organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new polymorph of 2,6-bis(trifluoromethyl)benzoic acid

Nick A. Giffin, Arthur D. Hendsbee and Jason D. Masuda*

The Maritimes Centre for Green Chemistry and the Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada Correspondence e-mail: jason.masuda@smu.ca

Received 24 March 2011; accepted 29 March 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.151; data-to-parameter ratio = 10.8.

The asymmetric unit of a second polymorph of the title compound, $C_9H_4F_6O_2$, contains five independent molecules, which form hydrogen-bonded $O-H\cdots O$ dimers about inversion centers. The most significant structural difference between this structure and that of the first polymorph [Tobin & Masuda (2009). Acta Cryst. E65, o1217] is the hydrogen-bonded, dimeric orientation of the carboxylic acid functionalities.

Related literature

For the first polymorph of the title compound, see: Tobin & Masuda (2009). For details of the synthesis, see: Dmowski & Piasecka-Macieiewska (1998). For information on dimeric *versus* catemeric crystal growth in benzoic acids, see: Moorthy *et al.* (2002).

Experimental

Crystal data

 $\begin{array}{l} C_9H_4F_6O_2\\ M_r = 258.12\\ \text{Triclinic, }P\overline{1}\\ a = 10.312 \ (2) \ \text{\AA}\\ b = 11.243 \ (2) \ \text{\AA}\\ c = 21.283 \ (4) \ \text{\AA} \end{array}$

$\alpha = 79.565 \ (3)^{\circ}$
$\beta = 88.961 \ (3)^{\circ}$
$\gamma = 85.125 \ (3)^{\circ}$
$V = 2418.0 (9) \text{ Å}^3$
Z = 10
Mo $K\alpha$ radiation

$0.14 \times 0.11 \times 0.11 \text{ mm}$

 $R_{\rm int} = 0.046$

6 restraints

 $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$

16341 measured reflections 8352 independent reflections

5092 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.20 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2010) $T_{min} = 0.973, T_{max} = 0.980$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.151$ S = 0.858352 reflections 771 parameters

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O1^{i}$	0.84	1.87	2.701 (4)	172
$O4-H4A\cdots O10^{ii}$	0.84	1.82	2.657 (3)	174
$O6-H6A\cdotsO8^{i}$	0.84	1.84	2.673 (4)	170
$O7 - H7 \cdots O5^{i}$	0.84	1.80	2.638 (4)	173
O9−H9···O3 ⁱⁱⁱ	0.84	1.81	2.644 (3)	174

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) x - 1, y, z.

Data collection: *APEX2* (Bruker, 2010); cell refinement: *SAINT* (Bruker, 2010); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors would like to thank the Natural Sciences and Engineering Research Council for a Discovery Grant and a Research Tools and Instruments Grant (JDM), the Canadian Foundation for Innovation for a Leaders Opportunity Fund Grant and the Nova Scotia Research and Innovation Trust (JDM).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2403).

References

Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dmowski, W. & Piasecka-Macieiewska, K. (1998). *Tetrahedron*, **54**, 6781–6792. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.

Moorthy, J. N., Natarajan, R., Mal, P. & Venugopalan, P. (2002). J. Am. Chem. Soc. 124, 6530–6531.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tobin, J. M. & Masuda, J. D. (2009). Acta Cryst. E65, o1217.

Acta Cryst. (2011). E67, o1054 [doi:10.1107/S1600536811011731]

A new polymorph of 2,6-bis(trifluoromethyl)benzoic acid

N. A. Giffin, A. D. Hendsbee and J. D. Masuda

Comment

Recent studies on benzoic acids have indicated a potential for selective crystal polymorph engineering. It is suggested that catemeric or dimeric structures of benzoic acids can be influenced by concentration and the presence of solvent (Moorthy *et al.*, 2002). Crystallization from solvent free oil led to the formation of the hydrogen bound, dimeric form of the title compound.

The molecular structure of the title compound is presented in Fig. 1. The most significant structural difference between this structure and the literature polymorph (Tobin & Masuda, 2009) is the hydrogen bound, dimeric orientation of the carboxylic acid functionalities. The five molecules in the asymmetric unit are defined by O—H…O hydrogen bonds ranging from 2.638 (4)–2.701 (4) Å and angles of 170–174° (Tab. 1 & Fig. 2).

Experimental

The title compound was prepared following the literature methods (Dmowski & Piasecka-Macieiewska, 1998). The compound was crystallized slowly from the resultant oil forming colorless, block-like crystals.

Refinement

The H atoms were placed in geometrically idealized positions with C—H and O—H distances = 0.95 and 0.98Å, respectively, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(O)$.

Several short contact distances are found for F(2) & F(4) to F(17), F(8) to F(23), F(9) to F(20), F(10) to F(25), F(13) to F(21) and F(14) to F(27). The short contacts are believed to arise from disorder present in the crystal. Modeling this disorder yielded low occupancy which was detrimental to the integrity of the data set upon refinement. In order to obtain satisfactory thermal parameters the use of DELU restraints were applied to fluorine atoms F(4)>F(6) relative to the adjacent C(8) atom.

