also go to Chris McFarlane of the University of New Brunswick (Fredericton) for introducing me to Laser Ablation, as well as for performing the analyses. Xiang (Sean) Yang, Randy Corney, and Mike Warren of Saint Mary's University must also be thanked for their help in sample preparation and organization as well as Dr. Andrew MacRae, also of SMU for his help with Corel, and also for creating terribly funny jokes during late night writing.

This study wouldn't have been possible without the support and help of the other students in the Mineral Exploration and Ore Fluids Laboratory at SMU, for putting up with all of my questions, and keeping me motivated, Matt McMillan, Kevin Neyedley and Fergus Tweedale, thanks for letting me use your computers, and keeping me in check. Finally thanks have to be given to Alexandra Sye and Brandon Boucher, for having stood by my side throughout this entire process, for being so supportive, and stopping me from wanting to start from scratch, on multiple occasions. Especially to Brandon, for figuring out the entire Igor Pro and Iolite software and helping me through all of the data reduction, I probably would still be stuck on it today without you.

Table of Contents	
Abstract	i
Acknowledgements	ii
List of Figures	v
List of Tables	v
1.0 Introduction	1
2.0 Methodology	11
2.1 Sample selection and preparation	11
2.1.1 Artifact copper	11
2.1.2 Natural copper source samples	12
2.1.3 Analytical standards	12
2.2 Laser ablation ICP-MS method and protocol	14
2.2.1 Operating conditions	14
2.2.2 Quantification and data reduction schemes	14
2.3 Data manipulation	17
3.0 Results	21
3.1 Comparison of patina and fresh metal composition and sample homogeneity	25
3.2 Analyses and comparisons of standards	21
3.3 Source chemistry	29
3.3.1 Nova Scotia, Canada	32
3.3.2 Michigan, USA	32
3.3.3 Pennsylvania, USA	36
3.3.4 Cornwall, UK	32
3.3.5 Bolivia	35
3.3.6 Kazakhstan	36
3.4 Artifact Chemistry	36
3.4.1 Group I	37
3.4.2 Group II	44
3.4.3 Group III	44
3.4.4 Group IV	45
3.4.5 Group V	46
3.4.6 Group VI	46
3.4.7 Group VII	47
3.4.8 Group VIII	48
3.4.9 Group IX	48
3.4.10 Group X	49
4.0 Discussion	50
4.1 Provenance groups and source location	50
4.1.1 Cap d'Or	50
4.1.2 Margaretsville	52
4.1.3 European	53
4.1.4 Artifacts with undetermined provenance groups	55
4.2 Laser ablation as an archeological tool	56
4.3 Implications in archaeology	60
5.0 Conclusion	63

References	66
Appendix A – Laser ablation data for artifacts	72
Appendix B – Laser ablation data for sources	85

List of Figures

Figure 1.1 Geological map of study area	6
Figure 1.2 Map of Nova Scotia showing areas where native sources were collected	7
Figure 1.3 All artifacts used in this study.	10
Figure 2.1 Images of preparation stages	13
Figure 2.2 Laser ablation signals for artifact 99	19
Figure 2.3 Laser ablation signales for artifact 8606	20
Figure 3.1 Comparisons of standards	24
Figure 3.2 Comparison of trace element concentrations between patina and core copper	26
Figure 3.3 Comparison of laser ablation shots in 8604 and 8606	31
Figure 3.4 Comparison of laser ablation shots in RLAKE and 99	31
Figure 3.5 Spider Diagrams of all sources	36
Figure 3.5 Discrimination diagrams for groups I, II, III and IV	38
Figure 3.6 Discrimination diagrams of groups V, VI and VII	39
Figure 3.7 Discrimination diagrams of groups VIII, IX and X.	40

List of Tables

Table 1.1 Artifact descriptions	8
Table 1.2 Source descriptions	9
Table 2.1 Laser operating conditions	15
Table 3.1 Quality control	22
Table 3.2 Summary of all source concentrations	
Table 3.3 Summary of all artifact concentrations.	40
Table 4.1 Summary of all provenance assignments	51

1.0 Introduction

The chemical microanalysis of archaeological materials by non-destructive methods allows insight into the manufacturing and origins of objects that are of considerable cultural or archaeological value. For metallic artifacts in particular, which often present significant surface corrosion modifying primary composition, robust chemical characterization of fresh material has required invasive sampling methods and large sample volumes, primarily due to limitations in the analytical methodologies available to archaeological sciences historically. The preservation of sample integrity and appearance is a priority during collection, conservation, storage and study, and must be carefully reconciled with the desire to reduce uncertainties in provenance studies introduced when fresh metal cannot be accessed in an artifact.

In North America, there has been considerable work done to identify the origins of natural copper artifacts, ad to differentiate between natural and refined (European) copper and its alloys. In the sixteenth and seventeenth centuries, the first permanent settlers from Europe arrived in Nova Scotia to find it was inhabited by the Mi'kmaq, the indigenous group of people that had been living in Nova Scotia thousands of years before the arrival of the Europeans in the early 1600s (Morton, 1999). It has been heavily documented that the Mi'kmaq used materials such as animal hides and fur, bones, wood, and stones to make their clothing, jewelry and tools (Whitehead 1993, Leonard 1996, Whitehead et al 1998, Levine 1999, Rapp 2000, Bourque, 2001, Fenn 2001, Glascock & Neff 2003, Anselmi 2004, Lattanzi 2007, Dussubieux et al. 2008, Lattanzi 2008). Another material favoured by the Mi'kmaq, was copper. As indigenous peoples slowly spread across North America, their spiritual connections to, and practical utilization of, raw materials including metals

changed continuously. In fact, creating and trading of goods amongst themselves and with other indigenous peoples led to the first commercial use of metals (Quimby, 1966; Bourge, 2001; Lattanzi, 2007; Levine, 2007; Cooper et al., 2008; Cooper, 2011). The importance of copper to the Mi'kmag had also been increasing as migrations, settlements and discovery of new sources of the metal took place. Copper was used for a variety of purposes and in the archaeological record, objects of definitive purpose have been identified including trade "currency," personal adornments and burial necessities for the afterlife in the form of talismans, beads (Rapp, 2000; Mulholland & Pulford 2007) and tinkling cones (Levine 2007), and after European contact, the use of copper kettles for burial practices, practical use of vessels, and reworking into other objects listed here (Turgeon et al., 1990; Fitzgerald et al., 1993; Whitehead et al., 1998). The first use of copper in what is now Canada dates back to between 6800 BP (Ehrhardt, 2009) and 5560 BP (Beukens et al. 1992; Rapp & Hill, 2006) based on controlled archaeological stratigraphy (spatial relationships to other objects from these times) and radiocarbon dating methods. Later in the archaeological record for the Protohistoric period, it was known to be obtained from Europeans during trade involving the Spanish (Basque), and later the French, Dutch and English (Hancock et al. 1991; Whitehead, 1993; Rapp 2000; Lattanzi, 2006; Levine 2007; Klein et al 2010; Michelaki et al 2013).

To date there has been no scientific analytical studies done on pre-contact artifacts found in Nova Scotia in order to identify the sites of origin of their contained copper with respect to possible sources of this metal in the region, and elsewhere. In addition, there has been no work conducted to characterize contact-era artifacts through chemical analytical means. Several studies have been undertaken to discuss where indigenous peoples in some

areas of North America, (Ontario, Yukon, and the northeastern United States) procured their copper (Hancock et al., 1991; Fitzgerald et al., 1993; Levine 1996, 2007; Whitehead et al., 1998; Rapp et al., 2000; Fenn 2001; Junk, 2001; Lattanzi 2007, 2008; Mulholland & Pulford, 2007; Dussubieux et al., 2008; Hill, 2012), but no studies have been conducted in the Atlantic provinces with the exception of a single chemical analytical study of burial artifacts from three localities by INAA all found to be of European origin (Whitehead et al., 1998). The most commonly accepted theory with respect to the procurement of native copper for the creation of objects, is the Lake Superior model (Hancock et al., 1991; Levine, 1996, 2007; Rapp et al., 2000; Fenn, 2001; Lattanzi, 2007, 2008; Ehrhardt, 2009). Through this model, it has been widely accepted that any archaeological copper prior to European contact and trade, originated in the Lake Superior areas of Ontario (e.g., Mamainse Point) and Michigan (e.g., Keweenaw Peninsula). These locations were rich in large native copper deposits and were later mined commercially for over one hundred years (Rosemeyer, 2009, 2011). The deposit types in this area range from the volcanic red bed copper more typical of the Keweenaw Peninsula (Eckstrand et al., 1995), to less common stratiform sedimentary hosted copper deposits (ex. the White Pine Mine) (Brown, 1992; Eckstrand et al., 1995). Many researchers appear to simply accept or assume that copper artifacts originated from the Lake Superior region such as Holmes (1901) and Reeder (1903), both of whom "presented [this model] as if it were a proven fact" (Levine, 2007). However some archaeologists have questioned this hypothesis (see Levine, 1996, 2007; Rapp et al., 2000; Fenn, 2001; Lattanzi, 2007, 2008; Hill, 2012), and through careful chemical analysis by relative destructive means combined with statistical methods of data analysis, have shown that some artifacts found in the United States and central Canada (Ontario, Quebec) were likely sourced from other copper mineralization throughout the northeastern United States and Nova Scotia (the Bay of Fundy Region).

This study involved the microanalyses by laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) of 60 copper-based artifacts collected from 6 archaeological sites representing sites of aboriginal habitation in Nova Scotia, Canada (Figure 1.1, Table 1.1), and 38 geological samples (native, naturally-occurring copper) from 15 deposits in Canada (Nova Scotia; Figure 1.2), the United States (Michigan, Pennsylvania) and some international sources (Bolivia, the United Kingdom, Kazakhstan), Tables 1.1 and 1.2 summarize the characteristics of the artifacts and natural copper source samples analyzed. Some of the artifacts studied have been dated using archaeological methods and it is considered that the collection spans a time period through the Early to Late Woodland periods (2500-500 BP) and up to the contact period. However, little is known as to the original geological provenance of the copper found at the archaeological site localities. The application of LA-ICP-MS to in-situ trace element analysis is an appropriate method for archaeometry as it is a relatively non-destructive method (i.e., generating only microscopic pits invisible to the naked eye) compared to instrumental neutron activation analysis (INAA; requiring several hundred mg of sample) or X-Ray fluorescence (XRF; requiring a flat surface on the object greater than ~14 mm in diameter or a powder of minimum volume of several grams). The LA-ICP-MS method also achieves a much wider range of, and much lower detection limits for, trace elements compared to the other methods.

The main objectives of this study were (i) identify the source of native copper contained within artifacts recovered at various aboriginal archaeological sites across Nova Scotia, and (ii) to evaluate and discuss the benefits of LA-ICP-MS as an analytical method for metallic archaeological objects. The study establishes recommendation for the analysis of archaeological materials by LA-ICP-MS, highlighting the rapid analysis of materials for a range of trace elements that is not possible by other typically used analytical means without substantial sample preparation and destruction.

In this study, whole artifacts were mounted and inserted into the ablation chamber, analyzed and removed intact with no visible damage. It is important to note that the majority of the previous work on North American copper artifacts (Levine, 1996; Rapp, 2000; Kuleff and Pernicka, 1995; Rapp Jr., 1985; Mulholland and Pulford, 2007) used INAA to study trace element concentrations in native copper artifacts. Review of the data sets produced by these studies indicate that, in addition to their relative destructive nature, these applications of the methods above have revealed relatively large variations in copper chemistry from single artifacts and sources, likely due to contamination of the analytical volumes removed from the objects by inclusions of other mineral grains. More recently, LA-ICP-MS analyses of copper artifacts were done by Fenn (2001), Lattanzi (2007 and 2008), Cooper (2008) and Hill (2012). Some concerns about the standards utilized for calibration of analyte sensitivities in these LA-ICP-MS studies were identified and a full description of the relative advantages and disadvantages of the LA-ICP-MS method follows in a discussion.

Figure 1.1 Geological map of study area (modified from Marche, 2014) depicting changes in rock type. Excavation sites shown. Software: QGIS Version 2.2 Data Sources: Nova Scotia Department of Communities, Culture and Heritage, Nova Scotia Department of Natural Resources Disclaimer: Map not to be used outside of MNH/SMU research Datum & Projection: NAD 83 UTM Zone 20. Cartographer: Jennifer Marche.

Figure 1.2 Map of Nova Scotia showing geological units in the areas where native sources were collected. Modified from NS Department of Natural Resources online GIS Database.

Table 1.1	Object descriptions of an cop	per armacis in me	conection belonging to	me nova Scoua mus	eum anu (.KM group.
Sample	Site	Age ³	Description ¹	Patina ²	Size (cm)	Source
8566	Gaspereau Lake Reservoir	Woodland period	Nodule	Low	2.4 x 0.9	CRM Group
8567	Gaspereau Lake Reservoir	Woodland period	Nodule	Low	3.0 x 1.6	CRM Group
8568	Gaspereau Lake Reservoir	Woodland period	Nodule	High	2.0 x 0.8	CRM Group
8569	Gaspereau Lake Reservoir	Woodland period	Nugget	Low with Exposure	1.3 x 1.1	CRM Group
8572	Gaspereau Lake Reservoir	Woodland period	Nodule	High	1.1 x 2.0	CRM Group
8573	Gaspereau Lake Reservoir	Woodland period	Nugget	Low with Exposure	1.8 x 1.7	CRM Group
8574	Gaspereau Lake Reservoir	Woodland period	Altered Nodule	Medium	1.2 x 1.0	CRM Group
8576	Gaspereau Lake Reservoir	Woodland period	Worked Nugget	Low with Exposure	1.6 x 1.1	CRM Group
8577	Gaspereau Lake Reservoir	Woodland period	Nodule	High	1.3 x 1.4	CRM Group
8579	Gaspereau Lake Reservoir	Woodland period	Nodule	Low	2.0 x 1.5	CRM Group
8580	Gaspereau Lake Reservoir	Woodland period	Nodule	Low	3.1 x 2.7	CRM Group
8581	Gaspereau Lake Reservoir	Woodland period	Nugget	High	1.0 x 0.6	CRM Group
8582	Gaspereau Lake Reservoir	Woodland period	Nugget	Mid	1.5 x 1.2	CRM Group
8584	Gaspereau Lake Reservoir	Woodland period	Nugget	Mid with Exposure	0.9 x 0.7	CRM Group
8587	Gaspereau Lake Reservoir	Woodland period	Nugget	High	0.9 x 0.4	CRM Group
8589	Gaspereau Lake Reservoir	Woodland period	Nugget	Mid	1.7×1.0	CRM Group
8590	Gaspereau Lake Reservoir	Woodland period	Nugget	High	18 14	CRM Group
8501	Caspercau Lake Reservoir	Woodland period	Nugget	High	22 - 04	CPM Group
9507	Caspercau Lake Reservoir	Woodland period	Nugget	Lon	2.2 . 0.4	CRM Group
9502	Caspercau Lake Reservoir	Woodland period	Worked Nugget	Low	21 - 16	CRM Group
9504	Caspereau Lake Reservoir	Woodland period	Worken Nugget	Mid	12-09	CRM Group
0074	Gaspereau Lake Reservoir	Woodland period	Warhad Name	Milu Tamaith Ennorma	1.5 1 0.0	CRM Group
0500	Gaspereau Lake Reservoir	woodland period	worked Nugget	Low with Exposure	1.9 X 1.5	CRW Group
8590	Gaspereau Lake Reservoir	woodland period	Nugget	Low	1.0 X 1.0	CRM Group
8597	Gaspereau Lake Reservoir	Woodland period	Worked Nugget	Mid	4.1 x 2.9	CRM Group
8598	Gaspereau Lake Reservoir	Woodland period	Nugget	High	1.8 x 0.4	CRM Group
8599	Gaspereau Lake Reservoir	Woodland period	Nodule	Low	2.6 x 1.9	CRM Group
8603	Gaspereau Lake Reservoir	Woodland period	Worked Nugget	High	1.7 x 1.4	CRM Group
8604	Gaspereau Lake Reservoir	Woodland period	Nugget	Mid	2.0 x 1.2	CRM Group
8605	Gaspereau Lake Reservoir	Contact period	Rolled Sheet	Low	3.3 x 2.6	CRM Group
8606	Gaspereau Lake Reservoir	Contact period	Rolled Sheet	Low	4.3 x 2.7	CRM Group
86097	Gaspereau Lake Reservoir	Contact period	Rolled Sheet	Low	5.1 X 3.7	CRM Group
0000	Cosperent Lake Reservoir	Woodland period	Worked Nugget	Low	1.4 1 1.4	CRM Group
8610	Gaspereau Lake Reservoir	Woodland period	Nugget	Mid with Exposure	1.6 x 1.7	CRM Group
818	Muskrat Cove	Woodland period	Preserved* Rolled she	et Mid	18 × 07	CRM Group
810	Muskrat Cove	Woodland period	Preserved* Rolled she	et Low	46 - 26	CPM Group
820	Muskrat Cove	Woodland period	Preserved* Nugget	Low	16 - 08	CRM Group
921	Muskrat Cove	Woodland period	Drosowod* Ard	Low	10-02	CRM Group
922	Muskrat Cove	Woodland period	Pressrued* Nugget	Livw	14-12	CRM Group
044	Sollows Cove	Woodland period	Mugget	Ligi	1.4 1 1.5	CRIVI Group
950	Sellars Cove	Woodland period	Nugget	Low	4.3 X 4.1	Steve Davis
009	Sellars Cove	Woodland period	Nugget	Low	1.9 1 0.0	Steve Davis
803a	Sellars Cove	woodland period	Necklace beads	High	U./ X U.3	Steve Davis
8030	Sellars Cove	woodland period	Necklace beads	High	0.8 X 0.3	Steve Davis
19	Burnt Bone Beach	Woodland period	Rolled Sheet	Low	6.3 x 3.2	Michael Deal
20	Burnt Bone Beach	Woodland period	Rolled Tinkling Cone	e Low	6.1 x 1.5	Michael Deal
99	Isle Haute	Woodland period	Nugget	High	1.6 x 0.7	David Christianson
211	Isle Haute	Woodland period	Nugget	High	1.9 x 1.7	David Christianson
1949	Enfield	Contact period	Rolled Sheet	Mid with Exposure	2.1 x 1.0	Steve Davis
2015	Enfield	Contact period	Rolled Sheet	Mid	2.0 x 0.8	Steve Davis
2158	Enfield	Woodland period	Worked Nugget	High	2.2 x 1.4	Steve Davis
2225	Enfield	Woodland period	Nugget	Low	2.6 x 0.9	Steve Davis
5337	Enfield	Woodland period	Nugget	Low	1.3 x 1.0	Steve Davis
2	Margaretsville	Woodland period	Worked Nugget	Low	2.6 x 1.7	John Erskine
64	Clam Cove	Woodland period	Nugget	Mid	1.3 x 1.4	Michael Deal
21	Clam Cove	Woodland period	Nugget	Low	1.8 x 3.1	Michael Deal
230	Clam Cove	Woodland period	Nugget	Mid	2.4 x 1.9	Michael Deal
173	Jeddore Harbour	Woodland period	Nugget	High	1.0 x 2.1	Michael Deal
Rlake	Rafter Lake	Woodland period	Worked Awl	Mid	4.0 x 0.6	Steve Davis

Table 1.1 Object descriptions of all copper artifacts in the collection belonging to the Nova Scotia Museum and CRM group.

*Preserved samples were treated with a solution of 5% B-72 in acetone prior to the commencement of this study ¹Note: not all artifacts listed were used in analyses

²Morphological artifact descriptions follow those detailed in Leonard (1996)

³Patina descriptions range from low coverage (0-30% of the artifact covered in thick green patina) mid coverage (31-60%) and high coverage (61-100%) any artifacts with exposure of fresh copper have been noted

⁴Age refers to suspected age of artifact using archaeological methods as per Cottreau-Robins, pers. comm. (2013)

Mine	Host Rock	Deposit Type	County	State/Province	Country	Copper Produced (lbs)
Phoenix	basaltic extrusive rocks and sediments ²	fissure vein ¹	Keweenaw	Michigan	USA	17 205 566*
Calumet	basaltic extrusive rocks and sediments ²	fissure vein ¹	Keweenaw	Michigan	USA	17 205 566*
Central Mine	conglomerate ²	fissure vein ¹	Keweenaw	Michigan	USA	17 205 566*
Copper Falls	conglomerate ²	fissure vein ¹	Keweenaw	Wisconsin	NSA	17 205 566*
Isle Royale	basaltic extrusive rocks and sediments ²	amygdaloid ore bodies ¹	Houghton	Michigan	NSA	254 632 779 ¹
Osceola Mine	cambrian sediments ²	amygdaloid ore bodies ¹	Houghton	Michigan	USA	4 782 774 32 ¹
White Pine	carbonaceous shale, siltstone, sandstone ³	stratiform sedimentary ³	Ontonagon	Michigan	NSA	4 088 269 603 ⁹
Greenstone Quarry	quartz	fissure vein ¹	Adams County	Pennsylvania	USA	unknown
Corocoro	shale, sandstone, conglomerates ⁴	vein ⁴	N/A	Le Paz	Boliva	$200\ 000\ 000\ ^{4}$
Itauz Mine	clastic redbed sequences ⁵	stratiform sedimentary ⁵	N/A	Dzhezkazgan	Kazakhstan	207 452 860 000 ⁵
Cap d'Or	basalt, carbonate quartz veins ⁶	vein ⁶	Cumberland	Nova Scotia	Canada	12 320 10
Margaretsville	basalt ⁷	amygdaloid ore bodies ⁷	Annapolis	Nova Scotia	Canada	0**
Victoria Beach	basalt ⁷	amygdaloid ore bodies ⁷	Digby	Nova Scotia	Canada	0**
Cornwall	metasediments ⁸	veins ⁸	N/A	Cornwall	England	352 736 ¹¹
1. Broderick, 193 Bevins et al. 2010;	1; 2. Butler & Burbank, 1929; 3. Brown, 19 9. Rosemeyer, 2010; 10. Messervey, 1929; 1	92; 4. Singewald & Berry, 1 1. Geological Survey of Gr	992; 5. Box et al. eat Britain, 1846.	2012; O'Reilly, 20	07; 7. Campb	ell, D.A., 1966; 8.
*Common tonnag	ie listed is representative of all of the copper	collected from all active mi	nes in the Keweel	naw Peninsula (K	osemeyer, 200	(6
	ысее печег рин шио ргоцисион (иллик, р	sts. comm. 2014)				

Table 1.2 : Descriptions of native copper sources

Figure 1.3 All artifacts used in this study from the Nova Scotia Museum. Inset: Artifact 8609.

2.0 Methodology

2.1 Sample selection and preparation

The samples used for this study comprised two different types: native copper samples, and archaeological copper-based samples. Native copper samples were purchased from private collections and sampled from larger specimens in the collections of the Nova Scotia Museum. Artifacts for this study were borrowed from the Nova Scotia Museum and come from collections that were discovered, assembled and characterized by provincial and private archaeologists Steve Davis, Michael Deal, Helen Sheldon, John Erskine and archaeology employees at Cultural Resources Management Inc. (Halifax) over a twenty year period (Cottreau-Robins, pers. comm., 2014). The collection includes artifacts from 6 different sites with various types of artifact morphology (e.g., shape and/or type of object, size, preservation) represented (Table 1.1, Figure 1.3). Morphological descriptions follow those detailed by Leonard (1993). Archaeological samples suspected or known to have been used for burial purposes or in burial ritual were excluded from this study.

2.1.1 Artifact copper

The archaeological samples were measured, catalogued and described prior to analysis using LA-ICP-MS. Owing to the size constraints of the laser ablation chamber, artifacts smaller than 2cm x 2cm x 2cm were selected to be analyzed with priority and larger artifacts were analyzed last with the maximum size possible being 6.1 cm x 3 cm x 0.1 cm. Samples ranged from worked nuggets to small decorative items such as tinkling cones and beads for necklaces, to fragments of rolled copper and copper-based alloy sheets of suspected European origin (Figure 1.3, Table 1.1). Artifacts larger than ~2.5 cm were carefully mounted in bricks of paraffin wax hollowed out to allow the artifacts to rest on

the brick and still be stable (Figure 2.1A). Samples smaller than ~2.5 cm were mounted in paraffin wax packing on top of, or within, the cores of drilled out cylindrical epoxy pucks (Figure 2.1B). This allowed for stabilization and levelling of the artifacts to be flush with the top of the surface of the sample holder to ensure that they were as close to the sampling cone (and within laser and optical focus) as possible, while still allowing for movement of the sample stage, but without risking damage to their brittle, patina-covered surfaces. In total, 60 artifacts were analyzed and only 57 artifacts being used in provenance determination as one was modern Zn metal, and two artifacts were too corroded for accurate analyses to be obtained (i.e., no fresh metal remaining at depth in the objects).

2.1.2 Natural copper source samples

A total of 38 samples of native (natural) copper samples were analyzed including multiple samples from single localities to allow assessment of site compositional homogeneity. Some of the samples came from private collections and others were accessed from the Nova Scotia Museum at the Museum of Natural History location. From each of the native copper samples, small fragments (<0.5 cm) were taken from each sample and mounted into epoxy pucks using Buehler Transoptic Powder, and a Buehler Simplimet 1000 Automatic Mount Press at Saint Mary's University. These pucks were then polished and ground down to expose fresh native copper without patina (Figure 2.1C).

2.1.3 Analytical standards

Five certified standards were used for data reduction (external calibration of analyte sensitivities) and quality control (e.g., inter-standard determination of analytical accuracy). Three copper standards from MBH Labs (United Kingdom; "residuals in refined copper" standard numbers 38X 27866, 39X 27869 and 39X 17872), as well as a silicate glass

Figure 2.1 Images of sample stages, mounts and ablation pits in copper artifacts. Photos courtesy of Dr. Catherine Cottreau – Robins, Nova Scotia Museum, and Dr. Jacob Haney, Saint Mary's University. A) Larger irregular artifacts in laser ablation chamber tray, mounted in paraffin wax. B) Smaller artifacts mounted in hollow epoxy pucks with paraffin wax holding each artifact in place. C) Three natural source samples of native copper mounted into an epoxy puck. D) SEM–BSE image of laser ablation pits in an artifact after ablation, showing fresh copper at depth (bright white) and corrosion products (patina) comprised of Cu-Fe-O-OH-Cl. E) SEM - SE image of ablation pits F) Enhanced SEM image of an ablation pit with melted copper flaring around the pit and surrounding ablation ejecta.

(SRM610) and a pressed sulfide powder pellet (MASS1) standard from NIST (National Institute of Standards and Technology) were utilized. Preliminary study of the ablation quality and composition of other certified reference materials, (e.g., NIST400; unalloyed copper VII) showed that while the samples were relatively homogeneous, the ablation characteristics of the samples were unusual, showing a lack of coupling of the laser with the sample and an inverse correlation between Cu isotope count rate and fluence. The reasons for this poor ablation behavior is unclear. Table 2.1 summarizes standards used for quantification of specific elements and Table 3.1 summarizes reported vs determined element concentrations for the respective standards.

2.2 Laser ablation ICP-MS method and data reduction protocol

2.2.1 Instrumentation and operating conditions

All artifacts used in this study were analyzed by LA-ICP-MS for trace elements at the University of New Brunswick, Department of Earth Sciences. The system used comprised a Resonetics RESOlution M-50 (193 nm Ar-F Excimer) with S-155 Laurin Technic Cell coupled to an Agilent 7700x quadrupole ICP-MS. Ablation was carried out at a fluence of \sim 4 J/cm². And at a repetition rate of 2.5 Hz with 10 measurements taken in each artifact or sample as a series of 90 µm-diameter pits (Figure 2.1 D-F). Ablation aerosols were transported to the ICP-MS using a He-Ar mixture (300 mL/min He, and 930 mL/min Ar). Complete analytical and data acquisition/reduction parameters are summarized in Table 2.1.

2.2.2 Quantification and data reduction schemes

Raw laser ablation data was reduced using the Iolite data reduction software package that runs in the Igor Pro compiler (version 6). Reference standard files were prepared from

Table 2.1: Table of LA-ICPMS operating conditions

LA	
Model	Resonetics RESOlution M-50 with S-155 Laurin Technic cell
Wavelength	193 nm
Pulse duration (FWHM)	20ns
Repetition rate	2.5 Hz
Spot diameter	90 µm
Energy density	$\sim 4 \text{ J/cm}^2$
Primary (calibration) standards	MBH39X27866, MBH39X27869, MBH39x17872, MASS1
Secondary (QC) standard	MBH39X27866, MBH39X27869, MBH39x17872, MASS1
ICP-MS	
Model	Agilent 7700x with dual external rotary pumps
Forward power	1500W
Shield torch	
Sampling depth	4.0 to 5.0 mm
Gas flows	
Carrier (He)	300 mL/min
Make up (Ar)	930 mL/min
ThƠ/Th ⁺	<0.1%
Data acquisition and reduction paramete	rs
Dwell time per isotope	15 ms
Detector mode	Dual mode
Data reduction software	Iolite platform on Igor Pro 6
Internal Standard used	Cu wt% (assumed 99 wt% for all objects or determined
	for alloys)
Isotopes determined with standard 66	⁵⁶ Fe, ⁷² Ge, ¹⁹⁷ Au, ²⁰⁸ Pb, ²⁰⁹ Bi
Isotopes determined with standard 69	³¹ P, ³⁴ S, ⁵³ Cr, ⁵⁹ Co, ⁶⁰ Ni, ⁶⁵ Cu, ⁶⁶ Zn, ⁷¹ Ga, ⁷⁵ As, ¹⁰⁷ Ag, ¹¹¹ Cd,
	¹¹⁵ In, ¹²¹ Sb, ¹²⁵ Te
Isotopes determined with standard 72	¹¹⁸ Sn
Isotopes determined with standard Mass	1 ⁵⁵ Mn, ⁷¹ Ga, ⁹⁵ Mo, ²⁰² Hg
Quadrupole settling time	5 ms
Analysis time	background (20s) abaltion (20s) washout (5s)

certified element concentration data provided for each standard by MBH laboratories. Regularly during LA-ICP-MS measurements, standards (MBH copper standards SRM610 and MASS1) were analyzed to allow evaluation of analytical accuracy and precision, and the homogeneity of the standards. To do this, each standard was treated as an unknown sample and quantified using the other standards (e.g., MBH66 treated as unknown with its trace element concentrations quantified using MBH69 to calibrate analyte sensitivities). A full compilation of the inter-standard quality control exercise is summarized in Table 3.1. Raw data for blocks of 8-20 artifacts were quantified using each of the five standards. Then, a comparison of the resulting data was done in order to evaluate internal consistency. With the exception of a few elements that could only be quantified using MASS1 because they were not present in the MBH standards (e.g., Mn, Ga, Mo, Hg), all data reported were quantified using the MBH standards. No data are reported using the SRM610 standard for quantification due to matrix mismatch. Copper was used as an internal standard for quantification, and was set to 99 wt% Cu for all natural copper samples and artifacts (with the exception of some European-sourced artifacts.) For some artifacts suspected as not being ~pure Cu (European refined Cu-Sn-Zn alloys) based on their appearances on fresh surfaces, SEM-EDS spectra were obtained and quantified in order to determine the appropriate Cu concentration to use for quantification (e.g., artifacts 8606 [95.5 wt% Cu] 8607 [92.2 wt% Cu], 002 [97.03 wt% Cu] 8609 and 8605 [95 wt% Cu], 20 [95.24 wt% Cu] 19 [69.25 wt% Cu] 819 [83.60 wt% Cu] and 8604 [67.04 wt% Cu].) Since objects were variably coated in patina (Figure 2.1F) and the thickness of this patina could not be determined before analysis, signals were examined closely to identify maximum depth (in time of ablation) at which a patina of different composition occurred. This could be

identified readily in transient signals (Figure 2.2, 2.3) as the time during ablation at which point specific elements preferentially depleted (e.g., Ag) and enriched (e.g., Au, Mn) in the patina showed an increase or decrease, respectively, in measured isotope count rate to a relatively constant level (see portions of signal interval labelled "patina" and "fresh metal" in Figure 2.2C). Additionally, count rates for ⁶⁵Cu appeared to initially be low at the start of the signal and then rise but remain variable in the patina, followed by an interval of constant ⁶⁵Cu count rate (e.g., Figure 2.2C). The maximum duration of ablation that the transition from apparent patina to fresh metal was observed was approximately half of duration of the total ablation (~10s). On the basis of these criteria, ablation signals were reduced into two separate groups to generate a separate quantified data set for: (i) the shallow part of the ablation profile (patina) ablation time starting one second into ablation and ending ten seconds into ablation, and (ii) the deep part of the ablation profile (fresh metal), starting eleven seconds into ablation and ending one second from the end of ablation.

2.3 Data manipulation

Once the data was quantified for each of the two signal portions (shallow and deep), it was filtered for analyses below detection limits. Additionally, examination of the transient signals showed the presence of anomalous peaks ("spikes" in signal intensity) that likely represent contaminating mineral particles, present even in the fresh metal (Figures 2.2 and 2.3). During data reduction, many of these particles contributed to anomalously high reported concentrations for the ablation intervals quantified resulting in outliers within blocks of 8-10 analyses of each sample for some elements. Outliers were excluded, the remaining analyses were averaged and a standard deviation was calculated for each

element in each sample, and the results were then plotted into spider diagrams allowing a preliminary graphical determination of compositional similarities between artifacts. Artifacts with similar trace element chemistry were sorted into categories for comparison with natural source copper analyses.

Figure 2.2 Transient LA-ICP-MS signal (cps) vs time (s) for measured isotopes from three ablations of artifact 99 (suspected natural copper). Red arrows highlighting peaks in signal intensities. A) Cu, Cr, Mn, Fe, Ga, Hg, and Bi with Bi, Mn and Fe "spikes" highlighted. B) Cu, Zn, Sn, Sb, Te with Sb and Sn "spikes" highlighted. C) Cu, As, Ag, Au, and Pb, with Pb and Ag "spikes" highlighted. Also labelled in this frame are the interpreted intervals of patina (e.g., elevated ¹⁹⁷Au and ⁵⁶Mn, lower ¹⁰⁷Ag and low to variable ⁶⁵Cu) and fresh metal (e.g., where these isotope count rates drop rise and level out respectively.

Figure 2.3 Transient LA-ICP-MS signal (cps) vs time (s) for measured isotopes from three ablations of artifact 99 (suspected natural copper). Red arrows highlighting peaks in signal intensities. A) Cu, Cr, Mn, Fe, Ga, Hg, and Bi. B) Cu, Zn, Sn, Sb, Te with Sn and Te "spikes" highlighted. C) Cu, As, Ag, Au, and Pb, with Pb and Ag "spikes" highlighted. Relative to ⁶⁵Cu, many elements appear elevated in the first ~10s of the signal in the refined European copper, representing the patina coating.

3.0 Results

3.1 Analyses and comparisons of standards

The composition of the four key standards (three MBH copper standards; MASS1 sulfide) used in this study were compared to each other by setting one standard as analyte sensitivity calibrant against another standard as an unknown. The LA-ICP-MS data for each standard quantified by each of the other standards were compared to the reference certificates provided by MBH Laboratories and NIST to estimate analytical accuracy and standard homogeneity (Table 3.1), and to deduce which standard was the most appropriate to quantify each element in the artifacts. To further evaluate the feasibility of each standard for specific elements through a check for internal consistency, analyses of artifacts quantified by each standard were compared against each other (Figure 3.1). After careful scrutiny of the results attained for each standard, compared to the certified references, it was determined that each standard would only be appropriate to quantify specific elements as outlined below and in Table 2.1. Selection of the most appropriate standard for each individual element was based on selection of the standard yielding the greatest accuracy and precision for elements reported. Figure 3.1 shows comparison of analyses of two artifacts with very different trace element concentrations, one of suspected European origin (8604) and one of suspected North American (natural copper) origin (99), based on archaeological evidence (not this study). In this figure, comparison of quantified (mean of 10 analyses ± 2 s.d.) trace element concentrations by external calibrant 72 vs. 66, 69 vs. 66, and 72 vs. 69 are shown.

Table 3.1	Evaluat	tion of analyt	fical accuracy	v (values i	in ppm) utilizi	ing standards	MBH 38	X 27866, 39X	27869, and	39X 17872 (1	esiduals in coj	pper) and MAS	S1 (sulfide)
Element	66 _{exp}	66 _{ms(69)}	66 _{ms(72)}	72 _{exp}	72 _{ms(66)}	72 _{ms(69)}	69 _{exp}	69 _{ms(66)}	69 _{ms(72)}	MASS1 _{exp}	MASS1 _{ms(66)}	MASS1 _{ms(69)}	MASS1 _{ms(72)}
P	147	345 (1398, 76)	229 (396, 66)	45	29.9 (17.7, 42)	228 (765, 75)	119	133 (138, 66)	185 (268, 70)	NC	ŊŊ	ŊŊ	ŊŊ
S	469	150 (38.4, 61)	302 (163, 63)	242	373 (155, 46)	119 (63.9, 61)	112	351 (133, 56)	223 (148, 68)	276000	11861 (3671, 60)	4089 (4681, 82)	12137 (2810, 78)
C	12	14.4 (105, 62)	ŊŊ	NC	ŊŊ	ŊŊ	20	3.69 (9.81,49)	ŊŊ	37	30.3 (49.9, 68)	29.2 (49.1, 64)	δN
Mn	NC	δN	ŊŊ	55	ŊŊ	ŊŊ	NC	ŊŊ	ŊŊ	260	ŊŊ	ŊŊ	727 (1337, 78)
Fe	30	28.3 (64.1, 66)	75.2 (210, 63)	450	247 (187, 43)	202 (196, 59)	30	31.9 (77.5, 71)	70.2 (231, 69)	156000	92300 (91548, 64)	99853 (71070, 58)	404123 (317886, 78)
Co	308	266 (98, 62)	371 (107, 62)	102	84.6 (8.93, 46)	70.6 (25.5, 65)	36	40 (14.5, 63)	49.9 (23.5, 58)	67	68.9 (5.91, 60)	60.4 (12.6, 57)	124 (19.6, 78)
N	487	512 (372, 72)	503 (42.2.57)	537	530 (44.6. 45)	559 (1458, 72)	190	184 (12.9.54)	190 (21.7, 68)	61	102 (6.17, 64)	106 (9.03, 58)	163 (11.7.78)
Zn	287	352 (119, 59)	313 (235, 68)	1070	1015 (150, 42)	1289 (383, 60)	65	49.7 (15.5, 64)	55 (44.8, 69)	207383	163028 (27675, 63)	204503 (32115, 55)	305401 (119551, 78)
Ge	29	25.4 (6.03, 67)	ŊŊ	NC	ŊŊ	ŊŊ	123	137 (13.8, 55)	ŊŊ	50	85.5 (8.11, 58)	76.7 (5.57, 58)	ŊŊ
As	383	386 (57.1, 61)	353 (105, 52)	203	223 (63.5, 15)	239 (118, 62)	98	97.5 (8.27, 60)	84.9 (24.8, 49)	65	58.8 (3.60, 59)	59.8 (3.99, 60)	89.9 (15.1, 78)
Ag	57	56.5 (11.4, 65)	48.9 (43.4, 69)	214	213 (28.5, 45)	239 (93.1, 62)	349	345 (24.7, 77)	291 (309, 70)	67	53.8 (2.49, 65)	54.4 (2.96, 58)	88.9 (45.3, 78)
Cd	139	153 (40.4, 56)	116 (64.6, 57)	13	14.4 (10.2, 59)	18.1 (23.4, 71)	28	24.7 (3.76, 63)	20.5 (11.4, 62)	70	57.9 (9.84, 53)	66.8 (11.6, 62)	80.2 (23.5, 78)
In	437	424 (144, 67)	354 (129, 59)	241	273 (101, 49)	259 (143, 59)	90	90.7 (14.9, 64)	76.5 (29.2, 51)	50	62.4 (3.31, 60)	61.4 (7.31, 58)	85.8 (16.3, 78)
Sn	448	246 (691, 75)	451 (786, 68)	1800	1844 (1323, 58)	1208 (1022, 44)	106	925 (5516, 65)	1672 (7943, 69)	55	65.6 (10.4, 80)	47.7 (29.8, 40)	127 (59.8, 78)
Sb	52	55.5 (112, 68)	49.2 (51.7, 68)	217	227 (90.7, 50)	250 (98.1, 75)	362	340 (34.1, 53)	310 (366, 70)	55	64.6 (3.78, 59)	68.9 (5.78, 60)	119 (63, 78)
Te	32	49.4 (156, 67)	52.1 (103, 63)	208	273 (1612, 60)	352 (1515, 72)	153	92 (279, 71)	129 (340, 68)	21.1	7.22 (13.5, 74)	14.6 (12.7, 63)	20.1 (17.1, 78)
Ν	16	17.2 (14.9, 68)	26.2 (4.98, 54)	15	8.79 (1.17, 39)	9.63 (16.2, 70)	80	74.8 (5.86, 56)	122 (23.2, 56)	47	62.9 (5.07, 65)	67.7 (6.79, 62)	169 (20.2, 78)
Pb	54	47.2 (27, 55)	35.9 (840, 69)	2930	5365 (6765, 55)	4775 (7457, 71)	225	242 (122, 63)	200 (5014, 70)	80	63.2 (16.1, 59)	60.1 (13.7, 61)	302 (824, 78)
Bi	47	52.1 (18, 55)	37.7 (64.5, 68)	240	350 (392, 51)	389 (692, 71)	376	321 (90.3, 58)	233 (495, 69)	99	40.9 (2.93, 56)	49.5 (10.2, 59)	65.3 (54.6, 78)
$^{1}NC = n0$	value re	eported for th	hat standard;	NQ = n0	of quantified (1	not available	in standar	d as certified	I value)				

³Subscript exp = expected values for certified reference standard \mathbb{C}^{4} Subscript ms(XX) = measured values for certified reference standard treating as an unknown and quantifying it with another certified reference standard

²Values outside of brackets is average value based on 'n' analyses; values in brackets represent ±1 s.d. on the average value, and 'n' analyses

Figure 3.1 Comparisons of quantified concentrations of trace elements in copper artifacts using different standards for external calibration of analyte sensitivities. Each panel shows the concentration in ppm of trace elements quantified by the listed external standard, compared to that of the same artifact quantified by another external standard. The red line in each tile represents a linear relationship with a slope of 1. Data points show mean element concentration (10 analyses) \pm 2 s.d. on the mean value. A) Artifact 99, concentration of trace elements quantified by standard 72, vs those quantified by standard 66. B) Artifact 8604, concentration of trace elements quantified by standard 66. C) Artifact 99, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. D) Artifact 8604, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. F) Artifact 99, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. F) Artifact 99, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. F) Artifact 99, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. F) Artifact 99, concentration of trace elements quantified by standard 69, vs those quantified by standard 66. F) Artifact 99, concentration of trace elements quantified by standard 72, vs those quantified by standard 69. F) Artifact 8604, concentration of trace elements quantified by standard 72, vs those quantified by standard 69. F)

By the methods discussed above, evaluation of the standard MBH 38X27866 (henceforth referred to as 66) proved that it was the most appropriate standard to use for Fe, Ge, Au, Pb, and Bi. Evaluation of the standard MBH 39X 27869 (henceforth referred to as 69) provide that it was the most adequate standard to use for P, S, Cr, Co, Ni, Zn, As, Ag, Cd, In, Sb, and Te. Evaluation of the standard MBH 39X 17872 (henceforth referred to as 72) proved that it was the most adequate standard to use for Sn. Overall, standard 69 proved to be the best with good ablation behavior and the majority of elements reporting the closest to the certified values, and was used for the majority of elements quantified in this study. Elements not quantified using standard 69, 66, or 72 were those that were not certified or even quantified from MBH Laboratories (Mn, Ga, Mo, and Hg) thus MASS01 was used. Other elements quantified by 66 and 72, were not inaccurately quantified by standard 69. Rather, they were just more accurately quantified by the other two standards. Notably, many elements were not being reported in standard 72 accurately (Table 3.1).

