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Abstract

Modelling the Fragmentation of Protostellar Cores With

Ambipolar Diffusion

by Christopher Thomas MacMackin

submitted on June 9, 2015:

Most stars are observed in multiple star systems, which are thought to result
from the fragmentation of a protostellar cores as they collapse. This process has
been studied extensively using numerical simulations but, to date, relatively few of
these account for the effects of magnetic fields. Of those that do, almost all work
under the assumption of ideal magnetohydrodynamics (i.e. the gas is completely
ionized). However, the gas in a protostellar core would only be very weakly ionized and
would thus tend to drift relative to magnetic field lines, in a process called ambipolar
diffusion. In this thesis, an attempt was made to implement ambipolar diffusion in the
ZEUS-3D magnetohydrodynamics code, so as to investigate the effects of ambipolar
diffusion on the fragmentation process. While the implementation worked well for
1D tests, it was found to produce instabilities when run in 3D while solving for
total energy. Simulations could be run without instabilities when solving for internal
energy, but ambipolar diffusion required such a small time-step as to make all but the
lowest resolution simulations impractical. What simulations could be run indicated
that ambipolar diffusion does, indeed, produce noticeably different results from those
obtained with ideal MHD or ignoring magnetic fields altogether.
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Chapter 1

Star Formation and
Fragmentation

Star formation is an area of great interest in astrophysics. Both empirical and theo-

retical evidence indicates that stars collapse from interstellar gas clouds. These clouds

exist on a hierarchy of scales, ranging from Giant Molecular Clouds (with diameters

of order 101–102 pc and masses of order 105–106 M�) to pre-stellar cores (with di-

ameters of order 0.01–0.1 pc and masses of order 1M�). It is these cores which will

ultimately collapse into a single star system (Pudritz, 2001).

It has also been observed that the majority of stars exist within multi-body sys-

tems (Goodwin et al., 2007). Exactly how such systems form has been a matter of

some debate. It is now considered unlikely that companion stars are captured during

an encounter with larger stars (Boss, 1993) and the favoured mechanism is that these

stars formed in multiple star systems (Boss, 2002; Goodwin et al., 2007). This would

require the pre-stellar cores to fragment at some point during their collapse.
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1.1 Collapse and Fragmentation Physics

1.1.1 The Jeans Length and Mass

Cores are supported by thermodynamic pressure, magnetic fields and rotation. On

the other hand, gravity tends to pull the gas inwards on itself. The cloud can only

collapse if the force of gravity is able to overcome the force from pressure (and any

other forces). Neglecting magnetism and rotation for the time being, whether or not

a cloud will collapse can be quantified by the Jeans mass, MJ, and Jeans length, λJ

(Carroll and Ostlie, 2007).

Following the method used by Carroll and Ostlie (2007), the Jeans mass and

length can be derived as follows. The virial theorem states that if a system is stable

against collapse and expansion,

2K + U = 0, (1.1)

where K and U are kinetic and potential energy, respectively. If a gas cloud is a

sphere of radius Rc and mass Mc, with uniform density, then

U =
3

5

GM2
c

Rc

. (1.2)

From thermodynamics, we can say that the cloud’s internal kinetic energy is

K =
3

2
NkT, (1.3)
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where N is the number of particles in the cloud, k is the Boltzmann constant, and T

is the cloud’s temperature. If the average molecular weight of a particle in the cloud

is µ, then that means

N =
Mc

µmH

, (1.4)

where mH is the mass of a Hydrogen atom.

If the cloud is to collapse, the virial theorem requires that 2K < |U |, or

3MckT

µmH

<
3

5

GM2
c

Rc

. (1.5)

If the cloud initially has a density ρ0, then

Rc =

(
3Mc

4πρ0

)1/3

(1.6)

which, when substituted into Equation (1.5), yields

kT

µmH

<
1

5
GM2/3

c

(
4

3
πρ0

)1/3

. (1.7)

In order for the gas cloud to collapse, then, its mass (Mc) must be greater than the

Jeans mass:

Mc > MJ ≡
(

5kT

GµmH

)3/2(
3

4πρ0

)1/2

. (1.8)

Rearranging Equation (1.6) to

Mc =
4

3
πR3

cρ0 (1.9)
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and substituting it into Equation (1.5) yields the Jeans length,

RJ =

(
15kT

4πGµmHρ0

)1/2

. (1.10)

As with the Jeans mass, if a cloud has a radius greater than the Jeans length it will

collapse under its own gravity. If a cloud has a lower mass or radius than the Jeans

values, however, it will be stable against collapse.

If a pre-stellar core were perfectly spherical and homogeneous then it would col-

lapse smoothly until radiation from the liberated potential energy of incoming gas

and from nuclear fusion provided sufficient thermal pressure to counterbalance grav-

ity. This would result in the formation of a single star. As the cloud collapsed its

density would grow, further reducing its Jeans mass/length and allowing it to collapse

even faster. Real clouds are never so uniform and will always have over- and under-

dense regions within them. As the densities of these over-dense regions increases, their

Jeans mass will decrease. Eventually it may decrease sufficiently as to be lower than

the mass of this portion of the cloud. In this case, this over-dense region can begin

collapsing independently from, and more rapidly than, the rest of the cloud. These

over-dense regions will thus be able to form separate stars in a multi-star system

(Hoyle, 1953; Hunter, 1962). This process is called “fragmentation”. Fragmentation

can occur multiple times within a core and can also occur again within fragments

themselves.

It can be shown (see, for example, Carroll and Ostlie, 2007) that the time which

it would take for a uniform cloud to collapse to a point if there was no appreciable
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pressure, rotation, magnetism, or turbulence supporting it is

tff =

√
3π

32Gρ0

. (1.11)

Although such conditions will never be true throughout the collapse of a gas cloud,

this “free-fall time” remains useful, as it is of the same order of magnitude as the

actual collapse time. Thus, it is a common way to express the progress in simulations

of star formation.

1.1.2 Magnetism and Ambipolar Diffusion

In addition to thermal pressure, magnetic fields can also support gas clouds against

collapse. If the magnetic fields are coupled to the gas then their strength will increase

as the cloud collapses. This, in turn, increases magnetic pressure and tends to impede

further collapse. Ignoring thermal energy for the moment, the virial theorem can be

applied using the potential energy stored in the magnetic field. In this case, the Jeans

mass can be derived to be

MB = cB
πR2B

G1/2
, (1.12)

where cB = 380N1/2m−1T−1 for a uniform, spherical cloud and B is the magnetic

field strength (Carroll and Ostlie, 2007). If a cloud’s mass is less than MB then it

stable against collapse and said to be magnetically subcritical. If, however, its mass

is greater than MB then it can collapse and is said to be magnetically supercritical.

However, it may still be possible for thermal pressure to support the cloud against
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gravity.

Initially, magnetic fields have the potential to make it quite difficult for clouds to

collapse, as magnetic pressure supports the cloud against gravity. However, magnetic

breaking can rob a cloud of nearly all of its angular momentum. This makes it easier

for the cloud to collapse, but hinders or prevents the process of fragmentation (see

§1.3). This is known as the “magnetic breaking catastrophe” (Li et al., 2014).

One effect which may help to overcome these issues is ambipolar diffusion. Most

magnetohydrodynamics (MHD) simulations assume that the gas is entirely ionized

(so-called “ideal MHD”). However, most of the gas in pre-stellar cores is neutral.

This gas will not be directly affected by magnetic fields, which only influence the

motion of charged particles (ions). The reason that ideal MHD can be applicable in

such a situation is that the neutral particles will collide with the ionized ones. These

collisions allow the ions effectively to “drag” the neutral particles along with them.

However, in reality, the coupling between these two components of the gas is not

perfect (see §2.2 and §2.3 for a detailed discussion of how this affects the equations

for MHD). If there is a preferred direction to the motion of the neutral gas (i.e.

due to a gravitational potential), it will tend to “slip” relative to the magnetic field.

Thus, collapse and fragmentation could still occur, albeit more slowly than had the

magnetic field been absent entirely (Carroll and Ostlie, 2007).
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1.2 Parameters

The initial conditions of core-collapse simulations are typically described using two

parameters: α and β (see, for example, Boss, 1993). The former is the initial ratio of

thermal to gravitation potential energy within the core, while the latter is the ratio

of rotational to gravitational potential energy.

α =
5

2

(
3

4πρ0M2
c

)1/3
c2

s

G
(1.13)

β =
1

4π

Ω2

Gρ0

(1.14)

where cs =
√
p/ρ is the isothermal sound speed and Ω is the angular frequency of

the cloud’s rotation. Both thermal and rotational energy impede collapse. Thermal

energy results in higher pressure, which resists the force of gravity. Rotation requires

that some of the gravitation force be used to provide a centripetal force and will not

be able to contribute to the cloud’s tendency to collapse.

Most magnetohydrodynamics (MHD) simulation use a different approach to quan-

tify the relative strength of the magnetic field than we see for thermal and rotational

energies. This is the mass-to-flux ratio, Γ ≡M/Φ (Hosking and Whitworth, 2004):

Γ = 1.25× 10−3

√
Gµ0

π

Mc

πR2
cB

(1.15)

Cores with Γ > 1 are said to be magnetically “supercritical” and are capable of
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collapsing, although not necessarily fragmenting, while those with Γ < 1 are called

“magnetically subcritical” and are supported against collapse by the magnetic field.

