
Automatic Inventory Identification
through

Image Recognition

by
Matt Triff

Thesis submitted to Saint Mary’s University
in partial fulfilment of the requirements for the

Degree of Master of Science in Computing and Data Analytics

July, 2017, Halifax, Nova Scotia

Copyright Matt Triff, 2017

Approved: Dr. Hai Wang
Supervisor

Department of Finance, Info Systems
and Management Science

Approved: Dr. Haiyi Zhang
External Examiner
Acadia University

Approved: Dr. Yasushi Akiyama
Supervisory Committee Member

Department of Mathematics
and Computing Science

Date: July 16, 2017

1

Abstract

“Automatic Inventory Identification through Image Recognition”

by Matt Triff

Abstract: Companies are looking to use technology to replace repetitive,
low skill tasks currently performed by human employees. One such series of
tasks is conducting an inventory of items within a warehouse. This requires
employees to identify individual items on a shelf. This task is well-suited to the
application of computer vision techniques. Images of shelves in a warehouse
can be acquired and analyzed. The goal of this research is to accurately identify
items within the images for the purpose of inventory management.

This objective requires both the detection of objects within an image, and
the identification of those objects. I propose a series of techniques to identify
an item against a set of template images of potential items. To demonstrate
the effectiveness of these techniques, I have developed a prototype system that
performs an inventory of equipment in a data centre.

July 16, 2017

2

Automatic Inventory Identification
through

Image Recognition

by
Matt Triff

Thesis submitted to Saint Mary’s University
in partial fulfilment of the requirements for the

Degree of Master of Science in Computing and Data Analytics

July, 2017, Halifax, Nova Scotia

Copyright Matt Triff, 2017

Approved:
Dr. Hai Wang

Supervisor
Department of Finance, Info Systems

and Management Science

Approved:
Dr. Haiyi Zhang

External Examiner
Acadia University

Approved:
Dr. Yasushi Akiyama

Supervisory Committee Member
Department of Mathematics

and Computing Science

Date: August 31, 2017

3

Extended Abstract

Companies are looking to use technology to replace repetitive, low skill tasks cur-
rently performed by human employees. One such series of tasks is conducting an
inventory of items within a warehouse. This requires employees to identify individ-
ual items on a shelf. This task is well-suited to the application of computer vision
techniques. Images of shelves in a warehouse can be acquired and analyzed. The
goal of this research is to accurately identify items within the images for the purpose
of inventory management.

This objective requires both the detection of objects within an image, and the
identification of those objects. I propose a series of techniques to identify an item
against a set of template images of potential items. The first step requires detection
of the items in the image. The second step uses colour clustering and keypoint
description to identify the item against a set of template images. An item in an
image may be occluded and appear at various angles. The proposed techniques are
designed to handle such distortions.

To demonstrate the effectiveness of these techniques, I have developed a prototype
system that performs an inventory of equipment in a data centre. The prototype
system provides a ranked list of possible matches for the pieces of equipment. The
desired output is a limited set of possible matches that a human operator can easily
verify. The prototype proved to be reasonably effective against 47 template images
in ideal conditions. The ranked results provided the correct match within the top ten
options 86% of the time, within the top five options 59% of the time, and as the first
option 27% of the time. When tested against 74 template images and a more varied
dataset the system was less effective, possibly due to imperfect variations in lighting
and camera distortion. The ranked results provided the correct match within the
top ten options only 12% of the time, within the top five options 10% of the time,
and as the first option 6% of the time.

4

Contents

1 Introduction 12
1.1 Motivation and Application . 12
1.2 Thesis Scope . 12
1.3 Thesis Structure . 13

2 Review of Literature 15
2.1 Image Representation . 15
2.2 Preprocessing . 15

2.2.1 Calibration . 15
2.2.2 Thresholding . 17

2.3 Edge Detection . 19
2.3.1 Canny Edge Detection . 19
2.3.2 Progressive Probabilistic Hough Transform 23

2.4 Region Matching . 24
2.4.1 Features from Accelerated Segment Test (FAST) 24
2.4.2 Binary Robust Independent Elementary Features (BRIEF) . . 27
2.4.3 Oriented FAST and Rotated BRIEF (ORB) 27
2.4.4 k-Nearest Neighbour . 28
2.4.5 Least Median of Squares (LMedS) 29
2.4.6 Hue, Saturation, Value (HSV) Colour Space 30
2.4.7 Colour Indexing . 32
2.4.8 K-means Clustering . 33
2.4.9 Colour Clustering . 34

3 Problem Statement 36
3.1 Overview . 36
3.2 Server Rack Images . 36

3.2.1 Data Model . 37
3.2.2 Examples . 39

3.3 Template Images . 39
3.3.1 Data Model . 45

5

3.3.2 Examples . 46

4 Proposed Approach 48
4.1 Edge Detection . 48

4.1.1 Objective . 48
4.1.2 Proposed Method . 48

4.2 Region Matching . 50
4.2.1 Objective . 50
4.2.2 Proposed Method . 50

5 Experimental Evaluation 57
5.1 Overview . 57
5.2 Prototyping Environment . 57

5.2.1 Running Environment . 57
5.2.2 OpenCV . 58
5.2.3 Programming Languages . 59

5.3 Testbed Description . 59
5.3.1 Preprocessing . 59
5.3.2 Calibration . 60
5.3.3 Edge Detection . 62
5.3.4 Region Matching . 67
5.3.5 Final Ranking . 78
5.3.6 Evaluation Tasks . 78

5.4 Testing Data Description . 79
5.5 Manual Extract Test Results . 80

5.5.1 Basic Statistical Performance 83
5.5.2 Mean Reciprocal Rank Performance 84

5.6 Full Rack Test Results . 87
5.6.1 Basic Statistical Performance 91
5.6.2 Mean Reciprocal Rank Performance 92

5.7 Time Performance . 95

6

6 Summary and Conclusion 96
6.1 Conclusions . 96
6.2 Future Work . 97

7 Bibliography 99

8 Appendices 104
8.1 Appendix 1: Phase 1 Template Library Equipment 104
8.2 Appendix 2: Phase 2 Template Library Equipment 107
8.3 Appendix 3: Algorithms . 111

7

List of Figures

1 Calibration procedure, as proposed by Zhang [49] 17
2 Depiction of linear interpolation, used for non-maximum suppression

by the Canny edge detector [47] . 22
3 Steps for the Canny Edge detection algorithm 22
4 The graphs show three points. On the left is the line drawn between

the three points. On the right are the results of plotting the points by
Equation (12) . 24

5 Test location selection method using Equation (14) for BRIEF [6] . . 28
6 HSV colour model mapped to a cylinder [41] 30
7 JSON format/skeleton for a server rack 38
8 Raw image of a server rack taken with a GoPro 4 camera 40
9 Image of a server rack after undistortion and cropping 41
10 JSON output after analyzing a server rack image 42
11 Image of a server rack with glare from overhead lighting. Image is

from preliminary tests, using a camera with a narrow field of view.
This image is a composite of three separate images. 43

12 Image of a Dell PowerEdge R720xd piece of equipment 44
13 Image of a Dell PowerEdge R720 piece of equipment 44
14 JSON format/skeleton for a server rack 45
15 JSON format/skeleton for a piece of equipment template 47
16 Image of a Sun Microsystems SunFire V60x piece of equipment . . . 47
17 Dell PowerEdge R720, as shown in Figure 12, with the features out-

lined in green, ignorable regions filled in black 47
18 Dell PowerEdge R720 with ignorable regions filled in black (top-middle

and bottom-right) . 52
19 Example of a calibration image . 61
20 Rack 2, with the perimeter of the rack outlined in green 63
21 The results of applying Canny edge detection to a server rack 66

8

22 The lines separating pieces of equipment in a rack, as found by the
edge detection algorithm . 68

23 The five valid regions extracted from the Dell PowerEdge R720 template 70
24 Lines drawing the keypoint matches between a correctly matching

template (left), and an incorrectly matching template (right) 72
25 The HSV histograms generated for the Apex 1000 template image [21] 73
26 The HSV histograms generated for an extract image of an Apex 1000

server [21] . 74
27 Example of a plain faceplate, Kaveman 16 Digital V6 87
28 Example of a grill faceplate, Sun server 87
29 Sun server with a colourful faceplate 88
30 Example of a unique faceplate, HP ProLiant 88
31 Example of a unique faceplate behind a mesh door 89

9

List of Tables

1 Experimental Environment Specifications 58
2 Test Data Summary - Phase 1 . 79
3 Test Data Summary - Phase 2 . 80
4 Results - Phase 1 - Extract Test Equipment Summary 81
5 Results - Phase 1 - High Ranking Summary 81
6 Results - Phase 2 - Extract Test Equipment Summary 82
7 Results - Phase 2 - High Ranking Summary 83
8 Results - Phase 1 - Manual Extract Basic Statistics 83
9 Results - Phase 2 - Manual Extract Basic Statistics 83
10 Results - Phase 1 - Manual Extract Mean Reciprocal Rank Summary 85
11 Results - Phase 2 - Manual Extract Mean Reciprocal Rank Summary 86
12 Results - Phase 1 - Full System Test Summary 89
13 Results - Phase 1 - Full System High Ranking Summary 89
14 Results - Phase 2 - Full System Test Summary 90
15 Results - Phase 2 - Full System High Ranking Summary 91
16 Results - Phase 1 - Full System Basic Statistics 92
17 Results - Phase 2 - Full System Basic Statistics 92
18 Results - Phase 1 - Full System Mean Reciprocal Rank Summary . . 93
19 Results - Phase 2 - Full System Mean Reciprocal Rank Summary . . 94

10

List of Algorithms

1 Progressive Probabilistic Hough Transform algorithm outline [25] . . 25
2 Algorithm to convert a pixel from the RGB to HSV colour space, from

[42] . 31
3 Pseudo code algorithm for comparing two sets of points to find the

closest matches . 75
4 High level proposed algorithm for scoring colour matching 111
5 High level proposed algorithm for edge detection 111
6 High level proposed algorithm for extracting valid regions 112
7 High level proposed algorithm for scoring shape matching 112
8 Pseudo code algorithm for detecting rack edge 112
9 Pseudo code algorithm for detecting individual pieces of equipment . 113
10 Pseudo code algorithm for extracting valid regions from an image with

ignorable regions . 114
11 Pseudo code algorithm for score two images based on shape 115
12 Pseudo code algorithm for scoring two images based on colour indexing115
13 Pseudo code algorithm for colour clustering 116

11

1 Introduction

1.1 Motivation and Application

In 2015, Saint Mary’s University was approached to explore development of an image
recognition system by an industry partner. The desired system would be used to
boost productivity by reducing the labour involved in performing manual inventories
in a warehouse environment. This lead to my involvement and the development of
the proposed system described by this thesis.

The industry partner was unable to develop a large, labelled, dataset. Instead,
they could only to provide a relatively small sample of images. Image recognition
using machine learning has been popularized due to the quality of results it delivers
[1]. However, machine learning algorithms require large datasets in order to prevent
overfitting. This thesis describes the practical application of pattern recognition
techniques to a limited dataset for image recognition. The desired system provides
a list of potential matches to an input image. Ideally, the correct match would rank
within the top ten options or better. The system would provide the ability for a
low-skilled operator to quickly find the correct match from the results.

1.2 Thesis Scope

This thesis describes a potential approach to the generalized problem of performing
an automated inventory of items within a warehouse. The proposed solution suggests
an ensemble of pattern recognition techniques using edge detection, feature extrac-
tion and colour comparison. The use of these techniques individually is not novel.
However, this thesis discusses some solutions to specific problems that have not been
widely explored. One such solution is an algorithm to automatically ”break down”
an image into sub-images, such that specific parts of the image are removed and
ignored, and the sub-images may be used with existing implementations of pattern
recognition algorithms. Another solution is a process of deciding between two very
similar images by analyzing specific areas of an image that are known to contain

12

identifying marks.
The proposed approach is applied to a data centre environment with the aim

of identifying pieces of equipment in server racks. The dataset for this experiment
consists of images taken of server racks within the data centre by two different types
of cameras. This thesis shows where the proposed approach can best be applied for
reasonable results. I also describe where the application of this approach will have
poor results and the limitations of the proposed techniques.

In the experiments, the system has been developed in C# and C++, using the
open source OpenCV computer vision library.

1.3 Thesis Structure

This thesis is divided into 6 chapters. Their contents are as follows:

Chapter 1: Introduction - Introduces the thesis and discusses the motivation and
scope.

Chapter 2: Review of Literature - Provides an overview of the background knowledge
required for this topic. Includes a review of relevant preprocessing, edge detection,
and region matching techniques.

Chapter 3: Problem Statement - Provides an overview of the challenge to be solved
by the proposed approach. Includes an overview and examples of the datasets being
analyzed.

Chapter 4: Proposed Approach - Provides a theoretical overview of the proposed
approach, including solutions to challenges and high level algorithms.

Chapter 5: Experimental Evaluation - Applies the proposed approach to a specific
domain, and describes the algorithms and results of image recognition tests.

13

Chapter 6: Summary and Conclusion - Concludes the thesis and discusses the limi-
tations and possible future directions for this research.

14

2 Review of Literature

2.1 Image Representation

OpenCV is an open source set of tools for computer vision tasks and algorithms.
In OpenCV, images are represented as a two dimensional matrix of value elements.
Each element in the matrix corresponds to a pixel in the image. Each element is a
scalar containing values that describe the colour of the pixel. For example, a colour
image matrix would contain elements with scalars containing three values for the
red, green, and blue colour channels that make up the pixel. Similarly, for grayscale
images, the scalar would contain only one value, between 0 and 255, where 0 is black
and 255 is white.

A specific pixel within a 2D image matrix is specified using the x and y indexes.
The image is organized in the matrix such that point (0, 0) is the top left corner of
the image. An image can be cropped or extracted by copying the elements from the
desired region to a new matrix matching the dimensions of this region.

Throughout this thesis, all algorithms referring to an image will be represented
by OpenCV’s representation [5].

2.2 Preprocessing

In this thesis, preprocessing refers to all tasks that prepare an image for the detection
of objects. The following subsections describe the various literature and algorithms
used in these tasks.

2.2.1 Calibration

Different cameras and lens take images differently. Specifically, cameras with a fish-
eye lens have obvious distortion, as the edges are stretched and curved. This poses
challenges when attempting to apply computer vision techniques to these images.
In order to handle this issue, calibration can be used to convert images from their
original, distorted form to a more accurate format.

15

There are many different calibration techniques available. The calibration tech-
niques generally belong to one of two categories [49], photogrammetric and self-
calibration. Photogrammetric calibration uses a single camera taking multiple pic-
tures of a known 3D object. Self-calibration does not require a known 3D object.
Instead, self-calibration uses a single camera moved through a static scene to calcu-
late the required parameters. Zhang [49] proposed a commonly used approach that
falls somewhere between the two categories [14]. Zhang’s approach uses a 2D image,
such as a checkerboard of known dimensions, instead of a 3D object. The checker-
board pattern is then mounted on a flat, planar surface. The user takes at least
two (but often many more) images of the checkerboard in multiple locations within
the frame of the image. These images, with a checkerboard of known size, are then
processed to determine the required parameters for calibration. The checkerboard is
detected in each image, and the size and shape is compared at the various locations
within the image.

Zhang’s method for calculating the calibration parameters is described as follows.
The relationship between a 3D point captured in an image, M , and its location in
the image projection, m, is shown by Equation (1), where s is an arbitrary scale
factor, m̃ is the 2D point vector, [u, v]T , augmented with an additional element
of 1, [u, v, 1]T , A is the intrinsic parameters of the camera, defined by (2), R, t
are the extrinsic parameters, rotation and translation, M̃ is the 3D point vector,
[X, Y, Z]T , augmented with an additional element of 1, [X, Y, Z]T . The calibration
method determines the intrinsic parameters, as shown in Equation (2), the extrinsic
parameters, as shown in Equation (1), and the coefficients of radial distortion, as
shown in Equation (3).

