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Abstract

In two dimensions, generic rigidity is a combinatorial property of a framework,
but extensions into three dimensions fail to completely characterize generic rigidity.
It is therefore interesting to investigate two graph operations introduced by Walter
Whiteley, vertex-splitting and spider-splitting, which are known to take a minimally
rigid framework in three dimensions to a new minimally rigid framework with an
additional vertex. We present algorithms for generating all possible graphs obtained
by vertex-splitting, spider-splitting, and combinations of vertex-splitting and spider-
splitting. For graphs with up to and including 8 vertices, the set of graphs obtained
by spider-splitting is a subset of the set obtained by vertex-splitting. Additionally,
the set produced by combinations of vertex-splitting and spider-splitting is equal to
the set obtained by vertex-splitting. This suggests that as a method for generating
rigid graphs, spider-splitting is inferior to vertex-splitting at all steps of iteration.
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Chapter 1

Introduction

Rigidity theory is an area of discrete geometry concerned with understanding what

makes objects sturdy or flexible. It has significant applications, for example, in un-

derstanding how a building will behave when subject to forces such as wind and

earthquakes. A common approach to determining if an object is rigid is to represent

it as a graph that captures the connections between vertices of the object, but without

any sense of the position of vertices or distance between them. Part of this theory

is to come up with theorems that allow an object’s rigidity to be predicted from its

structure-graph. One would hope that rigidity depends only on the way vertices are

connected and is independent of the positioning of vertices and edge-length. In real-

ity, there are shapes whose rigidity changes based on how they are embedded in two

dimensions or three dimensions. Figure 1.1 shows an example of two embeddings of

the same structure-graph. The chain of vertices along the top are held taut in the

left graph, but are able to move in the right graph. A randomly chosen embedding

of this graph is not likely to have these vertices lined up and will most likely not be

rigid. Later we will see that the embedding on the left is considered to be a special

embedding. If all embeddings of a structure-graph are rigid except for some special

ones, the graph is said to be generically rigid. The majority of this thesis will focus
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Figure 1.1: Example of two embeddings of the same graph. The graph on the left is
rigid; the graph on the right is flexible.

on this definition of rigidity.

Two-dimensional rigidity is well characterized. Laman, [9], described necessary

and sufficient conditions on structure-graphs for rigidity, and Henneberg, [7], described

a method by which one could obtain exactly the set of rigid graphs by inductively

applying certain graph operations starting from a single edge.

On the other hand, studying objects in three dimensions is of interest since results

are highly applicable. However, the rigidity of these objects is not as easily charac-

terized. Laman’s conditions for three dimensions are only necessary, since there are

counter-examples of non-rigid graphs that satisfy the Laman conditions. One such

example is the double banana graph shown in Figure 1.2. It satisfies the Laman con-

ditions, but is clearly not rigid. The left and right sides hinge on two points and can

be independently revolved around a vertical axis. An extension of Henneberg’s con-

struction method to three dimensions has been proven to produce a set that contains

all rigid graphs, but additionally contains graphs that are not rigid.

A nice result regarding rigidity for the class of convex polyhedra comes from

combining the theorems of Cauchy, Dehn, and Steinitz. Cauchy, [1], and Dehn, [3],

showed that strictly convex polyhedra are rigid if, and only if, they are triangulated.

Then, Steinitz, [10], showed that convexity of a polyhedron is equivalent to planarity

of its structure-graph, meaning that planar graphs are fully characterized in three

dimensions. It is therefore desirable to be able to describe rigidity of non-convex
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Figure 1.2: The double banana and its axis of revolution

polyhedra.

Some recent attempts at generating rigid polyhedra involve graph operations that

preserve rigidity, such as vertex-splitting and spider-splitting ([11], [12]). Studying

these operations may give insight into conditions for rigidity in three dimensions. For

this work, we implemented these graph operations and focused on comparing the sets

of graphs generated.

The format of this thesis is as follows. Chapter 2 outlines background information

that is relevant to the work done in this thesis. Chapter 3 describes the vertex-

splitting and spider-splitting algorithms we implemented, and Chapter 4 presents our

observations of the graphs generated by vertex-splitting and spider-splitting.
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Chapter 2

Background

2.1 Frameworks

A graph G = (V,E) is a set of vertices, V , together with a set of edges, E, consisting

of unordered pairs of vertices from V . A framework F = (G, p) in Rn is a graph

G = (V,E) with an embedding function p : V → Rn. A framework is also referred to

as a realization or configuration of G. In this Chapter, we will see how the rigidity

of a graph depends on its embedding, and to what extent we can consider rigidity a

combinatorial property.

2.2 Planar Graphs

A graph G = (V,E) is said to be planar if G can be drawn in the plane such that no

edges are crossing. A subgraph, H = (VH , EH) of G is a graph given by a subset of

vertices VH ⊆ V and a subset of edges EH ⊆ E using the vertices in VH . A subdivision

of an edge, (x, y) in G is the addition of a new vertex z, and the replacement of the

edge (x, y) with edges (x, z) and (z, y). A subdivision of G is a graph, G′ = (V ′, E ′)

obtained by subdividing edges of G.

Kuratowski’s Theorem gives a characterization of non-planar graphs.
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Theorem 2.1 (Kuratowski’s Theorem [8]). A graph, G = (V,E), is non-planar if

and only if it contains a subgraph H that is a subdivision of K5 or K3,3.

Subdivisions of K5 and K3,3 are sometimes referred to as Kuratowski subgraphs.

A framework F = (G, p) in R3 is said to be convex if for all x, y ∈ V , the line

segment between p(x) and p(y) remains inside the framework. A graph is said to

be connected if for every pair of vertices, there is a path between them. A graph

is n-connected if at least n vertices need to be removed to disconnect the graph.

The following result by Steinitz is an important theorem for rigidity theory regarding

frameworks whose underlying graph is planar.