However, here the choice was made to use a parameterization more in keeping with

that for thermal and rotational energy. The ratio of magnetic to gravitational poten-

tial energy in the cloud is expressed using

ζm =
5B2

6Gµ0

(
3

4πρ0M5
c

)(1/3)

. (1.16)

Most simulations are initialized with a spherical gas cloud of uniform density. As

mentioned earlier, such a system will not fragment. It is therefore necessary to give

it a perturbation. Various types of perturbations may be used, but perhaps the most

common is an azimuthal perturbation of the form

δρ = ρ0(1 + A cos(mφ)),

where m is the mode of the perturbation and A is its amplitude. Typically, m is

chosen to be two (bifurcation) while A is chosen to be 0.1.

1.3 Early Simulations

Due to the complexity of the problem, most theoretical work on star formation is

done via numerical simulations, the approach taken within this thesis. An overview

of previous research is provided below.

The first simulations of star formation were purely hydrodynamical and neglected
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the effects of magnetic fields. The earliest 3D computer simulations of star formation

known to this author were performed by Larson (1978) using a Lagrangian approach

(effectively an early smoothed particle hydrodynamics, or SPH, code). The simula-

tions were initialized by randomly spreading the desired number of particles within

a spherical volume. This research showed that fragmentation readily occurred if the

mass of the initial gas cloud were greater than the Jeans mass. Furthermore, the

number of objects which ultimately formed tended to be similar to the number of

Jeans masses initially present.

Subsequent work by Boss and Bodenheimer (1979) agreed with these results. Boss

and Bodenheimer ran simulations using two separate finite-difference codes, one with

a spherical and the other with a cylindrical grid geometry. The initial conditions

were those of a uniform spherical gas cloud of 1M� with a density perturbation of the

form ρ = ρ0[1 + A sin(mφ)] where A = 0.5 and m = 2. Both simulations produced

qualitatively similar results, demonstrating fragmentation of the gas cloud.

However, a paper by Tohline (1980a) suggested that fragmentation did not occur

so easily after all. Also using a finite-difference code, Tohline found that a gas cloud

would fragment only if some of the initial perturbations were Jeans unstable from the

start. A subsequent paper (Tohline, 1980b) provided theoretical justification for this

behaviour. Other initializations tended to produce ring structures which were stable

against fragmentation. Stable ring structures are unusual because rings normally

fragment, as in Boss (2002). Tohline, 1980a acknowledges this peculiarity and shows

that the stability of these rings arises due to a quirk of the evolutionary path they

followed.
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In another study, Boss (1993) tracked the evolution of rotating ellipsoidal clouds

with Gaussian density profiles. A range of behaviours were observed which could

be divided into three categories: failure to collapse altogether; collapse into a single

object; and fragmentation into a binary system or the formation of a bar structure

which was expected to undergo fragmentation in the future.

However, doubt was cast on many of these earlier works demonstrating fragmen-

tation when a hitherto unknown numerical artifact which artificially promoted frag-

mentation was discovered.

1.4 The Jeans Condition

This artifact, which applied to self-gravitating simulations, was discovered in 1997

by Truelove et al. All numerical simulations feature some errors as a result of de-

scretization, which must be kept small if the simulation is to be useful. However,

these errors can produce perturbations which, due to gravity, will attract more mass.

This causes the perturbations to grow still more dense, increasing the inward pull of

gravity, creating a vicious cycle. Effectively, these ever-growing perturbations cause

the cloud to fragment. This “artificial fragmentation” does not correspond to any

physical process but can give the false impression that a gas cloud is fragmenting

when, in fact, it should not. In extreme cases, it was found that this instability

caused fragmentation to occur in simulations initialized without any seed.

Truelove et al. (1997) found that, with sufficiently fine resolution, they were able

to avoid any numerical errors large enough to cause artificial fragmentation. They
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described resolution using a quantity which they named the Jeans number:

J ≡ ∆x

λJ
(1.17)

where ∆x is the size of a zone in the simulation and λJ is the Jeans length for the

fluid within that zone. Through experimentation, Truelove et al. found that they

needed

J < 0.25 (1.18)

in order to prevent artificial fragmentation. Equation (1.18) is known as the Jeans

condition and it is necessary, although not always sufficient, that simulation respect

it if the results are to be reliable. This can be best achieved using adaptive mesh

refinement, or AMR, (Berger and Oliger, 1984; Berger and Colella, 1989) as was

done by Truelove et al. themselves (1997; 1998). AMR will increase the resolution

of the simulation grid where it is needed and reduce it where it is not. This has

the advantage that simulations will be accurate but will not use resources where it

is unnecessary to do so. A simpler, although less effective, alternative is to use a

nonuniform grid, which will have higher resolution in regions where high densities are

expected.

While obeying the Jeans condition does prevent some fragmentation (i.e. that

which is a numerical artifact), fragmentation is certainly still possible, as was demon-

strated in Truelove et al.’s 1997 paper. It was found there that a gas cloud with a

Gaussian radial profile and a 10% m = 2 perturbation—similar to that used by Boss
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and Bodenheimer (1979)—would collapse into two filamentary fragments. Similarly,

a 1998 paper by the same authors found that a uniform cloud with either a 10 or

50% m = 2 perturbation would also form to filamentary fragments, although with

a somewhat different orientation towards each other. The latter initialization has

become something of a standard test for fluid codes with self-gravity.

1.5 MHD Simulations

While there has been a great deal of work done simulating star formation, relatively

little of it has incorporated magnetic fields. This is, in large part, due to the more

difficult nature of MHD compared to ordinary fluid dynamics. A few ideal MHD

simulations were performed in the 1980s using both finite difference (Dorfi, 1982)

and SPH (Benz, 1984) algorithms. Both observed that magnetic fields dramatically

reduced the angular momentum present in the clouds, and the former also noted that

collapse was strongly inhibited. Two papers by Phillips (1986a; 1986b) using an SPH

code did observe collapse with a magnetic field but no fragmentation, even when

perturbations were applied to the initial density distribution. Note, however this was

at least partly due to the simulated clouds being non-rotating, as fragmentation was

difficult to achieve for these parameters even when magnetic fields were absent (Boss,

1997).

The first attempt to model magnetic fields in three-dimensional star-formation

simulations with ambipolar diffusion was by Boss (1997, 2000, 2002). However, this

was not a proper MHD simulation and worked on the basis of parameterizing magnetic
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field strength and then altering the gravitational acceleration to account for magnetic

pressure and tension. This approach is incapable of dealing with any transverse forces

and will miss many of the effects of magnetism, such as magnetic breaking.

Boss also includes a crude model of ambipolar diffusion (see Section 2.2). Boss

cites three papers which he feels indicate that ambipolar diffusion, by reducing the

magnetic field strength, makes magnetic braking insignificant, although the work of

(Hosking and Whitworth, 2004) would seem to contradict this assertion. Surprisingly,

Boss found that including magnetic fields actually seemed to aid in fragmentation,

rather than inhibit it, as had been expected. This was because magnetic tension

prevented singularities from arising at the centre of the cloud, which would have

ensured the cloud collapsed into a single protostar.

Hosking and Whitworth (2004) performed an SPH simulation which included a

two-fluid treatment of ambipolar diffusion. These results were very different from

those of Boss (2002) and more in line with conventional wisdom: they found that,

even with relatively weak initial field-strength, the presence of magnetic fields prevent

fragmentation from occurring. This was because magnetic braking was so effective

that it could remove most of the cloud’s angular momentum before ambipolar diffusion

had reduced the magnetic field strength sufficiently for the cloud to collapse. In this

case the strength of ambipolar diffusion was set to what was felt to be a realistic value.

When the strength of the ambipolar diffusion was increased (i.e. the coupling between

neutral and ionized gases decreased) 25 fold it was found that fragmentation could

occur, as magnetic breaking was then much less efficient. However, such a change

to the magnitude of ambipolar diffusion is entirely arbitrary and thus its result is
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unlikely to have any physical significance.

Despite the fact that Hosking and Whitworth (2004) contradicted his 2002 results

Boss stood by them in a letter to MNRAS (2004). Here he asserted that the initial

conditions used by Hosking and Whitworth were sufficiently different from his own as

to make comparisons invalid. In particular, he claimed that the fragmentation in his

2002 paper was not driven by rotation, whereas that in Hosking and Whitworth (2004)

was. Furthermore, he noted that while his simulations included a comprehensive

representation of radiative transfer, those of Hosking and Whitworth (2004) used only

a simple barotropic equation of state (see below for a discussion of the limitations

of such an equation of state) and that this may have been partially responsible for

differences between his and their results. However, he acknowledged that until a full

MHD simulation could be run which included both ambipolar diffusion and radiative

transfer, this would remain an open question (Boss, 2004).

Boss continued to study the collapse of gas clouds into stars using his approximate

approach to MHD, examining the evolution of sheet-like (Boss, 2005) and filamentary

(Boss, 2007) clouds. Fragmentation was observed in both cases. In the latter paper,

Boss introduced a crude representation of magnetic breaking, although this had little

effect on the outcome of the simulations. It should be noted, however, that these

filamentary clouds only collapsed due to shocks created when outflows were reflected

off the boundaries of the simulation. While Boss (2007) suggests that it is possible for

a similar effect to be achieved with periodic boundary conditions (i.e. many adjacent

filamentary cloud cores), no simulations were conducted to test this.