Within Equation (2), the intrinsic parameters are defined as the following. (u0, v0)
are the coordinates of the principal, or centre, point in the image, α and β are scale
factors along the u and v axes respectively, and γ describes the skewness of the two
axes of the image. These values uniquely define the attributes of a lens. Within
Equation (3), (x, y) are the coordinates of an ideal, non-distorted point, and (x̆, y̆)
are the coordinates of the real, distorted point. k1 and k2 are the coefficients of
radial distortion. To determine all the required parameters for an image with radial

16

1. Detect the feature points of the checkerboard pattern in the images

2. Estimate the five intrinsic parameters and all the extrinsic parameters using
Zhang’s [49] closed-form solution

3. Estimate the coefficients of radial distortion by solving Zhang’s linear least-
squares equation

4. Refine all the parameters by minimizing Zhang’s functions

Figure 1: Calibration procedure, as proposed by Zhang [49]

distortion (such as a fish eye lens), the process involves four steps, as shown in Figure
1. Equations (1) and (3) can then be applied to each pixel in the image to undistort
the image.

s · m̃ = A · [R t] · M̃ (1)

A =

α γ u0

0 β v0

0 0 1

 (2)

x̆ = x+ x · [k1 · (x2 + y2) + k2 · (x2 + y2)2]

y̆ = y + y · [k1 · (x2 + y2) + k2 · (x2 + y2)2]
(3)

2.2.2 Thresholding

Image thresholding is the practise of separating objects in the foreground of an im-
age from those in the background [46]. This task can be simple for images in which

17

the gray levels of the foreground vary significantly from those of the background.
However, difficulties arise when attempting to segment images with issues such as
significant noise, busyness of gray levels in an image, ambient illumination, and more
[40]. There are a wide variety of thresholding algorithms available. The algorithms
can largely be divided into six categories: histogram shape-based, clustering-based,
entropy-based, object attribute-based, spatial, and local methods. Of the six catego-
rizations, histogram shape-based thresholding is the most well known, and perhaps
the most common [40]. Histogram shape-based techniques work by sorting the gray
level values of the pixels within an image into a histogram. The peaks, valleys, and
curvatures of the histogram are then analyzed to determine the optimal threshold
value.

Otsu proposed a method to automatically select the threshold value based on the
histogram of an image [31]. An image is first converted from colour to grayscale.
This results in pixel values ranging from 0 (black) to 1 (white). The pixels are
then grouped into histogram bins based on their value. Otsu proposed that well-
thresholded classes would be separated in gray levels. Therefore, the threshold with
the best separation of classes would also be the best threshold. To determine the
optimal threshold value, we calculate either the within-class variance, as shown in
Equation (4), or the between-class variance, as shown in Equation (5). Equation (6)
shows the definition of the variables in Equations (4) and (5). The optimal threshold
is such that either the within-class threshold is minimized, or the between-class
variance is maximized.

σ2
W = ωb · σ2

b + ωf · σ2
f (4)

σ2
B = ωb · ωf · (µb − µf)2 (5)

18

ωb = Weight of the foreground pixels

ωf = Weight of the background pixels

µb = Mean pixel value of the background pixels

µf = Mean pixel value of the foreground pixels

σ2
b = Variance of the pixels in the background

σ2
f = Variance of the pixels in the foreground

(6)

The Otsu method has been found to be one of the better automatic methods for
separating large objects from a background [40]. These images have a histogram of
bimodal or multimodal distribution [30]. There have since been many modifications
to the Otsu method to address specific alternative situations, such as unimodal dis-
tributions [30], segmenting small objects, [34] and segmenting objects under uneven
lighting conditions [13].

2.3 Edge Detection

Within an image edges represent a significant local intensity change. In an image,
these edges provide an appropriate method for the identification of different objects,
or separate regions [2]. The following subsections describe the various techniques
and algorithms related to the detection of edges.

2.3.1 Canny Edge Detection

The Canny edge detection algorithm, first proposed by John Canny in 1986 [7], is a
popular edge detector. Edge detection consists of multiple stages; noise reduction,
finding the intensity gradient, non-maximum suppression, and hysteresis threshold-
ing, as shown in Figure 3.

The first stage is to use a five-by-five Gaussian filter to remove noise from the
image. Noise has a negative effect on the rest of the algorithm, and may result in

19

spurious edges being detected. A Gaussian filter is a linear smoothing filter that is
implemented through the use of a weighted sum of the pixels in a given window [16].
In this case, the window is five-by-five pixels. The weight of each pixel within the
window is based upon the shape of the Gaussian function. Image processing uses a
zero-mean discrete Gaussian function, shown by Equation (7). Since Gaussian filters
are symmetric, rotation does not affect their output. Additionally, Gaussian filters
are computationally efficient.

g[i, j] = e−
i2+j2

2σ2 (7)

In the second stage of the Canny edge detection algorithm, the image is filtered
horizontally and vertically using a Sobel filter. Typically, a neighbourhood of three-
by-three pixels is used. A Sobel operator computes the magnitude of a gradient,
as shown in Equation (8) [17]. The partial derivatives of the magnitude can be
computed by Equation (9). Equation (9) results in the masks shown in Equation
(10). Since gradient direction is always perpendicular to edges, this step provides an
initial set of edges.

M =
√
s2
x + s2

y (8)

sx = (a2 + ca3 + a4)− (a0 + ca7 + a6)

sy = (a0 + ca1 + a2)− (a6 + ca5 + a4)
(9)

sx =
-1 0 1
-2 0 2
-1 0 1

sy =
1 2 1
0 0 0
-1 -2 -1

(10)

The third step in the Canny edge detection algorithm is non-maximum suppres-
sion. Non-maximum suppression step handles localization of an edge. That is, it
aims to find the most accurate location of the edge. Only a one-pixel width line

20

should be returned by the algorithm for each individual edge. This step works by
finding the pixel within an edge that has the greatest value. For this step, the hori-
zontal and vertical orientation gradients generated by the second step are used. Each
pixel on an edge is tested along the gradient. Since the gradient will not necessarily
be the same angle as the grid of pixels in the image, linear interpolation is used
to determine the values for comparison. Along the gradient, the values for the two
nearest pixels are used to interpolate the value that is compared to the edge pixel.
This is performed on both sides of the pixel being tested. The tested pixel is only
kept as an edge if its value is greater than both adjacent, interpolated values. That
is, for the pixel q in Figure 2, q must satisfy the requirements listed in Equation (11).

q > r

q > α · b+ (1− α) · a

and

q > p

(11)

Finally, hysteresis thresholding is used to remove weak edges and to connect
edges that have been split. The hysteresis step has two stages. The first uses two
thresholds, Thigh and Tlow. Using the output from non-maximum suppression, this
thresholding determines if a pixel is strong, weak, or a candidate. If a value is greater
than Thigh, it is a strong edge. If a value is less than Tlow, it is a weak edge and is
discarded. The values between Thigh and Tlow are called candidate pixels. Originally,
Thigh and Tlow were determined empirically. However, further work has shown that
using Otsu’s method on the original image can determine Thigh, and half that value
has been generally found to be a good Tlow value [9]. Candidate pixels are deemed
to be part of an edge if they are connected to a strong pixel within a their local
neighbourhood.

21

Figure 2: Depiction of linear interpolation, used for non-maximum suppression by
the Canny edge detector [47]

1. Smooth the image with a Gaussian filter.

2. Compute the gradient magnitude and orientation using a Sobel operator.

3. Apply non-maximum suppression to the gradient magnitude.

4. Use the hysteresis thresholding algorithm to detect and link edges.

Figure 3: Steps for the Canny Edge detection algorithm

22

2.3.2 Progressive Probabilistic Hough Transform

The Hough transform provides a voting method for detecting imperfect matches to a
line in complex patterns of points (pixels) in an image. The original Hough transform
was developed for straight lines. It has since been expanded to detect any number
of complex shapes [3]. For this thesis’ purposes, only the straight line detection is
required.

Provided a set of edges, such as those provided by Canny edge detection, the
Hough transform can detect patterns even when the match is imperfect. To detect
a straight line, the Hough transform works by defining a straight line by Equation
(12),

r = x · cos θ + y · sin θ (12)

where r is the distance from the origin to the closest point on the line,
θ is defined as the angle between the x-axis and the line of length r.

For each point within the set of edges, lines are plotted going through the point
at all angles from 0 to 360 degrees. With each plotted line, r and θ are measured
and can be plotted. At every point where the plotted lines intersect, we know that
the same line passes through the two points specified by those lines, as shown in
Figure 4. All collisions where the same line passes through multiple points are
accumulated. By using a user-specified threshold value, we can determine how many
points are required to collide before a line is determined to exist within the image.
The threshold may be determined ad-hoc, or systematically, such as by using one-half
of the largest number of points.

The Probabilistic Hough Transform (PHT), proposed by Kiryati et. al. [20],
performs the original Hough Transform algorithm on a preselected fraction of input
points. This method often achieves results similar or identical to those of the original
Hough transform algorithm with increased performance.

Progressive Probabilistic Hough Transform [25] builds upon PHT by further min-
imizing computational requirements. The algorithm is best described in the outline
provided by Matas et al., shown in Algorithm 1. The creators of the algorithm deter-

23

Figure 4: The graphs show three points. On the left is the line drawn between the
three points. On the right are the results of plotting the points by Equation (12)

mined via experimental tests of the algorithm that it results in similar line detection
output, with significantly fewer operations.

2.4 Region Matching

This study uses two measures to match regions to one another. The first is image
features, the second is colour. The methods to determine the key features and
colours in an image are built up of many other techniques. The two techniques
used in this study is Oriented FAST and Rotated Brief (ORB) for feature matching,
and colour clustering for colour matching. The following subsections describe the
various techniques and algorithms used by these methods to detect and define the
key features and colours in each image.

2.4.1 Features from Accelerated Segment Test (FAST)

In computer vision, features are key areas of an image that can be used to uniquely
describe it. Typically, they are points of interest on the image where the foreground

24

Algorithm 1 Progressive Probabilistic Hough Transform algorithm
outline [25]

1: while image not empty do
2: Randomly select a pixel from the image
3: Update accumulator with the pixel
4: Remove the pixel from input image
5: if the highest peak in the accumulator is higher than threshold thr(N) then
6: Look along a corridor specified by the peak in the accumulator
7: Find the longest segment that is continuous, or exhibits a gap not exceeding

a given threshold
8: Remove the pixels in the segment from the input image
9: “Unvote” from the accumulator all the pixels from the line that have previ-

ously voted
10: if the line segment is longer than the minimum length then
11: Add the line segment to the output list
12: end if
13: end if
14: end while

meets the background or there is some other change of colour.
Features from Accelerated Segment Test (FAST) is a feature detector that uses

corner detection and emphasizes performance [37]. FAST was originally developed
to handle feature detection in live video at full frame rate. This task requires fast
processing performance. Both the speed and capability of the algorithm has resulted
in widespread use in other computer vision tasks as well.

The FAST algorithm consists of three stages: segmentation test, machine learning
and non-maximal suppression. The segmentation test used by FAST is based on
previous feature detectors. When deciding whether a pixel, p, is a corner, the segment
test examines a circle of sixteen pixels that surround p. If n contiguous pixels within
the circle are either all darker, or all lighter than p, plus or minus some threshold t,
it is considered a feature. With n equal to twelve, the test only needs to examine
four pixels to reach a negative conclusion. At least three of the surrounding pixels
need to be lighter or darker than p. If this condition is satisfied, the rest of the pixels
can be checked; otherwise, the pixel can be discarded. However, this approach has

25

four weaknesses:

1. It does not generalize well for n less than twelve

2. The choice and order of the fast test pixels contain assumptions about the
feature

3. The knowledge from the first four tests is discarded

4. Multiple features are often detected adjacent to one another (when it should
be defined as one feature)

FAST overcomes the first three obstacles by using machine learning to develop
a decision tree. The decision tree is trained preferably on a set of images from
the application domain, although this is not strictly necessary. The segment test
is performed on the training images and p, and the surrounding sixteen pixels are
stored in a vector. The vectors are stored and partitioned into three sets: the lighter
set, darker set and the similar set. Using the Iterative Dichotomiser 3 method, a
decision tree is developed based on recursively testing for the surrounding pixel that
most impacts the decision on whether p is a corner. The decision tree is then turned
into nested if-then-else statements, which can be used to test for corners. Although
the results are not exactly the same, the decision tree mimics the results from the
segmentation test. Further optimization may be performed to remove redundant
sub-trees within the decision tree.

Non-maximal suppression is used to fix the issue of multiple features being de-
tected adjacent to one another. Adjacent keypoints are compared using the function
V , as shown in Equation (13), which is the sum of the absolute difference between
p and its sixteen surrounding pixels. FAST can be performed with or without non-
maximal suppression.

V = max

(∑
x∈Sbright

|Ip→x − Ip| − t,
∑

x∈Sdark
|Ip − Ip→x| − t

)
(13)

26

2.4.2 Binary Robust Independent Elementary Features (BRIEF)

Binary Robust Independent Elementary Features (BRIEF) is a fast feature detector
[6]. BRIEF works by comparing binary strings that describe feature points within
an image. This has distinct memory advantages over previously invented meth-
ods, which used large-dimension vectors of floating point numbers. Furthermore,
binary strings can be compared using the very efficient Hamming distance calcu-
lation. BRIEF is not rotation invariant, although it performs reasonably well on
images with some rotation.

BRIEF first smooths a square patch of dimension S on the image to remove
and reduce the effect of noise on the descriptor. The patch is then sampled using
the Gaussian equation in Equation (14), which was experimentally determined to
provide the best results [6]. This equation matches the pattern shown by Figure 5.
The process is repeated for n patches throughout the image to create a large set
of descriptors. Hamming distance between the binary descriptors is then used to
determine the closest matches.

(X, Y) ∼ i.i.d. Gaussian(0, 1
25S

2) (14)

where (X, Y) is the point being sampled,
S is the width of the patch.

2.4.3 Oriented FAST and Rotated BRIEF (ORB)

Oriented FAST and Rotated BRIEF (ORB) is a feature detector that builds upon
the FAST and BRIEF algorithms [39]. ORB adds three key improvements over the
original algorithms. The first is the addition of orientation to FAST. Orientation of
the corners detected by FAST is based on the intensity centroid method proposed
by Rosin [36].

The second improvement is the efficient computation of oriented BRIEF fea-

27

Figure 5: Test location selection method using Equation (14) for BRIEF [6]

tures. To avoid high computation when orienting BRIEF, ORB instead proposes
pre-computing a lookup table for BRIEF bit string patterns. The orientation of the
keypoints are used to determine the rotation matrix for the image. Using the rota-
tion matrix, the keypoints are rotated, or steered, to match the values in the look
up table.

Finally, the algorithm proposes a learning method for BRIEF to improve nearest
neighbour applications by de-correlating BRIEF features under rotational invariance.
To train the learning method, ORB uses a greedy search of all the potential binary
tests of pixel patches on a training image dataset. The greedy search is performed
until the 256 most uncorrelated tests are determined, with a mean result around
0.5. This set of binary tests can then be used to efficiently test input images for
descriptors.

2.4.4 k-Nearest Neighbour

The k-Nearest Neighbour algorithm is a fundamental, straightforward algorithm used
for classification [32]. First, the algorithm uses a set of labelled training vectors of size
N , of multiple classes. Then, given the vector you wish to classify, c, the algorithm
computes the k nearest vectors to the vector c, where nearest is defined by some

28

function to measure distance or similarity. Of the k nearest neighbours, the class
that makes up the majority of the neighbours is used to classify the class of the
vector c. To prevent ties, the value k should be an odd number that is not a multiple
of the number of classes.

2.4.5 Least Median of Squares (LMedS)

Least Median of Squares (LMedS) is a robust regression method, used to find the re-
lationship between multiple variables. LMedS builds upon Least Squares regression.
A linear model of a set of points is classically defined by Equation (15).

yi = xi1 · θ1 + ...+ xip · θp +
n∑
i=1

ei (15)

where ei is the error, normally distributed with a mean of zero.

Regression methods aim to estimate θ = (θ1, ..., θp)t based on the data (xi1, ..., xip, yi),
which is defined as θ̂. Least squares, was originally defined by Gauss or Legendre
(under dispute, [43]) is defined by Equation (16).

minimize
θ̂

n∑
i=1

r2
i (16)

where r2
i is the right-hand side of Equation (15), without the error.