3.2 Comparison of patina and fresh metal composition, and sample homogeneity

Comparison of the first and last ~10 seconds of ICP-MS transient signals (Figure 3.2) allowed for the differences in composition of the altered surface patina and the fresh metal of the artifacts to be evaluated. Repeated analyses of four artifacts – two of "European" origin (8604 and 8606), and two of "North American" origin (99 and RLAKE) – were used for comparison of the composition of patina (corrosion products) and fresh (unaltered) copper or alloy.

Figure 3.2 shows that the majority of elements are reported in higher concentrations in the patina relative to the fresh metal. What is relevant from this comparison is analyses of patina, containing a lower concentration of Cu than fresh metal (due to the presence of Fe,

Figure 3.2 Comparison of trace element concentrations (ppm) in patina (y-axis; first 9 seconds of ablation profile) and core copper (x-axis; last 9 seconds of ablation profile). The red line represents a linear relationship with slope 1. Data points show mean element concentration (10 analyses) ± 2 s.d. on the mean value. A) Artifact 8604; B) Artifact 8606; C) Artifact 99; D) Artifact RLAKE.

P, H₂O and other elements forming the patina compounds), will overestimate trace element concentrations during data reduction. The exact wt% Cu content of weathering and corrosion products is unknown. Elements that are actually enriched in the patina relative to the fresh metal would be expected to show concentrations much higher (i.e., farther away from the 1:1 line) than those elements apparently enriched in the patina solely due to the overestimation of the Cu content of the patina during internal standardization in the data reduction. For example, in artifact 99 (Figure 3.2C) enrichments in Zn, Sn, Fe, As, and Au are seen in the patina, whereas elements such as S, Sb, Co, Ni, and Ge show increased concentration in the fresh metal. By evaluating ablation intervals for patina and fresh metal, one is able to evaluate if the patina is representative of the composition of the fresh metal underneath. If the same relative concentrations of trace elements are observed in the patina and fresh metal (i.e., elements are all over-reported by the same magnitude owing to uncertainty in patina composition) then patina analysis may still be appropriate for chemical provenance studies. However, if patina and fresh metal compositions show no systematic shift from one another, the patina is not representative. For this study, the former case held true and few objects showed variable enrichment or depletion in metals in the patina, with the exception of several of the artifacts comprised of refined copper and copper-based alloys from Europe. Ideally, analysis of the actual patina to determine its Cu content is preferred but this was not done in the present study. For this study it was not a requirement to use the patina data, as fresh metal was accessed during each ablation.

Understanding that many of the concentration relationships are similar in the patina of the artifact negates the requirement to drill into the artifact to expose fresh copper to determine provenance, reinforcing the value of this methodology over previously used bulk 27

analytical methods. European objects composed of alloys are clear exceptions to this, notably where they contain Zn. Dussubieux et al. (2008) showed a preferential depletion in Zn concentration in artifacts that were highly oxidized, weathered, and corroded, even in the fresh metal.

All of the artifacts and potential source samples were analyzed 8-10 times for statistical purposes as well to test sample homogeneity. These four artifacts had each ablation shot compared to the other nine shots of each respective artifact. Spider diagrams showing the individual (not mean) analyses of fresh metal in the same four artifacts used for the patina vs. fresh metal comparison can be found in Figures 3.3 and 3.4. Artifact 8604 shows minor variation in Sb, Mn, Cr and Te (< 20% relative variability). Artifact 8606 shows much larger variation from one shot to another (up to an order of magnitude variation) with the largest variations noted in Zn and Mn. However, the variations are systematic and the pattern of relative trace element concentrations is very similar from one shot to another across the entire variation in concentration. This may be expected for refined copper or copper-based alloy specimens that should not contain mineral inclusions but may show spatial variations in the purity of the metal or alloy. For naturally occurring copper, variations in trace element composition are expected to be less systematic from one analysis to another and can be attributed to inclusions of minerals that bear the variable trace elements in question (Figures 2.2, 2.3). Artifact RLAKE, for example, shows a much greater variability than artifact 99 and the variation in trace element concentration from shot to shot are very non-systematic in artifact RLAKE. Overall, while the analytical precision that partly reflects sample homogeneity is specific to each object, it was observed that for the majority of objects analyzed, trace element concentrations showed <30%28

variation from shot to shot (and typically no more than 20%), and where variation was observed it was systematic in natural copper artifacts, allowing for confidence in the degree of certainty for provenance assignment.

Standards, and all of the shots were averaged, approximately 40 shots per standard. Using the appropriate standard for quantification, as outlined in Table 2.1, it can be seen that the concentrations of elements for each standard reported in Table 3.1, are very close to the certified references, and that standards themselves, show good homogeneity using statistical means.

3.3 Source chemistry

Samples used for provenance evaluation came from six general locations: Nova Scotia, Canada; Michigan, USA; Pennsylvania, USA; Cornwall, UK; Bolivia and Kazakhstan. (Table 3.2, Figure 3.5). Elements that prove to be diagnostic of source locations are Fe, Ni, Zn, As, Mo, Ag, Pb, Cd, In, Sn, Sb, Te, Au, Hg, and Bi, with emphasis on the relationships between the concentrations of Ag and Pb; Hg and Bi; Zn and As; and in some cases the relationship between Sn, Sb and Te. Table 3.2 lists average concentration of all elements for each source location used in this study.

Figure 3.3 Comparison of the concentration of trace elements (ppm) determined for each individual laser ablation shot. A) Artifact 8604, good homogeneity. B) Artifact 8606 low homogeneity, variation between each shot.

Figure 3.4 Comparison of the concentration of trace elements (ppm) determined for each individual laser ablation shot. A) Artifact RLAKE, low homogeneity B) Artifact 99, moderate - high homogeneity.

3.3.1 Nova Scotia, Canada

Samples of Nova Scotian copper (figure 3.5A) were sampled from private collections and the Nova Scotia Museum collection. The private collection yielded sixteen samples of copper from Cap d'Or, and the samples from the Nova Scotia Museum yielded four samples from Margaretsville. Margaretsville copper samples contain on average higher Ag concentration (81.9 ppm) than Pb concentrations (0.059 ppm), moderately higher Hg (2.05 ppm) concentrations than Bi concentrations (0.516 ppm), and low Zn concentrations (0.534 ppm) compared to As concentrations (0.581 ppm). Cap d'Or samples contain moderate Zn vs As relationships (136 and 0.998 ppm respectively) (Table 3.1) lower Ag vs Pb (16.3 ppm vs 15.8 ppm respectively) and Hg (2.16 ppm) vs Bi (0.114) relationships. 3.3.2 Cornwall, UK

Source samples from Cornwall, UK (Figure 3.5 B) have high As vs Mo relationships (46.9 ppm vs 0.035 ppm) as well as a significantly higher Ag: Pb relationships (209 vs 0.067 ppm). It has the highest Ag concentration of the non- North American copper sources (Figure 3.5B). Copper from Cornwall also has been slightly enriched with Hg (4.74 ppm) in comparison to Hg found in coper from Bolivia (1.79 ppm) and Kazakhstan (2.36 ppm). 3.3.3 Michigan, USA

Samples from Michigan were collected from six different copper producing areas within the Great Lakes Region of North America (Figure 3.5C). Three from the Keweenaw

England 151 (77.2, 16) 0.375 (0.195, 4) 0.547 (0.561, 6) 1.39 0.709 (0.372 0.709 (0.372 0.709 (0.004 (0.016, 6) 0.709 (0.266, 10) 4.6.9 (0.016, 6) 0.379 (0.266, 10) 4.6.9	Kazakhstan 129 (22.6, 8) 1.75 (0.58, 4) 0.735	United States	United States	Bolivia	Canada	Inited States
151 (27.2, 16) (2.3.75 (0.195, 4) 0.547 (0.561, 6) 1.2.9 0.55 (0.195, 12) 0.709 (0.195, 12) 0.709 (0.195, 12) 0.709 (0.195, 12) 0.709 (0.265, 10) (0.265, 10) (15.2, (16)	129 (22.6, 8) 1.75 (0.58, 4) 0.735					Omen Diates
(2.7.2, 16) (0.1355 (0.1955, 4) 0.547 (0.561, 6) 1.39 (0.879, 9) 0.016 (0.009, 5) 0.016 (0.1955, 12) 0.729 (0.195, 12) 0.726 (0.016, 6) 0.379 (0.266, 10) 4.6.9 (15.2, (16)	(22.6, 8) 1.75 (0.58, 4) 0.735	149	117	153	142	151
(0.375 (0.575 0.547 0.547 (0.561, 6) 1.39 1.39 (0.879, 9) 0.016 (0.009, 5) 0.016 (0.195, 12) 0.024 (0.016, 6) (0.024 0.022 0.0224 (0.016, 6) (0.026, 10) (0.266, 10) (15.2, (16)	1.75 (0.58, 4) 0.735	(25.0, 16)	(17.9, 16)	(14.2, 8)	(17, 32)	(23.4, 8)
(0.195, 4) 0.547 (0.561, 6) 1.39 0.016 (0.009, 5) 0.016 (0.195, 12) 0.212 0.222 0.222 0.224 (0.016, 6) 0.379 0.379 0.379 (0.016, 6) (0.026, 10) 4.69	(0.58, 4) 0.735	0.213	0.234	0.325	0.845	0.12
0.547 0.561, 6) 1.39 0.51, 6) 0.879, 9) 0.099, 5) 0.212 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.709 0.716 (0.165 0.716) 0.716 (0.165 0.716) 0.716 (0.165 0.716) 0.716 (0.165 0.717) (0.179 0.717 (0.165 0.717) (0.179 0.717 (0.165 0.717) (0.165 0.717) (0.165 0.717) (0.175) (0.175)	0.735	(0.134, 8)	(0.12, 7)	(0.287, 4)	(0.323, 11)	(0.066, 3)
(0.561, 6) 1.39 (0.879, 9) 0.016 (0.195, 12) 0.705 0.712 0.725 0.725 0.726 0.726 0.379 0.379 (0.016, 6) 0.379 (15.2, (16) (15.2, (16)		0.654	0.588	0.984	0.417	0.65
1.39 (0.879, 9) 0.016 (0.009, 5) 0.212 0.212 (0.195, 12) 0.212 (0.195, 12) 0.224 (0.016, 6) 0.379 (0.266, 10) (15.2, (16)	(0.388, 6)	(0.323, 5)	(0.469, 10)	(0.609, 7)	(0.374, 19)	(0.495, 2)
(0.879, 9) 0.016 0.016 0.009, 5) 0.212 0.212 0.212 0.224 0.024 0.024 0.024 0.024 0.379 0.379 0.379 (15.2, 10)	0.2	2.43	0.504	8.32	0.746	3.53
0.016 (0.009, 5) 0.212 0.195, 12) 0.709 0.709 0.724 (0.016, 6) 0.379 0.379 0.379 0.379 (15.2, (16)	(0.141, 2)	(1.74, 7)	(0.421, 8)	(11.6, 8)	(0.607, 19)	(3.45, 3)
(0.009, 5) (0.195, 12) 0.709 (0.532, 8) (0.266, 10) 0.379 0.379 (152, (16) (152, (16)	0.028	0.08375	0.084	0.011	0.014	0.05
0.212 0.709 0.709 0.723, 8) 0.024 0.024 0.016, 6) 0.266, 10) 46.9 (15.2, (16)	(0.024, 6)	(0.075, 8)	(0.069, 10)	(0.006, 6)	(0.015, 21)	(0.036, 3)
(0.195, 12) 0.709 0.709 0.023, 8) 0.024 0.016, 6) 0.379 0.379 (0.266, 10) (15.2, (16)	0.168	0.535	0.645	0.345	0.58	0.445
0.709 0.532,8) 0.024 0.016, 6) 0.379 (0.266, 10) 46,9 (15,2, (16)	(0.089, 4)	(0.625, 4)	(0.275, 6)	(0.172, 4)	(0.712.25)	(0.078, 2)
(0.532, 8) 0.024 (0.016, 6) 0.379 (0.266, 10) 4.6.9 (15.2, (16)	0.445	0.257	0.197	0.456	0.534	0.288
0.024 (0.016, 6) 0.379 (0.266, 10) 46.9 (15.2, (16)	(0.601, 2)	(0.183, 13)	(0.149, 10)	(0.601, 5)	(0.407, 24)	(0.309, 5)
(0.016, 6) 0.379 (0.266, 10) 46.9 (15.2, (16)	0.043	0.099	0.122	0.018	0.009	0.05
0.379 (0.266, 10) 46.9 (15.2, (16)	(0.034, 5)	(0.063, 7)	(0.087, 10)	(0.015, 5)	(0.013, 20)	(0.036, 3)
(0.266, 10) 46.9 (15.2. (16)	0.61	0.501	0.511	0.495	0.443	0.52
46.9 (15.2, (16)	(0.274, 4)	(0.431, 10)	(0.198, 9)	(0.373, 4)	(0.379, 15)	(0.337, 3)
(15.2, (16)	0.55	26.1	10.5	0.528	0.581	8.51
	(0.212, 7)	(14.9, 16)	(1.75, 16)	(0.219, 6)	(0.566, 28)	(1.88, 8)
0.035	0.094	0.126	0.117	0.015	0.004	0.22
(0.021, 6)	(0.009, 2)	(0.113, 11)	(0.066, 10)	(0.011, 4)	(0.011, 23)	(0.142, 4)
310	79.6	205	56.9	1.85	81.9	104
(74.7, 16)	(40.4, 8)	(39.8, 16)	(39.9, 16)	(0.968, 8)	(31.1, 32)	(20.6, 8)
0.035	0.033	0.068	0.051	0.048	0.014	0.051
(0.038, 6)	(0.029, 4)	(0.062, 10)	(0.033, 11)	(0.033, 5)	(0.027, 21)	(0.054, 4)
0.005	0.015	0.005	0.006	0.011	0.008	0.003
(0.005, 7)	(0.006, 4)	(0.003, 8)	(0.005, 9)	(0.007, 4)	(0.009, 31)	(0.001, 3)
0.038	0.065	0.04	0.036	0.059	0.063	0.018
(0.027, 12)	(0.038, 6)	(0.031, 9)	(0.033, 9)	(0.045, 7)	(0.052, 30)	(0.013, 5)
0.067	0.069	0.052	0.068	0.155	0.05	0.298
(0.037, 9)	(0.073, 2)	(0.034, 11)	(0.034, 10)	(0.083, 4)	(0.039, 19)	(0.108, 8)
0.014	0.033	0.23	0.087	0.07	0.11	0.04
(0.012, 5)	(0.026, 4)	(0.38, 8)	(0.075, 12)	(0.014, 2)	(.094, 22)	(0.00, 2)
0.00	0.00	0.012	0.005	0.00	0.001	0.004
(0.00, 16)	(0.00, 3)	(0.012, 6)	(0.004, 6)	(0.00, 5)	(0.001, 32)	(0.002, 4)
4.59	2.36	3.62	2.26	1.79	2.05	1.35
(0.578, 16)	(0.543, 8)	(6.68, 16)	(1.27, 16)	(0.352, 8)	(0.413, 32)	(0.243, 8)
0.021	0.036	0.007	0.008	0.156	0.059	0.016
(0.012, 8)	(0.023, 5)	(0.005, 8)	(0.006, 13)	(0.227, 7)	(0.039, 26)	(0.008, 7)
0.006	0.017	0.005	0.005	0.041	0.516	0.028
(0.005, 9)	(0.01, 8)	(0.003, 9)	(0.005, 7)	(0.038, 5)	(0.978, 29)	(0.028, 8)
	(0.023) (0.027, 12) (0.027, 12) (0.037, 9) (0.012, 5) (0.012, 5) (0.012, 5) (0.012, 6) (0.00, 16) (0.0012, 8) (0.005, 9)	(0.037, 12) (0.038, 6) 0.038 0.065 0.057 0.069 0.067 0.069 0.014 0.053 0.014 0.035, 4) 0.014 0.035, 3) 0.014 0.035, 4) 0.014 0.036 0.00 (0.012, 5) 0.00 (0.00, 3) 4.59 2.36 0.031 0.00 0.031 0.00 0.032 10.00, 3) 4.59 2.36 0.032 0.036 0.031 0.036 0.032 0.036 0.041, 8) 0.011, 8)	0.003 0.005 0.004 0.067 0.065 0.043 0.067 0.068 0.031, 9) 0.067 0.069 0.052 0.067 0.038, 6) 0.031, 9) 0.067 0.038, 6) 0.032 0.014 0.033 0.033, 11) 0.014 0.035 0.033, 11) 0.016 0.036 0.032 0.00 0.003 0.23 0.012, 6) 2.36 3.62 0.021, 6) 0.035, 8) 0.007 0.021 0.035, 9) 0.007 0.021 0.035, 6) 0.007 0.021, 8) 0.035, 5) 0.005, 8) 0.005 0.012, 5) 0.005, 8) 0.005 0.011, 8) 0.005, 8)	(0.027, 12) (0.033, 6) (0.031, 9) (0.033, 6) (0.033, 6) (0.033, 9) 0.067 0.068 0.062 0.044 0.036 0.036 0.067 0.069 0.052 0.032 0.0368 0.0368 0.0368 0.067 0.0369 0.052 0.034, 10 0.0343, 10 0.0368 0.012 0.037, 9) 0.0173, 2) (0.034, 10) 0.0341 0.0368 0.012 0.033 0.032 0.238, 8) 0.0375, 12) 0.0341 0.010 0.012 0.033 0.012 0.0365 0.0065 0.00 0.012 0.012, 6) (0.045, 6) 2.266 2.266 0.012 0.005, 8) (0.05, 8) (0.005, 8) 0.006 13) 0.005 0.005, 8) (0.005, 8) (0.005, 8) 0.006 13) 0.005 0.005, 9) (0.012, 6) (0.005, 3) 0.006 13)		

Figure 3.5 Trace element discrimination diagrams showing elemental concentrations (ppm) for all source samples of native copper. These samples were not reduced by their respective concentrations of copper as we knew they were natural native copper that had not been smelted. A) Nova Scotian copper from Cap d'Or and Margaretsville locations. B) Copper from Cornwall, UK. C) Michigan copper showing six samples taken from six different copper producing mines located in three different copper counties. D) Bolivian Copper. E) Pennsylvanian copper from Adam's County F) Copper from Kazakhstan.

County (Phoenix Mine, Central Mine and Copper Falls), two from Houghton County (Isle Royale, and Osceola Mine), and one from the Ontonagon County (White Pine Mine). Many of the trace element signatures for all of the Michigan samples were consistent amongst the other samples, with notably high Ag (56.9 - 205 ppm) low Pb (0.007 - 0.016 ppm), moderate (1.35 - 3.62 ppm) and low Bi (0.005 - 0.028 ppm). Significantly different from the Nova Scotian samples, the Michigan copper shows an enrichment in As (8.51 - 26.1 ppm) with respect to Zn (0.197 - 0.288 ppm) whereas Cap d'Or samples have slightly higher concentration of Zn compared to As, and Margaretsville samples have a moderately lower concentrations of Zn than As. Michigan samples show homogeneity and consistency between each of the samples (Figure 3.5C) however some variation exists in the concentration of Zn, Sn, Sb, and Te, between all of the different mines, which given enough analyses of artifacts from that location, could give us knowledge on exactly which mine or deposit the aboriginal peoples were procuring their copper.

3.3.4 Bolivia

Bolivian copper from Le Paz, has a very limited concentration of trace elements. Relative to the other sources used in this study, Bolivian copper is nearly pure (Figure 3.5 D). The greatest enrichments are found in Ag and Hg, however they are not enriched to the same scale as compared with the North American samples. Hg and Ag on average are only present in concentrations of 2.36 and 79.6 ppm respectively in Bolivian copper, whereas in the North American samples, Ag, Hg and Pb can get into the hundreds of ppm level, showing more impurities in the sources from North America.

3.3.5 Pennsylvania, USA

Copper from Adam's County, Pennsylvania (Figure 3.5E), had trace element chemistry similar to those of Michigan in terms of overall trace element signatures, with the exception of select elements, for example As and Mo. Pennsylvanian copper has As concentrations in the range of hundreds of ppm with the average concentration being 392 ppm, and Mo concentrations so low that the average concentration is 0.007 ppm. In the copper samples from Michigan, As concentrations only range between 8.51 and 26.1 ppm and Mo concentrations in Michigan range between 0.117 and 0.220 ppm. Another exception is the Pb to Cd relationships. In Michigan samples, the concentration of Pb is lower than that of Cd (0.007 - 0.016 ppm Pb vs 0.051 - 0.068 ppm Cd). Pennsylvanian samples show a higher Pb concentration than that of Cd, 0.067 and 0.006 ppm respectively.

3.3.6 Kazakhstan

Copper from Kazakhstan (Figure 3.5F) is similar to that of Bolivia, as both samples do not contain high concentrations of impurities via trace elements. The copper samples from Kazakhstan also contain enrichments of Ag and Hg, however they are more concentrated than the impurities in Bolivia with the average concentration of Ag being 79.6 ppm and Hg being 2.36 ppm.

3.4 Artifact chemistry

A total of fifty seven artifacts, (Figures 3.6, 3.7, 3.8; Table 3.3) of the collection of sixty, were analyzed for this study. Artifacts 218, 818 and 82, were excluded from further comparisons with copper sources, as it was determined that these sources were modern metal alloys containing abundant Zn, Fe and Sn and originating with gun metals and Cu-Zn-Sn alloys from the 1900s. Each of the artifacts were sorted into a specific provenance

group based on their trace element signatures. For this study, provenance determination was based on the concentration of Fe, Ni, Zn, As, Mo, Ag, Pb, Cd, In, Sn, Sb, Te, Au, Hg and Bi, relative to each other in a given artifact. Emphasis was placed on the relationships between Ag and Pb, Hg and Bi, and Zn and As. To further sub-divide, some artifacts were separated based on the concentration of Sn vs the concentration of Sb, however that separation is not required. Using these element concentration relationships, ten artifact groupings are created.

3.4.1 Group I

Group one is the collection of artifacts that are not pure native copper and in fact are either alloys or smelted copper with high Fe impurities. When reduced by Fe, these artifacts show enrichments in Zn, Ag, Pb, In, Sb, Au, and Bi. Significant differences that set the group one artifacts (2, 19, 20, 819, 8604, 8605, 8606, 8607, and 8609) apart from the others is the presence of an enrichment (relative to other elements) of Au in these artifacts. Au is present in these artifacts between 0.91 ppm to 470.9 ppm which is a much wider range and higher concentrations than the other provenance groups. Notable differences in elements exist in As (range between 177 and 10140 ppm), Te (0.05 and 64.12 ppm), and Hg (0.032 and 1366 ppm) (Figure 3.6A & B) which means that while we can safely assume that these artifacts are very similar in origin, there is some variation among the exact provenance of each copper artifact, or the smelting techniques that went into making them. For further details see Hodge et al. (in prep.)

Figure 3.6 Discrimination diagrams for the first four provenance groupings. A) Group I – not reduced by iron B) Group I – reduced by iron C) Group II – not reduced by iron D) Group II – reduced by iron E) Group III – not reduced by iron F) Group III – reduced by iron G) Group IV – not reduced by iron H) Group IV – reduced by iron.

Figure 3.7 Discrimination diagrams of groups V, VI and VII A) Group V – not reduced by iron B) Group V – reduced by iron C) Group VI – not reduced by iron D) Group VI – reduced by iron E) Group VII – not reduced by iron F) Group VII – reduced by iron.

Figure 3.8 Discrimination diagrams of the last three provenance groupings. A) Group VIII – not reduced by iron B) Group VIII – Reduced by iron C) Group IX – not reduced by iron D) Group IX – reduced by iron E) Group X – not reduced by iron F) Group X – reduced by iron.

Table 3.3 Ave	rgage concentra	tion (ppm) of all :	artifacts used i	n this study	٨																				
Planate	19	20	21	2	230	1949	2015	2158	2225	5377	8566	8567	8568	8569	8572	8573	8574	8576	8577	8579	8580	8581	1582 8	584 8	1587
Frement B.	urnt Bone Beach	Burnt Bone Beach	I Clam Cove	Clam Cove	Clam Cov	e Enfiels	I Enfield	Enfield	Enfield	Enfield	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR 6	ILR O	TLR
v	238	382	31101	483	206	227	199	176	211	163	849.70	295	169	214.00	485	201	1203	131	261 9	440.00	260	6.68	261 58	8.00	245
5	(65.7, 8)	(131, 10)	(97643, 10)	(340, 9)	(31.9, 10)	(24.5, 1	0) (46.6, 10	(11.6, 10)	(31.8, 10)	(15.1, 10)	(346, 10)	(53.8, 10)	(30.5, 10) (33.3, 10)	(127, 10)	(73.4, 10)	(1217, 10)	(15.5, 10) (6	2.1, 10) (3	647, 10) (3	53, 10) (2	4.8, 10) (7	(9, 10) (23	3, 10) (49	.8, 10)
გ	(103.8)	(507, 10)	(3222.8)	(906.9)	(98.8.10)	24.8.1	0) (285.10)	9.50	(164, 10)	(118, 10)	(1325, 10)	(1122.10)	1997	2.59.10)	(194, 10)	(242, 10)	0430	164,100 (1.	8.2.10) (11	588.10) (29.10) (2	4.96	01.10 01.79 M4.10) (29	6,10) (31	4.10)
M	1.32	0.81	56	3.51	66.8	37.3	0.74	0.205	0.73	0.732	20.10	1.47	1.21	1.63	2.36	9.56	20.3	0.73	16.0	1016	BDL	1.12	6 6	.88	5.64
	(1.03, 8)	(0.461, 10)	(155, 8)	(7.49, 9)	(61.9, 10)	(21.2, 3	(1.62, 10	(0.104, 9)	(0.535, 10)	(0.987, 10)	(11.2, 10)	(0.649, 10)	(0.772, 10)	(1.79, 7)	(0.786, 10)	(7.11, 10)	(15.7, 10)	0.599, 10) (0.	774, 10) (3	19, 10)	BDL (0.	476, 10) (3	(8, 10) (2.2	5, 10) (4.	1, 10)
Fe	(13579, 8)	(27717, 10)	3/408 (115462, 10)	(4622, 9)	076766, 10	080	0) (2951,10	(18.4, 10)	(534, 10)	(715, 10)	(11018, 10)	(439, 10)	(567, 10) (147, 10)	(130, 10)	1028 (1289, 10)	(60375, 10)	(46.2, 10) (1)	667, 10) (11'	7643, 10) (0	925, 10) (3	132, 10) (1:	93, 10) (38	2.10) (44	13, 10)
č	15.9	17.9	168	3.52	1.63	0.23	0.649	0.059	0.37	0.261	3.80	0.82	0.154	0.06	0.325	0.286	6.24	0.06	1.09	623	0.311	0.305	1.67 2	30 0	345
3	(7.75, 8)	(10.8, 10)	(473, 8)	(6.62, 9)	(0.836, 10	(0.369,	7) (1.40,5)	(0.076, 8)	(0.223, 10)	(0.289, 9)	(3.26, 10)	(0.444, 10)	(0.149, 9) ()	0.062, 7)	(0.347, 10)	(0.365, 10)	(6.09, 10)	(0.037, 9) (0.	979, 10) (2	8.6, 10) (0	.082, 10) ((0.32, 9) (0.	49, 10) (6.	26, 9) (0.5	02, 10)
IN	195	570	1332	10.6	1.92	1.07	1.16	0.652	1.67	1.96	13.31	8.60	0.816	0.52	1.62	4.7	37.7	131	1.68	246	1.73	0.639	10.4	42 0	946
	(99.1, 8) 355562	(203, 10)	(3514, 7) 807	(20.9, 9)	(1.67, 10	1001	() (2.73, 8) 60.5	33.1	(0.758, 10)	(01,235,10)	717.80	205	33.7	1.62	(11.29, 10)	(01,5.15, 10) 296	(30.5, 10)	(1.15, 8) (19.2	7.9 (8,91.1	921.00 (0	.041, 10) (0 60.9	28.9 (4	19, 10) (12 558 2	5, 10) (0.5	78.8
Zn	(174809, 8)	(121070, 10)	(2492, 10)	(159, 9)	(44.4, 10)	(62.4,1	0) (41.4, 10	(11.9, 10)	(92.3, 10)	(113, 10)	(307, 10)	(54.6, 10)	(19.7, 10) ((01, 2, 10)	(77.3, 10)	(151, 10)	(1003, 10)	(18.9, 10) (5	43, 10) (1)	852, 10) (0	0.4, 10) (2	14,10) (2	6,10) (13	6, 10) (32	.1, 10)
2	3.03	1.95	52	2.91	1.95	0.423	0.32	0.157	1	0.88	9.65	3.56	1.14	0.204	1.24	1.01	27.9	0.149	169.0	175	141	0.856	3.25 5	44	181
5	(2.02, 8)	(0.581, 10)	(145, 8)	(4.93, 9)	(0.609, 10	0.333,1	0) (0.542, 10	(0.024, 10)	(0.653, 10)	(0.751, 10)	(6.61, 10)	(1.95, 10)	0.693, 10) (0	0.127, 9)	(0.609, 10)	0.716, 10)	(26.7, 10)	(0.104, 8) (0.	589, 10) (8	2.4, 10) ((0.46, 10) (0.	446, 10) (1	42, 10) (2.8	(5, 10) (0.9	63, 10)
Ge	UL 175 W	1011	10 201	0 880 0J	01.10	101.02	3 341 00 10	00110 0	01 345 0	C/770	012 10	(0.465 10)	0 10 201 0	-100	0 303 10)	0 206 101	101 96 91	0 13 151.0	201 101 102	31 100 0	115 01 0	11 18 80 1	101 03 101 03 3	200 UL 30	0 161
1	512	917	358	8108	50.4	5.6	1.82	0.972	III	96.9	23.75	13	8.52	124	6.35	60.6	112	0.75	23	128	154	9.26	10.9 2	5.7	8.6
VS	(226, 8)	(210, 10)	(1145, 9)	(62.9, 9)	(17.9, 10)	(3.88, 1)	0) (1.40, 10	(0.342, 10)	(3.47, 10)	(4.33, 10)	(14.4, 10)	(5.03, 10)	(5.48, 10) (1.16, 10)	(3.42, 10)	(5.78, 10)	(232, 10)	0.161, 10) (3	.46, 10) (2	23,10) ((.48, 10) (5	(11, 10) (4	75, 10) (5.9	3, 10) (3.0	61, 10)
Ma	0.513	0.58	27.5	0.881	3.17	0.183	0.121	0.201	0.52	0.245	1.37	0.26	117	0.24	0.23	0.242	1.24	0.14	3.31	6.40	0.185	0.268	0.45 0	54 0	122
	(0.234, 7)	(0.26, 10)	(71.6, 7)	(0.432, 9)	(1.13, 10)	0.188,1	0) (0.063, 10	(0.129, 10)	(0.484, 10)	(0.304, 10)	(1.86, 10)	(0.197, 10)	(0.079, 10) (0	(192, 10)	(0.222, 7)	(0.12, 9)	(0.972, 10)	0.062, 10) (5	.12, 10) (3	.45, 9) (0	.096, 10) (0	.106, 9) (0.	28, 10) (0.6	74, 10) 0.1	23, 10)
Ag	629.00	485	450	26.1	8.02	282	248	232	80.6	220	134.70	246	86.9	254.00	179	201	273	256	54.7	226	2.7 4	494.00	11 01 0	457	488
,	(113, 8)	(11)	(884, 10)	(21.0, 9)	(1.69, 10	0 (351, 1	0) (88.7, 10	0 (121, 10)	(33, 10)	(15.5, 10)	(33.2, 10)	(224, 10)	(37.7, 10) (0136	(13.7, 10)	0 407	(139, 10)	(178, 10) (2	7.6, 10) (6	0) (01,11) (0	0.746	0 167 (1) (1		47, 10) (24	10, 10)
Cd	(0.663, 8)	(0.452, 10)	(53.7, 10)	(6.966.0)	(0.483, 10	1.111.0) (0) (0.184, 10	(0.282.10)	(0.547, 10)	(0.217.10)	(1.34, 10)	(0.481.10)	0.068, 10) ()	0.121.9)	0.225, 10)	0.293, 10)	(07.10)	0.061.7) (0.	042.10) (3	86, 10) (0	086, 10) (0	(185.9) (7	39, 10) (0.4	36, 10) (0.4	42, 10)
ę	17.5	109	0.722	160.0	0.228	0.004	0.005	0.003	0.196	0.059	2.86	0.041	0.07	0.466	0.112	0.009	0.126	0.004	0.005	1.15	0.018	0.541	372 0.	273 0	055
•	(4.09, 8)	(39.5, 10)	(1.88, 7)	(0.095, 8)	(0.173, 10	(0.002,	7) (0.004,7	(0.002, 8)	(0.268, 10)	(0.131, 10)	(6.49, 10)	(0.047, 10)	(0.117, 9) ((1.03, 5)	(0.164, 9)	(0.006, 10)	(0.114, 10)	(0.002, 7) (6	.001, 8) (0.	559, 10) (0	.011, 10) ()	1.12, 8) (0.	94, 10) (0.6	00' (8'66)	078, 9)
Sn	801	21155.00	12	13.1	0.83	0.134	0.264	0.397	1.79	0.277	8.58	2 101	0.45	0.311	0.875	1.09	16.6	0.281	0.317	170	1.45	3.05	10 101 01	.12 0	152
t	201	(01 ,2007) 433	30.1	0.426	0.495	0.488	90'0 (n	(at 'acca)	0.602	(01,149 0.149	3.50	0.169	0.381	0.078	0.277	0.124	(mr (crcr))	0.043 (ut , Puc.u.	0.039	8.16	c) (at 'cr')	0.093 (UL , PO.		169 (01.747)	1351
ŝ	(50.2, 8)	(232, 10)	(84.8, 8)	(0.578, 9)	(0.462, 10	(1.06,1)	0) (0.067, 9	(0.075, 10)	(1.07, 10)	(0.144, 10)	(4.73, 10)	(0.067, 10)	(0.409, 10) ()	0.086, 5)	(0.37, 10)	(0.048, 10)	(0.729, 10)	0.024, 10) (0.	023, 10) (1	4.1, 10) ((0.022, 8) (0.	088, 10) (1	13, 10) (0.1;	28, 10) (0.5	(19, 10)
Te	0.959	0.055	64.1	0.121	0.496	0.009	0.032	0.025	0.117	0.023	0.25	0.011	9200	0.064	0.132	0.09	0.301	0.03	0.078	2.37	60.09	0.187	0.59 0	90	91.6
	(0.505, 8)	(0.024, 9) 18.8	(180, 8)	0.011	0.043	0.205	0.005	0.003	0.041	0.024	0.34	0.036	0.019	0.046	0.032	0.019	0.023	0.003	0.003	0.91	0.005	0.04 (01 (0	0.0 (6, 68/	93, 9) (U.) 039 0	(8,151
ч	(4.09, 8)	(10.1, 10)	(16.6, 7)	(0.007, 9)	(0.038, 10	(0.524,	8) (0.003, 6	(0.002, 6)	(0.059, 10)	(0.046, 10)	(0.469, 10)	(0.024, 10)	(0.022, 9) ()	0.069, 4)	(0.043, 9)	(0.016, 9)	(0.022, 9)	(0.003, 6) (0	.003, 4) ()	((())))))))))))))))))))))))))))))))))))	0) (6,900)	.042, 9) (0.	48, 10) (0.0	.0) (6,67	067, 9)
He	4.833	4.57	554	22.9	6.42	231	146	85.1	315	387	3.83	0.72	606.0	0.596	3.2	0.393	3.76	0.46	0.544	27.6	0.47	4.21	376 1	3.2 1	1.22
8	(4.12, 8)	(3.13, 10)	(1738, 10)	(13.6, 9)	(0.917, 10	(116, 1(() (72.5, 10	(53.7, 10)	(210, 10)	(230, 10)	(3.19, 10)	(0.504, 10)	(0.402, 10) (0	(241, 10)	(2.61, 10)	0.132, 10)	(3.34, 10)	0.114, 10) (0.	454, 10) (9	.51, 10) (0	.125, 10) ()	1.5, 10) (0.	84, 10) (6.6	7,10) (0.6	24, 10)
Pb	15261	8106.00	232	7.59	6.83	2.05	0.589	0.40	3.29	3.47	65.98	3	222	0.312	5.16	1.44	26.3	0.213	0.289	212	423	5.22	13.1 4	32	1.48
	(5292, 8)	(3942, 10)	(730, 10)	(4.99, 9)	(3.95, 10	1 (2.23, 1	0) (0.396, 10	(0.425, 10)	(1.81, 10)	(4.21, 10)	(118, 10)	(1.78, 10)	(4.53, 10) (0	(01,171,10)	(11.7, 1)	0.755, 10)	(21.2, 10)	0.178, 10) (0	335, 10) (J	9.2,10) ()	() () ()	17, 10) (2	(0, 10) (7.2 0, 10) (7.2	2, 10) (0.8	42, 10)
Bi	17.9.8)	(14.3.10)	(6.6.9)	(0.283.9)	01.886.10	1.110.01 0	CT0.0 (0.021.10	01.019.10)	(0.123.10)	(01.390.0)	(1.06.10)	(0.04.10)	0.066.10) 0	0.015. 9)	(1.55.10)	0.081.10)	(0.89.10)	17.52.91 (0.	006.10) (2	38, 10) (0	044.10) (0	08.10) (0.	14.10 (0.7	19.101 (0.3	85. 10)
¹ Values outsi	te of brackets at	re average values	based on 'n' an	talyses	in family	forman 1		Tax bernary 1	(and famous)	(as (acar)	las hand	(articul)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.	(a. (a)	(au (10000)	far from		a) far fan	at far far	al far far a	in far fan	in the first	and far for	100 600
² Values insid-	of brackets rep	present ±1 s.d and	'n' analyses																						
³ Respective a	rcheological site	's are listed helow	each artifact n	number																					
'GLR = Gas	erean Lake Res	ervoir																							