Shortly after Hosking and Whitworth (2004), Machida et al. (2004) published a
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finite-difference 3D simulation of fragmentation featuring full MHD. Using a series of

nested grids and an initially cylindrical cloud core, it was found that fragmentation

could occur even when magnetic fields were present, although magnetic fields did

make it less likely. Fragmentation was observed occurring after a cloud had evolved to

become bar- (as in Truelove et al., 1998) or disc-shaped. Like Hosking and Whitworth

(2004), a barotropic equation of state was used.

The next year, the results of an extensive set of simulation were published (Machida

et al., 2005a,b) using the same numerical methods as in Machida et al. (2004). The

first of these papers dealt with the formation of cores within interstellar gas clouds,

while the second followed the evolution of these cores into stars. Similar to Machida

et al. (2004), fragmentation was observed to occur from bar- and disc-shaped clouds.

Disc clouds could only fragment if the magnetic field was weak (or absent), whereas

bar clouds could fragment even in the presence of a strong magnetic field so long as

they were rotating rapidly enough. Placing the simulations on a magnetic field (B)

and angular rotation speed (Ω) parameter space, Machida et al. (2005b) found that

(assuming a central density of 2× 10−20g cm−3 and a temperature of 10K) fragmen-

tation would occur when the following condition was satisfied:

Ω > 2.0× 10−14s−1

[(
B

1µG

)1/2

+ 0.25

]
. (1.19)

While these simulations did not include ambipolar diffusion, Machida et al. (2005b)

did not feel that its inclusion would dramatically alter the results, except perhaps by

promoting fragmentation slightly. As a side note, Machida et al. (2005b) felt that
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the results of Hosking and Whitworth (2004) were compatible with equation (1.19),

while those of Boss (2002) were not.

Also that year, an AMR code featuring MHD, called NIRVANA, was released

(Ziegler, 2005). This code also did not include the effects of ambipolar diffusion

and used a barotropic equation of state. Various tests involving the collapse and

fragmentation of gas clouds were performed and the results of Truelove et al. (1998)

and Hosking and Whitworth (2004) were replicated when magnetic fields were absent.

While a strong magnetic field was found to inhibit fragmentation, Ziegler found that

a weak one would still allow fragmentation. Furthermore, fragments which would

otherwise have recombined into a single object would rebound in the presence of

weak magnetic fields and remain separate.

(Price and Bate, 2007) performed fragmentation simulations using a new, more

accurate, SPH algorithm for dealing with MHD. Once again, this simulation did not

include ambipolar diffusion and used a barotropic equation of state. While their re-

sults agreed with the majority of previous work in finding that magnetic fields tend

to inhibit fragmentation (although not prevent it to the extent seen elsewhere), Price

and Bate (2007) noted that it seemed to be magnetic pressure causing this inhibition,

with magnetic tension and breaking playing much smaller roles than usually thought.

Furthermore, magnetic tension appeared to actually aid fragmentation by “cushion-

ing” fragments and preventing them from recombining. In this regard, their results

agree with Boss (2002).

A 2007 review by Goodwin et al. concluded that, while numerical simulations

could easily reproduce fragmentation, they could not adequately match the observed
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properties of binary stars. In particular, there was difficulty in reproducing the ob-

served distribution of mass ratios and separation distance in multiple star systems as

well as the frequency of multiple star systems. While some simulations were able to

reproduce some of these properties, none could reproduce all of them. While Goodwin

et al. (2007) admit that problems persist with the numerical methods used to perform

such simulations, they feel that this is not the main cause of disagreement with the

observations. Rather, they suggest it is largely a result of physics being incompletely

represented in the simulations. These problems include treatment of angular-moment

transport and feedback due to stars and jets. However, the biggest problem identified

is in thermal physics, which in general is only represented using a crude barotropic

equation of state.

A barotropic equation of state is one in which pressure is a function only of

density, taking the form p = κργ where κ is a constant of proportionality and γ is the

adiabatic index. With an appropriate value of γ, a barotropic equation of state can be

adiabatic, but the converse is not necessarily true; in an adiabatic system, in general

κ = κ(T ) (where T is gas temperature) meaning that p = p(ρ, T ) and the system is not

barotropic. A barotropic equation of state enforces entropy conservation, resulting in

unphysical isentropic shocks. It also prevents the spontaneous formation of contact

discontinuities, which is unphysical as well.

The first finite-difference simulation to include ambipolar diffusion was published

in 2008 (Duffin and Pudritz). Primarily discussing a single-fluid approximation for

ambipolar diffusion (see Section 2.3) which was implemented in the flash2.5 AMR

code, this paper tested the algorithm with a simulation of a collapsing cloud core.
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It was found that ambipolar diffusion allowed clouds to collapse which would not be

able to do so using ideal MHD. A more thorough analysis of fragmentation simula-

tions using this algorithm was provided by Duffin and Pudritz (2009). Here it was

confirmed that ambipolar diffusion would allow systems to fragment which wouldn’t

be able to under ideal MHD. With ambipolar diffusion and high rotation, even a

fairly small (10%) perturbation led to fragmentation. With a more moderate degree

of rotation, a much more dramatic perturbation was required (50%). However, their

calculations suggested that such a perturbation was eminently achievable within a

turbulent cloud. Thus, while ambipolar diffusion alone will not guarantee fragmenta-

tion of a moderately rotating core, it would still be possible for a significant number

of such cores.
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Chapter 2

Ampibolar Diffusion

2.1 Magnetohydrodynamics

The physics of fluid dynamics in the presence of magnetic fields (magnetohydrody-

namics, or MHD) can be captured within four equations. As with all fluid dynamics,

for these equations to apply it is required that there be a sufficiently large number

of particles within any volume of interest so that the particles’ collision with the

boundary of the volume provides an isotropic pressure. This can be stated more

mathematically as

δl � L (2.1)

where δl is the mean free path of the particles and L is the smallest length scale of

interest.

In order to incorporate magnetic fields into fluid dynamics an additional and

similar assumption is required. For magnetic fields to have any impact on the fluid,

the fluid must be ionized (a plasma). The charges within this plasma must be spread

evenly on the length scales which are of interest (i.e. the fluid must be neutral overall

on these scales), if MHD is to work. Additionally, it must be assumed that the

charged particles will move into equilibrium with static electric fields within times

much shorter than all other relevant time-scales. This means that any static electric
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field within the fluid will be cancelled.

With these assumptions in mind, the equations for MHD are:

∂ρ

∂t
+∇ · (ρv) = 0, continuity (2.2)

∂s

∂t
+∇ · (sv) = −∇p− ρ∇φ+

1

µ0

(∇×B)×B, momentum (2.3)

∂(e∗T)

∂t
+∇ · (eTv) = −∇ ·

(
pv +

1

µ0

B × (v ×B)

)
, total energy (2.4)

∂B

∂t
−∇× (v ×B) = 0, induction. (2.5)

Alternatively, Equation (2.4) can be replaced by

∂e

∂t
+∇ · (ev) = −p∇ · v, internal energy. (2.6)

The variables are

ρ density of the fluid;

t time;

v velocity (a vector);

s momentum (a vector);

p thermal pressure;

φ gravitational potential;

µ0 permeability of free space;

B magnetic field (a vector);

e internal energy;

eT total energy (eT = 1
2
ρv2 + e+ ρφ);
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e∗T total energy including the magnetic field (e∗T = eT +B2/2µ0).

These equations describe ideal MHD in which there is assumed to be no viscosity,

resistivity and the fluid is completely ionized. In reality, this latter condition often

won’t be the case. However, as discussed in §1.1.2, it will still serve as a remarkably

good approximation, since the ionized component of the gas will be able to drag

the neutral component along via collisions. That being said, this by itself will not

account for the tendency of magnetic field lines to slip through a partially ionized

fluid. For that, one needs to incorporate specifically the process called ambipolar

diffusion (A.D.).

2.2 Ambipolar Diffusion

If we wish to represent accurately the fact that not all of the gas is ionized, then we

must adapt equations (2.2) to (2.5) to represent two separate fluids: the neutral and

the ionized. Our equations then become: (Duffin and Pudritz, 2008)

∂ρn

∂t
+∇ · (ρvn) = 0, continuity, neutral; (2.7)

∂ρi

∂t
+∇ · (ρvi) = 0, continuity, ionized; (2.8)

∂sn

∂t
+∇ · (snvn) = −∇pn − ρn∇φ− ff , momentum, neutral; (2.9)

∂si

∂t
+∇ · (sivi) = −∇pi − ρi∇φ+ ff

+
1

µ0

(∇×B)×B, momentum, ionized; (2.10)

∂(eT,n)

∂t
+∇ · (eT,nvn) = −∇ · (pnvn)− vn · ff , total energy, neutral; (2.11)
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∂(e∗T,i)

∂t
+∇ · (eT,ivi) = −∇ · (pivi) + vi · ff

−∇ ·
(

1

µ0

B × (vi ×B)

)
, total energy, ionized; (2.12)

∂B

∂t
−∇× (vi ×B) = 0, induction; (2.13)

where all variables have the same meaning as in equations (2.2)–(2.5). The subscripts

i and n signify that a variable describes only the ionized or neutral gas, respectively.

ff is the frictional force caused by collisions between ionized and neutral particles

and is given by (Duffin and Pudritz, 2008 and references therein)

ff ≡ γADρiρn(vn − vi) = − 1

µ0βAD

vd (2.14)

where vd is defined to be

vd ≡ vi − vn (2.15)

and

βAD = 1.4/(µ0γADρiρn). (2.16)

The strength of the ion-neutral coupling is represented by the drag coefficient γAD =

(〈σω〉)ni/(mi +mn) = 3.28× 1013 g−1cm3s−1, calculated assuming that most ions are

Na+ and HCO+ which both have a mass of approximately 29.0 amu and a collision

rate with molecular hydrogen of approximately 〈σω〉ni = 1.7 × 10−9 cm−3s−1(Duffin

and Pudritz, 2008 and references therein). The coefficient of 1.4 in Equation (2.16)

arises from the fact that the interstellar medium contains about one helium atom for

every hydrogen atom and the coefficient would be equal to 1.0 if only hydrogen were
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present.