Theorem 2.2 ([10]). G = (V,E) is a 3-connected planar graph with at least 4 vertices

if and only if there exists an embedding function, p : V → R3, such that F = (G, p)

is convex.

2.3 Infinitesimal Rigidity

We think of a motion as a set of velocity vectors associated with the vertices of the

framework, and we want to define the concept of a rigid motion and a non-rigid

motion, or flex, in this context. Since we are only considering frameworks that have

edges of fixed length (non-contractible and non-expandable), our definitions of rigid

and non-rigid motions should enforce that the distances between connected vertices

stay the same throughout the motion. Intuitively, a rigid motion is a motion where

the distances between all vertices, whether they are connected or not, stay the same.

For example, translations and rotations of the framework would be rigid motions. A

flex, or non-rigid motion, would have unconnected vertices moving closer together or

further apart. Finally, we consider an object to be rigid if it is impossible to flex the

object without deforming its edges.

We represent our intuitive idea of rigid motions and flexes as a condition on the
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velocity vectors of a motion. Let F = (G, p) be a framework in R2, and let i ∈ V and

Pi(t) = (xi(t), yi(t)) be a function of time that describes the movement of vertex i.

Then P ′i (0) = (x′i(0), y′i(0)) represents the instantaneous velocity vector on vertex i at

the beginning of the motion. Consider the equation (xi(t)−xj(t))
2+(yi(t)−yj(t))2 = h

where
√
h is the length of the edge between vertices i and j. Differentiating both sides

and evaluating at 0, we get

2(xi(0)− xj(0))(x′i(0)− x′j(0)) + 2(yi(0)− yj(0))(y′i(0)− y′j(0)) = 0

(xi(0)− xj(0), yi(0)− yj(0)) · (x′i(0)− x′j(0), y′i(0)− y′j(0)) = 0

This allows us to define a condition on the instantaneous velocity vectors that will

guarantee that the motion preserves edge lengths. Having seen the motivation in R2,

we are now ready to define an infinitesimal motion.

An infinitesimal motion on a framework F = (G, p) is a function v : V → Rn such

that for every (x, y) ∈ E, the equation (p(x)− p(y)) · (v(x)− v(y)) = 0 is satisfied. In

this definition, v represents the set of velocity vectors on vertices in F . This condition

is equivalent to preserving the lengths of edges in F .

An infinitesimal rigid motion on a framework F = (G, p) is a function v∗ : V → Rn

such that for every pair of vertices x, y ∈ V , the equation (p(x)−p(y))·(v∗(x)−v∗(y)) =

0 is satisfied. This condition says that the distances between any pair of vertices is

maintained by the motion. In other words, it is as if there are invisible edges between

every pair of vertices that prevent them from getting closer together or further apart.

F is said to be infinitesimally rigid if every infinitesimal motion is a rigid infinitesimal

motion.

Intuitively, we think of an object as being rigid if we are not able to deform it by

applying a force to it. It is not immediately clear whether the concept of infinitesimal

rigidity is equivalent to our intuitive understanding of what rigidity should mean. We

should ask, are there examples of frameworks that are considered infinitesimally rigid,

but not rigid? The short answer is no. The following theorem is due to Gluck.
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(x, y)

Figure 2.1: Example of a rigid framework that is not infinitesimally rigid

Theorem 2.3 ([5]). If a framework is infinitesimally rigid, then it is rigid.

On the other hand, infinitesimal rigidity turns out to be a stronger notion than

rigidity, as there are there examples of frameworks that are rigid, but not infinitesi-

mally rigid. Figure 2.1 shows a rigid framework. Consider the motion v given by the

vector pictured on vertex (x, y) and zero vectors on every other vertex. That is, v can

be thought of as pulling on the string of vertices along the top that are held taut. The

motion pictured is attempting to rotate (x, y) around the vertex to its left and right

at the same time. Since v does not distort the lengths of any edges in the framework,

it is an infinitesimal motion. However, it would distort the distances between (x, y)

and the two lower points, so it is not a rigid infinitesimal motion, and the framework

is not infinitesimally rigid.

Earlier we observed that some realizations of the graph in Figure 2.1 are not

rigid by our intuitive idea of rigidity. For this graph, all realizations will not be

infinitesimally rigid. By this, we may be misled to believe that infinitesimal rigidity

on a framework is independent of the framework’s embedding, but there are also

examples of graphs that have both infinitesimally rigid and non-infinitesimally rigid

embeddings. Figure 2.2 shows an example of this. The framework on the left is

not rigid; if the vertical edges were all rotated in the same direction, the framework

would ”collapse” without deforming any edge lengths. For the framework on the

13



(x, y)
(x, y)

(x̂, ŷ)

Figure 2.2: Example of two embeddings of the same graph. The graph on the left is
not infinitesimally rigid; the graph on the right is infinitesimally rigid.

right, consider the fact that any infinitesimal motion, v, must be an infinitesimal

rigid motion when restricted to the vertices on the lower triangle. Let r be the

restriction of the motion v to the bottom triangle. Then for all v, v̂ = v− r is also an

infinitesimal motion, one that assigns zero vectors to the bottom triangle. Therefore,

to avoid deforming edges, any vectors of v̂ on the vertices of the upper triangle must

be perpendicular to the vertical edge connected to them. Since the vertical edges are

not all parallel, the only way this is possible is if zero vectors are assigned to every

vertex, otherwise the upper triangle will be deformed. We conclude that for every

infinitesimal motion v, there is a rigid infinitesimal motion r such that v = r, and

therefore, the framework on the right is infinitesimally rigid. Even though there are

many examples of embeddings of a graph that have different rigidity, we are able

to characterize these special embeddings that are in disagreement with most other

embeddings.