Figures

Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Aromatic hydrogen atoms are removed for clarity.

2,6-Bis(trifluoromethyl)benzoic acid

Crystal data	
$C_9H_4F_6O_2$	Z = 10
$M_r = 258.12$	F(000) = 1280
Triclinic, <i>P</i> T	$D_{\rm x} = 1.773 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.312 (2) Å	Cell parameters from 4371 reflections
b = 11.243 (2) Å	$\theta = 2.2 - 27.4^{\circ}$
c = 21.283 (4) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\alpha = 79.565 \ (3)^{\circ}$	T = 100 K
$\beta = 88.961 \ (3)^{\circ}$	Block, colourless
$\gamma = 85.125 \ (3)^{\circ}$	$0.14 \times 0.11 \times 0.11 \text{ mm}$
$V = 2418.0 (9) \text{ Å}^3$	

Data collection

Bruker APEXII CCD diffractometer	8352 independent reflections
Radiation source: fine-focus sealed tube	5092 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2010)	$h = -11 \rightarrow 12$
$T_{\min} = 0.973, T_{\max} = 0.980$	$k = -13 \rightarrow 13$
16341 measured reflections	$l = -25 \rightarrow 25$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.151$	H-atom parameters constrained
<i>S</i> = 0.85	$w = 1/[\sigma^2(F_o^2) + (0.0887P)^2 + 1.2723P]$ where $P = (F_o^2 + 2F_c^2)/3$
8352 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
771 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.2018 (2)	0.7426 (2)	-0.03174 (10)	0.0326 (5)
C1	0.1804 (4)	0.6502 (3)	0.08995 (16)	0.0210 (8)
01	0.5747 (2)	0.5485 (2)	0.55641 (12)	0.0268 (6)
F2	0.0386 (2)	0.7786 (2)	-0.09609 (10)	0.0391 (6)
C2	0.0469 (3)	0.6267 (3)	0.06966 (16)	0.0184 (8)
O2	0.6703 (2)	0.4971 (2)	0.46844 (12)	0.0286 (6)
H2	0.5936	0.4894	0.4581	0.043*
F3	0.0525 (2)	0.88431 (19)	-0.02227 (11)	0.0412 (6)
C3	-0.0026 (3)	0.6834 (3)	0.00950 (17)	0.0207 (8)
03	0.8142 (2)	0.2255 (2)	0.30586 (12)	0.0256 (6)
C4	-0.1242 (4)	0.6592 (3)	-0.00972 (17)	0.0224 (8)
H4	-0.1558	0.6956	-0.0510	0.027*
O4	0.7566 (2)	0.0674 (2)	0.26430 (12)	0.0263 (6)
H4A	0.8359	0.0441	0.2695	0.039*
C5	-0.1996 (4)	0.5822 (3)	0.03096 (17)	0.0227 (8)
Н5	-0.2831	0.5665	0.0179	0.027*
05	0.5766 (2)	0.2035 (2)	0.86826 (13)	0.0313 (6)
C6	-0.1525 (4)	0.5288 (3)	0.09046 (17)	0.0234 (9)
H6	-0.2049	0.4770	0.1185	0.028*
O6	0.4856 (2)	0.3878 (2)	0.87912 (12)	0.0264 (6)
H6A	0.5603	0.3966	0.8917	0.040*
C7	-0.0301 (3)	0.5491 (3)	0.11012 (16)	0.0186 (8)
F7	0.3484 (2)	0.50617 (18)	0.75965 (11)	0.0366 (6)
07	0.1849 (2)	0.7599 (2)	0.10138 (12)	0.0250 (6)
H7	0.2624	0.7721	0.1080	0.037*
C8	0.0199 (4)	0.4852 (3)	0.17366 (17)	0.0231 (6)
F8	0.4944 (2)	0.3692 (2)	0.74177 (11)	0.0434 (6)
08	0.2712 (2)	0.5717 (2)	0.09473 (11)	0.0241 (6)
C9	0.0723 (4)	0.7717 (3)	-0.03502 (17)	0.0269 (9)
F9	0.3243 (3)	0.4099 (2)	0.68321 (11)	0.0577 (8)
09	0.0663 (2)	0.1576 (2)	0.31237 (12)	0.0244 (6)
