Hydrothermal evolution of volcanogenic Zn-Cu-Pb deposits, Taylors Brook Showing, Stirling Belt, southeastern Cape Breton Island, Nova Scotia

by

Haley D. LeBlanc

A thesis presented to the Department of Geology of Saint Mary's University In partial fulfillment of the requirements for the degree of

BACHELOR OF SCIENCE

IN GEOLOGY (HONOURS)

Examining committee:

Dr. Jacob Hanley, Department of Geology, Saint Mary's University

Department of Geology Saint Mary's University Halifax, Nova Scotia August 17, 2016 © [Haley LeBlanc, 2016]

Abstract: Hydrothermal evolution of volcanogenic Zn-Cu-Pb deposits, Taylors Brook showing, Stirling Belt, southeastern Cape Breton Island, Nova Scotia

Haley LeBlanc

The Taylors Brook showing is a suspected volcanogenic massive sulfide (VMS) within (Zn-Pb-Cu-Au-Ag) that occurs the ~680 Ma Stirling occurrence volcanosedimentary-plutonic belt, southeastern Cape Breton Island, Nova Scotia, Canada. In addition to mineralized mudstones, there are 7 associated hydrothermal vein types, characterized using three criteria: vein-filling mineral composition and alteration style, cross cutting relationships and mineralization. Mineralized (Zn-Cu-Pb-Sc-Y-Ag-Te) veins show propylitic and potassic alteration assemblages. Compositional zoning in epidote and a pyrrhotite-smythite replacement reaction indicate that the hydrothermal fluid was experiencing fluctuations in fO_2 and cooling, respectively, rendering the metals less soluble causing their precipitation.

Bulk rock geochemistry indicates mineralization anomalies are associated with host rock Zn-Pb anomalies in pyritic mudstone units and Cu anomalies in type IA (epidote-actinolite-calcite-K-feldspar-quartz-pyrite) veins. Fluid inclusion data from two generations of calcite in later type V veins suggest a CaCl₂-rich hydrothermal brine responsible for metal transport and deposition with bulk salinities ranging between 43-54 wt% total salt (absolute: 33-50 wt% CaCl₂ and up to 20 wt % NaCl). The homogenization temperatures for calcite A-hosted inclusions range from 106-306°C (n=21) and in calcite B-hosted inclusions from 212-331°C (n=91). Isochore ranges were plotted using microthermometric data, paired with a po-py equilibrium boundary constraint limits trapping conditions to a maximum of 400°C and 5kbar.

The distinct Ca-Cl-rich brine composition can only be formed naturally under specific conditions. There are four conceivable explanations for this Ca rich fluid: boiling, cation exchange between Na and Ca, evaporation of Ca-rich paleoseawater and dissolution of Ca-evaporites. However, the combination of high salinity and high Ca is only possible via the latter two processes. The Taylors Brook showing has comparable mineralization to the Stirling deposit, and the Duck Pond-Lemarchant deposits of Newfoundland but has an inconsistent fluid chemistry with VMS deposits.

Date of submission: August 17, 2016

Acknowledgements

I would like to acknowledge the Nova Scotia Department of Natural Resources Geoscience and Mines Branch for giving me the opportunity to train, assist and learn from local geoscientist and GIS specialists. I would like to thank Geoff Baldwin, Trevor MacHattie and Chris White for their invaluable field knowledge. Robert Naylor and Diane Webber, for their continued consideration and support. Also I would like to thank NSDNR for funding and the opportunity to complete this Honors Thesis.

I would like to thank my amazing professors at Saint Mary's University, Andrew MacRae, Victor Owen, Pierre Jutras, Georgia Pe-Piper, Fergus Tweedale and Randy Corney. Thank you for all of your help and guidance throughout my undergraduate degree.

I would be no where without the support of my family (Stephanie, Howard, Michael and Mitchell). I would like to thank my cousin the late Nicholas Frenette for teaching me 'you have to fight through the bad days to earn the best days of your life'. My grandmother, Delphine Pancura who is a combination of warmth and kindness, laughter and love. She was a person who overlooked all my faults, praised my every success and encouraged my dreams.

Most importantly I would like to thank Dr. Jacob Hanley (Saint Mary's University), a role model, mentor and friend. He saw potential in me and helped me to reach my educational goals. Thank you for the countless hours of discussion, mentorship and for always being a positive influence that made all this possible.

Table of Contents

Abstract	ü
Acknowledgements	iii
Table of Contents	iv
List of Figures and Appendices.	v
List of Tables	v

Chapter

1.0	Introduct	ion		. 1
2.0	Geologic	al setting		. 2
3.0	Methods			6
4.0	Results			. 9
	4.1	Mineraliza	ition and alteration	9
		4.1.1	Type IA veins	9
		4.1.2	Type IB veins	. 16
		4.1.3	Туре II	. 18
		4.1.4	Туре III	. 19
		4.1.5	Туре IV	19
		4.1.6	Туре V	20
		4.1.7	Туре VI	. 22
		4.1.8	Pyritic mudstones	22
	4.2	Bulk rock	analysis	26
	4.3	Fluid inclı	usion study	30
		4.3.1	Fluid inclusion petrography	. 30
		4.3.2	Microthermometry and salinity	. 35
5.0	Discussio	n		. 41
	5.1	Mineraliza	tion and hydrothermal vein paragenesis	. 41
	5.2	Fluid orig	in in type V veins	. 42
	5.3	Implicatio	n for mineral exploration	. 44
	5.4	Comparis	on to the Stirling deposit and other VMS systems	45
6.0	Conclusio	ons		48
7.0	Reference	es		50
8.0	Appendic	ces		55

List of Figures and Appendices

Figure 2.1:	Regional geological map showing the allochthonous terranes of mainland Nova Scotia and Cape Breton Island	3
Figure 2.2:	Geological map of southeastern Cape Breton and the Stirling belt	. 5
Figure 2.3:	Local geological map of the Taylors Brook showing	. 7
Figure 4.1:	Paragenetic summary of all vein styles, alteration types and associated ore and gangue mineralogical assemblages	10
Figure 4.2:	Photographs of core sampled from drill hole STR-12-02	.11
Figure 4.3:	SEM-BSE and EDS X-ray maps of type IA veins	. 14
Figure 4.4:	Elemental SEM line scan through zoned epidote	.15
Figure 4.5:	Cross-cutting vein relationships	. 17
Figure 4.6:	Example of type V veins (comb texture quartz and infilling calcite)	.21
Figure 4.7:	SEM-BSE images of pyrite grains in mudstones	.23
Figure 4.8:	SEM-BSE and EDS X-ray maps of a pyrite grain enclosed by pyrrhotite.	.24
Figure 4.9:	Extensive down hole section of the drill hole STR-12-02	. 27
Figure 4.10:	Bulk rock Zn.Pb,Cu assays and Cu/Zn ratio vs. depth	.28
Figure 4.11:	Fluid inclusion petrography and example compositional types	. 31
Figure 4.12:	SE images of decrepitate salt mounds on calcite crystal surfaces	. 32
Figure 4.13:	BSE high resolution images of thortveitite within fluid inclusions	. 34
Figure 4.14:	Box and whisker plot of homogenization temperatures	.36
Figure 4.15:	Trapping pressure-temperature constraints for CaCl ₂ -NaCl-H ₂ O inclusions.	40
Appendix A:	Relationship of host lithology, alteration style and vein mineralogy to vein type	54
Appendix B Appendix C:	Bulk geochemical data obtained via portable XRF Summary of microthermometric data	
	List of Tables	
Table 1 1.	SEM-EDS analyses of pyrrhotite, smythite and pyrite in textural	

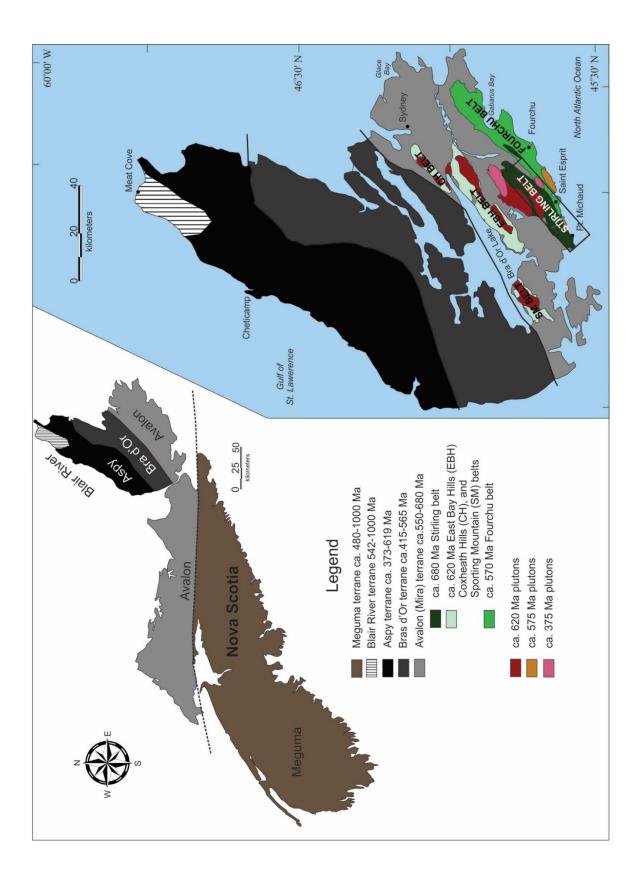
1 able 4.1:	association in mudstones	25
Table 4.2:	Microthermometric and calculated salinity data	39
Table 5.1:	A comparison of the Taylors Brook showing to other VMS systems	46 _v

1.0 Introduction

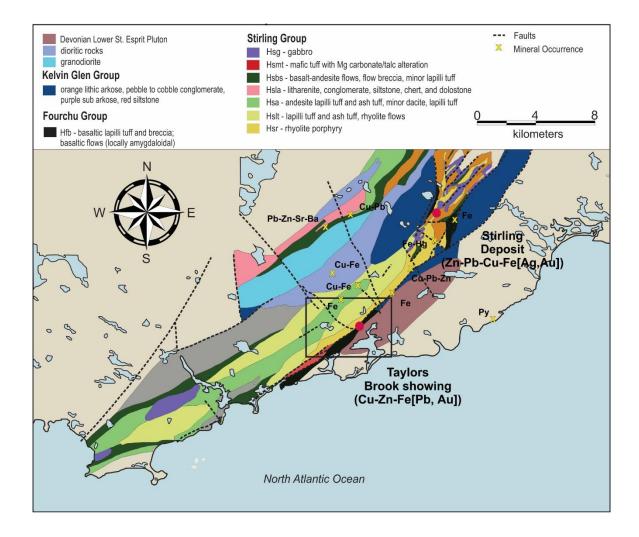
The Taylors Brook showing is a suspected volcanogenic massive sulfide (VMS) occurrence (Zn-Pb-Cu-Au-Ag) that occurs within the ~680 Ma Stirling volcanosedimentary-plutonic belt, southeastern Cape Breton Island, Nova Scotia, Canada. Previous exploration in the region recognized the showing as part of a larger mineralized district containing the polymetallic Stirling VMS deposit (Mindamar Mine, Stirling Mines Ltd.; 1.2 Mt @ 6.4% Zn, 1.5% Pb, 0.74% Cu, 2.2 oz/ton Ag, and 0.03 oz/ton Au) (O'Reilly, 2008).

The genetic relationship between the Stirling deposit and Taylors Brook occurrence is poorly understood. If a VMS the general model for these systems shows that such deposits occur in districts (i.e., multiple sites of mineralization related to hydrothermal systems around a common submarine volcanic spreading center; eg. Noranda: Hannington *et al.*, 2003, Kuroko: Ishihara, 1974, Matagami: Carr *et al.*, 2008, Snow Lake: Bailes *et al.*, 1999 and Flin Flon: Koo *et al.*, 1975). Within such districts, similarities in alteration styles, metal tenor and ore mineralogy, fluid chemistry and associated hydrothermal conditions, and host rock types are expected between deposits. Determining the relationship between the Stirling deposit and the Taylors Brook occurrence first requires a systematic study of such features.

The Stirling deposit was most recently been interpreted by Macdonald and Barr (1993) to have been deposited within, and around, a trough flanked by volcanic centers in an intraarc setting. A report compiled by Hunter and Gibson (2006; Wallbridge Mining Company Limited exploration project 1998-2005) interpreted the rocks of the Taylors Brook area to be the equivalents of those hosting the Stirling deposit, and represent a


1

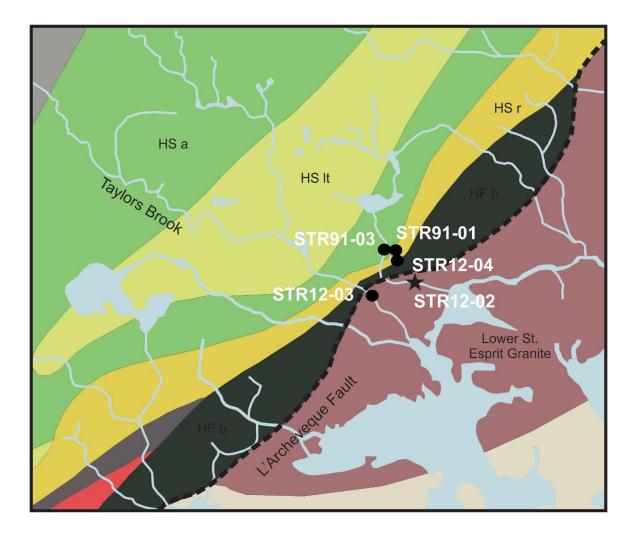
typical submarine volcanogenic setting for massive sulphide deposition hosted within mafic flows, breccias, quartz-feldspar porphyry and mudstone/siltstone (Reid, 2014). The occurrences of VMS mineralization within the Stirling belt have similarities (ie. the association of abundant quartz-carbonate alteration with massive sulphide mineralization) to Proterozoic deposits of the Sudbury area (eg. Errington and Vermillion Zn-Cu-Pb) and the Bergslagen district of Sweden (eg. Garpenberg deposit) (Kontak, 1998).


The main objective of this thesis is to conduct a systematic study of alteration mineralogy and fluid inclusions at the Taylors Brook showing in order to determine conditions of hydrothermal activity, and the relationship of alteration to mineralization. Specifically, optical petrography, scanning electron microscopy (SEM), XRF, and fluid inclusion microscopy and microthermometry are used to characterize the alteration styles, and fluid salinity-temperature pressure characteristics associated with sulfide mineralization and associated hydrothermal events. This will contribute to a genetic and exploration model for suspected VMS mineralization occurrences in the district.

2.0 Geological Setting

The Taylors Brook showing is located in southeastern Cape Breton Island, Saint Esprit. The regional geology in the area of the showing was studied extensively by Barr et al. (1996) and the descriptions here are based on that work. Cape Breton Island is composed of four adjoining terranes: the Blair River inlier, Aspy, Bras d'Or and Avalon (Mira) terranes (Figure 1.1). The site of study lies within the Avalon terrane which docked to Laurentia approximately at 435 Ma. The Avalon Terrane is comprised of five

Figure 2.1: previous page. **Regional geological map showing the alochthonous terranes of mainland Nova Scotia and Cape Breton Island.** A) Regional geological map showing the allochthonous terranes of Nova Scotia, specifically those of Cape Breton Island. B) Enlarged view of Cape Breton Island showing the detailed geology of the Avalon terrane. The five north-east trending volcanic-plutonic belts are labelled (compilation of DNR, 2010 & Petts, *et al.*, 2012). The area showing Figure 2.2 is indicated by the black box.


Figure 2.2: Geological map of southeastern Cape Breton and the Stirling belt. Map showing the Stirling belt, Stirling deposit and the Taylors Brook showing (Thundermin Resources Inc., 2012). Mineral occurrences are from the NSDNR mineral occurrence data base. The area of Figure 2.3 is indicated by the black box.

north-east trending, volcanic-plutonic belts. These include the Fourchu or Coastal Belt (575 Ma), Stirling Belt (680 Ma), East Bay Hills Belt (620 Ma), Coxheath Belt (620 Ma) and Sporting Mountain Belt (620 Ma)(Kontak, 1997). The belts were intruded by the Caplin Cove (574 Ma), St. Esprit (375 Ma), Salmon River (375 Ma), Chisholm Brook (620 Ma) and Huntington Mountain (620 Ma) plutons (Figure 2.1).

The Stirling deposit and the Taylors Brook showing are located within the Stirling Belt (Figure 2.1 and Figure 2.2). This belt consists of rocks ranging from felsic to mafic volcanic and volcaniclastics hosting lenses of fine- to coarse-grained clastic sedimentary rocks (Kontak, 1997); (Figure 2.3). The rocks are interpreted to have been deposited within and around a trough-flanked volcanic center in an intra-arc setting (Macdonald *et al.*, 1993). Locally, the Taylors Brook showing is hosted within a variety of lithologies including the Lower St. Esprit granite, basalt/andesite flows, quartz feldspar porphyry, andesitic lapilli tuff and ash. Drill hole STR 12-02, studied here, is surficially located east of the L'Archeveque Fault within the Lower Esprit Granite (Figure 2.3).

3.0 Methods

Extensive re-logging and sampling of core from hole STR-12-02 (Thundermin Resources, 2012) was done in the summer of 2015 in order to characterize and obtain samples for study. During that time, 390 bulk geochemical analyses of drill core sections were made using a X-5000 portable X-ray fluorescence spectrometer (XRF) manufactured by Innov-X Canada, with analyses taken at one meter intervals to obtain major and trace element data.

Figure 2.3: Local geological map of the Taylors Brook showing. Map of the Taylors Brook showing after Barr et al. (1996) and Reid (2014). All Taylors Brook showing drill hole collar locations are indicated; Holes STR-91-01 and STR-91-03 drilled by Falconbridge Ltd. in 1991 and STR-12-02, STR-12-03 and STR-12-04 drilled by Thundermin Resources Inc. in 2012. The drill hole sampled and logged for this study is denoted by the black star. Refer to legend in Figure 2.2 for lithological abbreviations.

From the drill hole 40 samples were collected that were representative of cross-cutting vein relationships and alteration and mineralization styles. The samples were cut into blocks and sent to Vancouver Petrographics for thin section preparation (19 polished thin sections for petrographic study and 28 double polished thin sections for fluid inclusion study).

Representative thin sections were chosen for SEM-BSE imaging, SEM-EDS mineral analysis and X-ray mapping. Imaging, analysis and X-ray mapping was done using a TESCAN MIRA-3 LMU Variable Pressure Schottky Field Emission Scanning Electron Microscope (FE-SEM) at Saint Mary's University. An energy dispersive X-ray Oxford INCA X-max 80 mm² EDS system (attached to the SEM) was operated at a working distance of 15-20 mm, a beam current of 40 μ A, and an accelerating voltage of 20 kV. The FE-SEM provided quantitative EDS analyses of minerals as well as a means to identify mineral species, and solids in fluid inclusions.

