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Mapping plant communities and understanding the landscape 

structure of coastal barrens using an unmanned aerial vehicle 
 

by Michael A. Buckland-Nicks 

 

Abstract 
 

 Coastal barrens are landscape mosaics - patchworks of plant communities that 

exist in harsh environmental conditions created by land-sea interactions and shallow 

soils. Many rare and uncommon species inhabit these ecosystems, making them a high 

priority for conservation. In Nova Scotia, coastal barrens are abundant along the coastline 

of the Halifax region. Little is known of the spatial distributions of plant communities 

that inhabit them and their overall landscape structure. The purpose of this study was to 

investigate the use of a UAV to map plant communities and to quantify the landscape 

structure of coastal barrens. First, high-resolution multispectral UAV imagery was 

evaluated to discriminate plant communities from three classification levels across three 

coastal barrens sites in Halifax, Nova Scotia: Chebucto Head, Prospect Bay, and Polly’s 

Cove. All plant communities were discriminated with 95% confidence except for one 

pair, showing that plant communities in the coastal barrens could be discriminated with a 

high level of confidence using UAV imagery. Next, UAV imagery was classified to 

produce detailed maps of plant communities for the three coastal barrens landscapes. 

Environmental factors, such as elevation, stream networks and wind exposure were also 

mapped to help understand landscape structure. Sites were dominated by shrublands and 

dwarf heath; however, many other types of communities co-occurred on these landscapes, 

including bogs, salt marshes, and tree islands. The most common plant community across 

the three sites was Gaylussacia baccata shrubland. Plant community patches varied in 
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size, shape, abundance, and spatial distribution from one plant community type to another 

and in many cases from one site to another. Landscape patterns were driven by various 

combinations of environmental factors, including slope position, proximity to stream 

networks, elevation, and distance to coastline. Overall differences in landscape structure 

could be mostly explained by the degree of topographic heterogeneity of each landscape. 

UAVs are an excellent tool for mapping plant communities and quantifying landscape 

structure and this information is critical for informing land managers, conservation 

planners, and policy makers. 
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Island viewed from a UAV off Polly’s Cove, Nova Scotia 
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 Ecosystems and their biodiversity are globally threatened by human activities 

(Mckee et al., 2004; Brooks et al., 2006). Biodiverse ecosystems are intrinsically valuable 

to human society and the ecosystem services they provide are irreplaceable (Edwards and 

Abivardi, 1998). Coastal environments are of particular concern, since more than forty 

percent of the global population live in coastal areas (UN Atlas of the Oceans, 2015). 

High population densities primarily threaten coastal environments due to land use 

activities, such as coastal development, timber harvesting, burning, agriculture, and 

tourism traffic. The pressures exhibited on coastal environments suggest a deep need to 

study coastal ecosystems and their biodiversity to inform land managers, conservation 

planners, and policy makers on how to protect these areas for long-term conservation. 

 Coastal barrens are open habitats that are dominated by low-growing vegetation 

such as grasses and ericaceous woody shrubs (Rodwell, 1991; Oberndorfer and 

Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013). They occur in coastal areas 

all over the world (Williams and Ashton, 1987; Rodwell, 1991; Anderson et al., 1999; 

Webb, 1998; Porter, 2013). Coastal barrens are often described as landscape mosaics – 

patchworks of plant communities that exist in harsh environmental conditions created by 

land-sea interactions and shallow soils (Oberndorfer and Lundholm, 2009; Burley and 

Lundholm, 2010; Porter, 2013). Despite what the name implies, coastal barrens can 

support a large range of habitat types including wetlands, shrublands, dwarf heaths, and 

trees islands and can contain high levels of biodiversity and many rare species 

(Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013).  

 In Nova Scotia, Canada, coastal barrens are scattered along the coastlines. Some 

of the most iconic sites are found in the Halifax region. The province of Nova Scotia has 
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recognized the importance of protecting the coastal barrens and previous studies have 

documented their species and communities (Oberndorfer and Lundholm, 2009; Burley 

and Lundholm, 2010; Cameron and Bondrup-Nielsen, 2013; Porter, 2013). There is still 

much to learn about these ecosystems, including the spatial distributions and spatial 

patterns of species and communities, their overall landscape composition and structure, 

and the biotic and abiotic processes that form and change them. These aspects of 

landscape ecology are critical for improving our knowledge of coastal barrens and 

informing conservation managers how to protect and manage these ecosystems. 

 

Characteristics of Coastal Barrens 

 Geographically, coastal barrens are widespread. In North America, they are 

particularly abundant along the northeastern coast of the United States and Atlantic 

Canada (Motzkin and Foster, 2002; Griffiths and Orians, 2004; Oberndorfer and 

Lundholm, 2009; Porter, 2013). They are less abundant in South America, although 

McCulloch et al. (2000) reported the presence of coastal heathlands from 

palaeoecological data. They are prominent in Britain, the Netherlands, and other coastal 

European countries (Rodwell, 1991; Webb, 1998; Piessens et al., 2005; Saure et al., 

2013). In Europe, they are considered to be ‘cultural landscapes’, since historically 

coastal barrens were used for farming and sheep grazing (Webb, 1998; von Oheimb et al., 

2008). Coastal barrens are also documented in Australia (Williams and Ashton, 1987; 

Martin and Catterall, 2001) and Africa (Boucher, 1983; Milewski, 1983). 

 The environmental conditions for coastal barrens are often harsh for both plants 

and animals. Soil properties are among the most important factors for plant survival 
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(Smith et al., 2012). Plants require soil not only for anchoring themselves, but also for 

receiving nutrients, minerals, and water for their vital functioning (Chapin III, 1980; 

Barber, 1995). In general, edaphic conditions for coastal barrens are relatively poor for 

plants due to their acidic, nutrient-poor, and often shallow nature (Webb, 1998; 

Oberndorfer and Lundholm, 2009; Porter, 2013). Acidic soils are problematic for 

vegetation because they can make vital nutrients unavailable due to leaching and can 

cause increases in toxic metals such as aluminum, which is detrimental for root 

development and can cause the yellowing of plant leaves (De Graaf et al., 1997). When 

soils become too acidic, species diversity and richness generally decrease (Roem and 

Berendse, 2000). Studies by Oberndorfer and Lundholm (2009) and Porter (2013) both 

found that nutrient availability in coastal barrens in Nova Scotia can vary significantly, 

which can be stressful for plants. Variability in nutrient availability can promote species 

and habitat diversity by creating multiple niches, which may partly explain the high 

levels of diversity and rare species found in coastal barrens (Oberndorfer and Lundholm, 

2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013). 

 High winds are characteristic of coastal environments. Sea breezes form due to 

temperature differences between the land and the sea (Simpson, 1994). Temperature 

differences creates differences in pressure, resulting in a sea breeze moving from the 

ocean towards the land. High winds can be stressful for plants. The turbulent and drag 

forces of wind can cause damage to plant tissues such as tearing, stripping, and abrasion 

(Cleugh et al., 1998). Sometimes strong winds can uproot plants (De Langre, 2008). 

Winds can also cause erosion and remove topsoil, exposing plant roots, further increasing 

the risk of uprooting and reducing available soil for root exploration. Winds can also 
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speed up the evaporation of water, which can reduce the amount of available water for 

plants (Cleugh et al., 1998). Lastly, wind also can influence other environmental factors, 

such as precipitation patterns and salt spray (Baker et al., 2001). Some studies have 

suggested wind exposure is one of the most important factors driving the structure and 

composition of vegetation in the coastal barrens (Oberndorfer and Lundholm, 2009, 

Burley and Lundholm, 2010, Porter, 2013), although wind models have not yet been 

made to test this assumption. 

