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Abstract 

 

Built-environment Variables Influencing Aggregate Walking:  

a Multivariate Analysis of Halifax Neighbourhoods 

 

 

By Kevin Neatt 

 

This study examines neighbourhood characteristics affecting the incidence of walking 

trips in urban and suburban areas of Halifax, Canada, using data from the Space-Time 

Activity Research (STAR) survey, which was conducted in 2007-2008.  Primary 

respondents completed a two-day time-diary survey, and their movements were tracked 

using a GPS data logger.  

 

Based on mapped walking tracks, hypotheses were developed regarding variations in 

walking density.  To test these, walking distances were aggregated by census tracts, and 

expressed as walking densities (per resident, per metre of road, and per developed area).  

Multivariate regression was used to examine which neighbourhood variables are most 

useful as estimators of walking densities. Contrary to much of the planning literature, 

built-environment measures of road connectivity and dwelling density were found to have 

little estimating power. Office and institutional land uses are more useful estimators, as 

are the income and age characteristics of the resident population. 

 

February, 2016 

  



 

iii 

 

Acknowledgments  

This thesis would not have come to fruition without the guidance and support of several 

individuals.  First and foremost, I would like to offer my sincere and heartfelt thank you 

to both Dr. Hugh Millward and Dr. Jamie Spinney who have generously shared their 

collective knowledge.  They have provided the much needed guidance and facilitated my 

growth and understanding of walking behaviour throughout this endeavour. 

 

A special thank you is also deserved for those in the faculty of Geography and 

Environmental Studies at Saint Mary’s University who have contributed to shaping my 

academic career.  Thank you to Dr. Robert McCalla for shepherding me through my 

geography studies as well as for honing my critical thinking.  Thank you to Dr. Jason 

Grek-Martin for expanding my geographic vocabulary.  Thank you to Mr. Greg Baker for 

navigating my way through the technical GIS aspects of this project. 

 

I am also grateful to have received tremendous support outside of the academic setting.  

Firstly, to my family, my wife Nancy Neatt, thank you for encouraging me to succeed and 

for being understanding of the time commitments required to complete this challenge, and 

to my mother Gail Neatt for the unwavering support and encouragement of all of my 

academic goals.  Finally, my employer deserves a special thank you for their support and 

flexibility while I undertook both undergraduate and graduate degrees; their investment in 

my education is truly appreciated. 

  



 

iv 

 

TABLE OF CONTENTS 

Abstract ............................................................................................................................... ii 

Acknowledgments .............................................................................................................. iii 

List of Figures ...................................................................................................................... v 

List of Tables .................................................................................................................... vii 

Chapter 1: Introduction ........................................................................................................ 1 

Chapter 2: Literature Review ............................................................................................... 5 

Chapter 3: Methods ............................................................................................................ 17 

3.1 Study Area ............................................................................................................... 17 

3.2 Data Sources ............................................................................................................ 19 

3.3 Data Cleaning ........................................................................................................... 21 

3.5 Independent Variables ............................................................................................. 27 

3.6 Statistical Analysis in SPSS ..................................................................................... 32 

Chapter 4: Spatial Analysis ................................................................................................ 40 

Chapter 5: Modeling: Correlations .................................................................................... 50 

Chapter 6: Modeling: Multiple Regression ........................................................................ 59 

Chapter 7: Conclusions ...................................................................................................... 77 

References .......................................................................................................................... 85 

Appendix A ........................................................................................................................ 92 

 

  



 

v 

 

List of Figures 

Figure 2.1.  Published Walkability Articles per Year ....................................................... 5 

Figure 2.2.  Timeline of Seminal Walkability Articles 1998 – 2006 ................................ 6 

Figure 2.3.  Relationship between travel behaviour and factors that affect it .................. 8 

Figure 3.1.  Census Tracts, Halifax, Nova Scotia ........................................................... 18 

Figure 3.2.  Revised Walking Route Example ................................................................ 23 

Figure 3.3.  Example of a Walking Track Error ............................................................. 24 

Figure 3.4.  Verifiable Walking Route ............................................................................ 25 

Figure 4.1.  Walking Tracks, Halifax, Nova Scotia ........................................................ 42 

Figure 4.2.  Aggregate Walked Distance per Metre of Road by Census Tract ............... 45 

Figure 4.3.  Aggregate Walked Distance per Census Tract Population by Census Tract    

Area .............................................................................................................. 48 

Figure 4.4.  Aggregate Walked Distance by Developed Area by Census Tract ............. 49 

Figure 5.1.  W/P: Z-score Dwelling Density .................................................................. 53 

Figure 5.2.  W/P: Z-score Intersection Density .............................................................. 53 

Figure 5.3.  W/P: Z-score Entropy .................................................................................. 53 

Figure 5.4.  W/P: Z-score Retail Lot Coverage Ratio ..................................................... 53 

Figure 5.5.  W/R: Z-score Dwelling Density .................................................................. 54 

Figure 5.6.  W/R: Z-score Intersection Density .............................................................. 54 

Figure 5.7.  W/R: Z-score Entropy ................................................................................. 54 

Figure 5.8.  W/R: Z-score Retail Lot Coverage Ratio .................................................... 54 

Figure 5.9.  W/DA: Z-score Dwelling Density ............................................................... 55 



 

vi 

 

Figure 5.10.  W/DA: Z-score Intersection Density ......................................................... 55 

Figure 5.11.  W/DA: Z-score Entropy ............................................................................ 55 

Figure 5.12.  W/DA: Z-score Retail Lot Coverage Ratio ............................................... 55 

Figure 5.13. W/P by WI-3 ............................................................................................... 57 

Figure 5.14. W/P by WI-4 ............................................................................................... 57 

Figure 5.15. W/R by WI-3 .............................................................................................. 57 

Figure 5.16. W/R by WI-4 .............................................................................................. 57 

Figure 5.17. W/DA by WI-3 ........................................................................................... 58 

Figure 5.18. W/DA by WI-4 ........................................................................................... 58 

 

 

   



 

vii 

 

List of Tables 

Table 5.1. Correlations .................................................................................................... 50 

Table 6.1. Walked Distance by Population, Consolidated Regression Results. ............. 61 

Table 6.2. Walked Distance by Road, Consolidated Regression Results. ...................... 69 

Table 6.3. Walked Distance by Developed Area, Consolidated Regression Results. .... 73  



1 

 

 

 

CHAPTER 1 

Introduction 

 

Neighbourhood walkability is particularly important to urban designers, planners, policy 

makers, and those in the public health, environmental, and transportation fields (Saelens 

et al., 2008; Li et al., 2015).  The concern for neighbourhood walkability stems from a 

desire to improve one or more of the following three objectives: improve public health, 

reduce infrastructure costs, and reduce environmental impacts of transportation (e.g. 

greenhouse gas emissions).  

 

The lack of physical activity and high obesity rates have been, and continue to be, of 

concern for governments in the western world.  Ewing et al. (2013, p.118) contends that 

“physical inactivity is the fourth leading risk factor for global mortality”.  Health and 

medical researchers have promoted walking as a good form of physical activity and report 

that even moderate amounts can have positive impact on public health (Frank et al., 2004; 

Ewing et al., 2013).  Researchers have been making the connection between public health 

and the built environment for some time (Frank et al., 2004), and Mowatt (2015) argues 

the relationship between the built environment and health has “entered the mainstream of 

public health practice”.  The built environment is a rather broad term that incorporates, as 

Handy et al. (2002, p.65) describe, “urban design, land use, and the transportation system, 

and encompasses patterns of human activity within the physical environment”.  

Improvements in the built environment, such as an interconnected pedestrian system (of 

sidewalks, pathways, multi-use trails), mixed land uses that are within walking distance, 
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transit friendly design, and  pleasing neighbourhood aesthetics can encourage physical 

activity, particularly walking (Saelens et al., 2003; Leslie et al., 2005; Cerin et al., 2006).  

 

A reduction in the reliance on automobile transport generally coincides with an increase 

in public transit ridership and active transportation (AT), both of which require pedestrian 

access and walking.  Greater transit ridership and AT participation would also reduce the 

need for costly infrastructure improvements and future transportation investments 

(Cervero, 1988; Gordon, et al., 1997; Frank, 2000).  Governments and policy makers are 

seeking to improve public policy that encourages walking in an effort to reduce pressure 

on public coffers by delaying or eliminating road improvements, and creating non-

subsidized public transit. 

  

Concerns surrounding climate change and greenhouse gas emissions have encouraged 

urban designers, planners, and policy makers to find ways of reducing reliance on 

automobile travel and thus encourage the use of both public transit and AT (Boarnet et 

al., 2011).  Researchers have determined that limited or non-existent public transit and 

AT options strengthen the reliance on automobile dependency (Wilson et al., 2013). 

 

Based on the concerns noted above, considerable efforts are being put into determining if 

neighbourhoods enable and encourage walking, often termed neighbourhood walkability.  

Marshal et al. (2009, p.1752) define walkability as “a measure of how conducive the built 

environment is to walking and that predicts physical activity and active transportation”.  

Researchers suggest that neighbourhood walkability can be measured by scoring several 
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objective physical characteristics of the built environment, thereby creating an index of 

walkability (Saelens et al., 2003; Leslie et al., 2007; Frank et al., 2009; Mayne et al., 

2013).  Walkability indices can be used to evaluate neighbourhood designs and to either 

estimate or better understand the likelihood of physical activity of residents. 

 

The objective of this research is to identify built environment characteristics that promote 

walking behaviour at the neighbourhood level, in order to test the highly-cited index of 

walkability (e.g. Frank et al., 2005; Lee and Moudon, 2006) against objective and verified 

walking data, and ultimately to improve neighbourhood design.  This research uniquely 

contributes to the knowledge of walking behaviour in the following three ways: 1) the use 

of both objective and self-report time diaries to record walking activity; 2) walking data is 

aggregated based on census tracts (CT), enabling the CTs themselves to be considered the 

unit of measurement, rather than the individual respondents; and, 3) walking activity 

includes both active transport and recreational walking so that total walking can be 

examined.  Examining walking behaviour using these three unique considerations 

provides further insights as to the spatial incidence of walking in a medium-sized city.  

 

This study is organised into seven chapters, beginning with a comprehensive review of 

literature in chapter two that outlines the seminal research conducted on neighbourhood 

walkability and then highlights relevant walking theories that relate to three unique 

considerations of this study noted above.  Chapter three discusses the methods employed 

in the study, including both the study area and the data sets.  The study area is the 

medium-sized, metropolitan city of Halifax, Canada. This research employs data derived 
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from the innovative Halifax STAR (Space-Time Activity Research) time-use and 

transport survey conducted in 2007-08.  Respondents from the STAR survey were 

provided GPS-enabled (global positioning system) personal data loggers that tracked 

walking activity of respondents aged 15 years and older for a 48-hour reporting period. 

Walking distances were aggregated by Census Tract, and expressed as three walking 

densities.  Chapter four – Spatial Analysis – examines the spatial patterns of the three 

walking densities.  This chapter provides an opportunity to discuss walking patterns and 

complements the statistical component of this research.  Chapters five and six focus on 

the statistical analysis of the aggregated walking densities.  Chapter five employs a two-

tailed, bivariate, Pearson correlation analysis to assess the statistical significance of any 

linear relationships among the individual walking index variables and two composite 

walkability indices against the three walking densities.  The correlation analysis also 

allows us to investigate potential issues with multicollinearity.  Chapter 6 reports on 

multiple linear regression models, which were run for each of the three measures of 

walking density (dependent variables).  The models tested walking densities against built 

environment variables, socio-demographic control variables, and the walkability indices, 

with the goal of determining which set of variables have the strongest ability to explain 

walking behaviour.  The final chapter concludes the study by highlighting important 

insights gained from the research, providing suggestions for future research directions, 

and discussing implications of the research findings for practical policy improvements. 
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CHAPTER 2 

Literature Review 

A substantial amount of research has been conducted on walkability over the past ten 

years.  A search conducted in the Web of Science database (February, 2016) using the 

term “walkability” resulted in 845 articles to the end of 2015.  Figure 2.1 illustrates the 

number of published items per year. There were only a small number of articles prior to 

2006, and a steep and steady increase after 2006. 

 

Figure 2.1. Published Walkability Articles per Year (2015) (Source: Web of Science) 

A review of the literature suggests that walkability is of interest to two primary fields of 

academic enquiry, transportation planning and public health.  Of the twenty-one articles 

that were cited over 100 times, all but one article was published in a health-related 

journal.  The one exception was published in the Journal of the American Planning 

Association.  Although there has been an explosion of interest in walkability in the last 

ten years, seminal research was conducted from 1988 – 2006.  Figure 2.2 illustrates the 
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timeline associated with these articles.  This literature review will focus on these seminal 

articles and will address literature relating to three unique considerations that this research 

incorporates. 

 

Figure 2.2. Timeline of Seminal Walkability Articles 1988 – 2006 

 

The planning field is interested in the study of walking as a form of active transportation 

(Handy et al., 2002).  Researchers have established a link between urban form and the 

modes of transport people choose (Cervero et al., 1997).  Many years of single land use, 

residential suburbanization, as well as single-use office parks, has led to unprecedented 

traffic congestion and automobile dependence.  Early work by Cervero (1988, p.429) 

suggests that the suburbanization of jobs in the 1980s led to “fundamentally altered 

commuting patterns” that resulted in many employees driving their own vehicle to work.  

This is in contrast to traditional commuting patterns where employment was primarily 

located in the downtown core and employees had transport options (Cervero, 1988).  

Cervero (1988) contends that mixed-use development has beneficial impacts on travel 

behaviour and traffic conditions and that appropriate planning policies could be used as a 
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tool to encourage mixed-use developments that would host a variety of shops, restaurants, 

entertainment venues, offices and residential units.  Once established, this mixed-use core 

would create a rich mixture of activities that would be utilized around the clock and 

would decrease peak hour traffic congestion by allowing people to walk to their 

destinations of interest (Cervero, 1988).   