2.4 Special Embeddings

The term special embedding refers collectively to classes of embeddings where rigidity

may not be combinatorial. Understanding special embeddings is the key to under-

standing when the rigidity of different embeddings of the same graph will agree. Let

F = (G, p) be a framework. F is said to be constricted if the vertices of F are embed-
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Figure 2.3: Example of a constricted framework. It will be rigid in R2, but not in R3.

ded in a space of lower dimension than the embedding function allows. For example, a

square lying on the xy-plane in R3 is a constricted framework. If F is not constricted,

it is said to be normal. It is important to separate these kinds of embeddings since

rigidity of a framework in a lower dimension does not guarantee rigidity in a higher

dimension. Figure 2.3 shows an example of a graph that is rigid in R2, but in R3 it is

not rigid as it could be folded along the diagonal edge.

For the remainder of this thesis, we will assume that we are dealing with normal

frameworks.

A general embedding of F is best explained inductively:

R1: an embedding where no two vertices are mapped to the same point.

R2: an embedding where no two vertices are mapped to the same point and no three

vertices lie on a line.

R3: an embedding where no two vertices are mapped to the same point, no three

vertices lie on a line, and no four vertices lie on a plane.

If F is associated with a general embedding, it is called a general framework. Pre-

viously, we have seen that frameworks with collinear vertices can have rigidity that

disagrees with other embeddings, so it is clear why non-general embeddings are con-

sidered to be special.

Now we develop the notion of a set of embeddings of a graph for which the in-

finitesimal rigidity of the corresponding frameworks always agree. Thus, we are able

to study rigidity as a property on graphs, while keeping in the back of our mind that

the graphs will need to avoid certain embeddings. This is the purpose of generic em-

beddings. We say a set of n points in Rm are algebraically independent over a field F

15



if they do not satisfy any non-trivial polynomial f(x1, x2, ..., xn) = 0 with coefficients

in F . An embedding, p, is generic if the coordinates of the vertices are algebraically

independent over the rationals, Q. A framework that is associated with a generic

embedding is called a generic framework.

2.5 Linear Algebra of Infinitesimal Motions

We now define Rmn, the vector space that describes all functions mapping a vertex

set V to Rm. This provides a platform for understanding both embeddings of graphs

and motions on frameworks as they are both functions that map V to Rm. Consider

the case of m = 3. Let F = (G, p) be a framework with n vertices in R3. Let

v : V → R3 be a function that represents a motion on F . Then a vector q ∈ R3n

is defined by q = (x1, y1, z1, x2, y2, z2, ..., xn, yn, zn) where xi, yi, and zi correspond

to the components of the vector on vertex i. It is clear to see that for motions,

addition of vectors in Rmn is equivalent to composing two motions together, and

scalar multiplication is an amplification of a motion.

LetM(F) ⊆ Rmn represent the set of infinitesimal motions on the framework F =

(G, p). Then M(F) is a vector subspace. If F is normal, we will let R(F) ⊆ M(F)

represent the set of rigid infinitesimal motions on the framework F . Then R(F) is

also a vector subspace. So an equivalent definition of infinitesimal rigidity of F is that

R(F) =M(F).

Theorem 2.4 ([6]). Let F = (G, p) be a framework. Then F is infinitesimally rigid

if and only if dim[M(F)] = dim[R(F)].

Proof. Since R(F) ⊆M(F) and both are vector spaces, then R(F) =M(F) if and

only if dim[M(F)] = dim[R(F)].

It may not be immediately obvious, but it turns out that rigid infinitesimal motions

of a general framework, F = (G, p), in any dimension are exactly the motions given
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by linear combinations of translations and rotations. Because of this, we are able

to explicitly determine dim[R(F)], by finding the number of basis vectors required

to describe all possible linear combinations of translations and rotations. In R2, two

translation vectors are needed: one for the x-direction and one for the y-direction. One

rotation vector is needed to describe all rotations in the xy-plane, since any counter-

clockwise rotation is also a clockwise rotation. Therefore, in R2, dim[R(F)] = 3.

In R2, there are three translation vectors for the x, y, and z directions, and three

rotation vectors for the xy, xz, and yz planes. Therefore, in R3, dim[R(F)] = 6.

From the previous observations, we can derive a useful theorem.

Theorem 2.5 ([6]). Let F = (G, p) be a general framework in R2 with |V | ≥ 2. If

|E| < 2|V | − 3, then F is not infinitesimally rigid.

Proof. Let F = (G, p) be a general framework in R2. Let E = {e1, e2, ..., e|E|} and let

Ei ⊆ E, be given by Ei = {e1, e2, ..., ei}. Since every motion on a framework with no

edges is an infinitesimal motion, we know that:

M((V,E0), p) = R2|V |, and

dim[M((V,E0), p)] = 2|V |.

Now, if we add one edge from E, the dimension ofM(F) will reduce by at most 1, since

each edge concerns only two velocity vectors. Therefore, for each i ∈ {1, 2, ..., |E|}:

dim[M((V,Ei), p)] ≥ 2|V | − i, and

dim[M(F)] ≥ 2|V | − |E|.

If F is infinitesimally rigid, then 3 ≥ 2|V | − |E|. So if |E| < 2|V | − 3, then F cannot

be infinitesimally rigid.

It is straightforward to prove the analogue of this theorem for R3.

Theorem 2.6 ([6]). Let F = (G, p) be a general framework in R3 with |V | ≥ 3. If

|E| < 3|V | − 6, then the framework is not infinitesimally rigid.
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Proof. The proof of this theorem is an adaptation of the proof for R2, where the only

difference is that dim[R3|V |] = 3|V | and dim[M(F)] = 6 when F is infinitesimally

rigid.

Since the structure graph of a convex polyhedron is a planar graph, we can

strengthen Theorem 2.6 for convex frameworks by applying Euler’s Formula.