 The three-dimensional shape of a landscape influences the amount of exposure an 

area receives to wind and other environmental factors (Sebastiá, 2004; Mikita and 

Klimánek, 2010). Topographic heterogeneity can result in a mosaic of habitat patches 

depending on the degree and scale of topographic variability (Vivian-Smith, 1996; 

Sebastiá, 2004; Warren II, 2008). In a study on alvars, a type of barren ecosystem, Stark 

et al. (2004) found that microtopography was possibly the most important factor 

determining alvar succession by forest. Furthermore, elevation gradients can affect the 

distribution and structure of plant communities (Choler et al., 2001; Lomolino, 2001). 

Coastal barrens are highly variable in their topographic ruggedness (Heikens and 

Robertson, 1994) and the extent of ruggedness and differences in elevation likely plays 

an important role in defining the occurrence, distribution, and persistence of coastal 

barren vegetation (Burley and Lundholm, 2010; Porter, 2013). 

 Salt spray is common in coastal areas and typically occurs when ocean waves 

strike the surface of rocks or cliff faces. This causes salt water to be sprayed into the air, 

often blowing across the nearby landscape. Salt spray coupled with high winds can cause 

physical injury to plant tissues, and high salt content accumulated on plant leaves and in 
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the soil can inhibit water uptake and even cause osmotic injury at the cellular level 

(Bernstein and Hayward, 1958; Dirr, 1976). Oberndorfer and Lundholm (2009) found 

that in some coastal barren sites in Nova Scotia, there was a direct correlation between 

sodium content in the soil and proximity to the coast, providing evidence of this effect. 

Griffiths and Orians (2004) hypothesized that salt spray may be an important factor for 

preventing forest encroachment on coastal barrens, since salt spray can inhibit plant 

growth by inducing water stress, affect plant physiology, and inhibit the uptake of certain 

nutrients. In one of their experiments, a common tree species, Pinus rigida, was 

transplanted at different distances from a coastline in Massachusetts; it was found that 

although salt spray didn’t cause direct mortality, there were significant signs of growth 

inhibition caused by the salt (Griffiths and Orians, 2004), providing evidence that the salt 

spray may prevent or slow tree encroachment on coastal barrens. Although the 

significance of salt spray will vary from one region to another, it is likely an important 

factor that influences plant community composition and distribution in the coastal 

barrens. 

 Water is essential for the structure and function of plants (Taiz and Zeiger, 2006). 

It is required for important physiological processes like photosynthesis, creating turgor 

pressure for cell rigidity, and the transportation of vital materials across the plant. The 

availability of water across a landscape is dependent on many factors. Since coastal 

barrens occur in coastal areas, they are often cool in the growing season compared to 

inland areas, and can experience relatively high levels of humidity, fog, and precipitation 

(Bakun, 1990). Precipitation patterns are typically stable and constant in coastal areas due 

to two main atmospheric processes: orographic and convectional uplifting. Orographic 



 

7 

 

uplift occurs when an air mass encounters an elevated surface and becomes physically 

uplifted (Wu et al., 2006). This is common when a sea-breeze forms from the ocean and 

travels inland where the landscape is elevated above the ocean. If the landscape 

topography is quite variable, then precipitation regimes will be affected. Convectional 

uplift happens when a cool air mass travels over a warmer surface and rises due to 

increasing in temperature. Sea-breezes are cool because they are generated from the 

ocean and when they travel inland where it is warmer, convectional uplift occurs. 

Uplifting will cause air to become cooler and denser, approaching the saturation level for 

water vapor in which precipitation will take place (Wu et al., 2006). Interestingly, Baker 

et al. (2001) found that coastline curvature can also impact precipitation regimes, where 

convex coastlines are associated with heavier rainfall. Despite regular precipitation 

regimes, coastal barrens can still exhibit drought-like conditions due to their combination 

of shallow soil and high winds, which can increase evaporation. Landscape topography 

also plays a key role in water regimes, since conditions tend to be wetter in valleys and 

dryer on slopes and ridges. Salt spray can also induce water-stress by inhibiting water 

absorption in plant roots (Bernstein and Hayward, 1958). As such, water availability in 

coastal barrens can be highly variable, providing opportunities for plants that reside on 

either end of the water-tolerance spectrum to establish in these ecosystems (Rodwell, 

1991; Oberndorfer and Lundholm, 2009; Porter, 2013). 

 The family Ericaceae is the most common family of plants observed in coastal 

barrens (Rodwell, 1991; Webb, 1998; Tybirk et al., 2000; Oberndorfer and Lundholm, 

2009; Porter, 2013). They are a very diverse group of woody flowering plants that are 

thought to have originated in North America during the time it belonged to the 
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supercontinent Laurasia, approximately 200-300 million years ago (Kron and Luteyn, 

2005). Ericoids are now found in all parts of the world and many are adapted for shallow 

soil conditions, high wind exposure, and drought (Llorens et al., 2004). In Nova Scotia, 

an ericoid called Empetrum nigrum, commonly known as black crowberry, is the most 

dominant plant species on the coastal barrens (Oberndorfer and Lundholm, 2009; Hill et 

al., 2012; Porter, 2013). In Europe, it is also very prominent (Bell and Tallis, 1973; De 

Shmidt, 1977; Rodwell, 1991; Tybirk et al., 2000) and it is often accompanied by another 

ericoid shrub Calluna vulgaris, known as common heather, which is the most dominant 

heathland plant in Europe (Sedláková and Chytrý, 1999; Calvo et al., 2002). 

 Coastal barrens are diverse ecosystems that can be hot spots for uncommon and 

rare species. Oberndorfer and Lundholm (2009) surveyed six coastal barren sites in Nova 

Scotia using field plots and recorded 105 species of vascular plants, 41 species of 

macrolichens, and 27 species of mosses. Furthermore, 11 species were provincially rare. 

Interestingly, of the 173 species identified during the study, only 15 were found across all 

sites, suggesting that floristic compositions of coastal barrens can be geographically 

variable, which should be an important consideration for conservation management. The 

study concluded that the plant species and communities observed in the coastal barrens 

were similar to those observed in other coastal barrens around the world, particularly in 

Europe and New England. In a similar study, Porter (2013) collected field plot data on 

plant species abundances for 49 coastal barren sites in Nova Scotia to classify coastal 

barren plant communities. Over 253 species of vascular plants, mosses, and lichens were 

observed and 13 were found to be rare. Most vascular plant species belonged to the 

family Ericaceae; however, many other species belonged to Rosaceae, Asteraceae, and 
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Poaceae (true grasses). These studies show that coastal barrens can contain high amounts 

of biodiversity and are often home to rare flora, highlighting their importance for 

conservation (Anderson et al., 1999; Latham, 2003). 

 

Classification of Vegetation 

 In the natural world, there have been two main views about how vegetation exists: 

as discrete units or patches, in the form of plant communities or associations (Clements, 

1916), or continuous variation of individual species along environmental gradients 

(Gleason, 1926). The modern synthesis of these two views assumes that plant species are 

distributed individualistically but can form associations or communities that are in 

discrete and recognizable units (van der Maarel and Franklin, 2013; Porter, 2013). A 

plant community will be defined as “a relatively uniform piece of vegetation in a uniform 

environment, with a recognizable floristic composition and structure that is relatively 

distinct from the surrounding vegetation” (van der Maarel and Franklin, 2013). Although 

classifications of plant communities are human constructs, it is still valuable to classify 

vegetation. It seeks to simplify the multiple-species continuum, helping to understand 

ecological patterns and processes in a manageable way (Grossman et al., 1994; NPS, 

2011). Doing so can help simplify and communicate ecological information to land 

managers, conservation planners, and policy makers. 

 The Canadian National Vegetation Classification (CNVC, 2013) is a vegetation 

classification system that consists of an 8-level taxonomic hierarchy. It uses a 

physiognomic-floristic approach to classifying vegetation at different levels in the 

hierarchy and is consistent with the United States National Vegetation Classification 
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(USNVC) and the International Vegetation Classification (IVC) (Grossman et al., 1998). 