 

Frank and Pivo (1994) built upon Cervero’s notion that there is a link between urban form 

and transport choice, and conducted tests to determine the impacts of urban form (land 

use mix, population density, and employment density) on transport mode (e.g. single-

occupant vehicle, transit, and walking) at the census tract scale.  Frank and Pivo (1994) 

used empirical data from a variety of sources to develop and then test hypothetical 

relationships between urban form and transport modes.  As illustrated in Figure 2.3 

below, Frank and Pivo noted that both urban form factors, such as density and land use 

mix, as well as non-urban form factors, such as income, gender, age, and level of service 

have significant impacts on travel behaviour.  Since urban form factors were the focus of 

their research, they controlled for non-urban form factors through the analysis of 

descriptive statistics, correlation, and regression (Frank and Pivo, 1994).  Controlling for 

non-urban form factors allowed for comparisons to be made between trip makers with 

similar socio-economic attributes (Frank and Pivo, 1994). 
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Figure 2.3. Relationship between travel behaviour and factors that affect it. (Source: 

Frank and Pivo, 1994, p.45) 

 

 

The seminal conclusion of Frank and Pivo’s research was that density and land use mix 

are related to choice of transportation mode.  Specifically, the choice of both public 

transit and walking as a means of transport increases with an increase in density and land 

use mix; conversely, single-occupant vehicle as a transport choice decreases as density 

and land use increase (Frank and Pivo, 1994).   

 

Research into the link between urban form and transportation choice continued with the 

work of Cervero and Kockelman (1997).  Cervero and Kockelman expanded the research 

on urban form and introduced “design” as another element of urban form.  In their article 

titled “Travel Demand and the 3Ds: Density, Diversity, and Design”, they suggest that 
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urban design characteristics can have an impact on travel demand (Cervero and 

Kockelman, 1997).  Unique to their research, Cervero and Kockelman introduce the 

notion that not only does density and land use diversity impact travel choices, but 

neighbourhood design elements can have an impact on travel mode as well (Cervero and 

Kockelman, 1997).  They went as far as providing specific examples of design elements 

that could enhance the pedestrian experience and would thus encourage walking.  

Specifically, they suggested pedestrian-oriented designs ought to have storefronts that are 

orientated to the sidewalk and any associated parking would be located behind the store, 

creating an inviting pedestrian storefront that would not hinder pedestrian access by 

forcing people to walk across vast parking lots in order to enter the store.  Additionally, 

they suggested enhancing the pedestrian environment by including shade trees and 

benches along the sidewalk.  It was intended that these design considerations would work 

to enhance the pedestrian milieu (Cervero and Kockelman, 1997).  Their research 

concludes that density, land-use diversity, and pedestrian-oriented designs generally 

reduce car trip rates and also encourage non-auto travel (Cervero and Kockelman, 1997).  

Of particular interest to this research, Cervero and Kockelman contend that higher 

density, mixed land use, and pedestrian-friendly designs must be collectively incorporated 

into neighbourhood design in order to achieve the desired outcome of lower auto-

dependence and higher rates of walking.  For example, it is unlikely that a predominantly 

single-family neighbourhood with only sidewalks and attractive landscaping will prompt 

people to walk to shopping areas (Cervero and Kockelman, 1997). 
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Researchers began to examine the relationship between the built environment and the 

residents’ physical activity at the neighbourhood scale (Saelens et al., 2003; Frank et al., 

2005).  Saelens et al. (2003) was the first to document the correlation between 

neighbourhood design and physical activity.  The study examined residents’ levels of 

physical activity for two neighbourhoods with differing degrees of walkability.  Residents 

of the two neighbourhoods reported their physical activity by self-reported surveys and 

accelerometers.  Both methods of physical activity tracking were used for verification 

purposes.  The seminal conclusion was that residents of high-walkability neighbourhoods 

(i.e. neighbourhoods that had higher residential density, land use mix, street connectivity, 

aesthetics, and safety) reported higher levels/amounts of physical activity than did 

residents of lower walkability neighbourhoods (Saelens et al., 2003).   

 

Frank et al. (2005) built on the research by Saelens et al. and introduced objective 

measures of both the built environment and physical activity, rather than the subjective 

measures employed by Saelens et al. (2003).  The researchers created an Index of 

Walkability that could be used as a way of objectively measuring urban form and could 

also be used as a predictor of walking behaviour.  Three neighbourhood design variables 

were selected as inputs to the index based on their independent relationships with 

walking.  Frank et al. (2005) define the three variables as follows: 

- Net Residential Density, which is defined as the number of residential units per 

unit of residential area.  Areas with residential density greater than six per acre 

(i.e., 15/ha) are considered as more walkable. 
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- Street Connectivity, which is measured as the number of intersections per square 

kilometer.  More intersections result in more direct walking route to destinations.  

Areas with greater than 30 intersections per square kilometer are considered more 

walkable. 

- Land-use Mix, which can be expressed as the evenness of distribution of square 

footage of residential, commercial, and office space.  This is measured by an 

entropy index.   

Using these three variables Frank et al. developed a formula to create a walkability index 

as follows: 

 Walkability Index = (z-score of land-use mix) 

+ (z-score of net residential density) 

+ (z-score of intersection density) 

 Accelerometers were then provided to 357 adults and data were collected over a two day 

period.  Neighbourhood walkability could then be related to physical activity.  Their 

results concluded that neighbourhoods with a high degree of walkability were positively 

(though weakly) related with moderate amounts of daily physical activity (R
2
 = 0.107) 

(Frank et al., 2005).  This article is of particular importance and interest to this study as a 

walkability index was created with the same formula derived by Frank et al. (2005). 

 

Other researchers have provided alternative approaches to using composite walkability 

indices that employ highly inter-correlated variables that are often difficult to gather, in 

order to measure the built environment and thus the “walkability” of neighbourhoods 
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(Lee et al., 2006).  Lee and Moudon (2006), based on the 3Ds (density, diversity, and 

design) framework developed by Cervero and Kockelman (1997), created a notion of 3Ds 

+ R (route).  The addition of “route” to Cervero and Kockelman’s framework recognized 

that distance measures between home and walking destinations were also important 

indicators of walkability. Their research focused on determining built environment 

variables that were correlates of walking.  The study employed 900 built environment 

variables in a multiple regression analysis to identify those with significant effects on 

walking activity. The “shotgun” approach to the inclusion of independent variables 

helped to identify and understand broad groupings of walking determinants.  In general, 

the broad groupings of determinants fell under the 3D’s + R categories of destination, 

distance, density, and route (Lee et al., 2006).  The research concluded that many 

previously proposed walking determinants were not statistically significant, such as width 

of road, traffic volume, and the presence of parks and fitness centers (Lee et al., 2006).  

Additionally, by grouping walking determinants under the 3D’s+R formula, future data 

collection efforts could be better directed.  The researchers admit that this study is still 

subject to the shortfall of relying only on a telephone-based self-reported survey rather 

than a quantitative method to determine the amount of walking (Lee et al., 2006).   

 

An often cited criticism of walking behaviour research is the lack of objective walking 

data (Handy et al., 2002; Hoehner et al., 2005; Kang et al., 2013).  In the absence of 

objective walking data, many studies utilize self-reported walking data that were collected 

via telephone surveys or questionnaires (Berke et al., 2007; Owen et al., 2007; Adams et 
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al., 2011; Mayne et al., 2013).  Telephone surveys or questionnaires have the benefit of 

being able to survey a larger sample with fewer expenses compared to objective reporting 

methods that may use an accelerometer or GPS.  These self-reported methods of data 

collection have two common accuracy issues.  Firstly, respondents of self-reported 

walking surveys or questionnaires tend to over-estimate their reported physical activity, 

both in terms of duration and frequency (Dewulf et al., 2012; Kang et al., 2013; Van 

Holle et al. 2015).  Dewulf et al. (2012) explain that the volume of over estimation is not 

uniform across respondents and that those with less physical activity tend to report an 

even greater over-estimation of physical activity compared to those who may exercise 

more.  The second concern with using self-reported data is that shorter walking trips tend 

to be under-reported (Kang et al., 2013).  While researchers recommend using objective 

data when available, it is recognized that objective reporting of physical activity is not 

without its limitations.  Objective walking data are collected, generally, by using 

accelerometers or GPS.  While accelerometers can accurately calculate walking activity, 

location information or purpose of the walking trip is not as easily obtainable.  The use of 

GPS to calculate walking activity provides location context as well as distance and speed, 

but it also has constraints.  GPS datasets often lack data completeness due to lost satellite 

signals or otherwise erroneous data (Kang et al., 2013).  Utilizing the combination of self-

report travel diary, accelerometer, and GPS data may result in a more complete and 

accurate assessment of walking activity (Kang et al., 2013).  The Halifax STAR dataset 

used in this study utilized both objective and self-reported methods of calculating 

physical activity by using a combination of time diary, GPS, and verified telephone recall 
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survey. 

 

Many studies make the assumption that walking trips begin or end at the respondents’ 

home.  Therefore, when examining the built environment in relation to walking 

behaviour, it is common for researchers to define the built environment “neighbourhood” 

as a set distance or buffer, around the home location of the respondent (Carlson et al., 

2015; Frank et al., 2005; Grasser et al., 2013).  Brownson et al. (2009) completed a 

review article that examined 38 studies in terms of how the built environment was 

measured.  They determined that 25 of the 38 studies, or 65%, were based on a 

neighbourhood buffer surrounding the home location.  Previous research has indicated 

that examining only the neighbourhood surrounding the home location may greatly 

underestimate the amount of walking, particularly for walking trips associated with active 

transportation (Spinney et al., 2012; Millward et al., 2013).  Additional research has 

supported this notion, suggesting that walking is the most dominant form of reported 

physical activity (within the USA) and takes place both at home and from the work place 

(Williams et al., 2008).  Researchers have also delineated the geographic bounds of the 

built environment by other methods, such as by both county (Doyle et al., 2006) and by 

commuting route (Rodriguez et al., 2004).  Studies that delineate the built environment by 

buffer, county, or commuting route are often concerned with the individual respondent 

and the environment they inhabit.  This research considers each census tract (CT) as a 

“case” rather than using the individual respondent.  The concern is where actual walking 

is taking place, irrespective of the respondents’ home or work location.  The aggregation 
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of walking distance by CT facilitates the correlation of walking activity with the built 

environment of the neighbourhood where the walking occurs. 

 

It has been well documented that the built environment encourages the use of automobiles 

and thus discourages walking activity (Adams et al., 2011; Frank et al., 2004; Glazier et 

al., 2014).  Walkability research has typically divided walking activity into two 

categories, recreational walking and active transportation (AT), with more research 

focusing on recreational (Spinney et al., 2012).  However, Ulmer et al. (2014) contend 

that built environment features affect walking behaviour for both AT and recreational 

purposes.  Recent research has suggested a gap in the literature that examines walking for 

recreation and utilitarian purposes as an aggregate (Hajna et al., 2015).  Hajna et al., 

(2015) have completed a systematic review and meta-analysis of walkability literature 

that investigated the association of neighbourhood walkability and walking behaviour.  

The researchers concluded that the collective results of the examined studies support the 

notion that high neighbourhood walkability is associated with higher levels of walking 

behaviour.  Hajna et al. (2015, p.2) explain that while active transport and recreational 

walking, separately, have been well studied, “our understanding of the association of 

walkability and total walking is limited”.  The goal of this study is to improve 

neighbourhood design in an effort to increase walking activity, regardless of purpose.  

 

This literature review has identified the seminal work that continues to be actively cited in 

most of the recent papers.  While a substantial amount of walkability research has been 
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conducted over the past ten years, this literature review focused on three areas that are 

uniquely considered in this dissertation: 1) the use of both objective GPS and self-report 

time diaries to record walking activity; 2) the use of census tracts as the case instead of 

the individual respondent; 3) the examination of walking as an aggregate without 

distinguishing between specific purposes. 
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CHAPTER 3 

Methods 

3.1 Study Area  

 

As described in Chapter 1, Halifax Regional Municipality, Nova Scotia, Canada was 

chosen as the study area.  Halifax is the capital city of Nova Scotia and the largest urban 

centre in the province, consisting of approximately 400,000 people.  Halifax is a mixture 

of urban, suburban, and rural development.  The Halifax Space-Time Activity Research 

(STAR) dataset was collected during 2007-08 for all urban and suburban areas in HRM, 

and most parts of the commuter-shed. It provided an opportunity to study neighbourhood 

design and walkability in a medium sized city. 

 

The scale of this study is at the census tract (CT) level.  Census tracts are defined by 

Statistics Canada (2006) as small stable areas that have a population range of 

approximately 2,500 – 8,000 people with an intended average population of 4,000 people.  

Census tracts are divided by physical attributes of the built environment such as roads and 

railway lines.  They are intended to be relatively homogenous in terms of socio-economic 

characteristics and generally represent defined neighbourhoods (Booth et al., 2005).  This 

study includes all 87 census tracts within Halifax (Figure 3.1).  
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Figure 3.1. Census Tracts, Halifax, Nova Scotia 
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The modifiable areal unit problem (MAUP) is inherent in spatial analysis of data that are 

aggregated into zones (Jelinski, 1996).  Coined by Openshaw and Taylor (1979), MAUP 

identifies the issues that result when analysing data that are based on specific, yet 

relatively arbitrary boundaries. The issues stem from the fact that different results may be 

observed if boundaries or scales of the study are varied (also see Fotheringham and 

Rogerson, 2009).  There does not seem to be one clear approach to address MAUP.  

Clarke et al. (2014) suggest selecting a boundary or scale that is appropriate for the 

problem being investigated.  Ultimately, the intention of this research is to provide 

insights into characteristics that influence walking behaviour in an effort to improve 

neighbourhood design.  Therefore, following Clark’s notion, a census tract scale is an 

appropriate scale of study to further this goal of improved neighbourhood design, as 

municipal policy closely relates to neighbourhoods that are defined at the census tract 

scale.  Fortunately, many neighbourhood characteristics of both socio-demographic and 

built environments are collected at the census tract scale, making data collection and 

analysis much more viable.  

 

3.2 Data Sources 

 

Walking data were collected as part of the Halifax STAR Project, a joint project between 

Saint Mary’s University and Halifax Regional Municipality in 2007 - 2008.  The Halifax 

STAR project is a unique survey that collected information from households regarding 

travel activity and time-use.  The STAR survey distributed GPS data loggers (HP iPAQ) 
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to 1,971 randomly-selected primary respondents of survey households for a 48-hour 

collection period.  These geo-referenced data were used to verify detailed time diaries, 

through telephone prompted-recall from 1,971 primary respondents.  The GPS data 

loggers recorded positions at a resolution of three recordings every two seconds and had a 

spatial accuracy of sub-ten meters, with many positions having accuracy of within three 

meters (TURP, 2008, p.10).  