Least squares seeks to minimize the sum of squared residuals for a set of points.
Rousseeuw proposes the usage of the median of squared residuals instead as the
parameter to minimize, as shown by Equation (17) [38].

minimize
θ̂

med
i r2

i (17)

This method is shown to be resistant to contamination of data, as it resists outliers
and false matches. This is especially valuable for computer vision, where noise can

29

Figure 6: HSV colour model mapped to a cylinder [41]

have significant effects and contamination.

2.4.6 Hue, Saturation, Value (HSV) Colour Space

Although colour in computer displays is typically modelled in the RGB (red, green,
blue) colour space, there exist many other colour spaces for modelling a specific
colour. This study makes use of the HSV (hue, saturation, value) colour space [42].

Hue is an attribute of colour based on its dominant wavelength. Hue distinguishes
between different colours such as red, green, blue, etc. Saturation of a colour is
the colourfulness compared to its lightness [18]. A colour with high saturation is
perceived as more colourful. A colour with low saturation is perceived to be “washed-
out”. Similarly the final dimension, value, is the colourfulness compared to the
colour’s darkness. A colour with low value is entirely black, whereas a colour with
high value has no black. HSV can be modelled as a cylinder, as shown in Figure 6.

An RGB pixel can be converted to the HSV colour space using the algorithm
provided in Algorithm 2.

30

Algorithm 2 Algorithm to convert a pixel from the RGB to HSV colour space, from
[42]

1: V := max(R, G, B)
2: Let X := min(R, G, B)
3: S := V−X

V
, if S = 0 return

4: Let r = V−R
V−X , g = V−G

V−X , b = V−B
V−X

5: if R = V then
6: if G = X then
7: H = 5 + b
8: else
9: H = 1 - g

10: end if
11: else if G = V then
12: if B = X then
13: H = 1 + r
14: else
15: H = 3 - b
16: end if
17: else
18: if R = X then
19: H = 3 + g
20: else
21: H = 5 - r
22: end if
23: end if
24: H = H

6

31

2.4.7 Colour Indexing

Colour indexing is a common method for providing a succinct representation of an
image [44]. An image is converted from its 2D representation into a histogram of N
specified bins along each of its channels. Each channel range is broken into N equal
bins. For each pixel, the pixel value in each channel is sorted into the appropriate
bin. For a typical RGB or HSV image, a colour index of the image would consist
of a total of 3N values. This provides a fixed-length representation no matter the
shape or size of the image being analyzed.

The fixed-length representation makes colour indexing using histograms an ef-
fective technique for comparing different images. Once the histograms have been
created, they can be normalized based on their own values. The histograms can
then be compared through a number of methods, including correlation, Chi-Squares,
intersection, and Bhattacharyya distance. Correlation, which was used in this study,
is shown in Equation (18).

d(H1, H2) =
∑D
i=1(H1i − H̄1)(H2i − H̄2)√∑D

i=1(H1i − H̄1)2∑D
i=1(H2i − H̄2)2

(18)

where H1 and H2 are the two histograms being compared,
i is a dimension of the histogram,
D is the total number of dimensions in the histogram,
H̄k is defined by Equation (19)

H̄k = 1
N
·
N∑
j=1

Hkj (19)

where N is the total number of bins in the histogram.

Colour indexing has the added benefit of being invariant to rotation [44]. An
image will always have the same distribution of colours when analyzed from any
orientation. The occlusion of an object in one of the images being compared will

32

result in a change in the histogram in proportion to the amount of the object that is
occluded. Similarly, the distance of the object will proportionally affect the histogram
the further away the object is.

2.4.8 K-means Clustering

k-means is a popular statistical clustering method [22, 24]. The objective of the
algorithm is to take a finite set of m-dimensional vectors, and group them into k

clusters, where k is specified by the operator when running the algorithm. Each
cluster is defined by its centroid, the centre point of the cluster. k-means initially
picks k number of random vectors to serve as the centroids of the clusters. The
algorithm iteratively runs by assigning each vector based on the minimum distance
between the vector and a cluster centroid. After all vectors have been assigned to
a cluster, the centroids are recomputed, as shown in Equation (20). The process
repeats until either n iterations have completed, or the change in location of the
centroids between iterations falls below a threshold t.

~ci =
∑
~x∈~ci ~x

| ~Ci |
(20)

where 1 ≤ k,
~x is an object vector,
| ~Ci | is the cardinality of the the cluster ~Ci.

To determine the quality of the clusters, a number of different methods have been
proposed, as summarized by Halkidi et al. [11]. Common validity measures rely on
within-cluster scatter or between-cluster separation. Within-cluster scatter can be
computed for each cluster by Equation (21),

Si = 1
| ~Ci |

∑
~x∈~ci

distance(~x,~ci) (21)

where Si is the scatter within the ith cluster.

33

Within-cluster scatter for the set of clusters is then defined as the sum of the
scatter for each cluster, as shown in Equation (22).

S(C) =
k∑
i=1

Si (22)

Between-cluster separation can be computed for a cluster by comparing the dis-
tance between different clusters, as shown in Equation (23).

dij = distance(~ci,~cj) (23)

Between-cluster separation for the set of clusters is the sum of the distance be-
tween all clusters and each other cluster, as in Equation (24).

D(C) =
k∑
i=1

k∑
j=1

dij (24)

Because the original centroids are picked at random, it is recommended that the
algorithm be run a number of times in order to avoid potential local maximizations.
The result that provides the best clustering (as described by a validity measure) is
kept.

When choosing the number of clusters to use, it is recommended that the dataset
be tested with a large number of cluster sizes. The quality, as defined by the validity
measure, can then be plotted. The knee of the curves can be used to determine the
number of appropriate clusters. For example, typically the within-cluster scatter will
rise rapidly when the value of k falls below a certain size. Similarly, the between-
cluster separation will fall rapidly when the value of k falls below a certain size.

2.4.9 Colour Clustering

Colour clustering is a common technique used for image segmentation [23]. By
applying clustering algorithms, such as k-means, to the pixels of an image, objects
within the image can be identified. This provided the ability to distinctly identify
objects in the foreground and background of an image.

34

Kankanelli et. al. [19] proposed a colour clustering technique for matching im-
ages. Their proposed method uses the colour indexing technique, as proposed by
Swain and Ballard [44], to find the centroids of their clusters. In their approach,
each peak in the colour indexing histogram represents a centroid. To compare two
images via colour clustering, a distance measure can be used to compare the results
of the two clusters. This comparison can use a simple distance measure, such as
Euclidean distance, or a more complex weighted distance measure, based on the
frequency of the centroid. Kankanelli et. al.’s [19] preliminary results suggested
greatly improved performance compared to traditional colour indexing techniques
via histogram alone.

35

3 Problem Statement

3.1 Overview

The application domain for the techniques proposed by this research is a data cen-
tre. Data centres contain many racks of equipment used for information processing
and storage. Computer server racks are mainly found in data centres. This study
will show how the techniques proposed by this research can provide automatic de-
tection and identification of the equipment within the server racks. To demonstrate
the feasibility of the proposed techniques, a prototype system has been built. The
prototype system is further described in Chapter 4.

The data used in this study consists of images and data models in JavaScript
Object Notation (JSON) format. The first set of images are of the server racks
found in the data centre. These server racks contain many pieces of equipment. This
is the set of images that will be analyzed by the system on an ongoing basis. The
second set of images are classified as template images. These are the templates that
are used to identify a given piece of equipment. Each piece of equipment that can be
identified in a server rack image has at least one corresponding template image. Some
equipment have two corresponding template images, for when a piece of equipment
may or may not have a cover. All images used in this study were provided by the
industry partner.

3.2 Server Rack Images

For the purposes of this study, server rack images were taken with two different
cameras. A small sample was initially taken with a Canon EOS 20D camera. Due
to the limited field of view, only a small part of the server rack was captured in
one photo. Three photos were required to capture an entire server rack. The three
photos were manually stitched together to create a single image, as shown in Figure
11.

A larger dataset was created using a GoPro Hero 4 camera. The GoPro Hero 4 is

36

a common action camera, typically used by adventurists. For our purposes, the most
beneficial aspect of the camera is that it has a fish-eye lens, which provides a wide
field of view. The wide field of view allows for a single image to capture an entire
server rack. However, this does result in some distortion that needs to be corrected.
Additionally, due to the wide field of view, the server rack images sometimes contain
a portion of the adjacent server racks to the left and right of the server rack to
be analyzed. The images occasionally also contain glare from overhead lighting,
partially obscuring the equipment, the server rack frame, or both. The prototype
system, as detailed in Chapter 4, makes the required corrections

Server racks are measured in a unit of measurement called a “rack unit”. One rack
unit is equivalent to 44.45 millimetres or 1.75 inches in height, and can be written in
the notation 1RU. Two rack units is written as 2RU, three rack units as 3RU, etc.
Server racks can range in height anywhere between 9RU and 49RU. For the purposes
of this study, the server racks analyzed were either 16RU or 49RU. The width of a
server rack can also vary, with standard sizes of 19 inches or 23 inches. Equipment
that is 19 inches in width may fit into server racks that are 23 inches in width with
special adaptors. Equipment that is 23 inches in width cannot fit in 19 inch wide
racks.

3.2.1 Data Model

The data model for a server rack consists of high level attributes that pertain to
the entire server rack and an array of server objects that describe the equipment
within the rack. The completed system outputs the data model in JSON format
after performing the analysis of an image. A skeleton of the data model is shown
in Figure 7. The top level attributes describe the physical characteristics of the
server rack. The characteristics are provided as initial input to the system. These
attributes are: a unique identifying name, the height in rack units, and the width in
inches. The server rack images are labelled, using their file name, in a format that
is understandable by the system:

37

{
” analyzedAt ” : ”#/#/#### ##:##:## AM” ,
”name” : ”RACK NAME” ,
” h e i g h t ” : ##,
” width ” : ##,
” s e r v e r s ” : [
{

” ImagePath ” : ”PATH/TO/IMAGE.JPG” ,
” LocationRU ” : ##,
” S e r v e r ” : [

[
{

” Score ” : #####,
” Value ” : ” ImageLibraryDir /TEMPLATE IMAGE 1 . j p g ”

} ,
. . .
{

” Score ” : #####,
” Value ” : ” ImageLibraryDir /TEMPLATE IMAGE X.jpg ”

}
]

]
} ,
. . .

{
” ImagePath ” : ”PATH/TO/IMAGE.JPG” ,
” LocationRU ” : ##,
” S e r v e r ” : [

[
{

” Score ” : #####,
” Value ” : ” ImageLibraryDir /TEMPLATE IMAGE 1 . j p g ”

} ,
. . .
{

” Score ” : #####,
” Value ” : ” ImageLibraryDir /TEMPLATE IMAGE X.jpg ”

}
]

]
}

]
}

Figure 7: JSON format/skeleton for a server rack

38

Name HHRU WWin.jpg

where H is a numeric value corresponding to height,
WW is a numeric values corresponding to width.

In future iterations of the system these attributes could automatically be re-
assigned based on the exact location where the image was taken, or based on the
order the images of an entire data centre were taken.

A series of server objects are included in an array and correspond to each of the
pieces of equipment in the rack that the server has identified. Each server object
contains two attributes, “LocationRU” and “Server”. LocationRU is the location
within the server rack. For example, if the value is 30, then the server rack is 30RUs
from the bottom of the rack. The server attribute is an identifier corresponding to a
template image. In our case the identifier used was the image name.

3.2.2 Examples

Figure 8 shows an example of a raw image of a server rack. Figure 9 shows an
example of an input server rack image. The corresponding data model output is
shown in Figure 10. Figure 11 shows an example of glare from overhead lighting.

3.3 Template Images

Template images are used by the system to identify the pieces of equipment within
the server racks. A single template is an image of an individual piece of equipment.
These images server as a “definition” of what a piece of equipment looks like. Ideally,
these images show the piece of equipment when it is first put into a server rack, before
any cables are connected and before the piece of equipment is turned on. In ideal
conditions the images would also be taken under similar lighting conditions, distance,
and at the same angle as images of the server rack in normal operations. However,
due to operational requirements these images could not be taken for this study. The

39

Figure 8: Raw image of a server rack taken with a GoPro 4 camera

40

Figure 9: Image of a server rack after undistortion and cropping

41

{
” analyzedAt ” : ”2/8/ 2016 11 : 07 : 05 AM” ,
”name” : ”Rack 0012 ” ,
” h e i g h t ” : 49 ,
” width ” : 19 ,
” s e r v e r s ” : [
{

” ImagePath ” : ”temp/ e x t r a c t e d S e r v e r 0 R a c k 0012 49RU 19in x1150y1159 x21710y2223. jpg ” ,
” LocationRU ” : 47.67 ,
” S e r v e r ” : [

[
{

” Score ” : 0.246316 ,
” Value ” : ” ImageLibraryDir / T e l e c t GMT 10−10 2 1 R U 1 9 in . j p g ”

} ,
{

” Score ” : 0.336707097935103 ,
” Value ” : ” ImageLibraryDir /Drake VM2410A Modulator 1RU 19in.JPG ”

} ,
. . .
{

” Score ” : 0.87362395258151 ,
” Value ” : ” ImageLibraryDir / T e l e c t KLM−GMT 4−4 Fuse Panel 1RU 19in.png ”

}
]

]
} ,
. . .
. . .
{

” ImagePath ” : ”temp/ e x t r a c t e d S e r v e r 6 3 5 4 R a c k 0012 49RU 19in x1150y16513 x21710y26978. jpg ” ,
” LocationRU ” : 5.0 ,
” S e r v e r ” : [

[
{

” Score ” : 0.380193333333333 ,
” Value ” : ” ImageLibraryDir / T e l e c t GMT 10−10 2 1 R U 1 9 in . j p g ”

} ,
{

” Score ” : 0.383350508926857 ,
” Value ” : ” ImageLibraryDir /Harmonic NSG 9000 Eqam 2RU 19in.JPG”

} ,
. . .
{

” Score ” : 0.75781 ,
” Value ” : ” ImageLibraryDir / L e i t c h 6800 2RU 19in.png ”

}
] ,
[
{

” Score ” : 0.186424 ,
” Value ” : ” ImageLibraryDir / T e l e c t GMT 10−10 2 1 R U 1 9 in . j p g ”

} ,
{

” Score ” : 0.431782766475605 ,
” Value ” : ” ImageLibraryDir /Harmonic NSG 9000 Eqam 2RU 19in.JPG”

} ,
. . .
{

” Score ” : 0.718420666666667 ,
” Value ” : ” ImageLibraryDir / L e i t c h 6800 2RU 19in.png ”

}
]

]
}

]
}

Figure 10: JSON output after analyzing a server rack image

42

Figure 11: Image of a server rack with glare from overhead lighting. Image is from
preliminary tests, using a camera with a narrow field of view. This image is a
composite of three separate images.

43

Figure 12: Image of a Dell PowerEdge R720xd piece of equipment

Figure 13: Image of a Dell PowerEdge R720 piece of equipment

template images were gathered from a variety of sources, either of the equipment in
operation in a data centre, or from online sources such as the manufacturers website.
This results in some template images where colour, lighting, and occlusions such as
cables differ from a “clean” template image. The system was built to expect and
withstand these conditions.

In other cases, a template image was extracted directly from the set of rack
images. These templates often contain some occlusions. Where possible, these oc-
clusions are ignored by the proposed approach.

There are two notable pieces of information that must be provided for the tem-
plate images that are not obvious physical characteristics. The first are “features”.
These are rectangular areas on the image that the system should pay special atten-
tion to. For example, a model number, a manufacturer logo, or other label. These
are important because although they may be small, they are critically important to
identifying different models of a piece of equipment that may differ only very slightly
from one another. For example, see Figure 12 and Figure 13 of two similar pieces of
Dell equipment.

The second notable piece of information is the rectangular areas of the image

44

{
” imagePath ” : ”IMAGE NAME.jpg” ,
” manufacturer ” : ”MANUFACTURER” ,
” model ” : ”MODEL ####” ,
”RU” : #,
” width ” : ##,
” f e a t u r e s ” : [
{

”x” : ###,
”y” : ###,
” h e i g h t ” : ###,
” width ” : ###,
” weight ” : 0 .#

} ,
. . .
{

”x” : ###,
”y” : ###,
” h e i g h t ” : ###,
” width ” : ###,
” weight ” : 0 .#

}
] ,
” i g n o r a b l e R e g i o n s ” : [
{

”x” : ###,
”y” : ###,
” h e i g h t ” : ###,
” width ” : ###

} ,
. . .
{

”x” : ###,
”y” : ###,
” h e i g h t ” : ###,
” width ” : ###

}
]

}

Figure 14: JSON format/skeleton for a server rack

deemed to be “ignorable regions”. These are areas of the image that may differ
slightly or significantly between different pieces of the same equipment. For example,
a port may or may not have a cable plugged into it, or a light may or may not be
on at the time a picture is taken.