Table 3.3 ct	ntinued																					
Element	8289	8590	1658	8592	8594	8595	8596	8597	8658	8599	8604	8605	8606	8607	8098	8609	8610	8630	66	211	173	7
	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	GLR	Isle Haute	Isle Haute	Jeddore Harbou	Margaretsville
	150	122	141	1128	183	132	362	242	165	1112	268	117	156	85947	615	73	152	107	395	256	1418	236.92
2	(18.4, 10)	(25.9, 10)	(9.59, 10)	(2343, 10)	(38.5, 10)	(20.9, 10)	(54.5, 10)	(172, 9)	(47, 10)	(1891, 10)	(34.7, 10)	(10.6, 10)	(20, 10)	(226676, 7)	(352, 10)	(12.3, 10)	(13.5, 10)	(25.1, 10)	(51.3, 10)	(25.3, 10)	(1404, 9)	(20.5, 10)
5	50.6	33.9	9.74	7290	391	80.2	364	155	165	3326	38.3	9.8	15.5	5487	165	18.4	643	52.8	11.3	52.2	2372	35.62
	(01,9.95)	(21.8, 10)	(5.04, 10)	(18226, 10)	(368, 10)	(01.4, 10)	(339, 10)	(241, 10)	(108, 10)	(0862, 10)	(32.1, 10)	(4.64, 10)	(21.7, 10)	(15665, 10)	(135, 10)	(01,7,10)	(04.1, 10)	(54.8, 10)	(1.34, 10)	(36.9, 10)	(1773, 9)	(33.3, 10)
Mn	BUL	BDL	0.475	505	BUL	1.59	64-1	25.8	20.4	1353	65.6	5.0	141	6262	14.8	91.1	0.45	1.94	4.55	52.8	BUL	1.751
	BUL	BUL	(01,295,10)	(103, 10)	101 1010	(01 (878-0)	(01, 67.9, 10)	(6 (7 9)	(9.88, 10)	(6,556)	(01, 10)	(1, 1)	(4.78, 10)	(113818, 10)	(01,54,10)	(01.79, 10)	(0.339, 9)	(01,10)	(01, 609, 10)	(49.7, 10)	1091	(1.14, 10)
Fe	101 101	COOT OF	1.84	85457	2785	077	00.606	12000 101	100 100	680/C	10401	101 002	434	342130	C/TC	6/17	100	1473 101	116	1003	17261	101 CUCH
	0 105	(NT (007)	(01 (2.4.6)	(01, (01+0)	(01 , 494.C)	(01,114)	(01 '06T)	(UI (800CI)	(NT '04C)	(01 (1/0/11)	(01 (CC07)	01456	01 (007)	(AT '6+C+70)	(01.4.11C)	01.44,10)	0 104	(1445, 10) 1 13	(01,122)	(NT 410, TU)	(4/13, 9)	(NT 'COCT)
ථ	012510	0 015 91	(0 017 T)	(141 10)	0.15 10	(1) 744 8)	101 38 00	(9 85 8)	(0 032 10)	1154 0)	(0 129 10)	0 12 10	(40 4 10)	(19 6)	(0 14 10)	0162.10	(0 155 0)	0.40 80	10 074 10)	(01 01 1)	001 00	0 874 10)
;	0.568	1.04	0.65	127	8.74	1.15	5.57	28.4	2.93	234	23.5	436	3291	5592	5.65	4.6	0.699	1.97	1.89	4.19	6.69	138.32
Z	(0.332, 9)	(0.539, 10)	(0.27, 8)	(258, 10)	(8.17, 10)	(0.747, 10)	(7.09, 10)	(55.9, 9)	(2.29, 10)	(580, 10)	(3.78, 10)	(0.943, 10)	(2064, 10)	(14741, 8)	(2.42, 10)	(1.33, 10)	(0.911, 9)	(0.995, 10)	(1.07, 10)	(3.21, 10)	(59.3, 9)	(53.3, 10)
Ta	98.3	80.6	30.2	1151	215	195	85.66	263	474	808	9310	8759	157	20496	179	9883	60.1	522	41.7	36.2	666	7213
1	(71.3, 10)	(21.8, 10)	(11.5, 10)	(3225, 10)	(199, 10)	(119, 10)	(54.4, 10)	(222, 10)	(185, 10)	(868, 10)	(1206, 10)	(2699, 10)	(112, 10)	(18631, 10)	(155, 10)	(2998, 10)	(41.4, 10)	(349, 10)	(30.1, 10)	(25.4, 10)	(425, 9)	(2594, 10)
Ga	618.0	2.24	151.0	73.3	13.8	0.768	0/.1	3.31	1.52	0.71	8.31	61.2	01210	614	9.35	129	0.403	1.43	101	1.45	5.62	0.8253
	0.600	0.774, 10)	0 326	(1188, 10)	(01,1.0)	0 161	(01, 00)	(3.4.9)	(01,616.0)	(01 (23.9, 10) 8 54	(01,46.10)	0.892, 10)	0.287, 10)	(/4.2, 8) 85	(01 °(./.)	0.785, 10)	(0.386, 10) 0.403	0.778, 10)	0.511, 10)	0.577	(18.7, 9) 5 30	0.907, 10)
g	(0 532 8)	(0 181 0)	(0.787.8)	101 890	01.77.0	196 7	0 37 8)	131.50	(0186.10)	185.80	01 242	10 292 101	0.137.10	T 200	12.01.81	(0 439 10)	0 298 6)	(0 598 8)	0177.10	(0 232 10)	13.33.01	(0 579 8)
	2.69	15.2	141	25.9	13.8	4.05	6.71	17.7	67	15.9	824	1200	1735	10140	16.1	2018	41.4	12.1	140	65.4	43.8	177.2
As	(1.47, 10)	(4.72, 10)	(0.372, 10)	(44.2, 10)	(10.2, 10)	(2.01, 10)	(3.96, 10)	(12.9, 10)	(3.57, 10)	(23.6, 10)	(145, 10)	(440, 10)	(1124, 10)	(10398, 10)	(10.5, 10)	(569, 10)	(19.5, 10)	(5.70, 10)	(58.4, 10)	(23.8, 10)	(11.4, 9)	(75.8, 10)
Mo	0.385	0.169	0.105	2.56	0.769	0.16	0.161	0.424	0.38	0.487	1.05	0.186	0.173	0.342	III	0.206	0.179	0.518	36.3	18	0.631	1.325
	(0.142, 10)	(0.085, 9)	(0.058, 8)	(4.77, 10)	(0.518, 10)	(0.092, 10)	(0.07, 9)	(0.398, 8)	(0.367, 10)	(0.872, 10)	(0.184, 10)	(0.128, 8)	(0.084, 10)	(0.201, 6)	(1.13, 10)	(0.156, 9)	(0.072, 8)	(0.395, 10)	(11.6, 10)	(3.25, 10)	(0.752, 8)	(1.22, 10)
Ae	359	78.1	326	479	103	40.6	14.4	123	78.4	29.6	068	1772	6548	2601	432	2212	7.62	14.4	12.4	14.9	401	461.4
f	(141, 10)	(53.2, 10)	(171, 10)	(345, 10)	(34.1, 10)	(6.96, 10)	(6.06, 10)	(53.5, 10)	(25.7, 10)	(44.3, 10)	(344, 10)	(212, 10)	(2997, 10)	(1403, 10)	(297, 10)	(494, 10)	(14.5, 10)	(3.46, 10)	(12.3, 10)	(7.87, 10)	(135, 9)	(167, 10)
Cd	161.0	0/1-0	0/0.0	101 23 101	C8870	101 222 0	0.335	1.0010	1/20	1.09	1170	1.14	101 120 0	103	C 16 10	145	850.0	101 001 0	CC5.0	(0.191.10)	18.6	SU/.C
	0.034	(01 (mon)	9000	2.16	(01, CLC.0)	0.024	0,007	0.445	0.214	0.181	256	(01 (Jac)	(01 (1 (0))) 65.5	455 455	2.46	(01 (14T)) 80.9	0.008	0.053	0.029	0.017 (ULT 0.017	0.209	0.04026
9	(0.075, 9)	(0.002, 8)	(0.004, 9)	(3.72, 9)	(1.26, 10)	(0.047, 6)	(0.005, 9)	(0.493, 10)	(0.321, 10)	(0.339, 8)	(34.9, 10)	(28.1, 10)	(30.1, 10)	(763, 10)	(3.64, 10)	(17, 10)	(0.005, 9)	(0.095, 10)	(0.072, 9)	(0.014, 9)	(0.138, 9)	(0.008, 10)
Cn.	0.312	0.187	0.513	23.2	5.1	1.29	0.39	25.5	111	3.47	86870	3407	839	21613	16.6	4416	0.262	1.18	1.09	2.64	5.53	24.112
	(0.265, 10)	(0.107, 10)	(0.233, 10)	(67.5, 10)	(3.94, 10)	(3.07, 10)	(0.251, 10)	(27.3, 10)	(0.981, 10)	(5.07, 10)	(15974, 10)	(1023, 10)	(1319, 10)	(23952, 10)	(27.8, 10)	(911, 10)	(0.125, 10)	(1.35, 10)	(0.697, 10)	(2.49, 10)	(3.78, 9)	(4.29, 10)
9S	0.138	0.155	0.076	1.05	1.07	191.0	140.0	1.28	0.232	0.472	326	347	9646	1269	1.33	396	0.328	0.169	0.847	0.538	1.50	8.238
	(01,801.0)	(0.175 0.175	0.053, 9)	0.461	(01, 50.10)	(01,001,00)	0.057	(01 (c0.1)	(01,200, 10)	(01,44,10)	(01,5.0/)	(01 (01)	(01 ,1260) 1 566	(18/9, 10) 51.0	(1.49, 10) 1.75	(01,5-45) 10)	0.006	(8,191,8) A A1	01213, 10)	01,293, 10)	(I'UI')	01 (9766
đ	(0.026, 8)	(0.188, 8)	(0.057, 8)	(1.03, 8)	(101, 9)	(0.04, 10)	(0.05, 8)	(1.12, 10)	(0.016, 9)	(0.084, 9)	(0.049, 10)	(1.69, 10)	(0.943, 10)	(58.1, 8)	(1.1, 8)	(14.6, 10)	(0.004, 6)	(0.014, 8)	(0.035, 9)	(0.024, 7)	(0.764, 8)	(0.281, 10)
	0.014	0.009	0.004	0.078	0.089	0.009	0.002	0.537	0.033	0.018	106	103	471	325	0.186	114	0.006	0.008	0.007	0.011	0.038	1806.0
nv	(0.013, 9)	(0.004, 10)	(0.003, 9)	(0.095, 9)	(0.07, 9)	(0.009, 8)	(0.001, 4)	(0.43, 8)	(0.03, 10)	(0.016, 8)	(9.39, 10)	(36.3, 10)	(305, 10)	(384, 10)	(0.457, 9)	(23.9, 10)	(0.005, 7)	(0.006, 8)	(0.005, 10)	(0.008, 10)	(0.036, 9)	(0.215, 10)
Hg	0.749	0.59	0.597	1.63	0.823	0.292	0.28	3.86	0.506	0.677	0.321	0.624	0.786	009	5.14	0.435	0.461	0.32	61.7	3.23	150	126.7
	(01 '7cT'0)	(01,090) 1 48	(0.142, 10) 1 46	(2.33, 10) 50.4	(01,522), 10) 30.6	0.004, 10)	(01, (0.0)	(01, 6.8)	(01 %7T.0)	(0.86, 10)	(0.11, 10) 15370	(0.14, 10)	10477	(III (COIII) 86473	(01, 10) 56.5	(01,811.0) 8773	(01,202, 10) 1 35	(01,085, 10) 3.17	(01,62)	(01,22.2)	(01.1, 9)	(01,5,10)
Pb	(26.4.10)	(0.625, 10)	(1.6.10)	(96.4.10)	(24.3, 10)	(0.492.10)	(1.25, 10)	(151, 10)	(4.51, 10)	(10.10)	(1185, 10)	(1612, 10)	(6248, 10)	(96402.10)	(53.9.10)	(2276.10)	(1.47.10)	(5.18, 10)	(37.4.10)	(76.7. 10)	(122.9)	(396, 10)
2	0.228	0.211	0.058	0.77	1.51	0.067	0.13	3.04	0.222	0.753	192	188	176	340	2.56	224	1.634	0.074	0.028	0.637	1.28	1.4547
18	(0.146, 10)	(0.091, 10)	(0.048, 10)	(1.39, 10)	(1.06, 10)	(0.046, 10)	(0.204, 10)	(5.89, 10)	(0.278, 10)	(1.16, 10)	(77.8, 10)	(121, 10)	(98.1, 10)	(264, 10)	(2.46, 10)	(135, 10)	(4.79, 9)	(0.086, 10)	(0.016, 10)	(1.88, 10)	(0.661, 9)	(0.656, 10)
¹ Values out.	side of brack	kets are average	ge values base	d on 'n' analyse																		
² Values insi	de of bracke	ets represent ±	t s.d and 'n' a	unalyses																		
³ Respective	archeologic	al sites are list	ted below eac	h artifact numb	er																	
⁴ GLR = Ga	spereau Lab	te Reservoir																				

Flamont	819	820	821	822	Rlake	851	859	863A	863B
Trement	Muskrat Cove	Muskrat Cove	Muskrat Cove	Muskrat Cove	Rafter Lake	Sellars Cove	Sellars Cove	Sellars Cove	Sellars Cov
6	375	193	204	316	179	175	208	362	416
0	(107, 10)	(18.7, 10)	(42.5, 10)	(152, 10)	(55.9, 10)	(17.4, 10)	(50.9, 10)	(44.5, 6)	(76.3, 5)
ć	2182	1.71	28.2	126	22.5	0.717	384	118	93.3
5	(1175, 10)	(1.30, 10)	(34.2, 10)	(166, 10)	(48.2, 8)	(0.269, 9)	(962, 10)	(32.9, 6)	(72.6, 5)
	2.86	0.103	21.9	1.57	4.01	0.107	1.97	12.3	21.1
IIM	(1.63, 10)	(0.028, 8)	(16, 10)	(1.36, 10)	(3.37, 8)	(0.057, 7)	(1.62, 9)	(3.21, 6)	(10.8, 5)
E.	11199	1.19	374	3136	676	5.72	1805	261	206
P.C	(9360, 10)	(1.12, 10)	(560, 10)	(4082, 10)	(1504, 9)	(1.53, 10)	(3068, 10)	(91.7, 6)	(225, 5)
	24.4	0.069	0.47	1.02	0.563	0.074	0.31	0.066	0.071
3	(14.9, 10)	(0.055, 4)	(0.66, 7)	(1.73, 9)	(0.72, 4)	(0.057, 6)	(0.404, 9)	(0.035, 5)	(0.071, 4)
	104	0.31	1.13	3.36	2.3	0.49	1.24	0.95	0.71
R	(43.9, 10)	(0.176, 4)	(1.29, 8)	(4.23, 10)	(1.64, 5)	(0.468, 8)	(1.33, 8)	(0.145, 6)	(0.285, 3)
ł	33321	4.11	81.3	196	3.5	0.758	27.2	41.4	15.1
17	(11161,10)	(4.10, 10)	(39.3, 10)	(162, 10)	(3.76, 8)	(0.287, 10)	(23.8, 10)	(2.83, 6)	(5.81, 5)
ć	5.97	0.134	0.902	1.72	0.584	0.071	0.778	1.53	1.94
5	(3.16, 10)	(0.083, 6)	(1.05, 10)	(0.479, 8)	(0.686, 8)	(0.072, 9)	(1.09, 9)	(0.629, 6)	(2,5)
ć	5.46	0.212	0.667	0.521	1.57	0.247	0.321	0.578	0.458
3	(1.92, 10)	(0.249, 5)	(0.668, 8)	(5.98, 10)	(0.952, 5)	(0.126, 7)	(0.572, 8)	(0.35, 5)	(0.211, 5)
	592	0.705	7	6.10	1.09	1.17	11.3	49.9	28.6
SV.	(253, 10)	(0.486, 10)	(4.9, 10)	(0.921, 8)	(0.978, 8)	(0.339, 10)	(8.79, 10)	(4.57, 6)	(15.9, 5)
	0.931	0.164	0.332	0.656	0.325	0.067	0.27	0.248	0.3
OIM	(0.195, 10)	(0.07, 9)	(0.2, 10)	(56.9, 10)	(0.145, 4)	(0.048, 7)	(0.233, 10)	(0.076, 6)	(0.121, 4)
	734	515	559	90.6	16.7	34.3	105	32.9	63.1
ŝ	(353, 10)	(649, 10)	(397, 10)	(0.105, 10)	(5.34, 10)	(13.8, 10)	(53.5, 10)	(23.6, 6)	(35.6, 5)
P.C	6.93	0.041	0.101	0.167	0.162	0.026	0.259	0.713	0.288
3	(8.42, 10)	(0.029, 9)	(0.094, 8)	(0.144, 10)	(0.116, 6)	(0.023, 6)	(0.129, 10)	(0.128, 6)	(0.118, 5)
-1	334	0.002	0.094	0.097	0.014	0.007	0.028	0.012	0.005
1	(188, 10)	(0.002, 5)	(0.191, 9)	(143, 10)	(0.007, 7)	(0.008, 7)	(0.068, 9)	(0.008, 6)	(0.002, 4)
-0	94000	0.095	5.33	86.7	0.141	1.76	1.07	3.45	0.741
IIC	(57736, 10)	(0.075, 9)	(2.52, 10)	(2.35, 10)	(0.253, 9)	(2.84, 10)	(1.01, 10)	(2.72, 6)	(0.539, 5)
45	199	0.039	0.762	1.08	0.154	0.029	0.089	0.057	0.048
00	(65.5, 10)	(0.021, 10)	(1.4, 10)	(0.00, 1)	(0.094, 7)	(0.037, 6)	(0.116, 7)	(0.028, 6)	(0.03, 4)
f	0.179	0.009	0.236	0.18	0.061	0.137	0.058	0.039	0.127
ar	(0.148, 8)	(0.003, 5)	(0.209, 5)	(0.944, 10)	(0.057, 4)	(0.113, 6)	(0.043, 7)	(0.053, 3)	(0.025, 2)
	41.1	0.018	0.174	0.252	0.011	0.005	0.02	0.008	0.004
nv	(18.3, 10)	(0.017, 10)	(0.094, 10)	(0.231, 10)	(0.014, 4)	(0.003, 6)	(0.016, 8)	(0.001, 2)	(0.001, 2)
n.	1.29	6.30	2.77	1.54	50.2	8.40	86.3	3.73	3.59
Å	(0.518, 10)	(3.79, 10)	(2.37, 10)	(0.944, 10)	(53.3, 10)	(1.37, 10)	(50.2, 10)	(1.45, 6)	(1.57, 5)
h	41030	0.136	5.34	10.6	0.376	0.128	3.19	1.26	0.496
2	(21854, 10)	(0.271, 10)	(3.64, 10)	(12.6, 10)	(0.528, 10)	(0.159, 10)	(4.87, 10)	(0.441, 6)	(0.098, 5)
ia	68.6	0.005	0.641	0.273	0.018	0.004	0.111	0.04	0.013
5	101 1 202		10.0 000 00						the second secon

(20.1. 10) (20.2. 11) (20.2. 11) (20.2. 12)

43

3.4.2 Group II

Group two (Figure 3.6C & D) only contains two artifacts (64, 230). This group contains very low concentration relationships for the indicator elements and nearly matches the artifacts found in group three. These two artifacts have a low Ag vs Pb relationship (8.02 – 26.05 ppm vs 6.86 - 7.59 ppm), and moderate Hg vs Bi relationship (6.42 - 22.97 ppm vs 0.18 - 0.55 ppm). The relationship that makes group two unique however, is the concentration of Zn (53.06 - 144 ppm) vs that of As (50.4 - 87.81 ppm). Most of the other groups have much higher concentrations of Zn, generally double or higher the concentration of As, however in this case there is not as big of a range. Larger scale differences are seen in the concentration of Sn (0.083 and 13.1 ppm) as well as the relationships between Ag and Pb, (Figure 3.6C&D). Artifact 64, has a higher concentration of Ag with respect to Pb (26.1 vs 7.59 ppm), whereas artifact 230 has a very small relationship between Ag and Pb (8.02 vs 6.86 ppm).

3.4.3 Group III

Artifacts in groups one through four, are all different than the last six groups, as they all contain extremely low Ag vs Pb relationships, in some instances, there are even artifacts that have diagnostically high Pb and low Ag as is the case with group four. Group three (Figure 3.6E& F) has an interesting Ag to Pb relationship, as they are both present in almost equal quantities. In fact, artifact 8579 has a Ag concentration of 226 ppm and a Pb concentration of 212 ppm. Relationships between Hg and Bi are low, with Hg still being more enriched than Bi (0.38 - 27.63 ppm s 0.06 - 7.51 ppm), and Zn to As relationships that are still high (60.9 - 5921 ppm vs 1.54 - 127 ppm). In group three, the concentration of Sn (1.45 - 170 ppm) is greater than the concentration of Sb (0.05 - 8.16 ppm), however

44

the Sb: Te relationships are lower than in the first four groupings which sets this group apart. The highest average concentration of Sb is 8.16 ppm and the highest concentration of Te is only 2.38 ppm, nearly four times higher. Artifacts 8566, 8579, 8580, 8594, and 8597, all belong to provenance group five. These artifacts show good homogeneity (Figure 3.5E& F) in the overall trace element patterns for the group, however very slight differences are seen in the ranges of Cd (0.25 - 11.8 ppm), In (0.002 - 2.86 ppm), Te (0.09 - 2.38 ppm) and Bi (0.06 - 7.51 ppm), yet if the patterns between Zn and As, as well as Ag and Pb are examined closer, we see the same continuous relationships, albeit at slightly higher or lower orders of magnitude.

3.4.4 Group IV

The fourth provenance group (Figure 3.6G & H) is characterized by high concentrations of As vs Zn (65.36 - 139 ppm vs 36.2 - 41.7 ppm), high Pb vs Ag (102 - 112 ppm vs 12.4 - 14.9 ppm), and high Hg vs Bi (3.23 - 7.19 vs 0.03 - 0.64) relationships. However artifacts classified in this group also have relatively high enrichments in Mo as compared with the rest of the copper collection (18 and 36 ppm). Indium, Te, Au and Bi are all comparable to the depletions of these elements in other artifacts (tenths to hundredths of ppm), yet the majority of the other artifacts have depletions of Mo as well. Artifacts 99 and 211 are the two sole artifacts that have anomalously high concentrations of Mo. The most notable differences in chemistry between these two artifacts is the difference in Sn and Bi concentrations. Artifact 211 has a greater concentration in Bi and Sn (0.64 ppm and 2.64 ppm respectively), making it have a lower Hg vs Bi relationship, and a higher Sn: Sb relationship as compared with artifact 99 which has 0.03 ppm Bi and 1.09 ppm Sn.

3.4.5 Group V

The fifth provenance group (Figure 3.7A &B) is where we begin the high Ag vs Pb relationships instead of the low Ag vs Pb or high Pb vs Ag relationships. This provenance group contains artifacts 2015, 1949, 5377, 8568 and 8569. Diagnostically high relationships for this group are seen in Ag vs Pb, Hg vs Bi, Zn vs As. The range of silver concentrations is between 87 and 281 ppm, whereas the range for Pb is significantly smaller and is only between 0.31 and 3.47 ppm. Hg values range between 0.06 and 386 ppm yet the Bi values are low again and only run between 0.01 and 0.1 ppm. The relationships between Zn and As are also favourable to Zn (24.1 - 157 ppm) when compared to the small range of As concentrations (1.24 - 8.52 ppm). What separates this group apart from group six, is the relationship between Sn and Sb. They share similar concentration ranges (0.13-0.45 ppm for Sn and 0.06 - 0.49 ppm for Sb) yet are significantly higher than those of Te which only range between 0.01 and 0.08 ppm. This is one of the groups that must be differentiated using the relationship between Sb and Sn, as it bears a strong resemblance to the chemistry of artifacts in the sixth provenance group. Differences are seen in the concentration of In (0.00 and 0.47 ppm) as well as the orders of magnitude in the concentration of Hg (Figure 3.7A &B), yet not different enough to separate them into other groupings at this time. When more sources are found to compare with, this group may be revisited.

3.4.6 Group VI

The sixth group (Figure 3.7C & D) contains artifacts RLAKE, 173, 820, 2158, 2225, 8572, and 8584. This group is characterized by high Ag vs Pb relationships (16.7 – 11458 ppm Ag vs 0.14 – 91.2 ppm Pb), high Hg vs Bi relationships (3.2 – 315 ppm Hg vs 0.00 –

1.28 ppm Bi), and high Zn vs As relationships (3.5 - 993 ppm Zn vs 0.71 - 43.7 ppm). Sn is also more concentrated than Sb and Te which is the separator between groups five and six. The relationship between Sn (0.09 - 5.53 ppm), Sb (0.04 - 1.5 ppm) and Te (0.01 - 0.82 ppm) is a linear decreasing one whereas in group five there is more scatter in the relationship between these three elements. Group six does not present with the best homogeneity as compared with the other provenance groupings, as there is variation in the orders of magnitude between each of the artifacts, as well as significant variation in Pb (0.14 - 91.2 ppm), Cd (0.04 - 5.87 ppm), In (0.00 - 0.27) and to a lesser degree, Zn (3.5 - 993 ppm). Artifact 820 also presents with diagnostically higher Au (0.003 ppm), as compared to the rest of the artifacts not reduced by Fe (0.02 ppm) artifact 820 falls better into the grouping presented here.

3.4.7 Group VII

The seventh provenance group created (Figure 3.7E& F) has significantly higher Ag vs Pb (34 - 4494 ppm vs 0.13 - 5.22 ppm) and Hg vs Bi (0.54 - 86.3 ppm vs 0.00 - 0.11 ppm relationships, however the relationship between Zn (0.76 - 41.3 ppm) and As (1.17 - 41.4 ppm) is much smaller than the others. Sn is also much more concentrated in this group than in group eight, ranging between 0.32 and 3.45 ppm. After the Fe reduction had taken place, the orders of magnitude of trace element signatures are quite different (Figure 3.7E& F), however the patterns remain similar amongst the artifacts. Another notable difference in this group compared to the others is the enrichment of Te compared to Sb. In the majority of artifacts, the concentration of Sb (0.03 - 0.09 ppm) has often been higher than that of Te, yet in this group it remains the opposite with Te concentrations ranging between 0.04

and 0.19 ppm. Differences in the concentration of Cd (0.03 - 0.71 ppm) and In (0.00 - 0.54 ppm) are notable in the group, yet again, not significantly enough to warrant separation into additional provenance groups. Artifacts sorted into the seventh provenance group include 851, 859, 863A, 863B 8577, and 8581.

3.4.8 Group VIII

Artifacts 8610 and 8590 have chemistries different enough to warrant an additional provenance grouping (Figure 3.8A&B). This group contains a higher Ag (29.7 – 78.1 ppm) vs Pb (1.35 – 1.48 ppm) relationship, however the concentration relationship between Hg and Bi is unique to this group as the concentrations of Bi (1.63 and 0.21 ppm respectively) are higher than those of Hg (0.46 and 0.59 ppm respectively). Also notable relationships exist between Zn and As where Zn concentrations are 60.1 ppm for artifact 8610 and 80.7 ppm for artifact 8590, and As concentrations are 41.4 and 15.2 ppm for each respective artifact. Similar relationships exist in the relationship between Sn and Sb. Most other groupings show higher Sn or higher Sb, yet in group eight, the concentrations of these elements are very similar with Sn concentrations of 0.24 and 0.19 ppm, and Sb concentrations of 0.33 and 0.15 ppm for artifact 8610 and 8590.

3.4.9 Group IX

Provenance group nine (Figure 3.8C &D) has diagnostically high Ag (14.4 – 559 ppm) to Pb (1.44 – 56.5 ppm) and higher Zn (78.8 – 1042 ppm) to As (6.1 – 112.3 ppm) relationships, with moderate to low Hg (0.28 - 5.41 ppm) to Bi (0.07 - 2.56) relationships. However the notable relationship in this group is that which exists between Sn (0.39 - 86.7 ppm), Sb (0.07 - 1.33 ppm) and Te (0.01 - 1.25). Even after the reduction by Fe has taken place (Figure 3.8D) there is still a significant enrichment in the concentration of Sn in this

artifact group. Variation among this artifact group exists in the concentration of Cd (0.10 - 3.03 ppm), Te, and Au (0.00 - 0.25 ppm). Differences in the concentration of Pb are visible before the reduction by Fe (Figure 3.8C) had taken place yet afterwards, these differences are slight. Artifact 821 also contains a greater concentration of Au than in the other elements (0.25 ppm), however the remainder of the relationships in the other elements are well enough to include that artifact in this provenance group.

3.4.10 Group X

The final provenance group created from this study contains artifacts 8576, 8589, 8591, 8592, 8595 and 8598 (Figure 3.8E& F). This group is characterized by high Ag vs Pb (40.6 – 479 ppm vs 0.21 - 50.4 ppm), and Zn: As (19.2 – 1511 ppm vs 0.75 - 25.9 ppm) relationships. The tenth provenance group has a significantly lower Hg vs Bi relationship as compared with the others (0.29 - 1.63 ppm vs 0.06 - 0.89 ppm), as well as a decreasing relationship between Sn (0.28 - 23.2 ppm) Sb (0.04 - 1.05 ppm) and Te (0.02 - 0.46 ppm) which separates these artifacts from the previous group. Variation of this grouping exists between Pb (0.21 - 50.4 ppm) and Cd (0.06 - 2.89) and in some instances In (0.00 - 2.16 ppm). These variations are viewed in lesser extent after the reduction by each respective concentration of Fe (Figure 3.8F). Overall, the concentration relationships of Ag vs Pb and Zn vs As are still high after the reduction has taken place (Figure 3.8F), and many of the patterns are still similar, yet the differences and variations of most elements are only seen in the non-reduced versions of the trace element patterns(Figure 3.8E).

4.0 Discussion

4.1 Provenance Groups and Source Location

The final fifty seven copper artifacts were compared against the six native source locations, and the expectation was to see all of the trace element signatures match those of Michigan USA, based on previous studies performed (Hancock et al. 1997; Rapp et al. 2000; Levine, 2007; Cooper et al. 2008;). However upon comparison of trace element concentrations between all fifty three artifacts with six different samples from copper mines in Michigan, none of the artifacts in this copper collection were a match. The concentration of As in the Michigan samples relative to the other samples, was too high. When compared to the other samples, there were artifacts that match copper from Nova Scotia, European sources, and unknown locations. Table 4.1 summarizes all provenance determinations.

4.1.1 Cap d'Or

Provenance group V (Figure 3.3, artifacts 8566, 8579, 8580, 8582, and 8594) have trace element chemistry that match the samples from Cap d'Or. The artifacts have similar relationships of the indicator elements such as Ag and Pb, Hg and Bi, Ni and As. When not reduced by the Fe content (Figure 3.2) the artifacts in this provenance group appear to have similar relationships compared to the source samples, albeit in lower orders of magnitude. This could be attributed to a number of different factors, such as weathering and the production of corrosion material (Dussubieux et al. 2008), referred to in this paper as patina, exact area where the copper was collected (cliff face copper vs copper from the centre of the deposit) and treatment and conservation products. An argument for the use of Nova Scotian copper was made in the accounts of Samuel de Champlain when he and his

Table 4.1	Summary data table sho	wing all artifacts a	nd their resepective provenance groupings						
Artifact	Archeological Site	Provenance group	Diagnostic elemental relationships	Provenance Location	Artifact	Archeological Site	Provenance group	Diagnostic elemental relationships	Provenance Location
2	Margaretsville	I	high concentration of all trace elements with	Europe	2225	Enfield	IV	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV
19	Burnt Bone Beach	Ι	emphasis on high Au	Europe	8572	GLR	N	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV
20	Burnt Bone Beach	Ι	high concentration of all trace elements with	Europe	8584	GLR	N	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV
21	Clam Cove	Ι	emphasis on high Au	Europe	RLAKE	Rafter Lake	IV	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV
819	Muskrat Cove	Ι	high concentration of all trace elements with	Europe	851	Sellars Cove	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
8604	GLR ¹	Ι	emphasis on high Au	Europe	859	Sellars Cove	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
8605	GLR	I	high concentration of all trace elements with	Europe	8577	GLR	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
8606	GLR	Ι	emphasis on high Au	Europe	8581	GLR	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
8607	GLR	Ι	high concentration of all trace elements with	Europe	863A	Sellars Cove	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
8609	GLR	Ι	emphasis on high Au	Europe	863B	Sellars Cove	ПЛ	high Ag:Pb, Hg:Bi, low Zn:As	Margaretsville
818	Muskrat Cove	Ι	European copper zinc alloy	Europe	8590	GLR	ШЛ	high Ag:Pb, Hg:Bi, moderate Zn:As	Unknown V
64	Clam Cove	п	low Ag:Pb, moderate Hg:Bi, Zn:As	Unknown I	8610	GLR	ШЛ	high Ag:Pb, Hg:Bi, moderate Zn:As	Unknown V
230	Clam Cove	п	low Ag:Pb, moderate Hg:Bi, Zn:As	Unknown I	821	Muskrat Cove	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8566	GLR	Η	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	822	Muskrat Cove	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8579	GLR	Η	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	8567	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8580	GLR	Η	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	8573	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8582	GLR	Η	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	8574	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8594	GLR	Π	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	8587	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
8597	GLR	Η	low Ag:Pb, Hg:Bi, high Zn:As	Cap d'Or	8596	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
66	Isle Haute	IV	low Ag:Pb, high Hg:Bi, low Zn:As	Unknown II	8599	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
211	Isle Haute	IV	low Ag:Pb, high Hg:Bi, low Zn:As	Unknown II	8603	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
1949	Enfield	٧	high Ag:Pb, Hg:Bi, Zn:As, low Sn:Sb	Unknown III	8098	GLR	IX	high Ag:Pb,moderate Hg:Bi, high Zn:As Sn:Sb	Unknown VI
2015	Enfield	Λ	high Ag:Pb, Hg:Bi, Zn:As, low Sn:Sb	Unknown III	8576	GLR	X	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
5377	Enfield	٧	high Ag:Pb, Hg:Bi, Zn:As, low Sn:Sb	Unknown III	8289	GLR	X	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
8568	GLR	٧	high Ag:Pb, Hg:Bi, Zn:As, low Sn:Sb	Unknown III	8591	GLR	Х	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
8569	GLR	Λ	high Ag:Pb, Hg:Bi, Zn:As, low Sn:Sb	Unknown III	8592	GLR	X	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
173	Jeddore Harbour	IV	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV	8595	GLR	X	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
820	Muskrat Cove	IV	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV	8298	GLR	X	high Ag:Pb,moderate Hg:Bi, high Zn:As low Sn:Sb	Unknown VII
2158	Enfield	Ŋ	high Ag:Pb, Hg:Bi, Zn:As, moderate Sn:Sb	Unknown IV					
1. GLR =	Gaspereau Lake Reserv	oir							

French explorers visited what is now North America "I went to the river St John, to find the Indian named Secoudon... Having found him I begged him to accompany us to which he very readily agreed and came with us to show [the copper] to us..." (Biggar, 1992, in Levine, 2007). This historic passage dates back to 1604 when Champlain arrived in the Bay of Fundy, and affirms that local aboriginal peoples did have knowledge of native copper present in Nova Scotia. Other studies, namely Rapp et al. 2000; Levine, 1996, 2007a, 2007b; Hill, 2012, have all hypothesized that samples could come from Nova Scotia, however the samples used in those studies were from Cumberland County – where Cap d'Or is found. This limitation of samples from only one area of the province, can be misleading. At one time the pre-contact archaeologists believed that all copper came from Michigan, and we now know this not to be the case, so why limit all source copper samples to one area of this province? By sampling more copper deposits and copper occurrences in Nova Scotia, we've begun to create a larger copper database for comparisons with other artifacts.

4.1.2 Margaretsville

Source samples from Margaretsville contain diagnostically high concentrations of Ag. All artifacts that also contain high Ag concentrations and low Pb concentrations, were compared to the Margaretsville sources, however only provenance group I, was determined to match the Margaretsville copper. The artifacts from Margaretsville have trace element patterns similar to the native source samples but again the exact concentrations appear lower after the reduction by Fe. Similar to the Cap' d'Or samples, this could be a function of weathering processes, and geochemical zonation in the copper being used. Dussubieux et al. (2008) also describe in depth how different elements such as Pb and Zn are distributed through copper samples that have been subject to major corrosion and how samples that have a thick coating of patina, tend to be preferentially depleted in Zn. In the case of the artifacts from Margaretsville, we see that as Zn is depleted from the samples, As is as well. These relationships are important to understand not only as geochemical signatures at the time of sampling, but also regarding how elements behave in the copper over time.

Also important in the understanding of trace-element patterns in copper, is how the people using the copper were working this malleable metal. Ethnologists, and historians have known for years that for people in North America, the best way to work with copper at the time, was to anneal it by rolling and hammering pieces together (Hancock et al. 1991; Fitzgerald et al. 1993; Hancock et al. 1995; Leonard, 1996; Erhrhardt et al. 2000; Bourque 2001; Fenn, 2001; Hancock et al. 2007; Lattanzi, 2007; Cooper et al. 2008; Erhrhardt, 2009; Cooper, 2011; Hill, 2012; Michelaki et al. 2013). This method as it did not involve heat, or smelting processes, would only account for element transfer to the outer coating of the copper artifacts, and would no contaminate all the way through to the core of the copper sample (Harbottle et al, 1982; Jackson, 1992; Fitzgerald et al. 1993; Junk, 2001; Kennet et al. 2001; Aeschliman et al. 2004; Hancock et al. 2007; Frame et al. 2013.) Trace element fingerprints for copper that has been smelted or alloyed – such as the samples from European sourced copper, are very easily distinguished from non-smelted copper (Turgeon, 1990; Fitzgerald et al. 1993, Whitehead et al. 1998; Levine 2007; Dussubieux et al. 2008).

4.1.3 European

Nine of the artifacts sampled, contained trace elements with chemistry that were well above the other forty six artifacts in terms of concentration. These artifacts were not sourced from samples found in North America and in fact come from the early contact period when aboriginal people were trading with the European settlers. Large copperalloyed kettles were brought over by the French and Spanish (Mason, 1981; Turgeon, 1990; Hancock et al., 1991; Biggar, 1992; Fitzgerald et al., 1993; Hancock et al., 1995; Leonard, 1996; Wilson et al., 1997; Whitehead et al., 1998; Moreau & Hancock, 1999; Rapp et al. 2000; Bourque, 2001; Fenn, 2001; Glascock & Neff, 2003; Anselmi, 2004; Levine, 2007; Dussubieux et al., 2008; Ehrhardt, 2009; Cooper, 2011; Hill, 2012; Hodge et al., in preparation) and these "copper kettles were not as pure as the native American Copper (Turgeon, 1990; Fitzgerald et al., 1993; Moreau & Hancock, 1999; Dussubieux et al., 2008; Lattanzi, 2008;) as they had been smelted by the Europeans and other metals had now been contaminated into the copper. Much like the work done by Dussubieux et al. (2008) in this study, we discovered that certain elements, notably Fe, Cr, and S, were being over reported by the data reduction methods when the purity of copper was imputed as 99%. After seeing the over estimation of these elements, the artifacts were then analyzed by a SEM (Figure 2.1D) and it was determined that the concentration of copper was between 95 and 97 percent pure copper. After this had been changed the concentration of many of the trace elements remained orders of magnitude higher than those found in North America. These artifacts match sources from Spain, Germany and Sweden and refined European copper, copper- Zn alloys, and copper- Zn- Sn alloys (Hodge et al. in preparation). According to Turgeon (1990), aboriginal peoples would often reuse and recycle many of their goods into other things, and that is what I suggest has happened to the artifacts that match the European samples. Some of the samples that match the high copper-Zn alloyed metals, are consistent with brass kettles that were brought over by the French, and have been found in areas of the province (Turgeon, 1990; Hancock et al., 1991; Whitehead et al., 1998; Levine, 2007; Dussubieux et al., 2008).

4.1.4 Artifacts with undetermined provenance groups

Three different provenance groups formed in the study, were found to match three different source areas, two in Nova Scotia, and then one group from Europe which is consistent with the literature (Turgeon, 1990; Fitzgerald et al., 1993; Moreau & Hancock, 1999; Dussubieux et al., 2008; Lattanzi, 2008;). This still leaves seven provenance groups of the ten unaccounted for. One would think that there would be artifacts that match the Michigan samples as mentioned by other sources (Harbottle et al., 1982; Hancock et al., 1991; Ehrhardt et al., 2000; Rapp et al., 2000; Anselmi, 2004; Cooper, 2011; Michelaki et al., 2013; Abel & Burke, 2014), however in this study, all of the Michigan source samples contained higher than average concentrations of As, much too high to match any artifacts present in the collection from the Nova Scotia Museum. A much larger known copper source location database must be created using LA-ICP-MS methods in order to have a higher certainty and understanding of provenance determinations. Work on narrowing down the exact source locations of the European artifacts, is being continued by Hodge et al. (in preparation.) Emphasis must be placed on the collection of more samples from places in north eastern North America such as has been suggested by Levine (2007a; 2007b). Comparisons must be made against sources from Newfoundland, New Brunswick, Quebec, Maine, New York, New Jersey etc. and with hopes of the comparisons being made by LA-ICP-MS. By expanding the collection of source samples, exact provenance of the remaining seven groups could eventually be made. This would inform the reconstruction of trade networks as currently understood, as well as contribute to a deeper understanding

of how local aboriginal people were evolving their copper technology. For anyone continuing studies such as this, expanding the database of sources is imperative.

4.2 Laser ablation as an archeological tool

The use of laser ablation in chemical analysis is not a new notion. There have been scientists using laser ablation as far back as the early 1980s (Gray, 1985; Jackson et al., 1992; Aeschliman et al., 2004). However only recently has it been put to the test in archaeology (Junk, 2001; Garrison, 2003; Aeschliman et al., 2004; Cooper et al., 2008; Dussubieux et al., 2008; Lattanzi, 2008; Hill, 2012). Dominant methods for chemical characterization of trace elements were, for the most part, X-Ray Florescence (XRF) (Harbottle et al., 1982; Wisseman et al., 1998; Fitzgerald et al., 1993; Kobyliński et al., 1993; Bendall, 2003; Garrison, 2003; Constantinescu et al., 2001; Rapp & Hill, 2006; Abel & Burke 2014) and Instrumental Neutron Activation Analysis (INAA) (Rapp Jr et al., 1984; Turgeon, 1990; Hancock et al., 1991; Fitzgerald et al., 1993; Hancock et al., 1995; Leonard, 1996; Whitehead et al., 1998; Levine, 1999; Moreau & Hancock, 1999; Rapp et al., 2000; Garrison, 2003; Glascock et al., 2003; Anselmi, 2004; Rapp & Hill, 2006; Hancock et al., 2007; Levine, 2007a, 2007b; Mulholland & Pulford, 2007; Cooper et al., 2008; Pevarnik et al., 2008; Erhardt, 2009; Klein et al., 2010; Frame et al., 2013; Michelaki et al., 2013). These methods were considered for the most part to be the most nondestructive methods for chemical characterization of historical artifacts – until now. XRF and INAA methods require small pieces (no less than 100mg) of the artifact to be removed such as filings, or scrapings of the artifacts, whereas LA-ICP-MS can be performed on the entire artifact as one intact piece. The challenge with mounting the entire artifact into the ablation cell, is that pieces that are mounted are restricted by their size in the cell

(McFarlane, 2013 pers. comm.) Some pieces such as tiny artifacts like 863A and 863B, can be held in paraffin wax in hollowed epoxy pucks as mentioned above, and others can be mounted in bricks of paraffin wax to allow for stability. Overly large artifacts can have small portions of their edges analyzed as well, as was the case with 8609. A piece of the artifact which had already been compromised (<0.05 mg), was loaded into the ablation chamber and analyzed in lieu of the entire pot. Neutron activation also has the bonus addition of radiation in its methodology which means samples that have been analyzed cannot be returned to the collection. (Glascock et al., 2003; Rapp & Hill, 2006). Using laser ablation in the above mentioned methods, artifacts were able to be loaded directly into the ablation chamber, analyzed and then returned to the collection (Figure 2.1). LA-ICP-MS methodologies also have the added benefit of being a method of conducting in-situ analyses and not just bulk analyses (Aeschliman et al., 2004; Dussubieux et al., 2008; Cooper et al., 2008; Hill 2012) This means that any micro-inclusions of other minerals can be identified, and if need be, excluded (Figure 3.9, 3.10), whereas bulk analyses of the artifacts by INAA does not allow for this component. As the majority of provenance studies have stated the Michigan has been the most important source of copper this again brings into question how precise the INAA methods may actually be (Rapp Jr et al., 1984; Turgeon, 1990; Hancock et al., 1991; Fitzgerald et al., 1993; Hancock et al., 1995; Leonard, 1996; Whitehead et al., 1998; Levine, 1999; Moreau & Hancock, 1999; Rapp et al., 2000; Garrison, 2003; Glascock et al., 2003; Anselmi, 2004; Rapp & Hill, 2006; Hancock et al., 2007; Mulholland & Pulford, 2007; Cooper et al., 2008; Pevarnik et al., 2008; Erhardt, 2009; Klein et al., 2010; Frame et al., 2013; Michelaki et al., 2013). If inclusions were present in the studies performed by the above mentioned authors, the data could have been potentially skewed

in favour of Michigan, when in actuality, they matched samples from north-eastern North America. The only way to verify this hypothesis, would be to retest all of the artifacts analyzed by other authors using LA-ICP-MS methods and comparing the results to those obtained using INAA.