Н9	-0.0132	0.1803	0.3076	0.037*
F10	0.4166 (2)	0.00770 (19)	0.94653 (11)	0.0433 (7)
C10	0.4828 (4)	0.2792 (3)	0.86606 (17)	0.0233 (8)
O10	0.0096 (2)	-0.0017 (2)	0.27140 (12)	0.0266 (6)
F11	0.4018 (2)	0.17788 (18)	0.98037 (10)	0.0309 (5)
C11	0.3507 (3)	0.2508 (3)	0.84751 (16)	0.0199 (8)
F12	0.2413 (2)	0.0653 (2)	0.99315 (10)	0.0424 (6)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C12	0.2800 (4)	0.1666 (3)	0.88805 (16)	0.0218 (8)
C13	0.1607 (4)	0.1366 (3)	0.87036 (17)	0.0252 (9)
H13	0.1138	0.0803	0.8987	0.030*
F13	0.0824 (2)	-0.0491 (2)	0.41419 (10)	0.0353 (6)
C14	0.1091 (4)	0.1894 (3)	0.81057 (17)	0.0224 (8)
H14	0.0270	0.1691	0.7980	0.027*
F14	0.2542 (2)	-0.1135 (2)	0.46976 (10)	0.0400 (6)
C15	0.1785 (4)	0.2714 (3)	0.76988 (17)	0.0234 (8)
H15	0.1441	0.3064	0.7290	0.028*
F15	0.2106 (2)	0.07786 (19)	0.43794 (10)	0.0370 (6)
C16	0.2977 (4)	0.3034 (3)	0.78793 (16)	0.0217 (8)
F16	0.1837 (2)	-0.03585 (18)	0.15962 (9)	0.0278 (5)
C17	0.3656 (4)	0.3974 (4)	0.74290 (18)	0.0299 (9)
F17	0.1763 (2)	0.14663 (17)	0.17769 (9)	0.0273 (5)
C18	0.3351 (4)	0.1034 (3)	0.95232 (18)	0.0278 (9)
F18	0.3479 (2)	0.07010 (19)	0.13671 (9)	0.0310 (5)
C19	0.0905 (4)	0.0543 (3)	0.29297 (16)	0.0211 (8)
F19	0.6650 (2)	0.7594 (2)	0.45210 (10)	0.0356 (6)
C20	0.2308 (3)	0.0048 (3)	0.30006 (16)	0.0192 (8)
F20	0.8213 (2)	0.6977 (2)	0.39510 (9)	0.0365 (6)
C21	0.3090 (3)	-0.0021 (3)	0.24565 (16)	0.0195 (8)
F21	0.8352 (2)	0.85782 (18)	0.43459 (10)	0.0361 (6)
C22	0.4375 (4)	-0.0487 (3)	0.25249 (18)	0.0223 (8)
H22	0.4903	-0.0511	0.2156	0.027*
F22	0.9052 (2)	0.3168 (2)	0.66535 (12)	0.0454 (7)
C23	0.4900 (4)	-0.0917 (3)	0.31231 (18)	0.0255 (9)
H23	0.5779	-0.1248	0.3164	0.031*
F23	0.7250 (2)	0.4195 (2)	0.67639 (11)	0.0417 (6)
C24	0.4143 (4)	-0.0866 (3)	0.36632 (18)	0.0261 (9)
H24	0.4503	-0.1167	0.4075	0.031*
F24	0.7544 (2)	0.32825 (19)	0.59631 (11)	0.0419 (6)
C25	0.2858 (3)	-0.0376 (3)	0.36039 (16)	0.0202 (8)
F25	0.6092 (2)	0.14615 (19)	0.14326 (10)	0.0337 (5)
C26	0.2081 (4)	-0.0306 (3)	0.42061 (18)	0.0273 (9)
F26	0.7286 (2)	0.28146 (19)	0.16435 (10)	0.0320 (5)
C27	0.2537 (4)	0.0439 (3)	0.18000 (17)	0.0228 (8)
F27	0.6488 (2)	0.26378 (18)	0.41950 (9)	0.0277 (5)
C28	0.6694 (4)	0.5377 (3)	0.52244 (17)	0.0237 (8)
F28	0.4893 (2)	0.1538 (2)	0.44626 (9)	0.0325 (5)
C29	0.8011 (3)	0.5702 (3)	0.54062 (16)	0.0198 (8)
F29	0.6595 (2)	0.07953 (17)	0.40289 (9)	0.0281 (5)
C30	0.8664 (4)	0.5031 (3)	0.59459 (17)	0.0226 (8)
F30	0.5517 (2)	0.3352 (2)	0.11093 (10)	0.0409 (6)
C31	0.9828 (4)	0.5382 (3)	0.61349 (17)	0.0259 (9)
H31	1.0254	0.4930	0.6505	0.031*
C32	1.0379 (4)	0.6378 (3)	0.57941 (18)	0.0255 (9)
H32	1.1180	0.6610	0.5927	0.031*
C33	0.9757 (4)	0.7032 (3)	0.52601 (17)	0.0238 (9)
H33	1.0136	0.7716	0.5023	0.029*