In this hierarchy, the “association” is the finest level of classification and is based 

primarily on floristic criteria (e.g. Empetrum nigrum – Juniperus communis dwarf heath). 

The “formation class” is the coarsest level of classification and is based primarily on 

physiognomy (e.g. shrubland). All classification levels are valuable to use and offer 

important ecological information at different scales of interest. 

 

Landscape Ecology 

 Landscape ecology is the study of interacting organisms and their distributions 

across landscapes. A landscape generally refers to a landform or surface of a region and 

its associated habitats (Turner, 1989). Landscapes are scale-dependent and so are the 

landscape patches (Wiens, 1976). A widely held view of landscapes is the patch-corridor-

matrix model (Forman, 1995), which describes landscapes as mosaics consisting of 

patches, corridors, and a background matrix. The distribution and degree of patchiness 

across landscapes can influence the distributions of organisms, their interactions, and 

their adaptations (Wiens, 1976). Furthermore, the size, shape, and distribution of patches, 

i.e., their spatial configuration, can influence patterns of species abundance in animals 

such as birds (Turner, 1989). A great deal can be learned by studying the interactions and 

distributions of organisms across landscapes, and this knowledge can be applied to many 

disciplines, such as integrating land-use planning and decision making (Turner, 1989). 

 There are three important characteristics of landscapes that interest landscape 

ecologists: landscape structure, function, and change (McGarigal and Marks, 1995). 

Landscape structure refers to the composition (global) and spatial configuration (local) of 
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landscape features and patches that make up a landscape. It also refers to the spatial 

heterogeneity of a landscape, including the heterogeneity of habitat patches, geological 

features, and environmental conditions. Landscape function refers to interactions of 

landscape patches or elements and the flow of energy, materials, and organisms across 

landscapes. Landscape change is the alteration of landscape structure and function over 

time. To understand landscape function or change, landscape structure must be known 

(McGarigal and Marks, 1995). Landscape structure can be quantified using land cover 

maps and computing various kinds of landscape metrics using geographic information 

systems (GIS) (McGarigal et al., 2009). Land cover maps display the distributions of 

landscape features and species or communities and GIS provides the ability to analyze 

and quantify the spatial patterns and interrelationships within a map, for example 

calculating the total area occupied by a mapping class. Making accurate land cover maps 

can be challenging depending on the scale of study and level of detail desired; however, 

recent advances in remote sensing technology have made map-making more feasible.  

 

Remote Sensing 

 Remote sensing is the science of obtaining information from objects at a distance. 

Many different platforms can be used to do remote sensing including satellites, manned 

aircraft, and more recently unmanned aerial vehicles (UAVs) (Ustin and Gamon, 2010). 

Global landcover maps have been made using the SPOT4-VEGETATION satellite with a 

1 km pixel resolution and the Landsat ETM+ satellite with a 30 m pixel resolution (Xie et 

al., 2008). The Worldview-2 Satellite has one of the finest resolutions for satellite 

imagery to date with 2 m pixel resolution; however, this resolution is still insufficient to 
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resolve important details of vegetation for mapping at the fine scale (Adam et al., 2010; 

Cruzan et al., 2016). Vegetation has also been successfully mapped using manned 

aircraft, which can collect both spectral and 3D structural data using a variety of sensors, 

such as hyperspectral sensors and LIDAR (light detection and ranging) (Hill and 

Thomson, 2005; Asner et al., 2015; Burai et al., 2015), at even higher resolutions than 

satellites. Although the resolution is greater, the cost of collecting remotely sensed data 

with a manned aircraft is very high and not practical for studies requiring frequent 

surveys. 

 Mapping remotely sensed data can be useful in many research areas and 

disciplines, particularly in plant ecology. Remote sensing has been used to map 

biophysical parameters of vegetation, such as stress levels, chlorophyll, leaf water 

content, leaf area index (LAI), and biomass (Adam et al., 2010; Mathews and Jensen, 

2013; Aasen et al., 2015; Galidaki et al., 2017). Disturbance regimes can also be detected 

by remote sensors; for example, Minařík and Langhammer (2016) used a UAV to model 

disturbance dynamics of a forest and response of individual trees to the bark beetle. 

Remote sensing can also be used to map the distribution of organisms. Baldeck et al. 

(2014) collected airborne LIDAR and hyperspectral imagery from a savanna in Kruger 

National Park, South Africa to map over 500,000 tree and shrub crowns across a 144 km2 

landscape. Producing the map revealed complex landscape patterns of woody plant 

communities, which would not have been observable using field-based methods alone. In 

another example, Chastain et al. (2008) used a combination of field data, remote sensing 

data, and topographic data to map plant communities based on the USNVC (United 

States National Vegetation Classification) in Ozark National Scenic Riverways, Missouri. 
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Interestingly, their initial map of 49 associations had less accuracy and was not as useful 

to resource managers as compared to their revised map containing 33 associations. 

 Many challenges still exist to collect remote sensing data in a cost-effective, time-

efficient manner, and at the desired resolution for the investigation. To map plant 

communities in the coastal barrens, a very high resolution of remotely sensed data would 

be required because coastal barrens are patchy at very fine scales. This fine-scale 

patchiness would have important implications for how organisms interact, how they are 

distributed, and the overall structure and function of coastal barrens landscapes. In some 

cases, patches can be very small (< 1 m), such as a patch of lichen, and transitions from 

one patch to another can be abrupt (Burley and Lundholm, 2010). Additionally, 

differences in the 3D structure of vegetation canopies could be useful for discriminating 

plant community types and their physiognomic forms, such as tree islands compared to 

shrublands. This would require very high-resolution 3D remote sensing data to detect 

structural differences. Conventional remote sensing techniques are likely inadequate for 

achieving the level of detail required to discriminate plant community patches at the fine-

scale and accurately map the distributions of plant communities in the coastal barrens. 

 

Unmanned Aerial Vehicles 

 More recently, commercial UAVs, which are synonymous with unmanned aircraft 

systems (UAS), can capture very high-resolution aerial imagery with pixel sizes in the 

low centimeters (e.g. Puttock et al., 2015). At this level of detail, vegetation stands can 

easily be differentiated, and researchers have begun to construct highly detailed 

vegetation maps that are giving the field of landscape ecology a whole new perspective 
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(Gonçalves et al., 2015; Guillot and Pouget, 2015; Sturdivant et al., 2017). UAVs are also 

receiving a lot of attention due to their low-cost and ability to cover large regions in a 

relatively short amount of time. They have the potential to repeatedly survey areas, 

providing not only a good spatial resolution, but a good temporal resolution as well – an 

aspect that has often limited the use of satellite imagery and manned aircraft. 

Furthermore, UAVs can collect high-resolution data about the environment by being 

equipped with specialized sensors for hyperspectral imagery, thermal imagery, and even 

LIDAR, like manned aircraft (Klemas, 2015). They can also be equipped with cameras 

that capture light in the NIR (near-infrared) spectrum, which is very useful for 

differentiating vegetation characteristics (Ustin and Gamon, 2010). UAVs can capture 

sequential overlapping aerial imagery, making it possible to compute high-resolution 3D 

information of vegetation canopies and landscape features using structure from motion 

(SfM) photogrammetry (Micheletti et al., 2015), providing an unprecedented level of 3D 

detail at regional scales (Remondino et al., 2011). 

