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Network	Analysis	as	a	Potential	Method	Detecting	Population	Structure	
	

by	Yu	Ting	(Kiera)	Chang	
supervised	by	Dr.	Timothy	Frasier	

	
Abstract	

	
	 Limited	 gene	 flow	 can	 divide	 a	 species	 into	 populations,	 forming	 population	
structure.	Population	structure	is	important	for	evolution	and	conservation	so	methods	
for	detecting	them	were	developed.	With	prior	assumptions	of	population	structure,	Fst	
can	be	used	 to	describe	 the	degree	of	differentiation	between	each	population.	Later,	
structure	 and	 Discriminant	 Analysis	 and	 Principle	 Component	 (DAPC)	 overcame	 those	
prior	 assumptions	 and	 are	widely	 used	 contemporarily.	 One	 approach	 called	 network	
analysis	 is	widely	 used	 in	 physics	 and	 social	 science	 to	 study	 the	 patterns	 in	 complex	
relationships	 using	 similarities	 and	 dissimilarities.	 Population	 structure	 represents	
patterns	 in	 complex	 relationships,	 so	 network	 analysis	 should	 be	 able	 to	 detect	
population	 structure.	 I	 tested	 the	 ability	 of	 network	 analysis	 to	 detect	 population	
structure	by	comparing	it	to	Structure	and	DAPC.	I	used	simulated	data	of	4	populations,	
each	containing	200	individuals’	genotypes	at	15	loci,	with	migration	rates	among	them	
varying	 from	 0.001	 to	 0.1	migrants	 per	 generation.	 I	 predicted	 that	 network	 analysis	
would	 perform	 better	 than	 the	 other	 two	 methods.	 Contrary	 to	 my	 expectations,	
network	analysis	performed	poorly	overall,	and	did	not	detect	any	population	structure	
correctly	at	migration	rates	greater	than	or	equal	to	0.01.	At	migration	rates	of	0.05	and	
0.1,	network	analysis	detected	the	correct	number	of	populations	just	20%	of	the	time,	
with	 individual	assignment	error	rates	of	47%	and	60%.	Thus,	network	analyses	do	not	
appear	 to	 be	 a	 useful	 alternative	 to	 Structure	 and	DAPC.	 However,	 only	 one	 network	
clustering	 method	 was	 tested,	 and	 therefore	 future	 studies	 could	 test	 if	 other	 such	
methods	improve	the	performance	of	network	analyses.		
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Introduction	

Importance	of	Population	Structure	

Species	are	often	subdivided	into	multiple	populations	with	limited	gene	flow	or	

migration	among	them,	 resulting	 in	genetically	differentiated	populations.	This	 type	of	

differentiation	among	populations	within	the	same	species	is	called	population	structure	

(Slatkin,	 1987).	 Such	population	 structure	 is	 important	 from	both	 an	 evolutionary	 and	

conservation	 perspective.	 From	 an	 evolutionary	 perspective,	 when	 a	 species	 is	

subdivided	into	multiple	populations,	the	environmental	conditions	in	each	location	will	

be	 at	 least	 slightly	 different,	 and	 may	 result	 in	 different	 selection	 pressures	 and	

evolutionary	 trajectories	 for	 each	 population.	 This	 can	 lead	 to	 ecological	 and	 genetic	

differences	over	time	and	may	ultimately	lead	to	speciation	(Schluter,	2001).		

	 Understanding	population	structure	 is	essential	 for	 successful	 conservation	and	

management.	 If	 a	 species	 is	 subdivided	 into	 multiple	 populations,	 then	 by	 definition	

each	 population	 is	 acting	 as	 an	 independent	 demographic	 and	 evolutionary	 unit,	 and	

therefore	 require	 separate	 management	 and/or	 conservation	 actions.	 Two	 possible	

scenarios	 can	 result	 from	 a	 lack	 of	 recognition	 of	 population	 structure.	 First,	 any	

conservation	or	management	actions	focused	on	one	population	may	only	have	limited	

impacts	 on	 the	 other	 populations,	 leading	 to	 ineffective	 conservation	 of	 the	 species	

(Bowen	et	al.,	1993;	Bowen	et	al.,	2005).	Second,	if	conservation	or	management	actions	

are	 focused	 on	 the	 species	 as	 a	 whole,	 without	 consideration	 of	 the	 population	

structure,	 then	 these	 actions	 will	 likely	 mitigate	 threats	 to	 one	 population,	 but	 not	
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others,	 and	 therefore	 be	 ineffective	 and	 lead	 to	 localized	 extinction	 (Moritz,	 1994;	

Palsboll	et	al.,	2006).	