Theorem 2.7 ([6]). Let F = (G, p) be a general, convex framework in R3 with |V | ≥

3. If F is infinitesimally rigid, then |E| = 3|V | − 6.

Proof. Let F = (G, p) be a general, convex, infinitesimally rigid framework in R3. By

Theorem 2.6, |E| ≥ 3|V | − 6. Let F denote the faces of F . The sum of the number

of sides of each face is equal to twice the number of edges. However, each face has at

least 3 sides. So 2|E| ≥ 3|F |, or 2
3
|E| ≥ |F |. Then by Euler’s Formula:

|V | − |E|+ |F | = 2

|F | = |E| − |V |+ 2

2
3
|E| ≥ |E| − |V |+ 2

|V | − 2 ≥ 1
3
|E|

3|V | − 6 ≥ |E|

Therefore, |E| = 3|V | − 6.

From this result, we begin to see that rigidity is easier to characterize combinato-

rially for convex polyhedra.

2.6 Generic Rigidity

In Section 2.4, we defined the notion of a generic framework. This concept allows

us to treat rigidity and infinitesimal rigidity purely as a combinatorial property of

graphs. By our definition of generic, one could prove that the set of all non-generic
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embeddings lie on a finite collection of subspaces of Rmn of lower dimension. So we

are able to conclude the following:

Theorem 2.8 ([6]). Almost all embeddings (in the measure theory sense) of a frame-

work in R2 or R3 are generic.

This is worth noting, since we will soon be making conclusions about the rigidity of

graphs that will only hold for generic embeddings of that graph.

The next two theorems from [6] capture the purpose of generic embeddings. The

first one tells us that for generic embeddings, infinitesimal rigidity follows our intuitive

idea of what rigidity should mean.

Theorem 2.9 ([6]). If F = (G, p) is a generic framework, it is either both rigid and

infinitesimally rigid, or neither rigid nor infinitesimally rigid.

The second theorem tells us that when we are only considering generic embeddings,

rigidity of a framework is only dependent on its graph.

Theorem 2.10 ([6]). If F = (G, p) and G = (G, p̂) are generic frameworks with the

same underlying graph, then either they are both rigid and infinitesimally rigid, or

both are neither rigid nor infinitesimally rigid.

These theorems are not at all obvious, however, the proofs will be omitted as they

involve techniques beyond the scope of this thesis. Based on these theorems, we will

define a new type of rigidity. A graph G is said to be generically rigid in Rm if there

exists a generic embedding function, p : V → Rm, such that the framework F = (G, p)

is rigid and infinitesimally rigid. If one generic embedding function produces a rigid

framework, then all other generic embeddings will also yield rigid frameworks. So, in

terms of generic frameworks, rigidity is a combinatorial property.
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2.7 The Laman Conditions

We say a graph, G, is isostatic in Rm if it is generically rigid in Rm and for all e ∈ E,

the graph G′ = (V,E \ {e}) is not generically rigid in Rm. In other words, it is

minimally rigid in terms of its edges and the removal of any edge will destroy its

rigidity.

Theorem 2.11 ([6]). In R2 and R3, a graph, G = (V,E) is generically rigid if and

only if there exists a generically rigid subgraph, G′ = (V,E ′) where E ′ ⊆ E.

Proof. Let G = (V,E) be generically rigid. If G is isostatic, then we are done. If

G is not isostatic, then there is an edge e ∈ E that can be removed such that the

graph G′ = (V,E \ {e}) is still generically rigid. If G′ is not isostatic, repeat this

process again, until the graph is isostatic. In R2 and R3, this process must halt since

infinitesimal rigidity (and hence, generic rigidity) requires that |E| ≥ 2|V |− 3 for two

dimensions and |E| ≥ 3|V | − 6 for three dimensions.

On the other hand, if we start with an isostatic graph, the addition of any edges

cannot possibly destroy its rigidity. So a graph G having an isostatic subgraph G′ =

(V,E ′) where E ′ ⊆ E implies G is generically rigid.

If a graph is generically rigid in R2 and |E| = 2|V | − 3, then it is isostatic since

the removal of any edge will give |E| < 2|V | − 3. A similar observation can be made

for generically rigid graphs in R3 where |E| = 3|V |− 6. By these observations, we are

hopeful that we can easily characterize isostatic graphs in R2 and R3.

We know that a generically rigid graph in R2 satisfies |E| ≥ 2|V |−3 and edges can

be removed until it becomes an isostatic graph, which must also satisfy |E| ≥ 2|V |−3.

It may be slightly surprising that it is always possible to remove edges until the

inequality becomes equal. That is, if a graph G = (V,E) is isostatic, then E = 2|V |−3.

However, a graph satisfying this condition turns out not to be sufficient for generic

rigidity. For example, Figure 2.4 shows a graph that satisfies |E| = 2|V | − 3, but
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Figure 2.4: The graph on the left is isostatic, but by moving one of its edges, we find
a graph that satisfies |E| = 2|V | − 3 that is not isostatic.

is not generically rigid. From this example, it seems that in order to be isostatic,

a graph must have exactly the correct number of edges, but in addition, the edges

must be well-distributed across the graph in some sense. This brings us to the Laman

conditions for isostatic graphs in R2.

Theorem 2.12 (Laman Conditions in R2 ([9])). In R2, a graph, G = (V,E), is

isostatic if and only if

1. |E| = 2|V | − 3.

2. For all U ⊆ V where |U | ≥ 2, |E(U)| ≤ 2|U | − 3.

It is tempting to try writing down an analogue of this theorem in three dimensions,

but it is not as straightforward. The Laman conditions are necessary in R3, but not

sufficient.

Theorem 2.13 (Laman Conditions in R3 ([6], [9])). In R3, if a graph, G = (V,E),

is isostatic, then

1) |E| = 3|V | − 6.

2) For all U ⊆ V where |U | ≥ 3, |E(U)| ≤ 3|U | − 6.