 Already UAVs have been used to produce highly detailed distributional maps of 

vegetation across landscapes. Zweig et al. (2015) used a UAV to map wetland 

communities in a 1 km area in Florida. In a mountainous heathland in Portugal, 

Gonçalves et al. (2015) derived spectral indices from UAV imagery to classify heathland 

communities. Fraser et al. (2016) used a UAV to collect sub-centimeter aerial imagery 

and computed ultradense 3D point clouds with a 1 cm resolution to quantify shrub 

heights in the low-Arctic. In an application of UAVs in a coastal environment, Sturdivant 

et al. (2017) produced accurate landcover maps of beach vegetation consisting of 

foredunes, mashes, shrubs, and herbaceous vegetation. These applications demonstrate 
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that UAVs can collect high-resolution spectral and 3D structural data across landscapes, 

offering a promising solution to map plant community patches in the coastal barrens at 

the fine-scale. 

 

Study Sites 
 

 Coastal barrens are abundant in Atlantic Canada and some of the most iconic sites 

are found in the Halifax region of Nova Scotia, including Chebucto Head, Prospect Bay, 

and Polly’s Cove. The climate of Halifax, Nova Scotia is cool and mild with annual 

rainfall amounts of 1200 mm, annual snowfall amounts of 221 cm, and an average annual 

temperature of 6.6°C (ECCC, 2018). The spring and summer growing season tends to run 

from May to September with average monthly temperatures above 10°C, while the fall 

and winter months extend from October to April with temperatures below freezing. 

Annual wind speeds are 16.5 km/h and average wind direction is south during the spring 

and summer and northwest during the fall and winter (ECCC, 2018). The surficial 

geology of the Halifax region is largely composed of granitoid rock from the Devonian-

Carboniferous period (MacDonald et al., 1992). Weathering and erosion of granite is very 

slow (Oosting and Anderson, 1939), which may explain the abundance and persistence of 

coastal barrens in the Halifax Region.  

 

Chebucto Head 

 Chebucto Head, located at N 44.51008 W 63.52659, is approximately 25 km 

southeast of Halifax. It is part of the Duncan’s Cove Nature Reserve and is frequently 

visited by tourists for its hiking trails and its iconic light house. The site is characterised 
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by its tall granite cliffs, exposed rock outcrops and dwarf heath along the coastline. The 

terrain is very rugged, with many hills and valleys. Many species and communities have 

been documented at the site including various types of bogs, shrublands, dwarf heath, and 

tree islands (Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010; Porter, 

2013). 

 

Prospect Bay 

 Prospect Bay, located at N 44.47444, W 63.80156, is southwest of the city of 

Halifax, Nova Scotia and is situated next to a small fishing community known as 

Prospect Village. Part of the site is owned by the Nature Conservancy of Canada (NCC) 

and the other part by a private landowner. Although little research has been done in the 

area to document its flora, it is frequently visited for its hiking trails. The terrain is simple 

and consists mostly of rolling hills and granite rocks along the coastline. Hill et al. (2012) 

describe the area as being dominated by Empetrum nigrum dwarf heath. 

 

Polly’s Cove 

 Polly’s Cove is 45 km southwest of Halifax and is located at approximately N 

44.49088, W 63.88388 within a few kilometers of one of the most iconic coastal barrens 

sites around the world – Peggy’s Cove. It is part of the West Dover Provincial Park and is 

stewarded by the Nova Scotia Department of Natural Resources (NSDNR). Like 

Chebucto Head, the site has rugged terrain with exposed rocky ridges, deep valleys, and 

granite cliffs along the coastline. It is also frequently visited by tourists for its hiking 

trails along the coastline. Like Prospect Bay, few studies have documented the site’s 
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flora. Dwarf heath is generally observed along the coastline and further inland are tree 

islands, bogs, and shrublands. 

 

Purpose of Study 
 

 The purpose of this study is to investigate the use of a UAV to map plant 

communities and understand the landscape structure of the coastal barrens in Halifax, 

Nova Scotia. The research questions of this study are as follows: 

1) Can multispectral UAV imagery be used to discriminate plant community types in 

the coastal barrens? 

2) What are the landscape patterns of plant communities in the coastal barrens of 

Halifax, Nova Scotia? 

3) How do the landscape patterns of plant communities relate to environmental 

factors? 

4) What is the overall landscape structure of coastal barrens in Halifax, Nova Scotia 

and how does it compare between sites? 
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Abstract 
 

 In the coastal barrens of Halifax, Nova Scotia, plant communities are dispersed 

across landscapes like shattered glass: different vegetation types exhibit a range of patch 

sizes and spatial patterns. Maps have not yet been made of plant communities in the 

coastal barrens of Nova Scotia and consequently there is little known of their landscape 

patterns. Unmanned Aerial Vehicles (UAVs) are a promising tool to map coastal barrens 

vegetation, providing a cost-effective way to collect high-resolution spectral, temporal, 

and 3D information at regional scales. This study evaluated the use of a UAV with RGB 

and near-infrared sensors to discriminate plant communities at three coastal barrens sites 

in Halifax: Chebucto Head, Polly’s Cove, and Prospect Bay. Three levels of plant 

community classification were evaluated from the Canadian National Vegetation 

Classification: the association level, based on floristic criteria, the broadened association 

level, and the formation class, based on physiognomy. Field sampling was conducted in 

the summer of 2016 and UAV imagery was collected in the spring and summer of 2016. 

Spectral and structural indices were extracted from the UAV imagery and were evaluated 

for discriminating plant communities using linear discriminant analysis. All plant 

communities from both classification levels were discriminated with 95% confidence 

except for one pair in the association level classification. Overall classification accuracy 

for the association level classification was lower (63%) than the formation class 

classification (92%); however, merging confused groups to form a broadened association 

level classification improved the accuracy to 83%. These results show that plant 

communities in the coastal barrens can be discriminated at different classification levels 

using a UAV.   
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Introduction 

 Coastal barrens are terrestrial ecosystems that are scattered along coastlines 

around the world, particularly in Atlantic Canada and Europe. They typically occur 

within 500 m of the coastline and are predominantly occupied by low-growing ericaceous 

vegetation and few trees. In Nova Scotia, Canada, coastal barrens are abundant, and some 

of the most iconic sites occur in the Halifax region. The province of Nova Scotia has 

recognized the importance of protecting these areas and researchers have begun to 

document the species and communities that exist in the coastal barrens (Oberndorfer and 

Lundholm, 2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013). Still, their 

distributions, spatial patterns and interrelationships, and processes that form and change 

them are largely unknown. Maps can help to visualize spatial relationships and would 

improve our understanding of coastal barrens as an ecosystem, communicate the 

importance and value that these ecosystems hold, and better focus future research and 

conservation efforts. 

Mapping the distributions of species and communities is valuable in many ways. 

Much of the field of ecology focuses on understanding the patterns and scales of the 

distributions and abundances of organisms, and this requires some level of distributional 

mapping (Turner, 1989). Maps can be used to manage habitats and restoration projects, 

assess regional biodiversity, design protected areas, assess risks of invasive species, and 

predict the impacts of climate change on species, communities and ecosystems (He et al., 

2005; Tart et al., 2005; Adam et al., 2010; Franklin, 2010). There are many ways to 

create maps; however, creating detailed vegetation maps across large areas would require 

either intensive field work or the use of remote sensing technology. The challenge with 
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using remote sensing technology to map vegetation is obtaining the necessary spatial and 

spectral resolution needed to discriminate vegetation types with high confidence. 

An important consideration for mapping vegetation is whether a classification 

system will be used to classify assemblages of plant species into discrete units or plant 

communities (Demers, 1991). A plant community is defined as “a relatively uniform 

piece of vegetation in a uniform environment, with a recognizable floristic composition 

and structure that is relatively distinct from the surrounding vegetation” (van der Maarel 

and Franklin, 2013). Grouping vegetation into more manageable units helps to simplify 

the multiple-species continuum (Ferrier, 2002; NPS, 2011; Faber-Langendoen et al., 

2014). It also helps to communicate ecological information for landscape managers, 

conservation planners, and policy makers. Classifications for plant communities are 

scale-dependent and range from fine level to coarse level, with either end of the spectrum 

being valuable for ecologists and conservationists (Grossman et al., 1998). In Canada, the 

Canadian National Vegetation Classification (CNVC, 2013) uses a standardized 8-level 

taxonomic hierarchy to classify plant communities, which is based on the United States 

National Vegetation Classification (USNVC) and the International Vegetation 

Classification (IVC). Association is the finest level of classification and is based 

primarily on floristic criteria, including dominant species; formation class is the coarsest 

classification level and is based primarily on physiognomy.  