	 One	example	of	the	first	scenario	is	the	loggerhead	turtle	(Caretta	caretta)	in	the	

northwestern	Atlantic	(Bowen	et	al.,	1993;	Bowen	et	al.,	2005).	In	this	species,	females	

show	 a	 migratory	 pattern	 between	 nesting	 beaches	 where	 they	 lay	 their	 eggs,	 and	

foraging	 grounds	 in	 the	 sea.	 Females	 tend	 to	 show	 strong	 fidelity	 to	 their	 nesting	

grounds,	 returning	 to	 the	 same	 site	 every	 2	 to	 3	 years.	 A	major	 threat	 to	 loggerhead	

turtles	 is	disturbance	and	subsequent	mortality	of	eggs	at	nesting	sites	(Wallace	et	al.,	

2011).	Population	genetic	analyses	showed	strong	differentiation	of	mitochondrial	DNA	

between	females	at	nesting	sites	 in	Florida	and	Georgia,	 indicating	that	dispersal	 rates	

between	 nest	 sites	 are	 insufficient	 for	 replenishment	 if	 one	 becomes	 extirpated.	 This	

work	 emphasized	 that	 to	 successfully	 manage	 the	 species	 as	 a	 whole,	 separate	

management	 and	 conservation	 for	 each	 nesting	 site	 is	 required	 (Bowen	 et	 al.,	 1993;	

Bowen	et	al.,	2005).			

		 One	example	of	the	second	scenario	involves	tuataras	(genus	Spenodon)	in	New	

Zealand	(Daugherty	et	al.,	1990).	This	species	was	described	as	regionally	threatened.	It	

was	thought	to	have	only	one	population	and	was	previously	managed	as	one	large	unit.	

The	 researchers	 conducted	 surveys	 on	 24	 islands	 where	 tuatara	 lived	 to	 record	 the	

allozyme	 and	 morphological	 variation.	 In	 their	 survey,	 they	 found	 that	 rather	 than	

existing	 as	 one	 large	 population,	 tuataras	 were	 separated	 into	 multiple	 distinct	

populations.	Moreover,	 ignoring	population	structure	had	 resulted	 in	 the	extinction	of	

several	 populations	 and	 possibly	 unknown	 subspecies	 (Daugherty	 et	 al,	 1990).	
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Therefore,	 for	 successful	 conservation	 and	 management,	 populations	 need	 to	 be	

assigned	to	management	units	based	on	population	structure.		

	

Methods	for	Detecting	Population	Structure	

The	importance	of	population	structure	for	conservation	and	evolution	has	been	

recognized	 for	decades,	 and	 therefore	numerous	 approaches	have	been	developed	 to	

detect	 and	 quantify	 such	 structure	 (Daugherty	 et	 al.,	 1990;	 Hampton	 et	 al.,	 2004).	

Population	 structure	 can	 be	 closely	 related	 with	 movement	 patterns.	 However,	

movement	 patterns	 cannot	 be	 the	 base	 of	 analyzing	 population	 structure	 because	 of	

two	major	 confounding	 factors.	 First,	 movement	 of	 individuals	 might	 not	 be	 obvious	

geographically	 but	 can	 be	 observed	 in	 genetic	 level	 (Paetkau	 et	 al.,	 1995).	 Second,	

studies	 using	 observation	 and	 movement	 patterns	 can	 only	 provide	 estimates	 of	

contemporary	 movements,	 and	 do	 not	 provide	 information	 on	 long-term	 trends	

(Rueness	 et	 al.,	 2003).	 Therefore,	 to	 detect	 population	 structure,	 genetic	 information	

can	 reveal	 gene	 flow	 better	 than	 observation	 of	 movement	 patterns.	 As	 a	 result,	

numerous	methods	for	detecting	population	structure	based	on	genetic	data	have	been	

developed.	