As in the case of ideal MHD, equations (2.11) and (2.12) can be replaced by their

respective internal energy equations:

∂en

∂t
+∇ · (envn) = −pn∇ · vn, (2.17)

∂ei

∂t
+∇ · (eivi) = −pi∇ · vi. (2.18)

Note however, that no term representing ambipolar diffusion is present in either equa-

tion. To derive Equation (2.30), a v ·ff seems to be required on the right hand side of

one or both of the above equations. The absence of such a term indicates a problem

in how the energy of the fluid is being understood in the context of these derivations.

2.3 Single-Fluid A.D. Approximation

This problem can be greatly simplified by making a single-fluid approximation, fol-

lowing the arguments given by Duffin and Pudritz (2008). A similar approach has

been used elsewhere, including Mac Low et al. (1995), Padoan et al. (2000), Chen and

Ostriker (2012) and, most recently, within the context of an SPH code by Wurster

et al. (2014). If ρi � ρn, if the ions are perfectly coupled to the magnetic field,

and if the time-scale for ion-neutral collisions is much smaller than other dynamic

time-scales, then there will be strong coupling between the neutral and the ion fluids.

These conditions allow equations (2.8)–(2.13) to be greatly simplified, resulting in

the recovery of a set of equations similar to equations (2.2)–(2.5), but with a few
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correction terms for A.D. added.

For short time scales for ion-neutral collisions, all but the frictional and magnetic

terms in Equation (2.9) can be ignored, leaving:

0 = ff +
1

µ0

(∇×B)×B ⇒ ff = −J ×B (2.19)

where, according to Ampère’s Law, the current density is J = 1
µ0
∇×B. The Lorentz

force is given by

fL = J ×B. (2.20)

Comparing this with equations (2.14) and (2.15), it can be seen that vd = µ0βADfL,

implying

vi = vn + µ0βADfL. (2.21)

Substituting this into Equation (2.13) yields

∂B

∂t
= ∇× (vn ×B) +∇× (µ0βADfL ×B) , (2.22)

while combining equations (2.9) and (2.19) gives

∂sn
∂t

+∇ · (snvn) = −∇pn − ρn∇φ+
1

µ0

(∇×B)×B. (2.23)

Note that Equation (2.23) is mathematically the same as Equation (2.3).

Defining e∗T,n = eT,n + B2/2µ0 and taking the partial derivative with respect to
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time results in

∂(e∗T,n)

∂t
=
∂eT,n

∂t
+

1

µ0

B · ∂B
∂t

= −∇ · [(eT,n + pn)vn]− vn · ff +
1

µ0

B · ∂B
∂t

, (2.24)

using Equation (2.11). Now, using equations (2.19) and (2.22) as well as Ampère’s

law and various vector identities, it can be shown that:

−vn · ff +
B

µ0

· ∂B
∂t

= vn · (J ×B) +
B

µ0

·
[
∇×

(
vn ×B +

(
µ0βAD (J ×B)×B

))]
=

1

µ0

[
vn ·

(
(∇×B)×B

)
+B ·

(
∇× (vn ×B)

)]
+B · ∇ × [βAD(J ×B)×B]

=
1

µ0

[
vn ·

(
(∇×B)×B

)
+B ·

(
∇× (vn ×B)

)]
+∇ ·

[(
βAD(J ×B)×B

)
×B

]
+ [βAD(J ×B)×B] · (∇×B)

=
1

µ0

[
vn ·

(
(∇×B)×B

)
+B ·

(
∇× (vn ×B)

)]
+∇ ·

[(
βAD(J ×B)×B

)
×B

]
+ µ0βADJ · [(J ×B)×B]

=
1

µ0

[
vn ·

(
(∇×B)×B

)
+B ·

(
∇× (vn ×B)

)]
−∇ · [βAD(B ·B)(J ×B)−

(
B · (J ×B)

)
B]

+ µ0βAD(J ×B) · (B × J)

= − 1

µ0

[
(∇×B) · (vn ×B)−B ·

(
∇× (vn ×B)

)]
−∇ · (βADB

2J ×B)− µ0βAD‖J ×B‖2

= − 1

µ0

∇ ·
(
B × (vn ×B)

)
−∇ · (βADB

2fL)− µ0βADf
2
L.
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Rearranging Equation (2.24) gives

∂(e∗T,n)

∂t
+∇·(eT,nvn) = −∇·

(
pnvn +

1

µ0

B × (v ×B) + βADB
2fL

)
−βADf

2
L. (2.25)

Equations (2.7), (2.3), (2.25), and (2.22) completely describe the behaviour of

the neutral fluid and the magnetic fields, within the constraints of the single-fluid

approximation. As this is the only fluid which it will now be necessary to track, the

subscript n will henceforth be omitted. The MHD equations, including ambipolar

diffusion, are thus

∂ρ

∂t
+∇ · (ρv) = 0, (2.26)

∂s

∂t
+∇ · (sv) = −∇p− ρ∇φ+

1

µ0

(∇×B)×B, (2.27)

∂(e∗T)

∂t
+∇ · (eTv) = −∇ ·

(
pv +

1

µ0

B × (v ×B) + βADB
2fL

)
+ µ0βADf

2
L,

1 (2.28)

∂B

∂t
−∇× (v ×B) = ∇× (µ0βADfL ×B) . (2.29)

There have been difficulties in determining the internal energy equation for the

single-fluid approximation. Attempts to derive it would appear to indicate that it

should be the same as Equation 2.17. However, this does not produce the correct

1The derivation performed in this section indicates that the µ0βADf
2
L term should be subtracted

from the energy equation. However, this disagrees with the result in Duffin and Pudritz (2008), in
which the term is added. As µ0βADf

2
L is positive-definite, subtracting it inevitably results in negative

energy densities, which is clearly unphysical. Furthermore, the term must be added, rather than
subtracted, in order to produce agreement with known solutions to equations (2.7)–(2.13). Given
these considerations, the result for the energy equation as derived by Duffin and Pudritz (2008) was
used, although it remains unclear how this result was obtained.
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results when used in computer simulations. Those have shown, empirically, that the

correct form of the internal energy equation is

∂e

∂t
+∇ · (ev) = −p∇ · v − v · fL. (2.30)

The inability to derive this result indicates a flawed understanding of how energy is

treated in ambipolar diffusion and should be further investigated in later work.

2.4 Ion Density

Equations (2.26)–(2.29) use the variable βAD to describe the strength of ambipolar

diffusion. As can be seen from equation (2.16), this variable depends upon the den-

sity of ionized fluid. To calculate this quantity, Duffin and Pudritz (2008) used the

parameterization:

ni = 3× 10−3cm−3
( nn

105cm−3

)1/2

+ 4.64× 10−4cm−3
( nn

103cm−3

)−2

, (2.31)

where ni and nn are the number densities of ions and neutral particles, respec-

tively. A similar parameterization has been used elsewhere, including by Fiedler

and Mouschovias (1992, 1993) and by Hosking and Whitworth (2004), the latter of

which attribute it to a model developed by Nakano (1976).

When rewritten to provide the mass densities in a scale-free manner, equation
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(2.31) becomes

ρi =

√
9× 10−11 cm−3 m2

i

ρsmn

√
ρn + 464cm−9m

2
nmi

ρs

1

ρ2
n

, (2.32)

where mi and mn are the masses of the ionized and neutral particles and ρs is a scaling-

factor which converts between density in CGS units and whatever units are to be used

for the mass densities (ρi and ρn). If, for example, one density unit was meant to

correspond to atomic hydrogen with n = 106 cm−3, then ρs = 2 × 10−18 g cm−3.

Note that the particle masses used by Duffin and Pudritz (2008), and for the collapse

simulations performed for this thesis, were mi = 29.0 amu and mn = 2.3 amu.
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Chapter 3

Numerical Methods

3.1 ZEUS-3D

The software used to perform the simulations which follow was the ZEUS-3D code.

This is a grid-based fluid-dynamics code designed for astrophysical applications. It

is capable of simulating various types of physics, including MHD and self-gravity.

Unusually, ZEUS-3D uses what is known as a “staggered-grid” approach. This means

that the values of each physical quantity in each zone of the grid are not all located at

the same place in the zone. Specifically, scalar quantities are “zone-centred”, whereas

each component of a vector quantity is located on the corresponding normal face of

the zone (“face-centred”) (Clarke, 1996). Effectively, the purpose of ZEUS-3D is to

solve numerically equations (2.2)–(2.5). As part of this research, the code was altered

so that, if desired, it could also solve equations (2.26)–(2.29), allowing for ambipolar

diffusion. See Appendix A for a detailed description of the implementation.