C34	0.8579 (4)	0.6706 (3)	0.50624 (16)	0.0210 (8)
C35	0.7957 (4)	0.7459 (3)	0.44775 (17)	0.0245 (9)
C36	0.8120 (4)	0.3929 (3)	0.63253 (18)	0.0287 (9)
C37	0.7321 (4)	0.1698 (3)	0.28488 (16)	0.0205 (8)
C38	0.5913 (3)	0.2176 (3)	0.28029 (16)	0.0189 (8)
C39	0.5192 (4)	0.2240 (3)	0.33629 (16)	0.0197 (8)
C40	0.3908 (4)	0.2727 (3)	0.33246 (17)	0.0226 (8)
H40	0.3421	0.2763	0.3705	0.027*
C41	0.3330 (4)	0.3163 (3)	0.27363 (17)	0.0238 (8)
H41	0.2454	0.3504	0.2715	0.029*
C42	0.4026 (4)	0.3101 (3)	0.21823 (17)	0.0244 (9)
H42	0.3626	0.3394	0.1779	0.029*
C43	0.5319 (4)	0.2609 (3)	0.22122 (16)	0.0216 (8)
C44	0.6044 (4)	0.2552 (3)	0.16000 (17)	0.0254 (9)
C45	0.5793 (4)	0.1803 (3)	0.40084 (17)	0.0237 (8)
F4	0.1004 (2)	0.38607 (18)	0.16895 (10)	0.0319 (5)
F5	-0.0752 (2)	0.4452 (2)	0.21359 (10)	0.0356 (5)
F6	0.0871 (2)	0.55444 (18)	0.20437 (9)	0.0289 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0198 (13)	0.0469 (14)	0.0305 (12)	-0.0067 (10)	0.0055 (10)	-0.0040 (10)
C1	0.020 (2)	0.0212 (18)	0.0229 (19)	-0.0016 (16)	0.0007 (16)	-0.0061 (15)
01	0.0138 (14)	0.0371 (15)	0.0322 (14)	-0.0036 (11)	0.0023 (12)	-0.0127 (12)
F2	0.0322 (14)	0.0588 (15)	0.0219 (11)	-0.0052 (12)	-0.0015 (10)	0.0054 (11)
C2	0.0151 (19)	0.0191 (17)	0.0228 (18)	-0.0004 (14)	0.0000 (15)	-0.0084 (15)
O2	0.0157 (14)	0.0436 (16)	0.0324 (15)	-0.0070 (13)	0.0011 (12)	-0.0205 (13)
F3	0.0440 (15)	0.0242 (11)	0.0533 (15)	-0.0063 (10)	0.0131 (12)	-0.0006 (11)
C3	0.014 (2)	0.0228 (18)	0.0271 (19)	-0.0001 (15)	0.0019 (16)	-0.0098 (16)
O3	0.0168 (14)	0.0280 (13)	0.0340 (15)	-0.0026 (11)	-0.0016 (12)	-0.0103 (12)
C4	0.021 (2)	0.0225 (18)	0.0248 (19)	0.0048 (16)	-0.0030 (16)	-0.0092 (16)
O4	0.0139 (14)	0.0247 (13)	0.0415 (15)	0.0025 (11)	-0.0002 (13)	-0.0113 (12)
C5	0.016 (2)	0.0237 (18)	0.031 (2)	-0.0006 (15)	-0.0031 (17)	-0.0123 (17)
O5	0.0164 (14)	0.0317 (14)	0.0505 (17)	0.0031 (12)	-0.0024 (13)	-0.0217 (13)
C6	0.019 (2)	0.0204 (18)	0.031 (2)	-0.0014 (15)	0.0047 (17)	-0.0053 (16)
O6	0.0175 (15)	0.0262 (13)	0.0395 (15)	-0.0010 (11)	-0.0075 (13)	-0.0158 (12)
C7	0.014 (2)	0.0190 (17)	0.0235 (18)	0.0012 (15)	0.0011 (15)	-0.0081 (15)
F7	0.0372 (14)	0.0255 (11)	0.0470 (14)	-0.0088 (10)	0.0025 (12)	-0.0033 (11)
07	0.0173 (14)	0.0251 (13)	0.0356 (15)	-0.0029 (11)	-0.0036 (12)	-0.0128 (12)
C8	0.0206 (19)	0.0219 (16)	0.0268 (19)	-0.0002 (10)	-0.0001 (13)	-0.0054 (14)
F8	0.0318 (15)	0.0483 (14)	0.0512 (15)	-0.0117 (11)	0.0169 (12)	-0.0099 (12)
08	0.0149 (14)	0.0250 (13)	0.0333 (14)	0.0007 (11)	-0.0050 (11)	-0.0085 (11)
C9	0.023 (2)	0.031 (2)	0.027 (2)	-0.0001 (17)	0.0004 (17)	-0.0053 (17)
F9	0.080 (2)	0.0733 (18)	0.0228 (13)	-0.0463 (16)	-0.0016 (13)	0.0012 (12)
O9	0.0163 (14)	0.0250 (13)	0.0331 (14)	0.0021 (11)	0.0002 (12)	-0.0104 (11)
F10	0.0571 (17)	0.0273 (12)	0.0453 (14)	0.0187 (12)	-0.0244 (13)	-0.0143 (11)
C10	0.018 (2)	0.0258 (19)	0.030 (2)	-0.0022 (16)	-0.0014 (17)	-0.0157 (17)