	

Fst	

	 In	the	late	20th	century,	biologists	typically	used	F-statistics	(Fst)	to	estimate	the	

degree	 of	 divergence	 between	 one	 or	more	 populations.	 Fst	 is	 how	 random	 gametes	

correlated	within	populations	relative	to	the	gametes	in	the	species	(Wright,	1965).	Fst	is	
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calculated	 as	 the	 reduction	of	 heterozygosity	within	populations	 compare	 to	 the	 total	

species	 (Frankham	 et	 al.,	 2002).	 Fst	 has	 historically	 been	 based	 on	 a	 comparison	 of	

observed	and	expected	heterozygosity,	and	this	is	therefore	based	on	the	assumption	of	

Hardy-Weinberg	 and	 linkage	 equilibrium.	 The	 value	 of	 Fst	 ranges	 from	 0	 to	 1,	 with	 0	

representing	 no	 differentiation	 and	 1	 representing	 complete	 differentiation.	 Although	

widely	used,	one	major	drawback	in	the	use	of	Fst	is	that	it	requires	researchers	to	pre-

define	which	 individuals	originated	from	which	population.	Then	Fst	 is	used	to	quantify	

the	differentiation	between	these	pre-defined	populations.	 In	other	words,	 in	order	to	

calculate	Fst,	the	numbers	of	populations,	and	individuals	within	those	populations,	must	

be	pre-defined.	However,	 if	 a	 researcher	 is	 studying	population	 structure,	 then	clearly	

there	are	questions	about	the	nature	of	such	structure,	and	therefore	these	pre-defined	

assumptions	may	be	incorrect,	leading	to	incorrect	analyses	of	the	data,	and	subsequent	

conclusions	and	implications.		

	

Structure	

	 In	the	twenty-first	century,	new	methods	that	do	not	require	prior	assumptions	

of	population	structure	were	developed	and	are	widely	used	today.	In	2000,	Pritchard	et	

al.	developed	a	program	called	Structure,	which	was	 the	 first	 such	method,	and	which	

revolutionized	the	analysis	of	population	structure	based	on	genetic	data.	When	given	a	

simulated	 set	 of	 individuals	 that	 can	 be	 separated	 into	 several	 populations	 based	 on	

allele	 frequencies,	 Structure	 calculates	 the	 highest	 probability	 of	 a	 set	 range	 of	

population	numbers	(e.g.	1-6).	The	Structure	program	combines	Bayesian	formulas	and	
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Markov	 Chain	Monte	 Carlo	 (MCMC)	 to	 find	 the	 pattern	 with	 the	 highest	 probability.	

Bayesian	 formulas	 is	used	 to	 calculate	 the	possibilities	and	MCMC	 is	used	 to	 tackle	as	

many	possibilities	as	possible.	Since	the	development	of	 this	method,	pre-assumptions	

of	 population	 numbers	 and	 pre-assigning	 individuals	 to	 populations	 are	 no	 longer	

required.	 Based	 on	 this	 huge	 change,	method	 Structure	 eliminates	 the	 possibilities	 of	

human	 errors	 on	 prior	 assumptions	 and	 this	 revolutionized	 how	 biologists	 test	 for	

population	 structure.	 Despite	 this	 revolution,	 structure	 bases	 its	 calculations	 on	 the	

assumptions	 of	 Hardy-Weinberg	 and	 linkage	 equilibrium,	 and	 therefore	 may	 be	

inappropriate	for	the	analysis	of	many	data	sets	and/or	for	detecting	structuring	among	

populations	that	are	only	slightly	differentiated	(Frantz	et	al.,	2009).		

	

Discriminant	Analysis	of	Principal	Components	(DAPC)	

	 As	 Structure	 continues	 to	 be	 refined	 (Falush	 et	 al.,	 2003;	 Falush	 et	 al.,	 2007;	

Hubisz	 et	 al.,	 2009),	 other	 methods	 have	 also	 been	 developed.	 Another	 widely	 used	

approach	 that	 was	 recently	 developed	 in	 2010	 is	 Discriminant	 Analysis	 of	 Principle	

Components	 (DAPC).	 	 DAPC	 combines	 two	 sets	 of	 analyses,	 which	 are	 principle	

component	 analysis	 (PCA)	 and	Discriminant	 Analysis	 (DA)	 (Jombart	et	 al.,	 2010).	 First,	

genetic	 data	 are	 converted	 to	 binary	 data,	 where	 each	 column	 is	 an	 allele	 and	 each	

individual	contains	a	0,	0.5,	or	1	for	each	allele	indicating	that	they	contain	0,	1,	or	two	

copies	of	that	allele.	PCA	analysis	is	then	conducted	on	these	transformed	genotypes	to	

reduce	them	to	a	few	principal	components	that	appropriately	represent	the	variation	in	

the	data.	A	k-means	clustering	analysis	is	then	conducted	on	the	principal	components,	