3.3.1 Data Model

The data model for the template images contains physical information about the
piece of equipment and information that will aid the system in identifying the pieces
of equipment in the server racks. The empty data model is shown in Figure 14.

The attribute “imagePath” defines the path within the system’s internal directory
structure where the template image is stored. Similarly to the server rack data model,
the attributes for manufacturer, model, RU, and width are defined in the filename,

45

using the format:

ManufacturerModel HRU WWin.jpg

where H is a numeric value corresponding to height,
WW is a numeric values corresponding to width.

Features, as described above, contains an array of objects that describe rectan-
gular areas within the image. Feature objects have five values. The “x” and “y”
values are the pixel location, within the image, of the upper left corner of the rect-
angle, where the origin of the coordinates is the top left of the image. The “width”
and “height” values are the width and height of the rectangle, in pixels. The last
attribute is “weight”, which is used by the system to determine how important a
given feature is compared to the other features. Ignorable regions is also an array,
containing objects in the same format as feature objects, but without the weight
attribute.

The data model filled out by an operator with knowledge of the piece of equip-
ment. For this study, the values for the features and ignorable regions were deter-
mined using a simple web-based tool.

3.3.2 Examples

Figure 12 shows an example of a template image obtained from the web. An example
of the data model for a templateis shown in Figure 15.

Figure 16 shows an example of a template image obtained from an operational
environment.

Figure 17 shows the image with drawings of the features (outlined in green) and
ignorable regions (filled in black) for 12.

46

{
” imagePath ” : ”Apex 1000 1RU 19in. jpg ” ,
” manufacturer ” : ”Apex” ,
” model ” : ” 1000 ” ,
”RU” : 1 ,
” width ” : 19 ,
” f e a t u r e s ” : [
{

”x” : 18 ,
”y” : 114 ,
” h e i g h t ” : 22 ,
” width ” : 71 ,
” weight ” : 0 . 8

} ,{
”x” : 14 ,
”y” : 8 ,
” h e i g h t ” : 31 ,
” width ” : 141 ,
” weight ” : 0 . 6

}
] ,
” i g n o r a b l e R e g i o n s ” : [
{

”x” : 12 ,
”y” : 40 ,
” h e i g h t ” : 66 ,
” width ” : 470

} ,{
”x” : 1228 ,
”y” : 26 ,
” h e i g h t ” : 72 ,
” width ” : 191

} ,{
”x” : 485 ,
”y” : 94 ,
” h e i g h t ” : 25 ,
” width ” : 150

}
]

}

Figure 15: JSON format/skeleton for a piece of equipment template

Figure 16: Image of a Sun Microsystems SunFire V60x piece of equipment

Figure 17: Dell PowerEdge R720, as shown in Figure 12, with the features outlined
in green, ignorable regions filled in black

47

4 Proposed Approach

There have been large advances in computer vision in recent times. There exist
a plethora of computer vision techniques that can be applied in various ways and
in many combinations. However, the application of these techniques remain very
domain and application specific.

Machine learning-related computer vision techniques are a potentially more gen-
eral exception. However, even machine learning techniques require a large amount of
training data in their required domain. Gathering and labelling large sets of training
data is not always feasible or reasonable for every application.

Below, I propose a series of techniques to complete the two major tasks within
the prototype system. They consist of applying existing algorithms, as well as some
novel techniques specifically developed for the problem at hand. The two major tasks
within the prototype system are matching a region to a known template, and isolating
the region in order to analyze it. The latter I have termed “Edge Detection” and
can be thought of as a preprocessing step for the second task, which I have termed
“Region Matching”.

4.1 Edge Detection

4.1.1 Objective

At the start of the process, the solution will receive as input the image of a warehouse
shelf. The objective of this stage of the process is to isolate the individual items on
the shelf.

4.1.2 Proposed Method

The act of isolating an object within an image will be very specific to the application
domain. Items on a warehouse shelf will require different techniques than isolating
a piece of a equipment in a server rack, or isolating a car in a parking garage.
However, the same general stages can be applied to all cases. I discuss the exact

48

implementation used for locating pieces of equipment in a server rack in the next
chapter. In the following discussion I will use the example of a warehouse shelf to
describe the prototype system. Although as discussed before, the same techniques
can be applied to other domains.

Given the field of view on a typical camera, it is expected that an image of
a specific shelf will necessarily contain partial adjacent shelves. The first step is
therefore to isolate the vertical shelves using the following novel technique. In a
typical warehouse the shelves will all be of a standardized (or at the very least,
similar) size and colour. We can use this knowledge to identify the vertical columns
separating shelves.

First, we will convert the image of the shelves to black and white, using a rea-
sonable threshold, such as that provided by Otsu’s method. Next, we can search the
image for a continuous region of pixels of the same value, while allowing for noise.
Assumptions can be made about the left and right vertical columns appearing in the
left and right quarters of the image, respectively. The same technique can be applied
to locate the top-most, and bottom-most shelves. The image can then be cropped,
based on the locations derived from the above algorithm.

Next, we must identify the individual products on the shelves. A standard Canny
edge detector can be used to locate the edges of the objects in the image. We then
aim to identify the horizontal lines that delineate the bottom and top of the box
containing the product. If our shelves contain multiple products on each shelf, we
would similarly look for vertical lines as well. The Hough transform is a popular
and accurate technique for identifying such straight lines. The Hough transform will
detect many straight lines. These lines are usually very short in length, around 10-
20 pixels. Of all the straight lines identified by the Hough transform, we can ignore
those lines that have an angle of plus or minus five degrees. We allow a variation of
10 degrees to allow for factors such as tilt in the camera at the time the image was
taken, or uneven floors. The straight lines with a greater angle are likely images on
the boxes, rather than the outlines of the boxes themselves.

After removing lines with a large angle, the remaining lines will be all of the
straight, level, lines in the image. However, there will still be some straight lines

49

from the images on the product boxes. These spurious lines will be eliminated by
keeping only the lines that are the most dominant across the entire image. This
line elimination is accomplished by calculating the maximum number of lines that
intersect with a given row of pixels. Any row of pixels that has less than a fixed
percentage of the maximum number of lines should be discarded. Through exper-
imentation, it was determined that 30% was a reasonable fixed percentage for this
filtering.

Depending on domain knowledge, if you know that the objects you are looking
for have either a fixed, or a minimum height, you can further eliminate some of the
remaining lines. This can be accomplished by iterating through the image from top
to bottom with a window of height equal to the minimum height of the objects you
are identifying. Within that window you can remove all but the most dominant line.

This will result in the a reasonable approximation of the locations of the individual
products within the image. A high level description of the algorithm is provided in
Algorithm 5.

4.2 Region Matching

4.2.1 Objective

At this stage of the process, the solution will attempt to determine a ranked list
of the best possible matches to the individual items that were isolated in the Edge
Detection phase.

4.2.2 Proposed Method

As mentioned, the specified edge detection techniques will need to be customized to
a specific application domain. However, the following region matching approach can
be applied more generally to any set of images with the same metadata.

This technique is focused on providing a similarity score between a template
image, and an image of another object, with the same rotation, and the taken from
the same, or similar, angle. For the proposed algorithm, it is necessary to have

50

metadata about the template image. The metadata should specify the regions on
the template image that are not expected to be the same, and are thus ignorable. For
an item on a warehouse shelf, this could be something such as expiry date stickers,
labels created during production or for special promotions. The metadata should
also specify the regions on the template image that are the most important. These
regions are known as features. For example, the label showing the model number,
the label of the manufacturer, etc. The feature metadata should also specify a weight
for each of the features. For example, the model number will be more important,
and thus have a higher weight, than the feature showing the manufacturer.

These two sets of regions are important for different reasons. The ignorable
regions help improve the image matching by not allowing these areas to affect the
score when it is known ahead of time that they will be different. The feature regions
help improve the matching by ensuring that specific attention is paid to the key areas
that will differentiate between images that may otherwise be extremely similar to
one another.

Given the set of ignorable regions, it is necessary to remove those regions from any
future matching activities. Existing implementations of image matching algorithms
do not provide for the possibility of ignorable regions [14]. To leverage previous
work, and avoid the task of altering existing implementations of image matching
algorithms, we can instead alter the image being matched. Ignorable regions may
be located anywhere within an image, and have any potential rectangular shape.
Removing the ignorable regions by setting the pixels to all black, or all white, or
some other such method, would skew the results from existing implementations. We
can instead extract all the parts of the image that are not part of the ignorable
regions. Our goal is thus to create a set of images that, together with the ignorable
regions represent the entire image, as shown in Equation (25).

{Image} = {Extracts} ∪ {IgnorableRegions} (25)

However, there exist some cases where the ignorable regions do not allow for the
extraction of a region that is large enough for analysis. Consider the case where two

51

Figure 18: Dell PowerEdge R720 with ignorable regions filled in black (top-middle
and bottom-right)

ignorable regions are separated by a column with a width of one pixel. A column of
one pixel width is not amenable to shape matching algorithms as there is not enough
information to compare. Therefore we must allow for the possibility that some small
amount of the image will be discarded when we are creating the extracted images,
reflected by Equation (26).

{Image} = {Extracts} ∪ {IgnorableRegions} ∪ {DiscardedRegions} (26)

When a human examines an image with the ignorable regions blacked out, as
shown in Figure 18, typically they can easily identify the areas that should be ex-
tracted. It is desirable to extract the set of largest regions possible, while being
computationally efficient. There currently are no published algorithms for attempt-
ing to find the extract set computationally. I propose an algorithm that iteratively
searches an image for these regions.

First, the pixels that belong to the ignorable regions are noted, either through a
pixel mask or other facility. The image is then searched, from the top left corner of
the image, left to right, row by row, until a pixel belonging to an ignorable region is
detected. The pixel at the start of the search will be the top left corner of the region
being extracted, labelled by (cleft, rtop). The first detected pixel that belongs to
an ignorable region will be the column of the right outer edge of the extracted area,
labelled cright. Once an ignorable pixel has been detected, the algorithm then searches
down the columns from cleft top to bottom, column by column, until either another

52

ignorable region is detected, or the bottom of the image has been reached. Once
the entire area between cleft and cright has been searched, the shallowest ignorable
region, or the bottom of the image if there is no ignorable region below that area, is
the row specifying the bottom of the image, rbottom. After the four bounding sides of
the region have been detected, the area can be extracted. The extracted area is then
added to the mask specifying the ignorable regions. The search is then repeated,
starting at (cright, rtop). The process continues until the set of ignorable regions
contains the whole image.

The extracted regions are then tested to determine whether they are of sufficient
size for further matching tests. If the extracted region has a row or column dimension
that is less than 1% of that of the entire image, it is discarded. If the extracted region
has an area of less than 5% of the area of the larger image, it is also discarded. Finally,
if the ORB feature point detector, as described below, does not find any keypoints
on the image, it is discarded.

Pseudo code for the algorithm to extract valid regions is shown in Algorithm 6.
The above algorithm provides a set of images that can be used for comparison.

The next step is to determine the attributes of the images that will be used for
comparison. Both shape and colour are attributes that have historically been used
for such comparisons [15, 10, 33]. Additional attributes, such as texture, depth maps,
and others, could also be used in combination with shape and colour. For our initial
purposes, those two attributes will provide a reasonable representation. For each
image extracted by the algorithm shown in Algorithm 6, we will apply the following
set of algorithms to generate a score indicating how similar two images are.

Shape matching typically consists of comparison based on edges or feature points,
also known as contour-based or region-based matching, respectively [48]. However,
feature point algorithms in general have been found to have higher performance
[4]. For this reason I have chosen to use a feature point detector. Oriented FAST
Rotated BRIEF (ORB) is such a feature detector, and has been shown to provide
high quality results, with high levels of performance. ORB can be applied to both
the template image, and the image it is being compared to generate the keypoints
that signify important features within the images. The keypoints between the two

53

are then matched to one another using the K-Nearest Neighbours algorithm. This is
the standard method of performing image recognition based on feature detection.

Although this creates a list of the points with their most likely matches, we must
determine which of those points is a credible match. Multiple methods, such as ac-
cepting the closest neighbour found, or testing the nearest neighbour using a distance
ratio, have been proposed to determine this issue [28]. The items that I aimed to
detect with this procedure often had recurring patterns, which can result in many
potential matches between keypoints. For our requirements it is most important that
we be certain of the match, and that the ambiguity of a certain feature matching a
given point is minimized. That is, there exists only one point that closely matches
that keypoint in the corresponding image. For this reason, the nearest neighbour
distance ratio was used with a relatively high ratio of five. Thus, only points that
are less than five times the distance to the next closest match are accepted.

The above method will determine the list of keypoints that match one another
from the two images, however, this does not provide a score that may be used for
simple comparison when testing other images. The Least Median of Squares (LMedS)
method provides a listing of the keypoints that are deemed as inliers when matched
using ORB. To determine a score, I propose scoring the shape matching based on
the ratio of keypoints that are inliers compared to those that are not.

Pseudo code for the algorithm to score the shape comparison is shown in Algo-
rithm 7.

To determine the colour matching score when comparing the two images I first
relied on colour indexing techniques. Once the colours were indexed into histograms,
the histograms can then be compared to one another using correlation. This method
forms a common base for many implementations of matching colour in computer
vision [27, 15, 35].

However, colour indexing experimentally proved to have mediocre results. The
histograms in the templates did not contain the noise and surrounding areas and
differing conditions faced by images taken in the field. Even when attempting to
take into account lighting conditions, those issues resulted in histograms that differed
widely. As an alternative, colour clustering was used. Colour clustering uses the k-

54

means clustering algorithm to group similar pixels together and determine the colour
centroids that make up a particular image. These centroids tended to provide a better
abstraction between the various types of images being compared. The centroids
can then be compared based on the Euclidean distance between the centroids from
another image. The distance can then be used as a similarity score. The high level
algorithm is shown in Algorithm 4

The scores generated by shape matching and colour matching are then combined
as a weighted average. Depending on the application domain, the two component
weights can be adjusted accordingly.

The second set of metadata, the features of a template, also provide key infor-
mation that should be used in the matching process. These features can be isolated
from both the template image and the image being analyzed. To allow from some
variation, an appropriate buffer around the desired region on the image being ana-
lyzed should be used. This allows for different scales between the two images and a
small amount of rotation. The two extracted images can then be analyzed using the
same methods for the larger image, excluding the need to remove ignorable regions.

For each of the images extracted to exclude ignorable regions, the scores are
combined in a weighted average based on how big the extract is in comparison to
the entire image. This process determines the overall score for the overall image.
If this score meets a minimum threshold, the features can then be compared. The
final score is a weighted average where 50% of the score is made up of the score for
matching the overall image. The remaining 50% is then determined by the feature
match scores. This provides a single number that gives a score for how comparable
two images are.

The scoring is shown by Equations (27) to (29),

Stotal = 0.5 · Soverall + 0.5 · Sfeatures (27)

Soverall = x · Sshape(I, T) + (1− x) · Scolour(I, T) (28)

55

Sfeatures = 1
n
·
n∑
i=0

Soverall(I, Fi) (29)

where S is a score,
x is a percentage value between 0 and 1,
I is the image extract being analyzed,
T is the template being analyzed,
Fi is the ith feature of the template,
n is the total of features for the template.

56

5 Experimental Evaluation

5.1 Overview

To test the proposed approach, I worked with a Data Centre Infrastructure Manage-
ment (DCIM) company. Data centres are large buildings that are full of equipment
shelving, known as server racks. The server racks hold computers, networking equip-
ment, power management devices, and more. Data centre equipment is often being
expanded and replaced. As these upgrades are performed, it is necessary to efficiently
plan where to add new equipment to make the best use of space and resources. To
plan effectively, DCIM companies require an accurate understanding of the existing
data centre equipment layout, even when new components are added and exchanged
week-to-week by various employees and contractors.