Ideally, for fragmentation simulations Adaptive Mesh Refinement (AMR) would

be use. While a version of ZEUS-3D does exist with AMR capabilities (AZEuS) and

has, in the past, been succesfully used to replicate the results of Truelove et al. (1998)

(Ramsey et al., 2012) it currently features only an order N2 algorithm for self-gravity

(compared to the two N logN algorithms available in ZEUS-3D), which would be
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prohibitively expensive computationally. Furthermore, serious issues persist regard-

ing the integration of some of ZEUS-3D’s new features (in particular, its redesigned

transport algorithms) and AZEuS’s overly-large memory footprint. As it was unclear

if all of these issues could be resolved in time for the writing of this thesis, the decision

was made to continue using ZEUS-3D, despite the lack of AMR.

For each simulation, the maximum Jeans number was tracked. If, during a sim-

ulation, the Jeans number increased beyond 0.25 then nothing in that simulation

thereafter can be considered reliable. Effectively, that simulation must be regarded

as having been cut short. In order to prevent such a violation of the Jeans condition

from occurring, a sufficiently high resolution must be used. Initially, a nonuniform

grid was used so as to increase the resolution available for the cloud-fragments. In the

inner 40% of the grid there was a uniform resolution approximately 1.7 times finer

than had the grid been uniform. Just beyond the edge of this region the zones would

have approximately the same size, but grown larger by a geometric progression the

closer they were to the edges of the domain. This meant that any fragments could

be expected to fall within the highest resolution area, the entire initial gas cloud

within a region of at least comparable resolution to what would have existed had

the grid been uniform, and the exterior of the gas cloud (which is of little interest)

in a lower-resolution region where a minimum of computational resources would be

wasted.

As mentioned previously, ZEUS-3D features two N logN self-gravity algorithms.

One (gravfft) uses Fourier transforms to solve the Poisson equation and, if used in

conjunction with the FFTW3 library, can work on arbitrarily-sized grids (although
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grids of size 2n or 2n− 1, where n is an integer, can be the most efficiently evaluated,

depending on the boundary conditions). That ability means that it will be able to

work with AZEuS and at some point in time it will be integrated into that code.

However, this algorithm requires uniform grids, making it unsuitable for this applica-

tion. The alternative approach is the full multi-grid algorithm (gravfmg). This can

be used with nonuniform grids, although there is the minor disadvantage that the

number of zones in each dimension must be equal to 2n − 1, where n is an integer.

Tests of ZEUS-3D indicated that, with uniform grids, the performance (in terms

of both accuracy and speed) of gravfft and gravfmg was comparable. However,

further tests revealed that the performance of gravfmg declined greatly in terms of

speed. This, combined with the fact that gravfmg was not amenable to execution with

parallel processors, meant that it was actually faster to run a uniform grid simulation

with twice the number of zones per dimension using gravfft.

ZEUS-3D is capable of solving either the total or the internal energy equations.

Numerical errors mean that the former will not be able to give positive definite

pressures, while the latter will not be conservative in energy. Generally, the chance of

developing negative pressures is considered preferable to non-conservation of energy,

so the total energy equation initially was chosen to be used. As discussed in §4.2,

these simulations actually worked better when solving for internal energy, so that is

the method which was ultimately chosen.
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3.2 Time Step Considerations

An explicit finite difference code such as ZEUS-3D is subject to the so-called CFL

condition (Courant et al., 1928), in which the time step chosen to advance the so-

lution must be less than the so-called CFL limit. Violating this criterion can mean

the numerical solution succumbs to dramatic zone-to-zone oscillations, rendering it

unstable. Each physical process in the MHD fluid—sound waves, Alfvén waves, ad-

vection, etc.—introduces its own CFL limited timescale and, in order to run stably,

the time step chosen must be smaller than the smallest of these.

The introduction of ambipolar diffusion requires another CFL time step which, as

shown by Mac Low et al. (1995), is given by

τAD =
(∆x)2

4βADB2
, (3.1)

where ∆x is the size of a zone. For most applications, it turns out that τAD can be

one or two orders of magnitude smaller than any other characteristic time scale of the

fluid and thus simulations including AD tend to take much longer than simulations

without it.

Note that Equation 3.1 differs somewhat from the expression given by Duffin and

Pudritz (2008) which, among other things, relies upon, in their words, a “fudge-

factor”. The Mac Low et al. (1995) formulation was used over that of Duffin and

Pudritz (2008) as the former was felt to be more general. Information on the imple-

mentation of this time step condition can be found in Appendix A.
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3.3 C-Shock A.D. Tests

Having implemented the above single-fluid approximation for ambipolar diffusion in

ZEUS-3D, it was necessary to test it. There exist relatively few ambipolar diffusion

problems for which an analytic solution is known. However, a class of problems

which make a useful test for an ambipolar diffusion code are C-shocks. A shock

is a stable transition between two equilibrium states in a fluid, which is normally

discontinuous. However, in a weakly ionized fluid, a shock can occur where the

transition is continuous and this is what is referred to as a C-shock.

Strictly speaking, C-shocks do not have analytic solutions. However, they can

be described by systems of ordinary differential equations (ODEs), which can then

be solve semi-analytically with a computer. Two such cases were examined, both of

which are 1-dimensional: an isothermal and a non-isothermal C-shock. The shocks

were tested along each axis to ensure that the implementation was correct in all

directions.

3.3.1 Isothermal C-Shock

Because an isothermal gas requires no energy equation, modifications to the energy

equation are not tested by an isothermal C-shock problem—only those to the induc-

tion equation. As such, an isothermal C-shock is the simpler test to perform. The

steady-state solution to this problem is provided by Mac Low et al. (1995). By set-

ting the time derivatives in equations (2.7)–(2.13) to zero, the fluid equations can be
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reduced to the single ODE for the dimensionless density D = ρ/ρ0:

(
1

D2
− 1

M2

)
L
dD

dx
=

√
2b

A

[
b−D

(
b− b0

A2
cos2 θ + sin θ

)]
(b2 + cos2 θ)−1, (3.2)

where b and D are related by

b2 = b2
0 + 2A2(D − 1)(D−1 −M−2). (3.3)

In these equations, b = By/B0 is the dimensionless transverse magnetic field,

M = vx,0/cs is the thermal Mach number (vx,0 is the pre-shock velocity in the x-

direction), the Alfvén Mach number is A =
√

4πρ0vx,0/B0, and

L =
√

2B0/(γρi

√
4πρ0) (3.4)

is the shock length-scale. ρi corresponds to ionized fluid density, whereas ρ represents

the neutral fluid density. θ is the angle between the pre-shock velocity (vx,0, along

the direction of the shock) and magnetic field B0 vectors. The pre-shock density is

ρ0. x- and y-components of the velocity (where the x-direction aligns with that of

the shock) are given by

vx = vx,0/D (3.5)

vy =

(
K − BxBy

4π

)
1

ρ0vx,0
, (3.6)

where K = ρ0vx,0vy,0 − Bx,0By,0

4π
.
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Table 3.1: Initial conditions for C-shock tests, both isothermal and non-isothermal.
The state refers to whether the conditions are for before or after the shock.
In both cases γAD = 1.0 g−1cm3s−1, cs = 0.1 cm s−1, B0 =

√
4π G, and

θ = π/4 (⇒ By,0 = 2.507 G). Bx = 2.507 G throughout. Ion density was
held constant at ρi = 10−5 g cm−3. The neutral gas was taken to be pure
hydrogen, so the coefficient in the numerator of equation 2.16 was set to
1.0.

State ρ [g cm−3] P [dyn cm−2] vx [cm s−1] vy [cm s−1] By [G]
Pre 1.000 0.0100 5.000 0.000 2.507
Post (iso) 8.045 0.0804 0.621 0.840 23.553
Post (non-iso) 7.976 0.5 0.627 0.830 23.313

The C-shock simulation was initialized in the same way as Duffin and Pudritz

(2008). A region of length 4L was given pre-shock conditions, followed by an 8L length

region in the post-shock state, as predicted by the semi-analytic solution described

above. The numerical values can be found in Table 3.1, with various other parameters

for the simulation provided in that table’s caption. Note that the shock velocity

vx,0 = 5.000 cm s−1. The ion density was kept constant at ρi = 10−5 g cm−3 for

the C-shock simulations. Zones of size L/10 were used and the simulation was run

for 5 × 106 s. The left side of the computational domain had an inflow boundary

condition, while the right side had an outflow boundary condition.

The error between a value found numerically (qn) and semi-analytically (qa) is

given by

εq =

∣∣∣∣ qa − qn

max(qa)

∣∣∣∣× 100%, (3.7)

as done in Mac Low et al. (1995) and Duffin and Pudritz (2008). A challenge when

calculating the semi-analytic solution is that, if D = 1 is provided as a boundary

condition, the system is in equilibrium and D = 1 for all x. It is thus necessary to
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perturb D by a factor of 1 + ε, where ε is some small number. However, it is unclear

what value of ε should be chosen.

One possibility is to use the numerically determined density value in the first active

zone of the computational domain as the boundary condition. However, this yielded

fairly poor results (∼ 5% error) because the semi-analytic solution was translated

relative to the numerical one. If, on the other hand, a boundary condition was chosen

that differed from the numerical one by ∼ 0.02%, then this translation was removed.

The reason why this offset is needed is unclear. However, it may be related to the

fact that the initial conditions for this test do not constitute a steady-state. As a

result, transient features developed while the system relaxed to the steady-state, and

these could have introduced numerical errors into the simulation. Such errors could

have lead the system to settle on a different steady-state than intended—for example,

one in which the shock had some velocity relative to the grid. It is not felt that this

indicates any fundamental problem with the implementation of A.D.