	 7	

which	 decomposes	 the	 total	 variance	 in	 allele	 frequencies	 into	 between-group	 and	

within-group	 components.	 This	 analysis	 is	 conducted	 for	 a	 range	 of	 hypothesized	

numbers	 of	 groups	 (populations)	 (e.g.,	 1-10),	 and	 then	Bayesian	 Information	 Criterion	

(BIC)	are	calculated	and	compared	for	each	analysis	to	identify	which	number	of	groups	

is	the	best	fit	to	the	data.	Discriminant	analysis	(DA)	is	then	conducted	on	the	genotypes,	

using	the	identified	grouping	information,	to	identify	and	quantify	how	to	partition	the	

data	in	a	way	that	maximizes	the	between	group	variation	while	minimizing	the	variation	

between	 individuals	 in	a	group	 (Jombart	et	al.	 2010).	 This	method	 represents	another	

major	advancement	because	compared	to	Structure,	DAPC	is	much	faster,	can	work	on	

much	 larger	 data	 sets,	 and	 does	 not	 require	 any	 prior	 assumptions	 regarding	 Hardy-

Weinberg	 or	 linkage	 equilibrium.	 Therefore,	 under	 some	 circumstances	 it	 performs	

better	than	structure	(Jombart	et	al.,	2010).		

	

Network	Analysis	

	 Structure	and	DAPC	are	currently	widely	used	by	biologists	to	detect	population	

structure	 (Jombart	 et	 al.,	 2010;	Wood	 et	 al.,	 2011).	 However,	 other	 cluster-detection	

methods	exist	that	are	used	across	a	range	of	other	scientific	fields.	The	most	prominent	

of	 these	 is	 network	 analyses,	 which	 is	 used	 across	 a	 range	 of	 fields,	 from	 physics	 to	

analyses	of	social	structure	(Borgatti	et	al.,	2009;	Estrada,	2013).	With	network	analyses	

individuals	or	things	are	represented	as	“nodes”,	and	the	relationships	among	them	are	

represented	 as	 “vertices”	 connecting	 them.	Often	 the	 length	 of	 the	 vertices	 between	

two	nodes	is	indicative	of	the	strength	of	the	connection	between	them.	When	data	are	
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arranged	 in	 this	 way,	 it	 is	 possible	 to	 quickly	 identify	 and	 quantify	 several	 key	

characteristics,	 such	 as	 the	 presence	 and	 identity	 of	 clusters,	 where	 within-cluster	

connections	 are	 tighter	 than	 between-clusters,	 as	 well	 as	 the	 presence	 of	 key	

individuals.	 In	 this	 way,	 network	 analyses	 have	 been	 used	 to	 study	 many	 complex	

patterns,	 such	 as	 Facebook	 and	 the	 internet	 (Papacharissi,	 2009),	 as	 well	 as	 how	

information	flows	through	communities	of	people	(Serrat,	2009).		

	 In	 terms	 of	 population	 structure,	 it	 should	 be	 possible	 to	 create	 a	 network	 of	

individuals	 based	 on	 their	 pairwise	 relatedness	 values.	 If	 population	 structure	 exists,	

then	individuals	within	each	population	should	be	more	related	to	each	other	than	they	

are	to	individuals	in	other	populations.	This	should	lead	to	clusters	of	related	individuals,	

representing	populations,	which	should	be	 readily	apparent	and	quantifiable	based	on	

the	analysis	of	such	a	network.	

	 Dyer	&	Nason	 (2004)	were	 first	 to	apply	network	analyses	 to	genetic	data,	and	

they	did	so	before	the	implementation	of	DAPC.	However,	their	analyses	and	approach	

only	 used	 network	 analysis	 to	 see	 how	 pre-defined	 populations	 are	 associated	 and	

related	 to	one	and	other,	using	 the	population	as	 the	unit	 (rather	 than	 the	 individual)	

(Garroway	et	al.,	2008).	Thus,	network	analyses	have	not	yet	been	used	in	attempts	to	

detect	population	structure	and	for	assigning	individuals	to	those	populations.		