Currently, the DCIM company uses a manual process to inventory their ware-
houses. An employee will walk through the warehouse and record the equipment, or
the changes to equipment, in each of the server racks. This is a very labour expen-
sive process and is prone to human and transcription errors. By using an automated
computer vision system, the DCIM company will be able to dramatically improve
their operations and services.

This section provides a detailed explanation of the effectiveness of the proposed
approach in identifying the individual pieces of equipment.

5.2 Prototyping Environment

5.2.1 Running Environment

The running environment for the development of this experiment was a Macbook
Pro (Early 2015). It is expected that eventually this research work will be used
in a production environment with a dedicated server. It was desirable that the
system can function with reasonable performance without dedicated hardware such
as graphics cards optimized for computer vision tasks. The specifications of the
running environment are shown in Table 1

57

Device Macbook Pro (Early 2015)
OS version Microsoft Windows 10

CPU 2.7 GHz Intel Core i5
Number of CPUs 4

Memory 8 GB 1867 MHz DDR3
Storage 50 GB

.NET Version 4.5
C++ Version C++14

IDE Microsoft Visual Studio 2012
Database MongoDB 3.1
OpenCV OpenCV for Windows v3.1

Table 1: Experimental Environment Specifications

5.2.2 OpenCV

OpenCV is the dominant open source computer vision library. The library is widely
used in industry and academic settings [5]. The library offers a wide range of vi-
sion facilities, with a focus on practical applications. These facilities include pattern
recognition, camera calibration, robotic vision, stereo vision, machine learning, and
more [5]. OpenCV has been publicly available and in continuous development since
1999. The software played a role in the earliest autonomous vehicle systems, includ-
ing “Stanley”, the winner of the original DARPA Grand Challenge desert robot race
[5, 45].

The library is written primarily in C and C++, although there are wrappers
implemented in other languages, such as Python, Java, C#, and more. Of the many
available languages, the C/C++ version was used due to the completeness of the
public API (some wrappers are not feature complete), and the efficiency. Wrappers
of the original library implicitly add extra computation.

Multiple factors make OpenCV an ideal candidate for usage in computer vision
projects. The library is robust, there are a wide range of documentation and tutorials
available online, and the expert community online is very active. The usage of
this library resulted in many hours of work being saved by removing the need to
implement existing algorithms unnecessarily. It is for these reasons that OpenCV

58

was used in this research.

5.2.3 Programming Languages

Since the OpenCV C/C++ implementation was chosen, the primary languages used
in developing the experimental solution was C# and C++. C# was used for the
majority of development to take advantage of higher-level language constructs. C#
is also well supported for interaction with 3rd party systems, such as MongoDB.

Separate C++ programs were developed to perform interactions directly with
the OpenCV library and the images. The main C# application launches the C++
programs via the “Platform Invoke (P/Invoke)” method. Communication between
the two languages is handled via command line arguments and standard in and
standard out.

5.3 Testbed Description

The testbed system is first preloaded with an image library of templates for analysis.
The system can then accept an image of a server rack as input. Next, the rack image
is prepared for analysis and compared against the image library. The scores from the
comparisons are then ranked to provide an ordered list of potential matches. These
steps are described in detail here.

5.3.1 Preprocessing

In order to prepare the system for analysis some preprocessing is required. The
system requires a series of template images that define the potential pieces of equip-
ment in an image. These template images required a data model, in the format of a
JSON file listing their description, as specified in Chapter 3. An example of one of
these files is shown in Figure 15. Where possible, the template images were acquired
from the data centre with the equipment completely unplugged and powered down.
When this was not feasible, such as when equipment could not be powered down for

59

operational reasons, images from manufacturer websites were used. The accompa-
nying JSON file was filled out by the DCIM company with the help of some simple,
web-based tools for determining the coordinates and size of ignorable regions and
feature locations. When loaded into the system, the image was copied to a local file
folder, and the JSON object was inserted into a MongoDB database collection.

5.3.2 Calibration

Images of server racks were obtained from a data centre. Due to the limited space in
the data centre, a camera with a large field of view was required to capture the entire
server rack. However, in order to provide the large field of view, GoPro uses what is
called a “fish-eye” lens. This lens is circular, and shows a distorted and curved image,
as can be seen in Figure 8. The distortion by such lens vary depending on where
an object is within the image. An object at the centre of the image will have close
to zero distortion. An object at the end of an image will have a lot of distortion,
with a stretched appearance. This is problematic when comparing the images to
template images, as the template images will not be distorted. Further, distortion
cannot be applied to the images to mimic the GoPro lens because the distortion
varies throughout the image. Therefore, the images from GoPro cameras must be
calibrated and undistorted.

In order to calibrate for a given camera multiple test images must be taken. These
images involve attaching a print out of a checkerboard pattern to a flat surface. An
example of a calibration image is shown in Figure 19. Multiple pictures are then
taken with the pattern positioned at various angles, locations, and distances. These
pictures are then used by a calibration algorithm to determine the distortion by the
camera.

Using the method proposed by Zhang [49], the parameters provided by Equations
(1) to (3) are used to undistort the image, resulting in an image that has close to
zero distortion.

60

Figure 19: Example of a calibration image

61

5.3.3 Edge Detection

The first phase of the proposed approach is to identify the individual items on the
shelf. In the demonstration system, that requires identification of the individual
pieces of equipment in the server rack. This was conducted in two phases. First,
the primary server rack in the image is identified. Second, the individual pieces of
equipment within that server rack are identified. The below process is completed
once for each server rack image that is input into the system.

Server Rack Detection As can be seen in Figure 20, a server rack can be iden-
tified as the rectangle outlined by the two vertical dark grey bars that support the
equipment within the rack, and the two horizontal bars dark grey bars at the top
and bottom of the rack. Due to the camera field of view, an image of the server racks
may contain more than just a single server rack. The server racks to the left and
right of the main rack may be partially visible as well. Additionally, the camera may
capture areas above and below the main rack. Anything in the image outside of the
server rack is not useful information in determining the identity of the equipment
within the rack. In fact, this area could interfere with matching process. To remove
the excess areas from the image, we must first detect the location of the four edges
of the server rack. Once we have detected those edges, we can crop the image to
remove anything outside the rack.

To detect the dark grey bars in the image the same algorithm is used on each bar.
It is assumed that all images of the server racks will be taken with the same type of
camera. Every server rack within a data centre is typically the same standardized
size. Based on these facts, I determined ahead of time that the width (for vertical
bars), and height (for horizontal bars) of the rack sides to be 150 pixels.

Due to the solid, dark grey colour of the bars in the rack, we can detect them by
using thresholding and searching for a continuous black region. First, we threshold
the image using Otsu’s Method [31]. Then, we search for the left vertical bar of the
rack. This is done by searching from left to right until a column of pixels that are all
black is found. This is repeated until a set of 150 entirely black columns are found.

62

Figure 20: Rack 2, with the perimeter of the rack outlined in green

63

This region of 150 black rows are deemed to be the left side of the rack. It is also
possible that there could be occlusions, such as hanging cables, that appear within
the region containing the server rack bar. There may also be glare from overhead
lighting that would result in some pixels within the region being thresholded to white,
instead of black. To account for these cases, we specify a threshold that the region
must meet. Through experimental trial and error, I determined that up to 20% of
the region’s pixels may be white. Therefore, the region must satisfy Equation (30),
where the left hand side is the number of black pixels in the region spanning columns
x to x+ 150, and the right hand side is the threshold percentage t multiplied by the
total number of pixels in the region. Finally, we assume that the server rack we are
analyzing will be the main object within the image. Based on the existing images,
we know that the left side of the server rack will be within the first vertical quarter
of the image. We therefore limit our search to columns within the first quarter of
the image. Algorithm 8 shows the pseudo code for the completed algorithm.

This same algorithm is applied to find the right side of the image. Instead of
starting our search from the left-most column, the search begins from the right-most
column. For the horizontal bars we search for 150 entirely black rows, instead of
columns. For the top horizontal bar, the search starts from the top of the image.
For the bottom horizontal bar, the search starts from the bottom of the image. In
the case of the top horizontal bar, the region may be almost entirely thresholded
to white, due to overhead glare. To account for this, we repeat the algorithm but
instead search for entirely white rows instead of entirely black rows. We use the same
threshold of 20% to specify the allowable number of black pixels. This is shown by
Equation (31).

rx→x+150(pblack) > t · rx→x+150(pall) (30)

rx→x+150(pwhite) > t · rx→x+150(pall) (31)

64

Equipment Detection Once the server rack has been isolated, the next stage of
the process is to isolate the individual pieces of equipment within the server rack.
This process is aided by the fact that we know that pieces of equipment generally have
solid, straight edges, and that they are at least 1RU in height. Based on analysis of
the server rack images provided, it can be determined that 1RU is roughly equivalent
to 167 pixels in height.

First, a standard Canny edge detector is applied to the isolated server rack to
find all edges within the image, as shown in Figure 21 [7]. Canny edge detection will
find a large number of edges in the image, with many different angles and shapes.
To determine straight lines within the image a Hough transform is applied. In this
case, an enhancement of the Hough transform, the Progressive Probabilistic Hough
Transform (PPHT) is used. This enhanced version was chosen because it has been
shown that its efficiency improves significantly on the original, with only a slight
decrease in quality [25]. The PPHT algorithm will detect many lines, often short in
length and at various angles. However, since we know that the edges of the server
rack will be horizontal within the image, we can isolate those lines with an angle of
zero degrees. To account for possible tilt in the image, we allow the isolated lines
to have an angle between -5 and +5 degrees. This step is shown by Equation (32),
where L is the set of lines such that the angle of the line is between 5◦ and −5◦. This
will result in a large number of short line segments that are essentially horizontal.

Now that we have the horizontal lines within the image, we must determine which
rows within the image are most likely to contain a long horizontal line that aligns
with the edge of a piece of equipment. To achieve this, we first measure the maximum
number of detected lines that start or end on a given row. This is shown by Equations
(33) and (34), where count(ry) is the count of lines in set L such that the row the
line is on, ly is equal to the specified row ry, and t is the threshold determined as
the maximum number of lines found by count(ry) for all rows. Next, we discard any
lines that are on rows with less than 30% of the maximum number of lines on a row.

This prevents any spurious horizontal lines that have been detected in the back-
ground of a server rack, for example, where there is an empty space in a server rack.
Finally, we search, from top to bottom, over the image 1RU (167 pixels) at a time.

65

Figure 21: The results of applying Canny edge detection to a server rack

66

Within that window, we only keep the row with the most line segments. The final
set of rows are shown by Equation (35), shows the final set of rows, R. The output
of the algorithm is shown in Figure 22.

Algorithm 9 shows the pseudo code for the completed algorithm.

L = {l | (angle(l) < 5◦ and angle(l) > −5◦) } (32)

count(ry) =
∑

l ∈ L s.t. ly = ry (33)

t = 0.3 ·max(count(ry)) (34)

R = {ry | count(ry) > t and count(ry) > count(ry + 167)} (35)

5.3.4 Region Matching

The edge detection portion of this solution isolates the images for analysis. The
region matching portion compares the template images to the individual equipment
images output by the edge detection process. Region matching is applied once for
every template image against every extracted equipment image. Region matching
accepts as input a template image from the image library with its accompanying data
model, as described in Chapter 4, and an extracted image from the edge detection
process. The output of the process is a set of scores that approximate how closely
the image extracted by edge detection resembles each of the template images.

Extracting Valid Regions Given two images, one template image and one ex-
tracted image, the first obstacle to performing image matching is how to use the
common methods for comparing images while ignoring parts of the region that have
been marked as ignorable. Simply removing the ignorable regions from the image by
zeroing out the pixels in that region would skew existing image comparison algorithm
implementations. To avoid re-implementing existing algorithms to ignore the speci-

67

Figure 22: The lines separating pieces of equipment in a rack, as found by the edge
detection algorithm

68

fied regions, we can instead break our images into separate parts that do not include
the ignorable regions. The sub-images from the template and the extracted images
are then compared to one another using existing algorithms and implementations.
However, cropping images manually to remove the ignorable regions is not feasible in
a production system. Currently, there are no existing algorithms that describe how
to break an image into composite sub-images, while deliberately ignoring specific
regions within the image. The following algorithm is proposed to efficiently find the
sub-images.

Since colour is not key to determining the sub-images, we convert any colour
images to grayscale, for simpler processing. Starting with the matrix of pixel values
representing an image, we must first mark the ignorable regions in the matrix. We
will use the value of 0 (black) for every pixel that is located within the ignorable
regions. In order to not confuse a pixel that is actually black with a pixel that is in
the ignorable region, we first add one to all of the values in the matrix.

The algorithm follows the simple goal of searching from the starting point, the
top-left corner of a new sub-image, as far as possible to the right, and as far as
possible to the bottom to determine the area to extract. The algorithm starts at the
origin of the image, in the top-leftmost corner. The search to the right continues
until it meets the edge of the image, or the edge of an ignorable region. The search
to the bottom will similarly continue until it meets the bottom edge of the image, or
the edge of an ignorable region.

The points where the search ends determine the edges of the sub-image. Once a
sub-image has been found, the coordinates are recorded, and all pixels in the region
are marked as 0. This way the sub-image region is not included in any future sub-
images. This search continues until the entire image has a pixel values of 0.

Depending on the layout of the ignorable regions, some sub-images will inevitably
be too small. A sub-image is considered too small for further analysis if it has
dimensions that are less than 1% of either corresponding dimension for the entire
image. Figures 18 and 23 show an example image with ignorable regions drawn, and
the corresponding sub-images found by the algorithm.

While other potential algorithms were considered, this algorithm has the benefits

69

Figure 23: The five valid regions extracted from the Dell PowerEdge R720 template

of simple implementation and simple computational time.
Algorithm 10 shows the pseudo code for the completed algorithm for extracting

valid regions from an image with ignorable regions.

Shape Matching The first of two components we use for comparing two images is
shape. After applying the algorithm to extract the valid regions from the template
image, and extracting the corresponding regions from the extracted image from the
server rack, the next step is to detect the features of the two images. I then detect
the homography between the two sets of features which will also provide a set of
inlier points. A score is computed based on the ratio of outlier points to all points.

To detect features, the Oriented FAST, Rotated BRIEF (ORB) algorithm is
applied to the two images being compared. This algorithm was chosen due to its
speed and quality of results. The ORB algorithm determines a set of features, or
keypoints, in each of the two images. The algorithm then describes each of the
features. These descriptions are called descriptors.

The two sets of descriptors are compared using the k-Nearest Neighbours (kNN)
algorithm. The kNN algorithm provides a ranked list of possible matches for each
keypoint. Only matches that are significantly stronger than the second closest option
are kept. Stronger is defined as having a Hamming distance less than five times the
distance of next closest match. This variability in distance suggests unambiguity,
and thus confidence, in the first match.

The least median of squares (LMedS) method is used to find the homography
between the two remaining sets of keypoints. LMedS will only work when more than
50% of the points are inliers [26]. Therefore, if LMedS fails we discard the match as

70

“not a match”. Otherwise, LMedS will output a list of points that are inliers.
The size of the list of inliers outputted by the LMedS algorithm can then be

used to determine a score for the similarity of the two images. If there is a high
proportion of inliers compared to the initial list of keypoints, then the two images
are determined to be a good match. If there is a low proportion of inliers, the two
images are not as good of a match. The score is computed as the ratio of outliers
to the total list of keypoints, or one minus the ratio of inliers to the total list of
keypoints. The closer a score is to zero, the better the match is deemed.

Algorithm 11 shows the pseudo code for the completed algorithm. Figure 24
shows examples of matching part of both a correct template, and an incorrect tem-
plate to an image extracted from a server rack.

Colour Indexing A second component that can be compared between a template
image and the extracted image is the colour. One method of doing so is via colour
indexing. Colour indexing provides a simple and efficient method for determining
the similarity of pixel values between two images.

This process takes two images as input, the template image, and the extracted
image from the server rack. The two images are then converted from the standard
RGB colour space representation to the Hue, Saturation, Value (HSV) colour space.
The hue and value channels are then isolated from the two images. The saturation
channel is ignored as it is the most susceptible to differences in lighting conditions
such as glare.