Microthermometric measurements of fluid inclusions were obtained at Saint Mary's University using a Linkam FTIR 600 heating-freezing stage mounted on an Olympus BX51 microscope. The stage was calibrated using synthetic fluid inclusion standards containing pure CO₂ (melting at -56.6° C) and pure, critical density H₂O (melting at 0°C and homogenizing at 374.1°C). Total uncertainties associated with the microthermometric measurements, based on the reproducibility of measurements conducted on the standards and the measurement (read-out) precision of the controller instrumentation, range from $\pm 2^{\circ}$ to 3°C for temperatures recorded near the extremes of working conditions for the heating-freezing stages (-190° and 560° C), to less than $\pm 0.2^{\circ}$ C for temperatures recorded near 0°C. Measurements of eutectic (first) ice-melting temperatures (T_e) were obtained to

give insight into the major cation composition of the fluids within the inclusions. Final ice melting temperatures (T_mice), antarcticite melting temperatures (T_mant), and rarely, halite dissolution temperatures (T_mhalite) were used variably to calculate inclusion salinities (wt% NaCl and CaCl₂), using the model of Steele-MacInnis et al. (2011). When both hydrohalite and antarcticite melting temperatures were measured in inclusions, CaCl₂ wt% equivalents were estimated graphically using the UNIQUAC model for binary CaCl₂-H₂O systems (Sander *et al.*, 1986). The programs BULK and ISOC (Bakker, 2003) were used to model bulk fluid densities and isochores for fluids in the CaCl₂-NaCl-H₂O and CaCl₂-H₂O systems.

4.0 Results

4.1 Mineralization and alteration

Samples were characterized using three criteria: vein-filling mineral composition and alteration style (ie. vein and wall rock assemblages), cross cutting relationships (ie. relative timing of veining styles) and mineralization (ie. presence/absence of Zn-Cu-Pb-Fe sulphides). Petrographic studies of the veins allowed for a division into 7 vein types (Figure 4.1). The relative order of formation of type IA, IB, II, III, IV, V and VI veins was determined by examination of cross cutting relationships in hand sample and thin section (oldest to youngest).

4.1.1 Type IA veins

Type IA veins show a continuous potassic alteration rind (~1 cm wide) and are rimmed with epidote. Vein minerals are epidote, quartz, carbonate, actinolite, K-feldspar and trace sulphides (Figure 4.2 B, D and I). Type 1A veins range from 0.5-

			V	/ein styles	6		
	type IA	type IB	type II	type III	type IV	type V	type VI
Brecciation							
Alteration Type							
propylitic epidotization serpentinization potassic silicification chloritization carbonatization zeolitic			•		·	•	
Ore Mineralogy							
sphalerite							
chalcopyrite							
galena							
thortveitite $(Sc, Y)_2 Si_2 O_7$							
titanite (CaTiSiO ₅)							
chenguodaite (Ag $_9$ FeTe $_2$ S $_4$)							
Gangue Mineralogy							
quartz	-						
calcite A							
calcite B							
epidote	-		• •				
pyrite			disseminated			disseminated	
actinolite			-		ā.		
K-feldspar							
analcime						•	
biotite						•	
chlorite							
talc							
serpentine							

Figure 4.1: Paragenetic summary of all vein styles, alteration types and associated ore and gangue mineralogical assemblages.

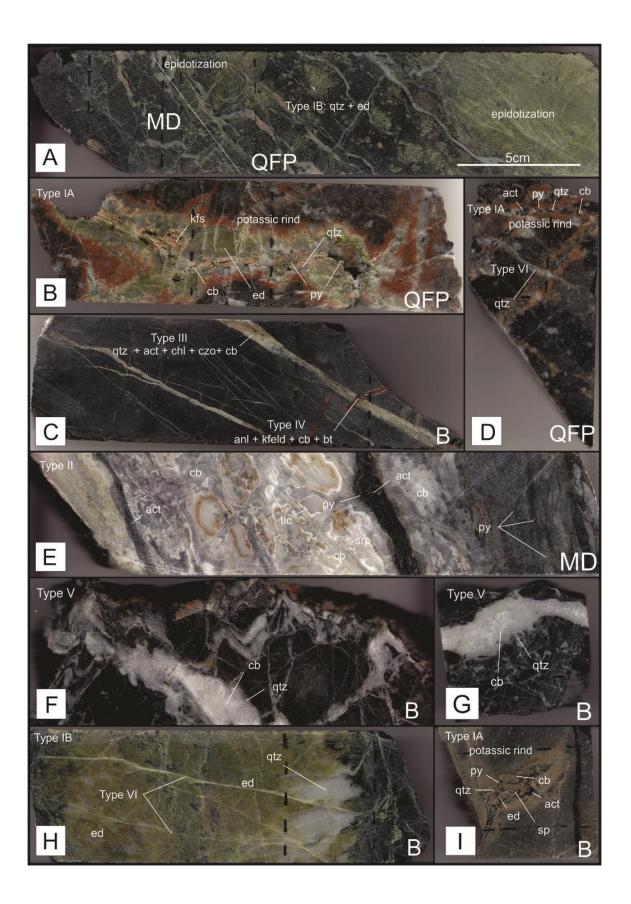
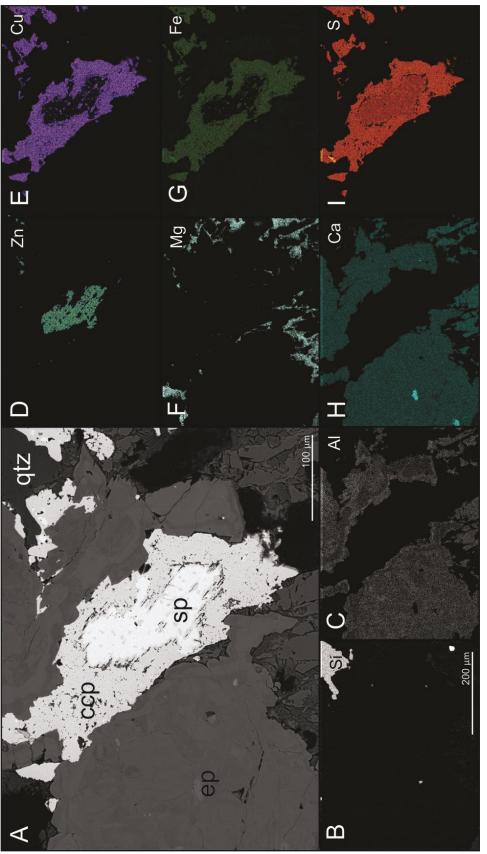
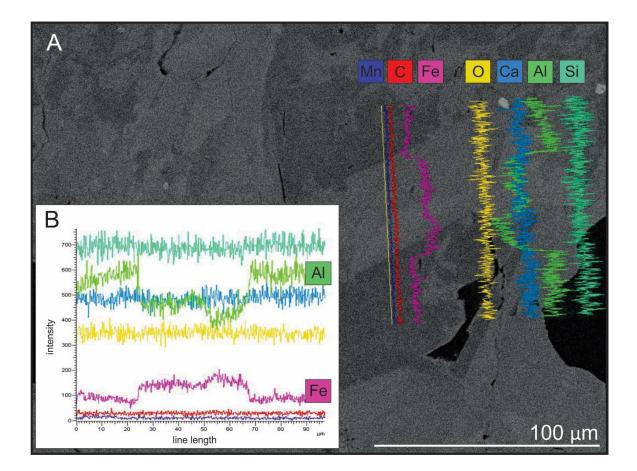



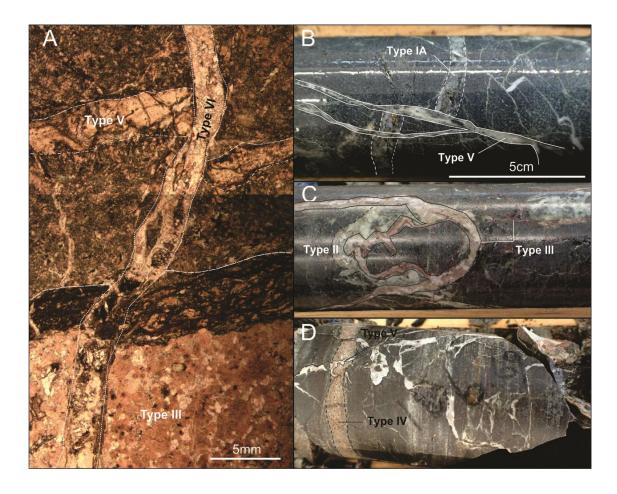
Figure 4.2: previous page. Photographs of core segments sampled from drill hole STR-12-02. A) Sample 412.32; an image of the Quartz-Feldspar Porphyry (QFP) cut by a mafic dyke (left hand corner). Both lithologies were highly epidotized, followed by an overprinting of fractured controlled quartz-carbonate veining. Epidotization and veining postdate emplacement of the mafic dyke indicating sulphide mineralization must be younger than the mafic dyke. B) Sample 220.18; an image of the QFP containing a large (1-3cm), type IA (ed-qtz-cb-kfs) vein. This type IA vein contains minor sulphides (py), most likely indicting a higher temperature. It also displays a thick potassic rind characteristic of the type IA fluids. C) Sample 108.9; an image if basalt demonstrating exceptional cross cutting relationships between type III (qtz-act-chl-czo-cb) and type IV (anl-kfs-cb-bt) veins. The image shows that type III veins must have been in place before type IV. The type IV vein is further separated along a mini fault plane. D) Sample 284.15; an image of the QFP showing the cross cutting relationship between type IA (ed-qtz-cbkfs-act) and type VI (qtz) veins. The image clearly displays sulphide rich type IA veins being crosscut by a later type IV vein. E) Sample 155.65; Example of a large type II (actcb-tlc-srp-py) vein. F) Sample 106.17; an image of brecciated basalt containing a barren type II (qtz-cb) vein. G) Sample 95.1; Very similar to F) an image of brecciated basalt containing a type II (qtz-cb) vein. H) Sample 406.0; an image if basalt containing a large (10cm) type IB (ed-qtz) vein crosscut by a fracture controlled type VI. I) Sample 113.30; an image of pyritic mudstone featuring a type IA vein sulphide rich (qtz-ed-act-sp-py) vein.


Mineral abbreviations: act=actinolite, anl=analcime, bt=biotite, cb=carbonate, chl=chlorite, czo=clinozoisite, ed=epidote, kfs=k-feldspar, py=pyrite, qtz=quartz, srp=serpentine, sp=sphalerite, tlc=talc. Scale applies to all frames.

3 cm in width and have comb textured margins with a vuggy infilling. Epidote (70 vol. %) is massive, with characteristic second order interference colors in CPL and a green-yellow color in PPL, suggesting high Fe content. Two types of carbonate (A and B) are present within some veins but only carbonate A (12 vol. %) is found within type IA veins. It occurs as subhedral grains between 0.3 and 2 mm in diameter. Carbonate A has a crystalline structure with distinctive twinning planes and shows a milky appearance. The grains display fifth order interference color in CPL and are colourless-light grey in PPL. Quartz (10 vol. %) occurs as subhedral grains between 0.1 and 2 mm in diameter. The grains display a grey first order interference color in CPL and are transparent in PPL. Actinolite (2 vol. %) is commonly present as small (0.5 mm), radiating acicular grains. The actinolite displays characteristic yellow-blue second order interference colors in cross-nicols and a pale yellowish color in plane polarized light (PPL). Chalcopyrite (1 vol. %) and sphalerite (1 vol. %) are found most commonly where massive pyrite (3 vol. %) occurs. Trace minerals found within type IA veins are thortveitite ($[Sc,Y]_2Si_2O_7$), titanite (CaTiSiO₅) and chenguodaite (Ag₉FeTe₂S₄).

Figure 4.3 shows a type IA vein (SEM-BSE) with quartz as subhedral grains displaying an open-space filling texture intergrown with epidote. Massive epidote is commonly compositionally zoned surrounding sulphide mineralization. A line scan through an epidote grain showing zoning in BSE images confirmed variations of epidote-clinozoisite solid solution composition represented by an increase in Fe and a decrease in Al with dark to light BSE grayscale variations (Figure 4.4).

sphalerite (sp) grain enclosed by chalcopyrite (ccp) surrounded by epidote (ep). SEM-EDS X-ray maps (B-I) are highlighting specific element distributions (higher concentration = brighter). B) Showing the distribution of Si. C) Showing the distribution Figure 4.3: BSE and X-ray maps of mineralized type IA vein. A) SEM-BSE of mineralized type IA vein showing a of Al. D) Showing the distribution of Zn E) Showing the distribution of Cu. F) Showing the distribution of Mg. G) Showing the distribution of Fe. H) Showing the distribution of Ca and I) showing the distribution of S.


Figure 4.4: **Element SEM line scan though a section of zoned epidote** shows the variation in solid-solution from iron-rich (magenta) to aluminum-rich (green). A) SEM-BSE image showing the direct placement of the analysis line (line on left) and intensity of elements (left to right) Mg, C, Fe, O, Ca, Al and Si along that line. B) The analysis line transposed on a graph (line length vs. intensity).

Chalcopyrite displays an open-space filling texture with epidote. Sphalerite shows selective replacement texture with chalcopyrite and also chalcopyrite "disease". Galena although not present in figure 4.3 is most commonly found as traces rimming chalcopyrite, pyrite or sphalerite. Titanite and chenguodaite are both found throughout type IA veins and pyritic mudstones as microscopic (~5 μ m) inclusions enclosed by most commonly pyrite but also chalcopyrite and sphalerite. These textures are representative of all type IA veins samples within this sample set.

Type IA veins have irregular vein margins and show alteration haloes of alkali feldspar and epidote. Type IA veins display propylitic-potassic alteration assemblage (epidote-actinolite-calcite-K-feldspar-quartz-pyrite) and are commonly mineralized. Figure 4.5B shows an example of this vein type, illustrating that it postdates IB veins.

4.1.2 Type IB veins

These veins contain massive epidote and quartz, and range from 2 mm to 10 cm in width (Figure 4.2H). The massive epidote (90 vol. %) is similar in its optical and textural characteristics to the epidote in type IA veins. The massive quartz (10 vol. %) displays a grey first order interference color in CPL and is transparent in PPL. Type IB veins have irregular vein margins and alteration halos of epidote. They show an epidotization-silicification alteration assemblages (epidote-quartz).

Figure 4.5: **Cross-cutting vein relationships.** Hatched lines are added to all images to help illustrate cross cutting relationships. Scale applies to all frames A) A cross-polarized transmitted light photomicrograph, of a type V vein cross-cut by a later type VI vein. A type III cross-cut by the type VI is also visible. B) A photograph of a type IA vein (note no potassic rind due to mafic host lithology) cross-cut by a later type IB. C) Photograph of a type II cross-cut by a later type III. D) Photograph of a type IV being cross cut by a type V.

4.1.3 Type II veins

Type II veins are rimmed with actinolite and are infilled with two types of carbonate (A and B), disseminated sulphides, and centrally-occurring, zoned, globular masses of serpentine and talc related to the hydrothermal alteration of orthopyroxene and olivine (Figure 4.2E). Type II veins range from 1 to 15cm in width and have a massive appearance. The majority of the veins are comprised of the two generations of massive carbonate. Carbonate A (80 vol. %) has a massive habit and a milky appearance. Carbonate B (5 vol. %) has a very crystalline appearance with distinct grain boundaries, is transparent and has very distinctive twinning planes. The grains display fifth order interference colors in CPL and are colourless-light grey in PPL. Actinolite (10 vol. %) appears to be massive around the vein boundaries. However, there are some small (0.3 mm) acicular radiating grains. The actinolite displays similar optical characteristics to that in type IA veins. Chlorite (2 vol. %) occurs as radiating grains approximately 0.2-0.5 mm in diameter. The grains show characteristic Berlin blue in CPL and are yellowish-grey in PPL. Talc (1 vol. %), serpentine (1 vol. %) and disseminated pyrite (1 vol. %) are minor phases. Type II veins have irregular vein margins and brecciated host rock clasts are commonly located within the vein. Type II veins display serpentinizationpropylitic alteration assemblages (serpentine-talc-chlorite-actinolite-calcite) and are rarely mineralized. Figure 4.5C shows an example of this vein type, illustrating that it predates type III veins.

4.1.4 Type III veins

These veins contain quartz, carbonate, chlorite, actinolite and epidote (Figure 4.2C). Quartz (30 vol. %) occurs as subhedral grains 0.1-0.8 mm in diameter. The grains have the same optical characteristics as seen in type II veins. Carbonate A (40 vol. %) has the same optical and textural characteristics as in type IA veins. Epidote (26 vol. %) occurs as subhedral grains 0.2-1 mm in diameter. The grains show characteristic second order interference colors in CPL and a yellowish-green color in PPL indicating a high Al content. Chlorite (2 vol. %) occurs as radiating grains approximately 0.5mm in diameter. The grains show similar optical characteristics as type IB vein chlorite. Actinolite (2 vol. %) occurs as small (0.2-5mm) radiating grains. The actinolite displays similar optical characteristics to actinolite in type IA veins. Type III veins have defined vein margins and they contain a propylitic alteration assemblage (chlorite-epidote-actinolite-calcite). Figure 4.5C shows an example of this vein type, illustrating that they postdate type II veins.

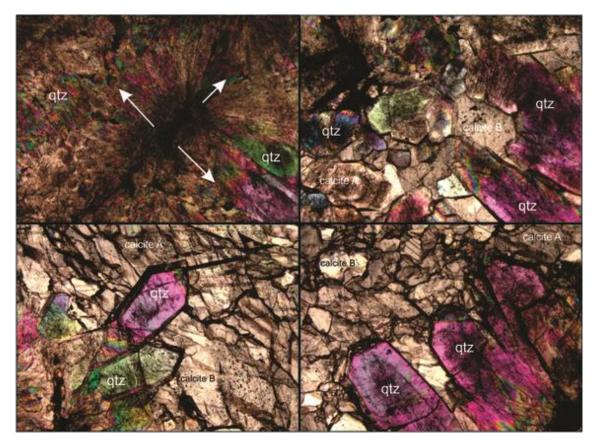
4.1.5 Type IV veins

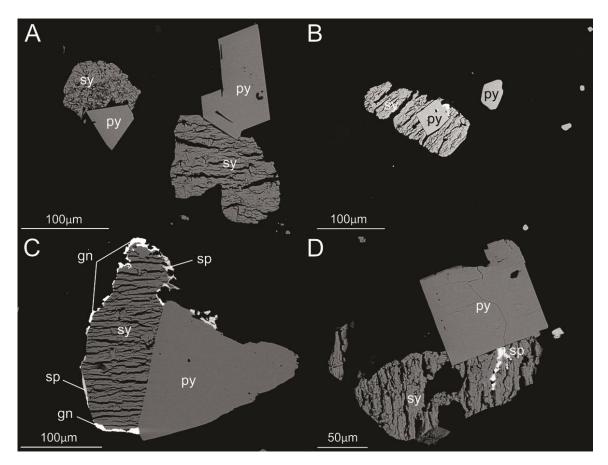
Type IV veins are composed of carbonate, K-feldspar, analcime and biotite (Figure 4.2C and 4.5D). Type IV veins range from 0.5-3cm in width and appear as linear veins. Carbonate A (10 vol. %) occurs as subhedral grains between 0.1-0.5 mm in diameter. The grains have the same optical characteristics as in type IA veins. K-feldspar (60 vol. %) occurs as euhedral grains 0.1-0.3 mm in length. All grains of K-feldspar show good calrsbad twinning, display a grey first-order interference color in CPL and are transparent in PPL. Analcime (15 vol. %) occurs as subhedral-euhedral grains 0.3-0.8 mm in diameter. The grains are nearly isotropic in CPL and

are transparent in PPL, showing characteristic twinning. Biotite (15 vol. %) occurs as euhedral grains 0.1-0.3 mm in length. The grains display pinkish-green fourth order interference colors in CPL and are brown and extremely pleochroic in PPL. Type IV veins have defined vein margins and show a potassic-carbonatizationzeolitic assemblage (biotite-K-feldspar-calcite-analcime).