O10	0.0163 (14)	0.0281 (13)	0.0383 (15)	-0.0014 (11)	-0.0046 (12)	-0.0135 (12)
F11	0.0327 (14)	0.0293 (11)	0.0320 (12)	0.0006 (10)	-0.0128 (10)	-0.0097 (10)
C11	0.017 (2)	0.0196 (17)	0.0255 (19)	-0.0017 (15)	0.0004 (16)	-0.0102 (15)
F12	0.0482 (16)	0.0463 (14)	0.0290 (12)	-0.0138 (12)	-0.0048 (12)	0.0080 (11)
C12	0.023 (2)	0.0177 (17)	0.0257 (19)	0.0045 (15)	-0.0020 (17)	-0.0081 (15)
C13	0.025 (2)	0.0226 (19)	0.029 (2)	-0.0043 (16)	0.0023 (18)	-0.0062 (16)
F13	0.0236 (13)	0.0486 (14)	0.0326 (12)	-0.0120 (11)	0.0047 (10)	-0.0004 (11)
C14	0.017 (2)	0.0238 (18)	0.029 (2)	-0.0055 (15)	-0.0042 (16)	-0.0088 (16)
F14	0.0439 (15)	0.0475 (14)	0.0246 (12)	-0.0004 (12)	-0.0034 (11)	0.0023 (11)
C15	0.025 (2)	0.0231 (18)	0.0233 (19)	-0.0012 (16)	-0.0055 (17)	-0.0084 (16)
F15	0.0412 (15)	0.0362 (13)	0.0377 (13)	-0.0073 (11)	0.0100 (11)	-0.0167 (11)
C16	0.019 (2)	0.0232 (18)	0.0255 (19)	-0.0037 (15)	0.0017 (16)	-0.0099 (16)
F16	0.0269 (13)	0.0299 (11)	0.0304 (11)	-0.0039 (10)	-0.0054 (10)	-0.0142 (10)
C17	0.029 (2)	0.033 (2)	0.030 (2)	-0.0056 (18)	-0.0006 (18)	-0.0095 (18)
F17	0.0308 (13)	0.0216 (11)	0.0284 (11)	0.0073 (9)	-0.0059 (10)	-0.0055 (9)
C18	0.028 (2)	0.0235 (19)	0.033 (2)	0.0009 (17)	-0.0071 (19)	-0.0080 (17)
F18	0.0270 (13)	0.0392 (12)	0.0258 (11)	-0.0035 (10)	0.0032 (10)	-0.0035 (10)
C19	0.019 (2)	0.0226 (18)	0.0232 (19)	-0.0017 (16)	0.0003 (16)	-0.0074 (16)
F19	0.0186 (12)	0.0465 (14)	0.0371 (13)	0.0052 (10)	-0.0028 (10)	0.0008 (11)
C20	0.019 (2)	0.0149 (16)	0.0247 (19)	-0.0022 (14)	-0.0017 (16)	-0.0056 (15)
F20	0.0402 (15)	0.0470 (14)	0.0243 (12)	-0.0007 (11)	0.0013 (10)	-0.0129 (11)
C21	0.018 (2)	0.0140 (16)	0.0257 (19)	0.0011 (15)	-0.0031 (16)	-0.0038 (15)
F21	0.0414 (15)	0.0264 (11)	0.0381 (13)	-0.0028 (10)	-0.0032 (11)	0.0008 (10)
C22	0.019 (2)	0.0167 (17)	0.034 (2)	-0.0030 (15)	0.0003 (17)	-0.0099 (16)
F22	0.0348 (15)	0.0353 (13)	0.0569 (16)	0.0032 (11)	-0.0033 (13)	0.0139 (12)
C23	0.016 (2)	0.0206 (18)	0.039 (2)	0.0039 (15)	-0.0028 (18)	-0.0049 (17)
F23	0.0372 (15)	0.0417 (13)	0.0444 (14)	-0.0084 (11)	0.0167 (12)	-0.0025 (11)
C24	0.028 (2)	0.0179 (18)	0.032 (2)	-0.0003 (16)	-0.0050 (18)	-0.0028 (16)
F24	0.0456 (16)	0.0279 (12)	0.0536 (15)	-0.0161 (11)	-0.0043 (13)	-0.0044 (11)
C25	0.020 (2)	0.0166 (17)	0.0254 (19)	-0.0055 (15)	0.0000 (16)	-0.0054 (15)
F25	0.0370 (14)	0.0351 (12)	0.0335 (12)	-0.0105 (10)	0.0078 (11)	-0.0152 (10)
C26	0.026 (2)	0.029 (2)	0.027 (2)	-0.0062 (17)	-0.0065 (18)	0.0004 (17)
F26	0.0302 (14)	0.0381 (12)	0.0314 (12)	-0.0174 (10)	0.0097 (10)	-0.0101 (10)
C27	0.021 (2)	0.0201 (18)	0.029 (2)	-0.0013 (16)	0.0031 (17)	-0.0084 (16)
F27	0.0247 (12)	0.0306 (11)	0.0311 (11)	-0.0046 (10)	-0.0071 (10)	-0.0123 (10)
C28	0.019 (2)	0.0261 (19)	0.027 (2)	-0.0002 (16)	0.0002 (17)	-0.0076 (17)
F28	0.0272 (13)	0.0429 (13)	0.0253 (11)	-0.0023 (10)	0.0032 (10)	-0.0008 (10)
C29	0.0131 (19)	0.0220 (18)	0.0270 (19)	0.0010 (15)	0.0011 (16)	-0.0126 (16)
F29	0.0290 (13)	0.0250 (11)	0.0289 (11)	0.0071 (10)	-0.0052 (10)	-0.0048 (9)
C30	0.019 (2)	0.0233 (18)	0.027 (2)	-0.0003 (16)	0.0009 (17)	-0.0093 (16)
F30	0.0473 (16)	0.0472 (14)	0.0243 (12)	0.0005 (12)	0.0010 (11)	0.0015 (11)
C31	0.023 (2)	0.0263 (19)	0.029 (2)	0.0050 (17)	-0.0053 (17)	-0.0077 (17)
C32	0.018 (2)	0.0262 (19)	0.035 (2)	-0.0029 (16)	-0.0033 (17)	-0.0102 (17)
C33	0.019 (2)	0.0214 (18)	0.033 (2)	-0.0039 (16)	0.0060 (17)	-0.0087 (17)
C34	0.021 (2)	0.0201 (18)	0.0233 (19)	-0.0019 (15)	0.0034 (16)	-0.0076 (15)
C35	0.021 (2)	0.029 (2)	0.025 (2)	-0.0047 (16)	0.0023 (17)	-0.0075 (17)
C36	0.023 (2)	0.028 (2)	0.033 (2)	-0.0025 (18)	-0.0043 (19)	-0.0012 (18)
C37	0.019 (2)	0.0220 (18)	0.0214 (18)	-0.0027 (16)	0.0034 (16)	-0.0051 (16)
C38	0.0130 (19)	0.0169 (17)	0.0275 (19)	-0.0016 (14)	-0.0010 (16)	-0.0059 (15)