A comparison between the numerical results for the C-shock, as found with ZEUS-

3D, and that found from solving the ODE in Equation (3.2) can be found Figure 3.1.

As can be seen in the lower portion of each plot, error was kept below 1% across the

entire computational domain for all variables, and below 0.5% for most variables.

3.3.2 Non-Isothermal C-Shock

A solution for a non-isothermal C-shock was derived by Duffin and Pudritz (2008),

building on various work from the 1980s and 1990s, particularly that of Wardle (1991).
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Figure 3.1: Plots comparing the semi-analytic (solid line) solution for an isothermal
C-shock to those calculated by ZEUS-3D (circles) using the single-fluid
approximation discussed in §2.3. The upper portions of the plots show
(a) density of the neutral gas, (b) the second component of the magnetic
field, (c) the first component of the velocity of the neutral gas, and (d)
the second component of the neutral gas velocity. The lower portion of
each plot show the level of error in ZEUS-3D’s results, as calculated using
Equation (3.7).
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By setting the time-derivatives to zero in equations (2.7)–(2.13), they found that

the steady-state solution for such a C-shock was given by the coupled differential

equations

[
1− γrnp

(γ − 1)rn

]
dp

dz
=
γADρi,0

vx,0

[(
1

rn

+
γ

γ − 1
p− sn + sin θ

b

)
r +

Gn − Λn

γADρi,0ρ0v2
x,0

]
, (3.8)

db

dz
=
γADρi,0

vx,0
A2
(r
b

)
, (3.9)

where

sn =
b− b0

A2
cos2 θ; (3.10)

rn =
1

1− (p− p0)−
(
b2−B2

0

2A2

) ; (3.11)

ri = rn

[
b2 + cos2 θ

brn(sn + sin θ) + cos2 θ

]
; (3.12)

r = 1− rn

ri

. (3.13)

Here, γ is the adiabatic index, Gn represents heating of the gas as a result of the

drift between the ionized and neutral components, and Λn is a cooling term added to

make the equations more easily integrable numerically. These are given by

Gn = γADρ0ρi,0v
2
x,0

r2

b2rn

(b2 + cos2 θ) (3.14)



Chapter 3. Numerical Methods 39

ΛAD =


Λn,0

(
γADρi,0
vx,0

)(
p
p0

)
, p > εcoolp0

0, otherwise

(3.15)

where Λn,0 is a normalization factor and εcool defines when the cooling turns on. For

this test, the values Λn,0 = 5× 10−5 erg s−1 and εcool = 50 were chosen. The problem

was initialized in much the same way as the isothermal C-shock, but using slightly

different values for the post-shock state (see Table 3.1).

The results for pressure can be found in Figure 3.2. Once again, it was found that

it was necessary to perturb the input data slightly. In this case, a perturbation of

0.6% was able to provide errors of less than 1%, as calculated using Equation (3.7).

Figure 3.3 contains plots of By and other variables, which were calculated from the

following equations, derived from the work of Mac Low et al. (1995):

vx =

(
K1 − P −

B2
y

8π

)
1

ρ0vx,0
, (3.16)

ρ =
ρ0vx,0
vx

, (3.17)

vy =

(
K2 +

BxBy

4π

)
1

ρ0vx,0
, (3.18)

where K1 = ρ0v
2
x,0 + P0 +

B2
y,0

8π
and K2 = ρ0vx,0vy,0 − Bx,0By,0

4π
. As before, these

requirement of these perturbations is not taken as cause for serious concern, although

the required perturbation was larger in this case. Once again, it is not thought that
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Figure 3.2: A plot comparing the semi-analytic (solid line) solution for pressure in a
non-isothermal C-shock to those calculated by ZEUS-3D (circles). The
upper portion shows these two values for pressure, while the lower portion
shows the error in the numerical value, as calculated using Equation (3.7).

the need for this perturbation indicates any major problems with the implementation

of A.D.
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Figure 3.3: Plots comparing the semi-analytic (solid line) solution for a non-
isothermal C-shock to those calculated by ZEUS-3D (circles) using the
single-fluid approximation discussed in §2.3. The upper portions of the
plots show (a) density of the neutral gas, (b) the second component of
the magnetic field, (c) the first component of the velocity of the neu-
tral gas, and (d) the second component of the neutral gas velocity. The
lower portion of each plot show the level of error in ZEUS-3D’s results,
as calculated using Equation (3.7).
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Chapter 4

Simulations

4.1 Initial Conditions

A uniformly rotating spherical gas cloud was initialized with a mass of 1M� and radius

R = 5× 1016 cm. This was centred in a cubical computational domain with edges of

size 4R. The cloud’s density was given the perturbation ρ = ρ0[1 + 0.1 cos(2θ)] (see

Figure 4.1 for an equatorial density slice). A uniform magnetic field threaded the

cloud parallel to its axis of rotation. The cloud had parameters α = 0.3, β = 0.2, and

ζm = 1.0. The gas surrounding the cloud had the same pressure, but was 100 times

less dense. For reasons described in §4.2, it was found that a computational grid with

313 zones was the largest size practical, despite the fact that this is extremely low

resolution. The simulation was run for a period of 4tff .

As described in Chapter 1, the collapse of the gas cloud is initially isothermal,

but becomes adiabatic as density increases. ZEUS-3D is not able to simulate such a

transition, so instead the adiabatic index was set to γ = 4/3, as a compromise between

its value for an adiabatic process (γ = 7/5 for a diatomic gas such as molecular

hydrogen) and for an isothermal process (γ = 1). Outflow boundary conditions were

used for MHD variables. The gravitational boundary conditions were preset to be

those for a uniform sphere of 1M�.
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Figure 4.1: An equatorial slice of the computational domain for the initialization of a
stellar collapse problem. The colours represent density, while the arrows
represent velocity.

Three simulations were performed: one without magnetic fields, one with ideal

MHD, and one with ambipolar diffusion. In the latter two simulations, ζm was set

to 1.0 and the magnetic field was aligned with the axis of rotation. In the case of

ambipolar diffusion, ion density was calculated using Equation (2.32), where the ions

were Na+ and HCO+ (mi = 29.0 amu) and the neutral gas was 90% H2 and 10% He

(mn = 2.3 amu). The value of γAD was set at 3.28 × 1013g−1cm3s−1, as appropriate

for this choice of ionized and neutral species (Duffin and Pudritz, 2008 and references

therein).
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4.2 Three Dimensional AD

Following the C-shock tests, a low-resolution (313 active zones) test-simulation was

run of the collapse of a protostellar core with ambipolar diffusion. The initial con-

ditions were the same as those described in §4.1. However, shortly after beginning,

the time-step in the simulation began to approach zero. This was found to be due

to extreme values for density and pressure (the former very small, the latter very

large) occurring in certain zones. Adjusting the parameters of the simulation slightly

altered when such an event occurred, but did not prevent its occurrence. The lo-

cation of the zones determining the time-step would vary with the parameters, but

appeared always to be either at a boundary or near the edge of the protostellar core.

Investigation with a debugger revealed that an instability developed which began as

small perturbations, perhaps caused by round-off error, but grew exponentially until

they caused the time-step to approach zero.

An additional issue which was noted was the number of zones in which negative

pressures occurred, even for a simulation which was stopped early. While a few

occurrences of negative pressure during a simulation are not a problem, a large number

tends to indicate some other problem. As a rule of thumb, if the amount of energy

which needs to be added in order to reset all pressures to a small positive value is

. 30% of the total energy in the simulation, then this is not an issue. However, in

this case, the amount of energy added was on the order & 105%.

Further examination of the simulations revealed what appeared to be CFL viola-

tions occurring in the regions in which the instabilities described above manifested.
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Figure 4.2: A slice of the computational domain for a stellar collapse problem with
ambipolar diffusion, early in the simulation. The colours correspond to
pressure and the slice is in the plane of the zone which is limiting the time-
step. Instabilities, reminiscent of CFL violations, can be seen to form a
circle. This circle corresponds to the region just outside the boundary of
the protostellar core.

An example of this is shown in Figure 4.2. However, when the time step was artifi-

cially reduced, the instabilities persisted. This remained true even when the time-step

was reduced by a factor of 1000. This would appear to indicate that the implemen-

tation of ambipolar diffusion is inherently unstable. The cause of this instability is

unclear, especially as the implementation proved to be successful for the one dimen-

sional C-shock tests.

It was noted that instabilities only ever were observed to arise in regions of low

density, outside of the gas cloud. As a stop-gap measure to be able to run a full

simulation, the code was modified so that the effects of AD were only applied in zones
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Figure 4.3: Results of a low resolution collapse simulations with different cutoffs for
the application of ambipolar diffusion. The grey-scale provides the den-
sity, while the arrows show the component of velocity in the plane of the
plot. The hard cutoff (ρh, below which ambipolar diffusion is not applied
at all) and soft cutoff (ρs, below which ambipolar diffusion is not applied
at full strength) used in each simulation is provided in the caption below
its diagram.

with a density above a certain threshold. This modification was later improved so

that the application of ambipolar diffusion could be gradually decreased over a range

of densities. However, such an approach was ultimately unsuccessful, for multiple

reasons. First, while the widespread pattern of instabilities such as that shown in

Figure 4.2 did not occur, regions of low density did, nonetheless, develop. These low-

density regions would, in the case of the lower cutoffs for the application of ambipolar

diffusion, result in the time-step approaching zero more rapidly than the simulation

progressed. Thus, the simulation was not able to finish. Furthermore, it was found

that different AD cutoffs resulted in qualitatively different results. These results did

not converge for any cutoff which allowed the simulation to run to its finish. As such,

the accuracy of these simulations is extremely suspect. Finally, this did not resolve

the issue of a large number of zones with negative pressures.