4.1.6 Type V veins

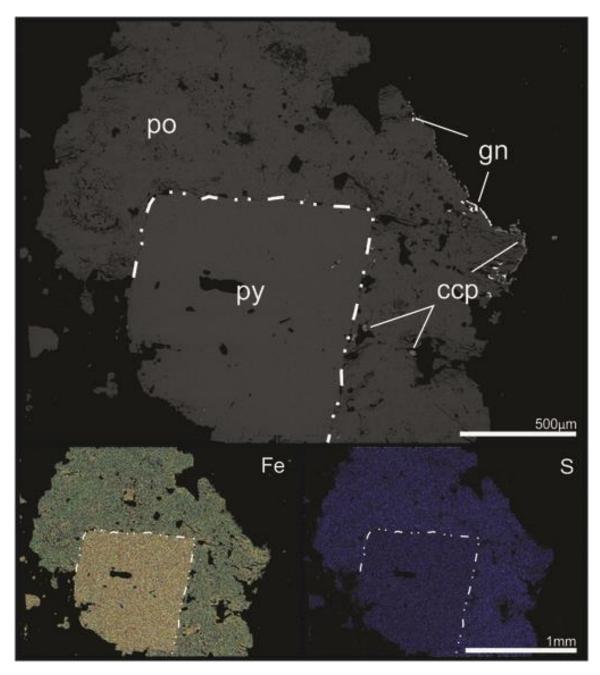
These veins were the focus of *fluid inclusion analysis*. The veins contain bladed, comb textured, clear quartz crystals that radiate out from vein walls creating vugs infilled with carbonate A and B (former open spaces) (Figure 4.2 F and G). Type V veins range from 1 to 5cm in width and form irregular networks surrounding brecciate host fragments. Quartz (40 vol. %) occurs as large euhedral grains between 2-6 mm in length. Carbonate A (30 vol. %) occurs with the same optical and textural characteristics as in type IA veins. Carbonate B (10 vol. %) occurs as euhedral grains between 1-3mm in width. The grains have the same optical and textural characteristics as in type II veins. Type V veins comprise breccias containing host fragments but show well defined vein margins. They show a silicification-carbonatization assemblage (quartz-calcite) and are rarely mineralized. Figure 4.5D shows an example of this vein type, illustrating that they postdate of type IV veins.




Figure 4.6: Example of type V veins (comb texture quartz and infilling calcite). Calcite A and B in type V veins were the focus of *fluid inclusion analysis*. Arrows are showing growth patterns in quartz away from a nucleation point. Note that the interference colors are anomalous due to thickness ($100\mu m$) of the fluid inclusion sections giving the quartz the appearance of epidote.

4.1.7 Type VI veins

The youngest vein styles contain quartz only. Type VI veins are 3 to 5mm in width. Quartz occurs as subhedral grains 0.1-0.8 mm in diameter. The grains have the same optical characteristics of type II but show a more polycrystalline texture. Type VI veins represent a silicification assemblage and have sharp vein margins. Figures 4.2A-C and Figure 4.5A show an examples of this vein type and its cross cutting relationships with other vein styles.


4.1.8 Pyritic mudstones

In the mudstones, a distinct compositional and textural boundary was seen between Fe-S phases (Figure 4.8). SEM-EDS analyses along edges of pyrite grains in contact with the other Fe-sulphide (Figure 4.8) were obtained to determine which occurrences were pyrrhotite rather than smythite. Smythite ([Fe, Ni]₉S₁₁) is a more Fe-rich variation of pyrite. Smythite occurs as anhedral grains that are extensively fragmented and skeletal; these enclose pyrite which occurs as cubic grains (Figure 4.8). Sphalerite, galena and chalcopyrite are found either infilling smythite fragments or rimming pyrite, pyrrhotite or smythite (Figure 4.7). This suggests Zn-Cu-Pb mineralization postdates this pyrrhotite-smythite replacement reaction. There were many examples of this replacement reaction wherever pyrite was found and one example with pyrrhotite enclosing pyrite (Figure 4.9). The compositional variation between the smythite, pyrite and pyrrhotite was confirmed with SEM-BSE and EDS X-ray mapping (Table 4.1).

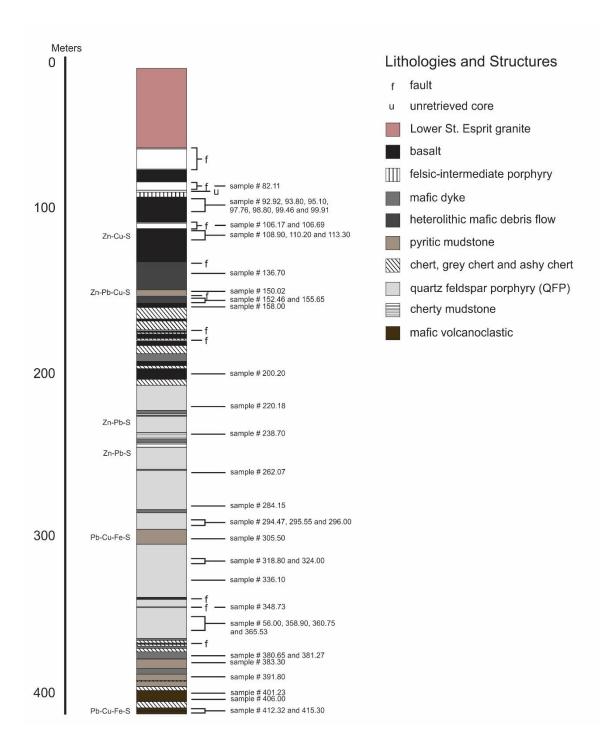
Figure 4.7: **SEM-BSE images of pyrite grains in mudstones.** A) Two fragmented and skeletal smythite grains with their adjoining cubic pyrite grains. B) A cubic pyrite grain enclosed within skeletal smythite. C) A fragmented and skeletal smythite grain and an adjoining pyrite, rimmed with sphalerite and galena. D) A smythite grain and an adjoining cubic pyrite with sphalerite forming from the boundary edge through the skeletal smythite.

Mineral abbreviations: gn=galena, py=pyrite and sp=sphalerite, sy=smythite

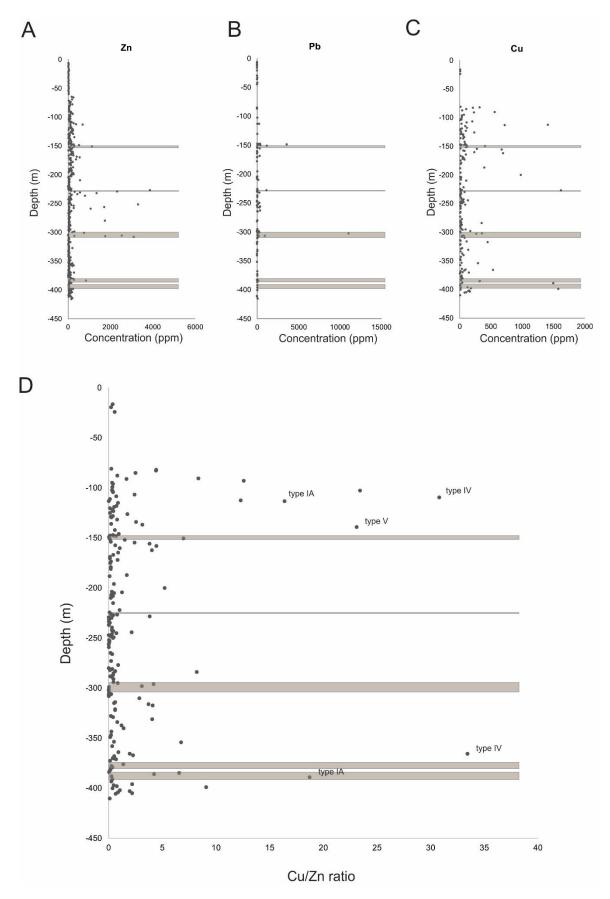
Figure 4.8: **SEM-BSE and EDS X-ray maps of a pyrite grain enclosed by pyrrhotite**. The added hatched white line illustrates grain boundary. A) SEM-BSE image of a large pyrite grain enclosed by pyrrhotite. Pyrrhotite is rimmed with galena and chalcopyrite. SEM-EDS X-ray maps B) highlighting an increase of S within the cubic pyrite grain and C) highlighting an increase of Fe within the fragmental (higher concentration=brighter).

Mineral abbreviations: ccp=chalcopyrite, gn= galena, py=pyrite, po= pyrrhotite, sp=sphalerite

Mineral	S wt%	Fewt%	As wt%	S atomic %	Fe atomic %	Fe atomic % S atomic %	x
pyrrhotite	39.46	60.54		53.17	46.83	0.88	0.12
pyrrhotite	40.92	59.08		54.68	45.32	0.83	0.17
pyrrhotite	39.62	60.38		53.33	46.67	0.88	0.12
pyrrhotite	40.87	59.13		54.62	45.38	0.83	0.17
smythite	48.89	47.09	1.83	63.56	35.41		
smythite	49.82	46.29	2.02	64.34	34.53		
smythite	49.63	46.6	1.8	64.17	34.83		
smythite	49.22	50.78		62.8	37.2		
smythite	49.89	50.11		63.43	36.57		
smythite	49.58	50.42		63.14	36.86		
smythite	48.63	51.37		62.25	37.75		
smythite	48.39	51.61		62.02	37.98		
smythite	48.48	51.52		62.1	37.9		
smythite	48.22	51.78		61.86	38.14		
smythite	48.54	51.46		62.17	37.83		
smythite	48.93	51.07		62.53	37.47		
smythite	48.6	51.4		62.22	37.78		
smythite	48.45	51.55		62.08	37.92		
smythite	48.34	51.66		61.97	38.03		
smythite	48.23	51.77		61.87	38.13		
smythite	48.54	51.46		62.16	37.84		
smythite	48.46	51.54		62.09	37.91		
pyrite	53.53	46.47		66.73	33.27		
pyrite	53.29	46.71		66.52	33.48		
pyrite	53.75	46.25		66.93	33.07		
pyrite	53.37	46.63		66.59	33.41		
pyrite	53.48	46.52		66.69	33.31		
pyrite	53.17	46.83		66.42	33.58		
pyrite	53.22	46.78		66.46	33.54		
pyrite	53.06	46.94		66.32	33.68		
pyrite	53.31	46.69		66.54	33.46		
pyrite	53.28	46.72		66.52	33.48		
pyrite	53.05	46.95		66.31	33.69		
pyrite	53.38	46.62		66.6	33.4		
pyrite	53.76	46.24		66.94	33.06		
pyrite	53.43	46.57		66.65	33.35		


Table 4.1: SEM-EDS analyses of pyrrhotite, smythite and pyrite in textural association in mudstones, samples 150.02 and 215.02.

Note: 'x' is the parameter in $Fe_{_{1\cdot x}}S$, the general formula for pyrrhotite.


Each intergrowth most likely began as pyrite-pyrrhotite, but either upon cooling or an influx of S into the system, pyrrhotite converted to smythite. Equilibrium between pyrite and pyrrhotite only occurs within a specific fS_2 and temperature range (Toulmin and Barton, 1964). Thus, analysis of pyrrhotite in equilibrium with pyrite allows the temperature and fS_2 of the mineralizing fluid to be estimated using the calibration of Toulmin and Barton (1964). The analysis provided a maximum mineralizing temperature constraint of 400° C.

4.2 Bulk rock analyses

Analyses of drill hole STR-12-02 were taken at one meter intervals with a portable XRF to obtain major and trace element concentrations at different depths, allowing an examination of the relationship between mineralization and whole rock chemistry. The first mineralized anomaly (Zn-Cu-S) was observed at 113.3 m depth hosted within a type IA mineralized vein in basalt. At 150.2 m depth a (Zn-Pb-Cu-S) anomalywas seen within pyritic mudstone (Figure 4.6). Anomalies at 227.2 m, 228.4 m, 247.19 m, 252 m, 256.2 m and 259.07 m (Zn-Pb-S) correspond to type IA mineralized veins within the QFP (Figure 4.6). At depths between 302.26 to 308.1 m anomalies (Zn-Pb-S) were again observed in pyritic mudstone (Figure 4.6) and a (Cu-Fe-Pb-S) anomaly was observed at 415.30 m (Cu-Fe-Pb-S) as a type IA vein hosted in mafic volcanoclastic (Figure 4.6). All geochemical data is summarized in the appendix. It is clear that major mineralization anomalies are associated with pyritic mudstone units and type IA veins.

Figure 4.9: Extensive down-hole section of the drill hole STR-12-02. The section shows the host lithology relationships, sample locations and mineralization spikes. Detailed core log and XRF bulk rock analysis presented in Appendix.

Figure 4.10: previous page. **Bulk rock Zn-Pb-Cu assays and Cu/Zn ratio vs. depth.** Location of mudstone intervals are shown as brown boxes. A) Zn assays, note most enrichments are concentrated in areas of pyritic mudstone. B) Pb assays, note enrichments are concentrated entirely in areas of pyritic mudstone. C) Cu assays, note most enrichments are occurring outside of pyritic mudstone. D) Cu/Zn ratio, locations of high Cu/Zn are denoted with their corresponding vein style. Note high and low Cu/Zn values are occurring within a very close proximity to each other. Zn, Pb, Cu and Cu/Zn ratio were examined with depth to determine whether they were varying between mineralized areas (Figure 4.10). Samples in areas with high Zn either relate to the host lithology pyritic mudstone or sphalerite bearing veins which commonly show potassic alteration styles (samples 97.76, 109.16, 262.07, 284.15, 294.47, 295.55, 318.80, 336.10 and 360.75)(Figure 4.10A and D). Whereas areas of high Pb follow mudstone distribution closely (Figure 4.10B), high Cu assays correspond to samples where veins IA, IV and V were present (Figure 4.10C and D). Where type IA veins show a potassic rind (within QFP and mudstone host units) the ratios show a great range in Zn and Cu values at a cm scale.

4.4.5 Fluid Inclusion Study

4.4.1 Fluid Inclusion Petrography

Samples chosen for petrographic study were those containing calcite-hosted fluid inclusion assemblages (FIA) in vein types V. Quartz-hosted FIAs ib other vein types (specifically type IA) were not workable because quartz/calcite A grains were cloudy and inclusions were far too small (<3µm) to obtain accurate measurements.

There was no evidence of growth zoning in the calcite crystals or oriented entrapment of the inclusions. However, inclusions do not occur along healed fractures so primary origin is suggested. Two types of calcite host inclusions (calcite A and calcite B). There is a large variation in inclusion size and the number of phases present at room temperature within single assemblages for both calcite types. Inclusions in calcite A contain an aqueous fluid and a vapor bubble; some inclusions contain a solid (halite) phase. Most inclusions are smaller than those within calcite B, with an average diameter of $\sim 10\mu m$;

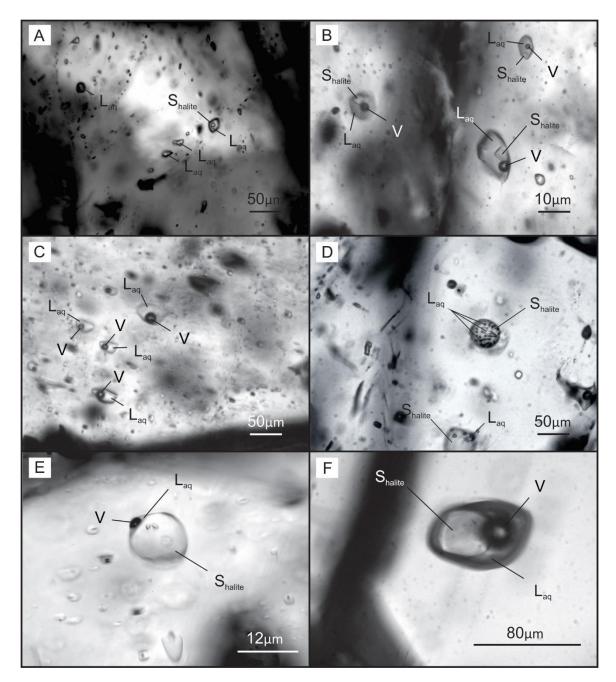
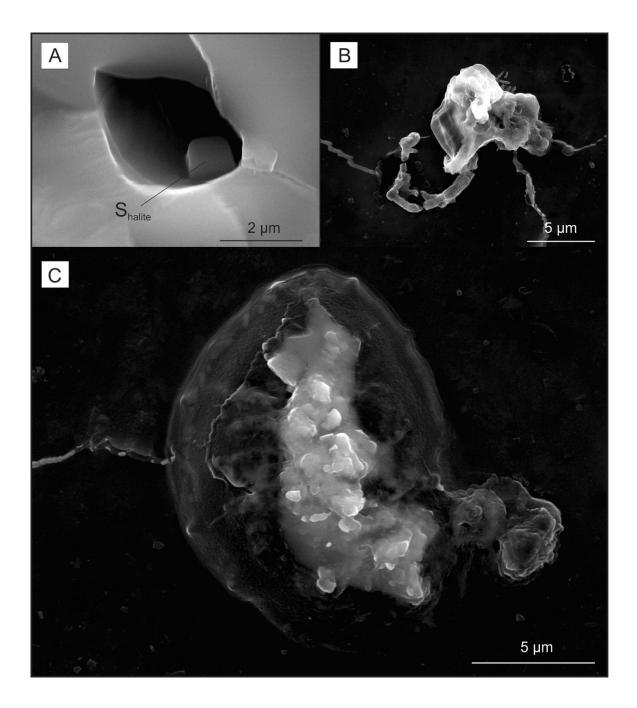



Figure 4.11: Fluid inclusion petrography and example compositional types. A) Photomicrograph of multiple one phase liquid (L_{aq}) inclusions and a single two phase L_{aq} + Shalite in calcite B. B) Photomicrograph of a fluid inclusion assemblage (FIA) featuring three phase vapor (V) + L_{aq} + Shalite inclusions in calcite B. C) Photomicrograph of two phase V + L_{aq} inclusions in calcite A. D) Photomicrograph of a two phase L_{aq} + Shalite inclusion where the inclusion is super salt saturated (almost 100% halite) with liquid films running along the inclusion surface in calcite B. E) Photomicrograph of a FIA, three phase V + L_{aq} + Shalite where the inclusion is super salt saturated (99% halite) with a very small pouch of liquid and vapor in calcite B. F) Photomicrograph of a large (80µm) three phase V + L_{aq} + Shalite – salt saturated inclusion in calcite B.

Figure 4.12: **SE High-resolution images of decrepitate salt mounds on calcite crystal surfaces.** A) Inclusion cavity with a defined S_{halite} crystal within. B) A Ca-rich salt mound on the sample surface. C) A large salt mound on calcite surface.

they are anhedral in shape and contain approximately 90% liquid. Calcite B was also host to phase-variant fluid inclusions. On average they have a diameter of 50 μ m, are anhedral in shape and contained ~75 - 95% liquid. Microscopic observations of fluid inclusions within both A and B calcite at room temperature (20°C) revealed four phase variations: (i) one phase, L_{aq} (Figure 4.11A); (ii) two phase, L_{aq} + V (Figure 4.11C); (iii) two phase, L_{aq} + S_{halite} (Figure 4.11 A and D and (iv) three phase, L_{aq}+V+S_{halite} (Figure 4.11 B, E and F).

Inclusions containing a halite crystal at room temperature have varying salt crystal volume proportions. Figure 4.11 A and B show examples of $L_{aq}+S_{halite}$ and $L_{aq}+V+S_{halite}$ inclusions showing true daughter crystals. Figure 4.11 D, E and F show examples where the inclusion fluid was salt-saturated at the time of entrapment, now containing accidental halite crystals (ranging from 50-99 vol. % halite).