 Unmanned aerial vehicles (UAVs) offer a promising solution for mapping 

vegetation in the coastal barrens by offering a cost-effective method to obtain aerial 

imagery with sub-decimeter pixel resolutions, computing high-resolution 3D structural 

information, and having good temporal resolution (Remondino et al., 2011; Gonçalves et 
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al., 2015; Guillot and Pouget, 2015). UAVs have been used to map plant communities in 

different terrestrial ecosystems, such as wetlands (Zweig et al., 2015), low-arctic tundra 

(Fraser et al., 2016), and dunes (Sturdivant et al., 2017), but have yet to be used to map 

plant communities in the coastal barrens. Prior to using a remote sensing platform for 

mapping plant communities, the platform should be evaluated for its ability to 

discriminate the vegetation at the desired scale or classification level. If the remote 

sensing platform is not able to discriminate vegetation types at the desired classification 

level, then it is not justifiable to use it for mapping applications. 

 The aim of this study is to evaluate the use of a UAV equipped with RGB and 

NIR sensors for discriminating plant communities in the coastal barrens of Halifax, Nova 

Scotia. This will be achieved by the following objectives: 1) To assess the discriminatory 

power of multispectral UAV imagery for discriminating plant communities in the coastal 

barrens at three classification levels from the Canadian National Vegetation 

Classification: association level, broadened association level, and formation class; and, 2) 

To determine which indices extracted from UAV imagery explain the most variance of 

plant communities in the coastal barrens. 
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Methods 

Study Area 

Coastal barrens are scattered along the coastline of Atlantic Canada and 

northeastern United States. In the Halifax region of Nova Scotia, granite cliffs are 

abundant, forming numerous coastal barrens sites (Figure 2.1). Three coastal barrens sites 

in the Halifax region of Nova Scotia, Canada were selected for this study and 

systematically surveyed in 2016 by a UAV to collect high-resolution multispectral aerial 

imagery: Chebucto Head (N 44.51008 W 63.52659; Figure 2.2), Prospect Bay (N 

44.47444, W 63.80156; Figure 2.3), and Polly’s Cove (N 44.49088, W 63.88388; Figure 

2.4). All three sites are similar due to their proximity, experience similar climatic 

conditions, and are well-documented in previous research (Oberndorfer and Lundholm, 

2009; Burley et al., 2010; Porter, 2013). Each site measures approximately 500 meters 

across and 500 meters inland from the coastline, in the shape of a square. This equates to 

an approximate study area of 25 ha per site. These dimensions were chosen because 

previous research has suggested that coastal barrens typically occur within 500 meters of 

the coastline (Oberndorfer and Lundholm, 2009; Porter, 2013). Furthermore, a 25-hectare 

area represents a significant portion of a landscape, consisting of a large spectrum of 

environmental gradients, vegetation types and regional variation. 
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Figure 2.1. Coastal barrens sites selected for this study: Chebucto Head, Prospect Bay, 

and Polly’s Cove. All three sites are located in the Halifax region of Nova Scotia, 

Canada. 
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Figure 2.2. An RGB orthomosaic of the Chebucto Head study site in Halifax, Nova 

Scotia. Aerial imagery was captured from a UAV in May 2016 at 90 m altitude, 

providing 4 cm ground resolution. 
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Figure 2.3. An RGB orthomosaic of the Prospect Bay study site in Halifax, Nova Scotia. 

Aerial imagery was captured from a UAV in May 2016 at 90 m altitude, providing 4 cm 

ground resolution. 
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Figure 2.4. An RGB orthomosaic of the Polly’s Cove study site in Halifax, Nova Scotia. 

Aerial imagery was captured from a UAV in May 2016 at 90 m altitude, providing 4 cm 

ground resolution. 
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Data Collection and Processing 

 

Multispectral UAV imagery was collected in the spring and summer of 2016 at 

each study site and was evaluated for discriminating plant communities based on ground 

truthing from field plot data (Figure 2.5). The UAV used for this study was a DJI 

Phantom 3 Professional quadcopter, equipped with a 12-megapixel RGB camera on a 

rotating gimbal and a fixed Sentera single Near-Infrared (NIR) sensor (Figure 2.6; see 

Table A1.1 in Appendix for aircraft specifications). The cameras are independent of one 

another and require separate microSD cards. The quadcopter weighs approximately 1.28 

kg and uses lithium ion batteries, each providing a maximum flight time of 23 minutes. 

 

 
Figure 2.5. Flowchart illustrating the methodology used to extract spectral and structural 

information from multispectral UAV imagery to discriminate plant communities 

identified from field plot sampling in the coastal barrens of Halifax, Nova Scotia. 
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Figure 2.6. DJI Phantom 3 Professional quadcopter used to collect high-resolution 

multispectral aerial imagery. The aircraft was equipped with a 12-megapixel RGB 

camera on a rotating gimbal and a fixed Sentera single Near-Infrared sensor. 

 

Pix4DCapture (Pix4D, Lausanne, Switzerland), a flight planning mobile 

application that can be downloaded for free on most smart phones and tablets that use 

IOS or Android, was used to create flight plans and autonomously control the UAV to 

collect sequential high-resolution aerial imagery at the study sites. Customizable grid 

missions were created within the application to delineate areas to map and to control 

flight parameters, such as image overlap and flight altitude (Figure 2.7). Flights were 

conducted with the camera facing downward (nadir), with overlap set at 80% and sidelap 

as 60%. In the spring, above-ground altitude was set to 90 m (resulting in 4 cm pixel 

resolution for the RGB camera; 8 cm pixel resolution for the NIR sensor) and in the 

summer, it was set to 50 m (resulting in 2 cm pixel resolution for the RGB camera; 4 cm 

pixel resolution for the NIR sensor) to have a better resolution for reconstructing the 

vegetation canopies in 3D. Since the UAV has two independent cameras, Pix4DCapture 
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controlled the RGB camera while the NIR sensor was set to take images at a two-second 

interval to achieve similar image overlap. 

 
Figure 2.7. A grid mission in the Pix4DCapture flight planning mobile application. 

Pix4DCapture was used to autonomously fly the unmanned aerial vehicle to collect 

sequential high-resolution multispectral aerial imagery of the three study sites. 

 

Many plant species found in the coastal barrens are deciduous shrubs or 

herbaceous perennials (Oberndorfer and Lundholm, 2009; Porter, 2013). The timing of 

aerial surveys for observing and discriminating plant communities is therefore crucial. In 

the fall, deciduous shrubs lose their leaves and herbaceous vegetation undergoes 

senescence, known as the leaf-off period. In the late spring and early summer of the 

following year, deciduous species regain their leaves and herbaceous perennial species 

re-emerge, known as the leaf-on period. Research has shown that seasonal phenologies, 

such as the leaf-on and leaf-off periods, have been useful for discriminating vegetation 

based on their spectral properties (Anderson, 1970; Gilmore et al., 2008; Dandois and 

Ellis, 2013; He et al., 2015). Further, some evergreen shrubs on Nova Scotia coastal 
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barrens exhibit distinct seasonal colour changes in their foliage. The timing of surveys 

was planned to capture this seasonal variation by collecting imagery at the end of May 

(leaf-off period) and beginning of August (leaf-on period) in 2016 (see Table A1.2 for 

details on survey dates). 