C39	0.022 (2)	0.0152 (17)	0.0226 (18)	-0.0023 (15)	-0.0023 (16)	-0.0045 (15)
C40	0.019 (2)	0.0215 (18)	0.029 (2)	-0.0015 (15)	0.0029 (17)	-0.0084 (16)
C41	0.017 (2)	0.0233 (19)	0.031 (2)	-0.0004 (16)	-0.0049 (17)	-0.0068 (16)
C42	0.026 (2)	0.0194 (18)	0.027 (2)	-0.0025 (16)	-0.0070 (17)	-0.0023 (16)
C43	0.022 (2)	0.0209 (18)	0.0232 (19)	-0.0049 (16)	0.0019 (16)	-0.0050 (15)
C44	0.026 (2)	0.025 (2)	0.026 (2)	-0.0067 (17)	0.0010 (17)	-0.0023 (17)
C45	0.018 (2)	0.0278 (19)	0.027 (2)	0.0003 (16)	0.0031 (17)	-0.0093 (17)
F4	0.0323 (13)	0.0240 (10)	0.0372 (12)	0.0096 (9)	-0.0095 (10)	-0.0040 (9)
F5	0.0306 (12)	0.0427 (13)	0.0286 (12)	-0.0050 (9)	0.0018 (9)	0.0067 (10)
F6	0.0317 (13)	0.0310 (11)	0.0250 (11)	-0.0016 (9)	-0.0067 (9)	-0.0076 (9)
Geometric pa	vrameters (Å, °)					
F1—C9		1 347 (4)	C16-	-C17	1 50	3 (5)
C108		1 223 (4)	F16—	-C27	1.33	2 (4)
C107		1.305 (4)	F17—	-C27	1.34	0 (4)
C1—C2		1.509 (5)	F18—	-C27	1.34	1 (4)
01—C28		1.215 (4)	C19–	-C20	1.50	5 (5)
F2—C9		1.339 (4)	F19—	-C35	1.34	7 (4)
C2—C7		1.398 (5)	C20–	-C25	1.39	9 (5)
C2—C3		1.407 (5)	C20–	-C21	1.40	9 (5)
O2—C28		1.310 (4)	F20—	-C35	1.34	3 (4)
O2—H2		0.8400	C21-	-C22	1.38	4 (5)
F3—C9		1.341 (4)	C21-	-C27	1.50	4 (5)
C3—C4		1.389 (5)	F21—	-C35	1.33	6 (4)
С3—С9		1.498 (5)	C22–	-C23	1.38	0 (5)
O3—C37		1.231 (4)	C22-	-H22	0.95	00
C4—C5		1.386 (5)	F22—	-C36	1.34	6 (4)
C4—H4		0.9500	C23–	-C24	1.38	4 (5)
O4—C37		1.308 (4)	C23—	-H23	0.95	00
O4—H4A		0.8400	F23—	-C36	1.33	8 (4)
C5—C6		1.377 (5)	C24—	-C25	1.39	0 (5)
С5—Н5		0.9500	C24—	-H24	0.95	00
O5-C10		1.229 (4)	F24—	-C36	1.33	0 (5)
C6—C7		1.387 (5)	C25-	-C26	1.51	0 (5)
С6—Н6		0.9500	F25—	-C44	1.33	5 (4)
O6—C10		1.303 (4)	F26—	-C44	1.34	7 (4)
O6—H6A		0.8400	F27—	-C45	1.34	5 (4)
C7—C8		1.490 (5)	C28—	-C29	1.51	1 (5)
F7—C17		1.332 (4)	F28—	-C45	1.34	0 (4)
O7—H7		0.8400	C29–	-C34	1.39	6 (5)
C8—F5		1.338 (4)	C29–	-C30	1.40	4 (5)
C8—F6		1.345 (4)	F29—	-C45	1.34	0 (4)
C8—F4		1.350 (4)	C30–	-C31	1.38	3 (5)
F8—C17		1.340 (5)	C30–	-C36	1.49	7 (5)
F9—C17		1.327 (4)	F30—	-C44	1.33	9 (4)
O9—C19		1.305 (4)	C31–	-C32	1.37	9 (5)
O9—H9		0.8400	C31–	-H31	0.95	00
F10—C18		1.330 (4)	C32—	-C33	1.37	3 (5)