In terms of the ability of LA-ICP-MS to be a non-destructive method of trace-element analyses, the process of actually creating laser – ablation pits is ideal in comparison to methods such as XRF and INAA, as there is no need to drill into the artifact to obtain fresh copper. As the laser ablation occurred, it removed the layers of patina until the freshest copper of the core was exposed (Figure 2.1). Doing this leads to no visible or structural changes to the artifact, as pits are only visible at the microscopic level. Once the analyses of the artifacts were conducted, select artifacts were then verified using an SEM to determine if fresh copper had been reached (Figure 2.1 E & F), and in this case it was.

Limitations to LA-ICP-MS are notably the size of an artifact, and the appropriateness of standards created by analytical laboratories. Artifacts that were larger than the ablation cell, and did not have any already compromised edges, were excluded from the study as there was no adequate way to remove a piece of the artifact without compromising the structural integrity of the piece, this however can be avoided in the future as manufacturers of these machines have already begun to build larger and larger ablation cells (McFarlane, 2013 pers. comm.) Sizes and shapes of artifacts also presented limitations during analyses as irregular shaped artifacts had to be mounted in bricks of paraffin wax, but mounted in such a way as to still be visible and clear in the camera of the laser ablation chamber. Artifacts out of focus had to be removed from the cell, adjusted and then returned to try again this adds on to the sample preparation time, and eventually the analytical time which

is not always the most cost-effective way to analyze the artifacts, yet it still provides more accurate readings (Glascock, 2003; Rapp & Hill, 2006; Dussubieux et al., 2008; Hill, 2012). The appropriateness of standards was an issue during the first round of analyses in June of 2013, whereupon it was discovered that standards from the National Institute of Standards and Technology (NIST) were not ablating the same way as normal native copper. The first standards were flakes of copper and as the laser was striking the flakes, they were not ablating small craters like what was happening to the artifacts. This meant having to search out new copper standards that had a wide variety of elements already quantified, like what was found with the standards from MBH lab. As these standards came as pucks, it was easy to cut off edges, and mount them in epoxy for analyses. Once analyses had begun, these standards were checked to see if the ablation method was working. After analyses, the new standard were compared against their standard concentration certificates to determine what elements were being reported by the laser in the correct and acceptable concentrations. Doing such a quality control check using laser ablation allows for more standards to be used in quantification to ensure the highest possible levels of accuracy for the concentration (Lattanzi, 2007; Dussubieux et al., 2008; Hill, 2012). Another way to ensure the best possible results for chemical characterization is to use LA-ICP-MS with other bulk methods such as solution ICP-MS, and INAA, much like the work done by Cooper et al., (2008); Dussubieux et al., (2008); and Hill, (2012). The down side to using multiple methods of comparison, is the cost that would be associated with multiple types of analyses. As its own standalone method, especially in terms of non-destructive, in-situ analyses, laser ablation appears to be the most appropriate method that we have today (Rapp & Hill, 2006; Lattanzi, 2007; Dussubieux et al., 2008; Hill, 2012).

4.3 Implications in archaeology

This study has attempted to address several questions, however it now seems to have posed more than answered. Questions such as: what tools the aboriginal peoples were using to shape their tools, and how those tools may have allowed for contamination to either the copper piece or the tool? Bourque (2001) suggests that the aboriginal people were using stone tools and implements to pull small pieces of copper out of outcrop and cliff faces. If this was the case, when they were using cold annealing techniques, how did they avoid getting small fragments of their stone tools in the copper, or did they? By using LA-ICP-MS we can now begin to analyze micro-inclusions in the copper artifacts and continue working with archaeologists to determine if the inclusions are fragments or slags from other pieces or if they are geological inclusions, something already implied by Lattanzi (2007) and Hill (2012).

How and where aboriginal people were procuring the copper, whether it be from outcrop, or as many suggest: float copper moved during glaciation time (Turgeon, 1990; Hancock et al., 1991; Fitzgerald et al., 1993; Hancock et al., 1995; Leonard, 1996; Whitehead et al., 1998; Levine, 1999; Moreau & Hancock, 1999; Rapp et al., 2000; Mulholland & Pulford, 2007; Michelaki et al., 2013). Biggar (1992) suggests that the aboriginal people were picking it up off the ground and along beaches, however if copper was being collected from specific outcrops – as this study suggests, especially with the Cap d'Or samples – did these specific outcrops have a spiritual significance or were they being accessed just out of need, or convenience?. If this was the case, economic questions of supply and demand are then posed, and whether or not the limited availability of copper for use encouraged larger trade networks amongst several aboriginal groups and not just

necessarily other Mi'kmaq tribes. Turgeon (1990) talks in great detail about the significance placed on copper once it was in use, and how the Mi'kmaq were assigning spiritual meaning to different sources of copper. For example, aboriginal people believed that "red copper" – copper found and procured in North America was valuable spiritually and representative of blood, and that "yellow copper" - the higher Zn containing copper that was coming from the Europeans – was also special as it was unlike anything the Mi'kmaq could procure here (Turgeon, 1990). The findings in this study help to affirm that the Mi'kmaq did in fact highly value their yellow copper, as they would have been recycling and reusing it for other purposes. The artifacts in provenance group I have chemistries consistent with the literature for the type of copper being brought over by the Europeans as pots, even though the pieces look nothing like pots now. Larger pieces may have become damaged or no longer required and turned into something else, similar to what we see with the tinkling cone that is artifact 20. It is also possible that if one aboriginal group no longer needed specific copper items, they could have been trading with another group who then could have turned pieces into other things (Hancock et al., 1991; Turgeon 1991; Fitzgerald et al., 1993; Whitehead 1993; Hancock et al., 1995; Leonard 1996; Whitehead 1997; Rapp et al., 2000; Bourque, 2001; Fenn, 2001; Lattanzi, 2007; Cooper et al., 2008; Dussubieux et al., 2008; Ehrhardt 2009; Klein et al., 2010; Cooper 2011; Hill, 2012; Michelaki, 2013).

Further work should also be done with archaeologists and environmental geologists to study soil samples from the archaeological sites, and better understand the weathering processes. Doing this will help to ensure a better understanding of how elements such as Zn are "preferentially depleted" in highly weathered samples (Dussubieux et al., 2008) and how the trace elements may leech into the soil surrounding the immediate area the artifacts were uncovered. This could also be useful in better understanding how the reverse could happen, and trace elements from deep within the ground could begin to affect the chemistry of the patina coating an artifact, or even the artifact itself. This would be an additional check again to see if the patina of an artifact can be used to test for provenance and once again negate the requirement to have fresh exposed copper from an artifact.

5.0 Conclusion

The main goal of this study was to determine the geological provenance of copper used by the pre- to post-contact aboriginal peoples in Nova Scotia through non-destructive analytical methods. The ability to determine the original source of copper now contained within artifacts, and to discriminate between natural copper and copper of European origin helps to increase our understanding of the lives of aboriginal people, how they made objects of spiritual or functional value, where they travelled and who they traded with. Using a relatively non-destructive (compared to bulk methods used in other studies), it was possible to determine with an acceptable level of certainty, the provenance of approximately a third of the Nova Scotia Museum copper collection in this historical context. Three definitive groups were identified: two groups sourced from within what is now Nova Scotia (Margaretsville, and Cap d'Or) and one group of European-sourced copper (refined copper and copper-based alloys with Sn, Zn and other metals). These artifacts have been analyzed, and returned to the copper collection of the Nova Scotia Museum, to be curated for exhibits, and used again in future studies. No artifacts used in this study were compromised visually or structurally; there were no negative impacts to the value of these cultural objects. Rather, the study has provided an opportunity to develop positive insights concerning the copper procurement traditions of the Mi'kmaq who clearly utilized their own copper from outcrops in what is now Nova Scotia in conflict with the Lake Superior model, and concerning the trade and reuse of copper brought over by European settlers and explorers. Future work stemming from this project should include the creation of a larger database of source copper localities to explain (hopefully) the provenance of the remaining two thirds of the copper artifact collection that was not Michigan-sourced, nor from key copper areas of the

Bay of Fundy. Work in progress by Hodge et al. (in preparation) is narrowing down the sources copper used in the European artifacts. Increasing the size of the database for sources will aide us in understanding further copper was being gathered and how it moved to its final place in the possession of aboriginal peoples in Nova Scotia before its discovery through archaeological excavation. The project has raised several key questions that could be addressed through integration of the chemical provenance data and archaeological data as well as further study:

- Why was Michigan copper not used? Did this reflect a lack of trading relationship with other groups that had access to this copper? Was NS copper preferred because it was easier to manipulate and work (i.e., small crystals vs. large float fragments) or was it preferred because of spiritual connection or tradition?
- 2. What are the sources to explain the seven unknown provenance groups? Were these local sources and if so, are the documented currently or historically? If they were sourced from other parts of what is now the Maritime region or north-eastern United States, how does this better inform us of the relationships between neighbouring aboriginal groups?
- 3. Can the diversity in sources for artifacts recovered at an individual archaeological site reflect reuse of copper sourced from different areas over generations? Are variations in source material represented in artifact populations linked to the age of a particular area of the site and do these variations reflect changes in the availability of copper from different localities with time?
- 4. Was NS copper more prevalent than previously thought? Given the limitations in bulk analytical methods discussed here, will reanalysis of samples from other sites

in North America by LA-ICPMS tighten constraints on copper provenance, revealing a greater role for copper from the Bay of Fundy region in North American aboriginal cultures prior to European contact?

5. Where was the copper in European objects originally derived? Can constraints on their provenance and the production history for refined metals in Europe in general allow a better understanding of the age of sites of habitation, contact and trade involving Mi'Kmaq and European explorers and colonists? Can the chemistry of refined copper fragments be used to identify the European nation that brought the original objects (e.g., trade kettles) to eastern Canada?

References

- Abel, T.J., Burke, A.L., The protohistoric time period in Northwest Ohio: perspectives from the XRF analysis of metallic trade materials, Midcontinental Journal of Archaeology 39 (2014) pp.1-21.
- Aeschliman, D.B., Bajic, S.J., Baldwin, D.P., Houk, R.S., Multivariate pattern matching of trace elements in solids by laser ablation inductively coupled plasma-mass spectrometry: source attribution and preliminary diagnosis of fractionation, Analytical Chemistry 76 (2004) pp. 3119 – 3125.
- Anselmi, L.M., A Brief historical retrospective of investigation of Archaic to Contact Period copper-based metal artifacts in Northeastern North America, Ontario Archaeology 78 (2004) pp. 81-93.
- Bendall, C., The application of trace element and isotopic analyses to the study of Celtic Au coins and their metal sources, Unpublished PhD thesis, Johann Wolfgang Goethe University Frankfurt, Germany (2003).
- Beukens, R.P., Pavlish, L.A., Hancock, R.G.V., Farquhar, R.M., Wilson, G.C., Julig, P.J. Ross, W. Radiocarbon dating of copper-preserved organics, Radiocarbon 34 (1992) pp. 890-897
- Bevins, R.E., Young, B., Mason, J.S., Manning, D.A.C., Symes, R.F., Mineralization of England and Wales, Geological Conservation Review Series 36 (2010).
- Biggar, H.P.,(Ed.), The Works of Samuel de Champlain in Six Volumes, vol. 1, The Champlain Society, Toronto, (1992).
- Bornhorst, T.J., Paces, J.B., Grant, N.K., Obradovich, J.D., Huber, N.K., Age of native copper mineralization, Keweenaw Peninsula, Michigan, Economic Geology, 83 (1988) pp.615-625.
- Bourque B.J. (Eds.), Twelve Thousand Years, University of Nebraska Press, Nebraska. (2001).
- Box, S.E., Boris, S., Hayes, T.S., Taylor, C.D., Zientek, M.L., Hitzman, M.W., Seltmann, R., Chechetkin, V., Dolgopolova, A., Cossette, P.M., Wallis, J.C., Sandstone copper assessment of the Chu-Sarysu basin, Central Kazakhstan, U.S. Geological Survey Scientific Investigations Report 2010-5090-E, (2012) pp. 1-62.
- Broderick, T.M., Fissure vein and lode relations in Michigan copper deposits, Economic Geology, 26 (1931) pp. 840-856.
- Brown, A.C., Sediment-hosted stratiform copper deposits, Geoscience Canada 19 (1992) pp. 125-141.
- Butler, B.S., Burbank, W.S., The copper deposits of Michigan, USGS Professional Papers 144 (1929) pp. 1-238.
- Campbell, D. Copper, Margaretsville, Annapolis County, Nova Scotia, Soil, and Rock Geochemical and Drillhole Location Maps and Drillhole Locations, Nova Scotia Department of Natural Resources 3414 43144 (1966).
- Constantinescu, B., Vasilescu, A., Radtke, M., Reinholz, W., A study on Au and copper provenance for Romanian prehistoric objects using micro-SR XRF, Journal of Analytical Atomic Spectrometry 26 (2011) pp. 917- 921.
- Cooper, K., The life/lives and times of native copper in Northwest North America, World Archaeology 43 (2011) pp. 252-270.
- Cooper, H.K., Duke, M.J.M., Simonetti, A., Chen, G.C., Trace element and Pb isotope provenance analysis of native copper in northwestern North America: results of a recent pilot study using INAA, ICP-MS and LA-MC-ICP-MS, Journal of Archaeological Science 35 (2008) pp. 1732-1747.
- Dussubieux, L., Deraisme, A., Frot, G., Stevenson, C., Creech, A., Bienvenu, Y., LA-ICP-MS, SEM-EDS and EPMA analysis of Eastern North American copper-based artefacts: impact of the corrosion and heterogeneity on the reliability of the LA-ICP-MS compositional results, Archaeometry 50 (2008) pp. 643-657.
- Eckstrand, O.R., Sinclair, W.D., Thorpe, R.I. Geology of Canadian Mineral Deposit Types, Canadian Communication Group-Publishing, Ottawa (1995).
- Ehrhardt, K.L., Nash, S.K., Swann, C.P., Metal-forming practices among the seventeenth century Illinois, 1640-1682, Materials Characterization 45 (2000) pp. 275-288.
- Ehrhardt, K.L., Copper working technologies contexts of use and social complexity in the Eastern Woodlands of Native North America, Journal of World Prehistory 22 (2009) pp. 213-235.
- Faul, H., Faul C., It Began With A Stone: A History of Geology from The Stone Age to the Age of Plate Tectonics, John Wiley & Sons, New York, (1983).
- Fedortchouk, Y., LeBarge, W., Barkov, A.Y., Fedele, L., Bodnar, R.J., Platinum-group minerals from a placer deposit in Burwash Creek, Kluane Area, Yukon Territory, Canada, The Canadian Mineralogist, 48 (2010) pp. 583-596.

- Fenn, T.R., Geochemical investigation of prehistoric native copper artifacts, Northern Wisconsin. Unpublished M.Sc Thesis, Department of Geology and Geophysics, University of New Orleans. (2001).
- Fitzgerald, W.R., Turgeon, L., Whitehead, R.H., Bradley, J.W., Late sixteenth-century Basque banded copper kettles, Historical Archaeology 27 (1993) pp. 44-57.
- Frame, L.D., Freestone, I.C., Zhang, S.Y., Nicholas, M., The effects of corrosion and conservation treatments on non-destructive neutron diffraction analysis of archaeological copper alloys: preliminary results, Archaeometry 55 (2013) pp. 68-80.
- Friedman, A.M., Conway, M., Kastner, M., Milsted, J., Mett, D., Fields, P.R., Olsen, E., Copper artifacts: correlation with source types of copper ores, Science, 152 (1966) pp.1504-1506.
- Garrison, E.G., Techniques in Archaeological Geology, Springer-Verlag, Berlin, Germany (2003).
- Glascock, M.D., Neff, H., Neutron activation analysis and provenance research in archaeology, Measurement and Science Technology 14 (2003) pp. 1516 1526.
- Gray, A.L., Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry, Analyst 110 (1985) pp. 551-556.
- Hancock, R.G.V., Pavlish, L.A., Farquhar, R.M., Salloum, R., Fox, W.A., Wilson, G.C., Distinguishing European trade copper and North-Eastern North American native copper, Archaeometry 33 (1991) pp. 69-86.
- Hancock, R.G.V., Pavlish, L.A., Fox, W.A., Latta, M.A., Chemical analysis of copper allow trade metal from a post-contact Huron site in Ontario, Canada, Archaeometry 37 (1995) pp. 339-350.
- Hancock, R.G.V., Pavlish, L.A., Aufreither, S., Archaeometry at SLOWPOKE Toronto, Archaeometry 49 (2007) pp. 229-243.
- Harbottle, G., Chemical characterization in archaeology, in: J.E Ericson, T.K. Earle (Eds.) Context for Prehistoric Exchange, Academic Press Inc, New York, (1982), pp. 13-51.
- Hill, M.A., The Benefit of The Gift: Social Organization and Expanding Networks of Interaction in the Western Great Lakes Archaic. International Monographs in Prehistory, Michigan, (2012).

- Holmes, W.H., Aboriginal copper mines of Isle Royale, Lake Superior. American Anthropologist 3 (1901) pp. 684-696
- Jackson, S.E., Longerich, H.P., Dunning, G.R., Fryer, B.J., The application of laserablation microprobe – inductively coupled plasma – mass spectrometry (LAM-ICP-MS) to in situ trace-element determinations in minerals, Canadian Mineralogist 30 (1992) pp. 1049-1064.
- Junk S.E., Ancient artefacts and modern analytical techniques Usefulness of laser ablation ICP-MS demonstrated with ancient Au coins, Nuclear Instruments and Methods in Physics Research B 181 (2001) pp. 723-727.
- Kennet D.J., Neff, H., Glascock, M.D., Mason, A.Z., Interface archaeology and technology. A geochemical revolution: inductively coupled plasma mass spectroscopy. SAA Archaeological Record 1 (2001) pp. 22-26.
- Killick, D., Fenn, T., Archaeometallurgy: the study of preindustrial mining and metallurgy, Annual Review of Anthropology 41 (2012) pp. 559-575.
- Klein, S., Brey, G.P., Durali-Müller, S., Lahaye, Y., Characterization of the raw metal sources used for the production of copper and copper-based objects with copper isotopes, Archaeological and Anthropological Sciences, 2 (2010) pp. 45-56.
- Kobyliński, Z., Hensel, Z., Imports or local products? Trace element analyses of copperalloy artefacts from Haćki, Białystok province, Poland, Archaeologia Polona 31 (1993) pp. 129-140.
- de Laeter, J.R., Mass spectrometry and geochronology, Mass Spectrometry Reviews, 17 (1998) pp. 97-125.
- Lattanzi, G.D., The provenance of pre-contact copper artifacts: social complexity and trade in the Delaware Valley, Archaeology of Eastern North America 35 (2007) pp. 125-137.
- Lattanzi, Elucidating the origin of middle Atlantic pre-contact copper artifacts using laser ablation ICP-MS, North American Archaeologist, 29 (2008) pp. 297-326.
- Leonard, K.J.M., Mi'kmaq culture during the late woodland and early historic periods. Unpublished PhD Thesis, Department of Anthropology, University of Toronto, (1996).

- Levine, M.A., Native copper in the Northeast: an overview of potential sources available to indigenous peoples, in : M.A Levine, K.E. Sassaman, M.S. Nassaney (Eds.), The Archaeological Northeast, Bergin & Garvey, Westpot, (1999) pp.183-199.
- Levine, M.A., Determining the provenance of native copper artifacts from Northeastern North America: evidence from instrumental neutron activation analysis, Journal of Archaeological Science 34 (2007), pp.572-587.
- Levine, M.A., Overcoming disciplinary solitude : the archaeology and geology of native copper in Eastern North America, Geoarcheaology 22 (2007), pp. 49-66.
- Mason, R.J., Great Lakes Archaeology, Academic Press, (1981).
- Mathur, R., Titley, S., Hart, G., Wilson, M., Davignon, W., Zlatos, C., The history of the United States cent revealed through copper isotope fractionation, Journal of Archaeological Science 36 (2009) pp. 430-433.
- Michelaki, K., Hancock, R.G.V., Warrick, G., Knight, D.H., 17th century Huron village life: Insights form the copper-based metals of the Ball site, southern Ontario, Canada, Journal of Archaeological Science, 40 (2013) pp. 1250-1259.
- Moreau, J.F., Hancock, R.G.V., The effects of corrosion on INNA characterizations of brass kettles of the early European contact period in Northeastern North America, Journal of Archaeological Science 20 (1999) pp. 1119-1125.
- Mulholland, S.C., Pulford, M.H., Trace-element analysis of native copper: the view from Northern Minnesota, USA, Geoarchaeology, 22 (2007), pp. 67-84.
- O'Reilly, G.A., From the mineral inventory files: at Cap d'Or, all that glitters is not Au it's copper, Nova Scotia Minerals Update 24 (2007) pp. 3.
- Pevarnik, G.L., Boulanger, M.T., Glascock, M.D., Instrumental neutron activation of middle woodland pottery from the Delaware Valley, North American Archaeologist, 29 (2008), pp. 239-268.
- Quimby, G.I., Indian Culture and European Trade Goods, University of Wisconsin Press Wisconsin (1966).
- Rapp, G., Allert, J., Vitali, V., Jing, Z., Henrickson, E., Determining Geologic Sources of Artifact Copper: Source Characterization Using Trace Element Patterns, University Press of America (2000).
- Rapp, G., Hill, C.L., Geoarcheology: The Earth Science Approach to Archaeological Interpretation 2nd ed., Yale University Press, (2006).

- Rapp, G. Jr., The provenance of artifactual raw materials, in: G. Rapp Jr., J.A. Gifford (Eds.) Archaeological Geology, Yale University Press (1985), pp. 353-375.
- Rapp, G. Jr., Allert, J., Trace element discrimination of discrete sources of native copper, in: J.B Lambert (Ed.), Archaeological Chemistry III, American Chemical Society, Washington D.C., (1984), pp. 273-293
- Reeder, J.T., Evidences of prehistoric man on Lake Superior. In R.W. Drier & O.J Du Temple (Eds.) Prehistoric copper mining in the Lake Superior Region, a collection of references articles. Calumet, MI. (1903/1961) pp. 135-144.
- Rosemeyer, T., Copper-bearing fissure veins, Keweenaw County, Michigan, Rocks and Minerals, 84 (2009) pp. 32-40.
- Rosemeyer, T., News from the Keweenaw, Rocks and Minerals 86, (2011) pp. 206-228.
- Singewald J.T., Berry, E.W., the Geology of the Corocoro Copper District of Bolivia, John Hopkins University Press (1922).
- Turgeon, L., Basque-Amerindian trade in the Saint Lawrence during the sixteenthcentury; new documents, new perspectives, Man in the Northeast 40 (1990) pp. 81-87.
- Whitehead, R.H, Nova Scotia: The Protohistoric period 1500-1630, curatorial report No. 75. Department of Education, Halifax. (1993).
- Whitehead, R.H., Pavlish, L.A., Farquhar, R.M., Hancock, R.V.B., Analysis of copper based metals from three Mi'kmaq sites in Nova Scotia, North American
- Wilson, G.C., Pavlish, L.A., Ding, G.J., Farquhar, R.M., Textural and in-situ analytical constraints on the provenance of smelted and native archaeological copper in the Great Lakes region of Eastern North America, Nuclear Instruments and Methods in Physics Research B, 123 (1997) pp. 408-503.
- Wisseman, S.U., Isaacson, J.S., Williams, W.S., Riley, T.J., Fittipaldi, J.J., Mann, D.K., Hopke, P.K., Intrusmental techniques in archaeological research, US Army Corps of Engineers (1988).

Appendix A – Laser Ablation Data for Artifacts

	³¹ P	Ste	³ Cr	⁵⁵ Min	⁵⁶ Fe	⁵⁹ Co	IN09	uZ ⁵⁶ Zn	71Ga	⁷² Ge	75As	oW ²⁶	¹⁰⁷ Ag	m cd	IISIN .	¹¹⁸ Sn	121Sb	¹²⁵ Te	¹⁹⁷ Au	²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
A 0570 1	60 1191	40 HBM	ADD 09	ICCHW	00 HBM	MBH 09	40 LIGIN	40 HBM	ICCPU	00 LIGIN	40 LIGIN	ICCHM	40 HBM	00 U	ADD 09	7/ HBM	0 HBH 09	0 1 Q	00 HBM	ICCEN	00 HBM	00 HBM
1-6000	010	162	6.7		000	0.15	1.1	10	0.10	15	210	0.10	010	66.0	10.0	50	0.14	01.0	0.00	0.66	10.1	20.06
8569-3	550	189	0.75	1	42	0.08	1.24	18.3	0.22	0.6	1.31	0.41	220	0.15	0.01	1.70	0.2	10.0	0.02	0.64	0.46	0.02
8569-4	580	211	0.95	0.64	42	0.17	2.5	18	0.24	-0.04	1.38	0.1	56	0.12	0.01	0.04	0.16	0.03	0	0.64	0.14	0.02
8569-5	131	215	0.64	0.78	21	0.04	0.56	7.5	0.03	0.27	0.9	0.15	195	0.34	0.01	0.05	0.04	0.05	0	0.39	0.19	0.01
8569-6	340	250	1.58	1.19	210	0.04	1.3	15.3	-0.06	0.75	1.48	0.23	139	0.12	0	0.03	0.12	0.02	0	0.48	0.27	0.01
8569-7	92	267	0.38	1.38	70	0.04	9.0	7.4	0.27	0.31	0.86	0.24	272	90.0	0.01	0.03	0.08	0.08	0	0.42	0.12	0.02
8569-8	257	271	1.29	0.24	09	0.09	0.8	14.1	0.14	0.00	0.74	0.15	101	0.03	0	0.02	0.05	0.07	0	0.47	0.13	0
8569-9	480	194	1.03	16:0	28	0.16	0.58	34	0.20	-0.49	1.55	0.1	319	0.15	0	0.04	0.12	0.01	0	0.36	0.15	0.01
8569-10	880	215	1.4	4.4	200	0.21	0.71	27	0.16	0.37	1.61	0.08	1090	0.18	0	0.11	0.01	0.04	0	0.72	0.24	0.01
8596-1	17200	315	15.7	1080	680	2.7	47	369	2.63	1.17	14.4	0.18	19.6	0.53	0.04	0.78	0.14	0.05	0	0.34	1.92	0.68
8596-2	28700	536	23.1	750	630	2.98	17	500	3.70	0.69	16.5	0.16	10.4	1	0.05	0.83	0.48	0.1	0	0.41	2.67	0.04
8596-3	11300	328	10.1	150	320	0.7	5.2	157	1.12	0.65	8.7	0.24	12.6	0.55	0.01	0.38	0.21	0.05	0	0.26	4	0.05
8596-4	17100	393	11.7	150	270	1.64	10.7	159	1.67	0.37	8.6	0.14	4.5	0.82	0.02	0.18	0.22	0.01	0	0.19	1.36	0.04
8596-5	15000	367	10.9	630	168	0.97	п	121	0.68	-0.29	9.9	0.1	6.6	0.45	0.01	0.21	0.04	0.06	0	0.26	1.26	0.04
8596-6	13200	344	11.5	8	145	0.84	6.2	95	06.0	0.43	10.4	0.2	2	0.3	0.01	0.56	0.09	0.04	0	0.15	1.13	0.07
8596-7	45600	362	33.5	254	308	3.1	42	350	2.97	1	21.2	0.27	28.9	0.66	0.08	0.25	2	-	-0.01	0.39	4.1	60.0
8596-8	15200	351	10.9	135	152	1.03	4	170	0.96	0.33	16.3	-0.01	15.7	0.4	0.01	0.19	0.08	0.02	0	0.22	1.16	0.03
8596-9	20400	403	14.9	101	133	1.65	10.4	185	0.46	0.23	14.7	0.12	13.8	0.9	0.02	0.16	0.07	0.06	0	0.33	0.88	0.03
8596-10	50900	549	30.5	300	280	1.51	10.9	276	1.95	-0.06	21.3	0.04	17.1	2.19	0.01	0.32	0.15	0.16	0	0.21	3.4	0.25
8584-1	97200	286	6.7	214	150	0.47	3.5	211	2.3	0	38.5	0.36	2070	1.15	0.33	0.38	0.4	0.12	0.01	6	5.7	0.02
8584-2	153000	657	9.1	376	262	0.38	3.3	243	3.2	-	38.7	0.05	21900	0.82	0.02	0.45	0.36	0.05	0.01	21.6	1.87	0.03
8584-3	151000	671	10.4	656	980	0.4	6	325	5	0.15	34.2	0.17	5800	1.26	0.05	0.46	0.2	0.01	0.01	7.6	1.54	0.02
8584-4	127000	462	8.0	820	580	0.29	4.62	266	4.43	0.93	33	0.37	1230	0.97	0.01	0.21	0.39	0.1	0	10.9	3.3	0.06
8584-5	120000	401	7.36	557	1050	1.8	10.6	204	5.7	0.41	34.7	0.21	1330	0.72	-	1.8	0.31	0.17	0.01	7.9	2.6	0.14
8584-6	172000	731	9.2	920	640	0.37	4.3	410	10.9	2.4	31.7	0.41	1820	1.31	0.01	0.39	0.33	0.03	0.01	12	4.9	0.02
1-	180000	108	8.8	876	0511	1.0	4.2	356	19.5	19.0	30.1	0.38	1290	1.03	0.02	0.12	0.22	0.03	0.04		1.4	10.0
8-9868	1/3000	140	C.6	066	0/71	91.0	4.0	675	5.0	• :	8.17	/0.0	14/0	1.05	70'0	/1.0	01.0	0.0	10.0	11	t.0	c0.0
8584-10	117000	305	10.4	010	430	10.0	0.0	176	0.6	11	37.4	4.7	0671	3.4	10.0	0.19	41	cn.0	C7.0	3 5	25	570
8603-1	110000	619	v	000	008	200	49	860	217	70.07	206	1 26	13.3	0 88	040	01	0.18	100	10.0	0.47	171	0.11
8603-2	45900	106	1.34	24.1	62	1	1.7	326	1.11	0.34	9.5	0.34	15.2	0.35	0	0.13	0.06	0.01	0	0.17	0.4	0.02
8603-3	52300	87.5	2.02	37	101	0.29	5.2	372	0.92	-0.01	13.3	0.49	11.8	0.53	0.02	0.93	0.15	0.01	0	0.27	0.73	0.08
8603-4	38100	138	1.18	12.1	70	0.04	1.4	258	0.59	0.28	8.1	0.08	13.1	0.27	0.01	0.25	0.05	0.02	0.01	0.39	0.17	0.04
8603-5	121000	54.4	4.24	67	1400	3	6.2	883	3.10	0.38	22.9	0.92	14.4	0.94	0.14	1.6	0.15	0.04	0.01	0.42	17	0.3
8603-6	44200	127	1.53	12.7	158	0.44	1.95	281	0.7	1.1	9.5	0.05	21.4	0.3	0.01	0.14	60.0	0.01	0.02	0.34	3.8	0.09
8603-7	86600	72.4	2.35	33	580	0.42	2.16	570	1.2	0.01	14.7	0.39	22.2	0.48	0.01	0.16	0.23	0.04	0	0.21	0.49	0.02
8603-8	85100	91.2	2.54	41.6	1200	0.31	2.3	589	1.89	1.8	19	0.34	14.5	0.49	0.01	1.6	0.07	0.02	0	0.37	5.8	0.03
8603-9	63900	5.68	1.99	38	079	4	7.7	455	1.61	-0.04	12.13	15.0	5.61	0.00	77.0	0.62	4.0	20.0	0	17.0	c/.0	0.02
01-5000	00000	159	4 80	70	740	10.36	n (*	7/4	1 57	21.0	C.CI	10	30	10.0	0.00	<u></u>	10.0	20.0	10.0	25.0	16.0	10.0
8595-2	45300	0.90	2.46	150	168	0.38	35	908	0.74	0.65	624	0.0	43.7	0 51	0.04	0.50	0.16	0.04	0.01	0.28	0.8	0.06
8595-3	20200	126	1.62	57	147	0.10	0.87	235	0.65	0.23	4.86	0.15	43.4	0.44	0.05	0.1	0.11	0.02	0.01	0.34	11	0.04
8595-4	32800	126	1.63	30	11	0.14	1.5	184	0.58	0.33	4.2	-0.17	43.9	0.38	0	0.18	0.14	0.02	0	0.35	0.45	0.04
8595-5	27700	155	1.48	50	160	0.03	0.8	268	0.73	0.57	3.64	-0.13	42.1	0.52	0.01	0.11	0.9	0.04	0	0.25	0.44	0.08
8595-6	20900	153	1.75	Π	34	0.03	2	77	0.15	-0.2	2.7	0.02	35.2	0.17	0.01	0.14	0.04	0.02	0.01	0.21	0.22	0.01
8595-7	25500	131	1.22	45	101	0.11	1.4	177	0.39	-0.08	5.1	0.13	34.0	0.14	0.01	0.23	0.13	0.05	0.01	0.17	0.33	0.03
8595-8	46300	127	2.64	83	206	-	4.3	421	0.88	0.11	6.1	0.34	41.6	0.49	0.01	1.01	0.11	0.09	0.0	0.36	0.79	0.08
8595-9	31000	122	1.66	4 6	140	0.16	1.38	164	0.49	-0.02	4.8	0.15	42.7	0.28	0.02	0.07	0.15	0.08	0.01	0.32	0.75	0.08
01-0600	00600	103	+0.4	007	450	cc.0	C0.C	400	CI	0.42	01.4	7.0	C.C2	1.01	c0.0	10'0	cc.0	10.0	10.0	CC.0	0.1	01.0

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
600 85 106 12 480 5.2 3.02 1.6 2.16 0.26 2.2 480 5.2 3.82 0.17 13.2 0.28 2.290 0.68 0.33 0.02 9.4 0.19 450 0.3 1.01 0.37 13.2 0.28 1390 0.68 0.65 0.31 11.2 0.28 1390 0.68 0.75 0.35 8.8 0.26 1000 0.32 0.75 0.35 8.8 0.26 1000 0.32 0.76 0.35 17 0.14 470 0.12 0.06 0.15 0.9 0.16 83 0.07 0.06 0.15 0.9 0.16 83 0.07 0.06 0.15 2.09 0.03 99.7 0.05 0.07 0.01 2.03 0.03 99.7 0.05 0.06 0.11 0.03 <	600 85 106 12 480 5.2 3.22 1.6 1.2 4.80 5.2 0.33 0.17 1.3.2 0.28 1.290 0.68 0.33 0.02 9.4 0.19 450 0.3 1.01 0.37 13.2 0.28 1390 0.68 0.75 0.35 13.1 0.27 330 0.39 0.75 0.35 8.8 0.26 1000 0.32 1.84 0.35 15.6 0.24 1030 0.32 0.04 0.11 1.77 0.14 470 0.12 0.06 0.3 7 0.19 937 0.07 0.06 0.3 2.39 0.39 0.07 0.01 0.06 0.3 2.39 0.39 0.07 0.02 0.06 0.3 0.30 0.38 0.07 0.03 0.06 0.3 0.30 0.39 0.07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
0.88 0.17 13.2 0.28 0.32 0.02 9.4 0.19 0.6 0.37 12.1 0.08 0.6 0.37 11.2 0.08 0.75 0.35 8.8 0.26 0.74 0.35 15.6 0.24 0.90 0.36 15.6 0.24 0.90 0.36 15.6 0.24 0.90 0.31 11.7 0.19 0.00 0.3 15.6 0.24 0.00 0.3 15.6 0.24 0.00 0.3 15.6 0.24 0.01 0.3 15.6 0.24 0.00 0.3 17 0.14 0.01 1.7 0.14 0.15 0.00 0.15 0.9 0.16 0.28 0.01 2.39 0.28 0.01 0.01 2.03 0.02 0.01 0.01 2.03 0.02	0.88 0.17 13.2 0.28 0.32 0.02 9.4 0.19 0.66 0.11 11.2 0.08 0.66 0.11 11.3 0.28 0.75 0.35 8.8 0.27 1.84 0.35 15.6 0.24 0.06 0.31 11.3 0.08 0.06 0.35 15.6 0.24 0.06 0.11 1.77 0.19 0.06 0.13 1.77 0.14 0.06 0.15 0.99 0.16 0.06 0.15 2.99 0.28 0.07 0.01 2.03 0.03 0.07 0.01 2.03 0.03 0.07 0.01 2.03 0.03 0.07 0.01 2.93 0.03 0.07 0.01 0.04 0.01 0.07 0.04 0.01 0.02 0.07 0.04 0.01 0.03	0.17 1132 0.28 0.237 112.1 0.08 0.31 113.1 0.08 0.35 15.6 0.24 0.35 15.6 0.24 0.35 15.6 0.24 0.35 15.6 0.24 0.35 15.6 0.24 0.19 0.19 0.11 11.7 0.14 0.15 0.9 0.13 0.01 2.03 0.03 0.01 2.03 0.03 0.01 2.03 0.03 0.01 0.43 0.13 0.01 0.43 0.13 0.02 0.03 0.03 0.03
0.32 0.02 0.6 0.11 0.75 0.33 0.75 0.33 0.75 0.33 0.06 0.3 0.06 0.15 0.06 0.15 0.01 0.0	0.37 0.65 0.75 0.75 0.75 0.36 0.11 0.36 0.15 0.06 0.15 0.06 0.15 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01	0.02 0.11 0.11 0.35 0.36 0.13 0.13 0.14 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02
		0.6 0.75 0.75 0.06 0.06 0.06 0.05 0.07 0.07 0.07 0.75
1.3 145 1.7 53 0.1 7.9 1.3 115.1 0.1 7.9 0.8 22.1 0.6 8.1 0.6 4.0	Li 113 114 117 117 113 114 113 114 01 01 01 01 01 01 01 01 01 01 01 01 01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2.65 0.06 1 0.38 1.9 0 0.22 0.17 1 0.46 0.25 0 1.28 0.15 0 1.28 0.15 0 0.15 0 0.17 0 0.17 0 0.15 0 0.17 0 0.15 0 0.17 0 0.15 0 0.00 0 0.15 0 0.00 0 0.15 0 0.00 0 0.15 0 0.00 0 0.15 0 0.00 0 0.15 0 0.00 0 0 0.00 0 0.00 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0.00 0 0 0 0 0	2.65 0.06 1 0.38 1.9 0.05 0.46 0.27 0.17 1.28 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15	2.65 0.06 1 0.38 1.9 0 0.38 1.9 0 0.22 0.17 1 0.46 0.25 0 1.37 0.05 0 1.37 0.02 0 0.46 0.25 0 1.37 0.02 0 0.42 0.03 0 0.42 0.03 0 0.42 0.01 0 0.35 0.01 0 0.35 0.01 0 0.35 0.01 0 0.35 0.01 0 1.27 0.14 0 1.700 0.15 0 1.790 0.11 0
03 0.96 0.22 22 4.4 0.46 31 2.74 1.28 31 1.85 1.37	03 0.96 0.22 222 4.4 0.46 31 2.74 1.28 331 1.85 1.37 0.8 0.5 0.42 0.8 0.5 0.42 0.1 0.33 0.36 0.7 1.36 1.27 0.7 1.34 3.33	0.22 0.46 0.46 1.37 0.36 0.36 1.27 1.27 1.790 1500
228 0.31 205 0.31 107 0.08	0.01 0.02 0.07 0.07 0.07	2.74 1.85 0.5 0.33 1.86 1.86 1.47 147 50
7/1		0.01 0.33 0.07 1.86 0.26 1.34 1.05 147 0.31 50