 To ensure that aerial surveys were geolocated on the earth’s surface to sub-meter 

accuracy, ten to twelve ground control points (GCPs) were laid out across each site prior 

to image acquisition. A GCP is a visible target that is meant to be seen in aerial imagery 

and has known XYZ coordinates which can later be used during image processing to 

accurately georeference the models. GCPs consisted of 9-inch red plastic plates that were 

pinned to the ground with metal pegs. A Real-Time Kinematic (RTK) was used to 

acquire accurate geolocations of the center of each GCP in the field with horizontal 

accuracy of 1-2 cm and vertical accuracy 2-6 cm. 

The goal of acquiring and processing UAV imagery for this study was to create 

two products: a single orthomosaic image of each site from May and August in 2016, and 

a 3D point cloud in August (leaf-on period) for each site. An orthomosaic is a mosaic of 

multiple images that have been stitched together and orthorectified to remove perspective 

distortions. Orthomosaics retain the high resolution and detail of the original images used 

to create them and are a great solution for image analysis and landscape mapping. A 3D 

point cloud is simply a mass of points containing XYZ coordinates, which can be used to 

create digital elevation models (DEM) and provide useful 3D information about a 

landscape and its vegetation, such as topographic variability and canopy structure. 
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Creating orthomosaics and 3D point clouds from multiple overlapping UAV 

images is possible through a technique known as structure from motion (SfM) 

photogrammetry. When multiple overlapping images are acquired, objects within the 

images are viewed from multiple angles or perspectives. The position and appearance of 

the objects may also change relative to their surroundings from one image to another. 

SfM software can use this information to reconstruct surfaces and compute 3D models 

(Micheletti et al., 2015) (Figure 2.8). 

 
Figure 2.8. An illustration of a tree at Polly’s Cove as a 3D point cloud computed from 

structure from motion photogrammetry. 

 

Images were processed using the SfM software program Agisoft Photoscan 

Professional (v. 1.3.2, Agisoft LLC, St Petersburg, Russia). Images were first imported 

and aligned using the Align Photos tool and the following settings: Accuracy set as 

‘High’, Generic preselection unchecked, Reference preselection checked, Key point limit 
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set at 40000, Tie point limit set at 4000, and Adaptive camera model fitting checked. This 

aligned the UAV imagery and created a preliminary thin 3D point cloud. Ground control 

points were then added to georeference the model, followed by running the Optimize 

Cameras command to update the geolocation of the model. To ensure surveys from the 

spring accurately overlaid with summer surveys, additional GCPs were created from the 

DEM of the summer surveys to georeference the spring surveys. Next, the Build Dense 

Pointcloud tool was run with the following settings: Quality set as ‘High’ and Depth 

filtering set as ‘Moderate’. The Quality setting determines how dense to build the point 

cloud; selecting ‘High’ means that the point density of the point cloud would be half the 

value of the pixel size of the original imagery. For example, if the pixel size was 2 cm 

(flight altitude of ~50 m above ground), the point density at ‘High’ would be roughly one 

point every 4 cm2. For sites with imagery flown at 50 m altitude, this produced point 

clouds with over 100 million 3D points. Next, the Build DEM tool was run with the 

following settings: Source data set as ‘Dense cloud’, Interpolation set as ‘Enabled 

(default)’, and Resolution set as the lowest possible value. Creating the DEM (digital 

elevation model) in the software is necessary to create an orthomosaic, since an elevation 

model is required to orthorectify the images. Alternatively, you can create a 3D 

triangulated mesh; however, this produced variable results. Lastly, the Build Orthomosaic 

tool was run with the following settings: Surface set as ‘DEM’, Blending mode set as 

‘Mosaic’, Enable color correction unchecked, Enable hole filling checked, and Pixel size 

(m) set as the lowest possible value. The final products were then exported: the 

orthomosaic as a single TIFF file and the 3D point cloud as an LAS file, both of which 
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can be imported into other software programs for further analysis, such as ArcGIS. 

Results from image acquisition and processing can be viewed in Table 2.1. 
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Table 2.1. Acquisition results of RGB imagery at the study sites and root-mean-square error of the georeferenced models based on 

ground control points. 

Aerial Survey 

Ground 

Resolution 

(cm) 

Number 

of Images 
X error (cm) Y error (cm) Z error (cm) 

Total error 

(cm) 

Chebucto Head RGB May 4.1 178 2.1 1.9 3.6 4.6 

Chebucto Head RGB August 2.2 806 0.5 0.4 0.5 0.8 

Prospect Bay RGB May 3.6 215 2.5 2.9 3.2 5 

Prospect Bay RGB August 2 763 1 1.7 1.7 2.6 

Polly’s Cove RGB May 4.3 218 4.6 3.2 4.8 7.4 

Polly’s Cove RGB August 2.7 780 1.5 0.7 2.7 1.8 
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In total, 85 indices were extracted from the UAV imagery and 3D point cloud (see 

full list in Table A1.3). Among them, 60 were spectral indices (Table 2.2) and 25 were 

structural indices (Table 2.3). The spectral indices were chosen based on previous studies, 

which included the normalized difference of vegetation Index (NDVI) (Huete et al., 

2002), color index of vegetation (CIVE) (Kataoka et al., 2003), hue, saturation, and 

intensity value (HSV) (Ford and Roberts, 1998; Zheng, Zhang, and Wang, 2009), and 

other mathematical combinations of red, green, blue, and near-infrared (NIR) channels 

(Gilmore et al., 2008; Gonçalves et al., 2015; Fraser et al., 2016). NDVI is a function of 

the NIR and the visible red part of the electromagnetic spectrum: (NIR-R)/(NIR+R). 

Chlorophyll in plant leaves are highly reflective of NIR and are more absorbent of the red 

visible region of the electromagnetic spectrum whereas plants with less chlorophyll, such 

as unhealthy or stressed plants, show more equal reflectance of the two regions 

(Ackermann, 2011). Due to the unique responses of vegetation to NIR and r, NDVI has 

been shown to be very useful in many fields of research involving the mapping of 

vegetation (Huete et al., 2002). For example, Burai et al. (2015) measured NDVI across 

an alkali landscape and found that some species and communities could be discriminated 

solely based on NDVI. 

Another potentially useful index for discriminating plant community types is 

CIVE, proposed by Kataoka et al. (2003): 0.441*R – 0.881*G + 0.385*B + 18.78745. 

Zheng, Zhang, and Wang (2009) found that CIVE performed well to discriminate 

vegetation from its surroundings in photographs. Lastly, converting an image from RGB 

color space to HSV color space has been shown to provide useful information on the 

colors in an image (Zheng, Zhang, and Wang, 2009; see Table 2.2 for conversion 
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formulas). Hue describes color as an angle from 0° to 360°, where 0° is red, 120° is 

green, and 240° is blue (Ford and Roberts, 1998).  Saturation refers to the degree to 

which a color is saturated in white, which measures from 0 to 1. Intensity value is a 

measure of lightness and darkness, where 0 is black and 1 is white (Ford and Roberts, 

1998). Laliberte and Rango (2008) evaluated the use of HSV for mapping rangeland 

vegetation and found that it helped to produce the most accurate classification model and 

recommended HSV be used in other vegetation mapping applications. 
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Table 2.2. Spectral indices derived by UAV imagery. 