C10—C11	1.500 (5)	С32—Н32	0.9500
O10—C19	1.229 (4)	C33—C34	1.392 (5)
F11—C18	1.351 (4)	С33—Н33	0.9500
C11—C16	1.398 (5)	C34—C35	1.494 (5)
C11—C12	1.404 (5)	C37—C38	1.503 (5)
F12—C18	1.334 (4)	C38—C43	1.396 (5)
C12—C13	1.379 (5)	C38—C39	1.403 (5)
C12—C18	1.519 (5)	C39—C40	1.387 (5)
C13—C14	1.397 (5)	C39—C45	1.499 (5)
С13—Н13	0.9500	C40—C41	1.385 (5)
F13—C26	1.344 (4)	C40—H40	0.9500
C14—C15	1.383 (5)	C41—C42	1.379 (5)
C14—H14	0.9500	C41—H41	0.9500
F14—C26	1.334 (4)	C42—C43	1.397 (5)
C15—C16	1.390 (5)	C42—H42	0.9500
C15—H15	0.9500	C43—C44	1.499 (5)
F15—C26	1.338 (4)		
O8—C1—O7	126.0 (3)	С24—С23—Н23	120.0
O8—C1—C2	121.5 (3)	C23—C24—C25	120.1 (4)
O7—C1—C2	112.5 (3)	C23—C24—H24	120.0
C7—C2—C3	118.8 (3)	C25—C24—H24	120.0
C7—C2—C1	120.9 (3)	C24—C25—C20	120.6 (3)
C3—C2—C1	120.3 (3)	C24—C25—C26	118.3 (3)
С28—О2—Н2	109.5	C20—C25—C26	121.1 (3)
C4—C3—C2	120.2 (3)	F14—C26—F15	106.9 (3)
C4—C3—C9	118.3 (3)	F14—C26—F13	106.6 (3)
C2—C3—C9	121.5 (3)	F15—C26—F13	107.0 (3)
C5—C4—C3	120.4 (3)	F14—C26—C25	111.8 (3)
С5—С4—Н4	119.8	F15—C26—C25	111.8 (3)
С3—С4—Н4	119.8	F13—C26—C25	112.4 (3)
C37—O4—H4A	109.5	F16—C27—F17	107.1 (3)
C6—C5—C4	119.5 (4)	F16-C27-F18	107.1 (3)
С6—С5—Н5	120.2	F17—C27—F18	106.1 (3)
С4—С5—Н5	120.2	F16—C27—C21	112.7 (3)
C5—C6—C7	121.2 (3)	F17—C27—C21	111.9 (3)
С5—С6—Н6	119.4	F18—C27—C21	111.5 (3)
С7—С6—Н6	119.4	O1—C28—O2	125.4 (4)
С10—О6—Н6А	109.5	O1—C28—C29	121.2 (3)
C6—C7—C2	119.9 (3)	O2—C28—C29	113.4 (3)
C6—C7—C8	119.6 (3)	C34—C29—C30	118.4 (3)
C2—C7—C8	120.4 (3)	C34—C29—C28	121.1 (3)
С1—О7—Н7	109.5	C30—C29—C28	120.4 (3)
F5—C8—F6	106.1 (3)	C31—C30—C29	120.1 (3)
F5—C8—F4	105.6 (3)	C31—C30—C36	118.9 (3)
F6—C8—F4	106.2 (3)	C29—C30—C36	120.9 (3)
F5—C8—C7	112.7 (3)	C32—C31—C30	121.0 (4)
F6—C8—C7	113.6 (3)	С32—С31—Н31	119.5
F4—C8—C7	112.0 (3)	С30—С31—Н31	119.5
F2—C9—F3	106.6 (3)	C33—C32—C31	119.3 (4)