As an experiment, the stellar collapse simulation was run with ZEUS-3D solving

the internal energy equation rather than the total energy equation. This was found
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to run without producing any instabilities, even when no cutoff for the application

of ambipolar diffusion was used. However, even with ambipolar diffusion turned off,

simulations which resulted in fragmentation when run with the total energy equation

were found to produce a single object when evaluating the internal energy equation.

This may result from the fact that the internal energy equation does not guarantee

conservation of energy, causing fragments to move inwards and merge into a single

object. Alternatively, it may just be a consequence of the non-linear nature of the

problem; changing the algorithm may cause a dramatically different, but no less

physical, outcome. Additionally, it should be noted that time constraints prevented

the internal energy version of ambipolar diffusion from be tested as thoroughly with C-

shocks as was done for the total energy. What limited testing was done indicated that

all variables behaved as expected, with the partial exception of pressure. Pressure was

found to peak at a lower values than expected and to change slightly more gradually.

Again, these are likely to be manifestations of the non-conservative nature of the

internal energy transport algorithm. However, despite these issues, it is only with

internal energy that 3D simulations could be run with ambipolar diffusion, so it was

decided that this was the setting which would be used.

It was found that running simulations with ambipolar diffusion with this resolution

took ten hours (in serial). As every doubling in resolution increases the run-time

by approximately a factor of 32, this meant that no higher resolution simulation

was practical within the time constraints of this thesis, given that problem were

experienced when attempting to run ZEUS-3D in parallel. Even with parallelism, run-

times such as these make ambipolar diffusion impractical to use. Such long run-times
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arise because, as noted in §3.2, the characteristic timescale for ambipolar diffusion can

be up to two orders of magnitude less than those for other processes. One potential

solution to this problem would be to implement AD using sub-cycling. This entails

“freezing” the fluid for the length of a relatively long MHD time step, during which

time only ambipolar diffusion would be advanced. This would be done at the AD

time step, consistent with Equation (3.1). Once enough τrmAD time steps had elapsed

to make up a full MHD time step, the fluid would be unfrozen and allowed to progress

through a full MHD time-step. Such an approach has been taken in the past by Mac

Low et al. (1995).

4.3 Results

Given that a resolution of only 313 could be used in these simulations, their results are

of dubious value. Furthermore, the non-linear nature of the stellar collapse problem

means that an ensemble of simulations, subjected to statistical analysis, are required

in order to draw reliable conclusions. That being said, the three simulations which

were run did demonstrate that ambipolar diffusion (AD) produced different results

from both MHD and pure hydrodynamics (HD).

An issue which was noted when comparing the simulations was that, after an

initial phase of collapses, a rebound occurred. While the initial collapse occurred at

roughly the same rate, the rebound and subsequent re-collapse did not. This made it

difficult to perform a fair comparison between the end-states of the simulations. As

such, it was decided that the simulations would be compared immediately prior to



Chapter 4. Simulations 49

0.000

0.289

0.579

0.868

1.158

1.447

1.737

2.026

2.316

2.605

2.895

3.184

3.474

3.763

4.053

4.342

4.632

4.921

5.211

5.500

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

Plot file ‘zq004tl.01.ps’ created on 13/04/2015 at 20:43:39.

t = 2.01697, nhy = 106, x3a(18) = 0.484.

Vectors: v1,max = 0.129

v1,min = 5.156 × 10−3

Scalars: q1,max = 5.437

q1,min = 9.141 × 10−3

(a) HD

0.000

0.289

0.579

0.868

1.158

1.447

1.737

2.026

2.316

2.605

2.895

3.184

3.474

3.763

4.053

4.342

4.632

4.921

5.211

5.500

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

Plot file ‘zq004tl.01.ps’ created on 13/04/2015 at 20:51:06.

t = 2.00521, nhy = 255, x3a(18) = 0.484.

Vectors: v1,max = 8.386 × 10−2

v1,min = 3.355 × 10−3

Scalars: q1,max = 4.425

q1,min = 9.818 × 10−3

(b) MHD

0.000

0.289

0.579

0.868

1.158

1.447

1.737

2.026

2.316

2.605

2.895

3.184

3.474

3.763

4.053

4.342

4.632

4.921

5.211

5.500

0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

x1

x
2

Plot file ‘zq004tl.01.ps’ created on 14/04/2015 at 02:58:19.

t = 2.00000, nhy = 75013, x3a(18) = 0.484.

Vectors: v1,max = 5.250 × 10−2

v1,min = 2.100 × 10−3

Scalars: q1,max = 5.489

q1,min = 9.436 × 10−3

(c) AD

Figure 4.4: The results of the stellar collapse simulations, initialized as described in
Section 4.1. Colour indicates density, while arrows indicate velocity in the
plane of the plots. The simulations in each plot feature: (a) no magnetic
fields, (b) ideal MHD, (c) ambipolar diffusion.

their rebound, at 1tff . The results of the three simulations at that time can be found

in Figure 4.3. All simulations met the Jeans condition throughout.

In the HD simulation, two distinct fragments formed, connected by a bar of lower

density. In the MHD simulation, however, no such fragments had formed. Instead

there was a single, dumbbell-shaped feature. This feature had a much lower density

that the fragments seen in the HD simulation. The AD simulation fell between
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these two extremes; while it also resulted in a dumbbell-shaped formation rather

than separate fragments, the central density of this feature was equal to that of the

fragments in the hydrodynamical case.

When a fluid is not ionized (e.g. the HD case) then it will not interact with

magnetic fields at all—the field and the fluid will evolve independently. At the other

extreme, a fluid which is completely ionized (e.g. the MHD case) will be coupled with

the magnetic fields—they evolve together. The magnetic fields are sometimes said to

be “frozen” into the fluid, because they will be dragged along with the fluid’s motion.

As discussed in §1.1.2, ambipolar diffusion represents the intermediate case of partial

ionization (e.g. the AD case). The ionized portion of the fluid is coupled with the

magnetic field, whereas the neutral component is not (directly). These fluids interact

via frictional forces, which transmit some of the effects of the magnetic field to the

neutral fluid. Conversely, the friction tends to make the motion of the ionized fluid

more similar to that of the neutral one.

This mechanism effectively produces a partial coupling between the neutral com-

ponent (which, for this single fluid approximation, is several orders of magnitude

more dense than the ionized one); the magnetic field will follow the motion of the

fluid to some extent, but will tend to drift slightly. Thus, AD represents not only

the intermediate case between HD and MHD in terms of amount of ionization, but

also in terms of coupling between the fluid and magnetic field. Given this, it was as

expected that the AD simulation produced a result displaying characteristics of both

the HD and MHD simulations.
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Chapter 5

Conclusion

This thesis was an attempt to examine the effects of ambipolar diffusion on the

collapse and fragmentation of a protostellar core. In order to accomplish this, a

single-fluid approximation for ambipolar diffusion, as developed by Duffin and Pu-

dritz (2008), was implemented in ZEUS-3D. While this implementation was found

to successfully simulate both isothermal and adiabatic C-shocks, it proved to be

unreliable for 3D problems. When a protostellar collapse simulation was run with

ZEUS-3D solving the total energy equation, instabilities developed which mimicked

those of CFL violations. However, tests indicated that reducing the time step did

not alleviate these instabilities, nor do these instabilities develop when ZEUS-3D was

run solving the internal energy equation. However, presumably due to this algorithm

being non-conservative for energy, fragments tended to recombine into a single object

in these simulations. Additionally, ambipolar diffusion required such small time steps

that it was impractical to run simulations with even a moderate level of resolution.

The aforementioned difficulties meant that no physical conclusions could be drawn

with regard to the collapse and fragmentation of protostellar cores. However, the few

simulations which could be run indicated that ambipolar diffusion produced results

which were distinctly different from those for ideal MHD and the non-magnetic case.

This result fell between those for the latter two simulations; the density was similar
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to that obtained in the absence of magnetic fields, while the morphology was closer

to that seen in the case of ideal MHD. Such an intermediate result is what would be

expected, as the partial ionization resulting in ambipolar diffusion falls between the

respective extremes of no ionization and complete ionization.

Much work remains to be done in order to resolve the aforementioned errors.

In particular, the cause of the instabilities which arise when ZEUS-3D solves for

total energy must be identified. The fact that these instabilities do not arise when

ZEUS-3D solves for internal energy indicates that the implementation of the effects

of ambipolar diffusion on induction is correct and that the problem lies with its

implementation for energy. There is also the problem of impractical run-times for all

but the lowest resolutions. It seems that the implementation of ambipolar diffusion

will have to be altered so as to use sub-cycling. This will allow energy and magnetic

fields to be updated as necessary, without having to carry out a computationally

expensive full iteration of the simulation each time.