A famous counterexample of the converse of this statement is the double banana,

pictured in Figure 2.5. Recall from the introduction that this graph is not rigid; see

Figure 1.2. The following is an argument verifying that the double banana satisfies

the Laman conditions in R3. First note that |E| = 18 and |V | = 8, and since

18 = 3(8)− 6, 1) is satisfied. To check 2), let U ⊂ V , where |U | ≥ 3. If |U | = 3, then
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Figure 2.5: The double banana satisfies the Laman Conditions in R3, but it is not
generically rigid.

the maximum number of edges in U is three, when U is complete, and 3 ≤ 3(3)− 6.

If |U | = 4, then the maximum number of edges is six, and 6 ≤ 3(4) − 6. If |U | = 5,

the condition will only fail if the subgraph is a K5, but the double banana contains

no K5. When |U | = 6, then U is equal to V minus two vertices. In this case, the

maximum number of edges is obtained by deleting two adjacent vertices of degree 4,

removing seven edges. Then 11 ≤ 3(6)−6. When |U | = 7, then U is equal to V minus

one vertex. The maximum number of edges is obtained when a vertex of minimum

degree is deleted, which will remove four edges. Then 14 ≤ 3(7)− 6. This concludes

our verification.

2.8 Vertex-Splitting

Definition 2.1. Let G = (V,E) be a graph, x ∈ V , and let E1 = {(x, 1), (x, 2)}

and E2 = {(x, 3), (x, 4),...,(x, k)} where k ≤ deg(x). Then a vertex-split on x is the

graph G′ = (V ′, E ′) obtained by adding a new vertex x′ so that V ′ = V ∪ {x′} and

E ′ = (E \ E2) ∪ {(x′, x), (x′, 1), (x′, 2),...,(x′, k)}.

Figure 2.6 shows an example of a vertex-split. The red edges represent E1 and the

blue edges are the three new edges of the modified graph. Vertex-splitting is a useful

operation for studying rigidity theory as it behaves well with rigid frameworks.
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Figure 2.6: A vertex-split on vertex x

This brings us to a theorem due to Whiteley.

Theorem 2.14 ([11]). Let G be an isostatic graph in R2 or R3 and let G′ = (V ′, E)

be a vertex-split on a vertex in G. Then G′ is isostatic.

2.9 Spider-Splitting

Definition 2.2. Let G = (V,E) be a graph, x ∈ V , and let E1 = {(x, 1), (x, 2),

(x, 3)} and E2 = {(x, 4), (x, 5),...,(x, k)} where k ≤ deg(x). Then a spider-split on x

is the graph G′ = (V ′, E ′) obtained by adding a new vertex x′ so that V ′ = V ∪ {x′}

and E ′ = (E \ E2) ∪ {(x′, 1), (x′, 2),...,(x′, k)}.

Figure 2.7 shows an example of a spider-split. It is similar to vertex-splitting, but

3 adjacent vertices to x are selected to connect to x′ instead of 2 adjacent vertices

and x itself. The red edges represent E1 and the blue edges are the three new edges

added as a result of the spider-split.
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Figure 2.7: A spider-split on vertex x

We now arrive at another theorem by Whiteley.

Theorem 2.15 ([12]). Let G be an isostatic graph in R2 or R3 and let G′ = (V ′, E ′)

be a spider-split on a vertex in G. Then G′ is isostatic.
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Chapter 3

Methodology

In order to compare the methods of vertex-splitting and spider-splitting in generating

rigid graphs, we develop algorithms that generate the sets of graph produced by

iteratively applying these operations, starting from a given graph. Algorithm 3.1

and Algorithm 3.2 generate all splits on a single graph using vertex-splitting and

spider-splitting respectively. Algorithm 3.3 generates graphs of any size using vertex-

splitting or spider-splitting as a building block, starting from a base tetrahedron.

Algorithm 3.4 generates graphs up to any size by using any combination of vertex-

splitting and spider-splitting on a tetrahedron. The generated graphs can be found

at http://cs.smu.ca/~j_deon/ in a three-dimensional viewable format.

3.1 Vertex-Splitting Algorithm

An implementation of vertex-splitting was written in Python. It takes a graph, G,

as input and returns the set, K, of all possible graphs obtainable by applying vertex-

splitting to G.
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Algorithm 3.1 Vertex-Splitting Algorithm

1: Let G = (V,E) be the given graph

2: Let K = {} be the set that will contain vertex-splits of G

3: for each x ∈ V do

4: for each pair, x1, x2, of neighbours of x do

5: Let G′ = (V ′, E ′) be a copy of G

6: Add a new vertex, x′, to V ′

7: Add (x′, x), (x′, x1), (x
′, x2) to E ′

8: for each C, a subset of neighbours of x other than x1 and x2 do

9: For all c ∈ C, remove (x, c) from E ′

10: For all c ∈ C, add (x′, c) to E ′

11: if G′ is not isomorphic to any members of K then

12: Add G′ to K

13: end if

14: end for

15: end for

16: end for

We verify that this algorithm will generate the set of graphs obtained by vertex-

splitting on a given graph G.

Theorem 3.1. Let G = (V,E) be a graph and let K be the set of graphs returned by

Algorithm 3.1. Let K′ be the set of graphs obtainable by applying vertex-splitting to

G. Then K = K′.

Proof. Let H ∈ K. Then H = (V ′, E ′) is produced by applying Algorithm 3.1 to G.

We show that H is obtainable by performing a vertex-split on G, and conclude that

H ∈ K′. Let x ∈ V be the vertex of G chosen from Line 3 of Algorithm 3.1, let x1 and

x2 be the neighbours of x chosen from Line 4, and define E1 = {(x, x1), (x, x2)}. By
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Lines 5 and 6, V ′ = V ∪ {x′}. From Line 8, C = {x3, x4,...,xk}, and note that every

element of C is also a neighbour of x. Let E2 = {(x, i)|i ∈ C}. Then by Lines 7, 9,

and 10, E ′ = (E \ E2) ∪ {(x′, x), (x′, x1), (x
′, x2), ..., (x

′, k)}. Therefore, by Definition

2.1, H is obtained by vertex-splitting on G, so H ∈ K′ and K ⊆ K′.