 

Of the 1,971 primary respondents, 1,189 recorded 5,005 walking episodes (trips).  These 

episodes, which are single acts “engaged in by an individual at a specified place and time 

under certain conditions” (Harvey, 1990), include walking for both active transportation 

as well as recreation purposes.  Their locations were fully geo-referenced. The STAR 

survey classified activities based primarily on the 2005 General Social Survey of Canada 

(GSS) Time Use Survey (Statistics Canada, 2006).  Although the STAR data include 

information on trip purpose, the present study does not distinguish between active 

transportation and recreation walking purposes.  It was felt that neighbourhood design 

ought to encourage walking for both purposes and that within the confines of this 

research, it was more appropriate to investigate all walking behaviour rather than 

focusing on the specific purpose.  

 

Built environment data, including census tract boundaries, waterbodies and roads (2006), 

were obtained from Statistics Canada.  Using data provided by HRM, several built 

environment variables were generated and subsequently provided by Dr. Darren Scott, 
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who is at McMaster University.  Specifically, Dr. Scott provided the following built 

environment variables: intersection density, areas for each of the six land uses (retail, 

commercial, industrial, office, institutional and parkland) and retail lot coverage ratio. 

These variables are explained further in subsection 3.5 (independent variables). 

 

Two census tract-level socio-demographic variables were used in this study:  numbers of 

residents by age cohorts; and, household income.  These variables are available in 

Statistics Canada’s (2006) Public Use Microdata Files that were accessed through the 

Statistics Canada Data Liberation Initiative.  Further explanation can be found in 

subsection 3.5. 

  

3.3 Data Cleaning 

 

Data cleaning or “weeding” refers to the removal of unwarranted or inaccurate 

information in the dataset.  The raw walking data file, consisting of 5,005 walking trips 

and 781,205 individual GPS points (cases), required weeding.  Weeding was a four-step 

process to remove redundant or inaccurate points.  The raw data file (.csv) was imported 

into IBM SPSS Statistics version 21.  The first weeding step was to delete all GPS points 

that had coordinates based on fewer than six satellites; this resulted in the removal of 

2,214 points.  HDOP is one quantifiable representation of GPS accuracy.  A high HDOP 

value equals lower GPS accuracy (Wagner, 2011).  The second weeding step was to 

eliminate all GPS points that had a horizontal dilution of precision (HDOP) of greater 
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than or equal to eight.  A figure of less than eight was selected as an appropriate cut-off 

value based on industry standards which suggest that GPS positions with a HDOP 

exceeding eight are likely invalid; this step resulted in the removal of 47,968 points.  The 

third weeding step was to exclude all points with a speed of greater than 14 km/h.  

Fourteen kilometers per hour was chosen as the maximum speed based on an assumption 

that most people are not able to run faster than that speed; therefore it would eliminate 

any errors the GPS may have inadvertently logged as walking (e.g. interpolation between 

missing points due to signal issues).  This led to a reduction of 7,613 points.  The final 

weeding step was to remove all points with a minimum speed threshold of zero km/h.  

Many cases had a speed equal to zero due to inactivity while the GPS unit continued to 

take 3 recordings every two seconds.  These readings were redundant to the entire dataset; 

621,506 points were removed from the dataset.  As a result of the four-step weeding 

process, 159,699 GPS points remained in the dataset. 

 

Additional data cleaning was conducted once the data points were imported into ArcGIS 

version 10.  A .csv file was created in SPSS and imported into ArcGIS, enabling the data 

to be mapped based on the geographic coordinates for each GPS point.  Once the points 

were imported into ArcGIS, they were converted into continuous lines, using the Point to 

Line command, based on the unique walking event ID attribute.  Walking track lines were 

then broken at each census tract boundary to facilitate the future aggregation of total line 

distance, which would represent total walking distance per census tract.  A manual, 

judgement-based, editing process was then performed to improve accuracy.  Three 

general scenarios were encountered when performing manual, judgement-based editing of 
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walking tracks: 1) deficient data yet predictable routes; 2) irrational walking routes; 3) 

illogical yet verifiable walking routes.   

 

In this study it was preferable that walking tracks were edited rather than deleted.  Figure 

3.2 provides an example of where there were sufficient GPS data to accurately depict the 

walking track at the beginning and the end of the journey, but insufficient data within the 

middle section.  A manual procedure was performed to create additional vertices and 

align the walking track with the road system.  The result represents a more logical and 

accurate walking route that is supported with GPS accuracy at each end of the route. 

 

Figure 3.2. Revised Walking Route Example 
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Figure 3.3 provides a second example of an illogical walking track.  Figure 3.3 depicts a 

walking track crossing water and properties in a very straight line.  Although technically 

possible in the winter, it is unlikely that the walking track would be that straight and not 

follow the general road patterns once reaching land.  There was insufficient GPS data to 

suggest a reasonable alternative route; therefore this walking track was deleted. 

 

Figure 3.3. Example of a walking track error. 

 

Walking tracks were not simply deleted on the basis of the road network. Tracks were 

also visually compared with air photos to determine if the walking track is reasonable.  

One such example is illustrated in Figure 3.4, which depicts a walking track extending out 
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into a harbour.  When the corresponding location was visible on the air photo, it was 

determined that the walking track was on a trail (a former rail causeway).  Further 

validation of the walking track was based on the continuous number of GPS points that 

were displayed when the track was selected.  This walking track remained in the dataset. 

 

Figure 3.4. Verifiable Walking Route 

 

A single ArcGIS file was created that contained the walking tracks, roads, water bodies, 

and census tracts.  Each walking track was then associated with the particular census tract 

within which it was located.  An aggregate measure of walked distance per census tract 

was calculated by summing the total lengths of all walking tracks per individual census 
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tract. 

 

Due to variations in area and population of census tracts, three walking densities were 

developed to measure walked distance per census tract in formats that facilitated 

comparison between census tracts.  The first walking density variable measured walked 

distance per capita for each census tract.  This variable, “walked distance by population” 

(W/P), was calculated by dividing the total walked distance per census tract by its total 

resident population.  The second walking density variable measured the walked distance 

per meter of road in each census tract.  This variable, “walked distance by road” (W/R), 

was calculated by dividing the aggregate walked distance per census tract by the total 

length of all paved roads in each census tract.  The third walking density, “walked 

distance by developed area” (W/DA) was calculated by dividing the total walked distance 

per census tract by the total developed area (in square metres) of each census tract.  The 

developed area was derived from the aggregate area of six land uses (residential, 

commercial, office, park and recreation, institutional and industrial). 

 

The three walking densities (W/P, W/R and W/DA) all reflect different walking 

attributes.  W/P is a measure of the propensity for people to walk; while, W/R and W/DA 

measure the use of the built environment in terms of roads and built environment area.  It 

would be expected that changes in variables that typically influence walking may not 

necessarily be correlated equally with all three densities.  For example, if a change 

occurred in residential dwelling density it would be expected to have an impact on both 

the amount of walking per meter of road and amount of walking per developed area, 
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assuming that additional residents would result in increased walking, ceteris paribus. One 

would expect that an increase in dwelling density would have much less influence on the 

W/P, since dwelling density and population are directly related. There may, however, be 

some influence on residents’ walking propensities, since higher residential densities 

typically imply a closer arrangement of walkable destinations.  

 

Regarding the W/P measure, one should bear in mind that not all walking within a census 

tract will be performed by residents of that neighbourhood, and indeed perhaps only a 

small portion of walking will be by residents (for example, in downtown areas, or in areas 

with many retail, office, or institutional destinations). For this reason, there will not 

necessarily be a strong correlation between resident population and aggregate walking 

behaviour. 

 

3.5 Independent Variables 

 

As explained in the literature review, two walkability index formulas are used in this 

study, a three-variable index and a four-variable index.  The three-variable walkability 

index (WI-3) employs dwelling density, intersection density, and entropy (land-use mix), 

while the four-variable walkability index (WI-4) employs a fourth variable, retail lot 

coverage ratio.  Although the components of the walkability indices vary, the basic 

formula remains as the summation of the Z-scores for each component in each census 

tract. 
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WI-3 = dwelling density (Z-score) + intersection density (Z-score) + entropy (Z-score) 

 

WI-4 = dwelling density (Z-score) + intersection density (Z-score) + entropy (Z-score) + 

retail lot coverage ratio (Z-score). 

 

The individual walkability components are defined as follows: 

 

- Dwelling density (Z-score) was calculated by dividing the total number of dwellings 

per census tract by the total amount of developed area within the census tract.  The 

figure was then normalized as a Z-score.  The number of dwellings was derived from 

the 2006 Statistics Canada dataset.  The developed area was derived from the 

aggregate area of six land uses (residential, commercial, office, park and recreation, 

institutional and industrial).  The land use dataset was developed as part of the STAR 

project. 

 

- Intersection density (Z-score) was calculated by dividing the total number of 

intersections within each census tract by the census tract area.  This figure was 

provided by Dr. Darren Scott from McMaster University.  The figure was then 

normalised as a Z-score. 

 

- Entropy (Z-score) is a measure of land-use mixture within a prescribed area.  The 

literature lacks consistency in the formula used to calculate entropy.  This research 
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utilizes an entropy formula based on the work of Frank et al. (2006) as follows: 

 

Entropy = −A/lnN 

 A=(b1/a)*ln(b1/a) + (b2/a)*ln(b2/a) + (b3/a)*ln(b3/a) + (b4/a)*ln(b4/a) + 

(b5/a)*ln(b5/a) + (b6/a)*ln(b6/a) 

 a = total square feet of land for each of six land uses within census tract 

b1through b6 measure areas of land use for: 

 b1= residential area 

 b2= commercial area 

 b3= institutional area 

 b4= office area 

 b5= park and recreation area 

 b6= industrial area 

 N= number of six land uses with area > 0. 

 

- Retail lot coverage ratio (Z-score) was calculated by dividing the total retail building 

footprint area by total retail parcel area per census tract.  

 

An expanded walkability index, including additional components that influence walking, 

would have been interesting to include in this study.  Specifically, the inclusion of 
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sidewalks as a built environment variable within the walkability index tends to provide 

valuable insights into walking behaviour (Booth et al., 2005).  Sidewalk data were 

obtained from the HRM’s GIS department.  Unfortunately, however, it was discovered 

that the dataset was incomplete and vector lines depicting sidewalks were contiguous 

polygons that outlined the edge of the concrete sidewalk and included driveway cuts.  The 

inclusion of driveway cuts meant that an accurate distance of sidewalks for each census 

tract was not possible, because the number of intersections and driveway cuts would have 

greatly skewed the aggregate distance.  Ideally, sidewalks would have been represented in 

a similar pattern as roads; as single vector lines with a distance.  As this study was not 

focusing specifically on sidewalks, it was felt that the effort to digitize the sidewalk 

coverage into single lines was not warranted and better left for specific studies relating to 

sidewalks in the future. 

 

Two socio-demographic control variables were included in the study; age and income.  

Specifically, age was categorized into three cohorts: young adult (age 15 – 39), middle-

aged (age 40 – 64) and older adult (age 65 plus).  These figures were expressed as a 

proportion of the census tract population of each cohort by census tract.  The second 

control variable was average (mean) household income, expressed in thousands of 

dollars, per census tract.  These two control variables were included in the study as the 

literature suggests that both age and income tend to influence walking behavior (Berke et 

al., 2007; Sallis et al., 2009), and this is substantiated in a study using the STAR data 

(Spinney et al., 2012).  
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A third socio-demographic variable, a dissimilarity index, was investigated but not 

included in the study.  The literature suggests that those living closer to employment 

locations have a greater propensity to select active transportation as a mode of travel 

(Cerin et al., 2007). The intention was to include a variable that would address this notion 

by providing a measure of spatial mismatch between employment and residential 

location.  A reasonable effort was made to collect the information required to calculate 

this measure.  While Statistics Canada collects data on the number of jobs, unfortunately 

the data are only published for census metropolitan areas and not at the required census 

tract scale.  

 

The developed land within the census tract was categorized into six land uses: residential, 

commercial, institutional, park / recreation, office, and industrial.  The total area for each 

land use was available through the STAR dataset.  These six land-use variables were 

included in the study as it was felt that entropy alone was not sufficient to capture the 

impact of land use on walking behaviour.  Although the literature supports the notion that 

a high degree of entropy creates a greater propensity to walk (Cervero et al., 1997), it was 

felt that individual, specific land uses such as park / recreation and commercial lands may 

attract more walking than other land uses.  The proportions of each of the six land uses 

per census tract (CT) were also included as independent variables.  A figure was also 

calculated for each land use and expressed as a percentage of developed land per census 

tract.  As an example, the formula for percentage of residential land in a CT is provided 
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as follows. 

              
                         

                             
 

 

Where: Total area of developed land = residential area + commercial area + institutional 

area + park / recreation area + office area + industrial area, per CT. 

 

3.6 Statistical Analysis in SPSS 

 

The final datasets used for analysis contained the following set of variables, which were 

calculated for each CT. 

 

Dependent Variables:  

- W/P (walked distance by population per census tract) 

- W/R (walked distance by aggregate road distance per census tract) 

- W/DA (walked distance by developed area per census tract) 

 

Independent Variables:  

- Three variable walkability index (Z-score) 

- Four-variable walkability index (Z-score) 

- Dwelling density (Z-score) 

- Intersection density (Z-score) 
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- Entropy (Z-score) 

- Retail lot coverage ratio (Z-score) 

 

Control Variables: 

- % Young adults 

- % Middle-aged 

- % Older adults 

- Average (mean) household income 

- % residential land 

- % commercial land 

- % park and recreation land 

- % institutional land 

- % office land 

- % industrial land 

 

The first task was to create scatter plots that depict the relationship between each 

dependent variable (W/P, W/R and W/DA) against each independent variable.  Six scatter 

plots were created for each dependent variable.  The creation of scatter plots enables 

confirmation of the type of relationship that exists between the variables.  Additionally, 

the scatter plots enable the identification of any outliers in the dataset.  

 

The second task was to create a two-tailed, bivariate, Pearson correlation table.  A 
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correlation table measures the degree of linear relationship between two variables.  The 

correlation value, ranging between -1 and +1, expressed by the r value, shows whether 

the linear relationship between the two variables is positive, negative, or non-existent.  

The correlation output also includes the significance or p-value, which is the likelihood 

that an equal or greater correlation value could occur by chance.  This study conforms to 

generally-accepted statistical practice that states if p < 0.05 then the correlation is 

significant. 