F2—C9—F1	106.6 (3)	С33—С32—Н32	120.3
F3—C9—F1	106.5 (3)	С31—С32—Н32	120.3
F2—C9—C3	112.1 (3)	C32—C33—C34	120.8 (3)
F3—C9—C3	111.8 (3)	С32—С33—Н33	119.6
F1—C9—C3	112.7 (3)	С34—С33—Н33	119.6
С19—О9—Н9	109.5	C33—C34—C29	120.2 (3)
O5—C10—O6	125.4 (3)	C33—C34—C35	118.0 (3)
O5-C10-C11	120.7 (3)	C29—C34—C35	121.8 (3)
O6—C10—C11	113.9 (3)	F21—C35—F20	105.8 (3)
C16—C11—C12	118.3 (3)	F21—C35—F19	106.2 (3)
C16—C11—C10	120.6 (3)	F20-C35-F19	105.7 (3)
C12-C11-C10	121.0 (3)	F21—C35—C34	113.0 (3)
C13—C12—C11	121.4 (3)	F20—C35—C34	112.7 (3)
C13—C12—C18	118.1 (3)	F19—C35—C34	112.9 (3)
C11—C12—C18	120.5 (4)	F24—C36—F23	107.2 (3)
C12—C13—C14	119.8 (3)	F24—C36—F22	106.1 (3)
C12—C13—H13	120.1	F23—C36—F22	105.4 (3)
C14—C13—H13	120.1	F24—C36—C30	112.9 (3)
C15—C14—C13	119.4 (4)	F23—C36—C30	112.9 (3)
C15-C14-H14	120.3	F22—C36—C30	111.8 (3)
C13—C14—H14	120.3	O3—C37—O4	124.8 (3)
C14—C15—C16	121.0 (3)	O3—C37—C38	121.1 (3)
C14—C15—H15	119.5	O4—C37—C38	114.0 (3)
C16—C15—H15	119.5	C43—C38—C39	119.0 (3)
C15—C16—C11	120.1 (3)	C43—C38—C37	121.3 (3)
C15—C16—C17	118.6 (3)	C39—C38—C37	119.7 (3)
C11—C16—C17	121.3 (3)	C40—C39—C38	120.0 (3)
F9—C17—F7	107.2 (3)	C40—C39—C45	119.0 (3)
F9—C17—F8	106.7 (3)	C38—C39—C45	121.0 (3)
F7—C17—F8	106.5 (3)	C41—C40—C39	120.5 (3)
F9—C17—C16	112.5 (3)	C41—C40—H40	119.7
F7—C17—C16	111.9 (3)	C39—C40—H40	119.7
F8—C17—C16	111.7 (3)	C42—C41—C40	120.0 (3)
F10—C18—F12	107.9 (3)	C42—C41—H41	120.0
F10—C18—F11	107.1 (3)	C40—C41—H41	120.0
F12—C18—F11	106.6 (3)	C41—C42—C43	120.2 (3)
F10—C18—C12	111.5 (3)	C41—C42—H42	119.9
F12—C18—C12	111.7 (3)	C43—C42—H42	119.9
F11—C18—C12	111.9 (3)	C38—C43—C42	120.2 (3)
O10—C19—O9	125.4 (3)	C38—C43—C44	121.0 (3)
010	120.9 (3)	C42—C43—C44	118.7 (3)
O9—C19—C20	113.7 (3)	F25—C44—F30	106.9 (3)
C25—C20—C21	118.5 (3)	F25—C44—F26	106.5 (3)
C25—C20—C19	121.1 (3)	F30-C44-F26	106.4 (3)
C21—C20—C19	120.4 (3)	F25—C44—C43	113.2 (3)
C22—C21—C20	120.1 (3)	F30-C44-C43	112.1 (3)
C22—C21—C27	119.8 (3)	F26-C44-C43	111.2 (3)
C20—C21—C27	120.0 (3)	F29—C45—F28	106.4 (3)
C23—C22—C21	120.7 (3)	F29—C45—F27	106.9 (3)

C23—C22—H22	119.6	F28—C45—F27		106.2 (3)		
C21—C22—H22	119.6	F29—C45—C39		112.6 (3)		
C22—C23—C24	120.0 (3)	F28—C45—C39		111.9 (3)		
С22—С23—Н23	120.0	F27—C45—C39		112.4 (3)		
Hydrogen-bond geometry (Å, °)						
D—H···A	D—H	I H···A	$D \cdots A$	D—H··· A		
O2—H2···O1 ⁱ	0.84	1.87	2.701 (4)	172		
O4—H4A···O10 ⁱⁱ	0.84	1.82	2.657 (3)	174		
O6—H6A····O8 ⁱ	0.84	1.84	2.673 (4)	170		
07—H7···O5 ⁱ	0.84	1.80	2.638 (4)	173		
O9—H9····O3 ⁱⁱⁱ	0.84	1.81	2.644 (3)	174		
Summatry adds: (i) $y + 1$ $y + 1$ $z + 1$; (ii) $y + 1$ $y = z$; (iii) $y + 1$ $y = z$						

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*.

Fig. 1

Fig. 2