Let H = (V ′, E ′) ∈ K′, with V ′ = V ∪ {x′}, E1 = {(x, x1), (x, x2)}, E2 = {(x, x3),

(x, x4),...,(x, xk)}, and E ′ = (E \ E2) ∪ {(x′, x), (x′, x1), (x′, x2),...,(x
′, xk)}. Since

Algorithm 3.1 iterates over every vertex of G with Line 3, it would select x at some

point during execution. From Line 4, it would also select x1 and x2 at some point.

Since x3, x4,...,xk are all neighbours of x, the set C from Line 8 would contain exactly

these elements at some point. From Lines 7, 9, and 10, the graph generated by the

algorithm would contain the same edges as G, except with the edges in E2 removed,

and the edges in {(x′, x), (x′x1), (x′, x2),...,(x
′, xk)} added. Therefore, H would be

produced by Algorithm 3.1, and K′ ⊆ K.

So K = K′.

3.2 Spider-Splitting Algorithm

An implementation similar to Algorithm 3.1 was used to generate the set, L, of all

possible graphs obtainable by applying spider-splitting to a given graph, G.
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Algorithm 3.2 Spider-Splitting Algorithm

1: Let G = (V,E) be the given graph

2: Let L = {} be the set that will contain spider-splits of G

3: for each x ∈ V do

4: for each triplet, x1, x2, x3, of neighbours of x do

5: Let G′ = (V ′, E ′) be a copy of G

6: Add a new vertex, x′, to V ′

7: Add (x′, x1), (x
′, x2), (x

′, x3) to E ′

8: for each C, a subset of neighbours of x other than x1, x2, and x3 do

9: For all c ∈ C, remove (x, c) from E ′

10: For all c ∈ C, add (x′, c) to E ′

11: if G′ is not isomorphic to any members of L then

12: Add G′ to L

13: end if

14: end for

15: end for

16: end for

We verify that this algorithm generates the set of graphs obtainable by performing

spider-splitting on a given graph G.

Theorem 3.2. Let G = (V,E) be a graph and let L be the set of graphs returned

by Algorithm 3.2 on input G. Let L′ be the set of graphs obtainable by applying

spider-splitting to G. Then L = L′.

Proof. Let H ∈ L. Then H = (V ′, E ′) is produced by applying Algorithm 3.2 to

G. We show that H is obtainable by performing a spider-split on G, and conclude

that H ∈ L′. Let x ∈ V be the vertex of G chosen from Line 3 of Algorithm 3.2, let

x1, x2, and x3 be the neighbours of x chosen from Line 4, and define E1 = {(x, x1),
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(x, x2), (x, x3)}. By Lines 5 and 6, V ′ = V ∪ {x′}. From Line 8, C = {x4, x5,...,xk},

and note that every element of C is also a neighbour of x. Let E2 = {(x, i)|i ∈ C}.

Then by Lines 7, 9, and 10, E ′ = (E \ E2) ∪ {(x′, x1), (x
′, x2), ..., (x

′, k)}. Therefore,

by Definition 2.2, H is obtained by spider-splitting on G, so H ∈ L′ and L ⊆ L′.

Let H = (V ′, E ′) ∈ L′, with V ′ = V ∪ {x′}, E1 = {(x, x1), (x, x2), (x, x3)},

E2 = {(x, x4), (x, x5),...,(x, xk)}, and E ′ = (E \ E2) ∪ {(x′, x1), (x′, x2),...,(x
′, xk)}.

Since Algorithm 3.2 iterates over every vertex of G with Line 3, it would select x at

some point during execution. From Line 4, it would also select x1, x2, and x3 at some

point. Since x4, x5,...,xk are all neighbours of x, the set C from Line 8 would contain

exactly these elements at some point. From Lines 7, 9, and 10, the graph generated

by the algorithm would contain the same edges as G, except with the edges in E2

removed, and the edges in {(x′x1), (x′, x2),...,(x
′, xk)} added. Therefore, H would be

produced by Algorithm 3.2, and L′ ⊆ L.

So L = L′.

3.3 Generating Graphs Iteratively Using a Single

Operation

An algorithm to find all graphs obtainable by repeatedly applying vertex-splitting

or spider-splitting starting from a tetrahedron was implemented in Python. The

algorithm below contains a place holder that can be replaced by either vertex-splitting

or spider-splitting. It works by first applying the operation to a tetrahedron, and then

applying it to each of the newly generated graphs, and so on.
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Algorithm 3.3 Generate Graphs Iteratively Using a Single Operation

1: Let T = (V,E) be the graph representing a tetrahedron

2: Let M = {T} be the set that will contain iterative splits of T

3: for each G ∈M do

4: Let K be the set returned by either Algorithm 3.1 or Algorithm 3.2

5: for each H in K do

6: if H is isomorphic to any members of M then

7: Remove H from K

8: end if

9: end for

10: Let M =M∪K

11: end for

We verify that this algorithm generates the set of graphs obtainable from a tetra-

hedron either using vertex-splitting or spider-splitting.

Theorem 3.3. Let MK be the set of graphs generated by Algorithm 3.3 using Al-

gorithm 3.1 as the splitting technique. Let M′
K be the set of graphs obtainable by

iteratively applying vertex-splitting zero or more times starting from a tetrahedron.

Then MK =M′
K.

Proof. The proof follows from Theorem 3.1.

Theorem 3.4. Let ML be the set of graphs generated by Algorithm 3.3 using Al-

gorithm 3.2 as the splitting technique. Let M′
L be the set of graphs obtainable by

iteratively applying spider-splitting zero or more times starting from a tetrahedron.

Then ML =M′
L.

Proof. The proof follows from Theorem 3.2.

It is important to note that without any other conditions, this algorithm will run
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forever. In practice, you can force the algorithm to stop running, for example, once

all graphs with a certain number of vertices are generated.