 

The final statistical step in this study was to create eighteen multiple regression models 

(six for each W/P, W/R and W/DA), individually testing the dependent variables against 

the various independent and control variables.  The eighteen models are described as 

follows: 

 

Model 1: 

- Dependent Variable: W/P 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density 

 

Model 2: 

- Dependent Variable: W/P 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 
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Model 3: 

- Dependent Variable: W/P 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult 

 

Model 4: 

- Dependent Variable: W/P 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult, % Residential, % Commercial, % Parkland, % Institutional, % Industrial, 

% Office 

 

Model 5: 

- Dependent Variable: W/P 

- Independent Variables: Walkability Index (4 variable) 

- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult 

 

Model 6: 

- Dependent Variable: W/P 
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- Independent Variables: Walkability Index (4 variable) 

- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult, % Residential, % Commercial, % Parkland, % Institutional, 

% Industrial, % Office 

 

Model 7: 

- Dependent Variable: W/R 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density 

 

Model 8: 

- Dependent Variable: W/R 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z- Retail Lot Coverage Ratio 

 

Model 9: 

- Dependent Variable: W/R 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult 

 

Model 10: 

- Dependent Variable: W/R 
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- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult, % Residential, % Commercial, % Parkland, % Institutional, % Industrial, 

% Office 

 

Model 11: 

- Dependent Variable: W/R 

- Independent Variables: Walkability Index (4 variable) 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult 

 

Model 12: 

- Dependent Variable: W/R 

- Independent Variables: Walkability Index (4 variable) 

- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult, % Residential, % Commercial, % Parkland, % Institutional, 

% Industrial, % Office   

 

Model 13: 

- Dependent Variable: W/DA 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density 
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Model 14: 

- Dependent Variable: W/DA 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

 

Model 15: 

- Dependent Variable: W/DA 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult 

 

Model 16: 

- Dependent Variable: W/DA 

- Independent Variables: Z-Entropy, Z-Dwelling Density, Z-Intersection Density, 

Z-Retail Lot Coverage Ratio 

- Control Variables: Average Income, % Young Adult, % Middle-aged, % Older 

Adult, % Residential, % Commercial, % Parkland, % Institutional, % Industrial, 

% Office 

 

Model 17: 

- Dependent Variable: W/DA 

- Independent Variables: Walkability Index (4 variable) 
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- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult 

 

Model 18: 

- Dependent Variable: W/DA 

- Independent Variables: Walkability Index (4 variable) 

- Control Variables: Average Income (in thousands), % Young Adult, % Middle-

aged, % Older Adult, % Residential, % Commercial, % Parkland, % Institutional, 

% Industrial, % Office 

 

In an effort to verify the robustness of the forward stepwise results, all 18 regression 

models were also completed using the Enter multiple regression method.  Both 

procedures produced similar results, but only the stepwise results will be reported and 

discussed in detail. 
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CHAPTER 4 

Spatial Analysis 

 

Four maps were created to assist in the spatial analysis component of this research.  

Examining spatial patterns is important for gaining further insights into walking 

behaviour, and compliments the statistical analysis. 

 

The locations of the individual GPS tracks for each walking episode are illustrated in 

Figure 4.1.  Individual walking tracks have been collectively displayed, in order to 

illustrate the spatial distribution of walking tracks across the study area.  In general, 

walking more frequently occurs in urban areas compared to suburban areas. Specifically, 

walking occurs on the Halifax Peninsula within the central business district (CBD), which 

includes lands along the waterfront southeast of the Dockyard (Canadian naval yards) and 

lands surrounding the south and east sides of Citadel Hill.  The CBD of Dartmouth, 

surrounding Alderney Gate and the ferry terminal, also exhibits multiple walking tracks. 

 

Upon review of the walking locations outside the two CBD’s, several areas of clustered 

walking tracks become apparent.  Specifically, walking tracks are clustered throughout 

the Halifax Peninsula in the West End abutting Quinpool Road, and in the South End, 

focused on Dalhousie University and the adjacent hospital district. In addition, walking 

episodes are clustered within Point Pleasant Park in the South End of Halifax.  Although 

less pronounced than the clustered walking episodes located on the Halifax Peninsula, 

there are two additional discernible areas with clustered walking tracks worth noting.  In 
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Dartmouth, clustered walking episodes are noticeable extending from Alderney Gate, 

northwards adjacent to Lake Micmac and Lake Banook, and within Shubie Park.  This 

corridor is an attractive walking area that includes both recreation and commercial land 

uses.  The second area encompasses recreation opportunities surrounding the Bedford 

waterfront (Mill Cove) and extends north toward the commercial district in Bedford 

(Sunnyside Mall).  These two areas of clustered walking episodes suggest that both 

commercial and recreational land uses play a role in attracting walkers.  

 

Equally important to examining concentrations of walking tracks, consideration was also 

given to where walking did not occur.  Specifically, the inner-city areas with the least 

evidence of walking behaviour are in the North Ends of both Halifax and Dartmouth.  

These are areas of lower income, and may be less inviting for walkers due to both fear of 

crime and less attractive streetscapes (McCormack et al., 2009).  Similarly, lower-income 

areas of Spryfield also exhibit little walking.  Additionally, Burnside Business Park also 

exhibits very few walking episodes.  This may seem surprising, given the amount of 

employment and access to public transit in the area.  However, employment densities are 

very low in much of Burnside, and destinations tend to be far apart, making vehicular 

access the preferred mode. In addition, perhaps less attractive streetscapes or the absence 

of sidewalks contribute to less walking activity.  
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Figure 4.1. Walking Tracks, Halifax, Nova Scotia 

 

One measure of walking density used in this study, which relates to the available street 
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network, is the aggregate walked distance per meter of road by census tract (W/R). This 

measure of walking density is illustrated in Figure 4.2 and confirms most of the 

observations noted for Figure 4.1.  The areas of highest walking density values are 

located on the Halifax Peninsula surrounding the Halifax Commons and extend to the 

waterfront (census tracts 7, 8, and 9).  The high concentration of walking compared to 

road length in this area could be a result of the mixture of land uses in the CBD.  Several 

dominant land uses are located in this area: recreation uses such as the public gardens, 

Citadel Hill, and the waterfront boardwalk; retail uses such as those located on Spring 

Garden Road; institutional uses such as Dalhousie University (Sexton campus) and the 

public library; employment uses such as the QEII and IWK hospitals and the Maritime 

Center office building; and, high density residential uses such as those located near 

Spring Garden Road.  

  

A little farther to the south, the high walking density in census tract 3 is partially 

attributable to Point Pleasant Park, which is a popular destination for walking activity and 

no vehicular roads. This census tract also contains Saint Mary’s University.  Much of the 

rest of Peninsular Halifax has moderate values for walking density.  Areas containing 

both commercial and residential land uses exhibit a greater amount of walking, 

particularly areas adjacent to Quinpool Road and census tract 18, which surrounds 

Halifax Shopping Centre.   

 

The CBD in Dartmouth surrounding Alderney Gate (census tracts 102 and 110) and the 
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tract surrounding Mic Mall Mall (census tract 108) have moderate to high walking 

densities.  These areas encompass shopping, transit facilities, employment, and recreation 

land uses, as well as high density residential buildings.  These areas with moderate to 

high walking density values coincide with the clustered walking patterns illustrated in 

Figure 4.1 described above. 

 

Overall, suburban areas tend to exhibit lower densities of walking per road meter, but 

some have moderately high values. Areas of particularly high values include Clayton 

Park, Colby Village, Bedford, and the First Lake area of Sackville.  Perhaps the moderate 

walking density values result from somewhat higher residential densities (most of these 

areas contain apartment complexes in addition to single-family housing), positive 

pedestrian infrastructure such as sidewalks and walking trails, and the location of 

commercial nodes along transportation corridors.  In the case of First Lake, however, the 

attractive element is a large regional park.  

 

Areas with low walking density have lower population density (typically lacking 

apartment housing) and lack both commercial areas and large parks. Perhaps co-

incidentally, most are also areas of lower income: North End Halifax, Spryfield, North 

End Dartmouth, Woodside, and Eastern Passage all exhibit lower walking density values.  

This is somewhat surprising given that areas with lower income generally have high 

levels of public transit ridership, and therefore would have a greater number of AT 

walking trips to and from bus stops (Pucher et al., 2003). 
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Figure 4.2. Aggregate Walked Distance per Meter of Road by Census Tract 

 

Walking density is also measured using aggregate walked distance per census tract 
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population by census tract area (W/P), which is illustrated in Figure 4.3.  While W/P may 

be viewed as a measure of the propensity for CT residents to walk, one should bear in 

mind that much walking, particularly in central CT’s, is by non-residents. 

 

The overall pattern is similar to that for walked distance per road meter. For example, 

both peninsular Halifax and the CBD in Dartmouth have higher walking density values.  

These areas experience greater amounts of walking in relation to the number of residents.  

This supports the notion that people are walking in areas outside of their resident 

neighbourhood (Spinney et al., 2012).  The suburban areas of Dartmouth, Forest Hills, 

Clayton Park, Bedford, and Sackville all exhibit low to moderate walking density values, 

except for census tracts with greater amounts of commercial land uses (particularly 

census tracts 104.01 and 108 in Dartmouth, and 123.05 in Bedford). 

 

A third measure of walking density is the aggregate walked distance by developed area by 

census tract (W/DA), which measures walking in relation to the built environment and is 

illustrated in Figure 4.4.  This measure of walking density exhibits similar patterns to the 

previous two densities.  For example, both peninsular Halifax and the CBD of Dartmouth, 

exhibit high walking density values, while the suburban areas exhibit much lower values.  

One particular difference noticed when comparing W/DA to the previous two walking 

densities is that there appears to be a greater contrast between the urban and suburban 

areas.  This is likely due to the mixture of land uses that attract walking.  Specifically, 

walking is associated with the downtowns and traditional inner-city retail shopping areas, 
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with the main university campuses, and to a lesser extent with some suburban commercial 

areas. 

 

All three walking density maps (W/R, W/P, and W/DA) illustrate similar spatial patterns.  

High walking density values are evident in peninsular Halifax and the CBD of 

Dartmouth, while the suburbs are generally characterised as exhibiting low walking 

density values, except for areas with commercial land uses located along principal 

transportation routes 
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Figure 4.3. Aggregate Walked Distance per Census Tract Population by Census 

Tract Area 
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.  

Figure 4.4. Aggregate Walked Distance by Developed Area by Census Tract 
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CHAPTER 5 

Modeling: Correlations 

 

A two-tailed, bivariate, Pearson Correlation analysis was used to assess the significance 

of any statistical linear relationships among the individual walking index variables, and 

the two composite walkability indices against the three walking densities – walked 

distance per person (W/P), walked distance by meters of road (W/R) and walked distance 

per developed area (W/DA). 

 

 

 

Total 

Walking 

Distance 

(Meters) 

W/P W/R W/DA 

Z-score 

Intersection 

Density 

Z-score 

Entropy 

Z-score 

Dwelling 

Density 

Z-score 

Retail Lot 

Coverage 

Ratio 

Z-score 

Walkability 

Index_3 

Variable 

Z-score 

Walkability 

Index_4 

Variable 

Total 

Walking 

Distance 

(Meters) 

Correlation 

1 

.851 .803 .700 .289 .416 .192 .446 .360 .406 

W/P Correlation 
 

1 .904 .787 .335 .391 .177 .489 .363 .420 

W/R Correlation 

 

1 .926 .474 .447 .454 .617 .552 .602 

W/DA Correlation 

 

1 .616 .458 .532 .724 .645 .704 

Z-score 

Intersection 

Density 

Correlation 

 

1 .462 .718 .743 .876 .883 

Z-score 

Entropy 
Correlation 

 

1 .418 .428 .755 .697 

Z-score 

Dwelling 

Density 

Correlation 

 

1 .709 .858 .859 

Z-score 

Retail Lot 

Coverage 

Ratio 

Correlation 

 

1 .755** .870 

Z-score 

Walkability 

Index_3 

Variable 

Correlation 

 

1 .980 

Z-score 

Walkability 

Index_4 

Variable 

Correlation 
 

1 

 

Table 5.1. Correlations 

All r-values exceeding 0.25 are significant at p=0.01 
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In the following discussion, Pearson correlations, r values, are described as three distinct 

strengths; “weak” values ranging from 0.0 to 0.39, “moderate” 0.4 to 0.69 and “strong” 

from 0.7 to 1.0.  A weak relationship exists between the three ‘basic’ walkability index 

variables (dwelling density, intersection density and entropy) and W/P (Table 5.1).  

Dwelling density is the least correlated with W/P (r = 0.177) and is not significant (p = 

0.102).  The weak correlation between dwelling density and W/P is expected as W/P is 

based on walking per capita; it is unexpected that changes in the number of dwellings 

would be linearly associated with the amount of walking per capita.  Figures 5.1, 5.2, and 

5.3 indicate these weak positive linear associations between the three walkability 

variables (dwelling density, intersection density, and entropy) and W/P.  The fourth 

walkability variable, retail lot coverage ratio,  exhibits the strongest, yet still moderate, 

correlation to W/P (r =0.489), and Figure 5.4 illustrates the positive relationship.   

 

There are, however, some notable outliers in Figures 5.1 to 5.4.  The census tracts 

identified as 3, 7, 8 and 9 are located in the inner city area of the Halifax Peninsula 

(Figure 3.1).  Point Pleasant Park, located in census tract 3, is a prominent walking 

attraction, while census tracts 7, 8, and 9 include a mixture of walking attractions such as, 

the business district of Spring Garden Road, which has the highest pedestrian volumes 

east of Montreal (Terrain, 2009), three major hospitals, and popular park and recreation 

facilities that include the Halifax Commons and the waterfront.  

 

The values depicted in Figures 5.1 through 5.4 are Z-scores, which facilitates comparison 
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among the different variables. Z-scores represent the number of standard deviations away 

from the mean for a particular observation and can be positive or negative.  Therefore, Z-

scores can be used to compare variables that are initially in differing units: for example, 

dwelling density, which is expressed as number of units per unit of area, and retail lot 

coverage ratio, which is a ratio of the total retail building footprint area by total retail 

parcel area per census tract. 