Index Description Source 

R 
Mean, standard deviation and mean change of the red 

channel in May and August 

Gonçalves et al., 2015 

G 
Mean, standard deviation and mean change of the 

green channel in May and August 

Gonçalves et al., 2015 

B 
Mean, standard deviation and mean change of the blue 

channel in May and August 

Gonçalves et al., 2015 

R/B 

Mean, standard deviation and mean change of the red 

channel divided by the blue channel in May and 

August 

Gonçalves et al., 2015 

R/G 

Mean, standard deviation and mean change of the red 

channel divided by the green channel in May and 

August 

Gonçalves et al., 2015 

G/B 

Mean, standard deviation and mean change of the 

green channel divided by the blue channel in May and 

August 

Gonçalves et al., 2015 

NIR 
Mean, standard deviation and mean change of near-

infrared channel in May and August 

Gilmore et al., 2008 

NDVI 

Mean, standard deviation and mean change of 

normalized difference of vegetation index (NDVI) in 

May and August 

NDVI = 
NIR-R

NIR+R
 

 

Huete et al., 2002 

CIVE 

Mean, standard deviation and mean change of color 

index of vegetation (CIVE) in May and August 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Kataoka et al., 2003 

Hue 

Mean, standard deviation and mean change of the hue 

in degrees (0-360°) in May and August 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Ford and Roberts, 1998 

Saturation 

Mean, standard deviation and mean change of the 

saturation in May and August 

Saturation = 1- (
R + G + B

3
) *a 

Where a is the minimum of R, G and B 

Ford and Roberts, 1998 

Intensity 

Mean, standard deviation and mean change of the 

intensity value in May and August 

Intensity = 
R + G + B

3
 

Ford and Roberts, 1998 

 

Structural indices included measures of vegetation height, topographic position 

index (TPI), curvature (concavity/convexity), slope (degrees), ratio of 3D surface area to 

the 2D planimetric area, and lastly point cloud density. All structural indices were derived 

from SfM photogrammetric processing of UAV imagery acquired in August 2016. 

Canopy height measurements can be useful metrics for describing physiognomic forms of 
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plant communities, such as trees and shrubs. Fraser et al. (2016) found that 3D point 

clouds derived from UAV imagery were accurate in predicting actual canopy heights of 

arctic shrubs. TPI is a scale-dependent index and involves the use of a search 

window/neighborhood to determine the relative topographic position of a central point to 

its surroundings (De Reu et al., 2013). In a forested ecosystem, Zellweger et al. (2013) 

found that TPI was one of the best predictors for multi-species occurrences. A similar 

metric to TPI is the deviation from mean elevation (DEV), which is also described by De 

Reu et al. (2013). DEV normalizes TPI to local surface roughness by dividing TPI by the 

standard deviation of the neighborhood elevation values (TPI/SD). De Reu et al. (2013) 

recommended using both DEV and TPI for classification of landform and surface 

structure. Curvature is another common landscape metric to describe the concavity and 

convexity of an elevation model, where -1 to 0 is concave and 0 to +1 is convex. 

Gonçalves et al. (2015) used curvature as a metric to aid in the classification of heathland 

vegetation. Another useful metric for describing terrain ruggedness is the slope of the 

terrain, from 0° to 90° (McGarigal et al., 2009), which could be useful for the detection of 

abrupt edges and the ruggedness of vegetation canopies. Determining the ratio of 3D 

surface area to the 2D planimetric area of a neighborhood could give a direct 

measurement of the ruggedness of the terrain or vegetation canopy. Hoechstetter et al. 

(2008) describe a moving window algorithm to estimate the true 3D surface area, which 

involves the triangulation of a point cloud, summing the area of the triangles, and then 

dividing the 3D area by the 2D planar area; this method was used in this study. Lastly, 

point cloud density is yet another structural index that can potentially provide useful 

information about canopy structure, with the assumption that a more heterogeneous 
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surface will require more 3D points for reconstruction than a homogeneous surface. For 

example, Matthews and Jensen (2013) used point density of a 3D point cloud obtained 

from a UAV to help model leaf area index (LAI) in a vineyard. 

Table 2.3. Structural indices derived by analysis of 3D point clouds and subsequent 10 

cm digital elevation models computed from structure from motion photogrammetric 

processing of UAV imagery. 

Index Description Source 

Vegetation Height 

Mean, max, and standard deviation of vegetation 

heights. Vegetation heights were calculated by 

subtracting the minimum from the maximum elevation 

value within a 50 cm search radius of each pixel using 

the 10 cm elevation model 

 

Corcoran et al., 2015 

Topographic Position 

Index (TPI) 

Mean and standard deviation of topographic position 

index (TPI) from the 10 cm elevation model. Cell 

search windows included 5x5, 11x11, 33x33 and 

111x111 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean 

elevation of neighborhood 

De Reu et al., 2013 

Deviation from Mean 

Elevation (DEV) 

Mean and standard deviation of the deviation from 

mean elevation (DEV) from the 10 cm elevation model. 

Cell search windows included 5x5, 11x11, 33x33 and 

111x111 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean 

elevation of neighborhood, and SD = standard deviation 

of elevation values in the neighborhood 

De Reu et al., 2013 

Curvature 

Mean and standard deviation of the curvature index 

(convexity/concavity) from 10 cm elevation model. 

Calculated using the Curvature tool from the DEM 

Surface Tools toolbox with Profile setting 

(http://www.jennessent.com/arcgis/surface_area.htm) 
 

Gonçalves et al., 

2015 

Slope 

Mean and standard deviation of the slope (degrees) 

from 10 cm elevation model. Calculated using the Slope 

(Spatial Analyst) tool in ArcGIS 

McGarigal et al., 

2009 

3D Surface Area / 

Planimetric Area 

Ratio 

The ratio of the 3D surface area of the triangulated 

point cloud and the 2D planimetric area 

Hoechstetter et al., 

2008 

Point Cloud Density 

Density of point cloud per m2 Ørka and Hauglin, 

2016 

 

  

 The goal of the field sampling strategy was to achieve the greatest level of 

representation of plant community types across each site in a time-efficient and effective 
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way. Doing so reduced the time required in the field, which was necessary due to the 

time-constraints of sampling in a single field season, and also minimized impacts on the 

sites. To achieve this, locations of field plots were determined in three ways. Type I plot 

locations were determined by analyzing RGB and NIR orthomosaics from UAV imagery 

to identify distinct vegetation patches to sample in the field. Since the orthomosaics were 

georeferenced, geographic coordinates could be directly obtained in GIS and 

subsequently entered into a handheld global positioning service (GPS) with a horizontal 

accuracy of 5-10 m to find the locations in the field. To help pinpoint the actual location 

to sample in the field, a down-scaled RGB orthomosaic from the UAV imagery of each 

site was uploaded as the basemap of the handheld GPS. Type II plots were recorded when 

unique plant communities or communities that had insufficient sample sizes were 

encountered in the field. Lastly, Type III plot locations were determined by stratified 

random sampling. Sites were divided into four sections, followed by generating 6 random 

field plot locations in each section, a maximum 24 field plots per site. If plot locations did 

not contain any vegetation or were inaccessible (e.g. on the edge of a cliff), they were 

omitted from the study. In total, 374 field plots were sampled (Table 2.4). 

Table 2.4. The number of field plots of types I, II and III sampled at Chebucto Head, 

Prospect Bay, and Polly’s Cove. 

Site Type I plots Type II plots Type III plots 

Chebucto Head 

Prospect Bay 

Polly’s Cove 

62 

51 

71 

38 

41 

40 

24 

24 

23 

Sum 184 119 71 

Grand Total 374  

 

 Field plots were sampled within the three study sites from June to August in 2016. 

Plots generally measured 4 by 4 m (16 m2) except for when plant community patches 
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were sparse or irregularly shaped. The percent cover of each taxa was visually estimated. 

Also recorded from plots were photographs and a set of geographic coordinates of the 

plot center using a Garmin GPSMAP 64S,  

Field plots were initially assigned two classifications based on the Canadian 

National Vegetation Classification (CNVC, 2013): the association level, which is the 

finest level of the 8-level hierarchy and is based primarily on floristic criteria such as 

dominant species; and, the formation class, the coarsest level of the 8-level hierarchy, 

which is based on physiognomy. After confused classes from the association level 

classification were identified, a third classification was formed: the broadened association 

level classification. 