3.4 Generating Graphs Iteratively Using Both Op-

erations

An algorithm to find all graphs obtainable by repeatedly applying combinations of

vertex-splitting and spider-splitting starting from a tetrahedron was implemented in

Python. It applies both operations to every graph at each step of the iteration.

Algorithm 3.4 Generate Graphs Iteratively Using Both Operations

1: Let T = (V,E) be the graph representing a tetrahedron

2: Let M = {T} be the set that will contain iterative splits of T

3: for each G ∈M do

4: Let K be the set returned by Algorithm 3.1

5: for each H in K do

6: if H is isomorphic to any members of M then

7: Remove H from K

8: end if

9: end for

10: Let L be the set returned by Algorithm 3.2

11: for each H in L do

12: if H is isomorphic to any members of M or K then

13: Remove H from L

14: end if

15: end for

16: Let M =M∪K ∪ L

17: end for
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We verify that this algorithm generates the set of graphs obtained from a tetra-

hedron by using combinations of vertex-splitting and spider-splitting.

Theorem 3.5. LetM be the set of graphs generated by Algorithm 3.4. LetM′ be the

set of graphs obtainable by applying a combination of vertex-splits and spider-splits

starting from a tetrahedron. Then MK =M′
K.

Proof. The proof follows from Theorems 3.1 and 3.2.

3.5 Software

The algorithms from Sections 3.1 to 3.4 were implemented in Python 2.7 and run on

an Asus X456UV laptop with a 2.59 GHz Intel Core i7-6500U processor and 12GB

of RAM. The NetworkX 2.0 library was used to manipulate the graphs and check

for isomorphisms. The isomorphism procedure in NetworkX is an interface to a C

implementation of the VF2 graph-matching algorithm [2]. The Planarity 0.4.1 library

was used to check graphs for planarity. Plotly 2.1.0 was used to produce interactive,

3-dimensional visualizations of the graphs. Memory was not an issue when running

these algorithms, but long computation times only allowed us to generate graphs with

as many as 8 vertices.
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Chapter 4

Results

In this chapter, we compare the sets of graphs produced by Algorithms 3.3 and 3.4

using the two splitting techniques.

4.1 Vertex-Splitting

Vertex-splitting was observed to have interesting properties regarding the planarity

of graphs. It was found that vertex-splitting on a planar graph produced both planar

and non-planar graphs, while vertex-splitting on non-planar graphs appeared only to

produce non-planar graphs. We verify this result in Theorem 4.1. For the proof of this

result, we define an edge contraction, which is the inverse operation of vertex-splitting

([11]).

The following definition is given in [4]. Let G = (V,E) be a graph and let C =

{(x, y), (x, a), (x, b), (x, u1),...,(x, um), (y, a), (y, b), (y, v1),...,(y, vn)} ⊂ E. Then an

edge contraction on the edge (x, y) is the graph G′ = (V ′, E ′) where V ′ = V \ {x, y}∪

{z} and E ′ = (E \C)∪{(z, a), (z, b), (z, u1),...,(z, um), (z, v1),...,(z, vn)}. An example

of an edge contraction is pictured in Figure 4.1.
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Figure 4.1: An edge contraction on edge (x, y)

Theorem 4.1. A vertex-split on a non-planar graph, G = (V,E), yields a non-planar

graph G′ = (V ′, E ′).

Proof. We prove the contrapositive: if G′ is planar, an edge contraction on edge

(x, y) ∈ E will yield a planar graph G.

Let G′ be planar. Then it can be drawn in the plane with no edges crossing. It

is clear from the definition of an edge contraction (see Figure 4.1) that the process of

contracting an edge does not create any crossing edges. Therefore, G is planar, and

edge contraction preserves planarity. So, vertex-splitting preserves non-planarity.

This result is not true for spider-splitting. Instead, it is possible to spider-split

from a planar graph to a non-planar graph and vice versa. An example of a spider-

split from a non-planar graph to a planar graph is shown in Figure 4.2. In the graph

on the left, x is the vertex being split, and the three selected neighbours of x are 1,

2, and 3. On the right, x′ is the newly added vertex, edges {(x′, 1), (x′, 2), (x′, 3)}

are added, and (x, 4) is replaced by (x′, 4). Note that since the graph on the right

represents a convex polyhedron, the graph is planar.
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Figure 4.2: A spider-split from a non-planar graph (left) to a planar graph (right)

4.2 Spider-Splitting

Lemma 4.2. The graph of a triangular bipyramid is the only graph with 5 vertices

that can be obtained from a tetrahedron via spider-splitting.

Proof. We check all possible graphs obtainable by spider-splitting on a tetrahedron.

Let G = (V,E), where V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4),

(3, 4)}. By symmetry, it suffices to check only the spider-splits of a single vertex.

Without loss of generality, let 1 be that vertex. Then the only triplet of neighbours of

x we can select is {2, 3, 4}, in which case, E1 = {(1, 2), (1, 3), (1, 4)} (the red edges in

4.3), and E2 = ∅. We obtain G′ = (V ′, E ′) with V ′ = {1, 2, 3, 4, x′} and E ′ = {(1, 2),
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(1, 3), (1, 4), (2, 3), (2, 4), (3, 4), (2, x′), (3, x′), (4, x′)}; see Figure 4.3. This is the

graph of a triangular bipyramid.

4
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1

4

2 3

1

x′

Figure 4.3: Spider-splitting on a tetrahedron with E2 = ∅

The simplest example of a graph where vertex-splitting and spider-splitting differ

is the octahedron.

Theorem 4.3. An octahedron cannot be obtained from a tetrahedron by applying

spider-splitting iteratively.