- 000	MBH 66	0.29	0.19	0.18	0.08	0.15	51.0	0.28	0.38	0.17	1.1	0.74	1.38	1.08	1.15	1.32	2.56	1.76	0.80	2.60	10.0	0.01	0	0.01	0.01	0.01	0.01	0.01	0.07	0.01	0	0	0 0	0.07	0	0.01	0.02	0	0.03	0.03	0.01	0.03	0.04	0.16	0.16	0.24	
306	MBH 66	1.39	1.11	0.74	0.77	0.95	15.7	1.45	1.49	2.33	384	256	766	756	408	261	770	1137	908	1480	60.0	75.0	0.43	0.51	1.03	0.51	0.29	0.14	1.48	0.55	1.5	0.28	0.19	0.14	0.22	0.18	0.14	0.66	9.4	6	1.86	3.1	6.08	6.52	1.61	7.9	
WC	ISSIM	0.64	0.57	0.47	0.45	0.55	0.65	0.53	0.6	0.73	265	81	96	217	60	88	147	153	41	611	041		508	233	264	128	113	09	240	82	46.2	134	58.2	53.7	50.9	60.3	56	218	1.11	10.9	5.62	10.3	30.7	39.5	26	32.2	
107 .	MBH 66	0.01	0.01	0.01	0.01	0.02	10.0	10.0	0.01	0.01	0.79	0.77	0.88	0.75	0.96	1.05	1.41	1.02	0.68	0.77		0 0		0	0.01	0.01	0.01	0.01	0	0	0.01	0	0 0	0	0	0	0	0	0.03	0.01	0	0.01	0.01	0.02	0 0	0	
176	MBH 69	0.02	0.11	0.05	0.14	0.11	-0.04	01.0	0.17	0.62	0.66	0.57	0.76	96.0	0.36	0.87	1.4	0.92	0.0	8/.0	40.0	70.0	0.03	-0.02	0.01	0.03	0.07	0.04	-0.01	0.01	0.02	0	0.04	0.04	0.0	0.03	0.06	0.05	0.08	0.01	0.07	0.07	-0.09	0.22	0.16	60.0	
121-	MBH 69	0.18	0.17	0.1	0.11	0.11	0.10	60.0	0.14	0.13	6.90	3.6	12.6	12.3	4.3	4.8	5.68	10.3	6.1	14	0.00	70.0	0.03	0.01	0.07	0.08	0.01	0.03	0.22	0.1	0.23	0.07	0.22	0.03	0.05	0.03	0.05	0.1	0.17	0.23	0.06	60.0	0.19	0.19	0.62	1.9	0 20
118-	MBH 72	0.23	0.24	0.1	0.11	0.06	61.0	60.0	0.2	0.42	31.2	19.4	21.6	27	21.8	19.9	25.7	30.3	20.2	24	0.08	CT'0	0.05	0.04	0.43	0.23	0.13	0	1.09	1.86	0.26	0.36	0.45	0.26	0.17	0.06	0.01	0.09	28	21	2.05	2.9	16	1.7	24.3	6.4	00
116.	MBH 69	0.01	0	0	0	0 0	0	10.0	0	0	0.05	0.03	0.04	0.05	0.04	0.04	0.04	0.04	0.02	c0.0				0	0.01	0	0	0	0.01	0	0	-0.01	0	0	0	0.01	0	0	0.01	0.01	-0.01	0.02	0.02	0.12	1.0	0.27	0.18
111	MBH 69	0.22	0.17	0.17	0.14	0.15	010	0.22	0.07	0.26	4.72	2.97	7.36	8.9	2.77	4.08	5.57	11.1	27.0	cl.1	0.07	10.0	0.16	0.15	0.16	0.16	0.17	0.06	0.69	0.07	0.24	0.92	0.34	0.11	0.21	0.2	0.08	0.16	0.39	0.87	0.29	0.54	1.88	2.59	2.95	1.85	1 0
107 .	MBH 69	55	60.4	53.3	42.4	42	617	212	83	84	270	558	367	372	423	582	850	462	405	525	671	102	318	144	217	354	226	248	256	225	132	307	479	262	212	167	68.4	127	6.04	64.5	25	59	10.9	13.5	19.8	15.7	000
04.10	MASSI	0.29	0.28	0.13	0.02	0.13	61.0	0.11	0.17	-0.04	2.49	0.82	0.53	4.2	0.43	1.01	1.74	1.35	0.34	0.34	CI.U	00.0	0.27	0.05	0.12	0.17	60.0	0.1	0.1	0.22	0.08	0.25	0.19	0.22	0.07	0.15	0.21	0.1	0.57	0.62	0.57	0.66	0.85	0.66	1.41	0.79	1 8
74 .	MBH 69	22.7	17.1	17	14.6	18	10.3	13.5	II	5.9	134	66	194	250	93	67	159	310	111	667	1.14	04-1	1.17	1.27	2.09	1.47	1.05	0.92	5.7	1.03	1.22	1.05	1.24	0.67	0.88	0.87	0.31	1.57	24.8	64.8	12.9	37.4	131.7	125	213	89.2	015
- 11	MBH 66	0.15	0.13	0.36	0.38	0.19	0.07	69.0	0.15	0.4	-0.25	0.12	0.18	0.28	0.09	1.25	1.57	0.32	0.11	-0.31	95.U	cc.0	10.0-	-0.1	0.28	-0.1	0.06	-0.11	0.43	0.11	0.11	-0.1	0.06	0.16	0.4	0.08	0.21	0.13	0.45	0.31	0.18	0.31	0.43	0.94	5.0	0.19	0 87
- 16	MASSI	3.69	2.72	1.98	1.75	2.54	7 96	2.23	1.82	0.81	1.06	0.5	0.14	1.41	0.27	3.11	0.91	0.4	0.23	0.22	61.0	01.0	60.0	0.11	0.17	0.19	0.19	0.1	1.86	0.16	0.12	0.14	0.15	0.16	0.18	0.19	0.19	0.14	0.37	0.55	0.15	0.49	1.84	2.4	15.8	1.95	2 67
	MBH 69	III	92	84	85	84.7	13.1	11	09	37.4	7700	4840	6800	13100	3800	7740	8800	7680	0000	0/.99	4.60	0.40	47.3	38.2	58.0	48.2	64.0	26.8	174	38.7	21.8	29.8	24	17	29	43	32	58	70	50	9.7	16	103	134	550	119	174
	MBH 69	1.15	0.64	0.57	0.66	0.17	7.06	1.25	1.2	1.3	135	88	121	256	65.1	161	169	161	1.101	126	0.32		-0.21	0.19	0.03	0.38	0.05	0.05	7.9	0.45	0.65	1.29	0.47	1.28	0.13	0	-0.27	0.58	7	1.16	0.33	0.93	5.6	6.1	99	4.8	8 4
40-	MBH 69	0.21	0.22	0.13	0.04	0.17	60.0	0.22	0.29	-0.01	1.2	0.92	0.85	2.33	0.36	3.03	1.64	0.85	0.45	10.0	10.0	70.0-	0.02	-0.01	0.03	0.02	-0.03	-0.04	3.16	0.01	-0.01	0.04	0.03	0.01	0.18	0.18	0.01	-0.04	0.43	0.26	0.08	0.22	2.59	2.02	20.9	2.03	3 14
ck	MBH 66	1470	960	780	621	800	1330	1060	1200	800	1220	980	300	2100	260	4490	1670	1330	208	320	8/	5	18	4	129	84	84	16.2	9400	45	39.3	57	12	6	13	58	17	34	330	301	49	231	1860	2360	14700	1500	2230
	MASSI	59	39	14.2	13.8	19	4/1	24	99	21.2	43	25.3	4.6	87	7.4	91	59	26	71	7.0	1.1	0.1	8.2	6.5	7.8	7.22	8.4	2.22	910	7.6	10.1	9.3	6.88	2.71	6.3	11.9	26	8.1	38	89	10.5	33	1420	1380	2480	006	1700
-13	MBH 69	-23.1	-14.7	-10.6	-8.6	-11.8	-8.9	-10.4	-9.6	-5.3	2.36	1.49	0.91	4.2	0.39	2.85	2	1.31	6/.0	1.21	/1.0	71.0	0.40	0.09	0.42	0.19	0.28	0.22	5.33	0.19	0.33	0.33	0.31	0.11	0.1	-0.05	0.2	0.05	0.41	0.59	0.11	9.0	1.26	1.9	23.4	1.59	1 73
24-	VIBH 69	79.3	103	119	135	113	1001	141	161	157	235	212	224	259	227	276	257	235	877	117	6/1	117	188	165	181	197	204	171	324	182	173	197	170	171	171	180	157	172	224	303	275	280	518	432	1340	517	460
31-	BH 69 1	130000	115000	90500	105000	110000	194200	105000	87000	52000	420	146	182	570	93	256	306	266	140	198	0000	0070	5860	3660	6290	3530	4800	2330	32700	5440	4200	4630	3360	2020	3920	5670	3890	7400	1250	4140	720	2210	13980	19100	19400	11300	10800
- w ymnaddy	M	8590 - 1	8590 - 2	8590 - 3	8590 - 4	8590 - 5	0 - 0608	8290 - 8	8590 - 9	8590 - 10	002 - 1	002-2	002 - 3	002 - 4	002 - 5	002 - 6	002 - 7	002 - 8	6-200	002 - 10	1 - 5105	7- 5102	2015-4	2015-5	2015 - 6	2015 - 7	2015 - 8	2015 - 9	2015 - 10	2158 - 1	2158 - 2	2158 - 3	2158 - 4	2158 - 6	2158 - 7	2158 - 8	2158 - 9	2158 - 10	064 - 1	064 - 2	064-3	064 - 4	064 - 5	064 - 6	064 - 7	064 - 8	0-4-0

-	MBH 66	-0.01	0	0.01	0	0.01	0	0	0	0	0	0.71	0.24	0.03	0.07	0.53	0.25	0.46	0.39	0.05	0.01	0.26	0.24	0.58	0.16	0.13	0.09	0.68	0.05	0.09	0.2	1.38	3.52	3.21	1.36	0.98	0.52		0.4		0.98	1.7	0.98 1.7 0.87	0.98 1.7 0.87 2	0.98 1.7 0.87 2 1.43	0.98 1.7 0.87 2 1.43 0.82	0.98 1.7 0.87 2 1.43 0.82 0.82	0.98 1.7 0.87 2 1.43 0.82 0.82 0.86	0.98 1.7 0.87 0.87 0.87 0.87 0.86 0.86 0.86
	ABH 66	0.05	0.08	0.07	60.0	0.09	0.08	0.58	0.11	0.08	0.06	36	8.2	0.78	0.66	23.4	3.45	23.4	8.9	1.01	0.52	6.6	80	7.5	11.3	5.2	4.7	3.09	2.62	4.5	5	90	36	67	49	20.7	26.2	6	8.4	39	19.3		37	37 96	37 96 44.3	37 96 34 3	37 96 44.3 34 62.4	37 96 44.3 34 62.4	37 96 44.3 34 62.4 45.4
	MASSI	6.6	8.04	6.92	11	7.31	7.16	7.06	8.9	8.35	9.32	2.44	1.53	0.63	0.49	2.4	1.76	2.87	2.25	0.66	0.34	0.34	0.48	0.17	0.42	0.75	0.3	0.17	0.21	0.38	0.55	0.78	1.14	2.11	0.47	0.43	0.62	0.47	0.4	1.15	0.66		140	140 283	140 283 116	140 283 116 120	140 283 116 120	140 283 116 120 139	140 283 116 120 139 8 8 8
	MBH 66	0	0.01	0.01	0	0	0	10.0	0	0	0	0.52	0.2	0.04	0.02	0.37	0.21	0.63	0.47	0.03	0.02	0.03	0.14	0.02	0.01	0.02	0.02	0.08	0.02	0.01	0.11	0.18	0.02	0.16	60.0	0.11	0.17	0.02	10.0	0.04	0	0.05		0.02	0.02 0.02	0.02 0.02 0.04	0.02 0.02 0.04 0.03	0.02 0.04 0.03 0.03	0.02 0.04 0.03 0.03 0.01
	MBH 69	0.02	-0.05	0.04	-0.04	-0.02	-0.03	0.31	0.21	0.17	0.07	0.18	-0.1	-0.1	-0.08	-0.09	-0.2	-0.45	-0.14	-0.06	-0.05	0.44	2.1	0.4	0.11	0.0	-0.02	1.8	0.18	0.07	0.19	0.22	0.52	3.5	0.71	0.53	0.37	0.58	cc.0	0.46	-0.01	0.82		2.5	2.5	2.5 0.8 0.68	2.5 0.8 0.68 1.1	2.5 0.8 0.68 0.18	2.5 0.8 0.18 0.18 0.18
	MBH 69	-0.01	0.03	0.1	0.03	-0.02	0	-0.01	-0.03	0.02	0.01	1.04	0.23	0.07	0.06	L.T	0.26	0.75	0.63	0.05	0	1.02	3.8	0.3	0.62	0.21	0.16	0.15	0.1	0.12	0.27	2.2	0.4	3.7	1.09	0.61	0.28	0.68	0.00		0.1	1.37	0	6.1	1.05	1.05 0.87	1.05 0.87 1	1.05 0.87 1.32 1.32	1.05 1.05 0.87 1.32 0.84
	MBH 72	0.33	1.52	1.09	1.52	1.05	1.47	1.6	0.39	0.33	0.24	430	33	6.05	2.76	56	20.7	260	51	5.23	2.7	5.2	1.03	2.9	2.52	1.21	0.81	0.51	1.32	0.71	0.4	11.4	4.4	9.2	6.2	2.4	1.81	3.7	0.99	8.9	5	1.82	66	0.0	4.2	4.2 5.7	5.7 6	5.7 5.7 5.7	5.7 5.7 5.5 5.5
	09 HBM	0.01	0	0	0	0.01	0	0.02	0	0	0	0.42	0.04	0.01	0	0.09	0.03	0.3	0.07	0.01	0	0.06	3.2	0.15	0.08	0.04	0.01	0.08	0.01	0.01	0.06	1.7	0.58	3	1.6	0.42	0.05	0.34	0.02	3.5	0.29	0.04	0.23		0.14	0.14 0.13	0.14 0.13 0.13	0.14 0.13 0.13 0.18	0.14 0.13 0.13 0.13 0.17
	MBH 69	-0.02	-0.02	-0.03	0.01	0.01	0.02	0.07	0.02	-0.07	0.04	0.31	0.29	0.07	60'0	0.11	0.19	0.24	0.27	60.0	0.02	3.4	13.2	5.81	11.4	28.9	16.7	9.25	12.3	13.1	4.2	3.2	0.48	1.5	0.66	0.59	0.28	1.2	0.21	0.36	0.37	6.2	11.5		4.5	4.5 4.52	4.5 4.52 5.43	4.5 4.52 5.43 5.6	4.5 4.52 5.43 5.6 4.45
	MBH 69	22.1	31.8	41.7	25.3	36.9	26.6	24.6	20.2	61.9	52.1	101	108	32.8	32.7	87.5	78	81	149	25.9	210	50.6	52.3	35.4	31.2	31.3	30.6	33.7	18.6	18.6	46.5	148	36.4	60	89.1	132	139	106	0.00	112	108	480	560		313	313 317	313 317 218	313 317 218 530	313 317 218 530 216
	MASSI	-0.03	0.1	0.0	0.03	-0.01	0.07	0.15	0.05	-0.01	0.07	0.39	0.23	0.04	-0.04	2.8	-0.15	0.76	0.86	0.11	0.06	0.67	1.3	0.42	0.48	0.25	0.28	0.37	0.24	0.27	0.24	1.05	0.44	1.54	0.65	0.79	0.69	0.35	0.16	1.7	0.32	0.69	1		0.29	0.29 0.44	0.29 0.44 -0.03	0.29 0.44 0.13 0.13	0.29 0.44 0.13 0.18 0.18
	MBH 69	1.04	1.18	1.07	1.19	0.66	0.84	0.94	1.53	1.78	1.46	14.9	6.9	0.8	0.82	16.4	2.58	8.5	8.6	0.88	0.61	15.8	18.2	6	13.3	9.1	4.8	8.4	5.2	8.7	16.6	25.5	11.3	37	14.2	7.4	7.6	6.9	90.5	15.7	8.8	48.8	65		39.6	39.6 34.9	39.6 34.9 30.5	39.6 34.9 30.5 46.1	39.6 34.9 30.5 30.5 30.2
	MBH 66	0.46	-0.19	0.12	0.37	-0.45	0.25	0.13	0.19	0.21	-0.05	-0.5	1.3	0.29	0.21	11	0.32	0.8	-0.8	0.11	0.04	1.7	5.7	0.38	1.37	2.8	0.26	0.7	0.09	0.9	9.0	7	3.4	8.9	2.28	1.38	12	1.43	0.48	3.7	2.4	1.76	11.1		2.71	2.71 5.1	2.71 5.1 6.1	2.71 5.1 6.1 8.5	2.71 5.1 6.1 8.5 5.6
;	MASSI 1	0.04	-0.02	0.11	0.02	0.16	0.21	0	0.02	0.03	0.06	0.76	4.3	0.25	0.15	3.92	0.61	3.4	2.72	0.71	0.33	4.46	2.91	2.03	6.4	4	2.01	2.06	1.96	3.29	3.38	27	11.7	35.3	11.7	2.6	2.2	6.5	52	16	13.1	8.8	65		16	16 30.7	16 30.7 36.1	16 30.7 36.1 41.2	16 30.7 36.1 41.2 38.2
	nZ°	0.8	62.0	161	117	.78	.74		.45	22	.72	230	184	8.3	6.8	311	149	200	100	5.5	13.8	816	732	180	160	565	327	342	345	009	910	190	129	990	6/1	130	81	106	41	218	121	330	020		865	598 330	598 330 130	598 330 130	598 330 130 180
	. WE		J								~																																						
*	9 MBH (0.06	0.87	0.18	0.72	0.34	0.11	0.24	1.4	-0.1	-0.4	4	3.1	0.29	0.36	14.1	2.1	6.3	2	0.92	0.43	6.9	8.9	7.83	13.7	19.5	11.8	9.4	12.2	9.2	4.41	21	6.9	26	7.1	4.4	3.4	3.6	1.40	9.2	4.3	5.8	135		28	28	28 101 87	28 101 87 165	28 101 165 89
1	MBH (-0.15	0.04	0.18	0.06	-0.0	-0.1	0.07	0.08	0.02	-0.07	1.21	0.76	-0.01	0.04	5.5	0.22	0.79	0.58	0.07	0.05	1.41	2.5	1.03	2.44	2.37	1.9	1.23	2.03	0.93	0.88	7.4	1.71	5.6	2.35	1.6	1.6	1.35	4.0	3.29	2.1	2.14	54		6	32.4	9 32.4 26.4	9 32.4 26.4 59	9 32.4 59 35.2
	MBH 66	5.10	3.36	5.30	5.70	4.1	6.2	4.7	8.4	7.3	2	2850	5600	220	220	13100	663	5200	3100	290	123	4300	3300	1670	5100	2240	970	618	730	1210	1000	8600	3060	10700	3950	1760	1590	1810	130	3380	2700	2160	25900		6150	6150 21100	6150 21100 22200	6150 21100 22200 45900	6150 21100 22200 45900 34200
	MASSI	1.04	0.58	0.56	-0.23	1.13	0.25	0.0	0.72	0.68	0.89	330	76	11.5	3.26	235	45.7	480	99	11.8	2.49	1270	1250	1020	3180	2850	1680	1030	1510	1400	780	860	303	1230	360	204	154	155	2	367	218	1080	3800		860	860 1490	860 1490 2300	860 1490 3850 3850	860 1490 3850 1830
	MBH 69	0.03	0.17	-0.05	0.03	0.11	0.15	0.15	-0.02	-0.04	0.11	1.16	2.55	0.28	0.2	4.2	1.46	2.2	2.9	0.57	0.19	35.6	43.2	30.2	46.8	55.4	74.4	50.8	16	142	107	-289	-85	-204	-79	-33.8	-38	-30	-14.9	-70	-35.2	-52	-303		-101	-101	-101 -271 -238	-101 -271 -238 -387	-101 -271 -238 -343 -343
	Ste	213	181	184	188	181	169	159	159	160	160	323	447	172	150	517	304	531	401	164	153	114	217	240	323	308	326	243	349	315	180	145	183	275	156	193	162	145	1/0	208	189	450	4100		667	1110	667 1110 3380	667 1110 1030	667 3380 1030 1590
	41 69 HBM	750	610	590	570	418	480	357	537	610	470	1990	4470	545	617	8300	950	6100	5700	006	854	90200	88000	62300	45800	58100	38400	54400	41800	71300	154000	126000	49000	86000	50600	38400	40900	49500	20500	70100	58500	343000	530000		212000	212000 212000	212000 212000 270000	212000 212000 270000 325000	212000 212000 325000 148000
		851 - 1	851-2	851-3	851-4	851-5	851-6	851-7	851-8	851-9	851 - 10	822 - 1	822 - 2	822 - 3	822 - 4	822 - 5	822 - 6	822-7	822 - 8	822 - 9	822 - 10	8582 - 1	8582 - 2	8582 - 3	8582 - 4	8582 - 5	8582 - 6	8582 - 7	8582 - 8	8582 - 9	8582 - 10	8594 - 1	8594 - 2	8594 - 3	8594 - 4	8594 - 5	8594 - 6	8594 - 7	8- 468	8594 - 9	8594 - 10	173 - 1	173 - 2		c - c/1	173 - 4	173 - 5 173 - 4 173 - 5	1/3 - 5 173 - 5 173 - 5 173 - 6	1/3 - 5 173 - 4 173 - 5 173 - 6 173 - 7

²⁰⁹ Bi	MBH 00	3	0.79	0.24	0.12	0.29	0.19	0.11	0.13	0.15	-0.02	0.15	1.33	0.05	0	0.02	0	0.01	0.43	291	33.5	19.3	24.8	72.5	17.4	19.8	26.7	27.3	63.9	4	40.9	52.2	69.8	75.7	94.4	57.3		59.8	59.8 128	59.8 128 0.17	59.8 128 0.17 0.05	59.8 128 0.17 0.05 0.02	59.8 128 0.17 0.05 0.02 0.01	59.8 128 0.17 0.05 0.02 0.01	59.8 128 0.17 0.05 0.02 0.01 0.53	59.8 128 0.17 0.05 0.01 0.01 0.01 0.01	59.8 128 0.17 0.05 0.01 0.01 0.01 0.00
²⁰⁸ Pb	00 HBH 00	3.66	4.80	15.6	4.08	10.7	4.9	4.9	3.59	6.6	0.4	2.85	0.52	2	1.65	0.65	0.25	1.23	0.48	2310	24200	21200	26900	10200	6190	7000	8400	18000	37000	27800	41100	23200	34700	23100	67200	39800	25400	00000	91000	91000	91000 4.96 1.52	91000 4.96 1.52 0.79	91000 4.96 1.52 0.79 0.28	91000 4.96 1.52 0.79 3.52	91000 4.96 1.52 0.79 3.52 3.52 0.77	91000 4.96 1.52 0.79 0.28 3.52 0.77	91000 4.96 0.79 0.28 3.52 0.44 0.44
202Hg	ICCEM	6.14 5.9	7.6	5.13	6.5	6.5	6.16	8.3	6.3	5.73	4.44	1.83	2.56	2.11	11.1	10.2	5.12	1.57	2.54	5500	4.76	5.33	4.71	2.14	2.28	2.17	2.8	14.5	1.35	0.67	1.23	0.57	1.52	1.24	2.05	1.32	0.86	2.12		154	154	154 72 41.4	154 72 41.4 47.5	154 72 41.4 47.5 175	154 72 41.4 47.5 175 60	154 72 41.4 47.5 175 60 59.1	154 72 41.4 47.5 175 60 59.1 63.7
197 Au	00 LIGIN	0.02	0.05	0.11	0.04	0.11	0.03	0.04	0.01	0.02	-0.01	0	0	0.01	-0.01	0.03	0.01	0.01	0.01	4	21.6	12.85	11.66	16.3	19.5	21.8	21.8	20	58	26	38	16	43.5	32.5	54	27.7	37	61	0.03		0.02	0.02	0.02 0.01 0	0.02 0.01 0.06	0.02 0.01 0.06 0.02	0.02 0.01 0.06 0.02 0.02	0.02 0.01 0.06 0.02 0.02 0.02
¹²⁵ Te	VIBIN 09	0.14	0.79	0.25	0.8	0.87	0.7	0.61	0.23	-0.02	-0.8	0.01	0	0.27	1.2	0.3	1	0.15	-0.08	510	1.36	0.29	0.57	1.47	0.73	0.95	0.59	1.71	0.48	0.11	0.03	0.15	0.27	0.08	0.25	-0.16	-0.03	0.07	0.05	000	0.03	-0.01	-0.01 0.07	0.01 -0.01 0.06	0.03 -0.01 0.06 -0.03	0.03 0.07 0.06 0.03 -0.03	0.03 0.07 0.06 0.05 0.03 0.06
121Sb	0 UBH 09	0.13	1.0	1.4	0.16	0.89	0.1	0.18	0.31	0.15	-0.11	0.09	0.04	0.07	0.1	0.21	-0.19	0.03	0.05	240	280	199	217	161	134	149	232	238	176	105	200	150	232	206	301	171	143	306	0.11	0.04	5.5	0	0.01	0 0.01 0.01	0 0.01 0.01 0.01	0.01 0.01 -0.01 -0.02	0 0.01 -0.01 -0.02 0.07
118Sn	7/ U9W	0.57	0.5	1.06	0.86	1.8	0.42	0.82	0.66	0.56	0.74	0.29	0.13	0.41	1.1	1.88	0.96	0.25	0.11	264	1180	525	551	758	721	844	910	920	71400	38200	128000	66600	78200	81600	107200	71000	55800	242000	3.6	0 97		0.67	0.67	0.67 0.54 1.83	0.67 0.54 1.83 0.47	0.67 0.54 1.83 0.47 0.24	0.67 0.54 1.83 0.47 0.24 0.4
115In	40 LI DA	0.12	0.4	0.32	0.15	0.14	0.57	0.31	0.05	0.01	-0.01	0	0.01	0.02	0.02	0	-0.01	0	0	5	22.8	12.6	11.4	18.2	15.6	19.5	18.3	21.9	298	137.5	442	214	286	293	442	246	193.4	790	0.02	0.01	10.0	0.01	0.01	0.01 0.01	0.01 0.01 0	10:0 0.01 0 0	0.01 0 0 0 0 0 0
III Cd	40 HBM	0.73	0.52	0.83	0.56	1.9	0.64	1.06	0.66	0.74	0.06	0.58	0.02	0.19	0.21	0.02	0.06	0.19	0.11	170	0.78	2.27	2.14	1.49	0.61	0.94	1.05	2.05	7.65	0.87	10.6	0.84	1.85	4.31	10	2.64	5	28.5	0.34	0.25		0.21	0.21 0.27	0.21 0.27 0.19	0.21 0.27 0.19 0.13	0.21 0.27 0.19 0.13 0.17	0.21 0.27 0.19 0.13 0.17 0.17
107 Ag	40 LIGIN	6.8	6.8	10.6	8.3	6.6	8.7	9.6	5.85	6.27	11.42	18.5	184	216	143	229	200	219	329	2950	560	499	530	608	675	622	678	860	1090	294	610	405	743	580	1400	710	430	1080	101	138		128	128 159	128 159 89.3	128 159 89.3 125	128 159 89.3 125 131	128 159 89.3 125 131 160
oW ₅₆	ICCEM	3.12	2.75	5.2	2.58	1.99	1.89	2.73	2.90	3.58	0.68	0.57	0.32	0.11	-0.08	-0.03	-0.21	0.69	0.26	190	0.70	0.67	0.64	0.21	0.39	-0.21	0.22	0.76	0.88	0.97	0.98	69.0	0.74	0.91	0.85	0.9	0.98	1.41	0.31	0.23		0.19	0.19 0.08	0.19 0.08 0.17	0.19 0.08 0.17 0	0.19 0.08 0.17 0.19	0.19 0.08 0.17 0 0.19 0.19
75As	60 LIGIN	52.7	45.6	39.5	42.7	29.4	42.7	39.1	71.2	90.6	-0.14	11.7	4.62	3.55	0.85	0.86	0.37	5.11	2.14	3440	853	536	671	348	248	266	436	740	477	320	470	355	572	532	1050	629	465	1020	31.4	12.6		L	5.9	5.9 6.8	7 5.9 6.8 7.1	7 5.9 6.8 7.1 4.75	7 5.9 6.8 7.1 4.75 3.63
⁷² Ge	00 LISIN	0.67	1.11	2.3	1.6	0.61	1.07	1.25	1.33	0.83	0.8	0.39	0.35	0.01	2.3	0	1	0.16	-0.01	310	1.94	1.38	1.62	-0.18	0.42	1.39	0.68	1.6	5.9	3.99	3.15	4.83	7	5.4	6.8	4.3	3.68	9.5	0.02	-0.06		+0.0-	0.03	0.03	-0.34 0.03 0.41	-0.34 0.03 0.41 0	0.03 0.03 0.41 0 0
71Ga	ICCEM	1.41	2.15	1.45	3.13	1.76	2.5	1.43	1.58	1.48	-0.62	0.17	0.18	0.12	5.44	0.1	-0.16	0.15	0.03	410	4.74	3.54	3.31	1.58	1.17	1.24	1.76	6.9	6.19	3.5	4.46	3.74	5.81	6.51	14	4.69	3.22	7.54	0.93	0.37		7.0	0.52	0.52	0.22 0.52 0.32	0.52 0.52 0.32 -0.04	0.2 0.52 0.23 0.32 0.16
uZ ⁵⁶ Zn	KO LIGW	24	20	129	28.1	100	63	18	16	20.8	3.4	14.7	7.14	12.8	105	9.2	2.7	7.9	4.6	1900	256000	594000	543000	322000	139000	286600	179900	524000	32600	23350	44200	19400	35320	30500	36800	25620	27720	57700	45.0	21.6		10	6.8	6.8 6.8 26.2	18 6.8 9.2	18 6.8 9.2 8.2	18 6.8 9.2 8.2 6
Nobility in the second	60 LIGIM	1.43	2.8	3.57	6.9	4	3.16	1.47	2.2	1.35	5.8	0.23	0.63	0.65	15.5	-0.5	-5.2	0.34	-0.62	9300	214	320	307	156	65.2	135	88	277	71.7	115	213	70.5	117	70.3	88	70.8	101	126	1.16	0.47	1.05	1.00	0.1	0 1.42	0.0 1.42 -0.3	1.00 0 -0.3 -0.3	0.1.00 0.1.42 -0.3 0.11
59Co	WIBH 0A	69.0	1.1	2.5	2.32	5	1.4	1.9	0.66	0.73	-0.08	0.05	0.38	0.07	5.83	-0.13	0.21	0.06	0.11	1340	13.2	27.7	24.6	14.3	5.32	12.2	6	21	21.3	13.3	14.6	12.8	1.9.1	29.2	30	21	19	63.1	0.7	0.11	0.16	01.0	0.15	0.15	0.15 0.07 0.07	0.15 0.07 0.07 -0.02	0.15 0.07 0.07 0.02 0.02
^{sé} Fe	00 LIGIN	3840	5900	6100	11200	5400	8000	2950	3840	3860	2.1	58	372	41	8190	4.5	2	11.7	90	366000	31800	22300	30200	6060	1720	2080	4080	28700	6020	3670	7000	5740	7150	7840	26900	10400	6970	30300	1080	600.0	767	707	108	108	202 320 360	202 108 320 330	202 320 360 330 192
uM ²⁵	ICCHM	36.1	91	121	252	270	302	76	58	52	1.9	11.7	12.5	17.2	746	-0.4	-0.8	4.17	2.24	9200	289	130	226	78	28.2	78	58	272	1280	870	2260	1430	2000	1880	4600	2020	1580	3900	31.1	30.0	080	207	3.9	3.9	3.9 16.9 14.9	3.9 16.9 14.9 10.4	3.9 16.9 14.9 9.5
53Cr	KO LIGIN	102	75	81	60.1	23	30.5	23	27	23.7	0.3	0.97	1.17	0.63	4.8	-0.2	-0.4	0.32	0.18	440	1.94	1.14	2.4	0.87	0.33	0.63	0.23	3.04	2.02	2.07	1.97	1.71	2.37	2.4	7.3	3.3	2.4	3.1	3.43	1.0	1 35		0.95	0.95	0.95 0.89 0.9	0.95 0.89 0.9	0.95 0.89 0.9 1.1
S ⁴⁶	KO LIGIN	188	258	173	227	168	172	250	211	212	135	272	240	246	279	207	139	250	250	309000	245	300	302	182	184	182	177	334	363	267	413	277	308	340	536	378	292	579	181	193	174		173	173 183	173 183 199	173 183 225	173 183 199 187
³¹ P	40 LIGN	6390	7700	6500	6850	5100	5260	7500	5710	5730	17	1370	1980	530	29	15	11	460	149	17300	5120	2350	3140	562	158	96	580	3120	38100	20290	52000	21200	33500	35000	65300	35500	29900	125000	52600	18800	0100	DATC.	5900	5900 8000	5900 8000 8100	5900 8000 5400 5400	5900 8000 8100 5400 5600
	1 000	230-2	230-3	230 - 4	230 - 5	230 - 6	230 - 7	230 - 8	230-9	230 - 10	021 - 1	021-2	021-3	021-4	021-5	021-6	021-7	021 - 8	021-9	021 - 10	19a - 1	19a - 2	19a - 3	19a - 4	19a - 5	19a-6	19a - 7	19a - 8	819-1	819-2	819-3	819 - 4	819 - 5	819-6	819-7	819-8	819-9	819 - 10	859 - 1	859 - 2	859 - 3		859 - 4	859 - 4 859 - 5	859 - 4 859 - 5 859 - 6	859 - 4 859 - 5 859 - 6 859 - 7	859 - 4 859 - 5 859 - 6 859 - 7 859 - 8

312																					
4	34S	⁵³ Cr	55Min	s6Fe	⁵⁹ Co	iN ⁰⁰	uZ ⁹⁹	71Ga	72Ge	75As	oW ₅₆	¹⁰⁷ Ag	III Cd	II5In	118Sn	121Sb	¹²⁵ Te	¹⁹⁷ Au	²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
H 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MASSI	MBH 69	MBH 69	MBH 69	MBH 72	MBH 69	MBH 69	MBH 66	MASSI	MBH 66	MBH 66
000000	5400000	36000	240000	42000000	15000	146000	3600000000	890000	1030000	610000	4300	750000	101000000	1720000	1530000	5600000	3700	90	1310000	72000000	17400
00000	2400000	98000	340000	18000000	100000	16000	3100000000	200000	82000	340000	8200	830000	4300000	720000	1180000	290000	3000	20	3500000	54000000	13500
00000	680000	-800	28000	2240000	200	6800	000000069	38000	3700	26000	1800	106000	13900000	102000	172000	58000	660	12	670000	147000000	3000
000000	4100000	00066	1060000	42000000	12000	87000	2600000000	330000	94000	330000	600	730000	4700000	730000	700000	280000	1300	-67	1390000	59000000	14200
000000	5660000	101000	850000	3000000	4100	167000	2290000000	479000	171000	299000	9200	1120000	2860000	726000	1010000	602000	2300	90	1190000	80000000	22300
000000	6140000	108000	560000	4000000	11600	122000	2260000000	343000	146000	306000	3300	1150000	5990000	804000	1120000	741000	1000	57	1870000	86900000	18900
000000	6220000	45000	83000	4360000	3300	170000	2170000000	479000	200000	637000	5100	1110000	5580000	796000	814000	000668	3100	78	2640000	55700000	25900
000000	2500000	0000006	520000	10300000	-19000	140000	240000000000	770000	510000	820000	300000	2200000	38000000	3700000	5200000	500000	55000	-300	1800000	440000000	93000
400000	10700000	53000	50000	6220000	6700	118000	44400000000	547000	338000	00069	-600	1150000	59400000	827000	800000	1150000	1400	06	2850000	129000000	29000
0000001	5800000	58000	124000	790000	4500	233000	2260000000	386000	157000	360000	2600	890000	17300000	610000	753000	600000	5400	56	1830000	49000000	19400
14800	141	73	16	690	155	7300	230	1 07	0.35	4130	0.36	12700	0.18	70	130	19500	3 40	010	1 36	18500	351
00001	120	17	14.0	007	197	00001	001	10.1	04.0	OFIC	100	00/71	01.0	51 7	001	15400	23.0	000	1.2	00001	100
00071	961	1.0	14.0	000	151	0++0	190	10.0	0.40	0407	17.0	0006	11.0	1.10	190	00401	CC.7	006	1.0	00071	077
4720	159	9	5.2	240	59	2700	67	0.47	0.52	1400	0.14	5400	0.06	40.9	62	8800	1.09	312	0.61	8500	162
2910	155	4	8.7	360	80	2000	203	0.35	0.2	665	0.06	4120	0.08	112	4440	4190	0.88	217	0.46	5400	70.00
7300	141	6	12.4	492	91	2940	118	0.68	0.52	1930	0.25	6040	0.19	68	880	11200	2.01	641	0.96	10900	202
3150	174	2	4.2	320	84	1560	194	0.19	0.2	730	0.12	3670	0.06	69	1220	4800	1.06	219	0.54	5020	65.8
2340	121	19	7	212	28	1180	13.4	0.67	0.4	525	0.13	2890	0.24	16.7	116	3500	0.47	145	0.52	3150	49.3
15600	178	10	76.0	970	127	3410	400	0.76	0.21	2120	0.18	0069	0.2	105	360	11500	1.64	458	0.64	12800	177
8100	170	7	7.8	342	88	3700	102	0.44	0.3	2380	0.11	9100	0.08	77	360	12400	1.79	548	0.68	22400	293
2850	180	5	3.06	98	46	1680	51	0.17	0.52	929	0.16	5600	0.04	35.4	630	5170	0.6	239	-0.07	5600	174
6000000	51000000	860000	7800000	57000000	200000	320000	910000	145000	40000	152000	100000	3600	60000	-20	9200	28000	-34000	900	84000	132000	140
0000006	70000000	1600000	2630000	47000000	75000	150000	180000	152000	38000	240000	-13000	-3800	19000	1600	21000	23300	23000	-220	86000	280000	1230
9300000	26300000	2100000	5700000 1	39000000	243000	660000	640000	420000	80000	183000	7300	4200	5700	1760	54000	2000	0	260	29000	259000	1160
3200000	14100000	1880000	3400000	85000000	130000	420000	270000	192000	56000	43000	1100	1300	3700	1150	32000	10500	-3500	70	0006	72000	6-
400000	26000000	11300000	2210000 1	32000000	160000	540000	450000	330000	71000	92000	4100	1800	-3800	1670	51000	26100	12000	80	17400	159000	370
340000	68000000	-7400000 1	0200000	76000000	83000	295000	310000	243000	160000	137000	2900	1400	80000	1050	44000	95000	25000	60	42000	201000	750
100000	18000000	-1790000	2900000	87000000	119000	360000	239000	221000	51000	84000	5500	18000	400	1320	29000	18400	3700	90	11600	122000	550
8900000	16900000	-1530000	2070000 1	48000000	153000	621000	350000	337000	94000	71000	1800	1950	5400	1400	51500	7600	80000	-85	10100	72000	290
0000000	92000000	-2100000 1	4400000 2	380000000	290000	610000	1580000	400000	700000	330000	40000	11800	11000	300	73000	80000	700000	-500	118000	265000	1300
6000000	58000000	-200000	1250000	70000000	29000	63000	1490000	194000	40000	350000	28000	10300	11000	300	19000	46000	34000	440	00009	177000	06-
50	158	4.6	1.1	-6.6	0.44	-1.9	-0.76	-0.32	-1	-0.2	0.37	24.9	0.17	0.01	0.01	-0.12	-0.05	0.03	29.4	0.03	-0.01
41	131	5.4	0	10.6	-0.07	1.3	0.5	0.1	2.3	0.23	0.40	25.1	-0.01	0.01	0.06	-0.13	0.03	0	37.1	0.05	-0.01
0	153	-1.8	-0.6	1.5	0.01	-0.4	-0.29	0.19	2	-0.38	-0.07	10.5	0.15	0.01	0.03	-0.09	0.01	-0.01	56.3	0.11	0.02
52	154	4.3	-1.2	15.2	0.19	-0.4	5.2	0.14	-1.15	1.48	-0.03	15.5	0.14	0.02	60.0	0.12	-0.02	0.01	38.9	0.39	0.04
176	286	10.8	141.0	4660	1.61	5.2	п	2.21	1.35	3.28	0.11	9.48	-0.17	0.03	0.23	0.11	0.06	-0.01	16.8	1.26	0
39	175	1.3	14.1	390	-0.08	1.8	1.29	0.58	2.2	0.45	-0.59	18.4	0.06	0.02	0.01	0.24	-0.05	0	25.1	0.15	0
13	195	5.9	5.4	234	-0.69	1.3	0.5	-0.13	0	1.27	-0.5	17.2	-0.44	0	0	0.2	-0.1	-0.01	26.9	0.13	0.01
34	118	1.1	14.9	410	-0.28	1.9	2.6	0.62	-1.5	0.58	-0.35	13.5	0.07	0.01	0.05	0.06	0.14	-0.01	25.2	0.16	0
S	149	1	0.5	T.T	-0.14	-1.9	0.59	0.46	-0.86	0.7	-0.16	18.6	-0.01	-0.01	-0.05	0.05	-0.01	-0.01	48.3	0.04	0
16	267	2.3	3.1	355	-0.04	-0.8	6.3	0.37	-1.5	0.69	0.42	13.7	0.38	-0.01	0.79	0.3	-0.02	0	198	1.45	0.04
25900	176	31	32.0	1000	0.22	1.34	187	0.92	0	7.8	0.14	58.9	0.22	0	0.18	0.19	0	0.01	404	3.03	0.02
14700	213	20	23.0	380	0.08	0.65	126	0.42	0.12	5.3	0.13	65	0.18	0	0.1	3.4	0	0.01	232	1.62	0.01
18300	250	61	18.8	291	0.05	0.92	119	0.51	0.16	5.8	0.08	119	0.24	0	0.06	0.07	0	60.0	324	2.8	0.01
28100	229	-429	85.0	3800	1.05	3.61	223	0.87	0.5	14.7	0.67	1210	0.4	0	0.3	0.14	0.03	1.5	351	L.L	0.03
24400	204	-29	33.0	650	0.1	0.62	140	0.76	0.21	7.9	0.29	350	0.18	0	0.28	0.1	0.01	0	341	2.43	0.01
14500	219	-5.2	6.4	218	-0.05	0.58	90.0	0.34	0.21	4.9	0.11	372	0.14	0	0.12	0.03	0	0	183	1.0	0.01
8500	233	-0.4	7.4	188	0	-0.01	68.6	0.12	0	2.98	0.01	350	0.13	0.01	0.03	0.9	-0.01	0	139	0.74	0.01
6200	238	-6.2	3.3	86	-0.05	-0.12	46.3	0.17	0.22	2.12	0.2	60.6	0.14	0	0.03	0.03	0	0.02	88.7	0.34	0
6440	256	-0.7	6.3	104	0.09	0.44	46	0.07	0.04	2.38	0.06	60.6	0	0.01	0.22	0.03	0	0	151	0.51	0
6310	248	-1.6	S	62	-0.09	0.41	39.9	0.05	-0.29	2.09	0.14	172	0.04	0	0.02	0	0.01	0	94	0.35	0.04