	

Objectives	

	 My	 research	 will	 examine	 the	 potential	 for	 network	 analyses	 to	 detect	

population	 structure.	 I	 will	 test	 the	 effectiveness	 of	 network	 analyses	 at	 detecting	
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population	structure	by	comparing	it	with	the	performance	of	Structure	and	DAPC,	using	

Fst	to	quantify	the	degree	of	differentiation	between	populations.	To	achieve	this,	I	will	

use	 simulated	 microsatellite	 data	 under	 different	 migration	 rates	 from	 0.001	 to	 0.1	

migrants/generation.	I	predict	that	network	analyses	will	perform	better	than	the	other	

methods	 at	 detecting	 number	 of	 populations	 and	 assigning	 individuals	 to	 correct	

populations.		

	

Methods	

Generation	of	Population	Genetic	Data	for	Method	Comparisons	

To	 generate	 data	 with	 known	 patterns	 of	 structure	 for	 comparing	 the	

performance	of	each	method,	data	were	simulated	using	the	program	Easypop	(Balloux,	

2001).	Four	populations	were	simulated,	each	containing	200	 individuals	genotyped	at	

15	 microsatellite	 loci.	 These	 populations	 were	 organized	 based	 on	 the	 “continuous	

stepping	stone”	model,	where	individuals	could	only	migrate	to	the	population	directly	

adjacent	 to	 them	 (Figure	 1).	 The	 same	migration	 rate	was	used	across	 all	 populations	

within	a	simulation,	but	was	allowed	to	vary	across	simulations.	Four	different	migration	

rates	 were	 tested:	 0.001,	 0.005,	 0.01,	 and	 0.05	 migrants	 per	 generation,	 and	 10	

iterations	 were	 run	 under	 each	 condition.	 	 The	 simulations	 were	 run	 for	 10,000	

generations	to	allow	the	population	to	reach	equilibrium,	at	which	time	fifty	individuals	

were	 sampled	 from	 each.	 These	 200	 samples	 (50	 from	 each	 of	 the	 4	 populations)	

represented	 the	 test	 data	 for	 each	 simulation,	 used	 to	 test	 the	 performance	 of	 each	

method.	The	generated	data	were	analyzed	by	the	three	methods:	Structure,	DAPC	and	
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network	 analysis;	 and	 Fst	was	 calculated	 for	 all	 pairwise	 comparisons	 to	 quantify	 the	

degree	of	differentiation.		

	

Figure	 1.	 Population	 model:	 Continuous	 stepping	 stone	 model	 used	 in	 stimulating	
genetic	 data.	 This	 model	 includes	 four	 populations	 exchanging	 genetic	 information	
with	only	the	population	beside	them.	The	exchange	of	genetic	information	is	defined	
as	the	migration	rate	(m).	
	

Comparison	of	the	Different	Methods	in	Different	Programs	

Running	Structure	

The	generated	genetic	data	was	analyzed	with	the	program	STRUCTURE	to	test	

this	 method's	 ability	 to	 detect	 population	 numbers	 and	 assign	 individuals	 to	 correct	

populations	(Falush	et	al.,	2003;	Falush	et	al.,	2007;	Hubisz	et	al.,	2009;	Pritchard	et	al.,	

2000).	The	parameters	for	all	the	iterations	under	all	migration	rates	included	a	burn-in	

period	 of	 50,000	 steps	 and	 500,000	 MCMC	 repeats	 recorded	 after	 burn-in,	 allowing	

admixture	 and	 a	 correlation	 of	 allele	 frequencies	 between	 populations.	 Each	 iteration	

had	the	population	number	(K)	set	to	range	from	1	to	6,	with	4	iterations	at	each	K.	The	

average	probability	for	each	K	(across	the	4	iterations)	was	taken	as	the	probability	for	

that	K.		
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DAPC	Analysis	

	 DAPC	 analyses	 were	 conducted	 using	 the	 adegenet	 package	 in	 R	 (Jombart	 &	

Ahmed,	2011;	Rstudio	team,	2016).	Data	were	first	read	into	R,	and	then	the	number	of	

clusters	was	estimated	using	the	find.clusters	function,	setting	the	maximum	number	of	

clusters	 to	10.	This	 function	 first	 converts	 the	data	 to	principal	 components,	and	 then	

conducts	a	k-means	clustering	analysis	on	the	data,	using	the	number	of	clusters	from	1	

to	the	maximum	specified.	Bayesian	information	criterion	(BIC)	are	then	used	to	identify	

which	 model	 (number	 of	 clusters)	 best	 fits	 the	 data.	 From	 these	 data,	 discriminant	

analyses	were	conducted	using	the	dapc	function.	One	issue	with	discriminant	analyses	

is	that	they	can	“over-fit”	the	data	if	they	are	based	on	too	many	principal	components,	

meaning	 that	 they	 can	 discriminate	 between	 any	 cluster,	 not	 just	 those	 that	 are	

biologically	meaningful.	To	account	for	this,	we	used	the	a.score	function	to	identify	at	

what	number	of	included	principal	components	the	performance	of	the	model	started	to	

plateau.	 The	 inflection	 point	 of	 such	 an	 analysis	 represents	 the	 optimal	 number	 of	

principal	components	to	retain.	Subsequent	DAPC	analyses	were	based	on	this	identified	

optimal	number	of	principal	components.		