In order to detect the presence of other solutes in the inclusions calcite chips were heated to >500°C in order to decrepitate the inclusions and create salt mounds on the sample surface. SE imaging was used to produce high-resolution image of the sample surface in order to locate salt mounds. Once located by SE imaging the composition of the salt mound was determined by SEM-EDS. Salt mounds had the following composition: Ca (52.1 wt. %), Cl (14.5 wt. %), Na (12.3 wt. %), Fe (8.1 wt. %), Al (4.2 wt. %), K (3.9 wt. %), Mg (2.1 wt. %), F (1.9 wt. %) and S (0.8 wt. %).

Aside from halite, identified by SEM-EDS, a rare scandium yttrium silicate $(Sc,Y)_2Si_2O_7$ (thortveitite) was identified within opened fluid inclusions (Figure 4.13). Due to the openspace filling habit of the thortveitite and its presence in not all inclusions, it was considered to be and accidentally trapped phase, coeval with surrounding fluid and acted as a nucleation point for inclusion formation.

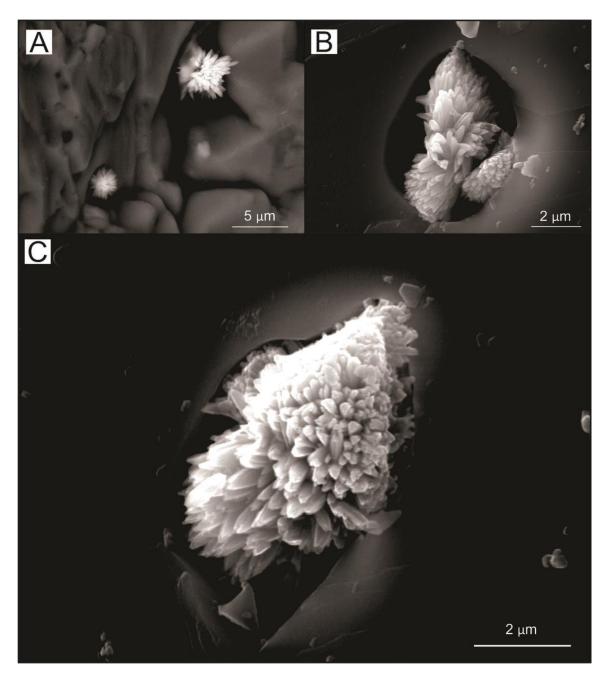


Figure 4.13: SE high-resolution images of thortveitite within fluid inclusions. A) SE high-resolution image of two thortveitite grains ranging in diameter from 2-5 μ m. Both are found within fluid inclusions. B) SE high-resolution image of a thortveitite grain (~5 μ m) within a fluid inclusion C) SE high-resolution images of a thortveitite grain (~5 μ m) within a fluid inclusion.

Thortveitite is a relatively rare scandium-bearing mineral associated with fluoride-rich fluids and is commonly magmatic in origin (Foord et al. 1993). Worldwide, thortveitite has been identified fewer than a dozen times (Potter and Mitchell, 2005, Dunn, 1995, Foord et al. 1993, Voloshin *et al.* 1991, Bianchi *et al.* 1988, Yamada *et al.* 1980, Amli 1977, Mathiesen 1970, Oftedal 1969, lto *et al.* 1968, Phan *et al.* 1967, Sakurai *et al.* 1962, Neumann 1961).Globally fluorite is commonly texturally associated with thortveitite but their relationship is poorly understood. Foord et al. (1993) believed that thortveitite occurrences are related to pegmatites, implying that fluid at Taylors Brook may have interacted with felsic rocks or had some contribution of (felsic) magmatic fluid added.

4.4.3 Microthermometry

Some FIAs in calcite showed ice formation at temperatures (T_F^{ice}) between -44.3 and -103.2°C but the majority showed no visible bubble contraction or ice formation so they were cooled to a temperature of -180 °C to promote freezing in the absence of visible evidence. The very low freezing temperatures suggest a high salinity fluid containing divalent cations. This is in agreement with the BSE decrepitate mound analysis that shows the presence of Ca²⁺, Mg²⁺ and Fe²⁺.

As the inclusions were heated there was a darkening of the inclusion associated with eutectic melting observed at temperatures between -65.7 to -26 °C with an average of - 49°C (n=37). Between these temperatures most inclusions were three phase consisting of L_{aq} +V +S_{hydrohalite}. This eutectic range combined with hydrohalite dissolution temperatures (-52 to -12 °C, n=35) restricts the persisting solid (above 0°C) to a CaCl₂-

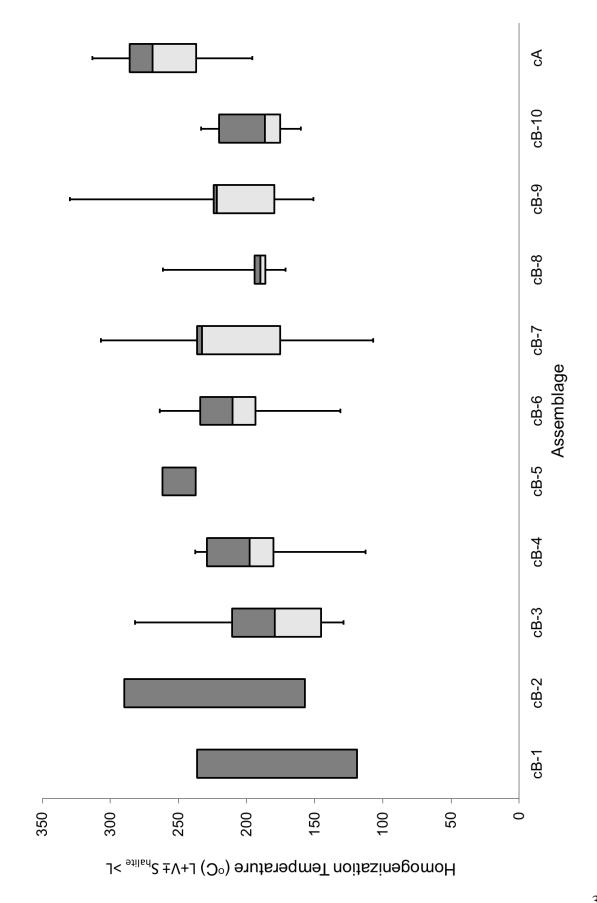


Figure 4.14: previous page. Box and whisker plot of homogenization temperatures. Homogenization temperatures of a vapor phase in calcite A (cA) and calcite B (cB) fluid inclusion assemblages. Upon homogenization, the two-phase (liquid and vapor) transitioned into a single-phase fluid. The upper limit of each box represents the upper quartile (Q3), or maximum, temperature of the FIA; whereas, the lower limit of each box represents the lower quartile (Q1), or minimum, temperature of the FIA. The whiskers represent maximum and minimum temperatures outliers and were not considered when describing the lower and upper T_h for each FIA. hydrate. The inclusions contained a solid at temperatures ranging between 12 to 35° C (n=38), leaving L_{aq}+V only.

Homogenization temperatures (T_h) were measured on inclusions in both calcite A and B; Calcite A had one measured FIA in which inclusions homogenized to liquid between 237 °C (lower quartile, Q1) to 285 °C (upper quartile, Q3) and an average of 266.4 °C (n=19)(Figure 4.14). Calcite B FIAs homogenized to a liquid between 117 °C (lower quartile, Q1) to 264 °C (upper quartile, Q3) with an average of 198.5 °C (n=85) (Figure 4.14). In three phase inclusions where halite crystals were present the halite dissolved at temperatures ranging 202.9 to >310 °C (n=17). As the inclusions cooled there was no halite nucleation which an indication of metastability.

Final ice melting temperatures (T_mice), antarcticite melting temperatures (T_mant), and rarely, halite dissolution temperatures (T_mhl) (Table 4.2) were used to calculate bulk inclusion salinities (wt% total salt, NaCl and CaCl₂) using the model of Steele-MacInnis et al. (2011). In inclusions where only CaCl₂-hydrate melting was observed, CaCl₂ wt% equivalents were estimated graphically using the UNIQUAC model for the binary CaCl₂-H₂O systems (Sander *et al.*, 1986). The programs BULK and ISOC (Bakker, 2003) were used to model bulk fluid densities and isochores for fluids in the CaCl₂-NaCl-H₂O and CaCl₂-H₂O systems. Figure 4.15 shows the resulting isochore range with metamorphic facies to understand and enforce hydrothermal reactions and the pyrrhotite-pyrite boundary temperature constraint of 400°C.

Host	Hydronaute melting (°C)	melting (°C)	Vapor Halite Homogenization (°C) Dissolution (°C)	Halife Dissolution (°C)	equivalent (wt%)	CaCl ₂ (wt%)	NaCl (wt%)	S wt%	Density (g/cc) Phases (20°C)	Phases (20°C
CalB		31.7		205.0		43.5	10.0	53.5		L + V + H
Cal B		31.7	164.2	204.8		43.6	9.9	53.5	1.51	L + V + H
CalB	-23.7	35.4	227.2			49.8	0.1	49.8	1.67	L + V
CalB		12.2	203.9		40				1.38	L+V+H
CalB	-37.6	85.9	233.0		59				2.69	L + V
CalB		28.0	178.8		47				1.56	L + V
CalB		28.4	164.9	209.8		42.2	10.8	53.0	1.47	L + V + H
CalB		28.4	186.8	214.8		42.0	11.3	53.3	1.46	L + V + H
Cal B	-12.7	28.4	200.1		47				1.54	L + V
CalB	-12.2	28.4	186.1		47				1.55	L + V
CalB	-32.5	21.2	220.0			42.2	0.7	42.9	1.37	L + V
CalB	-32.5	21.2	232.5			42.2	0.7	42.9	1.37	L + V
CalB		31.1	235.2		50				1.65	L + V
CalB		17.3	162.2		42				1.40	L + V
Cal B		17.9	165.5		42				1.40	L + V
Cal B		19.9	179.8		43				1.42	L + V
CalB	-52.0	22.3	223.0			42.8	0.7	43.4	1.39	V + L
CalB	-52.2	22.0	198.2			42.6	0.7	43.3	1.40	$\mathbf{V} + \mathbf{L}$
CalB	-52.0	21.5	178.9			42.2	0.7	43.0	1.40	V + L
Cal B		22.9	104.9		44				1.50	$\mathbf{V} + \mathbf{L}$
Cal B		15.5	111.5		41				1.41	V + L
CalB		21.6	235.7		43				1.39	$\mathbf{V} + \mathbf{L} + \mathbf{H}$
CalB		25.2	196.6		46				1.49	V+L
CalB		18.2		274.6		32.5	20.0	52.5		$\mathbf{V} + \mathbf{L} + \mathbf{H}$
Cal B		24.5	232.1		46				1.43	
CalB		24.5	233.0		46				1.45	
CalB		24.5	304.4		46				1.39	
CalB		26.4	208.8		46				0.85	V + L + H
CalA	-12.7	76.1	209.6		58				2.52	V + L + H
Cal A		28.4	295.5		47				1.49	$\mathbf{V} + \mathbf{L}$
Cal A		26.4	229.0		46				1.48	$\mathbf{V} + \mathbf{L}$
Cal B		25.9	221.5		46				1.47	V + L
CalB		26.1	253.0		46				1.47	V + L
Averages	-23.8	31.3	210.9	210.8	46	42.3	6.0	48.3	1.51	

data.	
salinity	
calculated	
and	
Microthermometric and calcul	
4.2:	
Table	

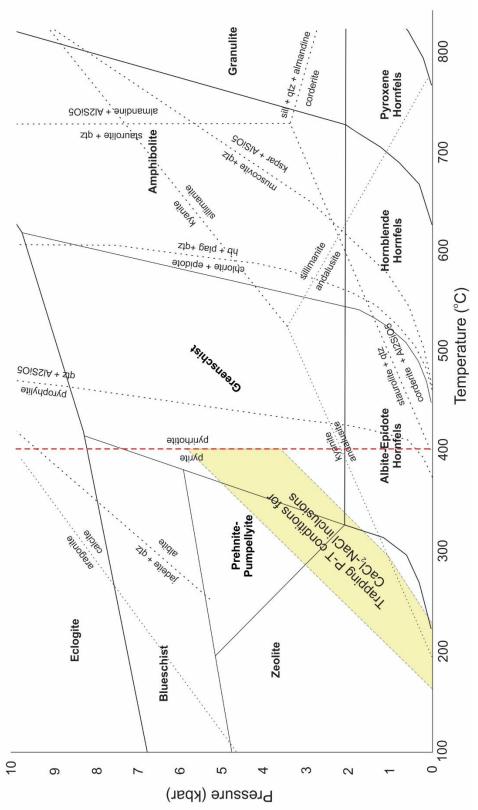


Figure 4.15: Trapping pressure-temperature constraints for CaCl2-NaCl-H2O inclusions. The metamorphic facies are shown to help enforce hydrothermal alteration assemblages at temperatures and pressures seen within the mineralizing vein styles. Also plotted in red is the pyrite - pyrrhotite stability boundary, obtained by analysis of pyrrhotite in the pyritic mudstones and using $T-fS_2$ compositional relations from Toulmin and Barton 1964. This constrains the maximum temperature of mineralization to 400°C and 5kbar.

5.0 Discussion

5.1 Mineralization and hydrothermal vein paragenesis

Based on the cross cutting relationships and bulk geochemistry data the hydrothermal system at Taylors Brook involved the circulation of a Zn-Cu-Pb-Ag-Te rich fluid leading to mineralized type IA veins. The alteration assemblages associated with this earliest mineralizing event are propylitic-potassic. Zoning in epidote in the veins is caused by variations in the Fe/Al ratio suggesting that fO_2 is fluctuating causing compositional zoning and replacement textures among hydrothermal minerals, as well as deposition of Zn-Pb-Cu sulphides. Also seen in the mineralized sulphidic mudstones is pyrrhotite altered to symthite, caused by fluctuating fS_2 or cooling, or both. Both the pyrrhotite-smythite replacement reaction and the epidote zoning is are important features because they suggest that a combination of cooling, fluctuating fO_2 and fS_2 were important steps in mineralization. These parameters rendered the metals insoluble causing their precipitation within vein type IA and in the mudstones. Textural observations conclude that spaherite, galena and chalcopyrite were precipitated late, after pyrrhotite altered to smythite.

The slightly later subset of barren type IB vein has an alteration assemblage of epidotization and silicification. The hydrothermal fluid must still be enriched with Mg-Al-Fe, a high Na content due to loss of K associated with the preceeding potassic alteration, and also added secondary silica.

Type II veins have associated alteration assemblages are serpentinization- propylitic. The hydrothermal alteration resulted in forsterite and orthopyroxene reacting to produce

serpentine and talc (Wolfgang *et al.* 2006) with the fluid enriched in Mg-Al-Fe. Type III veins have a propylitic alteration style associated with a fluid enriched in Mg-Al-Fe. Type IV veins have a potassic-carbonatization-zeolitic assemblage indicating a fluid rich in Al-Si-K-Na but deprived of Fe-Mg-Ca. The presence of analcime also indicates the fluid originated from fluids in equilibrium with silica-undersaturated rocks and is likely occurring at relatively low temperatures compared to earlier vein styles.

The fluid chemistry undergoes a notable change during Type V vein deposition. The presence of thortveitite (Sc,Y)₂Si₂O₇ indicates the fluid has some evolved felsic magmatic contribution. The fluid was enriched in Cu-Pb-Zn-Sc-Y-Ag-Te and had a bulk composition consistent with a Ca-Na-Cl hypersaline brine. The alteration assemblages associated with this late mineralizing event are silicification-carbonatization. Barren type VI record a late silicification distributed throughout the entire system.

5.2 Fluid origin in type V veins

In the interest of fluid origin and based on the results of the microthermometry and salinity studies, it was concluded that the trapped fluid in type V veins was an unusually high salinity and rich in divalent cations and anions (ie. Ca^{2+} , Mg^{2+} , S^{-2}) but particularly enriched in Ca. This distinct fluid composition can only be formed naturally under specific conditions and is very atypical of VMS fluids which are typically much lower in salinity, Na-dominant and commonly show evidence of boiling (Crowe, 1992 and Ohmoto, 1996).

There are four conceivable explanations for this Ca rich fluid. The first is boiling; if boiling of a Ca-rich fluid occurs the fluid can become supersaturated in salt as the liquid (water) vaporizes. Eventually after some boiling, salt crystals would start to form in the system as the solution left from boiling becomes supersaturated in salt. In the case of the Taylors Brook showing this is most likely not the case because the fluid inclusions present do not show variable phase ratios consistent with boiling (Steele-MacInnis, 2012).

A second process that could lead to the formation of Ca-rich fluid is a cation exchange between Na and Ca; if a fluid initially carrying Na passes through the Ca-rich (Caplagioclase, Ca-pyroxene) volcanic country rocks can exchange between fluid and rock as temperature decreases. This would cause the fluid to become increasingly Ca-rich. (Hannachi, 2009) For example, if albitization (formation of Na-rich plagioclase) occurs, the Na⁺ from a fluid is needed but as it goes into the structure of the feldspar, Ca²⁺ is released back into the fluid. Within the sample suite no albitization is observed suggesting this is not the case at the Taylors Brook showing.

A third explanation is evaporation of Ca rich paleoseawater; CaCl₂ basinal brines inherited their chemistry and salinity from evaporated paleoseawaters when Earth's oceans were Ca-rich and SO₄-poor (CaCl₂ seas) (Lowenstein *et al., 2003*). This coincided with periods of rapid seafloor spreading and high outfluxes of mid-ocean-ridge brines rich in CaCl₂. Later, elevated sea levels were associated with conditions that favored porespace accumulation of marine CaCl₂ brines in marginal and interior continental basin sediments (Lowenstein *et al., 2003*). In evaporitic sequences the first saturation of a salt phase involves halite (NaCl) and as Na is removed from solution, the Ca concentration in the residual fluid increases. Eventually, the remaining fluid becomes Ca-rich and is otherwise known as a "bittern" brine. If this bittern brine gets trapped in sediments, or if it infiltrates basement rocks, fluid inclusions containing the Ca-rich brine can be trapped (Spencer, 1987). However, a fluid this Ca-rich would be very late stage in the evaporitic sequence when residual fluid volumes are very low. The hydrothermal fluid needed for mineralizing and altering processes seen at the Taylors Brook showing greatly exceeds that generated in a late stage evaporitic sequence.

The fourth and most likely explanation is dissolution of an existing evaporitic sequence containing gypsum or carbonates by a hydrothermal fluid causing an increase in Ca fluid concentration. This is a probable explanation because bedrock surrounding Bras d'Or lake, immediately north of the Taylors Brook showing comprises the Carboniferous (330-338 Ma) upper (mudstone, sandstone, minor conglomerate, gypsum and shallow marine limestone, 100-700m), middle (halite, anhydrite, gypsum, mudstone, siltstone, sandstone and conglomerate, 300m) and lower (anhydrite, salt, gypsum, shale, marine dolostone and limestone, >150m) Windsor Group. However, this does not explain the high salinity of the fluid since dissolution of halides would contribute abundant Na and K to the evolving fluid but not Ca. Dissolution of a halide-gypsum-carbonate package could source both the observed salinity and Ca rich nature of the fluid.

5.3 Implication for mineral exploration

Exploration for this style of mineralization should focus in areas in proximity evaporates. Since these target areas help to explain the formation of the Ca-rich fluids that were responsible for metal transport.

It is also important to identify alteration styles associated with mineralization, notably potassic-propylitic-silicification-carbonatization assemblages. These alteration styles may

be identified directly during core logging. Thin section petrography is most appropriate because of the complexity of vein styles identified.