The histograms of the two remaining channels in the two images are then com-
puted. The histograms are normalized to values between zero and one in order to
compare the two histograms. The difference between the two histograms is com-
puted using the Correlation method. Using this method, a perfect match will receive
a value of one. An item that does not match completely will receive a value of zero.
The pseudo code algorithm is shown in Algorithm 12.

Although colour indexing provided decent results when using template images
that had been taken in an operational environment (i.e. the same environment that
the images of the server racks were taken), they did not do as well when using images

71

Figure 24: Lines drawing the keypoint matches between a correctly matching tem-
plate (left), and an incorrectly matching template (right)

72

Figure 25: The HSV histograms generated for the Apex 1000 template image [21]

obtained from other sources. In these instances, the histograms, as can be seen in
Figures 25 and 26 differed significantly. The areas surrounding the extracted image
have a significant impact on the topography of the histograms, even when removing
the saturation channel. To improve upon colour indexing, colour clustering was used.

Colour Clustering Colour clustering provides representative colours that can be
used for comparison between images. Colour clustering works by applying the k-
means clustering algorithm to the pixels of the image. By clustering both the ex-
tracted image and the template image, we can find the colours that best represent
the depicted equipment.

To determine the number of clusters used to cluster each image, a small sample
of tests were run on a number of representative images. For each image, clustering
was performed with a varying number of k specified clusters. Based on these tests,
five was chosen as the optimum number of clusters.

Once the five representative pixels have been found for each image they can
be compared to one another running through an iterative process to determine the

73

Figure 26: The HSV histograms generated for an extract image of an Apex 1000
server [21]

closest pixel between the two sets. The Euclidean distance between each matching
set of points is then summed to determine the overall difference between the colours
in the two images. The iterative process of determining the best match loops through
the points, finding the best match, and removing it from the list of possible options for
other points is shown by Algorithm 3. This process is repeated for all permutations
of the source set that finds a match. All permutations are generated via Heap’s
algorithm [12]. All permutations are tested to ensure that the the optimal set of
pairs are found. Based on experimental testing, the images typically had a distance of
between 100 and 1000. Therefore, each total distance is divided by 1000 to determine
an overall colour score, where the lower the score is, the better the match. The entire
pseudo code algorithm can be seen in Algorithm 13.

Feature Matching Once the entire image has been compared using shape match-
ing and colour indexing, each of the features in the template image are compared to
their expected position in the server extract image. First, the location of the feature

74

Algorithm 3 Pseudo code algorithm for comparing two sets of points to find the
closest matches

1: while exists new permutation of imageCentroids do
2: workingSetCentroids = templateCentroids
3: for imageCentroid in imageCentroids do
4: for templateCentroid in workingSetCentroids do
5: currentDistance = euclideanDistance(imageCentroid, templateCentroid)
6: if currentDistance <closestDistance then
7: closestDistance = currentDistance
8: closestIndex = templateCentroid index
9: end if

10: end for
11: closestDistanceSum = closestDistanceSum + closestDistance
12: remove closestIndex from workingSetCentroids
13: end for
14: if closestDistanceSum <currentClosestDistanceSum then
15: closestDistanceSum = currentClosestDistanceSum
16: end if
17: end while

within the template image is cropped and extracted. The image extracted from the
server rack may vary in size, especially if the template image was taken by a different
camera. To account for this difference, the extracted image is first scaled to similar
dimensions. The rectangles bounding features on template images are very precise.
To account for slight differences in the position of the piece of equipment within the
image, we allow for a 15% buffer along all sides of the area where the feature should
be in the server extract image. This enlarged area is cropped and extracted for com-
parison to the feature extract from the template image. The processes described in
Shape Matching and Colour Indexing above are repeated for these two images. This
process is repeated for every feature of the template image.

Matching Multiple A single area extracted by the equipment detection stage of
the algorithm may in fact contain more than one piece of equipment. This can occur
when the lines at the edges of the piece of equipment are occluded, or when another

75

line near the piece of equipment is simply more defined. In order to account for this,
I run a single extracted image through the entire process multiple times as needed.

First, the size of the extract is considered. If the extract is at least as large as
approximately 2RU, it is eligible for having multiple pieces of equipment. Once a
piece of equipment has been detected on the image, we can determine it’s location
by drawing a bounding rectangle around the inlier keypoints. The keypoint in the
top-right corner of the bounding rectangle can be used as an approximate location
for the piece of equipment in the image. Based on the location, and the size of the
piece of equipment detected, it can be estimated if there is enough room in the image
such that another piece of equipment could be found.

If the location of the previously found piece of equipment is near the top of the
image, that area is removed, and the bottom portion of the image is run through the
algorithm again. If the location of the previously found piece of equipment is near
the bottom of the image, that area is removed, and the top portion of the image
is run through the algorithm again. Finally, if the location of the previously found
piece of equipment is in the middle of the image, that area is removed, the image is
split, and both the top and the bottom portions of the image are run through the
algorithm again.

For each additional piece of equipment from a sub-region (as outlined in the
previous paragraph) that is detected, an additional array is added to the data model
for that “Server”, as can be seen in the JSON in Figure 10. The arrays are included
in order, such that the first array includes results from matching the top of the image,
and the last array includes results from matching the bottom of the image.

Scoring A cumulative score is compiled using the shape matching and colour in-
dexing results. This score is used to provide a score of how similar the extracted
image is to a given template image.

The shape matching algorithm outputs a value describing the similarity of shapes
between the two images. The closer the value is to zero, the closer the two images
are in similarity. However, the colour indexing algorithm outputs a value where the
closer a value is to one, the more similar the two images are. To combine these

76

scores, the colour indexing score is subtracted from one, so that the closer the value
is to zero, the closer in similarity the colour between the two images will be. It was
decided that matching the shape of the piece of equipment is more important than
matching the colour of the piece of equipment. As a result, the scores are combined
with a weighting of 55% for the shape of the equipment, and 45% for the colour
comparison.

For all of the features, this score is then multiplied by the weight of the feature as
described in the template image’s data model. All of the feature scores are combined
as a weighted average into a single feature score.

The score for the entire image and the feature score are then combined, with each
component weighted at 50%. This score is used for ranking the extracted image’s
similarity to the template. The equations used are shown by Equations (36) through
(38).

Stotal = 0.5 · Soverall + 0.5 · Sfeatures (36)

Soverall = 0.55 · Sshape(I, T) + 0.45 · Scolour(I, T) (37)

Sfeatures = 1
n
·
n∑
i=0

Soverall(I, Fi) (38)

Optimizations There exist within the above algorithm some optimizations that
can be used to improve the analysis runtime. There are three types of optimizations
that are readily apparent, short circuits, caching, and parallelization.

Short circuits can be used at various steps where it is obvious, based on the results
of the previous step, that the template will not be a match for the image. Generally,
this involves determining whether a score is below a predefined threshold. Examples
of this optimization can occur after shape matching, before feature matching (after
colour matching), and during feature matching if the image has already failed to
match a given percentage of features.

Caching can be used in cases where the data is independent of the two images

77

being compared. For example, all feature extracts from the template images can be
saved and re-used, as well as saving all images in memory for faster access. Another
example is the results of time intensive algorithms, such as caching the keypoints
detected by the ORB algorithm, or the clusters found via K-means.

Finally, the algorithm is highly parallelizable. Since multiple images must be
compared to multiple other images, a thread can be created for each comparison
(as the system allows). On the test equipment, it was found that one thread per
CPU core at a time was optimal to limit thrashing. Further, we can ensure that the
order of templates compared in each thread differs, to prevent multiple threads from
computing values that will be cached at the same time.

5.3.5 Final Ranking

After an extracted image has been scored against each template image, the matches
can be ranked. The matches are ordered by score from lowest to highest, where the
lowest score means that the match was most similar.

5.3.6 Evaluation Tasks

This demonstration system was analyzed in two stages. The first stage of analysis
aimed to only measure the quality of the region matching algorithm. The second
stage of analysis measures the quality of the entire system.

For this demonstration system, the desired outcome was to provide a limited set of
options to a human operator. The operator could then verify and select the correct
match. Therefore, when evaluating the system it was important that the correct
match appear within a short list of limited options. The options listed for each piece
of equipment were examined with regards to how often the correct match appeared
as the first option, within the top five options, and within the top ten options listed.
Identifying areas where no piece of equipment was present was outside the scope of
the prototype system, and so those regions were ignored in calculating the matches.

To test the region matching system, pieces of equipment were manually cropped
from the existing server racks. These images were manually identified and then run

78

Image Type Number of Images
Rack Images 8
Pieces of Equipment 95
Equipment Templates 47

Table 2: Test Data Summary - Phase 1

through the region matching system. The results were then analyzed to determine
the ranking of the correct match.

For evaluation of the entire system, the rack images were run through all stages of
the protoype system, including preprocessing, extraction and region matching. The
results were then analyzed to determine the ranking of the correct template to the
piece of equipment.

5.4 Testing Data Description

The test dataset was composed of rack images and templates as described in Chapter
3. The test dataset was gathered in two phases, the first used a camera with a
narrow field of view. The rack images captured by this camera required manual post-
processing to stitch multiple images into a single composite rack image. Template
images for the first phase were obtained from a variety of sources, including the
Internet, product manuals, and samples from the rack images. The second phase of
test data was captured using a camera with a wide field of view. The wide field of
view camera was able to capture a single server rack in one image. Template images
for the second phase were entirely sampled from the rack images.

The test data is summarized by Tables 2 and 3.
Two different tests were performed on each dataset. The first test was purely

a test of the matching algorithm. The pieces of equipment were manually cropped
from the rack images. These images were then compared directly to the template
library. The second set of tests tested the entire system from end-to-end.

79

Image Type Number of Images
Rack Images 112
Pieces of Equipment 406
Equipment Templates 74

Table 3: Test Data Summary - Phase 2

5.5 Manual Extract Test Results

Tables 4 through 7 summarize the manual extract test results. Table 4 shows a
summary of the extract test results for the images from the first phase. A notable
feature of this data is that in cases where a piece of equipment was not ranked at
all, the equipment did not rank for all instances of that piece of equipment. When a
piece of equipment was ranked, all instances of that piece of equipment were ranked.
This is likely due to an issue with the template image of that piece of equipment.
If an image is not ranked at all, it is typically due to a poor score during feature
matching. In these cases, the algorithm is unable to match a sufficient number of
points, or, the points that it does match perform below the threshold. It is also
possible that the ignorable regions are too broad, leading to a limited number of
features.

Of the pieces of equipment that ranked, we see only seven pieces of equipment
that consistently ranked within the top 10. This is further demonstrated by Table
13. Here we see that nearly half of all images ranked within the top ten. However,
the correct image ranked first in only one instance.

The results from the second phase in Table 6, which used a larger set of equipment
and images, show slightly poorer results. Despite the near doubling in number of
types of equipment, the absolute number that ranked within the top ten is only
slightly higher, with ten. In the phase two results, as shown in Table 7, we see that
with a larger set of images, a greater number of images ranked as the top choice.
However, there are a similar number of images within the top ten for both test
datasets. Given the much larger size of the phase two dataset, this results in only a
fifth of the images tested being ranked in the top ten.

80

Equipment Name Images Number Correct Average Rank
Tested Template Ranked

ATX MN5 4 4 7.25
Aurora CH3000N 8 8 4.75
Cisco RFGW2 14 14 17.29
Drake VM2410A Modulator 1 1 23
Fujitsu FW7500 2 0 -
Jerrold S450M 1 1 19
Juniper EX4550 5 5 18.4
Juniper MX960 1 0 -
Leitch 6800 1 0 -
Motorola Apex 1000 14 14 9.86
Motorola NE2500 9 9 2.78
Motorola OM2000 8 8 24.88
MPEG2 DSR-4400 5 5 6.60
Nortel NT0H32AH 2 2 19
Nortel NT0H32BF 4 4 13.25
Nortel Optera Metro 5200 4 0 -
Telect GMT 10-10 Fuse Panel 3 3 9
Telect GMT 10-10 Fuse Panel 2 1 1 1
Telect HPGMT15 Fuse Panel 2 2 9
Telect KLM-GMT 4-4 Fuse Panel 1 1 26

Table 4: Results - Phase 1 - Extract Test Equipment Summary

Number of Images Percent of Total
Total Images 95 -
Total Ranked 82 86.32%
Top 10 39 47.56%
Top 5 26 31.71%
Top 1 1 1.22%

Table 5: Results - Phase 1 - High Ranking Summary

81

Equipment Name Images Number Correct Average Rank
Tested Template Ranked

A10 Networks AX 3400 2 0 -
ADC FVM-19x700 10 10 27.20
Agilent Spectrum Analyzer E4411B 5 5 18.00
ATX MN1-16 25 25 16.08
CableServ CHAS 13 13 34.08
CableServ CHAS 2 4 4 13.00
Casa Systems C100G 5 5 2.80
Cisco 4506 15 15 1.47
Cisco D9500 2 2 12.00
Cisco UBR-RFSW-3X10 RF Switch 4 4 1.25
Cisco uBR10000 1 1 22.00
Colomachine CM61 4 4 8.25
Electroline TPS MS-100 5 5 16.6
Electroline TPS SL-100 12 12 22.83
Electroline TPS-32 3 3 12.67
Generic 6-port AC Power Outlet 2 2 7.00
JDSU Stealth Sweep Transceiver 1 1 15.00
Juniper MX960 5 5 10
Juniper SRX5600 1 1 1.00
Motorola Apex-1000 29 29 1.62
Motorola ARPD 1000 31 31 25.48
Motorola NE2500 9 9 12
Motorola Receiver 4 0 -
Motorola SE-1010 28 28 23.21
Motorola SEM V8 1 1 1.00
Motorola SEM V8 Cover 8 8 21.00
Nortel OPTera Metro 5200 1 1 27.00
Palmorex PMX 1500 14 14 32.64
PCI Technologies MN2 13 13 6.23
PCI Technologies MN5T 72 72 23.82
PCI Technologies RMS PCI-81L
8-way Splitter 1 1 1.00
PCI Technologies
SCN-PP5-20F 5-20 Demark 7 7 12.71
PCI Technologies TSG 4000R 1 1 12.71
RGB Networks SEP48 4 4 24.50
Scientific Atlanta D9510 2 0 -
Scientific Atlanta Prisma DTx 4 0 -
Standard TVM 550 II5 1 1 12.00
Telect 10-10 GMT Fuse Panel 20 20 19
Telect HPGMT15 Fuse Panel 14 14 20.07
Telect KLM-GMT Fuse Panel 21 21 19.57
Trilithic Super Series CT-2 1 1 12

Table 6: Results - Phase 2 - Extract Test Equipment Summary
82

Number of Images Percent of Total
Total Images 406 -
Total Ranked 395 97.29%
Top 10 80 20.25%
Top 5 65 16.46%
Top 1 48 12.15%

Table 7: Results - Phase 2 - High Ranking Summary

Mean 12.07
Median 11.00

Standard Deviation 8.1085

Table 8: Results - Phase 1 - Manual Extract Basic Statistics

5.5.1 Basic Statistical Performance

Tables 8 and 9 show the mean, median, and standard deviation of the test results.
In both phases, the mean and median values are outside of the top ten, with slightly
worse performance in the phase two dataset. The standard deviation is also quite
large, given the size of the template libraries, in both datasets, at 8.1085 and 11.82.
These values show that overall, the region matching system alone was not able to
effectively limit the number of choices to the top ten. With the larger and more
variable dataset from phase two, the mean correct match falls to the bottom of the
top twenty.

Mean 18.31
Median 17.00

Standard Deviation 11.82

Table 9: Results - Phase 2 - Manual Extract Basic Statistics

83

5.5.2 Mean Reciprocal Rank Performance

Mean reciprocal rank is a statistical method of evaluating information retrieval
queries [8]. It is best applied to known-item searches [29]. A known-item search
is where there is only one correct answer to a query, and the result set is a ranked
list. The problem studied can be accurately described as a known-item search.

Mean reciprocal rank is described by Equation (39).

MRR =
∑|Q|
i=1

1
ranki

|Q|
(39)

where Q is the set of queries performed for a piece of equipment,
ranki is the rank of the correct template for query i.

A perfect mean reciprocal rank is 1. If all queries had ranked the correct match
at two, the mean reciprocal rank would be 0.5. The lower the mean reciprocal rank,
the poorer the results for that set of queries.