	

Network	Analysis	

Genetic	data	were	read	into	R,	and	relatedness	was	estimated,	using	the	related	

package	 (Pew	et	 al.,	 2015;	 Rstudio	 team,	 2016).	 The	 coancestry	 function	was	 used	 to	

estimate	pairwise	 relatedness	based	on	Wang’s	 (2002)	estimator.	A	pairwise	matrix	of	

relatedness	 was	 created,	 and	 then	 truncated	 so	 that	 all	 values	 less	 than	 zero	 were	
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reported	as	zero	because	vertices	cannot	have	a	negative	length	in	networks.	This	matrix	

was	 converted	 to	 a	 graph	 (network)	 using	 the	 graph.adjacency	 function	 of	 the	 igraph	

package	(Csardi	&	Nepusz,	2006).	Cluster	analyses	were	then	conducted	on	the	graphs	

using	 the	walktrap.community	 function	 (Pons	&	Latapy,	2006).	The	number	of	clusters	

identified,	 and	 the	 assignment	 of	 individuals	 to	 those	 clusters,	 were	 saved	 for	

subsequent	analyses.	

	

Fst	

	 Simulated	data	was	 read	 into	R	and	package	gstudio	was	used	 for	 Fst	 (Rodney,	

2014;	 Rstudio	 team,	 2016).	 The	 structure	 parameter	 from	 Nei	 (1978)	 and	

genetic.structure	function	were	used	for	calculating	the	Fst	value.	Nei’s	(1978)	structure	

parameter	was	chosen	as	it	was	the	original	parameter	developed	for	Fst	calculation.	Fst	

values	 were	 calculated	 to	 act	 as	 a	 reference	 to	 quantify	 the	 differentiation	 among	

populations.	The	values	between	each	population	were	saved	for	further	analysis.		

	

Analyzing	the	result	

	 Out	of	every	ten	iterations	under	each	migration	rate	(0.001,	0.005,	0.01,	0.05	&	

0.1),	 the	 error	 rates	 of	 the	methods	 (Structure,	 DAPC	 and	 network)	 on	 detecting	 the	

correct	 number	 of	 populations	 were	 calculated.	 For	 the	 iterations	 with	 the	 correct	

number	 of	 populations	 detected,	 the	 average	 error	 rates	 for	 assigning	 individuals	 to	

correct	 populations	 were	 calculated	 as	 well.	 The	 error	 rates	 were	 then	 compared	

separately	under	each	migration	rate	among	methods.		
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Results	

Detecting	Number	of	Populations	

All	 three	 structure	 detection	methods	 (DAPC,	 structure,	 and	 network	 analyses)	

identified	the	correct	number	of	populations	(4)	at	the	lowest	simulated	migration	rate	

(m	=	0.001	migrants/generation).	However,	at	higher	migration	rates	(m	=	0.005,	0.01,	

0.05	&	0.1)	differences	in	the	performance	of	the	methods	became	evident.	Specifically,	

the	network	analysis	method	performed	poorly	at	all	other	migration	rates,	even	those	

that	were	still	quite	low,	with	an	error	rate	of	50%	at	a	migration	rate	of	0.005	(Figure	2).	

The	error	rates	for	the	other	methods	(structure	and	DAPC)	remained	low	at	migration	

rates	of	0.005	and	0.01,	but	then	greatly	increased	at	a	migration	rate	of	0.05	(Figure	2),	

showing	 that	 the	 critical	 degree	 of	 differentiation	 for	 estimator	 performance	 occurs	

between	 migration	 rates	 of	 0.01	 and	 0.05	 migrants/generation.	 The	 performance	 of	

Structure	 and	 DAPC	 were	 similar	 at	 migration	 rates	 of	 0.005	 and	 0.01,	 with	 DAPC	

performing	slightly	better	at	the	lower	migration	rate	and	Structure	performing	slightly	

better	at	the	higher	rate	(Figure	2).	Interestingly,	even	in	those	situations	(m=	0.05	&	0.1)	

where	 DAPC	 did	 not	 detect	 4	 populations,	 it	 tended	 to	 detect	 3	 populations,	

corresponding	 to	 the	merging	 of	 2	 populations	 before	 population	 structure	 vanished.	