69 H	S*S MBH 69	⁵³ Cr MBH 69	uM ^{cc}	²⁰ Fe MBH 66	⁵⁹ Co MBH 69	wNi MBH 69	wZn MBH 69	MASSI	MBH 66	ABH 69	⁹⁵ Mo MASSI	MBH 69	MBH 69	MBH 69	¹¹⁸ Sn MBH 72	¹²¹ Sb MBH 69	¹²⁵ Te MBH 69	¹⁹⁷ Au MBH 66	²⁰² Hg MASSI	²⁰⁸ Pb MBH 66	²⁰⁹ Bi MBH 66
	166	3.36	430	2360	76.0	10	403	2.72	0.44	16.8	96.0	202	0.81	0.42	1.1	0.5	0.07	0.15	905	7.4	0.19
	194	0.99	168	1000	0.27	1.35	196	0.93	0.22	7.46	0.15	187	0.42	0	0.4	0.09	0.04	0.04	489	2.92	0.09
	167	1.03	214	1110	0.37	7	247	1.44	0.21	7.01	0.2	202	0.54	0.11	0.36	0.31	0.04	10.0	546	41	0.34
	175	0.0	126	363	0.2	0.93	158	0.69	0.23	13	0.22	379	0.38	0.03	0.2	60.0	0.01	10.0	402	2.5	0.07
	164	0.37	101	272	0.23	0.79	134	0.58	0.3	5.68	0.61	177	0.31	0.01	0.08	0.1	0.02	0.01	326	1.99	0.07
	161	0.26	76	219	0.09	0.94	100	0.49	0.33	5.26	0.05	239	0.24	0.01	0.1	0.05	0.01	0	304	1.43	0.08
	156	0.12	46	112	0.03	0.98	45.9	0.33	0.28	2.66	0.01	254	0.16	0	0.07	0.06	0	0	141	0.53	0.03
	148	0.08	53	122	0.02	0.8	56	0.32	-0.04	3.29	0.07	281	0.17	0	0.06	0.09	0	0	209	0.94	0.07
	138	0.06	30	45	-0.01	0.68	28.4	0.21	0.15	2.45	0.04	95.8	0.05	0	0.05	0.07	0	0	125	0.33	0.03
	260	1.44	4210	1960	1.96	16.1	273	L.L	1.72	16.8	0.5	205	1.3	0.17	5.9	0.29	0.01	0.03	1.19	6.9	0.18
	256	1.07	1820	840	0.82	11.4	197	3.59	1.47	10.3	0.37	162	1.63	0.02	3.0	0.17	0	0.04	0.45	3.83	0.11
	222	0.87	3250	1040	0.93	12.0	267	3.56	0.94	6.6	0.22	188	0.82	0.03	1.97	0.18	0 0	0.03	0.5	4.7	0.14
	283	1.24	1240	080	0.35	8.2	167	2.8	0.31	13.0	0.04	490	11	0.03	1.10	0.12	• •	0.04	0.88	3.06	0.17
	245	1.03	1110	83U 640	70.0	1.0	213	1 07	16.0	7.11	17.0	180	1.10	20.0	0.88	21 O	0	20.0	0.72	1.89	1.0
	007	5.1	1110	000	0.00	1.0	160	121	0.00 0 5 0	1 42	60.0	310	1.12	70.0	0.98	01.0	10.0	70.0	0.40	1.04	0.10
	100	17.1	0101	440	0.61	6.4	100	1 73	00.0	6.06	0.53	5 96	1 57	100	0.56	110	50.0-	20.0	0.47	1.04	1.0
	312	2.6	1010	1290	0.79	9	265	2.99	0.81	22.0	0.48	250	1.94	0.06	3.5	0.11	0.04	0.1	1.9	3.4	0.19
	380	2.7	830	940	0.77	7.3	228	6.37	1.07	13.9	0.02	152	2.47	0.01	0.48	0.27	0	0.04	0.35	1.74	0.11
	175	0.79	350	1690	0.56	2.2	350	2.91	0.48	14.1	0.44	55.4	1.13	0.05	3.8	0.33	0.09	0.12	444	3.7	0.23
	225	0.57	212	1100	0.37	1.3	254	2.17	6.0	6	0.17	80	1.27	0.05	10	0.31	0.03	0	287	3.3	0.2
	185	0.88	390	1490	0.84	2.2	380	2.7	0.6	11.6	1.7	74.2	1.7	0.39	0.91	0.51	0.09	0.17	247	6.3	0.27
	196	0.24	107	268	0.22	2.3	182	1.6	0.95	12.7	0.85	73.3	0.37	0.84	0.7	0.59	0.25	0.01	323	4.1	0.18
	239	0.53	82	357	0.25	2.8	210	1.91	11	15	0.8	103	1.1	0.31	1.6	3.6	0.12	0.06	840	5.5	0.2
	242	0.83	596	1140	0.4	0.55	358	1.91	0.1	13.7	0.23	47.6	2.22	0.01	0.14	0.12	0.38	0.01	297	2.11	0.19
	214	0.46	356	440	0.38	2.0	284	1.6	0.16	10.1	67.0	46.7	0.74	5.0	0.16	1.0	0.02	10.0	292	1.1	60.0
	207	2.1	250	860	0.2	1.09	420	2.58	0.59	13.8	0.36	148	0.84	0.27	0.39	0.31	0.09	0.03	203	3.8	0.17
	162	0.2	65	134	0.02	0.62	136	0.65	0.3	4.8	0.3	118	0.54	0.01	0.03	0.05	0.06	0	16	0.54	0.04
	244000	-4900	430000	372000000	620	2000	341000	800	3400	1700	-10	106	100	158	40000	130	41	15	1490	115000	39
	289000	-1000	840000	41000000	1150	-210	510000	80	3590	860	200	206	-30	107	16400	220	99	28	1320	13700	48
	115000	-5800	450000	16400000	282	1530	205000	447	1360	089	20	118	× ;	56	11000	66	32	6.7	630	41400	44.9
	000/17	-3300	1440000	44000000	850	0096	352000	066	3070	0111	07-	200	01-	115	19600	107	10	2	1750	00461	200
	245000	0069-	660000	41400000	860	1400	341000	410	3300	970	-50	178	50	65	15000	199	-94	38	1640	16400	8
	336000	3200	910000	53000000	890	400	50000	210	4000	1350	70	271	-70	09	16600	151	50	18	1750	15600	Ш
	185000	-2400	530000	312000000	550	660	260000	240	2040	1030	-80	115	38	147	30300	156	-62	52	850	19200	58
	268000	-1700	570000	45000000	460	096	390000	290	3000	800	250	181	-72	133	23000	190	-50	36	1310	20200	56
	410000	5400	670000	67000000	760	500	450000	420	3400	100	-160	200	06	86	26000	108	-150	27	1010	37300	74
	100	1.02-	501	3240	0.0	5C.2	0 8	1.83	0.14	5/-1	10.11	607	67.0	70.0	6/.1	20.0	0.10	70.0	0.00	10.4	50.0
	162	07-	1/1	1090	0.0	2.06	76	1 25	11.0	15.2	0.00	2.2	0.11	c0.0	3.6	10.0	000		0.05	3.0	11.0
	246	-35	88	3200	0.36	1.88	22	1.03	0.03	1.42	0.2	2.65	0.17	0.04	3.2	0.08	-0.22	0.01	0.35	4.9	0.15
	305	-55	105	1510	0.42	1.3	80	1.24	0.22	2.0	0.3	2.11	0.33	0.01	0.49	-0.01	-0.18	0	0.62	5.53	0.05
	263	-20.1	80	1060	0.24	1.26	39.7	1.7	0.28	1.29	0.1	3.24	0.18	0.02	0.79	-0.01	0.06	0.01	0.52	3.13	0.11
	227	43	134	2030	0.42	2.17	71.7	1.86	0.23	1.32	0.28	1.97	0.3	0.01	0.84	0.03	0.26	0	0.35	4.54	0.03
	252	-59	86	1910	0.28	1.45	43.4	0.98	-0.31	1.25	0.26	2.27	0.25	0.02	0.66	0.02	-0.21	0	0.52	3.38	0.03
	237	-31	72	1010	0.22	0.44	26.4	0.75	0.05	0.8	0.07	2.96	0.23	0	0.47	0.03	-0.04	0	0.33	2.02	0.04
	284	-95	106	2430	0.22	1.68	75	1.28	0.32	1.44	0.14	4.07	0.26	0.01	1.8	0.04	0.05	0	0.51	3.2	0.05

	209Bi	MBH 00	0.9	0.47	0.34	0.63	0.15	0.28	0.24	0.14	0.02	0.02	0.01	0.02	0.01	10.0		0.01	0.01	0.06	0.04	0.01	0.01	0.01	0.05	0.03	0.01	0.02	0.02	0.22	10.0	0.02	0.03	0.03	0	50'O		0.53	0.08	0.03	0.1	0.02	0.12	0.03	0.03	0.03
	²⁰⁸ Pb	1 07	2.5	1.03	2.22	1.55	0.38	0.86	1.39	0.26	0.63	1.11	0.35	0.19	0.06	10.0	90.06	0.13	0.26	144	100	150	136	135	78	74.5	50.5	93.6	55.6	15	0.74	1.6	0.46	0.53	1.3	0.36	11.0	1	1.84	0.79	0.55	0.67	38	1.5	0.51	0 67
	202Hg	136	1.32	0.87	2.5	1.34	0.66	0.99	0.93	0.33	1.79	0.54	0.44	0.56	0.56	0.33	0.24	0.34	0.4	4.9	7.96	6.81	5.64	6.77	8.34	13.6	6.55	5.25	6.03	1.59	CK.0	1.27	0.55	0.61	1.5	6/.0	0.67	6.5	1.63	0.89	0.75	0.9	7.65	3.44	9	1 25
	¹⁹⁷ Au	00 LIGH	0.0	0.01	0	0.21	0.0	0 0	0	0	0	0	0	0	0 0	0 0		0	0.01	0.01	0	0	0.01	0.01	0.01	0.02	0.01	0.01	0	0.04	cn:n	0.01	0.06	0	0	0 0	0.01	0.03	0.09	0	0.01	0.01	0.02	0	-0.01	
	¹²⁵ Te	0 1/0 0 1/0	0.12	0.09	-0.02	0.14	10.07	0.14	0.1	-0.03	0.08	0.01	60.0	0.16	-0.01	60.0	0.04	0.05	0.08	0.08	0.05	0.08	0.08	0.01	0.01	0.01	0.01	-0.01	0	0.2	110	0.08	0.1	0.03	0.05	0.04	20.0	0.29	0.1	0.07	0.09	0.1	0.17	0.1	0.24	000
	121Sb	MBH 09	0.1	0.04	0.07	0.09	0.03	0.05	0.07	0.00	0.04	0.07	0.01	0.03	0.05	20.0	0.01	0.07	0.04	0.83	1.17	1.06	0.73	0.92	0.9	1.04	0.49	0.68	0.65	0.59	016	0.42	0.8	0.12	0.07	0.05	0.06	1.31	0.19	0.14	0.08	0.06	0.26	0.23	0.14	
	118Sn	7/ HBM	0.98	0.45	0.48	0.8	0.10	0.23	0.81	0.2	0.27	0.3	1.56	0.26	0.06	10.0	1.0	0.32	0.16	2.6	5	1.16	0.79	0.88	0.66	0.79	0.42	1.12	0.46	1.8	10.0	0.44	1.09	0.12	0.12	61.0	0.06	1.45	2.2	1.53	0.38	0.28	0.75	0.24	0.32	
	пзп 1.001	0 11 0	0.02	0.01	0.24	0.07	70.0	0.01	0.01	0	0.01	0	0	0	0 0	•		0.01	0	0.01	0.01	0.22	0	0	0.01	0	0	0	0	0.06	10.0	0.01	0.01	0	90.0	10.0	10.0	0.4	0.12	0	0	0.01	0.04	0.01	0.04	
	III Cd	0 10 V0	0.29	0.18	0.11	0.33	1.6	0.2	0.41	0.09	0.02	0.01	0.06	0.11	0.06	10.0	0.03	0.06	0.15	0.56	0.22	0.37	0.29	0.39	0.47	0.4	0.28	0.29	0.28	0.35	0.14	0.2	0.14	0.15	0.18	0.15	110	0.83	0.72	0.32	0.23	0.24	0.54	0.4	0.51	
	107 Ag	KO LIGIN	257	221	810	612	205	491	263	930	76	48.1	93.3	36.5	88.3	40.8	1.00	42.6	42.6	4.05	10.9	5.8	7.64	7.86	18.1	п	10.5	2.77	45	140	2.00	19	115	111	40	4/.9	8	130	171	163	152	250	182	118	126	The second se
	oW ⁵⁶	ICCEM 0.2	03	0.21	0.47	0.26	90.0	0.2	0.26	0.05	0.89	1.5	0.48	2.8	0.4	c6.0	1.27	6.37	17	52.9	28.1	46.4	34	44.9	35.7	36.4	15.1	45.4	24	0.32	21.0	0.1	0.12	0.12	0.27	81.0	21.0	0.7	0.22	0.15	0.03	-0.03	-0.12	0.27	-0.29	
	75As	KO LIGIN	13.1	8.21	7.46	10.7	4.83	1.7	10.5	3.08	1.56	1.60	0.41	1.03	0.11	15.0	69 0	4.54	11.5	145	93	154	143	174	93	130	98	281	83.6	20.2	5 11	11.8	8.1	5.3	4.08	6.24	276	10.9	7.4	4.36	4.09	2.73	9.4	10.4	6	
	⁷² Ge	00 HBH 00	0.27	0.22	0.45	0.87	0.01	0.16	0.92	-0.09	0.54	0.40	0.22	0.54	0.55	0.32	0.20	0.53	06.0	0.40	0.60	0.41	0.67	0.61	0.72	0.66	0.15	0.45	0.54	0.28	60.0	0.29	0.16	0.02	0.49	0.32	1010	0.38	0.4	0.27	0.26	0.4	0.6	0.83	1.1	
	⁷¹ Ga	2 19	2.38	2.01	1.62	3.04	0.68	1.36	2.50	0.65	1.23	1.42	0.30	0.50	0.16	60.0	0.16	0.86	1.75	1.28	1.17	1.23	1.04	1.22	1.57	1.08	0.47	0.85	0.74	2.41	27.1	1.77	1.08	0.74	0.56	66.0	010	2.15	2.25	1.1	1.02	0.71	1.78	1.1	0.77	
	uZ ⁵⁰	40 LIDIN	121	74.7	67.3	85	90 3	61	108	29.5	14.1	18.8	4.5	9	2.1	4.34	3.4	9.1	11.8	33.6	34.7	84.9	7.66	61.9	23.3	16.7	16.3	28	17.6	5	46	42.4	27.1	25	14	9 5	12	246	164	118	113	78.6	260	128	253	
	iN ⁰⁰	2 00 C	1.32	0.91	0.92	1.39	40	0.31	0.79	-0.04	1.91	2.8	0.62	1.38	-0.3	77.0	6.0	2.44	3.91	3.5	3.88	1.82	1	0.8	2.06	2	0.93	1.85	0.7	1.53	7 0 40	0.89	0.32	0.46	0.56	0.47	20.0	3	1.22	1.23	0.82	0.87	4	1	ŝ	
	⁵⁹ Co	40 LIGIN	0.58	0.1	0.14	1.7	71.0	0.1	0.31	0.1	1.73	2.8	0.16	16.0	0.18	11.0	0.24	1.6	2.34	0.28	0.35	0.21	0.2	0.24	0.28	0.2	0.09	0.14	0.24	0.32	10	0.48	0.08	0.15	0.1	-0.04	0.03	0.8	0.77	0.14	0.15	0.13	0.14	0.04	6.0	
	⁵⁶ Fe	00 HBM	1090	840	830	1130	000	680	1480	160	1620	3840	260	970	180	000	380	2560	5060	1150	1270	910	1200	930	1010	474	588	1100	480	1670	800	1370	630	245	140	117	46	402	359	213	175	183	390	123	16	
	Min ⁵⁵ Min	TOCHW 100	56	17.4	23.9	41	107	28	100	7.3	31.9	42.2	3.3	12.7	2.7	P.0.	8.8	34.1	54.6	20	27.7	7.8	10.2	7	12.62	10.7	4.7	7.9	4.11	57.1	2.00	37.7	22.5	11.4	11.4	1.61	1.5	62	69	54	32	23	275	247	630	
	³³ Cr	MB/1 09	10.4	6.87	7.1	6.8	1.0	2.93	5.33	1.43	2.62	1.91	0.66	0.55	0.23	77.0	0.38	76.0	0.92	4.55	3.95	5.3	4.94	5.15	5.11	4.41	3.33	5.8	2.93	2.81	1 10	2.19	1.28	0.92	0.68	0.04	0.63	3.41	2.34	1.68	1.42	1.88	3.40	3.22	5	
	S ⁴⁵	101	212	247	285	295	195	269	297	177	155	209	202	287	240	512	304	306	371	440	467	423	428	430	402	338	345	360	315	124	158	134	131	185	198	190	201	101	109	117	116	111	950	773	2350	
- continued	JIP 40	40 LIGH	48600	29700	25800	32000	14400	25000	30300	6600	680	461	154	139	5	011	164	261	428	11870	11800	16300	18200	16900	13200	13900	7500	7390	11400	67900	41100	48400	31800	22500	17300	006/7	7600	104700	71200	49300	40200	31900	98000	47800	44000	
Appendix A		0507 1	8587 - 2	8587 - 3	8587 - 4	8587 - 5	0 - 10C0	8587 - 8	8587-9	8587 - 10	8577 - 1	8577-2	8577 - 3	8577 - 4	8577 - 5	0-1/02	8-11-8	8577 - 9	8577 - 10	099 - 1	099-2	099-3	099 - 4	5-660	9-660	1-660	8 - 660	6 - 660	099 - 10	8568 - 1	2 - 2005	8568 - 4	8568 - 5	8568 - 6	8568 - 7	8 - 8068	8568 - 10	8572 - 1	8572 - 2	8572 - 3	8572 - 4	8572 - 5	8572 - 6	8572 - 7	8572 - 8	0.0000

Appendix A - c	Intinued																				
	S _{FC} d ₁	³³ Cr	⁵⁵ Min	⁵⁶ Fe	³⁹ Co	iN ⁰⁰	uZ ⁹⁹	⁷¹ Ga	⁷² Ge	⁷⁵ As	⁹⁵ Mo	¹⁰⁷ Ag	111 Cd	III ⁵ III	¹¹⁸ Sn	¹²¹ Sb	¹²⁵ Te	¹⁹⁷ Au	²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
001 1 0	HBH 69 H	9 MBH 69	MASSI	A10	0.75	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MASSI	1500	0.04	MBH 69	MBH 72	0.38	MBH 69	0.06	MASSI 4 01	6 70	0 88 00
821-2 6	300 178	30	22	313	0.34	1.4		1.16	-0.65	14.5	0.23	317	5.0	0.04	0.00	0.62	10.0-	0.14	2.53	6.9	0.92
821-3 1	520 136	12.3	1.66	39	0.23	0.33	49	0.17	0.71	1.53	0.27	315	-0.01	0	1.26	0.11	0.2	0.05	1.09	0.84	0.22
821-4 3	300 160	80	9.2	175.00	0.31	1.4	43	0.36	0.98	2.57	0.24	308	0.05	0.02	2.14	0.2	0.04	0.1	1.17	1.47	0.46
821-5 8	183 183	4	1.36	35.8	-0.04	0.2	45	0.16	0.08	1.81	0.07	296	0.06	0.01	2.63	0.11	0.09	0.06	1.47	1.39	0.2
821-6 2	430 205	13	14.7	209	0.03	0.4	49	0.31	0.26	5.4	0.1	414	0.07	0.03	5.66	0.15	0.28	0.21	2.5	2.51	0.37
821-7 14	1400 276	58	114.00	1920	1.95	4	124	3.6	2.1	14.6	0.71	940	0.28	9.0	L.T	4.7	-0.09	0.29	6	9.5	1.15
821-8 7	100 258	26	51	417	0.18	13	125	1.39	0.65	10.2	0.45	758	90.0	0.07	7.3	0.75	0.57	0.32	2.83	8.7	0.8
821-9	182 222	16	29	107	-0.08	-0.1	54.4	0.39	0.56	5.3	0.27	304	0.21	0.02	5.7	0.21	-0.01	0.16	1.35	10.7	0.23
821-10 1	430 218	17	4.1	611	-0.11	• :	4.77	0.3	-0.24	4.8	0.44	440	0.08	0	5.1	0.39	-0.08	0.13	1.78	6.10	1.18
211-1 2	100 281	183	151	5440	4.35	13	107	3.79	1.06	117	22.6	5.6	0.75	0.05	9.5	1.31	0.04	0.03	3.41	289	0.0
211-2 7	350 236	61	39.9	1960	0.88	3.7	36.5	1.65	0.47	5.16	21.6	5.89	0.84	0.03	2.9	0.7	10.0	10.0	2.21	199	60.0
211-3 6	900 247	89	09	2080	1.48	4.7	33.9	1.59	0.33	9.69	19.2	8.6	0.56	0.02	1.72	0.48	10.0-	0	1.96	131	0.06
211-4 6	010 229	32	32	616	0.72	1.7	23.7	0.67	0.25	48.4	13.2	22.2	0.4	0.01	2.1	4.0	-0.04	0.02	1.76	71.8	0.03
211-5 7	180 214	26	38.3	1430	1.12	3.2	23.6	1.12	0.49	43.0	13.8	30.9	0.4	0	0.92	0.35	0.03	0	8.9	57.3	0.02
211-6 9	8/0	15	36.9	1280	0.32	3.4	31.7	6.0	0.52	62.0	20.1	C.01	0.47	0.02	2.0	cc.0	0.04	10.0	CC.2		0.03
8 1 117	280 230	31	7.67	1000	c.0 22	2.69	27.6	cl.1	0.42	50.6	11.3	C.61	0.45	0 100	0.88	0.47	c0.0-	10.0	3.30	1.09	0.04
0 0 110	707 000	5	2.24	040	0 50		0.70	011	71.0	0.70	C.01	1001	PE O	10.0	CO.1	20.0	00.0	10.0	201	1.63	500
C 6-117	047 016	3 5	0.04	040	00.0	7.0	1.77	01.10	0.0	C.04	7.61	16.01	+0.0	70.0	2017	CC.0	500	10.0	1 66	1.00	000
211 - 10 4 962 A 1 0	7/7 000	0	7.4.2	00/	0.02	CC.2	27.5	01.0	01.0	1.40	6.11	7.01	4.0		1.0/	0.00	20.0	10.0	00.1	4.C/	70.0
6 1-VC00	100 200	Ø (1	ci t	017	c0.0	1.94	0.16	61.7	61.0	7.44	7.0	0.45	70'0	70.0	¥.C	60.0	00.0-	10.0	100	20.1	50.0
003A-2 L	2400 201	10	160	107	11.0	C8.U	41.8	1.21	-0.08	1.16	07.0	C.41	7/.0	10.0	5.0	c0.0	10.0	10.0	4.09	000	20.0
1 C - WC00	100 353	71	130	320	11.0	100	1.34	10.0	10.0	1.14	17.0	t :	16.0	10.0	10.0	20.06	100		10.7	0.00	10.0
1 5-VC00	202 0000	2 5	110	340	0.07	1.21	42.0	1 78	0.31	56.6	CT.0	19.7	70.0	70.0	1 22	0.08	10.01		5 86	0.03	0.00
1 9-VE98	700 434	14	100	103	10.0-	00	40.7		1 04	47.4	0.34	43.0	0.61	100	111	0.07	1004		4 83	0.81	0.03
863B - 1 1	590 357	15	200	570	0.17	1	10.6	0.86	0.27	7.4	-0.04	66	0.18	0	0.73	0.03	-0.04	0 0	5.40	0.5	10.0
863B-2 5	800 338	18	III	281	0.01	0.43	15.8	1.15	0.47	32.1	0.3	72	0.32	0	0.71	0.04	0.15	0.00	2.09	0.5	0.01
863B - 3 6	240 530	п	105	68	0.03	0.7	23.9	5.4	0.8	39.8	0.47	31	0.47	0	0.55	0.09	-0.1	-0.01	4.26	0.65	0.01
863B-4 8	400 442	39	26.8	09	-0.01	-0.15	15.9	1.83	0.45	46	0.23	20.6	0.19	0	0.12	0.03	0.11	0	4.41	0.41	0.03
863B-5 3	530 413	22.2	23.7	53	0.07	-0.43	9.1	0.44	0.3	17.7	0.2	92.7	0.28	0.01	1.6	0	-0.02	0	1.8	0.41	0.01
8604 - 1 4	360 330	8.5	23.1	15600	0.87	25.3	8910	10.9	14.4	1070	1.13	009	0.26	325	126000	491	0.16	121	0.33	16900	188
8604-2 2	870 278	15.9	31.4	12780	0.74	24.8	9170	8.45	9.94	785	1.03	069	0.28	242	85700	303	0.17	104	0.45	15480	379
8604-3 2	770 269	17.2	113.5	11700	1.13	25.6	9550	7.21	8.59	674	1.42	1430	0.43	213	70500	256	0.21	99.5	0.39	14860	132
8604 - 4 2	390 195	11.4	23.2	0966	0.8	21.8	9220	7.28	8.88	692	0.99	750	0.34	217	73700	273	0.14	98.2	0.33	12950	145
8604-5 2	940 287	2.01	24	19500	0.85	2.62	11490	60.8	911.9	937	1.05	0811	0.26	253	8/300	344	0.14	110	0.29	15780	145
C 0-+000	707 090	1.01	6000	0000	1 00	1.62	0006	10.0	0.11	1016	07.1	071	60.0	117	00/06	100	CT.0	101	210	14600	122
8604-8 3	320 289	3.8	30.8	15520	0.87	25.7	11090	8.17	11.6	871	0.86	1440	0.21	250	82400	321	0.16	94.9	0.22	15460	141
8604-9 3	080 270	4.8	11.7	13150	0.74	18.4	8000	8.17	10.1	787	0.91	652	0.18	248	80600	314	0.26	96.2	0.36	14660	224
8604 - 10 3	470 246	2.8	25.8	13200	0.88	20.5	7950	9.04	12.4	856	0.9	940	0.23	299	97000	358	0.23	116	0.19	15700	256
8579 - 1 58	0000 5900	1000	37200	341000	48	191	3640	146	26.3	135	9.1	204	5.0	0.62	730	2.8	-1.2	0.8	11.4	228	12.1
8579-2 52	0000 5700	880	37600	313000	35.3	171	4500	135	29.9	101	5.2	215	8.8	1.15	99	L.T	0.4	0.7	26	181	9.8
8579-3 87	0000 11900	1060	50800	318000	63	291	0609	206	38	138	9.5	370	7.9	2.0	380	48.0	-1.5	2.7	36.4	208	8.2
8579-4 67	0000 9400	770	44000	318000	61	317	6100	155	29	107	-1.4	209	9.4	1.02	54	2.6	-0.2	-0.01	25.3	204	8.5
8579-5 83	0066 0000	1030	44000	269000	67	280	5900	232	43	147	6.1	291	8.3	1.36	150	2.5	-5.3	-0.08	37.1	172	5.81
8579 - 6 82	0000 8600	820	52000	340000	39.6	217	6700	158	37	136	7.1	203	9.8	0.94	54	2.4	0.5	-0.03	31.8	204	9.9
8579 - 7 71	0000 12900	1720	32300	460000	131	410	10300	376	40	168	8.7	204	1.61	2.19	126	3.5	6.9	-0.01	41	311	8.4
8579-8 79	000/ 0000	890	34600	133000	73	185	5780	114	28	135	4.5	262	9.3	0.88	58	9.9	1.7	0.14	23.8	198	6.7
8579-9 40 40	0000 11000	020	15700	136000	50	148	4000	78	30	101	2.0	125	6.8	0.84	44	1.9	-0.4	0.22	14.8	677	4.5
CL 01-6/00	0000 T 1000	1/01	nn/ct	NNNOCT	nc	740	0070	ŧ	74	IUI	1.0	Iou	0.0	0.40	C.04	0.0	17	70.0-	1.07	101	1.4

Y X	- continued		1		3				;	1	,	,								1		
Mit Mit <th></th> <th>Ste</th> <th>2Cr</th> <th>uWee</th> <th>^{oo}Fe</th> <th>00₆₆</th> <th>iNue</th> <th>uZoo</th> <th>''Ga</th> <th>"Ge</th> <th>SAC</th> <th>oWcs</th> <th>aP/01</th> <th>POm</th> <th>Щ_{сп}</th> <th>uSsu</th> <th>4S121</th> <th>PTcu .</th> <th>nY/61</th> <th>BH707</th> <th>qdenz</th> <th>iBin</th>		Ste	2Cr	uWee	^{oo} Fe	00 ₆₆	iNue	uZoo	''Ga	"Ge	SAC	oWcs	aP/01	POm	Щ _{сп}	uSsu	4S121	PTcu .	nY/61	BH707	qdenz	iBin
0 1		MBH 69	MBH 69	MASSI	MBH 66	MBH 69	69 HBH 69	001 100	MASSI	MBH 66	MBH 69	MASSI	MBH 69	MBH 69	MBH 69	MBH 72	MBH 69	MBH 69	MBH 66	MASSI	09 HBM	MBH 66
9 1	-	290	52	68	0269	64.0	1.0	129	1.9	0.00	10.0	86.0	484	1.14	0.0	17	1.8	2.4	0.02	3.0	37.2	2.0
0 0		807	5.6	671	0667	0.34	6.0	16	4.23	0.1	1.1	10.0	1/0	C0.0	70.0	4.1	10.0	16.0	10.0	1.1	17	0.18
0 0		100	0.9	191	0047	4C.U	0.0	171	20.0	-0.02	10.2	67.0	107	0.11 2.1	10.0	10.0	14	6T'0	10.0	0.0	1.02	0.40
110 111 100 111 101 111 101 111 <td></td> <td>168</td> <td>14.3</td> <td>121</td> <td>5200</td> <td>0.58</td> <td>5.1</td> <td>114</td> <td>83</td> <td>0.91</td> <td>23</td> <td>0.86</td> <td>430</td> <td>0.15</td> <td>0.02</td> <td>5.8</td> <td>0.54</td> <td>0.7</td> <td>0.02</td> <td>4.1</td> <td>47</td> <td>423</td>		168	14.3	121	5200	0.58	5.1	114	83	0.91	23	0.86	430	0.15	0.02	5.8	0.54	0.7	0.02	4.1	47	423
0 0	0	1142	19.8	113	10280	2.41	7.5	480	27.2	6.3	37	3.8	630	7.2	7.5	83	5.1	2.3	1.4	17	133	8.7
0 113 113 103	0	428	2.45	93.9	1560	1.37	3.28	29.1	3.06	0.9	4.3	0.07	100	0.21	0.04	2.3	0.15	0.16	0.01	0.51	10.4	0.85
13 11 31 700 21 34 11 31 24 24 24 14 11 31 34 14	0	463	0.9	131.9	1050	0.91	1.3	28	1.84	0.57	3.43	0.08	76	0.17	0	1.1	0.58	-0.04	0	0.55	8.1	1.42
13 11 54 540 101 131 141 131	8	612	19.9	123	7800	2.2	5.9	420	12.1	3.1	23	2.2	1040	1.2	6.4	35	2.2	1.2	0.14	8.4	170	3.1
9 11 14 01 125 14 01 125 14 01 125 14 01 0	00	1238	21.1	540	7400	0.91	10.3	134	17.1	-0.8	19	1.21	649	0.55	0.08	1.7	0.69	-0.27	0.02	3.82	60.3	2.13
14 51 61 70 01 14 51 00 13 15 00 01 13 15 00 01<	0	66	11.5	194	1440	0.1	1.26	311	0.97	0.19	8.47	0.11	280	0.58	0.02	1.39	0.18	0.1	0.01	0.42	2.9	0.22
18 4.1 3.3 190 0.13 7.03 1.3 0.03<	0	144	5.8	61	580	0.08	1.18	160	0.39	0.3	5.5	0.23	144	0.3	0	0.69	0.15	0.03	0	0.32	0.59	0.27
0 19 3 1 3 1 0	00	194	4.4	36.3	1400	0.13	0.76	173	0.38	0.25	4.43	0.27	71.2	0.27	0	6.0	0.06	0.15	0.02	0.4	1.01	0.07
0 121 77 160 170 0.14 170 0.14 170 0.14	00	149	3.9	32	152	0.02	0.74	156	0.34	0.11	3.77	0.15	186	0.31	0	0.48	0.05	-0.03	0	0.16	0.68	0.06
0 13 57 113 860 0.03 271 360 0.33 0.34 0.3 0.01 1.3 0.06 0.13 0.03 <th0.03< th=""> <th0.03< th=""> <th0.03< th=""> <</th0.03<></th0.03<></th0.03<>	00	221	L.L	430	1730	0.14	3.06	321	1.61	0.28	10.7	0.28	168	0.58	0.01	1.31	0.19	0.01	0.02	0.55	2.2	0.11
0 1 2 5 5 5 6 1 7 1 0	00	143	6.7	113	860	0.09	2.7	306	0.56	0.44	7.4	-0.01	188	0.33	0.01	1.8	0.08	0.15	0.02	0.56	0.95	0.24
0 10 410 10 410 100 410 100 410 100	000	199	5	95	560	0.1	2.77	180	0.59	0.34	5.01	0.08	193	0.37	0.01	0.72	0.12	0.18	0.06	0.37	1.32	0.11
14 127 781 190 0.64 153 0.35 <th0.35< th=""> 0.35 0.35<!--</td--><td>001</td><td>240</td><td>10</td><td>410</td><td>3510</td><td>0.55</td><td>7.61</td><td>338</td><td>1.28</td><td>0.59</td><td>7.8</td><td>0.26</td><td>398</td><td>0.54</td><td>0.01</td><td>1.25</td><td>0.12</td><td>0.03</td><td>0.01</td><td>0.22</td><td>1.35</td><td>0.06</td></th0.35<>	001	240	10	410	3510	0.55	7.61	338	1.28	0.59	7.8	0.26	398	0.54	0.01	1.25	0.12	0.03	0.01	0.22	1.35	0.06
00 280 727 380 4100 11 11 350 137 410 11 11 350 323 410 13 211 610 32 323 131 131 213	000	344	12.7	781	1930	0.46	15.8	657	2.58	0.81	15.8	0.33	168	1.26	0.01	1.74	0.13	60.0	0.02	0.42	1.18	0.05
00 305 177 400 313 211 201 205 103	800	280	27.9	352	4120	1.2	1.11	362	1.35	0.45	22.1	0.47	210	0.44	0.01	0.65	0.17	-0.1	0.01	0.5	2.22	0.11
00 810 7700 781 313 700 114 408 256 0.08 114 115 0.08 0.03	000	365	17.7	4800	44600	3.13	22.1	651	20.5	3.53	41.2	0.92	367	1.95	0.14	13	1.9	0.16	0.05	1.9	29.9	0.78
00 1210 230 1700 74 443 119 219 230 114 123 234 104 100 433 134 133 334 134 133 334 134 133 334 134 133 334 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 134 133 134 <td>000</td> <td>830</td> <td>24.7</td> <td>5440</td> <td>67700</td> <td>5.81</td> <td>36.3</td> <td>910</td> <td>29.9</td> <td>8.3</td> <td>017</td> <td>1.14</td> <td>408</td> <td>2.56</td> <td>0.08</td> <td>14</td> <td>0.86</td> <td>0.32</td> <td>0.02</td> <td>2.98</td> <td>33.3</td> <td>0.86</td>	000	830	24.7	5440	67700	5.81	36.3	910	29.9	8.3	017	1.14	408	2.56	0.08	14	0.86	0.32	0.02	2.98	33.3	0.86
00 150 250 7700 88 771 100 125 036 035 035 234 123 00 150 150 150 150 150 150 150 150 150 151 150 151 150 151	000	1210	26.9	8300	77000	7.4	40.8	1190	30.1	5.7	50.1	1.6	309	2.99	0.14	18	1.38	0.43	0.00	4.35	30.4	1.23
00 66 1/4 279 3200 4/4 279 320 4/4 279 320 4/4 279 320 4/4 279 320 4/4 279 320 4/3 7/1 320 4/3 7/1 320 4/3 7/1 320 1/4 2/3 1/3	000	1300	23.0	5620	70700	8.8	47.1	1060	29	6.8	35.6	1.66	167	4.4	60'0	11.6	0.86	0.16	0.03	3.52	24.4	1.23
00 55 59 60 700 0.05 67 345 479 137 136 014 20 022 014 20 023 011 010 023 111 010 023 111 010 023 101 101 010 023 111 011	000	686	14.6	4790	38200	4.04	22.9	646	17.4	3.78	32.6	1.12	560	2.2	0.07	7.22	0.56	0.25	0	2.32	19.3	0.64
00 13 11 71 013 13 14 010 013 01 17 010 013 01 </td <td>000</td> <td>565</td> <td>5.59</td> <td>630</td> <td>7800</td> <td>0.75</td> <td>6.7</td> <td>245</td> <td>4.79</td> <td>1.87</td> <td>15.6</td> <td>0.18</td> <td>102</td> <td>2.2</td> <td>0.04</td> <td>2.0</td> <td>0.22</td> <td>0.21</td> <td>0</td> <td>1.47</td> <td>4.71</td> <td>0.67</td>	000	565	5.59	630	7800	0.75	6.7	245	4.79	1.87	15.6	0.18	102	2.2	0.04	2.0	0.22	0.21	0	1.47	4.71	0.67
0 251 134 104 610 137 938 101 517 014 23 017 004 93 137 013 033 031 0101 933 137 011 033 031 0101 933 137 011 033 031 031 931 031 931	00	195	1.01	11	910	0.05	0.57	45.4	0.64	0.34	7.1	0.23	191	0.13	0	0.4	0.08	0.1	0	0.72	1.14	0.08
200 200 200 1500 150 <td>8</td> <td>251</td> <td>1.34</td> <td>104</td> <td>610</td> <td>0.19</td> <td>0.82</td> <td>103</td> <td>0.93</td> <td>1.01</td> <td>12.1</td> <td>0.31</td> <td>220</td> <td>0.2</td> <td>0.06</td> <td>1.5</td> <td>2.3</td> <td>0.17</td> <td>0.04</td> <td>0.95</td> <td>1.6</td> <td>0.12</td>	8	251	1.34	104	610	0.19	0.82	103	0.93	1.01	12.1	0.31	220	0.2	0.06	1.5	2.3	0.17	0.04	0.95	1.6	0.12
00 -000 460 1000 460 1000 500 100 100 100 100 100 100 100 100 100 100 100 100 200 2000	000	2620	39.8	13700	155000	13.7	94.3	2540	2 8	18.8	76	1.87	240	1.1	0.26	36.4	1.39	0.51	10.0	6	23	2.7
$ \begin{array}{{ccccccccccccccccccccccccccccccccccc$	000	4010	48.4	20900	174000	18.5	105	3030	82	16.1	83.1	3.4	165	9.9	0.38	62.5	1.67	0.7	0.06	10.4	65	2.51
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000	-30000	24000	7000	230000	240	2/00	4/000 59000	200	70000	34000	-1000	2300	001-	2400	00025	2500	1000	0/11	000	148000	510
		000-	0001	840	28000	0007-	007-	30300	110	2000	1000	-50	00000	41	58	0007/	256	140	54	140	0001051	208
0 211 103 333 2890 0.44 1.50 4890 19 0.8 2160 0.39 59.6 47.0 255 6.80 74.20 0.28 4940 833 00 231 101 2490 0.44 1.50 0.39 2330 0.13 2970 0.75 6.80 74.20 0.28 4940 831 00 318 0.53 50 0.39 236 0.13 2970 0.75 173 190 137 960 393 144 0.35 144 144 133 144 144 144 133 114 144 044 147 146 143 133 114 144 044 147 146 143 143 133 114 144 144 133 114 144 044 6470 235 040 83 2400 147 140 144 144 144 143 133 114 </td <td>000</td> <td>000009</td> <td>12000</td> <td>50000</td> <td>265000</td> <td>4400</td> <td>-10000</td> <td>15000</td> <td>-2200</td> <td>-12000</td> <td>19000</td> <td>-20000</td> <td>0009</td> <td>300</td> <td>300</td> <td>39000</td> <td>1100</td> <td>-6300</td> <td>710</td> <td>3500</td> <td>57000</td> <td>930</td>	000	000009	12000	50000	265000	4400	-10000	15000	-2200	-12000	19000	-20000	0009	300	300	39000	1100	-6300	710	3500	57000	930
0 241 0.15 10.1 249 0.43 277 400 2.99 0.31 197 56 0.36 197 56 0.36 1097 56 0.36 1097 56 0.36 1097 56 0.36 1097 56 0.37 300 440 36 173 50 373 123 114 1030 343 133 037 037 300 450 146 119 4700 247 610 314 133 114 0100 347 133 134 037 300 450 146 113 314 133 114 610 375 135 037 037 037 134 133 134 133 134 133 134 640 135 134 640 135 137 144 640 135 137 134 641 643 653 133 027 133 027 133 133	60	231	1.03	33.3	2890	0.44	1.50	4690	1.9	0.8	2180	0.57	1650	0.39	59.6	4740	255	6.80	74.20	0.28	4940	88.3
00 192 092 51 4210 0.48 59 0.77 240 0.13 2970 0.75 90 710 379 122 114 135 090 450 00 386 0.77 550 10710 0.77 123 113 114 135 040 341 133 114 640 139 057 057 050 450 070 155 173 116 8510 341 133 134 640 139 057 057 159 050 450 070 053 173 116 8510 427 73 137 134 647 070 237 039 137 049 700 139 027 037 039 053 143 173 116 8510 427 73 027 021 027 021 027 021 027 021 027 021 027 021 027 026	50	241	0.15	10.1	2490	0.43	2.77	4000	2.09	0.39	2330	0.16	1423	0.29	77.8	6610	301	19.7	96	0.36	10500	140
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	192	0.92	51	4210	0.48	5.9	6330	2.29	0.77	2420	0.13	2970	0.75	90	7110	379	122	114	1.35	0606	450
00 356 1.77 569 1071 0.77 123 15340 4.61 1.19 570 0.22 2400 131 9400 334 133 114 0.44 64700 233 0 273 1.31 1.31 1.31 1.31 1.33 1.31 1.33 1.33 1.33 1.33 1.33 0.05 3.5 4500 1.39 0.33 1.00 1.33 0.35 4500 1.39 0.33 0.06 3.59 1.35 0.25 4500 1.39 0.33 0.06 3.59 1.35 0.25 0.01 0.03 0.06 3.59 1.35 0.25 0.35 0.01 0.05 0.35 8.3 0.05 0.35 0.05 0.35 0.05	8	308	0.53	50	5490	0.63	9.3	11800	2.63	0.4	4730	0.55	1489	1.71	140	10300	343	5.53	135	0.37	32400	166
$ \begin{array}{ ccccccccccccccccccccccccccccccccccc$	8	356	1.77	56.9	10710	0.77	12.3	15340	4.61	1.19	5970	0.2	2400	1.99	131	9400	334	13.3	114	0.44	64700	243
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	00	299	0.31	25.9	3510	0.55	00	12500	6.62	11	4870	0.44	1233	1.73	116	8510	422	7.8	120	0.25	45600	139
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 :	C'/8	0C.I	01	1200	0.08	80.0	45.5	1.79	0.11	14.8	0.3	3900	0.03	60.0		60.0	7.0	0.00	3.52	8.3	17.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 8	130	61.1 1 0 1	5.5	294	c1.0	0.TO	4.00	1.22	00.0-	1.1	70.0-	3320	10.0-	c0.0	CO.0	21.0	0.33	00.0	4C.C	C6.1	50.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00	54.3	1.24	1.1	080	-	6/.0	0.05	1.55	67.0	1.21	65.0	0664	51.0	06.0	1.0/	CT.0	01.0	c1.0	3.81	7.0	00.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5	81.4	080		0/5	1.0	17.1	2010	02.0	47.0	4.6	10.14	1620	CT-0	50.0	4710	12.0	000	10.0	3 8 6	1.0	10.0
0 418 0.89 1.89 1.03 0.13 0.51 0.56 1.14 0.50 0.02 0.01 0.13 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.11 0.13 0.13 0.11 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.13 0.13 0.13 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.13 0.14 0.15 0.14 0.15 0.14 0.13 0.14 0.13 0.14 0.15 0.14 0.15 0.14 0.11 0.15 0.14 0.11 0.15 0.1	2 2	116	0.00	4 ×	717	24.0	01.0	C. CI	0.17	0.44	0.0	41.0	0767	1.0	00.0	0.16	10.0	60.0	500	2000	47	00.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 5	011	0.80	1 80	108	0.14	CI.0	7.01	15.0	110	4.1	70.14	10500	7.0	10.0-	01.0	20.0	0.18	10.0	4.60	80.0	0.01
00 658 227 82 450 062 055 80 1.19 0.4 203 0.34 2290 0.13 3.2 18 0.07 0.13 0.05 3.44 6.7 0.01 00 575 0.76 3.28 190 -0.02 0.29 13.1 0.65 0.43 6.15 0.29 7800 0.03 0 0.42 0.01 0.09 0 7.7 0.88 0.02	2 0	66.0	0.74	2.37	130	0.04	0.22	11.2	0.41	0.21	4.84	0.12	4880	0.01	0 0	0.59	0.01	0.13	0	2.57	3.6	10.0
00 575 0.76 3.28 190 -0.02 0.29 13.1 0.65 0.43 6.15 0.29 7800 0.03 0 0.42 0.01 0.09 0 7.7 0.88 0.02	00	65.8	2.27	8.2	450	0.62	0.55	80	1.19	0.4	20.3	0.34	2290	0.13	3.2	18	0.07	0.13	0.05	3.44	6.7	0.01
	8	57.5	0.76	3.28	190	-0.02	0.29	13.1	0.65	0.43	6.15	0.29	7800	0.03	0	0.42	0.01	0.09	0	7.7	0.88	0.02