 

The outliers, identified as census tracts 3, 4.01, 4.02, 7, 8, 9, and 11, are all located within 

the core of the city on the Halifax Peninsula.  The outlier census tracts are areas of high 

walking volumes and, proportionately, have much less road surface than many of the 

other census tracts.  Retail lot coverage ratio exhibits the strongest correlation of the four 

walkability index variables with W/R (r = 0.617, p = 0.000).  The associated scatterplot 

(Figure 5.8) illustrates a positive linear relationship, and it also appears to have the largest 

effect on Y estimates, as determined by the larger coefficient (b = 0.89).  

 

The three basic walkability index (WI) variables (dwelling density, intersection density, 

and entropy) all have moderate correlations with W/DA, with r values ranging from 0.532 

to 0.616 (Table 5.1).  Notably, the fourth walkability variable (retail lot coverage ratio) 

has a much stronger correlation with W/DA (r = 0.724) than the other three walkability 

variables.  Figures 5.9 to 5.12 depict the scatter-plots for each individual variable of the 

walkability index against W/DA. 



53 

 

 

 

 
 

Figure 5.1. W/P: Z-score Dwelling 

Density 

 

 
 

Figure 5.2. W/P: Z-score Intersection 

Density 

 

 
 

Figure 5.3.W/P: Z-score Entropy 

 

 
 

Figure 5.4. W/P: Z-score Retail Lot 

Coverage Ratio 
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Figure 5.5. W/R: Z-score Dwelling 

Density 

 

 
 

Figure 5.6. W/R: Z-score  Intersection 

Density 

 
 

Figure 5.7. W/R: Z-score Entropy 

 
 

Figure 5.8. W/R: Z-score Retail Lot 

Coverage Ratio 

 

 

All four variables have a positive, linear relationship with W/DA.  Additionally, all four 

scatter-plots have outliers (census tracts 7, 8 and 9) similar to those represented in the 

previous scatter-plots relating to both W/P and W/R.  
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Figure 5.9. Z-score Dwelling Density 

 

 
 

Figure 5.10. Z-score Intersection Density 

 

 

Figure 5.11. Z-score Entropy 

 
 

Figure 5.12. Z-score Entropy 

 

 

As explained in previous chapters, Z-score walkability variables were combined into a 

three-variable walkability index (WI-3) and a four-variable walkability index (WI-4). The 

WI-3, when tested against W/P, resulted in a weak, but significantly linear association 

with W/P (r = 0.363, p = 0.001) (Table 5.1).  The scatterplot for WI-3 and W/P is 

illustrated in Figure 5.13.  The results are comparable in strength to correlations between 
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the three individual index variables and entropy alone (r = 0.391), but entropy is a slightly 

better estimator of W/P than the composite WI-3. 

 

The WI-4 index (r = 0.420) is a slightly better estimator of W/P than WI-3.  Figure 5.14 

illustrates the fitted regression line and associated model, which shows that WI-4 is better 

able to describe the walking distance per person. The b coefficient is 2.51 in the WI-4 

compared to 2.16 in the WI-3 regression line (Figure 5.13).  Notably, of all four separate 

variables and two composite indices, retail lot coverage ratio remains the best estimator of 

W/P with a moderate correlation (r = 0.489), and also has the greatest effect on Y (b = 

2.91) (Figure 5.4).   

 

WI-3 and WI-4 both have moderate correlation with W/R. Figures 5.15 and 5.16 illustrate 

the relationship of both walkability indices against W/R.  The regression coefficients 

indicate similar effects on Y for both indices.  WI-3 was found to be moderately 

correlated with W/DA (r = 0.645, p = 0.000), while WI-4 was found to be strongly 

correlated (r = 0.704, p = 0.000).  The strong correlation of WI-4 with W/DA is heavily 

influenced by the inclusion of retail lot coverage ratio, as retail lot coverage ratio alone 

had a higher correlation with W/DA (r =0.724) than the composite WI-4 (r = 0.704). 

 

The individual walkability variables are all moderately or strongly correlated with both 

walking indices.  As shown in Table 5.1, all of these correlation values exceed 0.697 and 

reach as high as 0.883.  Intersection density is most highly correlated with WI-3 and WI-4 
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(r = 0.876, r = 0.883, respectively).  These results indicate that intersection density by 

itself is a strong estimator of the walkability indices in that intersection density is 

indicative of shorter neighbourhood blocks (Cervero et al., 1997), and is associated with 

decreased car use due to travel delays (Peiravian et al., 2014), and facilitates more 

efficient walking routes (Jacobs, 1961). 

 
 

Figure 5.13. W/P by WI-3 

 

 
 

Figure 5.14. W/P by WI-4 

 

 
 

Figure 5.15. W/R by WI-3 

 

 
 

Figure 5.16. W/R by WI-4 
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Results in Table 5.1 also highlight multicollinearity among the variables.  Dwelling 

density, intersection density, and retail lot coverage ratio are all strongly correlated with 

each other.  This multicollinearity brings into question the rationale for creating a 

composite index.  Interestingly, one would expect that dwelling density would have a 

strong correlation with entropy, as typically areas of higher land use mix are associated 

with areas of high dwelling density.  However, the data yield only a moderate correlation 

of r = 0.418 (Table 5.1).  Also, entropy is only moderately correlated with the three other 

walkability variables, suggesting that entropy is measuring an aspect of the built 

environment that is not replicated in the other variables.  A composite index should 

include separate variables that have little or no correlation to ensure the index is 

measuring distinct characteristics of the subject matter; otherwise, it seems that one could 

simply use a single variable and would have similar explanatory power.  This research 

suggests that the use of a single variable (retail lot coverage ratio) would provide greater 

estimating potential than either composite index. 

 
 

Figure 5.17. W/DA by WI-3 

 

 
 

Figure 5.18. W/DA by WI-4 
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CHAPTER 6 

Modeling: Multiple Regression 

 

Six separate stepwise multiple linear regression models were estimated for each 

dependent variable (W/P, W/R, and W/DA), to gauge their associations with the 

walkability indices, built environment variables, and socio-demographic control 

variables. The software used was IBM SPSS Version 21.  The purpose of estimating the 

regression models was to determine which walkability indices and built environment 

variables have the strongest ability to explain walking behaviour.  Although a regression 

formula can be derived from each model, the primary objective was not to quantitatively 

predict walking behaviour, but to explain the most useful estimators of walking 

behaviour.  This is not to suggest that correlation necessarily or directly implies causality; 

however, both common sense and the literature suggest there should be at least partial 

causality between the built environment and socio-demographic variables and the amount 

of walking (Cervero, 1988; Handy et al., 2002; Frank at al., 2007; Mayne et al., 2013; 

Villanueva et al., 2014).   

 

Stepwise forward regression was used in this analysis, recognizing that this method has 

both advantages and disadvantages compared with the enter method (Thompson et al., 

1995; Whittingham et al., 2006).  The forward stepwise method excludes more of the 

entered variables, thus providing a multiple regression equation which is simpler to 

interpret and easier to employ, but which may lead to spurious interpretations when 

multicollinearity is high. The enter method retains all of the entered variables, and can 

better handle multicollinearity, but may result in an inflated R
2
 value and a more complex 
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regression equation.  To verify the robustness of the forward stepwise results, a duplicate 

enter method regression analysis was completed.  The enter method provided results that 

were very similar to those found with stepwise.  The adjusted R
2
 was indeed slightly 

inflated for many of the enter models, but the significant variables and the β-weights were 

similar to the stepwise results.  The full enter method results can be found in Appendix A.  

As previously discussed, this study uses three measures of walking density to represent 

the amount of walking: walked distance per person (W/P), walked distance per meter of 

road (W/R), and walked distance per developed area (W/DA).  Table 6.1 consolidates the 

results from the six regression models using W/P as the dependent variable.   

 

Model 1 tests the standard (basic) three components that comprise the WI-3 walkability 

index (dwelling density, intersection density, and entropy) against walked distance per 

person (W/P).  The model determined that only entropy was significant (p = 0.000) and 

both dwelling density and intersection density variables were excluded from the model 

due to p-values exceeding 0.05 (Table 6.1).  The coefficient of multiple determination 

(adjusted R
2
), indicates that Model 1 explains 14.3% of the variation in W/P accounted 

for by entropy (aR
2
 = 0.143).  The significance of the F test confirms this model as 

significant (p = 0.000). 

 

The regression analysis performed in Model 2 tests the three variables included in Model 

1 (dwelling density, intersection density, entropy) plus retail lot coverage ratio.  Model 2 

results in three variables (retail lot coverage ratio, dwelling density, entropy) being 

included in the model and only one variable being excluded (intersection density) (Table 

6.1). 
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Dependent Variable: Walked Distance by Population  (W/P)               

(STEPWISE Method) 
 

Unstandardized Standardized 
      

  
 

(order of entry) Coefficients Coefficients 
   

Adjusted 
  

  Excluded Variables Included Variables B Beta Sig. t R
2
 R

2
 F Sig. 

Model 1     
  

    0.153 0.140 15.378 0.000 

IV: Dwelling Density Constant 4.470 
      

  

  Intersection Density Entropy 2.330 0.391 0.000 3.920 
   

  

Model 2     
  

    0.359 0.336 15.492 0.000 

IV: Intersection Density Constant 4.470 
      

  

  
 

Retail Lot Coverage Ratio 3.920 0.657 0.000 5.159 
   

  

  
 

Dwelling Density -2.420 -0.406 0.002 -3.206 
   

  

    Entropy 1.670 0.280 0.006 2.830   
  

  

Model 3     
  

    0.503 0.472 16.395 0.000 

IV: Intersection Density Constant 18.860 
      

  

  % Senior % Middle Aged -0.462 -0.581 0.000 -4.092 
   

  

  % Young Adult Dwelling Density -3.430 -0.575 0.000 -4.633 
   

  

  
 

Retail Lot Coverage Ratio 2.650 0.445 0.001 3.438 
   

  

  
 

Average Income 0.082 0.303 0.001 3.355 
   

  

    Entropy 1.670 0.281 0.003 3.038   
  

  

Model 4     
  

    0.593 0.562 19.411 0.000 

IV: Intersection Density Constant 7.760 
      

  

  Entropy % Institutional Land Use 0.330 0.381 0.000 4.269 
   

  

  % Young Adult % Office Land use 0.900 0.323 0.000 4.006 
   

  

  % Residential Land Use Average Income 0.080 0.319 0.000 3.914 
   

  

  % Parkland Land Use Retail Lot Coverage Ratio 2.780 0.360 0.004 3.002 
   

  

  % Commercial Land Use Dwelling Density -1.720 -0.413 0.001 -3.559 
   

  

  % Industrial Land Use % Middle Aged -0.270 -0.336 0.020 -2.377 
   

  

  % Senior   
  

      
  

  

Model 5     
  

    0.332 0.308 13.75 0.000 

IV: WI-4* Constant 35.370 
      

  

  % Senior % Middle Aged -0.634 -0.797 0.000 -6.052 
   

  

  
 

Average Income 0.068 0.252 0.014 2.497 
   

  

    % Young Adult -0.193 -0.278 0.027 -2.258   
  

  

Model 6     
  

    0.536 0.507 18.685 0.000 

IV: WI-4* Constant 6.605 
      

  

  % Parkland Land Use % Institutional Land Use 0.280 0.393 0.000 4.126 
   

  

  % Commercial Land Use % Office Land use 0.903 0.371 0.000 4.405 
   

  

  % Industrial Land Use Average Income 0.098 0.363 0.000 4.172 
   

  

  % Young Adult % Middle Aged -0.209 -0.262 0.013 -2.533 
   

  

  % Senior % Residential Land Use -0.059 -0.169 0.040 -2.085   
  

  

  * WI-4: four-variable walkability index           
  

  

 

Table 6.1.  Walked Distance by Population, Consolidated Regression Results  
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With the inclusion of the retail lot coverage ratio, Model 2 explains a much higher 

amount of the variation (aR
2
 = 0.336) in W/P than Model 1.  Out of the three variables 

included in the model, retail lot coverage ratio contributes the greatest to the model (β = 

0.657).  Dwelling density is the second largest contributor to the explanatory power of the 

model (β = -0.406).  Unexpectedly, the coefficient for dwelling density is negative; 

suggesting that as dwelling density increases the resulting walking per resident person 

decreases.  Upon reflection, this makes sense: as residents are added in a given area, 

naturally there would be a greater amount of walking overall due to the additional people, 

but it may not result in a greater percentage of people walking, or a greater distance 

walked per person.   

  

Regression Model 3 included all variables in Model 2 (dwelling density, intersection 

density, entropy, retail lot coverage ratio) and then added the socio-demographic control 

variables (percent young adult, percent middle-aged, percent older adult, and average 

income) (Table 6.1).  Model 3 is statistically significant (p = 0.000) and explains 47.2% 

of the variation in W/P.  By including the control variables, Model 3 becomes an 

improved estimator of the variation in W/P compared to Model 2.  Model 3 excluded 

three variables from the regression analysis (intersection density, percent older adults, and 

percent young adults).  Of the included variables, percent middle-aged was found to have 

the greatest effect on the estimating potential of the model (β = -0.581), but a built 

environment variable was of almost equal importance (dwelling density, β = -0.575).  The 

negative value of the coefficient suggests that as the percentage of middle-age people in a 

census tract increases, the amount of walking per person would decrease.  Intuitively, this 
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result makes sense, in that middle-aged people (40-64) tend to be busier with family and 

career obligations as compared to the two other age cohorts, and are perhaps also more 

reliant on automobile transport.  There is evidence in the literature that both older adults 

and younger adults have a greater propensity to walk (Spinney et al., 2012), though the 

two age groups tend to walk for different purposes.  Younger adults tend to walk for 

active transportation, while older adults tend to walk for recreation (Spinney et al., 2012).  

Of the three additional explanatory variables, retail lot coverage contributes most, 

followed by entropy, and average income (Table 6.1). 

 

The regression models continue to build in complexity.  Model 4 includes the four built 

environment variables and the control variables, and then adds six land use variables 

expressed as a percent (percent residential, percent commercial, percent industrial, 

percent institutional, percent park and recreation, and percent office) (Table 6.1).  Model 

4 has the greatest estimating potential of the six regression models in this study, 

explaining 56.2% of the variation in W/P (aR
2
 = 0.562).  Eight variables were excluded 

from the model, leaving six variables remaining.  Notably, entropy was excluded from 

this model where the previous three models included it, and Model 1 selected entropy as 

the only significant variable out of the three built environment variables.  Only two built 

environment variables (retail lot coverage ratio and dwelling density) were included in the 

model, the highest coefficient of all variables being dwelling density (β = -0.413).  Of the 

six land-use variables entered in the model, only two (percent institutional and percent 

office) were found to be significant, both having a moderate effect on the explanation of 

W/P (β = 0.382 and 0.323, respectively).  The inclusion of institutional and office land 
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uses suggests that the presence of employment land uses may be a better estimator of 

walking than those land uses associated with recreation or habitation.  This notion is 

supported in the literature, as Millward, Spinney, and Scott’s (2013) results suggest that 

the majority of walking does not take place in areas around people’s homes.   