Tables 10 and 11 show the mean reciprocal ranks for each type of equipment.
Some equipment, such as the Motorola NE2500 and Motorola Apex 1000, perform
significantly better than the others. This is may be due to the distinctive colour
of the pieces of equipment. There are a number of pieces of equipment that have
a perfect score. However, in all cases these pieces of equipment only had one test
image. It is likely a larger dataset for these pieces of equipment would result in lower
scores.

The mean reciprocal ranks similarly show that the proposed region matching
system was unable provide high quality results overall.

84

Equipment Name Mean Reciprocal Rank
ATX MN5 0.186905
Aurora CH3000N 0.288542
Cisco RFGW2 0.060275
Drake VM2410A Modulator 0.43478
Fujitsu FW7500 -
Jerrold S450M 0.052632
Juniper EX4550 0.05629
Juniper MX960 -
Leitch 6800 0.066667
Motorola Apex 1000 0.140491
Motorola NE2500 0.37037
Motorola OM2000 0.040554
MPEG2 DSR-4400 0.277193
Nortel NT0H32AH 0.058462
Nortel NT0H32BF 0.083802
Nortel Optera Metro 5200 -
Telect GMT 10-10 Fuse Panel 1.000000
Telect GMT 10-10 Fuse Panel 2 0.143056
Telect HPGMT15 Fuse Panel 0.138462
Telect KLM-GMT 4-4 Fuse Panel 0.038462

Table 10: Results - Phase 1 - Manual Extract Mean Reciprocal Rank Summary

85

Equipment Name Mean Reciprocal Rank
A10 Networks AX 3400 -
ADC FVM-19x700 0.049953
Agilent Spectrum Analyzer E4411B 0.056944
ATX MN1-16 0.070719
CableServ CHAS 0.030086
CableServ CHAS 2 0.078125
Casa Systems C100G 0.722222
Cisco 4506 0.85625
Cisco D9500 0.083333
Cisco UBR-RFSW-3X10 RF Switch 0.875
Cisco uBR10000 0.030792
Colomachine CM61 0.320455
Electroline TPS MS-100 0.063642
Electroline TPS SL-100 0.048423
Electroline TPS-32 0.07906
Generic 6-port AC Power Outlet 0.538462
JDSU Stealth Sweep Transceiver 0.066667
Juniper MX960 0.163175
Juniper SRX5600 1.000000
Motorola Apex-1000 0.865278
Motorola ARPD 1000 0.047687
Motorola NE2500 0.083333
Motorola Receiver -
Motorola SE-1010 0.050228
Motorola SEM V8 1.000000
Motorola SEM V8 Cover 0.054505
Nortel OPTera Metro 5200 0.037037
Palmorex PMX 1500 0.034898
PCI Technologies MN2 0.27366
PCI Technologies MN5T 0.048299
PCI Technologies RMS PCI-81L 8-way Splitter 1.000000
PCI Technologies SCN-PP5-20F 5-20 Demark 0.079252
PCI Technologies TSG 4000R 0.090909
RGB Networks SEP48 0.047907
Scientific Atlanta D9510 -
Scientific Atlanta Prisma DTx -
Standard TVM 550 II5 0.83333
Telect 10-10 GMT Fuse Panel 0.057799
Telect HPGMT15 Fuse Panel 0.061072
Telect KLM-GMT Fuse Panel 0.054750
Trilithic Super Series CT-2 0.083333

Table 11: Results - Phase 2 - Manual Extract Mean Reciprocal Rank Summary

86

Figure 27: Example of a plain faceplate, Kaveman 16 Digital V6

Figure 28: Example of a grill faceplate, Sun server

5.6 Full Rack Test Results
The full rack test aimed to test the quality of the entire prototype system. Rack
images were input into the system, and then pieces of equipment were automatically
isolated and tested against the equipment library. It is expected that if the edge
detection methods performed equal to the manual cropping that the results would
be similar to the previous extract tests. On that measure, we see mixed results. The
phase one images overall rank better than those in the extract tests. The phase two
images overall rank slightly worse than those in the extract tests.

There were a number of recurring factors that appeared to influence the results.
The angle of the picture of the piece of equipment in the extract image compared to
the template was a large factor. This is due to protruding switches and dials that
appeared very differently from different directions. Furthermore, the position of the
piece of equipment in the rack would also have an effect. A piece of equipment placed
at the bottom of the rack would appear differently than one placed at the top, due
to the angle between the piece of equipment and the camera.

The lighting on the piece of equipment had a strong impact on the ranking of
the correct template. Although the aim was to mitigate this factor by ignoring the
saturation from the HSV colour space, the impact was not completely eliminated.
This factor was especially apparent in images that were “washed out” by bright
fluorescent lights.

Factors that had a positive impact on getting a correct match were intrinsic to
the piece of equipment being analyzed. Two factors appeared to have the most

87

Figure 29: Sun server with a colourful faceplate

Figure 30: Example of a unique faceplate, HP ProLiant

impact. The first factor was a distinctive colour. Most pieces of equipment are
varying shades of grey and black. Equipment that had a bright colour, such as the
red Motorola Apex 100 or the mostly blue Cisco UBR-RFSW-3X10 RF Switch scored
particularly well. Figure 29 shows an example of a colourful faceplate. The second
factor is shape uniqueness. The majority of equipment have a grill, mesh, or plain
faceplate. Examples of this are shown in Figures 27 and 28. Some equipment have a
unique shape and performed very well. Figure 30 shows an example of a more unique
faceplate.

Notably, template images taken with a mesh door in front of them, as shown in
Figure 31, scored highly for almost all images being analyzed. It appears that the
mesh adds to the number and variety of features detected in the image and results
in a greater number of matches with features from other pieces of equipment.

88

Figure 31: Example of a unique faceplate behind a mesh door

Equipment Name Number Correct Average Rank
Template Ranked

ATX MN1 0 -
Cisco RFGW2 14 2.357143
Drake VM2410A Modulator 1 29
Jerrold S450M 1 26
Leitch 6800 1 12
Motorola Apex 1000 8 5.75
Motorola NE2500 10 7
Motorola SEM V8 1 11
MPEG2 DSR-4400 5 5
Telect GMT 10-10 Fuse Panel 2 8.5
Telect GMT 10-10 Fuse Panel 2 2 1
Telect HPGMT15 Fuse Panel 1 19

Table 12: Results - Phase 1 - Full System Test Summary

Number of Images Percent of Total
Total Equipment 51 -
Total Ranked 46 90.20%
Top 10 44 86.27%
Top 5 30 58.82%
Top 1 14 27.45%

Table 13: Results - Phase 1 - Full System High Ranking Summary

89

Equipment Name Number Correct Average Rank
Template Ranked

ADC FVM-19x700 12 27.08333333
Agilent Spectrum Analyzer E4411B 4 25
ATX MN1-16 7 29.14285714
Aten KVM Switch 1 66
Aurora PF3000N-FM-00 1 1
CableServ CHAS 13 23.07692308
CableServ CHAS 2 9 33.33333333
Casa Systems C100G 5 2
Cisco D9500 2 27.5
Cisco UBR-RFSW-3X10 RF Switch 4 2.25
Cisco uBR10000 2 21.5
Colomachine CM61 3 17.33333333
Generic 6-port AC Power Outlet 4 8.5
JDSU Stealth Sweep Transceiver 1 32
Juniper MX960 9 3.444444444
Juniper SRX5600 3 7.666666667
Motorola Apex-1000 25 8.08
Motorola ARPD 1000 30 48.56666667
Motorola NE2500 21 25.0952381
Motorola SE-1010 26 30.23076923
Motorola SEM V8 1 15
Motorola SEM V8 Cover 9 29.11111111
Nortel OPTera Metro 5200 2 43
Palmorex PMX 1500 13 46.84615385
PCI Technologies MN2 8 15.125
PCI Technologies MN5T 68 32.72058824
PCI Technologies SCN-PP5-20F 5-20 Demark 8 30.875
PCI Technologies TSG 4000R 1 57
RGB Networks SEP48 4 42.5
Scientific Atlanta Continuum Modulator 6 26
Standard TVM 550 II5 1 22
Telect 10-10 GMT Fuse Panel 19 36.10526316
Telect HPGMT15 Fuse Panel 17 37.47058824
Telect KLM-GMT Fuse Panel 23 37.39130435
Telect TPA-GMT Fuse Panel 1 22
Terayon CP 7220 2 31.5
Trilithic Super Series CT-2 1 26
Ziptel Juniper MX480 2 1
Ziptel Routerboard MikroTik RB2011UiAS 1 22

Table 14: Results - Phase 2 - Full System Test Summary

90

Number of Images Percent of Total
Total Images 406 -
Total Ranked 369 90.89%
Top 10 43 11.65%
Top 5 36 9.76%
Top 1 23 6.23%

Table 15: Results - Phase 2 - Full System High Ranking Summary

Figures 16 and 17 show a summary of how highly the correct template was ranked.
When compared to the extract test summaries (Figures 8 and 9) we see two different
results for the different phases. In phase one the full rack performance was better than
that of the extract tests, where 86.27% of images had the correct template ranked
within the top 10, compared to 47.56% of images in the extract test. However,
for phase two, we see that the full rack performance was worse, with only 11.65%
of images ranking in the top ten versus the extract test result of 20.25%. The
greater number of image templates in phase two likely played a part. However, the
automated extract process likely had the largest impact. The process, as described
in section 5.5.2, was initially designed for the images from phase one. By focusing
on straight lines, this process was more precise than a human doing the manual
cropping. However, the process typically performed slightly worse than a human
when attempting to detect the edges of a piece of equipment for phase two images.
This is due to the distortion from the fish-eye lens that remains even after calibration.

Another factor in the results for the phase two dataset is that with a larger
set of server racks, there were a larger variation in the angles, shadows, occlusions
and lighting conditions compared to the template images that were chosen. The
prototype system has difficulty matching images that are very different, even if they
are the same piece of equipment. For example, a template image with a lot of glare
will always have difficulty matching a heavily shadowed or occluded image from the
server rack.

5.6.1 Basic Statistical Performance

We see the same trend from the ranking summaries in the basic statistics in Figures
16 and 17. Figure 16 shows a decrease in all values when compared to the extract
test values in Figure 16. Figure 17 shows a large increase in all values compared to
the extract test values in Figure 16.

91

Mean 5.686275
Median 5

Standard Deviation 6.143257

Table 16: Results - Phase 1 - Full System Basic Statistics

Mean 29.39
Median 27.00

Standard Deviation 15.13

Table 17: Results - Phase 2 - Full System Basic Statistics

5.6.2 Mean Reciprocal Rank Performance

The mean reciprocal rank values show another view of the performance of the pro-
totype system. The trends here match those seen in the previous sections. In the
phase one values in Figure 18 there are a couple of high values (above 0.5). Typically
this has occurred where very few instances of the piece of equipment existed. Those
that did exist, matched well.

In the phase two values in Figure 19 there are many values in the range of 0.02-
0.04. These values reflect the generally low ranking of the correct matches for this
set of images.

92

Equipment Name Mean Reciprocal Rank
Cisco RFGW2 0.633333333
Drake VM2410A Modulator 0.034482759
Jerrold S450M 0.038461538
Leitch 6800 0.083333333
Motorola Apex 1000 0.219047619
Motorola NE2500 0.190793651
Motorola SEM V8 0.090909091
MPEG2 DSR-4400 0.342222222
Telect GMT 10-10 Fuse Panel 0.202380952
Telect GMT 10-10 Fuse Panel 2 1
Telect HPGMT15 Fuse Panel 0.052631579

Table 18: Results - Phase 1 - Full System Mean Reciprocal Rank Summary

93

Equipment Name Mean Reciprocal Rank
ADC FVM-19x700 0.037562511
Agilent Spectrum Analyzer E4411B 0.040918826
ATX MN1-16 0.039400859
Aten KVM Switch 0.015151515
Aurora PF3000N-FM-00 1
CableServ CHAS 0.043885855
CableServ CHAS 2 0.033078898
Casa Systems C100G 0.833333333
Cisco D9500 0.036472149
Cisco UBR-RFSW-3X10 RF Switch 0.5625
Cisco uBR10000 0.046536797
Colomachine CM61 0.061194653
Generic 6-port AC Power Outlet 0.347355769
JDSU Stealth Sweep Transceiver 0.03125
Juniper MX960 0.669360269
Juniper SRX5600 0.396011396
Motorola Apex-1000 0.416426384
Motorola ARPD 1000 0.022383703
Motorola NE2500 0.041403362
Motorola SE-1010 0.037316695
Motorola SEM V8 0.066666667
Motorola SEM V8 Cover 0.035236951
Nortel OPTera Metro 5200 0.028897849
Palmorex PMX 1500 0.022857829
PCI Technologies MN2 0.184965254
PCI Technologies MN5T 0.032891317
PCI Technologies SCN-PP5-20F 5-20 Demark 0.03432145
PCI Technologies TSG 4000R 0.01754386
RGB Networks SEP48 0.025999003
Scientific Atlanta Continuum Modulator 0.038575838
Standard TVM 550 II5 0.045454545
Telect 10-10 GMT Fuse Panel 0.02965893
Telect HPGMT15 Fuse Panel 0.028512083
Telect KLM-GMT Fuse Panel 0.027506311
Terayon CP 7220 0.031754032
Trilithic Super Series CT-2 0.038461538
Ziptel Juniper MX480 1
Ziptel Routerboard MikroTik RB2011UiAS 0.045454545

Table 19: Results - Phase 2 - Full System Mean Reciprocal Rank Summary

94

5.7 Time Performance
The prototype system was run on the system described in Section 5.2.1. For a
rack image from phase one with a template library of 47 images, the system took
approximately 50 minutes. For a rack image from phase two with a template library
of 74 images, the system took approximately 80 minutes. The increase for phase two
images is due to both the increase in the number of images in the template library,
and the increase in size of the rack images.

95

6 Summary and Conclusion

6.1 Conclusions
This thesis proposes a system for image matching in a structured environment, such
as a warehouse of products, where an insufficient number of training images are avail-
able for machine learning techniques. The proposed system works by first defining a
library of template images, that is, a single image of a product that would be located
in the warehouse. A data model is created for each piece of equipment to note the
height, width, feature areas that are important, such as a logo or model number,
and areas that are ignorable, such as a sticker or label that would not consistently
appear on the product. Images taken of the warehouse shelves are also labelled to
specify the height and width of the shelf being photographed. This information is
used to assist the image matching process. For example, a product that is 23 inches
wide cannot fit on a 19 inch wide shelf.

The image matching process involves two stages, edge detection and region match-
ing. The edge detection stage proposes algorithms to analyze the images for the
shelves on which the products are placed. Once the edges have been detected, the
individual products are extracted from the image for further analysis. In the second
stage, region matching takes place between the extracted images and the predefined
library of template images. Based on the data model of the template image being
compared, the images are dividing into sub-images, with the ignorable areas removed.
The sub-images are compared based on shape features and colour clustering profiles,
and assigned scores based on how similar they are. The feature and colour compar-
isons are repeated for each of the key feature regions defined in the template data
model. The scores are then ranked to provide the user with a list of likely matches
for each piece of equipment.

This approach was tested on two datasets. The datasets consisted of images of
server racks from a data centre, and template images of equipment that was located
in the racks. The first dataset was small and obtained under ideal conditions. The
dataset also involved manual processing to create a full field of view of the equipment
racks. The template images for the first dataset were obtained from the Internet,
product manuals, and images of the equipment in situ. The second dataset was
larger and obtained with a single picture using a large field of view camera. The
template images for the second dataset were all obtained in situ, from the images of
the server racks. Images from the second dataset required calibration before being
processed by the rest of the system.

For the limited dataset, this system produces reasonable results, where 86.27%

96

of equipment have the correct template ranked in the top ten. However, the results
were poor for a larger dataset with more variation in lighting, camera angle, and lens
distortion from a wide angle, fish-eye lens. The larger dataset only ranked the correct
template in the top ten 11.65% of the time. While the first dataset shows that the
system can be useful under ideal conditions, the second dataset shows the limitations
of the solution when applied to real world conditions. The median ranking of the
correct template was 27 on the second dataset when compared to a median of 5 on
the first dataset. With these results, the correct match could be expected to be on
the “third page” of a ten results per page interface. Given that user expectations
have been set for a correct match on the first page, this shows that the solution is
not suitable as is to meet image recognition requirements. A larger template dataset,
with multiple angles and lighting conditions could be explored as a possible solution
in the future. However, a larger template library has a direct impact on runtime.