	209Bi	201	318	144	83	211	140	264	137	171	263	127	275	124	467	202	9CI 93	80	100	12	0.24	0.71	0.1	0.1	0.11	0.04	1.1	0.14	3.8	1.7	0.09	0.05	19	0.67	1.53	6.03	1.25	0.05	0.02	0.01	0.08	0.05	0.06	0.08	1.0	
	208Pb	11100	11100	5900	10200	7800	8000	11250	0066	5210	8600	4210	3610	4110	4540	4940	2740	0102	3190	5.2	1	33.6	1.99	0.91	0.26	0.22	3.13	4.51	1.52	137	10.8	1 08	171	98	40.6	108	500	1.92	1.45	0.64	1.12	1.13	1.03	1.17	0.34	
	BH202	0.39	0.71	0.39	0.45	0.47	10.04	0.39	0.48	0.46	0.77	0.4	0.37	0.55	0.65	0.68	6/.0	12.0	0.67	0.52	1.03	3	0.47	0.31	0.23	0.12	0.65	0.17	0.27	58	2.59	1 17	0.98	0.9	0.84	1.49	0.68	0.33	0.76	0.55	0.68	0.71	0.75	0.63	0.31	
	¹⁹⁷ Au	145	112	121	93.4	103	96	136	154	104	190	115	89	101.1	89.2	115	123	6.03	7.60	0.02	0.04	0.04	0	0	0	0	0.02	0.01	0.01	0.63	0.06	10.0-	1.12	0.53	0.15	0.86	0.95	-0.01	0	0	0.01	0.01	0	0	10.0	
	125Te	5.9	7.5	5.4	10	53	16.7	6.8	6.7	3.63	2.29	1.07	3.7	3.7	6.2	2.45	2.36	74.1	10.0	0.04	0.09	0.24	-0.07	0.03	0	0.04	0	0.02	0.18	4	1.02	10.48	0.61	1.38	0.15	0.92	0.24	0.7	0.15	0.12	0.04	10.0	0.02	0.02	10.0	
	121Sb	455	377	361	331	337	100	486	451	374	571	413	336	288	369	368	412	107	250	0.11	0.42	3.4	0.12	0.3	0.09	0.05	0.1	0.11	0.02	1.9	0.48	0.08	2.29	1.47	0.79	2.63	2.72	0.23	0.03	0.07	0.01	0.1	0.08	60.0	0.12	
	MRH 77	5530	4720	5700	3940	3610	3370	5360	4810	3630	5260	3770	2820	2930	2960	3280	2010	01/27	2300	0.58	10.5	14.4	0.6	0.71	0.27	0.22	0.86	5.6	-	81	1.27	1 07	41.4	23.7	13.6	38.7	52	1.47	0.36	0.31	0.94	0.38	0.43	5.0	co.u 0.32	
	115 In MRH 60	94	83.7	106	78.5	74.8	CI CI	112.7	119.4	81	149	95	99	75.1	76	86.4	5 5	0.05	48.8	0	0.13	66.0	0.02	0.26	0	0	0	0.03	0.01	1.57	0.04	10.0	0.54	0.56	0.24	0.67	0.77	0.03	0.01	0.01	0	0	0	0	10.0	
	III Cd	1.08	2.9	0.46	1.04	1.49	60.0	5.1	0.55	0.69	1.55	0.67	0.87	0.37	11.2	1.22	0.73	11	1.72	0.54	2.18	7.5	1.2	0.63	0.1	-0.02	1.99	1.04	0.02	-7	0.92	0.38	0.9	0.54	69.0	1.78	0.41	0.14	0.07	0.02	0.17	0.04	0.07	-0.02	CT.0	
	107 Ag	2350	2920	2510	2150	2300	1610	1740	2960	1986	1670	1610	1840	1490	1870	1510	1905	0001	1820	30.4	38	152	14.8	17	8.9	6.3	12.3	4.6	11.5	117	220	001 8	89	69	140	202	56.8	107	294	294	459	488	699	087	98.5	
	OM ²⁶	0.23	0.14	0.24	0.18	10.0	0.17	-0.03	0.58	0.19	0.1	-0.01	-0.01	0.37	0.36	0.2	1.0	0.04	10.0	0.02	0.76	2.9	0.18	0.17	0.18	0.1	0.21	0.27	0.08	en j	0.32	0.13	0.4	0.26	0.28	1.39	0.28	-0.13	0.13	0.15	0.11	-0.02	0.04	0.19	0.1	
	75AS	2120	1790	1490	1630	1370	0117	3250	2000	1760	1570	1220	1132	1170	1120	2120	1480	111	758	7.40	31.4	78	10.6	5.86	2	0.94	13.4	8.25	12	38	27.1	0.66	18.2	16.4	11.4	32.7	24.5	0.7	1.31	1.14	1.26	1.8	1.35	cl.1	0.93	
	⁷² Ge	0.83	0.69	1.62	0.66	0.56	C+-0	1.76	1.01	0.8	0.73	1.41	0.93	0.54	0.99	0.87	0.49	2.0	0.59	0.3	7.4	54	1.64	0.59	0.01	-0.4	3.7	0.64	-0.27	-51	-0.1	1.1	2.8	9.0	-0.6	3.0	-0.43	-0.8	0.2	0.04	0.94	-0.09	0.5	10.0	77.0	
	71Ga	2.61	2.36	2.64	2.12	1.55	10.1	3.53	4.1	2.9	4.13	3.05	2.25	1.76	1.54	1.58	2.52	2 21	102	0.81	46.6	61	17.8	0.61	0.27	0.12	44.8	3.52	0.14	4	3.46	10.1	3.80	0.62	2.49	11.50	2.86	0.04	0.15	-0.02	0.30	0.16	0.11	60.0	10.08	
	66Zn	12320	10410	8300	12660	15550	1420	11100	7460	6840	6550	6230	8170	5670	10900	0109	9480	11660	13600	373	2120	2540	681	700	129	43	1044	408	45	590	279	00	273	236	209	674	272	7.4	42	17.2	41.3	33.4	22.8	20.6	17.1	
	⁶⁰ Ni MRH 60	6.43	4.7	4.4	5.8	5.22	17.6	4.84	5.9	2.56	4.56	3.5	3.9	3.59	5.7	3.4	3.65	57	1.5 5	2.56	246	1870	70.9	7.33	0.78	0.84	124	12.3	0.36	170	2.3	1.6	1	3.6	4.4	56.5	9.2	-	0.19	-0.25	0.38	-0.31	0.51	6/.0	0.67	
	³⁹ Co	0.49	0.62	0.41	0.64	0.4	0.48	0.52	0.94	0.43	0.74	0.34	0.43	0.32	0.43	0.50	0.48	05.0	50	0.28	145	470	40	0.28	0.1	-0.03	84.8	6.7	0.16	-	0.39	0.41	1.92	0.23	0.34	28.4	0.61	-0.28	0.03	-0.03	0.01	-0.01	0.01	c0.0	70.04	
	⁵⁶ Fe	2630	2130	1720	2410	1090	2100	1870	3890	1400	2760	1300	740	750	630	727	210	010	232	620	106500	377000	25130	1010	170	31.4	61400	4980	45	4600	3310	0/6	3800	1180	2480	49600	3750	16	79	21.4	125	4	42	17	11.80	
	Mh ⁵⁵ Mh	LL	10.4	21.4	58	10.1	3.5	10.6	51	2.76	19	4	9	15	9	x	٩ ٩	• =	1	179	5100	22300	1440	104	25	15	2610	1450	33	118	46.7	47	134	47	141	812	218	0.8	8.4	8.8	10.9	12.2	51 :	4.2	3.9	
	⁵³ Cr	1.23	1.55	0.43	1.14	1.01	950	0.7	3.0	1.68	6.0	0.3	4.7	4.1	6.3	3.1	-0.60	170	-8.5	3.92	136	11900	96.7	1.25	-0.13	0.08	29.4	10.8	0.41	175	14.5	1 20	3.80	7.20	5.60	15.5	5.30	-0.20	0.47	0.17	0.79	0.45	0.04	0.47	0.46	
	34S	68.0	59.5	71.5	62.8	67.5	0.92	86.4	65.7	101	93.9	115	112	114	117	115	120	122	126	260	1790	6300	658	244	228	217	940	273	209	-340	183	767	172	123	107	664	127	302	129	153	135	146	142	141	148	
- continued	³¹ P	3120	3810	1940	4730	3140	1480	3470	2850	1710	6400	4090	3050	2700	2680	3350	4500	3030	1670	51200	106000	95000	44500	37200	10000	3900	39300	25100	2880	159000	111000	0096	25400	27600	25100	99100	12200	1014	4110	2380	4210	3650	2380	2260	2410	
Appendix A		8609 - 1	8609 - 2	8609 - 3	8609 - 4	8609 - 5	0 - 6009	8-0008	8609 - 9	8609 - 10	8605 - 1	8605 - 2	8605 - 3	8605 - 4	8605 - 5	8605 - 6	0 5098	0 5098	8605 - 10	8599 - 1	8599-2	8599 - 3	8599 - 4	8599 - 5	8599 - 6	8599 - 7	8599 - 8	8599 - 9	8599 - 10	8597 - 1	8597 - 2	6 - 1609	8597 - 5	8597 - 6	8597 - 7	8597 - 8	8597 - 9	8597 - 10	85914 - 1	85914 - 2	85914 - 3	85914 - 4	85914 - 5	85914 - 6	8-914-8	

Appendix A - c	ontinued																				
	³¹ P 1	⁴ S ⁵³ C	r ⁵⁵ Min	1 ⁵⁶ Fe	59 Co	iN ⁰⁹	uZ ⁹⁹	71Ga	⁷² Ge	75As	oW ⁵⁶	107 Ag	111 Cd	115Im	¹¹⁸ Sn	121Sb	¹²⁵ Te	¹⁹⁷ Au	²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
MB	H 69 MB.	H 69 MBH	69 MASS.	1 MBH 66	MBH 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MASSI	VBH 69	MBH 69	MBH 69	MBH 72	MBH 69	MBH 69	MBH 66	MASSI	MBH 66	MBH 66
8576 - 1	730 1	53 1.2	1 1.21	15	0.07	-0.15	8.2	0.10	-0.58	0.55	0.05	160	0	0	0.05	0.06	0	0	0.39	0.05	0
8576-2	730 1	50 1.0	6 4.6	54	0.04	0.51	11.7	0.37	0.32	0.77	0.26	174	0.06	0	0.2	0.07	-0.04	0	0.35	0.21	0.01
8576-3	910 1	48 0.4	1 14	17	0.06	1.03	10.9	0.18	0.13	0.97	0.16	145	0	0	0.19	0.08	-0.02	0	0.51	0.38	0.07
8576-4	960 1	31 0.9	2 23	57	0.03	0.61	12.7	0.19	0.38	0.83	60.0	184	0.05	0.01	0.16	0.01	0.03	0	0.33	0.13	7.6
8576-5	760 1	36 0.1	9 1.4	7	0.06	0.17	8.9	0.14	0.13	0.95	0.13	268	-0.04	0	0.16	0.04	-0.04	0	0.42	0.08	0.01
8576-6 1	490 1	30 0.2	5 7.7	106	0.01	2.79	24.7	0.02	-0.09	0.78	0.17	267	0.02	0	1.7	0.05	0.02	0.01	0.48	0.58	0.26
8576-7 2	040 1	12 0.3	8 55	47	0.04	1.52	70	-0.03	0.23	0.83	0.14	193	0.08	0	0.14	0.05	-0.06	0	0.39	0.35	0.05
8576-8	650 1	15 0.5	8 3.4	6	0.06	-0.1	LL	0.09	0.38	0.74	0.15	206	-0.02	0	0.01	0.01	-0.01	0	0.46	0.02	0
8576-9 1	340 1	14 2.0	7 15.7	141	0.14	3.3	24.8	0.10	0.46	0.51	0.15	750	-0.03	0	0.18	0.04	0.02	0	0.58	0.24	0.01
8576 - 10	860 1	19 0.1	9 3	5	-0.04	0.53	12.8	-0.09	0.44	0.57	0.05	215	0.18	-0.01	0.01	0.03	0.06	0	0.7	0.10	0
020-1 2	200 1	72 0.2	2 130	3010	46.8	616	450000	1.39	1.43	307	0.16	1018	1.07	53.4	13100	107	0.03	15.8	12.1	1690	13.6
020-2 1	8000 2	36 0.8	7 196	27000	11.3	450	50800	1.67	2.57	861	0.3	527	0.59	142	33800	499	0.03	23.6	1.85	4320	30
020-3 3	9200 3	24 1.1	4 486	55200	9.1	450	57300	1.95	1.35	817	0.23	432	1.05	98.8	19500	446	0.11	18.6	9	8450	41.6
020-4 4	2300 4	0.4	6 570	84000	21.9	1060	72100	3.05	2.47	1094	0.79	459	1.25	195	41700	1027	0.05	41	6.1	11700	58
020-5 3-	4900 3	98 0.8	7 690	60400	13.7	429	94500	1.69	2.08	767	0.72	262	1.21	80.8	16460	382	0.05	15.5	4.0	8020	38.5
020-6 2	7100 3	53 0.5	5 583	40500	14.64	519	93500	1.55	1.25	561	0.55	180	0.99	78.1	15990	360	0.06	7.88	2.53	6780	44.6
020-7 6	5900 3	00 0.4	7 87	13800	15.82	318	46800	1.25	1.59	648	0.88	1/6	0.3	129	26000	345	0.04	29.4	0.95	3710	17.1
020-8 3	7100 5	47 1.4	2 1520	0 60500	18.5	641	123000	2.75	2.38	830	0.82	534	2.01	105	16900	396	0	14.3	4.55	12900	44.2
020-9 3	5700 5	17 1.6	3 1440	0 59800	16.5	670	84100	2.03	1.68	692	0.61	229	1.26	96	13500	364	0.05	8.42	4.49	11120	51.9
020-10 3	7800 5	63 0.4	970	85900	11.3	550	52400	2.21	1.31	615	0.72	234	1.3	112	14600	403	0.07	14	3.15	12370	46
8566-1 20	3000 5	50 25.	9 4500	36200	6.1	18.2	910	13.10	5.9	32.8	2.2	161	3.6	3.3	28	4	0.33	1.1	3.8	36	2.2
8566-2 15	55000 6	56 11	2060	13900	7	12.6	663	7.20	1.34	19.3	0.49	133	1.64	0.05	6.6	0.74	0.08	0.01	1.64	12.3	0.69
8566-3 6	0600 3	61 4.3	1 590	4500	1.21	3.44	281	3.04	0.59	7.8	0.38	119	0.59	0.03	0.9	0.36	0.05	0.03	0.63	5.7	1.07
8566-4 3.	2900 3	37 3.5	a 134	1310	0.07	1.1	154	1.06	0.01	4.6	0.33	82	0.19	0.02	0.51	0.12	0.03	0.07	0.51	1.87	0.76
8566-5 16	\$ 00085	90 15.	2 1160	10600	2.3	14.3	740	7.40	1.9	18.1	1.04	138	2.9	0.54	4	2.3	0.32	0.15	2.8	170	1.01
8566-6 19	1000 8	164 21.	8 1660	0 12800	1.89	12.6	670	5.70	2.6	56.0	0.03	138.0	2.28	0.04	1.39	0.47	-0.05	0.1	4.1	15.1	0.77
8566-7 23	35000 1.	500 30.	2 2320	0 28200	п	22.1	970	12.90	0.7	27.9	2.48	88	2.63	0.55	80	10	0.05	0.4	5.7	15.8	0.68
8566 - 8 21	5000 5	70 38.	0 3660	0 26400	6.6	23.9	1170	24.20	5.1	29.1	6.1	195	3.3	2.9	80	14	6.0	1.3	11.5	370	16.0
8566-9 21	1 0009	100 26.	8 2660	14500	3.9	13.7	880	13.30	5.2	21.6	0.36	152	4.6	21	20	2.2	0.41	0.04	4.92	22	4.1
8566 - 10 15	00000	69 23.	9 1910	0 10200	2.94	11.2	740	8.60	2.5	20.3	0.28	141	2.32	0.16	6	0.84	0.11	0.21	2.74	11	1.4

Appendix B – Laser Ablation Data for Sources

Appendix B - Lase	r ablation IC	MPS data for	all analyses o	f all natural so	urces in order o	of analyses, star	ndard used for	quantification	is listed below	each element											
	dır	SHS	"Cr	uM ²⁵⁵	⁵⁶ Fe	59C0	IN ₀₉	uZ ⁶⁰	⁷¹ Ga	¹² Ge	SAS SAS	oWe	¹⁰⁷ Ag 11	Cd IIS	In II	Sn 121	3D 122 U	nV ²⁶¹	²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
	MBH 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MBH 69	MBH 69	MASSI	VBH 66 M	BH 69 M	A ISSI A	IBH 69 MI	3H 69 MBF	I 69 MB	H 72 MBF	69 MBH 0	(9 MBH 66	MASSI	MBH 66	MBH 66
NSCD-03	3.9	145	0.07	-0.5	-0.1	0.21	6.6	56.3	0.29	0.38	1.4	0.05	16.9	0.1 0.0	0 1	.0 11.	9 0.64	0.021	2.42	9.32	0.069
NSCD-03_1	3.4	172	60.0	0.5	2.2	-0.02	6.7	61	0.27	-0.65	0	-0.1	20.530	0.1 0.0	1. 1.	21 0.	3 0.13	0.045	1.72	8.4	0.067
NSCD-03_2	4.2	152	0.13	-0.25	1.88	-0.01	7.9	78.1	-0.03	-1.18	1.48	-0.03	17.2 -0	0.0 0.0	1 1	41 0.2	2 0.33	0.018	2.2	10.7	0.08
NSCD-03_3	1.5	126	0.05	0.27	1.8	0.03	20.2	85.8	-0.03	0.38	13	0.17	15.560	0.02 0.0	1.	.64 0.2	7 0.32	0.03	2.61	12.7	0.132
NSCD-03_4	3.8	140	-0.09	0.8	1.8	-0.087	8.1	107	0.19	-0.3	0.87	0.13	11.260	0.02 0.0	1 1	97 0.2	58 0.22	0.027	2.27	13.7	0.12
NSCD-03_5	2.6	137	0.146	0.4	2.09	-0.06	7.2	101	0.13	0.2	0.7	0.14	17.2	0.1 0.0	00 1.	.61 0.1	55 -0.01	0.025	1.74	11.8	0.077
NSCD-03_6	3.8	157	0.01	-0.5	1	-0.08	7.6	119	-0.06	1.04	-0.67	-0.19	18.4	0.07 0.0	00 1	.87 0.	5 0.17	0.012	2.14	14.1	0.141
NSCD-03_7	4.3	144	0.01	-0.5	0.8	-0.02	7	230	0.05	0.59	1.49	-0.18	10.9 (0.0	00 3.	26 0.4	4 0.24	0.047	2.34	27.7	0.232
NSCD-01	9.4	142	0.06	-0.3	2.6	0.01	8.4	233	0.36	0.36	1.57	0.15	8.1	0.01 0.0	3.	.78 0.5	8 0.24	0.02	2.1	24.4	0.217
NSCD-01_1	9.3	148	0.03	-0.1	1.45	0.03	6.9	218	0.15	0.24	1.5	0.13	4.74 (0.04 0.0	00 3.	.02 0.3	6 0.7	0.019	2.39	21.1	0.218
NSCD-01_2	13.5	144	0.01	6.1	0.6	0.11	10.7	661	-0.04	-0.1	1.4	0.01	17.4	0.09 0.0	00 3.	.17 0.5	1 0.74	0.072	2.24	18.8	0.225
NSCD-01_3	7.6	154	0.15	-0.3	1.72	-0.14	7.9	215	0.15	-0.52	. 0.9	-0.04	18.8	0.03 0.0	0 3.	17 0.3	7 0.13	0.028	2.06	18	0.173
NSCD-01_4	9	145	0.04	-0.05	0.6	0.01	7.6	183	-0.05	-0.5	1.1	0.39	24	0.11 0.0	33 2.	39 0.4	6 0.47	0.025	2.38	14.3	0.145
NSCD-01_5	8.7	141	0.12	0.8	0.1	0.48	7	194	-0.1	-0.23	0.82	-0.04	7.69	0.03 0.0	01 2.	85 0.4	5 0.37	0.035	1.77	15	0.185
NSCD-01_6	9.3	166	-0.27	0.8	1.26	0.05	7.9	178	-0.15	-0.29	0.67	0.13	12.990	0.2 -0.1	01 2.	53 0.1	6 0.36	0.022	1.62	13.2	0.158
NSCD-01_7	6	138	-0.23	0.3	99	0.43	693	590	-0.28	0.19	137	0.14	197	0.13 9.1	0 21	10 17	6 171	9.23	2.64	147	36.3
NSCD-02	19	133	0.02	-0.1	0.87	0.07	10	273	0.39	-0.1	0.4	0.27	18.7 (.0- 70.0	01 3.	36 0.4	8 0.57	0.024	2.86	19.8	0.225
NSCD-02_1	20.7	224	-0.03	1.1	1.46	0.12	6.2	234	0.1	0.9	1.83	0.07	10.9	0.0 0.0	00 2.	.75 0.	4 0.16	0.038	2.95	18.4	0.185
NSCD-02_2	21	144	-0.05	0.4	1.11	0.08	7.9	263	-0.16	-0.4	1.38	0.06	13.9 (0.0 0.0	00 3	.13 0.4	2 0.18	0.031	3.15	20.1	0.197
NSCD-02_3	22	147	-0.51	0	1.62	0.03	8.7	250	0.16	-0.61	0.26	0.08	8.08	0.12 0.0	00 3.	38 0.2	3 0.11	0.019	2.5	19	0.205
NSCD-02_4	24	155	-1.18	0.9	1.07	-0.06	9.3	243	-0.07	-0.18	- 0.97	-0.12	9.34 (0.04 0.0	00 3.	12 0.2	3 0.62	0.015	2.31	18.3	0.166
NSCD-02_5	L.L-	116	-0.11	-0.1	0.6	0.2	34.6	79.2	-0.01	0.22	1.1	0.36	6.19 (0.02 -0.0	1 10	.03 0.1	8 0.22	0.011	2.69	7	0.073
NSCD-02_6	2.6	121	-0.4	1.7.1	196	0.4	14.6	66	-0.02	0.5	2.22	0.03	- 19.8	0.12 0.0	1 1	25 0.2	1 0.53	0.025	2.4	8.2	0.093
NSCD-02_7	90	118	0.5	0	1.01	0.09	7.5	161	-0.05	0.9	0.3	0.09	17.5	0.01 0.0	1 1.	83 0.2	4 0.1	0.003	2.59	12.7	0.113
NSCD-07	18	162	1.1	1.1	0.64	0.14	6.7	152	0.02	-0.93	1	0.08	16.3 (0.0 0.0	00 1	.47 0.1	73 0.2	0.018	1.8	13.4	0.108
NSCD-07_1	5	125	0.93	-0.51	0.18	-0.02	7.9	150	-0.01	-0.54	0.5	-0.02	11.9	0.0	1 1.	64 0.1	54 0.39	0.033	2.32	12.8	0.082
NSCD-07_2	-2.7	396	1.62	1.4	0.16	-0.09	6.5	104	0.13	0.9	0.0	0.66	13.9 0	.124 0.0	1 1.	02 0.1	2 0.22	0.006	1.78	7.3	0.1
NSCD-07_3	22	164	-0.1	0.5	1.34	-0.17	10	148	-0.16	-0.1	2.9	-0.02	6.7	0.13 0.0	1.	.88 0.1	8 0.19	-0.002	2.36	13.6	160'0
NSCD-07_4	22	378	6.0-	2.2	0.51	-0.08	5.5	151	-0.14	-0.03	0.59	0.46	14 (.05 -0.0	02 1.	.65 0.2	5 -0.14	-0.004	1.92	13.1	0.13
NSCD-07_5	6.3	244	1.1	1.3	0.43	0.09	5.7	127	-0.12	-0.89	0.65	0.25	5.74	0.15 0.0	1 1.	37 0.1	4 -0.16	0.027	1.99	11.8	0.081
NSCD-07_6	20	142	1.7	0.82	0.84	0.07	6.1	130	0.15	-0.57	1.17	0.12	12.9	0.15 -0.0	1 10	.85 0.1	9 0.03	-0.006	0.96	13.3	0.079
NSCD-07_7	3	137	-0.2	-0.61	3.4	-0.067	587	95	0.15	-0.85	139	-0.04	165 -	0.02 0.1	6	88 64	5 7000	7.79	2.38	610	55
NSCD-06	6.5	142.8	-0.38	-1.3	0.32	-0.12	12.3	93.5	-0.04	0.5	1.63	0.5	7.95	0.1 0.0	1. 1.	.41 0.1	54 -0.05	0.05	б	13.6	0.071
NSCD-06_1	2	147	-0.04	0.4	0.49	0.02	6.1	77.3	-0.04	-0.4	-0.36	-0.15	7.11	0.23 -0.0	01	.19 0.1	8 0.16	0.002	1.88	11.6	0.067
NSCD-06_2	14.1	96	-0.09	9.0	0.44	-0.12	9.9	77.6	-0.06	-1.12	1.1	0.03	5.92	0.04 -0.0	1 10	44 0.2	6 0.4	0	2.58	11.3	0.071
NSCD-06_3	10	124	0.27	2.07	0.65	0.03	2.7	62.3	0.26	-0.47	1.18	0.11	0.940 0	.125 0.0	1 1	19 0.1	10.0- 1	0	2.71	93	0.04
NSCD-06-4	5.5	871	CS.0	-0.12	0.30	60.0	4.0	41.9	-0.19	-0.1	15.1	0.3	13.8	0.0 00.0	0	.0 6/	c770 0	0.006	2.00	0.84	0.00
NSCD-06-5	2.2	160	0.17	11.0	0.34	0.02	1.6	82	c1.0	-0.2	0.29	0.12	9.84	0.0- 52.0	10 II	27 0.1	11.0- 0.11	0	2.56	CII CO	0.066
0 00-CD-OL	6.0	C01	-0.16	0.8/	-0.0	0 00	10.0	1.20	0.45	0.2	C0.1	0.50	10./10	0.0 1.0 2.0 2.0 0.0		0.0 0.0	50.0 CC	0.024	\$777	5.6	0.004
1 OD-CTOSN	7.8	114	-0.04	100	17.1	-0.05	× č	98.9	17.0	0.0	1.8	0.87	- 064.11	0.0 /0.0	2.	5.0 0.5 20	1.0 1.1	0.018	1./4	10	201.0
NSCD-05 1	5.4 2	136	65.0	47"N-	12.4	71.0-	0.0	111	20.0-	1.1		0.07	2.6	00.0	1 0	20 20	10.0 0.04	0.054	10.7	16.1	0.13
NSCD 05 2	30	961	7:0	T O	07 1	101	1.0	111	50.0	100	90	10.0	10.420	00 00		0	0.20	0000	7 57	1.7.1	0.154
NSCD-05 3	0.7	131	0.03	5.0	1.00	1.0-	1.0	115	0.10	0.54	0.0	0.07	1 08	107 000	- C	18	2C.0 C	0.005	10.7	1.7	116
NSCD-05 4	45	139	-0.035	-0.7	80	680 0-	0.1	511	0.19	10-	0.0	0.08	6 53	500	10	00 07	500 6	0.028	C1 C	11	0.146
NSCD-05_5	50	149	0.00	0.86	0.4	0 144	8.2	103	-0.12	-0.03	11	-0.1	7.86	00 100	0 10	13 0.2	3 0.79	20.02	2.29	16.8	0.14
NSCD-05_6	2.1	155	0.001	1.4	1.9	0.1	7.4	104	0.22	0.5	0.47	0.08	7.87	0.19 0.0	1	98 0.4	2 0.29	0,008	0.83	16.1	0.157
NSCD-05 7	15	128	-0.044	0.65	37	0.41	920	207	0.16	0.01	182	-0.03	169	0.13 0.4	1	09 54	0 237	8.87	2.19	356	43.1

MBH 69 NSCD-04 3.9 NSCD-04_1 1.9 NSCD-04_2 3.9	345	^{sa} Cr	55 Min	56Fe	59C0	IN ₀₉	66Zn	71 Ga	72 Ge	56 SV 51	Mo	07 Ag 11	¹ Cd ¹	¹⁵ In 11	⁸ Sn ¹²	¹ Sb ¹²	Te 197 A	1 ²⁰² Hg	²⁰⁸ Pb	²⁰⁹ Bi
NSCD-04 3.9 NSCD-04_1 1.9 NSCD-04_2 3.9	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MBH 69	MBH 69	MASSI A	MBH 66 M	BH 69 M.	4SSI M.	BH 69 M	BH 69 M	3H 69 MI	3H 72 Mb	3H 69 Mb	H 69 MBH	56 MASSI	MBH 66	MBH 66
NSCD-04_1 1.9 NSCD-04_2 3.9	148	0.03	0.1	1.2	0.03	1.7	84.1	0.02	0	0.92	0.17	- 16.2	0.05	10.0	1.36 0	1.15 -4	.04 0.02	1.67	12.53	0.094
C.C. 7 40-01-02-0	C01	10.0	1.1	7.0	11.0	0.0	2.66	0.03	0.35	1.0/	11.0	11 8	0.2 0.1	10.0	75 0	30 36	20.0 CT	1 78	14./	CCL.0
NSCD-04 3 6.4	144	0.13	0.05	2.5	-0.02	14	80	-0.06	-03	0.1	1.12	18.1	01.10	0.02	47 0	22 0	28 0.02	1.27	12.2	0.115
NSCD-04 4 4.8	151	0.09	0.75	3.7	0.25	7.3	119	0.35	1.34	2	0.2	26.5	1.13	1 10.0	.72 0	31 0	16 0.03	1.86	1.7.1	0.177
NSCD-04_5 1.3	147	-0.06	1	3.4	0.18	10.1	66.5	0.15	0.05	0.99	0 2	1.240 -	0.02	0.01	1 0	1.32 0	46 0.01	3 2.16	9.35	0.064
NSCD-04_6 4	144.8	-0.14	0.5	3.2	0.16	50.8	78	-0.1	0.87	1.5 (1.23	27.6	0.11 (0.02	1.13 6	0.38 6	08 0.00	3 2.68	11.5	0.078
NSCD-04_7 4.6	121	-0.11	0.1	2.2	0.19	4	58	-0.04	-0.93	1.5	0.1	5.35	0	10.0	0.8 (0.13 6	39 -0.00	2 2.61	8.2	0.088
NSCD-09 5.5	132	-0.09 0.00	-0.6	1.6	0.11	4.37	11	0.36	-0.07	0.81	0.03 2	1.550	0.28	00.00	0 15	.05	35 -0.00	1 2	101	0.069
NSCD-09_1 5.4	135	60.0-	1.7	6.7 8 C	0.16	15.6	5.85	-0.15	-0.52	- 67	/0.0	11.8	0.18	10.0	08 0	13	0.0- 0.00	10.1 5	18./	00.0
NSCD-09 3 5.4	168	0.13	0.63	1.4	10.0	9	92	0.08	0.4	0.7	1.02	9.8	0.01	0.02	11 0	117	00.0- 0	5 1.47	11.7	0.087
NSCD-09 4 5	148	0.13	1.2	4.4	-0.11	6.2	90	-0.1	0.8	1.8 0	1.07	9.29	7.02	10.0	1.2 0.	238 -(06 -0.00	3 2.3	12	0.077
NSCD-09_5 4	131	-0.26	0.8	5.2	-0.03	8.2	117	-0.01	0.5	0.13 0	0.08	- 0.11	0.04 (1 00.0	1.49 6	0.11 0	48 0.01	1 2.1	14.7	0.102
NSCD-09_6 5.4	131.8	-0.35	0.8	1.5	0.05	5.8	118	0.17	0.36	-0.03 (0.19	- 14.8	0.03 (1 10.0	.41 0.	289 0	22 0.03	7 1.21	13.8	0.116
NSCD-09_7 12.8	151	0.27	-0.34	2.3	-0.15	5.7	105	0.1	-0.34	0.7	-0.1	6	0.01	00.0	.59 6	0.13 6	36 -0.00	1.98	13.7	0.07
NSCD-10 10	149.4	0.16	-0.79	4.9	-0.09	5.3	108	0.07	-0.6	0.09	90.0	11.7	0.04	10.0	39 0.	- 189	.05 0.01	0.71	15.3	0.103
NSCD-10_1 9	201	-0.48	0.4	50	0.33	630 4.4	280	0.05	0 20	1 46	0.03	188	0.14	1.62	40 0	06	000 0000	2.27	230	26.2
NSCD-10_2 15.5	120 7	0.67	00'0	7.C	-0.07	4.4 4	001	-0.01	0.6	1.40	101	- 65 3	1- 506	100	43 0.	CL	00.0- 0.0	1 1 98	17.6	0.00
NSCD-10 4 12.9	156.1	-0.4	1.24	1.7	-0.19	5.9	142	-0.05	0.28	0.6	0.26 1	1.57 (0.03 0.03	0.02	1.4 0	122	1.2 0.02	3 2.12	17.4	0.084
NSCD-10_5 3	147	-0.7	0.96	0.7	-0.21	7.5	151	0.2	1.31	0.7	9.11	- 16.6	0.01	1 10.0	.68 0	0.21 0	42 -0.00	1 2.66	17.1	0.1
NSCD-10_6 22	138	0.2	0.38	7.5	-0.02	7.2	167	0.17	-1.3	1.34 -	0.09	- 12.3	0.08 (1 10.0	1.71 6	1.33 -(.29 0.01	2.26	18.8	0.107
NSCD-10_7 22	146	0.9	0.05	9	0.14	5.3	148	0.05	-1.21	0.8	0.06	17.3	0.16	00.0	.47 0.	- 185	0.00	2.39	17.3	0.11
NSCD-11 1 10	117	0.57	2.0	4 [10.0	4 1	130	-0.06	01.10		77.0	0.61	- 57.0	10.0	.48 U. 60 0.	15 0	0.03 0.03 55 0.01	007 7	5.CI 15.A	0.00
NSCD-11 2 19	125	1.3	0	4	0.07	3.2	121	-0.13	0.6	0.7	0.13	38.8	- 81.6	10.0	.45 0		0.02 0.02	2.44	13.4	160.0
NSCD-11 3 13	105	0	0.37	2.2	0.07	5.3	131	0.07	-0.36	0.6	7.02	54.2	0.05 (1 10.0	37	0 0	0.01 0.01	2.62	13.8	0.095
NSCD-11_4 21	138	-0.64	0.7	2.9	0	4.8	147	0.21	1.05	1.68 -4	0.01	58.2	+ 71.0	0.01	1.65 6	0 0	59 -0.00	1 2.43	15.6	0.14
NSCD-11_5 22	127	1.21	1.7	4.3	0.07	18.7	126	0.14	-0.97	1.17	0.14	55.8	9.15 (0.03	1.56 C	111	.2 0.02	. 1.46	13.5	0.081
NSCD-11_6 16	114	1.2	0.25	3.1	-0.17	6,4	170	0.07	0.69	0.22	-0.3	61.6	0.27	0.02	2.17 0	0.17	58 0.02	2.58	16.8	0.103
NSCD-II / I/	154	-0.4	-0.12	7.7	10.0-	4.4 A	811	0.1	-0.40		97.0	8.02	1.0	00.0	1.18	0 500	70.0 27	1.04	0.41	760.0
NSCD-12 1 24	142.6	0.1	2.3	3.1	-0.07	6.2	136	0.05	-1.21	0.1 0	125	16.6	9.04	1.03	.76 0.	209 0	21 -0.00	13	15.2	0.128
NSCD-12_2 21	142	0.2	-0.7	6.6	0.18	6.4	136	-0.02	-0.1	0 (.19	- 23.1	0.04 (1 00.0	.59	0.1.0	62 -0.00	1 2.41	15.6	0.124
NSCD-12_3 14.2	106	0.32	2.4	6.4	-0.16	4.5	129	0.11	0.8	1.16 (60'0	16.5) 60.0	00.0	1.28 C	0.19	1 0.01.	5 1.83	14.8	0.104
NSCD-12_4 II	131	0.3	-0.63	6.1	-0.11	9.6	120	-0.04	-0.2		0.24	19.2	.039	10.0	.63) (0)	.61 0.02	2.07	14.4	0.08
NSCD-12_5 10./	115.7	0.0	-0.0 0.0	7.4	-0.08 0.00	4, 6	111	60.0-	1.0	1.0-	1 97.0	0.42	1.0	1000	75 0.	F 0/1	10.0- 62.	657 1	13.8	790.0
NSCD-12 7 21	140	-1.6	-0.6	6.2	0.1	587	158	0.32	-0.17	145 6	102	196	0.12	0.06	0.2	84	6 60	1.89	16	16
NSCD-13 38	122.5	-0.2	1	3.4	-0.09	2.9	148	-0.04	-0.11	-0.2	9.22	10.2).24 (10.0	1.4 0	0 0	64 0.01	7 2.82	16.4	0.1
NSCD-13_1 24	117	1.7	-0.1	4.3	-0.03	4.5	149	0.07	-1.05	-0.19	9.26	11.4).07 (1 10.0	.64 0	129 0	42 0.02	5 2.63	17	0.101
NSCD-13_2 29	142	1.6	-0.57	4.2	-0.01	3.75	141	0.06	1	-0.24	0.04	15.8) 60.(0.02	1.74 0.	212 0	18 -0.00	5 2.55	16.3	0.118
NSCD-13_3 26	116	4.6	2.05	њ. 1	-0.03	4.2	145	80.0	16.0	0.8	80.0	9.46	0.1	000	. 67	0.13 6	-0.00	5 2.44	15.9	0.081
NSCD-13_4 22.9	147	0.3	0.4	1.7	-0.11	4.7	147	0.07	-0.45	0.72	0.25	- 68.6	0.02	50.0	1.0	1 20	27 0.00	2.31	10.8	0.115
NSCD-13 6 37	001	C.0		4.8	-0.13	t, v	136	-0.02	10.0-	10.0	0	5 01	0 010	0000	0 89	312 17	000-0-000	6177 S	14.3	0.067
NSCD-13_7 29	126	8.8	1.2	3.1	-0.14	2.1	182	-0.03	0.14	1.4	0.11	12	0.1 0.	0.03 2	.32 0	26 0	38 0.02	2.86	23.4	0.161