 

As discussed in previous chapters, four variables are combined into a frequently-used 

version of the walkability index.  Model 5 tests the four-variable walkability index (WI-4) 

and the socio-demographic control variables against W/P.  WI-4 was found to be not 

statistically significant, having a p-value greater than 0.05, and was thus excluded from 

the model.  This model creates an interesting comparison with model 3, where model 3 

tests the four individual walkability components against W/P, as opposed to a composite 

index in this model.  The regression analysis of Model 3 showed that three (dwelling 

density, retail lot coverage ratio, and entropy) of the four individual walkability variables 

were statistically significant.  However, when the individual components of the 

walkability index were combined into a walkability index and then tested against W/P, 

the index was found to be insignificant and was excluded from the model.  The exclusion 

of the walkability index from the regression analysis is contrary to much of the literature 

regarding the walkability index.  Many studies weight specific components of the 

walkability index (Frank et al., 2005; Frank et al., 2006; Kerr et al., 2006), although 

specific details of weighting procedures are often lacking. It would seem that researchers 

could use the Beta values as an appropriate weighting system. 

 

Three socio-demographic variables were statistically significant in Model 5; percent 
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middle-aged, average income, and percent young adult.  The model weakly explains 

30.2% of the variation in W/P (aR
2
 = 0.308).  Percent middle-aged is the dominant 

variable of the three, with a strong coefficient of -0.797.  This suggests that middle-aged 

people tend to walk less than other cohorts.  So, as the percentage of middle-aged 

population increases within a census tract, the model suggests that walked distance per 

person will decrease. 

 

Model 6 tests the four-variable walkability index (WI-4), socio-demographic variables, 

and the percentage of land use against W/P.  This model explains a moderate 50.7% of 

the variation in W/P.  As with Model 5, WI-4 was found to be not significant and was 

excluded from the model.  Institutional and office land uses were the two most influential 

variables in the model (β = 0.393 and 0.371, respectively).  This seems consistent with 

individual scatterplots that point to census tracts with high amounts of W/P also 

exhibiting a greater percentage of both institutional and office land uses.  A third land use 

was included in the model (residential), albeit with a weak impact (β = -0.169).  This is 

the only model that found residential land use to be significant.  The residential Beta 

value is negative, supporting the notion that walking is occurring around places of 

employment or business more so than surrounding the home location.  As previously 

referenced, this notion is supported by the findings of Millward, Spinney, and Scott 

(2013). 

 

Average income and middle age were the final two variables included in Model 6.  

Consistent with previous models, middle age is found to have a negative effect on W/P 
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with a Beta of -0.262.  Income is positively associated with W/P, when other variables are 

held constant. This is also not unexpected, though the relationship is probably not linear: 

Spinney et al. (2012) provide evidence that walking participation levels are higher for 

both low and high income groups.   

 

Table 6.2 consolidates the relevant information from the following six regression models 

(Models 7 through 12) using W/R as the dependent variable.  These six models follow the 

same independent variable sequence as the previous six models tested against W/P. 

All of the models show better estimation of walked distance per meter of road (W/R) than 

do the equivalent models for walked distance per person (W/P).  This accords with the 

fact that the independent variables tend to have higher Pearson correlations with W/R, 

and underscores the fact that much of the walking does not occur in respondents’ home 

neighbourhoods (Millward et al., 2013). 

 

Model 7 tests the three walkability variables against W/R.  The adjusted R
2
 is 0.274, 

which suggests that the model has weak explanatory power (Table 2).  Both intersection 

density and entropy are significant and, therefore, were included in the model.  

Intersection density appears to have a slightly stronger impact on W/R than entropy (β = 

0.340 and 0.289, respectively).  

 

Model 8 builds on Model 1 and uses the same three variables and includes retail lot 

coverage ratio, which is the fourth characteristic of walkability (Table 6.2).  This model 

accounts for a moderate 40.8% of the variability in W/R.  Retail lot coverage ratio and 
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entropy were found to be significant and included in the model.  Retail lot coverage ratio 

has more than double the influence on the model than entropy with a coefficient of 0.522 

compared to entropy’s coefficient of 0.223.  Intersection density and dwelling density 

were both found to be insignificant and were thus excluded from the model 

 

Model 9 tests the four walkability variables and introduces the socio-demographic control 

variables (percent young adult, percent middle-aged, percent older adult, and average 

income) (Table 6.2).  The explanatory power of this model continues to become stronger 

as additional control variables were added.  This model explains 50.5% of the variation in 

W/R.  Four variables were included in the model (percent middle age, retail lot coverage 

ratio, average income, and entropy).  Two of these four variables were socio-demographic 

control variables (percent middle age and average income) and two were walkability 

indicator variables (retail lot coverage ratio and entropy).  Four variables were excluded 

from the model (intersection density, percent older adult, percent young adult, and 

dwelling density).  Interestingly, as additional variables are added to the sequential 

models, entropy has a reduced importance in each.  This suggests that entropy does not 

have sufficient explanatory influence to overcome the addition of socio-demographic 

variables.  Model 9 includes entropy but it has a very weak coefficient (β = 0.219).  

Percent middle-aged is the variable with the greatest effect on the estimating potential of 

the model (β = -0.447).  The coefficient for percent middle-aged continues to be negative, 

as observed when testing this variable against W/P.  A negative coefficient suggests that 

as the percentage of middle-aged population in a particular census tract increases, the 

amount of walking per meter of road will decrease.  As previously described, a negative 
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coefficient for the percent middle-aged variable is anticipated as the population in this 

cohort are generally busy with family and careers and have less time for walking 

(Spinney et al., 2012).  Retail lot coverage ratio continues to have relatively moderate 

strength when compared to the three other variables included in the model (β = 0.285).  

 

Model 10  builds on Model 9 by adding the six percentage of land use variables (percent 

residential, percent commercial, percent industrial, percent institutional, percent park and 

recreation, and percent office) to the four walkability characteristics (dwelling density, 

intersection density, entropy, and retail lot coverage ratio) and the socio-demographic 

variables (percent young adult, percent middle-aged, and percent older adult).  This 

model has the most effective explanatory power of the six models tested against W/R; 

with an ability to explain 60.7% of the variation in W/R.  The percentage of institutional 

land use is the most significant variable in the model with a Beta coefficient of 0.358, 

followed by percent office land use (β = 0.305).  These two land-use variables are clearly 

more effective explanatory variables than the standard components of the walkability 

index.  Only one walkability index variable is included in the model (retail lot coverage 

ratio), while the other three components are excluded from the model. 

 

Model 11 tests the composite, four-variable walkability index and the socio-demographic 

variables (percent young adult, percent middle-aged, percent older adult, and average 

income).  This model explains 46.5% of the variability in W/R.  In contrast to the 

corresponding Model 5 for W/P, the walkability index is now found to be significant and 

thus included in the model.  However, percent middle-aged is still the most influential 

variable in this model.  
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Dependent Variable:  Walked Distance by Road Length (W/R)              

  
  

Unstandardized Standardized 
      

  
 

(order of entry) Coefficients Coefficients 
   

Adjusted 
  

  Excluded Variables Included Variables B Beta Sig. t R
2
 R

2
 F Sig. 

Model 7             0.290 0.274 17.196 0.000 

IV: Dwelling Density Constant 0.947 
      

  

  
 

Intersection Density 0.493 0.340 0.001 3.283 
   

  

    Entropy 0.419 0.289 0.007 2.790         

Model 8 
      

0.422 0.408 30.633 0.000 

IV: Intersection Density Constant 0.947 
      

  

  Dwelling Density Retail Lot Coverage Ratio 0.756 0.522 0.000 0.568 
   

  

    Entropy 0.323 0.223 0.017 2.431         

Model 9 
      

0.528 0.505 22.955 0.000 

IV: Intersection Density Constant 3.436 
      

  

  % Senior % Middle Aged -0.086 -0.447 0.001 -3.549 
   

  

  % Young Adult Average Income 0.018 0.278 0.002 3.178 
   

  

  Dwelling Density Entropy 0.317 0.219 0.016 2.449 
   

  

    Retail Lot Coverage Ratio 0.413 0.285 0.019 2.401         

Model 10 
      

0.630 0.607 27.615 0.000 

IV: Intersection Density Constant 1.370 
      

  

  Entropy % Middle Aged -0.053 -0.275 0.024 -2.306 
   

  

  % Young Adult % Office Land use 0.180 0.305 0.000 4.096 
   

  

  % Residential Land Use % Institutional Land Use 0.062 0.358 0.000 4.266 
   

  

  % Parkland Land Use Average Income 0.020 0.299 0.000 3.876 
   

  

  % Commercial Land Use Retail Lot Coverage Ratio 0.364 0.251 0.021 2.361 
   

  

  % Industrial Land Use 
        

  

  % Senior 
        

  

  Dwelling Density 
        

  

Model 11     
 

      0.483 0.465 25.898 0.000 

IV: % Senior Constant 4.307 
      

  

  % Young Adult % Middle Aged -0.103 -0.531 0.000 -4.029 
   

  

  
 

Average Income 0.016 0.240 0.008 2.699 
   

  

    WI-4* 0.410 0.283 0.031 2.201         

Model 12     
 

      0.605 0.586 31.367 0.000 

IV: WI-4* Constant 2.862 
      

  

  % Parkland Land Use % Middle Aged -0.088 -0.454 0.000 -4.781 
   

  

  % Residential Land Use % Office Land use 0.194 0.329 0.000 4.344 
   

  

  % Commercial Land Use % Institutional Land Use 0.063 0.364 0.000 4.221 
   

  

  % Industrial Land Use Average Income 0.019 0.294 0.007 3.719 
   

  

  % Young Adult 
        

  

  % Senior                   

  * WI-4: four-variable walkability index                 

 

Table 6.2. Walked Distance by Road Length, Consolidated Regression Results  
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There is value in comparing regression results of the model that includes the walkability 

index components separately (Model 9) to the model that includes the walkability index 

components combined in one composite index (Model 11).  When Model 11 is compared 

with Model 9, it illustrates that separate walkability components provide better estimating 

potential than the walkability indices, as observed by the adjusted R
2
 of each (Model 9 

aR
2
 = 0.505, Model 11 aR

2
 = 0.465).  This result brings into question the necessity of 

creating a composite index when the separate components are better estimators than the 

composite index. 

 

Model 12 again builds upon Model 11 by adding the percentages of six land uses.  Only 

four variables were found to be significant and remained in the model, two socio-

demographic variables (percent middle-aged and average income) and two land uses 

(percent office and percent institutional).  In contrast to Model 11, the walkability index 

was excluded from the model.  The percentage of middle-aged population within a census 

tract continued to be the most dominant factor impacting the estimating potential of the 

model, but not in a positive manner, as the coefficient of percent middle-aged is negative 

as observed in previous models (β = -0.454). 

 

Model 12 should be compared with Model 10 for the same rationale as described for 

comparing Model 9 with Model 11.  The intention is to evaluate the effectiveness of the 

walkability index.  Comparison of the adjusted R
2
 confirms that it is more effective to test 

individual components of the walkability index against W/R than to use the composite 

walkability index (Model 10 aR
2
 = 0.607, Model 12 aR

2
 = 0.586). 

The final walking density tested in this study is W/DA.  Table 6.3 consolidates the 
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relevant information from six regression models (Models 13 through 18) using W/DA as 

the dependent variable.  These six models follow the same independent variable sequence 

as the previous six models tested for each walking density variable.  

 

The three basic walkability components (entropy, intersection density and residential 

density) were tested in Model 13, explaining 40.3% of the variability in W/DA.  Only 

intersection density and entropy were found to be significant, with intersection density 

being a more important indicator than entropy (β = 0.514 and 0.221, respectively). 

 

Model 14 builds on the three basic components of the walkability index (WI) as tested in 

Model 13 and includes retail lot coverage ratio.  With the inclusion of the fourth 

component of the WI, this model creates a better estimation of the variation in W/DA 

(aR
2
 = 0.541) than Model 13 (aR

2
 = 0.403).  Retail lot coverage ratio had much more 

influence on the model than entropy, as indicated by comparing the Beta values (β = 

0.647 and 0.181, respectively).   

 

Model 15 tests the four walkability variables and introduces the socio-demographic 

control variables (percent young adult, percent middle-aged, percent older adult, and 

average income) (Table 6.3).  As additional variables are added to the model, the ability 

to explain the variation in W/DA improves.  Model 15 explains 55.8% of the variation in 

W/DA.  Retail lot coverage ratio is a substantially more influential variable (β = 0.688) 

than either entropy or average income (β = 0.229 and 0.165, respectively). 

 

Model 16 is the best estimator of the variation in W/DA out of the six models (aR
2
= 
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0.683).  This model includes the four individual walkability variables and the control 

variables, and introduces the six land use variables into the model.  In keeping with the 

previous two models, retail lot coverage ratio continues to be the most influential variable 

out of the included set of variables (β = 0.550). 

 

 Model 17 tests the walkability index and the socio-demographic control variables.  This 

model explains 49.0% of the variability in W/DA.  The walkability index variable was the 

only variable found to be statistically significant, and thus included in the model, while all 

other variables were excluded.  Model 17 can be compared with Model 15, as Model 15 

tests each walkability component separately, while Model 17 includes those same 

variables as a composite walkability index.  Model 15 is a better estimator or W/DA 

(aR
2
= 0.558) compared to Model 17 (aR

2
= 0.490).  In the same manner, Model 18 can be 

compared with Model 16.  It was found that when the four components of walkability are 

included separately (Model 16), as opposed to as a composite index (Model 18), the 

model with separate components was a moderately better estimator of W/DA than the 

walkability index (Model 16 aR
2
 = 0.683, Model 18 aR

2
 = 0.644). 