Once alteration styles/assemblages are confirmed, it is important to identify pathfinder elements associated with the hydrothermal system by XRF or SEM analysis; notably, K-Cu-Zn-Pb-Sc-Y-Ag-Te-S. The element most impacted by hydrothermal remobilization after pyritic mudstone mineralization is Cu (Figure 4.10).

5.4 Comparison to the Stirling deposit and other VMS systems

The Taylors Brook showing and Stirling deposit show similar host rock lithologies, alteration and mineralization styles. However, the most prominent alteration assemblage (quartz-talc-carbonate [QTC]) found at the Stirling deposit (O'Reily, 2008) is not present at the Taylors Brook showing. This alteration assemblage is particularly important due to its association with sulphide mineralization at the Stirling deposit. It is thought that the QTC rock is either an exhalative layer related to the same processes that gave rise to the massive sulphide lenses as hydrothermal plumes vented out onto the sea floor, or hydrothermal replacement of the host volcanics (*O'Reilly, 2008*). Perhaps, the Taylors Brook showing is a distal expression of these products.

The Duck Pond-Lemarchant deposits in Newfoundland are also comparable to the Taylors Brook showing. Both Duck pond and Lemarchant are situated in the northeast trending Tally Pond volcanic belt. Duck Pond is a Cu-Zn-Pb-Ag-Au VMS deposit hosted within felsic volcanic and volcaniclastic rocks and sedimentary rocks with mineralization occurring in numerous lenses (*Piercey et al., 2012*). Textural associations are interpreted

Deposit	Host Rocks	Key Alteration styles	Mineralization type
Taylors Brook occurrence Cu-Zn-Pb-S (Sc, Y, Ag, Te) (This study)	basalt/andesite flows, quartz feldspar porphyry, pyrite- pyrrhotite bearing mudstone, cherty mudstone, chert, andesitic lapilli tuff and ash.	propylitic-potassic	Zn (Pb) mudstones with overprinting vein hosted Cu (Zn)
Stirling deposit Zn-Pb-Cu-Fe(Ag,Au) (Kontak, 1997; O'Reily 2008)	monolithic felic breccia, pyritiferous-cherty zones, chert, basalt and basaltic andesite flows, felsic tuff, rhyolite porphyry, gabbro, and sedimentary rocks.	quartz-tak-carbonate (QTC)	multiple sulphide lenses (Zn-Cu-Pb)
Duck Pond deposit Cu-Zn-Pb (Ag,Au) (Piercey et al., 2012)	rhyolite flows and tuff breccias, pyrite-pyrrhotite bearing mudstone	sericite-silicification- chloritization	multiple sulphide lenses(Cu-Zn-Pb), grading inward to a Cu-rich center
Lemarchant deposit Cu-Zn-Pb (Ag,Au) (Squires et al., 1991, 2001)	felsic volcanic breccias, flows, lapillistone and lapilli tuffs, pyrite- pyrrhotite bearing mudstone	sericite-silicification- chloritization	semi-massive to massive sulphide (Cu-Zn-Pb) mineralization

Table 5.1: A comparison of the Taylors Brook showing to other VMS systems

to represent replacement-style mineralization (Squires et al., 1991, 2001). The Lemarchant deposit is a Cu-Pb-Zn-Ag-Au VMS deposit hosted within felsic volcanic breccias, flows, sedimentary rocks, lapillistone and lapilli tuffs with semi-massive to massive mineralization (*Fraser et al., 2012*). Both are classified bimodal felsic type VMS (formerly Kuroko-type). They are polymetallic in that they contain approximately equal enrichments in all three ore metals (Zn, Cu and Pb).

The Taylors Brook showing has features consistent with the bimodal felsic type VMS classification but its fluid characteristics from late mineralizing veins (type V) are inconsistent with VMS and are consistent with sediment hosted base metal deposits formed from Ca-rich basinal brines (eg. Mt. Isa, Australia: Heinrich *et al.*, 1995)

4.0 Conclusions

- 1. The hydrothermal system consists of 7 vein types and their relative order of formation is type IA, IB, II, III, IV, V and VI veins.
- 2. Alteration styles associated with mineralization events are potassic-propyliticsilicification-carbonatization.
- 3. Replacement textures and compositional zoning in epidote is caused by varying Fe/Al, corresponding to varying $Fe^{3+/}Fe^{2+}$ ratios in associated fluids. This suggests that the fO_2 of the system was fluctuating, an important mechanism for metal precipitation.
- 4. The presence of thortveitite in type V veins indicates that the fluid at the Taylors Brook showing must have passed through felsic rocks or had some contribution of felsic magmatic fluid, and indicates that Sc and Y were mobile.

- 5. In the sulphidic mudstones, a replacement reaction from pyrrhotite to smythite occurred either by cooling or via an influx of S₂ into the system. Zn-Pb(Cu) sulphide precipitation in the mudstones occurred after smythite formation.
- 6. Equilibrium between pyrite and pyrrhotite only occurs within a specific fS_2 and temperature range. This constrains the maximum temperature of mineralization to 400°C for the pyrrhotite composition at Taylors Brook.
- 7. Bulk rock analyses identified Cu-Zn(Pb) and Zn,Pb(Cu) anomalies to be associated with type IA veins and sulphidic mudstone, respectively. Bulk rock analyses also showed Cu/Zn ratios to be varying widely with depth and from vein type to vein type reflecting Cu remobilization.
- 8. Fluid inclusion petrography in type V veins identified four phase variations within calcite at room temperature (20°C). Inclusions containing a halite crystal at room temperature have varying salt crystal volume proportions, with some clearly containing accidentally trapped salt crystals (ranging from 80-95 vol. % halite). This indicates that the fluid was salt saturated at the time of entrapment.
- 9. Microthermometry shows hydrohalite melting temperatures averaging -23.8°C, antarcticite melting temperatures averaging 31.3°C and halite dissolution temperatures averaging 210.90°C. Homogenization or minimum trapping temperature averaged 210.90°C, and was combined with fluid inclusion salinities and densities to create isochores. Isochoric data combined with pyrrhotite-pyrite equilibrium constrains a maximum pressure to 5 kbar and temperature to 400°C.

- 11. The most likely source for ta high Ca-brine is either evaporation of a Ca-rich paleoseawater or dissolution of gypsum/carbonate/halide units, possibly the Windsor group. However, if this is true, then the mineralizing fluid must significantly post-date the associated host rocks, which is inconsistent with a VMS system.
- 12. The Taylors Brook showing has features consistent with the bimodal felsic type VMS classification but its fluid characteristics from late mineralizing veins (type V) are inconsistent with VMS and are consistent with sediment hosted base metal deposits formed from Ca-rich basinal brines (eg. Mt. Isa, Australia: Heinrich *et al.*, 1995)

5.0 References

- Amli, R. 1977: Carbonatites, a possible source of scandium as indicated by Sc mineralization in the Fen peralkaline complex, Southern Norway; Economic Geology, v.72, p.855-869
- Bach, W., Paulick, H., Garrido, C., Ildefonse, B., Meurer, W. and Humphris, S. 2006: Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274); Geophysical Research Letters, v.33, p.1-4
- Bailes, A. and Galley, A. 1999: Evolution of the Paleoproterozoic Snow Lake arc assemblage and geodynamic setting for associated volcanic-hosted massive sulphide deposits, Flin Flon Belt, Manitoba, Canada; Canadian Journal of Earth Sciences, v.36, p.1789-1805
- Bakker, R. 2003: Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties; Chemical Geology, v. 194, p.3-23
- Bianchi, R., Pilati, T., Diella, V., Gramaccioli, C.M. and Mannucci, G. 1988: A reexamination of thortveitite; American Mineral, v.73, p.601-607
- Bonnet, A. L., and Corriveau, L. 2007: Alteration vectors to metamorphosed hydrothermal systems in gneissic terranes, in Goodfellow, W.D., ed., Mineral deposits of Canada—A synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 1035–1049.
- Canet, C., Franco S., Prol-Ledesma, R., González-Partida, E., and Villanueva-Estrada R.
 2011: A model of boiling for fluid inclusion studies: Application to the Bolaños
 Ag–Au–Pb–Zn epithermal deposit, Western Mexico; Journal of Geochemical
 Exploration, v.10, i.2, p.118-125
- Carr, P. and Cathles III, L. 2008: On the Size and Spacing of Volcanogenic Massive Sulfide Deposits within a District with Application to the Matagami District, Quebec; Society of Economic Geologists, v.103, n.7, p.1396-1409
- Crowe, D., Nelson, S. Shanks, W and Valley, J. 1992: Geology and geochemistry of volcanogenic massive sulfide deposits and related igneous rocks, Prince William Sound, south-central Alaska; Economic Geology, vol.87, n.7, p.1722-1746

- DNR Mineral Resources Branch, 2010: Geology Matters 2010: Growing the Economy; Nova Scotia Minerals Update, v.24, n.4
- Dunn, P.J. 1995: Franklin and Sterling Hill New Jersey: the world's most magnificent mineral deposits; Mineralogical Magazine., v.60, i.3, p.537-538
- Fraser, D. and Giroux, G. 2012: NI 43-101 Technical report and mineral resource estimate on the Lemarchant deposit, South Tally Pond VMS deposit, Central Newfounland, Canada; Paragon Minerals Corperation
- Freeman, A., A.J.E, Bird, D. Friðleifsson G. 2009: Hydrothermal Minerals Record CO₂ Partial Pressures in the Reykjanes Geothermal System, Iceland; American Journal of Science, v.309, n.9, p.788-833
- Hannachi, C., Hamrouni, B. Dhahbi, M. 2009: Ion exchange equilibrium between cation exchange membranes and aqueous solutions of K + /Na + , K + /Ca 2+ , and Na + /Ca 2+; Ionics, vol.15, n.4, p.445-451
- Hannington, M.D., Santaguida, F., Kjarsgaard, I.M., and Cathles, L.M. 2003: Regionalscale hydrothermal alteration in the Central Blake River Group, western Abitibi subprovince, Canada: implications for VMS prospectivity; Mineralium Deposita, v.38, p.393-422
- Heinrich, C., Bain, J., Mernaugh T., Wyborn, L., Andrew, A. S. and Waring C. L. 1995: Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa, Australia; Economic Geology, v.90, p.705–730.
- Ishihara, S. 1974: Geology of Kuroko deposits; Tokyo; Society of Mining Geologists of Japan; Mining geology special issue, n.6, p.645-666
- Ito, J. and Frondel, C. 1968: Syntheses of the scandium analogues of aegirine, spodumene, andradite, and melanotekite; American Mineralogy, v.53, p.1276-1280
- King, H. 2005: Epidote; http://geology.com/minerals/epidote.shtml
- Kontak, D.J. 1997: Preliminary Results of Geological and Geochemical Studies at the Stirling Deposit with Emphasis on Quartz-talc-carbonate (QTC) Rock Associated with Massive Sulphide Ore; NSDNR Report of Activities, p.49-70
- Kontak, D.J. 1997: Observations on Field Relationships, Petrology and Metallogeny of Southeast Cape Breton Island; NSDNR Report of Activities, p.27-48
- Koo, J. and Mossman, D. 1975: Evaluation of primary and secondary geological processes at the Flin Flon Cu-Zn deposit, Manitoba and Saskatchewan, Canada, using factor-vector analysis of ore geochemistry; Chemical Geology, v.16, p.1-14

- Lee, K.Y. 1970: Some Rare earth mineral deposits in mainland China; U.S Geological Survey Bull., 1312N: p.N1-N34
- Lowenstein, T.A., Hardie, L.A., Timofeeff, M.N, and Demicco, R.V. 2003: Secular variation in seawater chemisty and the origin of calcium chloride basinal brines; Geology, v.31, no. 10, p.857-860
- Macdonald, A.S. and Barr, S.M. 1993: Geological setting and depositional environment of the Stirling Group of Southeastern Cape Breton Island, Nova Scotia; Atlantic Geology, v.29, p.137-147
- Mathiesen, C.O. 1970: An occurrence of unusual minerals at Bidjovagge, northern Norway; Norges Geology Unders, v.266, p. 86-104.
- Miller, C.K. 1979: The Geological setting and Environment of base metal deposition of the Mindamar Mine, Stirling, Richmond County, Nova Scotia; Unpublished M.Sc. thesis, Dalhousie University, Halifax, Nova Scotia, p.10-40
- Neumann, H. 1961: The scandium content of some Norwegian minerals and the formation of thortveitite, a reconnaissance survey; Norwegian Geology Tidsskr, v.41, p.197-210
- Ohmoto, H. 1996: Formation of volcanogenic massive sulfide deposits: The Kuroko perspective; Ore Geology Reviews, vol.10, n.3, p.135-177
- O'Reily, G. 2008: Volcanogenic Massive Sulphides at the Stirling Zn-Pb-Cu Deposit; Mineral Inventory Files, Nova Scotia Minerals update, p.5
- Oftedal, I. 1969: Minor elements in thortveitite; Narsk Geology, v.49, p.77-79.
- Petts, D., Longstaffe, F., Potter, J. Barr, S., and White, C. 2012 : Regional hydrothermal alteration and ¹⁸O-depletion of the ca. 620 Ma Huntington Mountain pluton and related rocks, Cape Breton Island, Canada; Atlantic Geology, v.48
- Phan, K.D., Fiossy, B. and Kerjean, M. 1967: le scandium dans les mineraux et les roches encaissantes de certaines pegmatites malagaches. Bureaux Recherche Géologie minéralogie, v.3, p.77-97.
- Piercey, S. and Hinchey, J. 2012: Volcanogenic Massive Sulphide (VMS) deposits of Central Mobile Belt, Newfoundland; Field Trip Guidebook- B4, GAC-MAC, p.14-16
- Potter, E.G. and Mitchell, R.H. 2005: Mineralogy of the Deadhorse Creek volcaniclastic breccia complex, northwestern Ontario, Canada; Contributions to Mineralogy and Petrology, v.150, 9.212-229

- Reid, M.G. 2014: Petrography and Geochemistry of Drill Core from the Taylors Brook Property in the Stirling Belt, Southeastern Cape Breton Island, Nova Scotia; Unpublished B.Sc thesis, Acadia University, Wolfville, Nova Scotia. 73pgs.
- Roscoe, W.E 1986: Report on the Stirling Property Cape Breton Island, N.S for Wilco Mining Company Limited by Roscoe Mining Service Inc.; Nova Scotia Department of Natural Resources Assessment Report, p.86-156
- Sander, B., Rasmyssen, P. and Fredenslund, Aa. 1986: Calculation of Solid-Liquid Equilibria in Aqueous Solutions of Nitrate Salts Using an Extended UNIQUAC Equation; Chemical Engineering Science, v.41, p.1197-1202
- Sakurai, K., Nagashima, K. and Kato, A. 1962: Thortveitite from Kobe Omiya Kyoto, Japan; Bulletin of Chemical Society of Japan v.35, p.1776-1779
- Spencer, R. 1987: Origin of Ca-Cl brines in Devonian formations, western Canada sedimentary basin; Applied Geochemistry, v.2, i.4, p.373-384
- Squires, G.C., Brace, T.D. and Hussey, A.M. 2001: Newfoundland's polymetallic Duck Pond deposit: Earliest Iapetan VMS mineralization formed within a sub-seafloor, carbonate-rich alteration system. In Geology and Mineral Deposits of the Northern Dunnage Zone, Newfoundland Appalachians. Field Trip Guide A2,: St. John's, NL, Geological Association of Canada/Mineralogical Association of Canada, p.167-187.
- Squires, G.C., MacKenzie, A.C. and MacInnis, D. 1991: Geology and genesis of the Duck Pond volcanogenic massive sulfide deposit. In Metallogenic Framework of Base and Precious Metal Deposits, Central and Western Newfoundland. Geological Survey of Canada, Open File 2156, p.56-64.
- Steele-MacInnis, M., Bodnar, R.J., & Naden, J. 2011: Numerical model to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochimica et Cosmochimica, Acta 75, p.21-40
- Steele-MacInnis, M., Bodnar, R.J., & Lecumberri-Sanchez, P. 2012: A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance; Geochimica et Cosmochimica Acta, 1, vol.92, p.14-22
- Toulmin, P., and Barton, P.B. 1964: A thermodyanmic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta, 28, p.641-671.
- Voloshin, A.V., Gordienko, V.V. and Pakhomovskii, Y.A. 1991: Scandium mineralization and the first find of thortveitite, Sc2Si2O7, in granitic pegmatites of the Kola Peninsula; Dokl. Akad. Nauk SSSR, v.318, no. 4, p.972-976 (in Russ.)

- Wang, X., Hou, Z., Song, Y. and Zhang, H. 2015: Geological, fluid inclusion and isotopic studies of the Baiyangping Pb–Zn–Cu–Ag polymetallic deposit, Lanping basin, Yunnan province, China; Journal of Asian Earth Sciences, v.111, p.853-871
- Yamada, S., Okamoto, A., Takada, M., Fujwara, T. and Takemura, M. 1980: On the Thortveitite, fluocerire, pyroxferroite and other minerals from Isango mine, Oro, Nakagun Kyoto prefecture; Chigaku Kenkyu, v.31, p.205-222.

L + H/L + V + H/V + LT + H/T + V + H/V + TInclusions V + LMassive Intergrowth Massive intergrowth Vein Textures Vuggy Vuggy Vuggy **Alteration Halo** Potassic rind Potassic rind Potassic rind Potassic rind Potassic rind Potassic rind silicification-carbonatization propylitic epidotization-silicification propylitic-potassic epidotization-silicification potassic-carbonatizationsilicification/carbonatization silicification-carbonatization potassic-carbonatizationilicification-carbonatization ilicification-carbonatization epidotization-silicification serpentinization-propylitic serpentinization-propylitic scrpentinization-propylitic serpentinization-propylitic epidotization-silicification epidotization-silicification epidotization-silicification rpentinization-propylitic potassic-carbonatizationpropylitic-potassic propylitic-potassic propylitic-potassic propylitic-potassic propylitic-potassic propylitic-potassic Alteration type propylitic-potassic propylitic-potassic propylitic-potassic silicification silicification silicification propylitic propylitic propylitic propylitic propylitic propylitic potassic propylitic propylitic zeolitic zeolitic propylitic zeolitic Vein type \mathbb{N} N Ξ > IV 5 8 > N Ξ IA \geq 田>田 > B M Ξ ППП IA Heterolothic mafic debris flow Pyritic Mudstone Pyrtic Mudstone Pyrtic Mudstone Mafic Volcanoclastic Mafic Volcanoclastic Mafic Volcanoclastic Mafic Volcanoclastic Mafic Volcanoclastic Mafic Volcanoclastic Host Lithology Brecciated Basalt Brecciated Basalt Pyritic Mudstone Pyritic Mudstone Mafic Dyke Basalt QFP Thin Section type Doubly Polished Doubly Polisher Doubly Polisher Doubly Polished Doubly Polished Doubly Polished Doubly Polished Sample Start Sample End 99.91 106.37 109.16 113.30 158.10 200.20 220.34 238.76 262.30 284.30 294.75 295.79 296.37 305.68 319.10 324.43 336.30 348.73 356.19 359.00 365.53 380.80 412.50 110.39 110.39 155.85 155.85 360.88 383.45 401.37 406.13 412.50 415.30 136.80 92.92 95.10 150.02 152.57 381.41 391.93 Ē 82.13 93.95 97.95 98.99 99.62 152.46 155.65 155.65 158.00 200.20 220.18 238.70 284.15 294.47 295.55 296.00 305.50 318.80 336.10 356.00 358.90 365.53 383.30 406.00 415.30 108.90 324.00 360.75 380.65 92.92 93.80 95.10 106.17 110.20 110.20 113.30 36.70 50.02 262.07 348.73 381.27 401.23 412.32 412.32 412.32 97.76 98.80 99.46 Ē 82.11 16.66 Sample Number 155.65B 294.47 295.55 296.00 305.50 106.17 108.90 110.20A 110.20B 113.30 155.65A 158.00 200.20 220.18 238.70 262.07 284,15 318.80 324.00 336.10 348.73 356.00 358.90 360.75 365.53 380.65 381.27 383.30 391.80 401.23 406.00 412.32B 412.32C 415.30 136.70 150.02 152.46 412.32A 92.92 93.80 95.10 99.46 97.76 98.80 82.11 16.00 14 15 16 18 20 43 # 2 3 36 37 38 39 40 0 0 Ξ 41

Relationship of host lithology, alteration style and vein mineralogy to vein type.