Appendix B continue	31P	S ^H	⁵³ Cr	⁵⁵ Mn	⁵⁶ Fe	⁵⁹ C0	IN ₀₀	uZ99	71Ga	⁷² Ge	75AS	95M0	107 Ag	^{III} Cd	115 In	118 Sn	¹²¹ Sb	²⁵ Te 19	Au 202	Hg 208	b 20
NSCD-14	MBH 69 40	87 87	7 MBH 69	MASSI	0 270	0 001	3 4 69	013 MBH 69	ISSM -0.77	0.43 0.43	ABH 69 A	MASSI 10.47	MBH 69	-0.13	0.04 MBH 69 A	18H 72 A	M 69 HB	8H 69 MB	H 66 MA	18M 18S	66 MB
NSCD-14 1	32	134	13	0.2	2.8	0.21	4.6	192	-0.06	0.05	6.0	-0.33	13.9	-0.19	0.03	2.54	0.37	0.5 0.	06 2.	03 2	
NSCD-14 2	16	157	210	0.2	8.2	0.33	4.2	181	0.12	0.7	-0.37	0.07	17.8	0.07	0.01	2.31	0.106	1.1 0.	012 1.	92 24	1 0.
NSCD-14_3	24.3	129	Π	-0.1	2.9	0.05	4.1	188	0.19	0.42	2.2	0.38	9.93	0.29	-0.01	2.14	0.28	0.46 0.	014 2.	32 24	5 0.
NSCD-14_4	10	156	-	1.4	3.8	0.11	7.9	223	0.12	-0.16	2.1	-0.01	17.4	0	0.01	2.77	0.22	1.07 0.)34 2.	08 28	2 0.
NSCD-14_5	26	116	-5.2	5.6	9.0	0.07	6.6	116	-0.1	-0.3	1.4	-0.02	20	0.11	0.02	1.54	0.13	0.67 0.	009 1.	18	0.0
NSCD-14_0	010	136	6.5	1.0	0.1	10.0	406	4C1	-0.08	0.70	C.U	0.10	101	0.04	20.0	3.4	671.0	0./ 0.	000 0. 3 0.	11 12	0 F
NSCD-15	23	124	L-	0	0.29	-0.03	4.6	157	0.57	-0.27	0.34	0.25	21.1	11.0	10.0	1.73	0.16	0.7 0.	003 1.	39 18	6
NSCD-15_1	20	172	-	-0.8	1.09	-0.08	1.4	127	0.08	-1.07	1	-0.25	24	-0.09	-0.01	1.29	0.186	0-19 -0	001 2.	14 15	2 0.
NSCD-15_2	13	150	41	1.18	0.19	0.07	2.6	110	0.05	-0.54	-0.1	0.19	20.5	0.01	10.0-	1.25	0.041	0.08 0	01 2.	72 13	2 0.
NSCD-15_3	21	130	46	0.7	-0.2	0.05	4.7	115	0.2	-0.63	0.8	10.0	26.2	-0.03	0.01	1.21	0.12	0.24 0.	012 2		0
NSCD-15 4	10	1/2	1- 12 6	1.0	0.36	-0.00	5.5 9 I	271	27.0	0.7	1.0-	-0.11	0.62	0.04	0.00	80.1	0.75	0.57 0	001 27	12 14	2 0
NSCD-15 6	22	162	5.8	07.0	0.13	0.05	2.1	124	-0.27	0.01	-0.15	-0.14	13.6	0.17	0.01	1.45	0.198	0.8 0.0	008 2	31	00
NSCD-15 7	8	166	-2.3	0.3	0.29	0.04	3.4	131	0.27	0.4	0.6	0.07	13.3	0.26	0.01	1.38	0.19	0.07 0.	06 3.	03 16	8 0.0
NSCD-16	14	138	1.5	-0.2	0.24	-0.02	9.3	156	0.16	-0.42	0.7	0.01	11.5	0.17	0.02	1.87	0.21	0.8 0.	025 2.	36 19	1 0.
NSCD-16_1	21	136	-3.6	0.2	0.41	-0.06	6.8	172	0.06	-0.44	0.55	0.07	13.6	0.1	0.00	1.94	0.2	0.39 0.	006 2.	53 21	1 0.
NSCD-16_2 NSCD-16_3	10.1	180	-0.4 2	1.5	0.16	0.08	0.0	18/	-0.55	0.00	14	0.05	18.8	0.02	10.0	1.74	CF2 0	0.09 0.0	11 1.	2 2 2	o o
NSCD-16 4	20	150	1.1	1.31	0.25	-0.03	6.6	196	0.19	0.08	0.65	-0.07	5.82	0	0.01	1.9	0.17	0.82 0.	36 1.	35 26	000
NSCD-16_5	15.5	119.8	-1.3	0.1	-0.01	0.06	4.2	126	-0.06	-0.35	-0.7	0	5.52	-0.05	0.00	1.49	0.038	1.3 0.	009 1.	95 17	4 0
NSCD-16_6	9.8	150	-0.4	0.7	0.15	-0.12	5.8	166	0.03	0	-0.3	-0.27	14.4	-0.03	0.04	1.59	0.24	0.72 0.	06 2.	56 21	8 8
NSCD-08	64	157	0.0	C-7 C	0.47	0.05	5 56	151	-0.13	0.6	161	-0.06	36.9	20.0	0.03	1.00	50 0	0.04 0.0	7 C70	6 18	
NSCD-08_1	21.2	164	1.7	0.9	0.18	-0.04	5.6	151	0.03	-0.26	0.27	0.33	11.4	0.06	0.01	1.45	0.1	0.54 0.	1. 1.	76 19	8 0.
NSCD-08_2	22.7	140	1.7	0.56	0.383	0.02	3.3	166	-0.22	-0.61	-0.01	-0.1	12.2	-0.02	0.00	1.84	0.18	0 60.1	004 1.	82 21	3 0.
NSCD-08_4	51	144	1.9	5.4 -0.3	c0.0	17.0	6.8	166	17.0-	-0.13	C8.0 8.0	0.01	20.3	c0.0	-0.01	1.15	0.25	0.28 0.		10 80	00
NSCD-08 5	16	107	0	0.5	0.121	-0.04	0 m	166	0.13	0.8	0.0	0.36	36.7	-0.02	0.01	1.71	0.28	0.78		21 21 21	0.0
NSCD-08_6	16	151	2.3	0.2	0.25	0.08	5.4	175	0.3	0.27	-0.2	0.04	10.9	0.01	0.00	1.76	0.32	0.18 0.	0. 0.	77 23	9 0.
NSCD-08_7	-2.6	171	0.5	-0.1	20.7	1.04	672	840	-0.01	0.16	146	-0.18	177	0.37	8.30	1750	620	8040 7	91 2.	26 24	- 0
Bolivia 1	6.6	182	-0.2	-0.1	14.1	0.016	0.16	20.05	0.024	-0.35	0.8	0.029	2.89	0.034	-0.01	0.15	0.12	20.0		54 0.0	10 0
Bolivia_2	-3.1	148	-0.8	1.5	11.8	0.018	0.52	0.33	-0.005	-0.93	0.58 -	-0.004	2.21	0.0335	0.00	0.06	0.07 -0	.0915 -0	001 1.	48 0.	5 -0.
Bolivia_3	5.5	139	16.0-	0.5	0.7	0.011	-0.24	-0.53	0.025	0.46	0.21	0.004	1.87	0.09	-0.01	0.06	-0.01	0- 90'0	001 1.	75 -0.0	0 *
Bolivia_4 Rolivia_5	6.6	147	-1-	0.4	c0.0 8.0	200.0	0.24	-0.45	-0.002	1.0		-0.009	0.17	0.063	10.0-	0.037	-0.07	.105/		4/ 0.0 81 0.0	0.0
Bolivia 6	4.8	142	0.1	1.4	3.9	-0.008	-0.44	1.49	0.036	-1-	0.5	0.008	3.43	0.001	0.01	0.07	0.23	0.05	0 1.	46 0.1	98 -0.0
Bolivia_7	6.6	162	0.1	1.9	33.8	0.014	0.46	0.02	-0.009	0.42	-0.04	0.019	1.7	-0.009	0.00	-0.02	-0.02	0.163 -0	001 2.	15 0.1	0.0
Kazakhstan	3.3	124	1.2	- 0	0.1	0.028	0.18	-0.33	0.1	-0.66	0.94	-0.045	7.66	0.02	0.02	-0.044	- 0.07	0.056 -0	001 2.	54 0.0	H6 0.
Kazaknstan_1 Kazakhstan 7	6.D	C71	-0.7 50.7	0.5	-0.5	C00.0-	25.0- 0.04	-0.47 0.47	220.0-	-0.45	- FC 0	0.000	878	0/0.0	10.01	11.0	- 20.0-	0- 00.00	100 100	13 0.0	0
Kazakhstan 3	3.2	182	0	0.42	0.3	0.024	0.2	-0.8	0.029	0.5	0.65	0.044	96.6	0.008	0.01	0.04	0.017	.024 0.	000 3.	0.0 0.0	88
Kazakhstan 4	5.2	115	1.9	1.2	-0.7	0.016	0.25	0.87	-0.023	-0.32	0	0.1	100.2	-0.026	0.00	0.1	0	0.018 -0	006 2.	51 0.0	22 0.1
Kazakhstan_5	0.6	131.5	1.4	1.03	-0.5	0.074	-0.19	-0.16	0.043	0.7	0.55	-0.016	40.7	-0.023	0.02	0.008	-0.08	0- 200	005 2.	0.0 0.0	10 10
Kazakhstan 7	0	113	2.5	-1.12	-0.9	0.01	-0.28	-0.3	0.037	0.3	- 0.47	-0.003	43.4	-0.034	10.0	0.07	0.12	0.05	0	41 -0.0	

	0W ³⁶ 8	107 Ag	¹¹ Cd	us na	⁸ Sn 121	¹ Sb 125	Te 197	Au 202F	g ²⁰⁸ Ph	209
Montrality 1 151 151 151 151 151 151 151 151 151	69 MASSI	MBH 69 A.	4BH 69 Mi	BH 69 MB	H 72 MB	H 69 MB	H 69 MBI	H 66 MAS	SI MBH 60	6 MBH
Montrialier in the standard of the standard in the stand	5 0.005	30.5	-0.016	0.00 -0.0	.054 -0	0.0- 10.0	0162	0 2.2	0.001	0.0-
Montraji i i i i i i i i i i i i i i i i i i	0.006	35.5	-0.022	0- 10.0-	0.04/ 0.0	-0.	1220	0 2.4	0.04	0.0
	0.02	52.6	0,061	0.01 0.0	105 -0.4	008 -0.0	043	0 2.2	0.004	0.0
MNLS3111112010101010101010101MNLS3131313141313010101010101010101MNLS31313131413141301010101010101010101MNLS31314131401010101010101010101010101MNLS3141516010101010101010101010101MNLS31212120101010101010101010101MNLS31212120101010101010101010101MNLS31212120101010101010101010101MNLS31212120101010101010101010101MNLS3121201010101010101010101010101MNLS3121201010101010101010101010101 <tr< th=""><th>4 0</th><th>43.1</th><th>0.029</th><th>0.01 -0.</th><th>.0- 160.</th><th>.111 0.6</th><th>005</th><th>0 1.6</th><th>1 0.005</th><th>0.0</th></tr<>	4 0	43.1	0.029	0.01 -0.	.0- 160.	.111 0.6	005	0 1.6	1 0.005	0.0
	4 0.061	10.7	-0.005	0.00 -0.	.025 -0.	.104 0.	.13	0 2.2	3 -0.017	0.0
Montaciality is indicated by the matrix and	2 0.038	14.2	0.004	0.03 0.	0.002	.04 0.	0.0 0.0	006 2.1	-0.006	0.0
	4 0.083 7 -0.004	70	0.0152	0-00 000	.104	0 -0.1	115	0 2.5	-0.008	0.0
	8 0.012	53.9	0	0.00 0.0	0- 100	083 -0.0	062	0 2.6	0.06	0.0-
	7 -0.012	64.6	0	0.03 0.	.14 0.	.04 0.	.12	0 2.2	5 0.015	0.0
	5 -0.027	46.8	-0.013	0.00 0	.05 -0.	.101 -0.6	1599 (0 2.1	5 0.042	0.0
	-0.029	17.1	-0.014	0.00 0.00	0 60.0	0.07 0.0	019	0 2.0	0.052	0.0
	2000- 8 8		600.0-	0- 000	0 110	.00.0	740	0	0.003	0.0
	0.051	97.2	-0.010	0.01 0.0	042 -0	0.1 0.0	023	0 2.3	5 0.021	0.0
	5 0.072	236	0.009	0.00 -0.0	.027 -0.	.0- 010.	005	0 4.9	-0.002	0.0
	3 -0.008	239	-0.005 -	0.01	0 0.	0.0- 0.0	303 (0 4.4	4 -0.04	0.0
	3 0.039	246	0.002	0.00 0.0	042 -0	0.0- 10.0)256	0 4.6	0.023	0.0
	9 0.035	228	-0.010	0.00 0.0	061 -0.	0.032 0.0	014	0 5.2	0.036	0.0
	-0.004 5 -0.014	656	0 08	0.00	.0- 000	081 0.0	000	0 52	100.0-	0.0
	600.0- 7	217 -	-0.015	0.00 -0.0	025 0.	.04 -0.	200	0 4.4	-0.015	0.00
	9 0.015	246 -	-0.015	0.00 0.0	017 0.	1.0- 00.0	006	0 5.3	2 0.015	0.01
	-0.004	435	0.089	0.00 0.0	054 0.	0.0 0.0	034	0 4.6	-0.006	0.00
	4 0.015 5 0	367	0.014	0.00	.0 / .0.	.0 .0 .0.0	001	0 0 0 4	0.005	0.0-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5 -0.008	371	0	0.00 00.0	035 0.	.0- 90.	600	0 4.8	5 0.018	-0.0
	6 -0.012	385	-0.005	0.00 0.0	067 -0.	.004 -0.1	008	0 3.4	4 -0.017	0.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 -0.004	366	600.0-	0.02 0	.05 0.4	.067 0.0	002	0 4.3	5 0.038	0.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0.036	369	-0.004	0.00 0.0	005 0.0	.018 -0.	008	3.8	0.023	-0.0
	7 0.045	287	.0.00	0.00 0.0	071 -0.	0.0 0.0	016	0 5.7	100.0- 4	-0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0	405	0	0.00 0.0	018 -0.	0.0 0.0	110	0 8.9	0.034	-0.0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0 6	286	0.016	0.01 0.	017 -0	0.13 -0.	007	0 4.6	-0.005	-0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0	167		0.00	0- 050	0.0 0.0	200	0 0.1	5 -0.043	10 G
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.037	277	0.014	0- 00.0	0.0 0.0	024 -0.0	002	0 5.2	0.004	-0.0
MuN-Kew 7 74 108 -0.21 0.47 0.5 0.068 0.04 -0.18 -0.06 0.08 0.04 0.18 0.000 0.01 0.00 0.01 0.06 0.01 MuN-Kew 1 2.1 109 0.22 0.05 0.16 0.017 0.118 0.33 0.003 0.01 0.22 0 273 0.009 0.00 0.061 0.066 0.014 MuN-Kew 1 2.3 103 -0.33 0 -1.5 -0.017 0.13 0.33 0.013 0.21 3.59 0.0 0.00 0.01 0.046 0.016 MuN-Kew 3 0 80 0.56 0.34 -1.61 0.007 0.13 0.28 0.01 0.43 3.59 0.012 2.67 0 0.00 0.03 0.010 0.006 MuN-Kew 3 0 80 0.56 0.3 -1.61 0.007 0.13 0.28 0.01 0.43 3.47 0.012 2.67 0 0.00 0.03 0.010 0.001	2 0.014	263	-0.005	0.00 0.0	027 -0.	.036 -0.4	007	0 5.5	5 -0.009	0.0
Mun-Kew 2 0.2 79 0.2 -0.05 -0.06 0.007 -0.18 0.33 -0.003 0.01 0.22 0 273 -0.099 0.00 0.061 -0.096 0.01 Mun-Kew 2 1 2.3 103 -0.03 0 -1.5 -0.012 0.22 0.41 -0.003 -0.24 0.89 0 2.29 0 0.01 0.043 0.001 -0.006 Mun-Kew 2 1 5.4 114 -0.06 1.04 -1.8 -0.005 -0.51 -0.62 0.012 0.21 3.59 -0.012 2.76 0 0.00 0.012 -0.12 -0.007 Mun-Kew 3 0 89 0.55 0.3 -1.61 -0.007 -0.13 0.28 -0.011 0.43 5.47 -0.012 0.003 0.013 -0.11 0.009	2 0	259	-0.009	0.00 0.0	017 -0	0.06 -0.0	014 0	0 4.8	-0.01	-0.0
MUNTARVZ 1 2.5 103 -0.05 0 1 -1.5 -0.012 0.5 0.5 0.41 -0.005 -0.54 0.39 0 2.29 0 0.01 0.045 0.001 -0.006 MUNTARVZ 1 5.4 114 -0.06 1.04 -1.8 -0.005 -0.51 0.62 0.011 0.21 3.59 -0.012 2.76 0 0.00 0.012 0.12 0.007 MUNTARVZ 1 0 89 0.012 0.161 -0.007 0.13 0.28 -0.011 0.43 4.7 0.012 2.76 0 0.00 0.035 -0.11 0.009	2 0	273	-0.009	0.00 0.0	061 -0.	.0- 960.	014	0 5.6	0.037	0.00
MILIAMENTEZZI 20 10 0.05 0.3 1.61 0.007 4.11 0.28 0.011 0.43 2.57 0.012 0.03 0.012 0.11 0.009 0.012 0.012 0.010 0.012 0.011 0.009	0 6	926		0.01	0.0 0.0	-0- 100-	000	6.C 0	2000 0	0.00
	7 -0.012	267	0 0	0.00 0.0	035 -0.	0.0 11.0	600	0 4.8	0.002	0.00
Mult-Kew2.4 0.8 123.1 0.17 -1.5 0.6 0.02 0.17 -0.07 0.002 0.44 3.98 0 273.5 0.001 0.00 0.03 -0.162 0	8 0	273.5	0.001	0.00 0.0	.03 -0.	.162 (0	0 5.6	0.034	0.00
MuMKew2.5 4.2 94.2 0.28 0.1 -2.7 0.015 0.48 0.7 0.057 0.02 8 0 2.65 0.019 0.00 0.036 0.041 0.003	0	265	-0.019	0.00 0.0	036 -0.	.041 -0.	003	0 5.3	0.018	0.0-
MINANARY, 25 3.4 110 0.11 0.77 -2.2 4.0003 -0.03 0 -0.005 0.46 5.7 -0.020 2.99 0.016 0.00 0.004 0.0194 0.0105 MINARARY, 7 3.8 110 0.13 0.29 5.5 0.004 -0.43 0.06 0.46 0.47 0.06 0.47 0.014 0.002 0.004 0.000 0.004 0.0144 0.005	0.020	299	0.016	0.00	0.0 610	102 -0.0	1025	0.0	0.055	0.0

Appendix B contit	-11	11	13	- 32	- 12	60	60	- 11			3		1 10			101	361	101	100	306	100
	MRH 69	MRH 60	WRH 60	uM ^{oc}	³⁰ Fe MBH 66	MBH 69	MRH 60	MRH 60	MASSI M	BH 66 M	AS AS	OM ISSE	BH 60 M	Cd MB	TI OT AR	H 72 MRI	Sb MBH	fe ¹⁹⁷ A	H-m n	g MRH	MRH 6
MuM-Co1	1.1	103.3	-0.16	-0.08	-0.7	-0.026	-0.27	0.1	-0.006	0.18	-0.5 0	0.018 (860.0	0 0	.01 0.	103 -0.	15 0.0	7 0	2.82	0.078	-0.016
MuM-Co1_1	9.3	107	-0.17	1.1	0.36	0.052	0.23	0.53	0.025	0.4	-0.3	0	0.044	0 0	.00 00.	023 (0.0	0 0	2.2	0.018	0.006
MuM-Col_2	1.2	101.7	-0.26	-0.54	0.4	0.025	0.32	-0.16	0.003	.0.09	0.31	0	0.298	0 0	.02 0.	0- 680	0.0 0.0	0 90	32	0.032	2.86
MuM-Col_3	4.9	011	0.83	-0.22	17.4	0.083	0.4	1.1	-0.008	-1.3	1.01 6	0.054	1.48 -(015 0	00.00	0.0 0.0	02 -0.0	H3 0	2.32	-0.00	0.172
MuM-Col 4	6.11	15/	1.0	-0.35	78.0	/00/0-	0.04	87.1	0.016	10.0-	0.46	0 0	- /2010	0 670.0	0 70.	1.0 800	145 0.0	10 0	181	67.0	11
MuM-Col 6	2.2	122 4	1.15	CZ-0	70.0	1000	0.43	-0.43	010.0	050	1 55 L	004	- /01.0	0 010	00	754 0.0	0.0 59	0 0	1000	0.000	0.11.0
MuM-Col 7	4	132	-0.93	-0.47	-0.22	-0.004	-0.04	0.54	-0.006	1.17	0.47 -6	0.004 6	1.021 -6	0 9000	0 10	757 0.0	33 0.1	0	2.7	0.022	0.022
MuM-Co2	3.2	128	0.36	-0.5	0.18	0.059	0.32	-0.39	-0.005	-0.04	1	0.01	1.22 0	.051 0	.01 0.	916 -0.0	M8 0.0.	35 0	3.18	0.03	0.036
MuM-Co2_1	1.5	114	0.86	-1.1	43.4	0.075	0.72	1.25	0.011	-0.67	0.9	0)- 76.0	0.006 0	.14 0.	0.0000000000000000000000000000000000000	05 0	0	2.23	0.206	7.9
MuM-Co2_2	3.4	143	0	-1.5	1.99	0.005	0.37	0.25	-0.006	-0.42	0.14 -(600.0	20.4	0 0	.05 0.	026 -0.	04 0.1	0 10	8.3	0.054	19.4
MuM-Co2_3	-0.1	135	-0.45	0.4	0.1	-0.002	1.01	0.17	-0.005	0.17	0.8	0.008	12 0	017 0	.02 0.	146 0.1	122 0.0.	28 0	6	0.09	16.2
MuM-Co2 4		155	0.0	-1.06	18.0	0 00	80.0	1 0.05	10.0	0.45	70.0	0 0	8.12		0 0 0	0 00	11 -0.0.	0 the c	2.2	C0.0	1.13
MuM-Co2 6	5.6	150	4.0	0.0-	0.13	20.0	17.1	CU.U-	0.003	0.10	21.0			0 00	.0 0.	151 00	1'n CI	115 0	195	SU.U	18.4
MuM-Co2 7	0.0	146	0.2	-0.19	-0.59	0.009	0.16	0.15	-0.003	0.51	0.29	0	0.68 0	015 0	00	0.0 0.0	93 -0.0	0 10	2.88	0.03	0.444
MuM-Cu1	-0.6	150	-1.4	0.7	-0.02	0.026	0	0.23	-0.009	0.48	0.34 -(0.005 1	01.3	0 0	.01 0.).0- 860	0.0 0.0	9	2.81	0.034	0.125
MuM-Cu1_1	-2.5	148	1.7	0.14	1.27	-0.007	-0.11	-0.2	-0.003	-1.14	1.39 -(0.004	63.6 -(0.005 0	00 00	1.1 -0.1	0.0 -0.0	14 0	2.62	0.028	0.02
MuM-Cu1_2	7.5	190	1.7	-1.4	0.88	0.04	-0.03	0.34	0.011	-0.8	2.2	0	68.2 -(0.006 0	.00 00.	016 0.	14 0.1	7 0	2.55	0.020	0.479
MuM-Cu1_3	-8.9	163	-0.8	0	-0.2	-0.002	0.77	-0.35	0	-0.36	2.27	0	77.4	0.02	0 10	048 0.0	0.0.	332 0	2.20	0.01	0.712
MuM-Cul 4	11	133	-0.4	-0.4	C4.0	C00.0	21.0	0.06	0 0050	-1.64	0.35 0.0	040	20.2	0 0	.0 10.	-0- 2/0	0.0 8/0	0 0	2.1.2	CO.0	0.018
MirM-Cirl 6	9	151	-1.6	5.0	037	700.0-	0.33	0.78	CLC00.0-	10.1	0.08	U U	195		0 10	-0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	143 -0.04	174 0	2.2	0000	100
MuM-Cu1 7	-5.3	105	0.5	0.86	0.43	0.032	0.19	0.52	-0.005	0.2	0.41 -6	0.004	58.4 -6	005 0	.01 0.	127 -0.0	125 0.0	5 0	2.3	0.07	0.023
MuM-Cu2	-1.1	121	-0.1	-0.71	0.15	0	0.59	0.03	-0.005	0.09	0.4 -(0.004	76.3 -(1.005 0	.01 0.	004 0.4	0.1 0.1	3 0	2.19	0.01	0.012
MuM-Cu2_1	-0.9	131	-0.4	-0.4	-0.32	0	2.23	0.24	0	-0.04	0.51 6	014	47.6	0.1 0	.00 00.	056 0.0	47 0.	1 0	2.2	-0.01	-0.001
MuM-Cu2_2	10.9	135	1.7	-1.8	-0.84	0.021	0.47	0.62	0	0.59	0.18	0 0	82.7 -(0 900	00 00	047 0.	0.0- 80	39 0	1.62	0.039	0.031
MuM-Cu2 4	3 6	133	-1 5	0.14	-0.47	0.043	0.37	0.18	0000	10.0	0.02		35.7 0	0 520	0 10	.0 207	10- 80	10	1.2	0.04	0.035
MuM-Cu2 5	5	153.7	-1.9	0	-0.39	-0.005	0.26	0.33	0	0.07	0.03 -0	0.005	85.4	0 0	.0- 10.	009 0.1	17 -0.0	5 0	2.50	0.04	0.000
MuM-Cu2_6	2.4	167	-0.4	0	0.07	0.011	-0.23	-0.2	0.012	- 0.19)- 61.0	0.014	58 0	.022 0	.00 00.	151 0.4	0 60	0	2.10	0.084	0.017
MuM-Cu2_7	-5.8	144.6	-1.9	0.0	-2.61	-0.004	3.3	0.8	0	-0.47	0.42 0	1001	58.6 0	.022 0	.01 0.	095 0.0	0.1	4 0	1.62	.000	0.007
Penn-S	12.5	194		-0.26	9	120.0	0.36	6.3	0 0	0.34	322 -4	810.0	203 0	0 410.0	0.00	0.0 710	-0.0- 110	0 00	4.2	0.42	-0.004
Penn-S_1	C.11-	142	4.1	17:0-	91	c 10 0-	-0.04	1.06	100	CI.0-	333 -1	004	0 177 177	0 100	0 9	0.0 0.00	0.0- 20	0 791	3.60	20.00	0.004
Penn-S 3	0.9	133.4	-0.4	-0.14	1.1	-0.003	0.45	-0.13	0	0.03	389 0	210,	194	0 0	00	-0.0	0.0 0.1	4 0	4.8	10.0-	-00.00
Penn-S_4	19.5	147	2	-0.24	-0.4	-0.002	0.01	-0.69	0	0.64	351	0	193	0 0	.00 00.	0.0- 110	0.7 0.2	1 0	4.32	00.00	-0.002
Penn-S_5	-2.4	147	-0.2	-0.64	-0.7	-0.009	-0.03	-0.15	0	-0.19	346 0	1.017	188	0 0	.0- 00.	006 0.1	08 0	1 0.00	5 4.5	-0.00	0.000
Penn-S_6	-1.2	112	-1.9	0.1	2.1	-0.010	-0.29	0.7	-0.008	0.14	371	0	161	0 0	.0- 00.	026 -0.0	126 -0.11	52 0	5.00	-00.0	0.0004
Penn-S_7	4	109	1.4	1.3	6.0	-0.002	-0.02	-0.88	0.021	-0.22	323 0	0.022	192 -(0.005 0	.00	016 -0.0	0.0	151 0	4.50	0.03	0.0054
MuM-Margi	C.U-	1.061	7 -	-0.1	4.1	0.044	15.0	7.0-	600.0-	C0.0	8/.0	0 0	8.10	00	.0 CO.	100 001	10 -01	9 0	.4.I	0000	0.041
MuM-Marg1_1 MuM-Marg1_7	7 4	148	-1 14	0.3	5.0- C O	100.0	70.0	7.0-	-0.003	0.54	1		1.20		.0	1.0 8.0	1.0 0C	000 /000	777 Y	60.0	CH0.0
MuM-Marg1 3	8.8	144	-0.8	0.2	2	-0.016	0.71	0.12	0.028	0.48	9.13	0	66.8	0	101	725 -0.	03 0.1	7 0	1.78	0.074	0.007
MuM-Margl 4	3.9	121	-2.5	0.09	1.4	0.006	0.2	-0.33	0	0.32	0.65	0	55.9	0 0	.02 0.	335 -0.0	0 900	0	1.6	0.02	0.011
MuM-Marg1_5	4	157.4	0.7	-0.1	0.8	0	0.19	0.95	0.006	0.56 -	0.35 -(0.004	62.9 0	.028 0	.00 00.	0 110	03 -0.04	0 9/1	2.12	0.115	-0.003
MuM-Margl_6	2	125	0	0.6	0	0.007	0.03	1.4	-0.00587	1	0.56 -(0.004)- L.L.L.	0.011 0	.01 0.	005 -0.1)65 0.6	5 0	1.78	-0.00	0.017
MuM-Marg1 7	0	140	-0.4	0.5	1.7	-0.006	0.79	0.62	0.036	-0.23	0.42	0)- 86	011 0	.0- 00.	0- 110	011 0.0	3 0	1.71	0.04	0.007

Appendix is commerce	340	30	5641	56	59	60	66.7	71.0	72.0	75 .	35	107 .	II co	1154.	118	121 cu	125 _m . 1	. 16	202	208	209
MBH 69	S MBH 69	MBH 69	MASSI	MBH 66	C0 MBH 69	MBH 69	MBH 69	MASSI	VBH 66 A	AS (BH 69 A)	Mo A	Ag 4BH 69 A.	BH 69 M	BH 69 M	BH 72 M	(BH 69 M	Ie IBH 69 M	BH 66 A	ASSI N	BH 66	MBH 66
MuM-Marg2 7	120	0.4	0.3	0.4	-0.022	0.66	1.4	-0.008	1.07	-0.14	0	102	0.010	0.02	0.029	0.06	0.27 (0.005	1.34	0.072	0.084
MuM-Marg2_1 4 MuM-Maro2_2 2_5	148	-1.1	-0.0	-0.4 -2.4	0.009	-0.29	0.59	0.025	0 7	0.25	0 0	98.4	0.005	0.00	0.047	0.03	0.12	0 0	2.06	0.009	3.26
MuM-Marg2_3 8.8	142	-0.3	1.3	-1.9	0.016	-0.11	0.09	0	-0.04	0.21	0	108.7	0	0.00	0.006	0.106	0.16	0	1.81	0.006	3.5
MuM-Marg2_4 6.8	135	-0.42	-0.06	-1.5	0.007	-0.01	0.1	0	0.93	0.37	0	165	0	0.02	0.069	-0.04	0.23	0	1.47	0.04	2.22
MuM-Marg2_5 7.3	130	-0.1	-0.6	-3.5	0.013	0.38	-0.21	0.028	-0.03	0.13	0.008	126	0 0	0.01	0.045	-0.033	0	0	1.85	0.037	1.26
MuM-Marg2_6 4.4 MuM-Marg2 7 -5	129	0.1	0.0 4.1-	0.3	-0.004	-0.04	0.74	0.033	-0.06	0.09	0.008	123	0.023	0.00	0.014	0.034	0.015	0 0	2.34	0.024	1.59
Penn-L -5.4	144	-0.1	-1.02	2.1	0.009	0.07	-0.06	0.042	0.8	463	0	219	0	0.00	0.027	0.002	0.11	0	5	0.034	0.004
Penn-L_1 -6	151	-0.39	-0.5	-1.8	-0.011	0.1	0.3	0.013	-0.35	436	0.014	227	0	0.00	-0.01	-0.014	0.091	0	5.62	0.047	-0.008
Penn-L_Z 0 Penn-L_3 7 1	154	-0.2	-1.01	2.8	0.006	0.28	-0.6	-0.003	100	442	0.013	222	0 000	0.00	-0.02	0 038	0.05	0 0	6.14	0.014	0.008
Penn-L 4 9.1	129	-0.41	0.9	1.8	-0.004	0.31	-0.23	-0.003	75.0	379	0.038	199	0.005	0.00	0.004	0.042	0.038	0	4.7	0.043	-0.010
Penn-L_5 8.3	135	0.55	0.76	1.4	0.002	-0.16	0.35	-0.010	-0.97	410	0	201	0	- 00.0	0.002	0.01	0.058	0	4.69	0.043	-0.003
Penn-L_6 -8.4	129	0.37	0.07	3.3	0	-0.14	1	-0.014	-0.4	431	0	242	0.016	0.00	0.018	80.0	0.11	0 0	4.59	0.041	0.004
Penn-L_7 -/.1 MM_IRH 6	161	-0.19	1.2	2.42	7007	0.09	0.50	-0.00	-0.5	13.7	0 14	184	C00.0-	00.0	0.06	0.00	610.0	0 0	7.07	0.004	200.0-
MM-IRH 1 -6	128.5	-0.35	-0.2	-0.83	-0.17	-0.1	0.2	-0.042	0.6	11	0.32	193	0.02	-0.01	0.002	0.086	-0.1	0.003	1.64	0.005	-0.016
MM-IRH_2 12	131	-0.77	-0.5	0.4	0	-0.7	0.01	0	7	12.5	0.02	215.3	0.05	-0.01	0.05	-0.13	0.02	0.003	2.33	0.004	0.002
MM-IRH_3 -7	179	0.3	-2	-0.3	-0.01	-0.8	0	0.08	1.4	16.3	60.0	317	0.02	- 10.0	0.044	0.04	-0.1	0	3.42	0.007	-0.005
MM-IRH_4 -2	156	-0.41	0.93	-0.08	-0.09 20.02	-0.28	0.08	-0.09	0.88	13.6	0.17	204.7	0.14	- 10.0	-0.089	0.013	-0.15	0.002	2.18	0.004	0.004
MM-IRH 6 7.6	141	-0.04	-0.47	21-	-0.115	-0.17	0.07	CT-0-	-0.81	C C L	50.0	267	0+0.0+0	0.00	200.0	0.05	-0.14	C70.0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.012	-0.019
MM-IRH_7 3.6	138	-0.24	-0.1	-1.66	-0.053	-0.45	0.32	0.09	-0.78	11.7	-0.1	202	0.003	0.01	0.029	0.1	-0.12 (0.029	1.36	0.016	0.008
MM-CMK 0.9	151	-0.17	-0.1	0.1	-0.01	-0.33	-0.22	-0.083	0.88	10.4	-0.24	109.9	10.0	0.00	0.02	-0.05	0.15	0.002	4.33	0.001	-0.001
MM-CMK_I -/./	144	0.27	0.6	0.53	-0.21	-0.2	0.23	0.013	5.0- 10.0	11.4	-0.06	116.3	-0.029	10.0-	0.013	10.0		100.0	3.98	100.0	100.0-
MM-CMK 3 -1.7	135	-0.02	0	60.0-	-0.01	-0.8	0.19	0.21	0.3	10.5	0.13	130.3	10.0	-0.01	0.065	-0.02	0.2	0	3.8	0.022	100.0-
MM-CMK_4 -2.6	113	-0.01	-0.63	0.8	0.06	-0.88	0.1	0.07	0.6	10.4	0.17	63	0.04	0.01	0.041	60.0	- 10.0	0.001	1.42	.0013	-0.012
MM-CMK_5 4.4	119	-0.2	0,4	0.1	0.01	1.14	-0.21	-0.3	-0.16	10	0.09	56.7	0.02	0.01	0.007	0.05	0.1	0.012	1.48	0.005	0.007
MM-CMK_0 2 MM-CMK_7 _05	1.011	75.0	1.0	0	0.13	1.0	0.18	-0.03	1.0	11	0 07	6.16	0 00 0	0.00	0.01	c0.0-	0.01	500.0	5.0.C	C10.0	C100.0
MM-PMK 7.2	94	-0.44	-0.56	-2-	0.01	-0.06	-0.25	0.17	0.44	12	0.2	26.2	0.06	0.01	0.018	0.11	0.012	0.003	1.54	900.0	-0.008
MM-PMK_1 -7	105	0.34	1.2	-0.6	0.078	-0.29	0.46	-0.07	0.58	13.4	-0.09	20.8	0.08	0.02	0.032	-0.004	0.002	0.009	1.42	0.002	0
MM-PMK_2 9	16	0.01	0.95	1.2	0.01	0.44	0.4	0.02	0.38	8.9	0.07	18.9	0.048	0.01	0.05	0.076	0.053	0.001	1.29	010	0.011
MM-PMK 4 -2	122.4	-0.61	0.43	-0.6	-0.28	-0.85	20.0-	0.06	-0.78	8.1	0.1	27.2	0.047	00.00	0.108	0.12	0 0	200.0	1.59	20000	0.001
MM-PMK_5 -4	93	0.13	0.9	-1.9	0.14	0.7	-0.01	0.19	0.45	5.9	-0.06	24.5	0.08	0.00	0.071	0.047	0.16 (0.005	2.01	0.008	-0.002
MM-PMK_6 -9	103	0.27	1.2	0.5	0.04	-0.2	0.04	0.15	-0.5	11.5	-0.02	24.9	0.05	0.00	0.007	-0.07	0.014 (2005	2.1	0.004	-0.001
MM-PMK_7 -3 MM-CFW -4	121.3	-1.06	0.7	-2.9	0.19	-0.21	0.28	-0.08	-0.01	10.9	0.14	23.4	0.142	0.00	0.1	-0.103	0.07	0.002	1.11	0	-0.00
MM-CFW 1 -4	106	-0.47	36	870	0.04	0.2	0.54	-0.13	-0.9	8.6	0	26.6	0.04	0.00	-0.01	0.035	0.01	0.001	2.75	760.0	0.009
MM-CFW_2 3	156	-0.65	1.5	8.5	-0.09	1.3	0.26	-0.04	0.3	9	-0.24	157	-0.09	-0.01	-0.04	0.034	0.22	0.004	6.67	0.004	-0.008
MM-CFW_3 3	154	-1.55	0.9	12.7	-0.093	0.32	0.81	0.19	-0.96	10.1	0.13	181	-0.013	- 10.0	-0.025	610.0-	-0.1	0.008	11.93	0.003	-0.005
MM-CFW 5 9	661	1.0	171	94	C7.C	0.51	0.46	0.19	-0.3	1.01	0.25	110	t0.0	0.00		ccu.u 0.075	0.02	100.0	65.5	1.033	0.0026
MM-CFW_6 10	196	0.1	1.2	233	0.012	0.02	0.78	0.02	0.65	33.7	0.24	73.1	0.105	0.00	0.009	-0.08	0.08	0	3.87	0.005	0.006
MM-CFW 7 -3.3	210	0.9	0.7	36.8	0.17	-1.3	0.21	0.15	0	23.6	-0.07	142.7	0.1	0.00	0.029	-0.01	0.15 (0.017	7.36	0.014	-0.006

	31P	34S	⁵³ Cr	55 Min	⁵⁶ Fe	59C0	IN 09	66 Zn	71Ga	"Ge	25 AS	95Mo	107 Ag	" Cd	115 In	118Sn	121 Sb	¹²⁵ Te	07 Au	⁰² Hg	⁰⁸ Pb	²⁰⁹ Bi
	MBH 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	MBH 69	MBH 69	MASSI	MBH 66	MBH 69	ISSIM	MBH 69	MBH 69	VIBH 69	MBH 72 1	WBH 69 N	IBH 69 A	IBH 66 1	W ISSN	3H 66 A	fBH 66
Odw-WW	-2.8	186	-0.49	0.3	-2.8	0.08	0.5	0.82	-0.04	-0.18	7.7	-0.03	77.3	0.01	-0.01	-0.022	0.53	0.04	0.003	1.1	800.	0.074
MM-WP0_1	-0.1	164	-0.04	-0.2	0.1	-0.26	-0.1	0.17	0	-0.28	8.2	-0.34	149	-0.166	-0.01	-0.046	0.306	-0.12	0.004	1.4	.02	0.005
MM-WP0_2	1.3	147	0.19	-0.7	-0.9	0.06	-1.18	0.26	0.04	-0.27	12.6	0.18	113.2	0.13	-0.01	0.013	0.319	-0.399	0.003	1.74	.021	0.068
MM-WP0_3	-2	142	0.06	-0.6	-1.8	0	-0.94	0.17	-0.2	0.23	8.6	-0.01	66	0.04	0.00	-0.02	0.226	-0.24	0.007	1.41	10.0	0.016
MM-WPO 4	0.8	150	-0.09	-1.48	-2.3	-0.066	-0.04	-0.19	-0.21	0	6.5	0.14	102	-0.04	0.00	0.021	0.219	-0.11	0.002	1.07	.008	0.02
MM-WPO 5	1.4	105	-0.35	0	7	0.01	0	-0.21	0.02	-0.42	6.8	-0.08	100	-0.162	-0.01	0.011	0.22	-0.08	0.002	1.49	.028	0.004
MM-WPO_6	-3.3	166	-0.16	-0.6	3.5	-0.14	-0.34	0.02	-0.01	0.44	8.9	0.43	100.4	-0.03	0.00	0.006	0.21	-0.05	0.007	1.48	003	0.006
MM-WPO_7	-5.1	148.4	0.11	1	-3.3	-0.14	0.39	-0.15	0.09	0.89	8.8	0.13	93.8	0.022	0.00	0.04	0.35	0.04	0.003	1.07	.014	0.028
HMO-MM	-1.5	124	-0.13	0.4	4.2	0.03	0.5	0.63	0.14	0.29	41.9	0.01	200.4	0.02	0.00	0	0.06	-0.133	0.001	2.27	.005	-0.003
I_HMO-MM	-5.2	124	0.06	0.6	-0.2	-0.032	0.1	-0.31	-0.06	0.2	39.5	0.3	202	0.06	-0.01	-0.034	0.08	-0.12	0.007	1.84	.012	0.007
MM-OMH_2	1.8	113	-0.02	-0.76	2.6	0.04	-1.1	0.35	-0.06	0.9	31.4	-0.098	211.4	-0.121	0.00	0.035	0.092	0.06	0.008	1.67	.016	-0.001
MM-OMH 3	1.9	139	0.28	0.3	4.7	0.26	-0.29	0.15	-0.06	0.26	39.3	0.22	203	60.0	0.00	-0.015	-0.045	0.06	0.005	1.61	100.	-0.002
MM-0MH 4	-2.7	142	0.01	-0.3	1.3	0.07	-0.73	0.41	0.04	0.08	38	0.03	201	-0.09	0.00	0.016	0.014	-0.12	0.001	1.97	101	0.001
MM-OMH_5	-0.8	161	-0.35	-0.27	0.5	0.1	0.11	0.23	0.05	-0.49	28.4	-0.03	142	-0.02	0.00	-0.042	-0.01	0.09	0.004	2.15	.002	-0.005
9 HWO-WW	7.2	212	0.14	-0.1	3.3	0.03	-0.5	0.24	-0.035	0.2	49.7	-0.05	177	0	0.00	0.009	-0.048	1.16	0.013	28.6	004	0.005
7 HMO-MM	1	170	0.39	0	-1.9	0.07	1.43	-0.14	0.22	-0.51	49.1	0.04	197	0.2	0.01	0.064	0.03	0.15	0.002	1.11	.002	0.003