The	 network	 method,	 on	 the	 other	 hand,	 did	 not	 estimate	 a	 biologically	 reasonable	

number	 of	 populations	 in	 such	 case	 (m	 =	 0.05	&	 0.1),	 with	 the	 number	 of	 estimated	

populations	ranging	from	2	to	8.		
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Figure	 2.	 The	 error	 rate	 of	 each	 method	 with	 respect	 to	 detecting	 the	 correct	 number	 of	
populations	(4)	out	of	the	10	iterations	performed	under	each	migration	rate.		
	
	

Population	Assignment	

Population	assignment	(the	assignment	of	individuals	to	the	correct	population)	

was	 only	 assessed	 for	 those	 iterations	where	 the	 correct	 number	 of	 populations	was	

detected.	 Note	 that	 this	 excludes	 many	 of	 the	 iterations	 for	 all	 methods	 at	 higher	

migration	rates	(m	=	0.05	&	0.1),	and	for	the	network	analyses	even	at	the	lower	rates	

(m	=	0.01).	All	three	methods	showed	a	general	increase	in	error	rate	as	migration	rates	

increased.	 However,	 at	 migration	 rates	 of	 0.05	 and	 0.1,	 the	 one	 iteration	 of	 each	 in	

which	DAPC	detected	the	correct	population	number,	 the	error	 rate	was	 lower	than	 it	

was	at	migration	rates	of	0.005	and	0.01	(Figure	3).	This	contrasts	with	network	analysis,	

where	 the	 error	 rate	 in	 population	 assignment	 was	 very	 high	 (0.47	 and	 0.60)	 at	 the	

higher	 migration	 rates	 even	 when	 the	 correct	 number	 of	 populations	 was	 detected	
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(Figure	4).	This	suggests	that	the	identification	of	the	correct	number	of	populations	at	

these	rates	is	not	indicative	of	the	method	performing	well,	but	rather	may	be	by	chance.		

	

Figure	3.	The	error	 rates	of	assigning	 individuals	 to	 the	correct	populations	 for	each	method	
when	 the	 correct	 population	 number	 (4)	 was	 detected	 at	 3	 relatively	 low	 migration	 rates	
(0.001,	0.005	&	0.01	migrants/generation).		
	

	
Figure	4.	The	error	 rates	of	assigning	 individuals	 to	 the	correct	populations	 for	each	method	
when	the	correct	population	number	(4)	was	detected	at	2	relatively	high	migration	rates	(0.05	
&	0.1	migrants/generation).	
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Discussion	

As	tested,	network	analysis	does	not	appear	to	be	a	powerful	tool	for	detecting	

population	 structure	 nor	 assigning	 individuals	 to	 their	 correct	 populations	 (Figure	 2).	

Although	network	analysis	was	expected	to	work	as	well	as,	if	not	better	than,	the	other	

methods,	 with	 even	 moderate	 levels	 of	 gene	 flow	 its	 ability	 to	 detect	 population	

structure	 and	 assign	 individuals	 correctly	 decreased	 dramatically	 (Figure	 2,	 3,	 4).	

Therefore,	 network	 analysis	 does	 not	 seem	 like	 a	 viable	 alternative	 for	 detecting	

population	 structure	 and	 assigning	 individuals	 to	 correct	 populations,	 even	 when	

migration	rates	are	relatively	low	(ie.	m	>=	0.05).		

	

Limitation	for	Network	Analysis	and	Future	Analysis	

	 There	are	two	clear	 limitations	of	this	study	as	 it	 relates	to	the	performance	of	

network	analyses.	First,	due	to	time	limitations	I	only	tested	5	migration	rates	(m	=	0.001,	