6.2 Future Work
This solution was devised for a specific use case, identifying objects within a ware-
house (or a similar environment). The algorithms are therefore tailored to images
that are taken at a direct angle, with the desired area for analysis in the centre of
the image. This system would not work as designed if the photos could be taken at
various angles. However, with changes it is possible this could be accommodated by
adding multiple templates for a particular piece of equipment.

The results of the larger dataset show that the system does not deliver high
quality results without ideal conditions. Variations in lighting and camera distortion
are believed to have played a part in the poor results.

There are a number of potential avenues for future improvement to the described
system. The most prominent among them would be the usage of machine learning
to learn from the analysis, and feedback of the human operator over time to improve
the results. Additionally, the existing system used only two attributes to compare
a template image to an input image, shape and colour. Other attributes, such as
texture and depth, provide additional dimensions upon which the images may be
compared.

More targeted areas for improvement also exist. For example, the usage of mul-
tiple templates for a single piece of equipment to account for the way pieces of
equipment appear different at various angles. Adding detection of occlusions such as
stickers, and cables to automatically ignore them in comparisons may also improve
matching scores. Attempting to limit the impact of lighting by levelling saturation,
brightness, and contrast of the rack images may further improve results. Finally, al-

97

gorithm optimization and the usage of GPU’s for computation could further improve
processing time.

98

7 Bibliography

References
[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[2] M. Ali and D. Clausi. Using the Canny edge detector for feature extraction
and\nenhancement of remote sensing images. In IGARSS 2001. Scanning the
Present and Resolving the Future. Proceedings. IEEE 2001 International Geo-
science and Remote Sensing Symposium (Cat. No.01CH37217), volume 5, pages
2298–2300, 2001.

[3] D H Ballard. Generalizing the Hough Transform to Detect Arbitrary Shapes.
Pattern Recognntton, 13(2):111–122, 1981.

[4] J Bernal, F Vilarino, and J Sanchez. Feature Detectors and Feature Descriptors:
Where We Are Now. Technical report, Universitat Autonoma de Barcelona,
2010.

[5] Gary Bradski and Adrian Kaehler. Learning OpenCV. O’Reilly Media, 2008.

[6] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. BRIEF
: Binary Robust Independent Elementary Features. European Conference on
Computer Vision (ECCV), pages 778–792, 2010.

[7] John Canny. A Computational Approach to Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698, 1986.

[8] Nick Craswell. Mean Reciprocal Rank, pages 1703–1703. Springer US, Boston,
MA, 2009.

[9] Mei Fang, Gx Yue, and Qc Yu. The study on an application of otsu method
in canny operator. International Symposium on Information . . . , 2(4):109–112,
2009.

99

[10] Theo Gevers and Arnold W M Smeulders. PicToSeek: combining color and
shape invariant features for image retrieval. IEEE Transactions on Image Pro-
cessing, 9(1):102–119, 2000.

[11] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. Clustering Validity
Methods: Part {II}. ACM SIGMOD Record, 31(3):19–27, 2002.

[12] B. R. Heap. Permutations by Interchanges. The Computer Journal, 6(3):293–
298, 1963.

[13] Qingming Huang, Wen Gao, and Wenjian Cai. Thresholding technique with
adaptive window selection for uneven lighting image. Pattern Recognition Let-
ters, 26:801–808, 2005.

[14] Itseez. The OpenCV Reference Manual, 3.2.0 edition, August 2017.

[15] Anil K Jain and Aditya Vailaya. Image Retrieval using Color and Shape. Pattern
Recognition, 29:1233–1244, 1995.

[16] Ramesh Jain, Rangachar Kasturi, and Brian Schunck. Chapter 4: Image Fil-
tering. In Machine Vision, pages 112–139. McGraw-Hill, New York, NY, 1995.

[17] Ramesh Jain, Rangachar Kasturi, and Brian Schunck. Edge detection. In Ma-
chine Vision, chapter 5, pages 140–185. McGraw-Hill, New York, NY, 1995.

[18] George H. Joblove and Donald Greenberg. Color Spaces for Computer Graphics.
ACM siggraph computer graphics, 12(3):20–25, 1978.

[19] Mohan S. Kankanhalli, Babu M. Mehtre, and Jian Kang Wu. Cluster-based
Color Matching for Image Retrieval. Pattern Recognition, 29(4):701–708, 1996.

[20] N. Kiryati, Y. Eldar, and A. M. Bruckstein. A Probabilistic Hough transform.
Pattern Recognition, 24(4):303–316, 1991.

[21] Martin Krzywinski. Image color summarizer, 2006–2016. [Online; accessed
December 20, 2016].

[22] Pawan Lingras, Farhana Haider, and Matt Triff. Granular meta-clustering
based on hierarchical, network, and temporal connections. Granular Computing,
1(1):71–92, 2016.

100

[23] L Lucchese and Sanjit K Mitra. Unsupervised Segmentation of Color Images
Based on k-means Clustering in the Chromaticity Plane. In IEEE Workshop on
Content based Access of Image and Video Libraries (CBAIVL’99), pages 74–78,
1999.

[24] J Macqueen. Some methods for classification and analysis of multivariate obser-
vations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, 1(233):281–297, 1967.

[25] J. Matas, C. Galambos, and J. Kittler. Robust Detection of Lines Using the
Progressive Probabilistic Hough Transform. Computer Vision and Image Un-
derstanding, 78(1):119–137, 2000.

[26] Peter Meer, Doron Mintz, Azriel Rosenfeld, and Dong Yoon Kim. Robust Re-
gression Methods for Computer Vision: A Review. International Journal of
Computer Vision, 6(593):59–70, 1991.

[27] Babu M. Mehtre, Mohan S. Kankanhalli, A. Desai Narasimhalu, and Guo Chang
Man. Color Matching for Image Retrieval. Pattern Recognition Letters,
16(3):325–331, 1995.

[28] Krystian Mikolajczyk and Cordelia Schmid. A Performance Evaluation of Local
Descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI), 27(10):1615–1630, 2005.

[29] Pandu Nayak. Introduction to information retrieval, 2013. [Online; accessed
July 1, 2017].

[30] Hui-Fuang Ng and Y J Zhang. Automatic thresholding for defect detection.
Pattern Recognition Letters, 2006.

[31] Nobuyuki Otsu. A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-9(1):62–66, 1979.

[32] Leif Peterson. K-nearest neighbor, 2009.

[33] B.G Prasad, K.K Biswas, and S.K Gupta. Region-based image retrieval us-
ing integrated color, shape, and location index. Computer Vision and Image
Understanding, 94(1-3):193–233, 2004.

[34] Yu Qiao, Qingmao Hu, Guoyu Qian, Suhuai Luo, and Wieslaw L Nowinski.
Thresholding based on variance and intensity contrast. Pattern Recognition,
40:596–608, 2007.

101

[35] Shiv Ram Dubey and As Jalal. Robust Approach for Fruit and Vegetable Clas-
sification. Procedia Engineering, 38:3449–3453, 2012.

[36] Paul L Rosin. Measuring Corner Properties. Computer Vision and Image Un-
derstanding, 73(2):291–307, 1999.

[37] Edward Rosten and Tom Drummond. Machine Learning for High Speed Corner
Detection. Computer Vision – ECCV 2006, 1:430–443, 2006.

[38] Peter Rousseeuw. Least Median of Squares Regression. Journal of the American
Statistical Association, 79(388):871–880, 1984.

[39] Ethan Rublee and Gary Bradski. ORB - an efficient alternative to SIFT or
SURF. In IEEE International Conference on Computer Vision, pages 2564–
2571, 2011.

[40] Mehmet Sezgin and Bulent Sankur. Survey over image thresholding tech-
niques and quantitative performance evaluation. Journal of Electronic Imaging,
13(1):146–165, 2004.

[41] SharkD. Hsv color solid cylinder, 2015. [Online; accessed September 11, 2016].

[42] Alvy Ray Smith. Color gamut transform pairs. ACM SIGGRAPH Computer
Graphics, 12(3):12–19, 1978.

[43] Stephen M. Stigler. Gauss and the Invention of Least Squares. The Annals of
Statistics, 9(3):465–474, 1981.

[44] Michael J Swain and Dana H Ballard. Color Indexing. International Journal of
Computer Vision, 7(1):11–32, 1991.

[45] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pascal
Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian Koe-
len, Charles Markey, Carlo Rummel, Joe Van Niekerk, Eric Jensen, Philippe
Alessandrini, Gary Bradski, Bob Davies, Scott Ettinger, Adrian Kaehler, Ara
Nefian, and Pamela Mahoney. Stanley: The Robot that Won the DARPA Grand
Challenge. Journal of Field Robotics, 23(9):661–692, 2006.

[46] Hetal J Vala and Astha Baxi. A Review on Otsu Image Segmentation Algo-
rithm. International Journal of Advanced Research in Computer Engineering &
Technology (IJARCET), 2(2):387–389, 2013.

102

[47] Nuno Vasconcelos. Edges, interpolation, templates, 2009.

[48] Dengsheng Zhang and Guojun Lu. Review of shape representation and descrip-
tion techniques. Pattern Recognition, 37(1):1–19, 2004.

[49] Zhengyou Zhang. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
2000.

103

8 Appendices

8.1 Appendix 1: Phase 1 Template Library Equipment
The following template images were included in the phase one tests referenced in
Chapter 5.

1. A10 AX3200-12 1RU 19in

2. Alcatel-Lucent 7750 SR c-12 5RU 19in

3. Apex 1000 1RU 19in

4. ATX MN1 1RU 19in

5. ATX MN5 5RU 19in

6. ATX SCN-RG7 1RU 19in

7. Aurora CH3000N 3RU 19in

8. Canare Demark 1RU 19in

9. Ciena CMD44 2RU 19in

10. Cienna OME6500 32-slot 22RU 23in

11. Cisco 2950-24 1U 19in

12. Cisco 3845 3RU 19in

13. Cisco 3945 3RU 19in

14. Cisco 4506 AC 10RU 19in

15. Cisco 4506-E 10RU 19in

16. Cisco 6509 14RU 19in

17. Cisco 7609 21RU 19in

18. Cisco CRS-1 8-Slot 22RU 19in

19. Cisco CRS-16 48RU 21in

104

20. Cisco RFGW2 1RU 19in

21. Drake VM2410A Modulator 1RU 19in

22. Electroline TPS-32 1RU 19in

23. Electroline TPS-MS-100 1RU 19in

24. Electroline TPS-SL-100 1RU 19in

25. Fujitsu FW7500 13RU 23in

26. Harmonic NSG 9000 Eqam 2RU 19in

27. Jerrold S450M 1RU 19in

28. Juniper EX4550 1RU 19in

29. Juniper MX960 21RU 19in

30. Leitch 6800 2RU 19in

31. Motorola ARPD 1000 1RU 19in

32. Motorola NE2500 1RU 19in

33. Motorola OM2000 1RU 19in

34. Motorola SEM V8 1RU 19in

35. MPEG2 DSR-4400 2RU-19in

36. Nortel NT0H31AH 1RU 19in

37. Nortel NT0H32AF 1RU 19in

38. Nortel NT0H32AH 1RU 19in

39. Nortel NT0H32BF 1RU 19in

40. Nortel Optera Metro 5200 11RU 19in w-Cover

41. Nortel Optera Metro 5200 11RU 19in

42. PCI SCN-RG5 1RU 19in

105

43. RGB SEP48 1RU 19in

44. Telect GMT 10-10 2 1RU 19in

45. Telect GMT 10-10 Fuse Panel 1RU 19in

46. Telect HPGMT15 Fuse Panel 1RU 19in

47. Telect KLM-GMT 4-4 Fuse Panel 1RU 19in

106

8.2 Appendix 2: Phase 2 Template Library Equipment
The following template images were included in the phase two tests referenced in
Chapter 5.

1. A10 Networks AX 3400 19in 1RU

2. A10 Networks AX3200-12 19in 1RU

3. A10 Networks AX3200-12 19in 1RU 1

4. ADC FVM-19x700 23in 4RU

5. Agilent Spectrum Analyzer E4411B 3RU 19in

6. Alcatel-Lucent 7360-ISAM-FX4 02 19in 5RU

7. Alcatel-Lucent 7750-SRc-12 19in 5RU

8. Aten KVM Switch 19in 1RU

9. ATX MN1-16 19in 1RU 1

10. ATX MN1-16 19in 1RU 2

11. ATX MN1-16 19in 1RU 3

12. Aurora PF3000N-FM-00 19in 4RU

13. CableServ CHAS-2 19in 3RU 07

14. CableServ CHAS 3RU 19in

15. CableServ CHAS 3RU 19in 2

16. Casa Systems C100G 13RU 19in

17. Cisco 3945 19in 3RU

18. Cisco 4506 19in 10RU

19. Cisco 4506 19in 1RU

20. Cisco D9500 23in 1RU

107

21. Cisco UBR-RFSW-3X10 RF Switch 3RU 19in

22. Cisco uBR10000 18RU 19in

23. Colomachine CM61 1RU 19in

24. Electroline TPS MS-100 1RU 19in

25. Electroline TPS SL-100 1RU 19in

26. Electroline TPS-32 1RU 19in

27. Electroline TPS-SL-100 1RU 19in

28. Generic 6-port AC Power Outlet 2RU 19in

29. Generic Shelf 19in 2RU 05

30. JDSU Stealth Sweep Transceiver 2RU 19in

31. Juniper MX960 19in 21RU

32. Juniper MX960 19in 21RU 1

33. Juniper MX960 19in 21RU O

34. Juniper SRX5600 19in 8RU

35. Juniper SRX5600 19in 8RU O

36. Motorola Apex-1000 1RU 19in

37. Motorola ARPD 1000 1RU 19in

38. Motorola NE2500 23in 1RU

39. Motorola SE-1010 23in 1RU

40. Motorola SEM V8 Cover 1RU 19in

41. Motorola SEM V8 1RU 19in

42. Nortel OPTera Metro 3500 19in 10RU

43. Nortel OPTera Metro 5200 19in 11RU

108

44. Omnitron 8205-2 19in 2RU

45. Palmorex PMX 1500 23in 1RU

46. PCI Technologies MN2 1RU 19in

47. PCI Technologies MN5T 5RU 19in

48. PCI Technologies RMS PCI-81L 8-way Splitter 1RU 19in

49. PCI Technologies SCN-PP5-20F 5-20 Demark 1RU 19in

50. PCI Technologies TSG 4000R 1RU 19in

51. Perftech MX Director 2000 19in 1RU

52. RGB Networks SEP48 1RU 19in

53. Scientific Atlanta Continuum Modulator 19in 5RU 02

54. Scientific Atlanta Prisma DTx 2540 19in 1RU

55. Standard TVM 550 II5 1RU 19in

56. Telect 10-10 GMT Fuse Panel 19in 1RU

57. Telect 10-10 GMT Fuse Panel 19in 1RU 01

58. Telect HPGMT15 Fuse Panel 1RU 19in

59. Telect KLM-GMT Fuse Panel 19in 1RU

60. Telect KLM-GMT Fuse Panel 19in 1RU 01

61. Telect KLM-GMT Fuse Panel 19in 1RU 02

62. Telect TPA-GMT Fuse Panel 19in 1RU

63. Terayon CP 7220 19in 1RU

64. Trilithic Super Series CT-2 1RU 19in

65. Ziptel AudioCodes Mediant-3000 19in 2RU

66. Ziptel AudioCodes Mediant-3000 19in 2RU O

109

67. Ziptel Digi Port Server TS16 19in 1RU

68. Ziptel Digi Port Server TS16 19in 1RU O

69. Ziptel HP BLc7000 19in 10RU

70. Ziptel HP BLc7000 19in 10RU O

71. Ziptel Juniper MX480 19in 8RU

72. Ziptel Juniper MX480 19in 8RU O

73. Ziptel Routerboard MikroTik RB2011UiAS 19in 1RU

74. Ziptel Routerboard MikroTik RB2011UiAS 19in 1RU O

110