Once this has been done, ZEUS-3D can be used to evaluate the effects of ambipolar

diffusion far more effectively. This will require a much larger set of simulations, run

with a variety of different parameters, so as to ensure that any sudden changes in

the results due to the nonlinearity of this problem are identified. This will also

require a statistical analysis of the results. Ultimately, ambipolar diffusion should

be implemented in AZEuS, so that these simulations can be run with adaptive mesh

refinement, guaranteeing that the Jeans condition is met at all times and allowing

much greater detail to be resolved in a computationally cost-effective way.
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Appendix A

Implementation of A.D. in
ZEUS-3D

Note: This appendix assumes a certain amount of knowledge regarding the ZEUS-

3D code. Readers may find it helpful to first examine ZEUS-3D ’s manual, which can

be downloaded with the source-code at http://www.ica.smu.ca/zeus3d/.

The single-fluid approach to ambipolar diffusion described in Chapter 2 results

in the addition of an extra term to the induction equation and two extra terms

to the energy equation (or, alternatively, an additional term to the internal energy

equation). All of these terms involve the Lorentz force fL = J ×B, meaning that

this quantity must be calculated. Despite the fact that the information contained by

the Lorentz force is used in the MHD calculations performed by ZEUS-3D, it has not

been explicitly calculated.

With the application of various vector identities, it can be seen that the equation

for the kth components of the Lorentz force is given by

fL,k = ∂i(B
∗
iB

∗
k) + ∂j(B

∗
jB

∗
k) + 1

2
∂k(B

2
k −B2

j −B2
i ), (A.1)

where ∂i ≡ ∂
∂xi

and values with an asterisk are interpolated. In the context of ZEUS-

3D, interpolation implies more than a simple two-point average. In order to correctly

http://www.ica.smu.ca/zeus3d/
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Figure A.1: A cross-section of the ZEUS-3D grid, illustrating the location of zone-
centred, face-centred, and edge-centred quantities.

account for the propagation of characteristic waves through the fluid, a more complex

technique must be used, incorporating concepts such as “upwinding” (Clarke, 1996).

fL,k is a face-centred quantity (centred on the k-edge), the interpolated values are

edge-centred, and the squared values are zone-centred (see Figure A.1).

As much as possible, terms in Equation (A.1) were used as they were calculated

for other purposes. The only exception to this is 1
2
∂k(B

2
k), which was calculated using

a new subroutine, adinit, at the beginning of srcstep. This provided the initial

values to store in the Lorentz force arrays (lzk, stored in common-deck ambicom)

for that time-step. The remaining Lorentz force terms were calculated over the

course of the transport step. Note that this was only implemented in the newer

“resequenced” transport subroutines and not in the deprecated “legacy” transport

subroutines. 1
2
∂k(B

2
j + B2

i ) is then subtracted from (lzk) in subroutine stvk. Cal-
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culation of all of these squared values involved taking a two-point average to obtain

the zone-centred value of the magnetic field and then squaring this average. The first

derivative of a zone-centred value was then naturally face-centred. The ∂i(B
∗
iB

∗
k)

term was added to lzk in subroutine ttranj, where the interpolated values were

already being used. Similarly, ∂j(B
∗
jB

∗
k) was added in ttrani The derivative of the

edge-centred interpolated values was naturally face-centred. It can be seen how the

remaining components of the Lorentz force were calculate by cyclically commuting

the indices i, j, and k in the description above.

The effects of ambipolar diffusion were applied in the new subroutine adapply,

called immediately after the last ttran* call in trnsprt. At various times the value

of βAD was required and this was calculated using a function beta(dnsty) where

dnsty is the density for use in the calculation. Before calculating the ∇ · (βADB
2fL)

term in the energy equation, B2 (zone-centred) must be calculated. This involves a

two-point average to correctly centre each component of the magnetic field. Next,

βADB
2fL (a face-centred quantity) was calculated for each component of fL, taking

a two-point average of B2 in the direction corresponding to the desired component.

The face-centred value of density was also calculated for use in determining βAD. The

derivative of each component of βADB
2fL was then taken (returning a zone-centred

value) and, after multiplying by the time-step dt, subtracted from the total energy.

The other A.D. term in the energy equation, µ0βADf
2
L, simply required calculating

the sqauare of the Lorentz force (in the same way that B2 was calculated earlier)

and calling beta with the normal zone-centred density as the argument. The result,

multiplied by dt, could then be added to the total energy.
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If ZEUS-3D is to be run with itote == 0 (tracking internal, rather than total,

energy) then the calculation is considerably simpler. Only a single term, v ·fL must be

added to the internal energy. For each component of v and fL, this was implemented

by finding the zone-centred value using a two-point average and taking the product.

The product for each component was then added to the internal energy.

Applying ambipolar diffusion to the magnetic fields was the most difficult. Recall

that A.D. requires the addition of the term ∇ × (µ0βADfL ×B) to the right hand

side of the induction equation. The curl must be calculated with care in order to

ensure that the solenoidal condition is met. To do this, edge-centred η = βADfL×B

values were calculated, analogous to electromotive forces (EMFs) calculated when

evaluating the unmodified induction equation. Note that, in ZEUS-3D, µ0 is ignored;

it is effectively contained within the scaling of the magnetic field. When calculating

each component of η, a four-point average was performed on density to make it

edge-centred and from that to calculated βAD. Two-point averages were performed

on the relavent components of fL and B to make them edge-centred as well. In

order to ensure that the appropriate boundary conditions are met, skin values (those

face-centred values falling between active zones and boundary zones) were set with

calls to svalemf*. Finally, each component of η was passed to the subroutine ct (a

component of the legacy transport system, where it would normally be passed EMF

values) which applied them to the magnetic field. ct was designed to correctly handle

boundary conditions with a call to subroutine bvalemfs. A slight modification to the

latter subroutine was needed so that, when it was being used for ambipolar diffusion,

it would handle inflow conditions correctly. Ordinarily, bvalemfs would set EMFs for
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inflow boundaries from active zones or arrays of custom values. However, for A.D.,

these values should simply be set to zero. For this purpose, a flag eorn was added to

the argument list of bvalemfs (and ct, so that the correct value could be passed to

bvalemfs) which would be set to 1 if EMFs were being passed and any other number

of η components were being passed for the purposes of ambipolar diffusion.

The time-step required to prevent CFL-violations for ambipolar diffusion is given

by Equation (3.1). As done for other conditions limiting the time-step, the inverse

square of τAD was computed for each zone in newdt. This was added, in quadrature,

with the inverse squares of the other time-step components for that zone and the

maximum such value was found. The Courant number (which describes the maximum

fraction of material within a cell is allowed to flow out during a time-step) was then

divided by the square-root of this result to give the final time-step value. This was the

same approach which has always been taken in ZEUS-3D to determine the time-step.

The only change was that τ−2
AD was added to the quadrature sum.

A second implementation of ambipolar diffusion was also added, which treated it

as a source term. This meant that the Lorentz force was calculated all at once in

the new subroutine adlf. This subroutine is called in srcstep, immediately before

where the diffusive terms are applied when ZEUS-3D is run in TWOFLUID mode.

A call is made to adapply just after adlf. This approach worked well for the 1D

C-shock simulations, but was found to result in asymmetries when run in 3D. The

origin of these asymmetries remains unclear, and this implementation requires further

development. This implementation, if perfected, has the advantage of being better

suited for subcycling.
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As mentioned in Chapter 4, when ambipolar diffusion was applied to the 3D

Truelove problem, it was found to cause what appeared to be CFL violations, no

matter how small the time-step was reduced. It would seem that the implementation

of ambipolar diffusion described here is unconditionally unstable, although why this

would be the case for 3D problems but not 1D is unclear. However, it was noticed

that such instabilities arose only in the low-density regions external to the gas cloud.

As a temporary measure to fix this problem, ambipolar diffusion can be turned off

in regions below a certain density. This is achieved by having the function beta

return a value of zero when its density falls below the desired value, dminad. It is

also possible to gradually reduce the strength of ambipolar diffusion (i.e. scale the

value returned by beta) when the density is above dminad but below another value,

dmin2ad. However, these approaches were not successful.

Several parameters may be chosen by the user to control ambipolar diffusion. to

override the default values, these parameters must be specified in the namelist hycon

in the ZEUS-3D input file (inzeus):

adsrc A switch which, if set to 1, causes Lorentz forces to be calculated all at once

and then applied as a source term. This mode contains bugs and should not be

used. If set to 0, then the Lorentz forces are calculated over the course of the

transport step (default).

ionconst A switch which, if set to 1, gives a constant ion density, set to the value of

dscale. If 0, the ion density is calculated using Equation (2.32) (default).

gammaad The coefficient γAD expressing the strength of the coupling between the
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ionized and neutral fluids. Used to calculate βAD in Equation (2.16). (Default:

1.0)

betacoef The coefficient in the numerator of Equation (2.16). It should be 1.4

(default) for a 90% H2/10% He gas and 1.0 for a pure H2 gas.

dscale A conversion between scale-free density units used internally by ZEUS-3D and

cgs density. (Default: 2.0× 10−18 g cm−3)

mion Average mass of ionized particles, in cgs units. (Default: 4.81× 10−23 g)

mneutral Average mass of neutral particles, in cgs units. (Default: 3.82× 10−24 g)

dminad A cutoff density, below which ambipolar diffusion will not be applied. This

is achieved by setting βAD = 0 in such regions. (Default: 0)

dmin2ad A cutoff below which ambipolar diffusion is not applied at full strength.

The value of βAD is scaled between 0 and 1 as density varies from dminad and

dmin2ad, respectively. (Default: 0)
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