Appendix A

Appendix A: Relationship of host lithology, alteration style and vein mineralogy to vein type

Appendix B

Bulk geochemical data obtained via portable XRF.

=							un un
Cu/Zn		0.37	0.56			0.24 4.4 4.4 2.5	0.80 8.4 1.7 12.6
Pb (ppm)	7.8 4.5 10.5 6.8		7.7 14.7 5				∞
Ba (ppm)	665 681 524 1291	833 623 1052	972 775 1061 1178 1178	690 690 1317 1512 544 575 575	11157 11157 292 297 46 172 143 762 536 536 536 536 536 536 536 1040	747	352 499 220 562 54
(mqq)	44 54 54	41 39 35	48 43 52 45 52	4 61 33 49 48 48	80 80 80 80 80 80 80 80 80 80 80 80 80 8	73 61 31	89 67 57 54 54 79 79 121
(mqq)	3.8 6.5 2.6 10	5.3 9.4 5.4	5.5 5 3.9 5.1 63	5.1 5.1 5.1 5.1 5.4 5.4 5.4	7.6 6.4 6.4 7.6 7.6 2.6 7.8 7.8 7.8	2.4	11 7.7 7.3 7.3 2.7
Zr (ppm)	65 111 87 117	61.9 137 58.7	90.1 66.2 71.7 73 76.7	90.1 87 85.2 89 89 72.3 72.3	83.1 17 88.7 21.8 25.3 56 56 31.7 28.8 31.7 28.8 13.2 94 11.6	7.9 19.9 6.5 90.8	72 78 5.7 10.6 37.6 11.6 11.1 11.1 10.9
Y (ppm)	4.3 12.4	5.4 11.6 4.8	4 5.4 5 8 8	5.7	9.4 15.3 5.9 13.9 21.2 8 8 11.2 6.5 8.5 8.5 7.9	7.8 14.3 12.7 12.9	13.4 18.8 5.3 4.9 10.2 3.8 8.7 8.7
Sr (ppm)	779 758 901 525	580 330 574	356 274 401 610 445	368 368 377 244 328 328	456 1645 11645 91 553 2653 90 112 112 412 1127 255 255 255 255	416 267 127 92.2	2002 657 31.5 341 352 352 426 237
(mqq) di	59.5 71.3 51.2 111.5	75.8 71.2 87.8	88.6 77.7 105 104.4 83	69.4 69.4 121.6 56.6 54 83.4	78.1 78.1 7.8 59.8 59.8 15.4 11 11 11 11 11 17.5 68.5 68.5 65.5 65.7 65.7	10.5	12.2 50.5 20.6 24 17.6 13.1
A (mqq) s	8.9 6.1	10.5 5.9 3.6	6 7.4 5.6 11.6 8.4	6.5 6.5 5.4 6.3 8.8 8.8	13.2 16.3 16.3 22.1 22 33 33 16.6 14.1 14.1 16.6 16.6 17.5 13 24.3 13 22.3 13	24.4 11.2 9.6 6.3	21 19.6 11.8 35.5 13.9 16.2 36
¥ (udd) u	21.5 32 15.5 20.6	27 50 24.1	17.8 32 23.1 23.5 23.5	20.2 22.2 40 13.1 26.4 28.2 28.2 28.2	335 335 335 335 337 337 337 337 94 90 95 304 389 304	66 72 48 42	51 62 67 140 133 182
Cu (ppm) Zn (ppm) As (ppm) Rb (ppm) Sr (ppm) Y (ppm)		10	10			16 319 212 105	41 560 232 2291
Ni (ppm) (18 17 13	20 32 17	11 25 16 16	20 15 13	23 45 63 33 32 23 23 42 23	23	31 15 16
	16 43 78	119 558 22	92 81 20 90	29 10 110 14	888 842 228 228 338 888 339 007 002 007 001 001	52885 55377 45251 10949	48 81 56 63 77 923 923
I) Fe (ppm)	105 147 137	168	101 167 88 105 105 105	116 136 137 138 138 138	17388 69742 642842 642842 64284 64284 64034 64034 64034 5439 5430 5439 64770 5439 64770 5439 64770 5439	528 353 452 109	58648 52281 38056 47863 31679 71101 70373 215923
Mn (ppn	284 369 158 288	390 471 221	269 313 219 239 239	200 200 302 313 384 384 384	425 979 1194 2287 1876 913 1477 1502 1347 1502 1347 1461 1148 1913 1854	1370 1201 950 556	698 954 1181 1530 617 1632 2639 2639 2729
Cr (ppm) Mn (ppm)	25 38 21 70	38 110 19	22 37 32 32	5 5 5 5 6 7 5 5 5 6 0 5 7 5 6 0 5 7 5 6 0 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	37 47 314 350 307 139 139 129 129 122 122	70 143 63	52 29 83 18 57 56 56
Ti (ppm)	1733 1938 1043 2157	2539 2547 1371	1874 1539 1352 1691 1768	1790 1790 1412 2702 2475 1514	2742 1686 7083 4443 3890 3555 3559 3551 3551 2533 2794 2533 2794 2533	1638 2710 924 2167	4213 5516 1330 2235 617 2574 2435 2435 1988
Ca (ppm)	10018 11314 11443 8803	12464 9395 6085	6457 4115 3700 6312 6501	8929 8929 14959 15598 7180 7452 13113	8649 8649 261103 34282 10011 117030 164955 23843 33001 93214 93214 19995 19995 19995 44028	(01131 81136 64919 1592	196584 50613 138719 38393 47444 24094 58041 55892
K (ppm)	19560 19025 16540 32764	21431 16019 30226	27255 28546 38273 44257 26266	24339 24339 38297 64399 16554 14632 35111	24737 378 378 113599 12529 5875 5875 4037 4929 6579 4929 6579 4920 6579 8901 16873 8901 24174	6023 16650 479 638	046 11634 7823 9678 8271 8271 5023 5023
CI (ppm)		246	258 242 812 261 272	491 294	1000 549 789 627 627 408 369 401	328 384 213	401 981 728 782 851
S (ppm)					4984	2068	2911 21010 117098
ithology	gramite gramite gramite gramite	granite granite granite	gramite gramite gramite oramite	gramite gramite gramite gramite gramite oramite	gramic fault zone fault zone fault zone basah basah basah basah basah basah basah basah basah	basalt basalt basalt Intermediate porphyry Intermediate	porphyry Intermediate porphyry basalt basalt basalt basalt basalt basalt
Depth (m) Lithology	-6.57 -8.00 -11.10 -13.11	-16.40 -19.45	-24.15 -27.00 -29.95 -33.02 -36.00				-86.87 F -87.75 Im -87.75 F -88.23 -9.10 -91.10 -92.70
Date D	7/1/2015 7/1/2015 7/1/2015 7/1/2015	7/7/2015 7/7/2015 7/7/2015	7/1/2015 7/1/2015 7/1/2015 7/1/2015	7/1/2015 7/1/2015 7/1/2015 7/1/2015 7/1/2015	7772015 7772015 7772015 7772015 7772015 7772015 7772015 7772015 7772015 7772015	7/1/2015 7/1/2015 7/1/2015	7/7/2015 7/7/2015 7/7/2015 7/7/2015 7/7/2015 7/7/2015

Appendix B: Bulk geochemical data obtained via portable XRF.

÷.																																																
	0.32	0.40		0.34		0.32	23.42	0.35	0.41		2.41	E C	0./1	30.81	0.12	12.30		0.01	16.39	0.87	0.73	0.51	0.12	0.35	0.43		0.12	<i>ci</i> .	0.40	0.21	0.4.0	0.78	7 55	CC:-7	0.23	3.13		11.62		0.57			0.94	0.40		0.12	0.45	0.68
(udd)							38											44	217												28														22	21	373	171
-	331	84	198	85	5 11	67	79	392	820	658	155	125	90	06	408	1579	329	686	ţ	10		66	100	400	158	234	180	1538	432	1609		296	407	16	122	59	50	200	379	386	322	248	onc 08	171	173	627	1447	1008
(udd)	54	99	39	80	6 6	67	122	68	76	61	116	28	69	5 E	Ē	110	64	71	159	68	30	71	61	5 5	76	67	68	81	69	101	109	99	61 45	£ 8	59	40	57	001	70	61	64	37	8 6	38	65	87	93	84 7
(udd)		5.1	» į	4.1	1.1	2.5				5.6																					7.2		6 6	2.9	3.3	ŝ	0.	4.4				3.1		3.5	4.9	9.2	12.1	9.6
(udd)	13.2	78.5	31.3	0.11	16	12.1		12	3.9	53.5	5.9	12	10.5	19.4	4.8		12.9	6.6		13.0	18.2	13.3	14.5	4.61	17.3	14.3	10.0	9.1	17.9	20.8	17	20.2	18.5	24	19.6	95.9	14.5	10.4	23.7	21.2	27.2	8.86	32.1	93.8	158	108	118	105
	6.3	25.2	»;	5.4 7 7	L.L	6.1	6.1	6.5	7.7	27.3	8.5		6.6 6.5	5.4	3.7	5.5	3.7	8.5	12	4. X	7.0	4.1	7.5	0 4	8.1	5.9	6.4 4.0	6.4	6.2	21.6	13.4	7.7	5.8	24.1	9	26.8	3.1	17.8	7.7	9.8	12.1	23.5	11.4	13.5	23.2	34	30	19.1
	464	259	129	121	109	378	82	201	183	149	31.7	237	603 136	133	282	622	263	341	165	202	307	320	261	2.16	306	241	1.60	181	220	410 88	1426	242	214	857	326	331	93	166	173	169	247	171	194	156	144	407	297	232
	16.4	10.1	17.7	9.1 A	17.9	5.4		31.5	73.4	54.5	001	10.9	4.1		21.4	64.9	5.6	21.8		6.5	7:0	4.1	3.8	77	12.6	20.1	8.26	42	22.3	85	3.8	10.7	14.9	1 8.9	2.6	6.2		59.4 8.5	17.1	29.4	19.4	271	5.2	9.8	3.8	25	72.8	32.8
;	15	8.4	0.5	4.0 7	6.7	1.9	35	7.3	8.1	7.3	94	4.1	3.7	20	19	9.5	6.6	14	ţ	/.4	6.11	1.2	2.7	5.5 6.1	4.9	3.8	8.1	0.5 0.5	3.1	3.5	30	16	5.6 4.4	17	9.4	7	1.2	55 1 9	11	4.1	6.2	8.8	32	7.6	31	27		
																																78															167	164
	17			38				33			205		112		32.			725 5-				36			102		25			16			ř		5	7		2519		83				12				Ξ
	-	ē		τ.		7	27	3	1		20		=	11	Ś.	4		72	114	5		R	-	-	9	8	14 8	6	3	- 4	'n	61	r	-	-	ο.		52		8			0			31	-	=
		41		18	10	20	111	18		109	ł	27	18	30			16				19		30	16	2	61	53						15												51			
	61331	67732	23093	73731	16/6/	63387	349283	71713	23532	53109	287603	41637	57704	730845	63067	90857	57177	41273	539460	20169	10000	60581	77307	06868	53873	56905	53284	68044	61918	65773	78229	56149	35024	42751	43264	14497	41624	132951	70045	62470	67927	14700	70952	18519	109903	77261	70899	73547
	2057	1589	785	1424	1158	1155	1513	1517	527	1083	1127	1484	2474	1177	2492	1875	3985	2491	840	2808	201	1880	2065	0017	2429	1969	2182	2/00 1661	1611	1485	1106	1945	1505	1662	1727	530	1190	1461	1481	1456	1729	395	2086 2086	606	789	1033	1177	1010
	46	304	= !	10/	35	54	37	50	21	654	32	23	55	19 76	44	46	60	71	42	49	CI 64	51	48	00 17	41	42	45	50	34	37	78	34	22	24	30	8	27	33 56	35	21	43		1 D	2	40	32	37	39
	50	39	79	101	101	763	00	90	60	155	37	60	205	58	46	71	680	013	86	100	103	164	74	080	521	69	82	82	132	145	583	3221	099	34	35	34	20	02	100	42	99	22	80	181	69	341	68	093
	42495	44633	40131	19/67	66941	49226	27424	72169	171377	9398	12512	65615	41853	12274	19530	56534	48921	54196	79015	190767	10/001	59047	48594	16601	52434	69126	20441	28680	36171	62031	207693	61670	55616	00067	65283	15238	36843	19016	35881	33927	33595	7307	58318	5055	8479	60721	34250	24617
	5180	3522	5443	5075 0105	5461	2808	2029	13156	24770	12776	1407	3991	2329	8611	7485	25486	2602	13534	1557	1205	765	2579	1915	2712	4381	7820	26371	28927 28927	9460	35853 407	674	5084	1211	1711	2549	2247	1217	26/21	7648	11494	7870	4595	3346	4198	4847	15220	28212	13506
	492	437		615	000	1086	133			1410	933		577	1175	C/11	739	518	1224	2199 202	38/		582	552	446	2	489	107	546	390	580	939	503	306		396	235	377	668	686		619	249	578		1202		592	478
						. –															-															0		-		0								
							209351				244973			971761	1741	66306		59206	660419	20496	1154				6731											2009		96451		8422			28865	-	5198	58230	6131	2706
ð.	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt	basalt hasalt	basalt	basalt	basalt	basalt	basalt	basalt	heterolitic	heterolitic	rhyolite	heterolitic	heterolitic	rhyolite	heterolitic	heterolitic hatarolitic	heterolitic	heterolitic	heterolitic	rhyolite	heterolitic	rhvolite	pyritic	pyritic	pyritic	pyritic
	-94.88	-96.10	-96.86	01.99-10	16.66-	102.02	-102.74	-103.16	-104.24	-105.64	-106.69	-107.80	-108.40	-109.16	111 10	-112.52	-112.76	-113.22	-113.30	20.011-	-118.00	.119.10	-120.30	-121.10	-123.22	-124.15	-125.09	-120.20	-128.10	-128.82	-130,60	-131.68				-136.82	-138.00	140.051-	-141.25	-142.16	-143.10	-144.02	-146.00	-147.10	-147.50	-147.60	-147.75	-148.20
				2100015									7/7/2015 -							- 0107////				- 5102////			7/7/2015 -			7/7/2015 -			7/7/2015					- 210/11/					- 510 <i>0111</i>					7/7/2015

0.06	3	6.96	0.11	-	64.1	00	07.0	41	3.81	0.61	4.44		1.04	4.02		0.88		5	0.10	71.0	11	83	0.22		0.14			0	07.0		0.20			1.69	60							0.48			ī	17.0			ņ	1.24	5	
381 0		26 6.	1170 0.		-			39 2.		0	4			34 4.		5.9 0.		0			5.7		0.		0.		10	¢			0.		3	-i c	0						11.3	0			v	i			0		7.1 0	
432 3		107 2	105 11		747	000		51		1322		329					501	100					1250	740	80			113	707	201	315			310	45	53		323	57			120	58	64	60	289	394	40	67			
2 09		Η	69		70 0			60		72 1							50	c :		34	43	75 2	92 1	67 1	66	93						82	28												50		81			50	30 4	
8 0	0.0	4.4	10.4				1.7	2.3				10.1	12.2	12.9	14.2	4.1	1.1	0.0	6.11	0.0	911	10		2.6		3.6	3.6	40	911	10	6	23.8	7.6								10.7	6.6		2 0	070	0.2	4.6	1	11.2	12.9	13.5	
258 8.0		95		18.7	24.2	6.02	C. 40	23.9	22.7	14.8													28.4											14.5	0.51	161	24.5	15.4	6.3	16.7	157	180	14.8				83	60.7	175	263	181	
64	5	33	34																														16													10.2	32.6	27.8	29.3	33.9	43.8	
138	001	110	150	32.6	077	204		167	53.3	186	93	11.2	168	150	111	30.8	100	190	CI 33	600 v	213	426	205	196	220	650	162	505	000	659	628	19.7	27	202	05	CL1	48.1	182	47.9	231	8.62	193	121	515	570	902	458	37	87.7	136	131	
34			8.1			1.12				83.7													67.6										16.8							54			,			12.7						
~																						5.73				4																	oc (х с								
		68		17.7						14.6				1.91											13.5	19.							9.2													6.11 9.11						
9069		302	1132	115	200	177	*	115	171	86	18	127	228	173	230	116	701	19	114	111	801	58	379	95	137		010	212	145	131	17	93	4	234	147	99	107	173	69	159	56	31	254	296	001	120	119	156	30	21	36	
409	P.	2103	123		CUL	10	51	277	674	60	80		236	969		102		ļ	10	£ 59	8	48	83		19			30	C7		14			395	Ξ							15			000	101			6	26	18	
			2	25	g	10	-	17		14	54	18	Ξ	35	28	12	75	0	0	15	2 2	i					4	19				36	4	35	118	115	150	71	33	48	15	12	57	3 C	cc	26	76	84	18	16		
20683	C0007	201141	57260	48932	C41CC	16700	C0/1	53606	09/16	66678	5490	16516	19627	20366	24875	22531	00000	06000	10/01	12021	25132	16231	76470	24167	50533	62414	70454	C40/1	80050	61485	52977	68642	23625	58929	70000	52008	17599	72739	35373	72920	11957	13874	60678	12603	CKCC1	46183	67881	02870	24270	30704	12879	
350		1136 2	681	142	100	000																																										968	16	32	29	
		-									e																																									
33	~		22	55	30	9	2	24	36	61			33	57	16		711	1/1	17	2 8	°	3	43	33	40	22	ĩ	40	00	34	27	19	15	323	364	165	481	472	172	540	16	27	205	181	401	382	154	211			22	
2392	7660	1172	1977	3288	2015	1071	1001	3966	2773	3383		2423	3052	2127	1765	1869	860/	0000	5701	1404	747	2813	5564	2095	4862	2909	2640	6516	10210	7277	6734	9946	1926	2635	2454	3453	5674	2483	992	2893	1666	2119	2454	1707	0007	2010 2010	6134	7825	2357	1061	2196	
15725	07101	32394	17283	1784	10001	66000	7961	30849	26361	34632	53585	942	9437	13592	2655	7319	7///1	4/0cc	1/10	7020	92021	22432	14990	12432	62015	83454	95834	0119	56774	50802	52404	5661	2097	58227	66/14	14284	6781	78328	42263	83992	6584	14005	38678	04400	70408	46113	50123	9651	9835	10949	6580	
8	2																																																			
2588	1	3364	4065	53	171	202	nnc -	2635	1782	36842		15174	225	16364	369	16	5124	711	C061	305	6	388	28950	235	192	52	46	12532	10/1	46.	413	349	3891	39(0.95	60	4	4265	148	251	4243	260	1565	-01	101	38	76	2801	1677	880	6075	
804	100	945	835	1207	104	/ 671	200	816	109	523	2516				266		139	C04					450	263			000	80/		395	421				737	585	704			658		395	020	0/5	170	413	575	1243		316		
17289	107/1	138299	34282	1223	C7C1	F30C	1007		62179		6700		28386	8846		27068			CIUC	1686	0001	1183		1129			0201	5210	2543	2		59469	1799	16689	1900	10/7					938	1381			10477	2031			29337	49369	790	
nvritie:	pyrus.	mudstone	pyritic	matic debris		mane deons		matic debris	matic debris	mafic debris	mafic debris	cherty ash	cherty ash	cherty ash	cherty ash	chcrty ash	matic dyke	maine uyke	chemy ash	cherty ash	cherty ash	cherty ash	basalt	cherty ash	basalt	basalt	basalt	cherty ash	mafic dyke	mafic dyke	mafic dyke	grey chert	grey chert	matic dyke	matic dyke	mafe dyke	mafic dyke	basalt	basalt	basalt	grey chert	grey chert	basalt basalt	basalt	basalt	basalt	basalt	basalt	herty ash	cherty ash	herty ash	
-150.02	70'001	-150.45 I		-151.55 m		m 1.001-				-							п /.сот-		0 0 0 0 0 1							-176.13		-1/8.36 C					-183.95 g			-190.46 m			-193.28				106.95	-198	67.661-	-201.1	-202.3	-203	\$			
		7/8/2015 -		7/8/2015 -															- 0107/0//									- 0102/8//						7/8/2015							2					7/8/2015 -						