Proof. By Lemma 4.2, it is sufficient to show an octahedron cannot be obtained from

a triangular bipyramid. Let G = (V,E) be the graph of a triangular bipyramid and

let x ∈ V be the vertex selected for spider-splitting. Let x′ be the new vertex added

as a result of spider-splitting. Note that x is either of degree 3 or 4 and that if x′

receives no additional edges from x, it will be of degree 3. Since every vertex in an

octahedron must be of degree 4, exactly one edge incident to x must be moved to x′ in

the vertex-split. Since x is of at most degree 4, its degree will be decreased to strictly

less than 4. Thus, an octahedron cannot be obtained from a triangular bipyramid,

and therefore, from a tetrahedron by spider-splitting.
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Figure 4.4: Constructing a pentagonal bipyramid from a tetrahderon using a sequence
of spider-splits

We observe that many of the graphs with 8 or fewer vertices produced by vertex-

splitting and that were not obtainable by spider-splitting contain an octahedron as a

subgraph. We suspected that a pentagonal bipyramid may not be obtainable either,

since it is also a bipyramid. Surprisingly, this is not true. Figure 4.4 shows one

possible sequence of spider-splits that will yield a pentagonal bipyramid. Beginning

with a tetrahedron on the top-left, we spider-split on x, add vertex x′, and select

{1, 2, 3} as the triplet of neighbours of x. The second graph is pictured on the top-

right. In each graph, the edges {(x, 1), (x, 2), (x, 3)} are coloured red, and the edges

{(x′, 1), (x′, 2), (x′, 3)} are the ones being added as a result of the spider-split. Any

additional edges (x, k) that are replaced by (x′, k) are coloured blue. The graph

pictured in the bottom-right is the pentagonal bipyramid.
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To even greater surprise, we found that the hexagonal bipyramid could not be

constructed. Since the 3-gonal and 5-gonal bipyramids were achievable, and the 4-

gonal and 6-gonal bipyramids were not, we suggest the following conjecture.

Conjecture 4.4. An n-gonal bipyramid can be obtained by iteratively applying spider-

splitting starting from a tetrahedron if and only if n is odd.

4.3 Comparison of Vertex-Splitting

and Spider-Splitting

The sets of all graphs obtained by vertex-splitting and spider-splitting with up to 8

vertices were generated by Algorithm 3.3. Table 4.1 describes the number of graphs

on 5 vertices to 8 vertices obtained by vertex-splitting and spider-splitting, divided

into planar and non-planar graphs.

Vertices Planarity Vertex Splitting Spider Splitting

n = 5 Planar 1 1

Non-Planar 0 0

n = 6 Planar 2 1

Non-Planar 2 2

n = 7 Planar 5 4

Non-Planar 20 19

n = 8 Planar 14 9

Non-Planar 353 327

Table 4.1: Number of graphs obtained by vertex-splitting and spider-splitting

These sets were compared by checking for isomorphisms between graphs from each

set. The following results were found.
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Theorem 4.5. Let K be the set of graphs with up and including to 8 vertices obtainable

by iteratively applying vertex-splitting starting from a tetrahedron, and let L be the set

of graphs with up to and including 8 vertices obtainable by iteratively applying spider-

splitting starting from a tetrahedron. Then L ⊆ K.

We conjecture that this is true in general, for graphs of any size.

Conjecture 4.6. Let K be the set of graphs obtainable by iteratively applying vertex-

splitting starting from a tetrahedron, and let L be the set of graphs obtainable by

iteratively applying spider-splitting starting from a tetrahedron. Then L ⊆ K.

Since spider-splitting was not able to generate graphs outside the set of graphs

obtained by vertex-splitting, the next step was apply spider-splitting to the graphs

it could not obtain on its own and see if that would result in the generation of new

graphs. Algorithm 3.3 was used to generate the set of graphs with up to and including

8 vertices obtainable by performing all possible sequences of vertex-splits and spider-

splits. Surprisingly, this set contained the same graphs as the set given by vertex-

splitting alone. This result is summarized in the following theorem.

Theorem 4.7. Let K be the set of graphs with up to and including 8 vertices obtainable

by iteratively applying vertex-splitting starting from a tetrahedron, and let M be the

set of graphs with up to and including 8 vertices obtainable by performing a sequence

of vertex-splits and spider-splits starting from a tetrahedron. Then K =M.

This suggests that spider-splitting is less powerful than vertex-splitting in general.

Conjecture 4.8. Let K be the set of graphs obtainable by iteratively applying vertex-

splitting starting from a tetrahedron, and let M be the set of graphs obtainable by

performing a sequence of vertex-splits and spider-splits starting from a tetrahedron.

Then K =M.
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4.4 Conclusions and Future Work

We have implemented algorithms that generate the sets of all possible graphs obtain-

able by vertex-splitting and spider-splitting up to and including 8 vertices. Comparing

these sets, we found that the set generated via spider-splitting alone is a subset of the

set of graphs generated via vertex-splitting. Some examples of graphs that are only

produced by vertex-splitting are the octahedron and hexagonal bipyramid. Further-

more, we generated the set of all graphs with up to and including 8 vertices given

by any arbitrary sequence of vertex-splits and spider-splits and found that this was

equivalent to the set of graphs obtained by vertex-splitting alone. We conjecture that

vertex-splitting is a more powerful operation than spider-splitting for any number of

vertices at all steps of iteration.

One avenue for future work is to generate graphs with a larger number of ver-

tices to look for counterexamples to our conjectures. This would require analysis of

the algorithms to find ways to improve computation speed. The bottleneck of our

algorithms is checking graph isomorphisms; it may be possible to use symmetry and

generate fewer combinatorially equivalent graphs.

A more theoretical extension of this work would be to work on proving our con-

jectures. If these conjectures turn out to be false, it would imply that spider-splitting

may be a useful tool for studying rigidity, in particular for non-convex polyhedra.

On the other hand, if they are true, then vertex-splitting would prove to be a su-

perior technique for studying rigidity. From there, we hope that we will be able to

further characterize rigid frameworks in three dimensions, by identifying new classes

of generically rigid graphs.
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