 

The three regression tables display the same walkability, socio-demographic, and land-

use variables against the three measures of walking (W/P, W/R and W/DA), and all three 

produced similar results.  The fourth models of all three walking densities (i.e. Models 4, 

10, and 16) were consistently better estimators of the respective walking density than the 

other five models (see adjusted R
2
 for each table).   
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Dependent Variable: Walked Distance by Developed Area (W/DA)              

(STEPWISE Method)   Unstandardized Standardized 
      

  
 

(order of entry) Coefficients Coefficients 
   

Adjusted 
  

  Excluded Variables Included Variables B Beta Sig. t R
2
 R

2
 F Sig. 

Model 13     
    

0.417 0.403 30.076 0.000 

IV: Dwelling Density Constant 0.010 
       

  
 

Intersection Density 0.009 0.514 0.000 5.467 
    

  
 

Entropy 0.004 0.221 0.000 2.349 
    

Model 14     
    

0.552 0.541 51.686 0.000 

IV: Intersection Density Constant 0.010 
       

  Dwelling Density Retail Lot Coverage Ratio 0.012 0.647 0.000 8.003 
    

    Entropy 0.003 0.181 0.028 2.241 
    

Model 15 
      

0.573 0.558 37.152 0.000 

IV: Intersection Density Constant 0.001 
       

  % Senior Retail Lot Coverage Ratio 0.013 0.688 0.000 8.405 
    

  % Young Adult Entropy 0.004 0.229 0.007 2.764 
    

  % Middle Aged Average Income 0.000 0.165 0.044 2.043 
    

  Dwelling Density 
         

Model 16     
    

0.698 0.683 47.342 0.000 

IV: Intersection Density Constant -0.008 
       

  Entropy Retail Lot Coverage Ratio 0.010 0.550 0.000 7.446 
    

  % Young Adult % Office Land use 0.003 0.398 0.000 6.036 
    

  % Residential Land Use % Institutional Land Use 0.001 0.246 0.001 3.532 
    

  % Parkland Land Use Average Income 0.000 0.205 0.003 3.030 
    

  % Commercial Land Use 
         

  % Industrial Land Use 
         

  % Senior 
         

  % Middle Aged 
         

  Dwelling Density 
         

Model 17     
    

0.496 0.490 83.556 0.000 

IV: Average Income Constant 0.010 
       

  % Senior WI-4* 0.013 0.704 0.000 9.141 
    

  % Middle Aged 
         

  % Young Adult 
         

Model 18     
    

0.665 0.644 32.165 0.000 

IV: % Middle Aged Constant -0.014 
       

  % Residential Land Use WI-4* 0.012 0.670 0.000 6.301 
    

  % Commercial Land Use % Office Land use 0.003 0.364 0.000 4.975 
    

  % Industrial Land Use % Institutional Land Use 0.001 0.245 0.002 3.180 
    

  % Young Adult Average Income 0.000 0.228 0.002 3.127 
    

  % Senior % Parkland Land Use 0.000 0.231 0.010 2.632 
    

  * WI-4: four-variable walkability index                 

 

Table 6.3. Walked Distance by Developed Area, Consolidated Regression Results  

 



74 

 

 

 

This “fourth” model tests the individual walkability index variables (entropy, residential 

density, intersection density, and retail lot coverage ratio), along with the socio-economic 

variables (income and age) and the percentage of six developed land uses for each CT.  

This regression analysis determined that land-use variables, such as residential, 

commercial, industrial, parkland, institutional, and office, in combination with socio-

demographic control variables, were consistently the dominant variables.  Specifically, 

both institutional and office land uses were found to be the two most influential variables 

against three walking densities.  Average income was also identified as significant against 

all three walking densities as it was included in all three models that utilized separate 

variables (Models 4, 10, and 16).  Retail lot coverage ratio was the only separate 

walkability component that was significant against W/P, W/R and W/DA.  On the other 

hand, dwelling density was included in Model 4 against W/P, but was found to be 

insignificant and was excluded from Models 10 (W/R) and 16 (W/DA).   

 

When the walkability variables were combined into a composite index, W/P, W/R and 

W/DA were most highly influenced by the same three variables (percent office, percent 

institutional, and average income) only varying by the individual strength of each.  

Interestingly, three out of the six regression models that included the composite 

walkability index excluded it from the respective models as it was not statistically 

significant.  As indicated above, this result suggests that it is more effective to regress 

individual components of the walkability index against the three walking densities than to 

use the composite walkability index.   
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In general, of four built environment variables associated with walkability, retail lot 

coverage ratio was found to be the only influential variable on W/P, W/R, and W/DA.  

The land use and socio-demographic variables were found to be better estimators of 

walking densities.  The above analysis suggests that it may be more beneficial to 

investigate individual components that influence walking rather than combining walking 

influences into an index that only includes built environment variables.  The consistent re-

occurrence of both office and industrial land uses in the regression models indicates that 

walking is associated with areas of employment more so than with residential land uses.  

This notion is consistent with the work of Spinney, Millward and Scott (2012) that 

suggests walking for transport typically occurs outside of the home neighbourhood.   

 

There is still value in creating a walkability index that can function as a consistent and 

objective evaluation tool for measuring the propensity of people to walk in any particular 

neighbourhood.  Currently, as discussed in the literature review, much of the research 

focuses on walkability components surrounding the built environment (residential 

density, entropy, intersection density, and retail lot coverage ratio), but does not account 

for how these individual components function in terms of influencing walking.  For 

example, entropy is a measure of land use mixture, but simply because land use is mixed, 

does not mean it necessarily correlates with increased walking.  Rather it depends on the 

type of land use that is mixed.  This notion could be considered an ecological fallacy 

(Freedom, 1999), whereby the aggregate walkability index may be a reasonable estimator 

of walking in some scenarios; however, it would be incorrect to infer that each 

component of the index also has the same correlation with walking.  Based on this 
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research there is greater likelihood that a more robust and better estimator of the 

propensity for walking could be created by including alternative, or at least additional, 

variables particularly associated with land uses that pertain to employment functions and 

income. 
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CHAPTER 7 

Conclusions 

 

The purpose of this research was to identify the location of walking activity in a medium-

sized North American city and to identify built environment characteristics associated 

with walking activity aggregated at the neighbourhood level.  This research uniquely 

contributes to the knowledge of walking behaviour in the following three ways: (1) the 

use of both objective and self-report time diaries to record walking activity; (2) walking 

data are aggregated based on census tracts (CT), enabling the CTs themselves to be 

considered the unit of measurement, rather than the individual respondents; and, (3) 

walking activity includes both active transport and recreational walking so that total 

walking can be examined.  The research is particularly concerned with evaluating the 

highly-cited index of walkability (e.g.  Frank et al., 2005; Lee and Moudon, 2006) against 

objective and verified walking data, and ultimately to provide insights that will lead to 

improved neighbourhood design.  Planners, urban designers, and other professionals 

interested in walking behaviour will benefit from this research by gaining further insights 

into how built environment characteristics influence the location of walking in a medium-

sized North American city.   

Much of the current research on walking behaviour focuses on individual respondents and 

establishes a neighbourhood buffer surrounding their home location. The assumption is 

that most walking is home-based, and that walking frequency is thus highly influenced by 

the built environment of the home neighbourhood.  This assumption is unwarranted, 
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however, as previous researchers have contended; a large portion of walking activity does 

not take place surrounding the respondents’ home locations (Spinney et al., 2012; 

Millward et al., 2013).   

 

This research focussed on where walking occurs, rather than who walks. The aggregation 

of walking by census tracts enabled the CTs themselves to be considered the unit of 

measurement, rather than the individual respondents.  Inherent variation in CTs prompted 

the creation of three walking densities to reflect different aggregates of walked distance.  

These are: walking density per resident population (W/P); walking density per road length 

of road network (W/R); and, walking density per developed area (W/DA).   

 

The spatial analysis component of this research provided several insights into walking 

behaviour.  The walking tracks and associated walking density measures all confirm that 

a significant portion of walking activity takes place in the urban centres; specifically in 

the CBDs of both Halifax Peninsula and Dartmouth, where there are areas of high 

employment (e.g. universities, hospitals, and office towers).  Although walking more 

frequently occurs in inner-urban areas compared to suburban areas, a considerable 

amount of walking still occurs in the suburbs.  Specifically, suburban walking occurs 

along major transportation routes and areas dominated by commercial or recreational land 

uses.  Insights can also be gained by understanding where walking does not occur.  The 

data suggest that inner-city areas such as the North Ends of both Halifax and Dartmouth, 

and also suburban Spryfield, experience very little walking.  This may be due to factors 

that have negative influences that impact the pedestrian milieu, such as perceived lack of 
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safety and poor neighbourhood aesthetics.  Also, little walking activity occurs in the large 

Burnside Business Park.  This could be a result of both low employment density and the 

absence of sidewalks, which both tend to encourage vehicular travel.   

 

The multiple regression component of this research provides valuable insights into the 

role of the built environment on walking activity.  The three walking densities were 

modeled against two variations of the walkability index (WI) as well as against the 

individual components of the WI, six land uses, and several socio-demographic variables.  

Six models were tested for each walking density; 18 separate models in total.  Multiple 

regression models consistently indicate that built environment variables (intersection 

density, dwelling density, entropy, and retail lot coverage ratio), as well as land-use and 

socio-demographic variables, are the best predictors of walking density.  Two of the three 

walking density models indicate the walkability index variable was not a statistically 

significant predictor of walking density.  This suggests that the component variables of 

the walkability index are better estimators than the composite index.   

 

Employment-related land uses (institutional and office), retail lot coverage ratio, and 

income were consistently included in each of the best predictive models and they all 

exhibited moderate estimating potential.  These findings are contrary to much of the 

existing literature that suggests amalgamating built environment variables into a single 

index creates a more accurate predictive model.  This research suggests that creating a 

composite index is unnecessary. Moreover, focusing on only four variables – office and 

institutional land uses, retail lot coverage, and income – creates a model that more 
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accurately estimates walking behaviour.  This notion supports Lee and Moudon’s (2006) 

contention that complex indices are time consuming to create and expensive field data 

collection may not be necessary to estimate or explain walking behaviour.     

 

Further research is required to explore walking behaviour in association with the four 

walking determinants noted above.  The two land uses (institutional and office), although 

represented in the regression models as unique variables, could be examined collectively 

as “employment land uses”.  Based on a review of the literature, it appears that little 

attention has been given to walking activity in relation to employment location.  Other 

researchers have identified this gap in knowledge (Spinney et al., 2012; Millward et al., 

2013) and this research supports their notion that a large portion of walking activity 

occurs outside of the home neighbourhood.  In fact, Kwan (2013) acknowledges the 

importance of the workplace and school as daily space-time anchors for individuals.  

Further research could explore walking activity specifically around employment centres.  

Based on this research, planners and urban designer should be attentive to the pedestrian 

environment surrounding not only residential neighbourhoods, but particularly 

neighbourhoods of dense employment land uses.  Better still, planners and urban 

designers should consider the integration of these residential and employment land uses, 

such as in traditional neighbourhood design and in New Urbanist neighbourhoods 

(seminal works on these include Lynch, 1960, Katz, 1993, and Handy 2008,  

respectively).   

 

Retail lot coverage, often termed commercial floor area ratio or just floor area ratio 
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(FAR) has been frequently used as a component of walkability indices (Handy et al., 

2002; Cerin et al., 2006; Frank et al., 2007; Adams et al., 2011; Wood et al., 2010; Mayne 

et al., 2013).  Retail lot overage ratio can be thought of as a measure of pedestrian 

friendliness.  Land parcels with high retail lot coverage ratios will have more ground floor 

building area (retail space) and, thus, less space allocated to parking.  A site design with a 

high retail lot coverage ratio would have less expansive parking lots and, therefore, would 

be more advantageous to pedestrian access.  Retail lot coverage could be thought of as 

one measure of the quality of the pedestrian environment.  There are several other site 

design elements which enhance the pedestrian environment that coincide with increasing 

retail lot coverage, such as widening sidewalks, and re-locating parking (to the side, rear, 

or underground) in relation to pedestrian access (Lund, 2003).  In response to this 

research, municipal planners could adjust applicable minimum parking standards for 

retail commercial uses.  Creating a reduced parking requirement would encourage retail 

sites to have smaller parking lots, thus providing greater flexibility in parking location 

and site design, thereby improving the pedestrian environment.   

 

Income is often included as a control variable in walking activity research (Kerr et al., 

2006; Sallis et al., 2009).  This study did not specifically investigate the potential impact 

of income variation on walking behaviour.  Further research could explore the impact of 

income on walking behaviour to determine if income alone affects walking activity, 

perhaps due to lower income groups having reduced access to vehicles, or whether 

income is correlated with safety concerns that impact walking activity.  In fact, this raises 

an important question for future research regarding model specification: do all 
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independent variables contribute equally to the heuristics behind a person’s decision to 

walk?  Perhaps multi-level modelling, such as structural equation modelling, would be 

better suited to represent the impacts of control variables and built environment variables 

on walking behaviour.   

 

In addition to the suggested further research noted above, there are additional research 

directions that could be explored.  For example, it would be beneficial to separate walking 

episodes into active transportation (AT) and recreational trips and then duplicate this 

study’s methods for each trip type.  This research could provide valuable insights into 

built environment characteristics that influence AT and recreational walking in different 

manners.  For example, it is expected that much of the recreational walking occurs in 

parks near a person’s home, whereas much of the AT walking is in commercial areas and 

to and from transit nodes.   

 

Another potential research direction could be to refine the walkability index (WI), as 

typically employed by researchers, to create a more accurate WI.  Other researchers have 

attempted to create various alternative walkability indices, such as Giles-Corti et al., 

(2014) and Peiravian (2014); however, these indices include variables that may have little 

impact on walking behaviour.  As an example, entropy is often cited as a walking 

determinant; however, as Brown et al. (2009) noted, a high entropy score may not 

necessarily be reflective of a built environment that encourages walking.  Brown (2009, 

p.4) illustrates this point using the example of a study area that consisted of: one-third 

large single unit dwellings plus one-third big box retail stores located adjacent a highway 
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plus one-third office park.  This site would have a perfect entropy score, but simply 

because land uses are mixed does not necessarily result in a built environment conducive 

to walking. 