	000	701 O	61.0					0.41						201	1.02		0.08		0.21	0.78	0.42	3 87	0.01	0.27	000	70.0	0.02	0.11	0.00		0.31	000	0.42		2.14	0.72	0.30	00.00	046	0.39		0.03	0.07	0.00	0.01	10.0		0.02	
(udd)		0.1	100																18.7	4	104	1122	30	11	18.7	7/7			50		29.6						5.5	0 1	2	277		117	12.1	5.7	267	22.4	274		
100	592	640	464	1896	376	713	261	312	1656	1049	415	256	903	825	C 07	255	276	365	217	361	318	200	2228	643	359	452	393	1723	401	1507	406	200	121	135	LL	113	200	C1/2	6001	1450	1339	514	855	450	609	577	165	553	250
-	56	00	f 68	57	36	48	36	69	78	57	51	42	56	00	60 CF	808	79	28	52	85	55	140	80	50	39	54 74	58	59	35	86	21	19	62	37	61	38	34	12	f	56	51	59	09	49 22	ۍ ۲	37	65	47	20
(udd)	2.9			3.7	3.5					3.1	4			, ,	5.0	10.1	10.2	2.5	2.5			7.0		3.3	2.9	3.6	5	2.7	9.0		8.8	24	4.5	6.9	6.5	6.7	14.1	4.4 4.4	t S	3.3		4.3	2.5			3	2.8		
_	69.4	5.11	70.2	87.6	85.8	78.6	100.4	43.3	24	70.2	87.6	89.9	34.9	218	90	94	106	59.4	68.3	64.2 2.	16	6.71	83.9	89.4	75.4	75.7	61.5	68.3	86.4	38	134	51.5	78	90.7	101	103.5	172	98 74 9	0.11	55.1	79.4	81.9	72.9	86.1	1.40 70.7	84.8	79.3	70.3	
	25.5	1.12	23.9	21.5	15.3	19.6	24.1	29.3	34.3	25.1	22	23	65	C.41	2.01	30.1	29.7	16	34.4	24.9	45 10.7	46	25.8	29.4	13.7	25.3	19.5	18.6	18.7	19.7	22.2	13.8	27.3	37.3	40.9	16.3	37.4	15	11.7	9.8	20.3	27.3	22.6	21.9	15.9 14.3	1.81	28.3	17.4	11
.	339																																																
	8.9 41.6																			12 14		30		10.1 54.2	22		5.7 25		67 C	12.3 64.6			18.1 5.	7.5	13		_	27 C7	46 66		3 5		~	4 30 3 5 37		45.6		6.8 28	
	oc u		m	7	9		7	12														~																			4								
5	58	115	50	38	64	47	60	27		55	55	5	6.6	71	16.7	111	152	22.1	82	46	9861	10718	2316	310	563	96	435	173	141 794	82	89	151	156	18.1	63	75	84	1090.	41	112	40	3304	161	27	cc 1705	E	261	1072	
;	00	100	601					Ξ	6					0	60		12		17	36	7791	40961	61	83	Ş	17	6	19	12		21	33	99		135	54	23	6 =	6	; 4		92	12	<u>0</u>	15	3		18	
														-	1	27	24												=	32	21	88	38	6		22	21			6						10			
			+ 0	5	4	3	8	2	5	0	9	6	m .	4 4	2 00			1	4	0 \$	7 -	- 89	7	8	5	0 0	6	<i>с</i> о -										0.04	, r-	. 9	8	80	4 (<i>د</i> م	۰.,		0	0	
;	22117	0001	22170	2322	2655	2487	2523	4123	2456	2896	1955	1988	1280	6010	1011	6720	7146	1228	3078	6599	2421	55336	1661	4318	1111	2239	1290	3458	1214	4949	11684	2661	9728	9742	12407	1368	1815	1105	1511	1137	1635	3983	2752	1364	704:	1948	3283	2196	
;	1054	003	841	697	893	693	775	587	464	859	575	608	1620	700	506	3408	3276	531	926	1163	013	946	923	1996	759	101	700	1488	1211	6661	430	6417	2589	566	918	102	758	135	915	459	1050	1669	1403	601	578	842	1294	976	10000
	19	10	13	16				31	18		10	13	30			60	96	36	34	87			23	19	п:	= =		22	17	162	14	144	96	22	42	=	34	13	61	16	12	45	5	71	14	17		22	
- 1	_ 4			-	0	~	7		0	0	0	-	_	o -	- 0		5	6	×			^	2	2		o 00	_	5	n 01	2	•		+		_	\$	~ r				6	2					2	~	
;	2761	011	171	294	188	233.	253	819	1050	242	206	156	125	1/1	11.26	8368	8510	200	3538	253	SAFC	676	247.	365	124	2668	179	336	2596	503.	1999	5500	5708	976	222	149(3700	106	217	134	247(649	355.	1631	266	2170	5006	2308	
;	36661	0007	8927	4387	1357	6850	3909	1806	2878	5431	4672	7027	41749	064/	7312	5457	7685	0398	5306	0263	1808/	0022	7125	4089	2397	8775	4057	2225	0/99	5385	5949	6680	6692	8785	7923	9609	7566	1/60	5421	7110	4985	5785	9630	7782	4/0/ 4671	8929	2419	15468	
	16156	1000	5593	30540	3540	17757	5000	8941	1530	3318	9420	6918	2008	4696	3105	3918	8034	6923	5004	7319	10/01	1258	34539	1970	7067	8820	9953	2174	7193	2712	8129	0001	2924	578(1256	1231	2306	2147	2563	31599	20414	1973	24982	19201	17102	13109	12583	12556	100
									354					210	610		666	225	363	683	266	2257	Ì			283	686			507		526	000		945		010	710									342		1000
.	956	7570	0007	9885		9260		50006	3179	6716				1047	4883	2001	6071	2301	4446	83993	6/0/+	38804	9199	31920	3428	+5/0	1287	36519	2954		5517	1705	9463	899	231558	4393	13954	19/0	9487	0033	3368	1772	3686	14405 5156	9780	6716	32108	1209	
												- 10																																					
	QFP	LIX LIX	OFP	OFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	OED OED	tuy.	matic dvkc	mafic dy	QFF	mafic dyke	QFP OFP	CEP C	OFP	QFP	QFF	QFF	OFP	QFP	QFF	OFP	pyritic	pyritic	manc d.	matic dyke	pyritic	pyritic	pyritic	pyritic	CED C	OFP	QFP	QFP	QFP	QFP	CEP OEP	H)	QFP QFP	QFP	QFP	ATC.
5	-208.12	21.002-	-210.33	-211.1	-212.22	-213.18	-213.89	-215.07	-216.12	-217	-217.95	-219.07	-220.16	177-	+0.222-	-224	-224.5	-225.3	-226	-226.6	7177-	-228.4	-229.32	-229.92	-230.9	-233	-233.89	-234.8	-230.00	-238.49	-239.56	147-	-243	-243.2	-244.3	-245,14	-246.02	-247.19 -248.1	-249.27	-250	-250.9	-252	-253	-254.16	-256.2	-257.3	-258.18	-259.07	
° 1.	7/8/2015	210/0/15	7/8/2015	7/8/2015	7/8/2015	7/8/2015	7/8/2015	7/8/2015	115	7/8/2015	7/8/2015	12	7/8/2015	5100/6/2	1	7/8/2015	115	7/8/2015	7/8/2015	7/8/2015	1	2 2	115	7/8/2015	7/8/2015	2 2	7/8/2015	115	7/8/2015	115	7/8/2015	0 1	7/8/2015	115	115	7/8/2015	7/8/2015		12	7/8/2015	115	7/8/2015	15	2/8/2015	510	7/8/2015	7/8/2015	7/8/2015	

						0.17	.33							0.22				0.88		1	10.0	ני ב ני	19	8.21	.45		0.39	4 6	75	0.44			.45	0.85	01.	60.	0.03		.03	0.00	70.		.02	0.23	.02	10.		2.86			60	0.60	0.2
(mdd)				172	28		0							0				0			0 0 0	0 1 9		00 00	0		0	0 0	0	C				37 0	t			9.7						206 0				32.5 2	46		c	D	<
_	527	240					445	582	722	227	109	249	362	406	1013	294	488	386	394					411	346	242	281	176	200	360	304	544		-485 e41	251					405 631 11										872	76/	830	
-	67	64	56	40	53	56	53	45	85	37	51	44	58	46	62	46	46	48	41	51	9 i	4/ 20	40	23	39	44	99	52	4 5 6	9 e e	38	35	41	47	ç 4	: 6	36	23	41	145	011	07	15	67	91	83	51	88 6	50	60 16	40 58	28	
	3.2	3.3	2.8		3.2	2.7		2.7	2.8				2.5	2.7		3.4	2.6		3.2		4.2	00	2.5	3.8	3.2		5.1	2.8 2.8	0.0	ţ					24	2.5		7.2	9.1	0.01	5.7	n v	2.9	8.1	12.5	12.2	2.9			2.5	4.0	2.5	
(mdd)	47.8	59	77.4	48.6	61.9	63.9	67.4	78.5	67.5	80.7	24.1	73.5	63.7	60.9	68.9	87.1	63.1	75.1	87.8	73.5	601	2.20	111	86	83.2	58.2	27.6	38.4	4.61	1.12	64.3	78.1	84.4	609	757	73.6	75.8	118.1	105.6	143 75	0011	2011	58.7	96	185	177	66.1	73.8	70.8	1.17	C.01	88.5	
	17.8																																	13.6 36.1																22.7			
																																																		230			
																																						ŝ	9			ò	-										
				13.																														246 3			28.	0		21	1.61				35.			38.		66 54 1			
	12	11.	7.8		13.2		4	.9	13.	4	8														4.7									6.1				4.2					29			45				5.9			
	49	55	28	152	110	92	40	20.8	60	43		39	33	50	94	55	40	43	42	46	1737	84 P	0/	4	49	46	94	107	45	41	33	62	62	117	38	55	295	210	757	148025	09671	5.9	2542	304	1760	3098	37	28	4 :	55	6.0	18.2	
						16	13							Π				38			16	0	2	353	52		37	15	2	×	2		28	66	ç	170	6		19	359	107		50	02	31	40		80			ų,	-	
																						01	10					17	5	71									19	361	133		43	4 f	41	74							
	4022	603	1170	653	7242	\$273	5938	3515	5525	5023	5765	1522	3312	0758	3752	1263	6986	5803	3662	3339	5120	2010	102	875	7178	5215	5752	8624	6963	1515	5683	1538	9186	8864	0065	1862	3348	825	6469	2468 2277	1221	134	035	201	\$667	316	3617	1352	\$236	27222	107	1093	
	118	169	672	535	155	154	113	715	152	737	662	811	790	762	213	161	632	876	102	702	106	15/	101	733	701	634	134	139	642 2 2 2	505	585	793	686	69	833	849	630	184	588	437	5/5	160	305	213	174	164	604	425	825	1239	241	842	
			12	30				18			10			14							15			17		18	62	62				13		2	0			10	14	356	10/	51 71	193	216	83	4	14	19	28	86	51 22	23	
	2885	3154	1528	1478	3565	2190	2202	1525	1904	1243	446	1635	1603	2225	2087	2192	1474	2196	2301	1011	4320	00000	6767	1861	2375	1299	3889	4594	01440	1355	1233	1756	2454	1749	1211	1386	1632	707	1293	9422	4340	1758	5008	6645	4875	4870	1918	1576	2289	2486	5022	2556	
	46238	54572	21886	13539	44720	67597	23399	14076	21447	23983	84838	23709	18925	19634	29523	17759	22034	31702	39702	31309	20233	02021	27007	23295	20020	11844	56136	75846	C0011	07011	12703	20493	26089	104206	0000011	20541	15280	4593	5769	31810	20134	3676	34704	18909	21200	23851	16792	9208	12610	22761	01701	8291	
	21974	8904	6774	4676	8930	5500	7515	13671	15767	4925	4295	7340	7902	7701	19850	14500	13666	17431	11877	8222	11625	20101	0/10/	8555	7153	4872	9190	8710	10/01	0550	5239	9822	8633	4258	3730	3216	7383	319	759	11318	05021	150	4195	7040	13956	8149	11841	21528	177	22394	07071	6040	
- I									0				_	8																																							
	4	46	27	39	576	61		254	70				35	268		298			313		36	562	07	51	359		535	63	١ć		29	259	41	30	317	5	309		0.09690	3545	18	92	06	67	71	658	34		383	40			
	6540		5440	26369	34751	4047		4859	69699	2920	9242	10535		5705				1534		1445	25891	c0/c		73365	2039	1904			POLL	5089	2405	9712	2537	9660	\$717		10376	7116	8700	217961	C271C		15300	28707	26803	43162		3408	9437	1616.	19106	18206	
	mafic dyke	mafic dyke	QFP	OFP	QFP	QFP	QFP	QFP	OFP	OFP	OFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	QFP	(HP	CH7		OFP	QFP	QFP	mafic dyke	mafic dyke	(HP	QEP OFP	0FP	QFP	QFP	QFP	CEP C	QFP	QFP	pyritic	pyritic	pyritic	pyrinc	pyrnc	pyrine nvritie	pyritic DVritic	pyritic	pyritic	QFP	QFP	QFP	QFP	(HP	QHP	
	-260.63	-261.2	-262.07	-263.1	-264.25	-264.9	-266.06	-267.1	-268.2	-268.95	-270.3	-271.07	-272	-273	-274	-275.1	-276.17	-277	-278.13	-279.24	-280.07	-1001	1.202-	-283.94	-285.18	-286	-287.05	-288.3	-289 100.05	106-	-292	-293.1	-294.1	-295.12	D67-	-298	-299	-300	-301	-302.26	505	-304	9 505-	-306.1	-307	-308.1	-308.9	-310.15	-311	-312	517.05	-314.05	
	7/8/2015	7/8/2015	7/8/2015	7/8/2015	8/2015	\$/2015	7/8/2015	7/8/2015	7/8/2015	/2015	/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	/2015	7/9/2015	/2015	7/9/2015	7/9/2015	/2015	510C/6//	2100/	7/9/2015	/2015	/2015	7/9/2015	/2015	2102/	C107/6//	/2015	7/9/2015	7/9/2015	7/9/2015	5100	7/9/2015	2015	/2015	7/9/2015	7/9/2015	c107/	C102	510/2012	7/9/2015	/2015	7/9/2015	/2015	7/9/2015	7/9/2015	7/9/2015	C107/6//	7/9/2015	

	4.10				0.60	0.60						0.21	0.41		4.06		0.80			1.20		00.1	66.			0.26				0.21		0.1.4	t 1.0			0.40	110	6.75						0.33						16.0
(mdd)	13	8.3			6.1									1	14.7		48				4.8		63	7.0											5.8															
-	270	371	700	442	677	280	341	293	466	656	742	1167	641	577	430	606 500	873	706	444	942	1405	681	1017	453	434	159	230	704	450	272	411	156	401	630	656	165	125	178	1343	328	243	307	322	725	349	176	519 431	203	318	567
<u>_</u>	109	48	48	40	58	36	52	66	32	11	47	35	95	46	4e	4/ 61	37	49	51	51	52	80	64 63	75	54	11	74	63	78	50	41	7 6	57	51	45	87 53	22	39	81	48	6 (20	66	58	88	36	64 64	78	53	53
(udd)				7		2.4	2.5		ļ	4.5			4.1		3.4	0 0	64	2.6	2.6	3.7		4.3	5.4 6 6	1.4 1.4	2.3	3.8	2 2	2.5	1		2.8	2 2	0.0	2.9				2.7	2.8	2.9		t %	4.5	2.6	2.9					0 0
	40.4	60.7	74.4	63.8	73.6	66.4	81.4	0.00	- 1-	71.7	80.2	46.8	94	73.2	72	7.10	30	67	75.3	78.4	75.7	58.3	1.05	50	69.5	61	65.8	69.2	51.5	62.6	81.6	C.00	35.6	68.8	78.4	0.00	56.6	71.1	46.8	75.2	65.6	20.1	73.7	6.17	66.1	59.2	04.90 L 25	20.8	59.8	
~																																		23.4																
	17	13	15	12	15	14	5 S	12	15	4	42	13	19	61	21	0 1	69	22	15	13	14	35	17	59	29	34	33	15	15	15	1	CI 05	27	431	10	77	1.5	35	10	16	= 3	23	20	28	32	5 5	10.01	49	20	
	29.2	35.6	31.5	21	54.9																													33.8																
	29	5.4	4.2	3.7	9.4		4 v J o	2.0	4.	14.6	5.5		14.3	89 i 19	6.9	10.3	12.6	6.9	7.5	1.7	5.4	6.6	1.1	11.8	4.4	12.5	H S	8.6	14		ļ	1.6	9.3	4.4	4.3	4.4	12.2	6.2	12.8	3.9	3.9	13.7	12.2	6.7	15.7	5.2	0 2	12.6	9.7	
4	110	49	41	17.9	25	21.7	55 E	10	37	55	29	204	56	26	34	C7	18.7	29	60	35	41	13	9 0 0 0	20	42	82	128	48	52	61	36	45 104	60	43	55	25.4 60	205	4	157	43	50	184	263	40	209	31	5 5	1	54	
	451				15	13						43	23		138		15			42			\$			21				13		15	3			74		297						13						10000
																										82	126 16	21				63	6				121		153		00	37	56		56					
. I.	150101	17139	17250	12738	41030	11517	14685	14989	16368	66786	16790	8643	78136	18799	18742 21006	51575	9941	20578	30329	28623	18110	35695	51222	35108	20368	52545	35837	37204	65843	15309	14042	1 44/1	31867	19320	20617	10831	67289	21569	60978	15941	17460	72068	74659	23516	89590	16379	17487	46167	38027	
	2158	984	961	069	1184	637	171	56/	810	1173	701	604	1311	796	841	1149	665	216	1184	614	633	1205	/80 616	1301	684	1715	1254 860	702	1215	661	672	96C	1318	873	836	483	3894	960	3479	578	561	3209	1939	671	2964	559	787	1564	1384	
			16		20	6						4	19	14	20	55	3		44	16	21	32	13	1		279	341	16			16	21		14	27	П	432		400	11	5	94	95		450		13	28	15	
	1833	2196	1829	2078	2276	1269	14 / 2	1345	1750	3073	2085	1113	2999	1673	1508	248U 4501	1152	2468	3822	3145	2581	2326	2509	1096	1601	5789	6671 1013	2522	2268	1063	1862	6110	2194	1648	2530	268	5213	2810	5259	1779	1506	8208	8374	1922	7015	1170	2645	587	2065	
	15286	22468	17007	6522	17567	22750	20012	/1/07	18626	14286	11647	11416	21760	12901	17519	40707	41062	13665	20327	13274	13620	86393	2442	116571	24341	75692	65143 058	14019	19572	21027	16556	81764	31367	16078	13234	18476	76096	12125	61426	23139	6431	60547	38219	13761	15559	6500	122/9	155994	35374	
	10206	2666	12866	6807	25067	5375	6118	8234	7435	9550	15393	18492	11775	7709	6993 12707	13078	10683	13992	13153	24589	23647	16579	20880	13340	9074	5309	9849 3106	16962	12698	5870	9103	1100	16122	10153	15048	6812	3902	5112	29132	5350	7421	5970	8706	14619	7059	6145	11/5	1843	11027	
	1243	292	585	288	536				315	679		306	954	275	324	1/0	464				381	483	167						702		254				316	249	490			300	280	590		408	755	318	007	528		
	208466	14525	2116	066	50024	5282	000	2010	2133	59447	13598		108382	4072	3017	26226	10527			22441		5799	14146	1632	3982	1899	3260	62564	98586	3305	1150	6175	4083	2440	12286	4101	0001	3169		1742			1722	1262	6872		0900	4172	6611	
	QFP	QFP	QFP	QFP	QFP	QFP	der G	(HP	QHP 0 EF	QFP	QFP	QFP	QFP	QFP	QFP GEP	CEP OFP	OFP	QFP	QFP	QFP	QFP	OFP OFF	AFP OFP	QFP	QFP	nafic dyke	natic dykc	OFP C	QFP	QFP	QFP	nanc dyke	OFP	QFP	QFP	CITY CITY	nafic dvke	QFP	nafic dyke	QFP	QFP	matic uyke	nafic dyke	QFP	nafic dyke	QFP	CFP C	QFP	QFP	
	-317.35	-318	-319	-320.14	-321.13	-322	-525	-324	-325	-326	-327	-327.85	-329	-330	-331.1	-333.15	-334																	-351.1												-359.1			-363.25	
					7/9/2015		C102/6/	\$107/6//	7/9/2015	510	015	7/9/2015	7/9/2015	2015	7/9/2015	5107/6//	7/9/2015	2015	7/9/2015	2015	7/9/2015	2015	5102	7/9/2015	2015	2015	7/9/2015	2015	2015	2015	2015	5100	2015	2015	015	015	015	7/9/2015	2015	2015	015	7/9/2015	2015	7/9/2015	2015	7/9/2015	5107/6//	7/9/2015	7/9/2015	