0.005,	0.01,	0.05	&	0.1	migrants/generation).	After	 the	rate	of	0.005,	 tested	migration	

rates	differed	by	large	amounts,	resulting	in	unknown	performance	of	all	three	methods	

between	 those	migration	 rate	 gaps.	 Therefore,	 future	 research	 could	 focus	 on	 testing	

more	migration	 rates	with	 smaller	 intervals,	 developing	a	better	understanding	of	 the	

performance	 of	 network	 analysis	 at	 detecting	 population	 structure.	 Furthermore,	

clustering	methods	in	network	analysis	might	play	an	essential	role	in	detecting	correct	

number	of	populations.	In	this	project,	only	one	clustering	method	(walktrap	community)	

was	tested.	However,	other	methods	exist,	such	as	spinglass,	leading	eigenvector,	fastQ	

and	 edge	 betweenness	 (Rodriguez	 &	 Pepe,	 2008;	 Steinhaeuser	 &	 Chawla,	 2010).	
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Therefore,	 other	 clustering	 methods	 might	 show	 different	 performance	 other	 than	

walktrap	community.		

At	 first,	 walktrap	 community	 clustering	 method	 was	 chosen	 based	 on	 the	

preliminary	 analysis	 on	 how	 different	 clustering	 methods	 perform	 at	 detecting	

population	structure.	However,	walktrap	community	did	not	perform	as	well	as	others	

based	 on	 the	 results.	 Therefore,	 due	 to	 the	 worst	 performance	 walktrap	 community	

showed	 during	 this	 study,	 additional	 researches	were	 done.	One	 study	 has	 compared	

the	performance	of	several	clustering	methods	on	identifying	community	structure,	and	

found	 that	 the	 walktrap	 community	 detection	 method	 tended	 to	 find	 clusters	 at	 a	

relatively	 higher	 complexity	 than	 the	 other	 methods.	 They	 ranked	 the	 methods	 on	

different	 criteria	 and	 in	 general	 walktrap	 had	 the	worst	 performance	 in	most	 criteria	

(Steinhaeuser	&	Chawla,	2010).	Therefore,	walktrap	community	might	not	be	 the	best	

clustering	method	for	my	simulated	simple	stepping	stone	model.	Future	research	could,	

first,	 test	walktrap	 clustering	method	 on	models	with	 higher	 complexity	 and,	 second,	

test	other	clustering	methods	for	clustering	the	populations	in	network	analysis.		

	

Comparison	between	Structure	and	DAPC	

	 Although	 network	 analysis	 did	 not	 show	 great	 performance	 in	 detecting	

population	 structure,	 the	 results	 allowed	 us	 to	 compare	 the	 relative	 performance	 of	

DAPC	and	Structure.	Previous	studies	testing	the	performance	of	Structure	found	that	it	

could	accurately	identify	populations	when	Fst	 is	as	low	as	0.03	(Latch	et	al.,	2006).	My	

results	 showed	 a	 similar	 pattern.	 At	 migration	 rate	 of	 0.05,	 Fst	 values	 between	
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populations	are	all	lower	than	0.01.	This	is	also	the	migration	rate	that	Structure	failed	to	

detect	any	population	structure	(Figure	2).	

On	the	other	hand,	DPAC	performed	the	best	at	detecting	the	correct	number	of	

populations	 at	 lower	 migration	 rates	 (m	 =	 0.001	 &	 0.005)	 as	 well	 as	 maintaining	

relatively	low	error	rate	at	migration	rate	of	0.01.	Even	at	high	migration	rates	(m	=	0.05	

&	 0.1),	 DAPC	 tended	 to	 detect	 population	 numbers	 that	 were	 close	 to	 the	 correct	

population	number	(4).	A	study	by	Jombart	et	al.	(2010)	also	saw	this	pattern.	However,	

they	 found	 that	 in	 stepping	 stone	model,	DPAC	usually	 perform	better	 than	Structure	

when	our	study	showed	similar	performance	for	both	methods	at	low	migration	rates	(m	

=	0.001	&	0.05)	(Figure	2;	Jombart	et	al.,	2010).		

In	 addition,	 at	 lower	migration	 rates	 (m	 =	 0.001,	 0.005	 &	 0.01),	 comparing	 to	

DAPC,	 Structure	performed	 the	 best	 at	 assigning	 individuals	 to	 the	 correct	 population	

and	this	also	agreed	with	a	previous	study	(Figure	3;	Latch	et	al.,	2006).		

Therefore,	 based	 on	my	 results,	 at	 lower	migration	 rates	 (m	 =	 0.001,	 0.005	&	

0.01),	a	 combination	of	DAPC’s	number	of	populations	and	 the	Structure’s	assignment	

should	be	used	to	reach	the	best	results.	When	migration	rate	reached	0.05,	the	results	

from	neither	method	are	reliable	anymore.		
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