 

Researchers often create a WI with varying weights of individual components (Frank et 

al., 2005; Frank et al., 2006; Sallis et al., 2009).  One could weight the specific 

components of the WI based on the standardised beta coefficients (β) of a model that 

tested each component individually (as performed in model four of each density 

measure).  This research could provide further refinement and appropriate rationale to the 

WI.  Building on the theme of creating an index measure of neighbourhood walkability 

based on the 5Ds – density, diversity, design, distance to transit, and destination 

accessibility (Cervero et al.,  2009) – researchers could develop an entirely new 

walkability index based on the four attributes found in this research that most strongly 

influence walking behaviour.  Arguably, a new index based on this research would 

include data that are readily available and, thus, would create an index that may be less 

complicated and more easily replicable than those proposed by others.   

 

This study has limitations that ought to be noted.  Although the Halifax STAR survey 

attempted to stratify the respondents both in terms of age and geographic location, both 

those in younger age cohorts and rural households are under-represented in the survey 

(Spinney et al., 2011).  It would certainly create a more representative study if younger 

age respondents had been adequately sampled; however, the fact that rural households are 

under-represented is of little consequence to this study, as the focus of this research is on 
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neighbourhood form in urban and suburban contexts.  From a statistical perspective, the 

R-square values in this study were well below 100%; therefore, there are additional 

factors not considered in this analysis that impact walking behaviour.  Further, the 

Halifax STAR survey is only a cross-sectional sample (although robust) and may not be 

representative of the entire population.  An additional limitation relates to the process of 

aggregation: whenever spatial geographic research is conducted, thought must be given to 

the modifiable aerial unit problem (MAUP).  The rationale for dealing with MAUP has 

been addressed in Chapter three.  However, it is worth noting that if the scale of the 

aggregation units in this study was altered, the analysis would likely produce different 

results. Perhaps the final limitation that should be discussed is that fact that this research 

is quantitative, and therefore lacks qualitative insights into how people feel about the built 

environment in which they walk.  

 

The knowledge gained from this research will assist academic researchers and urban 

design / planning practitioners.  These findings should provide academic researchers with 

further insights into the potential limitations of the existing walkability index as a tool and 

a concept, and highlight alternative built environment characteristics that strongly 

influence walking behaviour.  Urban designers and planners may also benefit from these 

findings by gaining a further understanding of built environment variables that promote 

walking, thus enabling them to make more informed decisions related to neighbourhood 

design.  
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Appendix A 

Dependent Variable: Walked Distance by Population  (W/P) 

 
(Enter Method) 

Unstandardized  

Coefficients 

Standardized 

 Coefficients 
 

 
 Adjusted 

  

  
B Beta Sig. t R2 R2 F Sig. 

Model 1 
   

 
 

0.2 0.171 6.9 0.000 

 
Constant 4.470 

 
 

 
  

  
IV: Intersection Density 1.914 0.321 0.031 2.201   

  
 

Entropy 1.917 0.321 0.005 2.875   
  

 
Dwelling Density -1.121 -0.188 0.190 -1.321   

  
Model 2 

   
 

 
0.359 0.328 11.49 0.000 

 
Constant 4.470 

 
 

 
  

  
IV: Intersection Density 0.144 0.024 0.870 0.164   

  

 
Entropy 1.649 0.277 0.008 2.734   

  

 
Dwelling Density -2.473 -0.415 0.003 -3.012   

  
 

Retail Lot Coverage Ratio 3.855 0.647 0.000 4.512   
  

Model 3 
   

 
 

0.523 0.48 12.351 0.000 

 
Constant 13.145 

 
 

 
  

  
IV: Intersection Density -0.440 -0.074 0.597 -0.53   

  
 

Entropy 1.626 0.273 0.005 2.876   
  

 
Dwelling Density -2.909 -0.488 0.001 -3.405   

  

 
Retail Lot Coverage Ratio 3.018 0.506 0.001 3.406   

  
 

% Middle Aged -0.384 -0.482 0.002 -3.182   
  

 
% Older Adult 0.147 0.159 0.076 1.798   

  

 
Average Income 0.085 0.312 0.001 3.408   

  
 

% Young Adults (Excluded) - - - -   
  

Model 4 
   

 
 

0.62 0.558 10.045 0.000 

 
Constant 1.887 

 
 

 
  

  
IV: Intersection Density -0.869 -0.146 0.353 -0.934   

  
 

Entropy 0.379 0.064 0.606 0.518   
  

 
Dwelling Density -1.615 -0.271 0.080 -1.778   

  

 
Retail Lot Coverage Ratio 2.807 0.471 0.002 3.214   

  
 

% Middle Aged -0.172 -0.216 0.175 -1.371   
  

 
% Older Adult 0.148 0.160 0.062 1.892   

  
 

Average Income 0.097 0.359 0.000 4.103   
  

 
% Residential Land -0.011 -0.031 0.775 0.286   

  

 
% Commercial Land 0.007 0.011 0.913 0.11   

  
 

% Institutional Land Use 0.246 0.345 0.002 3.26   
  

 
% Office Land use 0.780 0.321 0.003 3.065   

  

 
% Industrial Land -0.033 -0.063 0.508 -0.665   

  
 

% Park Land (Excluded) - - - -   
  

 
% Young Adults (Excluded) - - - -   

  
Model 5 

   
 

 
0.341 0.309 10.601 0.000 

 
Constant 11.635 

 
 

 
  

  
IV: WI-4* 0.278 0.154 0.297 1.051   

  

 
% Middle Aged -0.346 -0.435 0.006 -2.841   

  

 
% Older Adult 0.201 0.218 0.022 2.341   

  
 

Average Income 0.071 0.262 0.011 2.59   
  

 
% Young Adults (Excluded) - - - -   

  
Model 6 

   
 

 
0.559 0.507 10.823 0.000 

 
Constant 3.133 

 
 

 
  

  
IV: WI-4* 0.225 0.125 0.470 0.726   

  

 
% Middle Aged -0.149 -0.187 0.194 -1.311   

  

 
% Older Adult 0.143 0.155 0.061 1.898   

  
 

Average Income 0.102 0.375 0.000 4.147   
  

 
% Residential Land Use -0.070 -0.201 0.042 -2.064   

  

 
% Commercial Land 0.007 0.010 0.914 0.109   

  
 

% Institutional Land Use 0.243 0.341 0.001 3.356   
  

 
% Office Land use 0.834 0.343 0.001 3.588   

  

 
% Industrial Land -0.040 -0.076 0.434 -0.786   

  
 

% Park Land (Excluded) - - - -   
  

 
% Young Adults (Excluded) - - - -   

  
 *WI-4: four-variable walkability index         
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Dependent Variable: Walked Distance by Road (W/R) 

  (Enter Method) 
Unstandardized  

Coefficients 

Standardized 

 Coefficients   
 Adjusted 

  

    B Beta Sig. t R2 R2 F Sig. 

Model 7           0.307 0.282 12.262 0.000 

  Constant 0.947 
   

  
 

  

IV: Intersection Density 0.312 0.216 0.159 0.116   
 

  

  Entropy 0.389 0.269 2.583 0.012   
 

  

  Dwelling Density 0.271 0.187 1.411 0.162         

Model 8           0.422 0.394 14.993 0.000 

  Constant 0.947 
   

  
 

  

IV: Intersection Density -0.054 -0.037 -0.266 00.791   
 

  

  Entropy 0.334 0.231 2.401 0.019   
 

  
  Dwelling Density -0.009 -0.006 -0.047 0.963   

 
  

  Retail Lot Coverage Ratio 0.798 0.551 4.046 0.000         

Model 9           0.553 0.513 13.942 0.000 

  Constant 2.97 
   

  
 

  

IV: Intersection Density -0.172 -0.119 -0.881 0.381   
 

  

  Entropy 0.336 0.232 2.527 0.014   
 

  

  Dwelling Density -0.116 -0.080 -0.579 0.564   
 

  
  Retail Lot Coverage Ratio 0.609 0.420 2.920 0.005   

 
  

  % Middle Aged -0.086 -0.445 -3.033 0.003   
 

  

  % Older Adults 0.027 0.120 1.406 0.164   
 

  
  Average Income 0.019 0.290 3.271 0.002   

 
  

  % Young Adults (Excluded) - - - -         

Model 10           0.664 0.609 12.167 0.000 

  Constant 0.124 
   

  
 

  

IV: Intersection Density -0.227 -0.157 -1.069 0.289   
 

  

  Entropy 0.031 0.022 0.186 0.853   
 

  

  Dwelling Density 0.218 0.150 1.049 0.297   
 

  
  Retail Lot Coverage Ratio 0.565 0.390 2.831 0.006   

 
  

  % Middle Aged -0.030 -0.157 -1.063 0.291   
 

  

  % Older Adult 0.029 0.130 1.630 0.107   
 

  
  Average Income 0.023 0.350 4.260 0.000   

 
  

  % Residential Land -0.004 -0.043 -0.425 0.672   
 

  
  % Commercial Land 0.009 0.055 0.597 0.553   

 
  

  % Institutional Land Use 0.060 0.347 3.488 0.001   
 

  

  % Office Land use 0.186 0.314 3.194 0.002   
 

  
  % Industrial Land -0.017 -0.133 -1.489 0.141   

 
  

  % Park Land (Excluded) - - - -   
 

  

  % Young Adults (Excluded) - - - -         

Model 11           0.496 0.471 20.164 0.000 

  Constant 3.581 
   

  
 

  

IV: WI-4* 0.433 0.299 2.326 0.022   
 

  

  % Middle Aged -0.095 -0.49 -3.662 0.000   
 

  
  % Older Adult 0.026 0.115 1.419 0.160   

 
  

  Average Income 0.016 0.242 2.734 0.008   
 

  

  % Young Adults (Excluded) - - - -         

Model 12           0.639 0.597 15.144 0.000 

  Constant 1.939 
   

  
 

  

IV: WI-4* 0.526 0.363 2.335 0.022   
 

  

  % Middle Aged -0.052 -2.690 -2.085 0.040   
 

  
  % Older Adult 0.016 0.072 0.979 0.330   

 
  

  Average Income 0.022 0.340 4.157 0.000   
 

  

  % Residential Land Use -0.013 -0.153 -1.738 0.086   
 

  
  % Commercial Land 0.002 0.014 0.160 0.873   

 
  

  % Institutional Land Use 0.050 0.287 3.117 0.003   
 

  

  % Office Land use 0.145 0.245 2.838 0.006   
 

  
  % Industrial Land Use -0.023 -0.178 -2.032 0.046   

 
  

  % Park Land (Excluded) - - - -   
 

  

  % Young Adults (Excluded) - - - -       

*WI-4: four-variable walkability index 
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Dependent Variable: Walked Distance by Developed Area (W/DA) 

  (Enter Method) 
Unstandardized  

Coefficients 

Standardized 

 Coefficients   
 Adjusted 

  

    B Beta Sig. t R2 R2 F Sig. 

Model 13           0.428 0.407 20.702 0.000 

  Constant 0.010 
   

  
 

  

IV: Intersection Density 0.008 0.413 3.352 0.001   
 

  

  Entropy 0.004 0.204 2.160 0.034   
 

  

  Dwelling Density 0.003 0.150 1.248 2.160         

Model 14           0.559 0.538 26.005 0.000 
  Constant 0.01 

   
  

 
  

IV: Intersection Density 0.003 0.144 1.180 0.241   
 

  

  Entropy 0.003 0.164 1.949 0.055   
 

  
  Dwelling Density -0.001 -0.056 -0.488 0.627   

 
  

  Retail Lot Coverage Ratio 0.011 0.587 4.940 0.000         

Model 15           0.598 0.562 16.759 0.000 

  Constant 0.03 
   

  
 

  

IV: Intersection Density 0.00 0.132 1.038 0.302   
 

  

  Entropy 0.00 0.181 2.084 0.040   
 

  

  Dwelling Density 0.00 -0.133 -1.008 0.317   
 

  
  Retail Lot Coverage Ratio 0.01 0.498 3.653 0.000   

 
  

  % Middle Age 0.00 -0.279 -2.006 0.048   
 

  

  % Older Adults -9.19 -0.032 -0.398 0.692   
 

  
  Average Income 0.000 0.180 2.138 0.036   

 
  

  % Young Adults (Excluded) - - - -         

Model 16           0.729 0.685 16.616 0.000 

  Constant -0.009 
   

  
 

  

IV: Intersection Density 0.001 0.079 0.599 0.551   
 

  

  Entropy -0.002 -0.084 -0.810 0.421   
 

  

  Dwelling Density 0.003 0.161 1.253 0.214   
 

  
  Retail Lot Coverage Ratio 0.009 0.463 3.752 0.000   

 
  

  % Middle Aged 4.470 0.018 0.137 0.892   
 

  

  % Older Adult 5.480 0.019 0.269 0.789   
 

  
  Average Income 0.000 0.253 3.433 0.001   

 
  

  % Residential Land -5.161 -0.048 -0.534 0.595   
 

  
  % Commercial Land 0.000 0.138 1.671 0.099   

 
  

  % Institutional Land Use 0.001 0.254 2.850 0.006   
 

  

  % Office Land use 0.003 0.395 4.470 0.000   
 

  
  % Industrial Land 0.000 -0.149 -1.862 0.067   

 
  

  % Park Land (Excluded) - - - -   
 

  

  % Young Adults (Excluded) - - - -         

Model 17           0.540 0.518 24.082 0.000 
  Constant 0.032 

   
  

 
  

IV: WI-4 0.003 0.547 4.459 0.000   
 

  

  % Middle Age -0.001 -0.295 -2.306 0.024   
 

  
  % Older Adult -4.209 -0.015 -0.190 0.850   

 
  

  Average Income 0.000 0.176 2.082 0.040   
 

  

  % Young Adults (Excluded) - - - -         

Model 18           0.684 0.647 18.476 0.000 

  Constant 0.016 
   

  
 

  

IV: WI-4 0.003 0.613 4.214 0.000   
 

  

  % Middle Aged 0.000 -0.117 -0.966 0.337   
 

  
  % Older Adult -9.385 -0.033 -0.477 0.635   

 
  

  Average Income 0.000 0.272 3.556 0.001   
 

  

  % Residential Land Use 0.000 -0.157 -1.911 0.060   
 

  
  % Commercial Land 7.171 0.034 0.431 0.667   

 
  

  % Institutional Land Use 0.000 0.151 1.758 0.083   
 

  

  % Office Land use 0.002 -0.185 -2.256 0.027   
 

  
  % Industrial Land Use 0.000 0.301 3.723 0.000   

 
  

  % Park Land (Excluded) - - - -   
 

  

  % Young Adults (Excluded) - - - -         

* WI-4: four-variable walkability index 

 