Cu/Zn					0.33						16.0		1.96	33.44	2.26	0.52	0.38	0.52	0.69	0.13				36	92.0		0.35	0.20	0.19	60.0	0.03	6.56	4.22		0.27	C/.01	0.33		0.24	01 0	0.46	0.75	60.6		0.36	1.05	1.96	0.87	2.18	0.65			0.10					
(mqq)															1	47					18			50	5					64 10	177	16	44	18.5				43		15	6			3	28	2								4.8	0 .4		62	
Ba (ppm)	243	381	307	322	27/	349	319	131	203	318	567	451	194		228	128	505	366		318	93	373	2000	307	110		446	531	1234	140	48	6011	342	159	74	+/ C	2312			310	610	68	155	480	368	331	285	1538	2213	405		95	101	393	ê	249		219
Ag (mqq)	40	63	78	99	80	200	45	9 9	78	53	23	32	43	92	32	8 6	2 %	57	45	27	41	5.5	0,0	15	5 49	57	88	80	44	45 86	24	60	57	26	83	26	06	63	54	23	70	46	71	47	8/	F 69	62	106	86	63	47	23	43	5.31	c7 92	68	151	63
) (udd) qN		4.4	3.8	4.5	2.6	2.9					2.8				2.3		د.01	C C	2.9		S	6.1	4 ¢	0 4	10.5	6.9	4.7		1	×./	5 3	10	7.2		5.4	57	5.5	5.2	6.5	6.9		2.5	3.4	12.8	8.4	2.01				5	- 4 - 7	3.3	14.8	3.8	0.4		4.9	
Zr (Dpm)	65.6	81.2	70.1	73.7	6.17	1.00	2.60	L YL	20.8	59.8	71.4	49.7	33.3		74.5	90.4	477 477	15.9	45.8	59.2	120	02	4.10	63	178	20	44	58	28.4	150	010	151	121	89.5	55	2.00	133	66	104.9	9.59	25 7	47.5	51.7	173	127	6.6	15	11.6	12.9	30	20	54.5	304	69	93.0 22	20.2		15
	19.4	22.3	29.7	28.1	13.7	15	2 1	20.6	0.02	25.1	23.9	11.4	25.2	13.1	15.8	23.3	25.6	4.8	28	12.1	26.7	19.6	4.12 4.12	23.0	48.5	10	24.2	31.3	4	34 31.6	26.8	28.6	53	21	29	C.CI	52	20.2	18	50.2	8.01	13.9	18.2	43.9	37.2	10.4	6.1	×	4.7	7.1	10.2	11.1	63.2	17.7	14.7	10.1	28	9.8
(mqq)	111	148	230	202	582	275	202	8 001	490	208	145	107	16	48.1	248	207	100	118	231	22.1	69.5	352	502	150	74.5	1649	728	379	194	1.15	53.8	32.2	159	67.3	244	246	381	11.8	18.2	cc 001	524	133	314	87.1	111	396	257	203	252	222 700	866	34.4	96.3	55.4	2.1.5	114	1100	307
As (ppm)Rb (ppm) Sr (ppm) Y (ppm)	15.8																13 8					12.2								ۍ ر 10								5.8		206				23.8			24							30.1		22		11.1
ppm)Rb (0												ιų ,				
	3.9	13	13.	12	ō :	ci v	. v	÷ ۱	i	6			×	30	ŝ	2	2.01	6	5.		6.	8.6	H	ć	1 =	6	19.	14.	Ξ:	C.11	i	14	10	5.	- 2	91	10	21	×	.2	- 14	.6	13.	9.	T V	16	11	17.	14	8.5	2 =		8		11	13	17	12.
(mqq) nZ	50	120	184	263	40	507	43	6	ŝ	54	64	30	50	16	34	29	133	291	14.5	62	27	124	0.0	2.6	36	17	115	161	254	2/7	841	50	76	99	162	41	54	32	4;	46	05	240	174	112	41	149	12	189	49	125	37	24.8	105	0.00	30.2	207		162
Cu (ppm)					5						39		98	535	17	15	13	152	10	×				11	100		40	32	47	47	90	328	321		44	1495	18		10	001	23	181	1581		17	156	141	164	107	8			10				2070	
Ni (ppm)		39	37	56		90											36	24	19			76	60	20	295				40	54	33	54	44	13		40	70	28	31	71				24	55	<i></i>	20		14	19	2	14	31		10 25	53	263	41
Fc (ppm) N	-60	117	68	59	910	06	50	27	67	27	4	77	94	491	83	06	38	2 2	74	38	67	03	5	00	00	73	193	588	61	10-	18	51	54	:21	330	87	96	663	17	200	47	141	54	181	86	84	21	10	39	10	23	06	191	31	23	68752	467	82
1.325	174	689	720	746	235	068	201		461	380	161	66	306	107	105	151	124	578	148	==	146	523	100	10	702	847	107	102	736	121	151	565	354	114	123	454	372	835	361	98	529	440	728	240	5/5	776	765	666	669	54/ F89	E E	77	323	33	3 ¥	687	404	538
(mqq) n M	561	1021	3209	1939	1/9	2904	866	000	1564	1384	677	401	983	662	168	653	2657	1649	582	556	408	2033	107	161	607	1210	2957	2438	2495	1961	479	692	1049	482	2484	0761	589	626	645	995	1151	2117	1928	1449	100	2520	1481	2314	749	1543	1389	207	857	143	2084	1799	605	1924
Cr (ppm)		16	94	56		450		13	5 80	15	14					5	22	106		12		165	140	40	£ 5		32		166	13	5 2	24	37		140	38	69		0	8 6	10	27	42	28	11	:	54	80	64	41	24		32	5	140	124		112
Ti (ppm)	1506	8597	8208	8374	1922	CT0/	0/11	2645	587	2065	1845	939	548	131	1587	2564	1001	2919	618	627	1365	5093	2000	114	3198	2842	9443	9403	4013	2073	1431	2925	2591	1617	4389	401	3793	2717	2052	1496	2669	3595	3073	3468	2026	557	2765	2519	3009	2701	1665	594	6552	821	834 2721	2960	876	2565
Ca (ppm)	6431	24642	50547	38219	13/61	96661	01000	8058	55994	35374	24399	12568	25605	93735	31668	19566	C/ 9++	5953	39377	823	6305	82757	0700+	12103	8283	06062	72069	42009	45432	10/0/	5738	3405	29264	6941	43485	41307	39702	1484	975	8941	1004	20723	26742	14274	8067	46637	73149	43932	27505	41357 19445	91133	7442	9463	1867	6/89 96846	35492	86445	04280
) (mdd)	7421																																	2468																						10072		5093
Cl (ppm) K	280		590			010			528		1		311				488			373										598								743				511					500				679					449		835
2011	8		ŝ		4 1		n c	9	Ŷ	ŝ			м	8		m i	4 2	F vî		ŝ		ەق	0 (14	F 3	Ś	6	ŕ.	40	χ. Ξ	ñ :	i în	25	Ň	ix s	1 9	5	r.	L	51	2 6	3	1	Ϋ́,	×	Ĺ	- in	6	Ξ	0 0	0	6	4	c	4 10			×
S (ppm)				1722	1262	08/2		0900	4177	6611	8738	2389	53664	199095	2321	5769	8661	5901		894	15941		201	156471	15207	28301	3166	4101		8515	5807	83790	18453		69131		7873		20434	117207		10152	88235		97392			11914				12324	1701	1576			372264	
Lithology	QFP	mafic dyke	mafic dyke	mafic dyke	QEI'	matic dyke	CEP C	OED C	OFP .	OFP	OFP	OFP	QFP	QFP	QFP	QFP OFF	QFP mafe dide	chert.	chert	chert	chert	mafic dyke	mane dyke	chert	chert	mafic dyke	mafic dyke	mafic dyke	matic dyke	chert	chert	chert	chert	chert	mafic dyke	matic dyke	sherty pyritic	cherty pyritic	cherty pyritic	cherty pyritic	therty pyrine therty pyrine	sherty pyrilic	cherty ash	cherty ash	cherty ash	mafic	mafic	matic	mafic	mafic	mafic	cherty ash	cherty ash	cherty ash	cherty ash mafic	matic	matic flow	matic flow
Depth (m) Lithology	-356.2						1.600-	198-	-362.05	-363.25	-364	-364.95	-365.53	-365.65	-367.15	-368	C6.80C-			-372.56		-374			8 278-					-387.0	-384	-384.9	-386				-391.15 c					-398 c					-402.95	-404.07	-405	-405.6	-408.1	-409.36			-412	-414.1	-415.3	-416
Date	7/9/2015	7/9/2015	7/9/2015	7/9/2015	\$107/6//	210/015	C102/6//	210/00/2	510/01/2	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	5102/6//	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	2102/6//	5102/6/1	510/06/2	7/9/2015	7/9/2015	7/9/2015	7/9/2015	2102/6//	210/015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	51076/1	7/9/2015	7/9/2015	7/9/2015	7/0/2015	210//6/1	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015	7/9/2015

Appendix C

Mineral	ID	Eutectic (°C)	Hydrohalite melting (°C)	CaCl2-hydrate melting (°C)	Vapor Homogenization (°C)	Halite Dissolution (°C)	CaCl2 equivelent	CaCl2 (wt%)	NaCl (wt%)	S _{wt}	Density (g/cc)	Phases
Cal B	106.17			3.1	118.9	. ,						L + V
Cal B	106.17				236.3	176.1						L + V + H
Cal B	106.17			31.7		205.0		43.5	10.0	53.5		L + V + H
Cal B	106.17			31.7	164.2	204.8		43.6	9.9	53.5	1.51	L + V + H
Cal B	106.17											
Cal B	106.17	-47.4	-16.6		88.6	greater than 304						L + V + H
Cal B	106.17	0.3	-1.9		223.8							L + V
Cal B	106.17	-50.2			157.2							L + V
Cal B	106.17	-37.5	-22.6		289.8							L + V
Cal B	106.17	-37.5	-20.7									L + V
Cal B	106.17				186.3	greater than 240						L+V+H
Cal B	106.17		-8.2		172.5							L + V
Cal B	106.17		-7.8		111.1							L + V
Cal B	106.17		-8.2		119.6							L + V
Cal B	106.17				142.8							L + V
Cal B	106.17				152.7							L + V
Cal B	106.17				206.4							L + V
Cal B	106.17		-23.7	35.4	227.2			49.8	0.1	49.8	1.67	L + V
Cal B	106.17		-24.0		224.1							L + V
Cal B	106.17	-38.6	-23.4		212.2	greater than 280						L+V+H
Cal B	106.17		-23.4		181.0							L + V
Cal B	106.17	-63.2			240.2							L + V
Cal B	106.17				261.4							L + V
Cal B	106.17			12.2	203.9		40				1.38	L + V + F
Cal B	106.17				190.9							L + V
Cal B	106.17		10.1		194.6							L + V
Cal B	106.17	-40.3	-18.1		171.3							L + V
Cal B	106.17	-65.7	-30.7		197.9							L + V
Cal B	106.17	-65.8	-21.9		296.2	200 5						L + V
Cal B	106.17	(F. 7)	20.1		175.2	200.5						L + V + H
Cal B	106.17	-65.7	-30.1		209.6							L + V
Cal B	106.17				176.9							L + V
Cal B	106.17	52.7	-21.1		179.2 205.5							L + V L + V
Cal B Cal B	106.17 106.17	-52.7	-21.1		203.5							L + V L + V
Cal B	106.17				172.4							L + V L + V
Cal B	106.17	-60.2	-15.2		231.3							L + V L + V
Cal B	106.17	-00.2	-13.2		226.5							L + V L + V + H
Cal B	106.17	-51.8	-37.6	85.9	233.0		59				2.69	L + V + I L + V
Cal B	106.17	-51.6	-37.0	65.9	253.0		39				2.09	L + V L + V
Cal B	106.17				252.7							L + V L + V
Cal B	106.17				237.4							L + V
Cal B	106.17			28.0	178.8		47				1.56	L + V
Cal B	106.17			28.4	164.9	209.8	77	42.2	10.8	53.0	1.30	L + V + H
Cal B	106.17		-12.7	28.4	186.8	214.8		42.0	11.3	53.3	1.46	L + V + H
Cal B	106.17	-46.0	-12.7	28.4	200.1	214.0	47	42.0	11.5	55.5	1.54	L+V L+V
Cal B	106.17	10.0	-12.2	28.4	186.1		47				1.55	L + V
Cal B	106.17	-81.6	-32.5	21.2	220.0		17	42.2	0.7	42.9	1.33	L + V
Cal B	106.17	0110	-32.5	21.2	232.5			42.2	0.7	42.9	1.37	L + V
Cal B	106.17	-52.4	04.0	31.1	235.2		50	.2.2	5.7	.2.7	1.65	L + V
Cal B	106.17	-52.4		17.3	162.2		42				1.40	L + V
Cal B	106.17	-52.4		17.9	165.5		42				1.40	L + V
Cal B	106.17	-53.2		19.9	179.8		43				1.40	L + V
Cal B	106.17	00.2			220.1							L+V L+V
Cal B	106.17				164.0							V + L
Cal B	106.17				199.8							V + L
Cal B	106.17				220.7							V + L
	106.17				267.5							V + L

Summary of microthermometric data.

Cal B	106.17	-57.1	-34.4		296.2							,
Cal B	106.17	-57.1 -64.0	-54.4	22.3	296.2			42.8	0.7	43.4	1.39	,
Cal B	106.17	-64.0	-52.2	22.0	198.2			42.6	0.7	43.3	1.40	,
Cal B	106.17	-64.0	-52.0	21.5	178.9			42.2	0.7	43.0	1.40	,
Cal B	106.17	0110	02.0	21.0	1700			.2.2	0.7	1510	1.10	
Cal B	106.17	-51.4		22.9	104.9		44				1.50	,
Cal B	106.17	0111		15.5	111.5		41				1.41	,
Cal B	106.17	-72.1	-38.2	1010	238.0							,
Cal B	106.17	/2.1	50.2	21.6	235.7		44				1.39	v
Cal B	106.17			25.2	196.6		46				1.49	
Cal B	106.17			18.2	1,010	274.6	10	32.5	20.0	52.5	,	V
Cal B	106.17			24.5	232.1	27.110	45	0210	20.0	0210	1.43	
Cal B	106.17			24.5	233.0		45				1.45	
Cal B	106.17			24.5	304.4		45				1.39	
Cal B	95.10				186.9							,
Cal B	95.10				188.2	212.7						V
Cal B	95.10				184.4							
Cal B	95.10				191.2							,
Cal B	95.10				119.0							,
Cal B	95.10				11)10]
Cal B	95.10	-25.6	-14.7		201.4							,
Cal B	95.10	25.0	14.7		191.6							,
Cal B	95.10				171.0]
Cal B	95.10											1
Cal B	95.10	-32.5		26.4	208.8		46				0.85	v
Cal B	95.10	52.5		31.5	200.0		40				0.05	v
Cal A	95.10			51.5		212.0						
Cal A	95.10					197.3						
Cal A	95.10		-12.7	76.1	209.6	19710	58				2.52	v
Cal A	95.10		12.7	, 011	218.8		20				2.02	•
Cal A	95.10				227.7							
Cal A	95.10				255.7							,
Cal A	95.10	-34.0		183.1	266.7							,
Cal A	95.10	-34.0		10011	271.5							,
Cal A	95.10	-34.0			286.3							,
Cal A	95.10	-34.0			276.3							,
Cal A	95.10	-34.0			233.3							,
Cal A	95.10	5110			283.9							,
Cal A	95.10	-41.8	-22.1		248.3							,
Cal A	95.10	-41.5		28.4	295.5		47				1.49	,
Cal A	95.10	1110	-13.0	20.1	314.0		.,				,	,
Cal A	95.10			26.4								,
Cal A	95.10			26.4	229.0		46				1.48	,
Cal A	95.10	-54.5	-30.6		269.8							,
Cal A	95.10	-54.5	-28.6		314.2							,
Cal A	95.10				327.0							,
Cal A	95.10				267.8							,
Cal B	200.20				74.4							,
Cal B	200.20				221.9							,
Cal B	200.20				165.7							,
Cal B	200.20			25.9	221.5		46				1.47	,
Cal B	200.20			26.1	253.0		46				1.47	,
Cal B	200.20			26.1	200.0		10					
Cal B	200.20			20.1	225.0							,
Cuib	200.20				223.0							
Averages		-48.8	-23.8	31.3	210.9	210.8	46	42.3	6.0	48.3	1.51	