 To extract spectral and structural indices for each plant community from the UAV 

imagery, plant community patches from field sampling were delineated by manually 

drawing training polygons in ArcGIS (v. 10.3.1, Environmental Research Systems 

Institute, Redlands, California). Training polygons are commonly used extract and 

compile statistics for mapping classes and play an integral part in creating maps and 

providing accuracy assessments through ground truthing. Training polygons were drawn 

around homogeneous patches of vegetation with the help of the UAV imagery, plot 

photographs, field data sheets, and GPS coordinates from each plot location. Sizes of 

polygons were meant to represent the sampled areas from field plots, which were 

approximately 4 by 4 m (16 m2); however, in cases when sampled areas contained more 

than one community type or patches were sparse or irregularly shaped, smaller polygons 

were drawn. In cases when a plant community type was composed of multiple, smaller 

patches, multiple polygons were drawn and were treated as a subset. 
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To extract spectral and structural indices using the training polygons, polygons 

were first converted to raster zones using the Polygon to Raster (Spatial Analyst) tool in 

ArcGIS. Next, the Zonal Statistics as Table (Spatial Analyst) tool in ArcGIS computed 

statistics for each index within each raster zone/training polygon. Statistics for each index 

were merged to form a data table consisting of 60 spectral indices (Table 2.2), 25 

structural indices (Table 2.3), and columns containing the plant community classification 

and training sample IDs. This table was later used for statistical analysis. 

 

Statistical Analysis 

 

 Statistical analyses were performed in R (v. 3.4.1; R Core Team, 2017). Data 

were preprocessed prior to data analysis. Only plant community types with a minimum of 

three field plots were analyzed. All indices were scaled, centered, and checked for 

normality by plotting histograms. Indices that appeared to be non-normal were 

transformed if possible. To remove redundant and collinear indices, indices with a greater 

correlation than r2 = 0.95 correlation with another index were first removed. Next, a 

backwards stepwise selection of indices was done using variance inflation factor (VIF) 

analysis, a common technique for assessing indices for multicollinearity (Mansfield and 

Helms, 1982). In each step, the index with the highest ‘score’ was removed until all 

indices had a score less than 10, which is commonly viewed as the cut-off value for 

indicating multicollinearity. After these indices were removed, the remaining dataset 

consisted of 36 indices (see Table A1.4). 
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 To determine if there was evidence of spectral and structural differences between 

plant communities based on indices extracted from processed UAV imagery, linear 

discriminant analysis (LDA) was performed. LDA is a common classification and 

dimensionality reduction technique that looks for linear combinations of explanatory 

variables (the spectral and structural indices) to predict a categorical variable, in this case 

the plant community type (Fisher, 1936). Like principal components analysis (PCA), it 

projects the explanatory variables into a set of fewer dimensions/axes to best describe the 

variance of the variables, but at the same time maximizes class separation. Davidson et al. 

(2016) found that LDA performed well at classifying low-arctic vegetation and Salovaara 

et al. (2005) used LDA to classify four different types of tropical rainforest from 

LANDSAT ETM+ satellite imagery with promising results. 

The discriminatory power of the LDA model was assessed in two ways: First, 

95% confidence intervals were constructed about the mean ‘scores’ of each plant 

community type within each discriminatory axis. To determine if confidence intervals 

overlapped in each discriminatory dimension for every plant community comparison, a 

matrix was made. The matrix was used to evaluate the number of times each plant 

community comparison could be differentiated with 95% confidence in at least one of the 

discriminatory dimensions from the LDA. Plant community comparisons that always had 

overlapping confidence intervals were considered to be non-differentiable. In the second 

part of the analysis, the classification accuracy of the LDA model was evaluated using 

leave-one-out cross validation. Leave-one-out cross validation is a common technique in 

which one observation/sample is removed from the model training dataset at a time and 

then the model attempts to classify the unknown testing sample (Molinaro et al., 2005). 
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This was done for the entire dataset, providing an overall classification accuracy for the 

LDA model. 

The relative importance of each index as it contributed to the LDA model was 

determined by taking the absolute value of the scalings (i.e., strength of contribution; 

similar to the loadings in a PCA) for each discriminatory dimension, weighting the 

scalings by the proportion of contribution of each discriminatory dimension to the LDA 

model, and lastly summing the weighted scalings from each discriminatory dimension for 

each index. The result is a relative, unitless “score” of the overall variance explained 

from each index for the discriminatory model. 

 Discriminatory analysis was performed on the association level plant community 

classification and the formation class classification based on field plot data. After 

confused classes from the association level plant community classification were 

identified, a broadened association level classification was formed by merging confused 

classes and was also evaluated. 
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Results 

 Across all sites, a total of 121 plant species were identified from field plot 

sampling (Table A1.5). Sixty-seven species were found at all three sites. The greatest 

number of species identified was at Polly’s Cove (101), followed by Prospect Bay (93), 

then Chebucto Head (84). Polly’s Cove also had the greatest number of unique species to 

that site (14), followed by Prospect Bay (13), then Chebucto Head (4). The top 10 most 

frequent species are presented in Table 2.5 

Table 2.5. The top 10 most frequent plant species identified from field plot sampling 

across all sites. 

Plant Species Name Common Name 
Frequency 

(# plots) 

Kalmia angustifolia Sheep Laurel 188 

Juniperus communis Common Juniper 185 

Gaylussacia baccata Black Huckleberry 182 

Vaccinium angustifolium Late Lowbush 

Blueberry 

140 

Cornus canadensis Bunchberry 132 

Empetrum nigrum Black Crowberry 131 

Morella pensylvanica Northern Bayberry 126 

Alnus viridis Green Alder 124 

Trientalis borealis Northern Starflower 119 

Pteridium aquilinum Bracken Fern 118 

 

 From the association level plant community classification, 60 plant communities 

were classified across all sites (Table A1.6). After plant communities with less than three 

field plots were removed, 33 plant communities remained and were used for statistical 

analysis (Table 2.6). Merging confused classes to form the broadened association level 

classification narrowed the list of plant communities to 16 (Table A1.7). Nine plant 

communities were classified based on the formation class classification: dwarf heath, 
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shrubland, tree island, bog, salt marsh, brackish marsh, seep, lichen, and other (Tables 2.7 

and A1.7).  
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Table 2.6. List of classes from the association level plant community classification from 

field plot sampling across all three sites. Plant communities with less than three field 

plots were removed and not used for statistical analysis. 

Association Level Classification 
Frequency 

(# plots) 

Abies balsamea tree island 5 

Acer rubrum tree island 7 

Alnus viridis shrubland 3 

Betula papyrifera tree island 9 

Calamagrostis canadensis coastal vegetation 3 

Carex exilis - Gaylussacia bigeloviana bog 6 

Carex nigra bog 13 

Cladonia spp. 39 

Corema conradii lithomorphic 5 

Empetrum nigrum - Juniperus communis dwarf heath 40 

Empetrum nigrum dwarf heath 14 

Gaylussacia baccata shrub bog 4 

Gaylussacia baccata shrubland 79 

Gaylussacia bigeloviana shrub bog 9 

Gaylussacia bigeloviana shrubland 7 

Gaylussacia shrub bog 7 

Ilex glabra shrubland 8 

Juncus balticus brackish marsh 7 

Juniperus communis - Corema conradii lithomorphic 25 

Juniperus communis dwarf heath 18 

Juniperus horizontalis dwarf heath 8 

Larix laricina tree island 8 

Maianthemum trifolium bog 3 

Mixed tall shrubs 22 

Morella pensylvanica shrubland 4 

Open bog 13 

Osmunda cinnamomea seep 13 

Picea glauca tree island 5 

Picea mariana tree island 26 

Rubus allegheniensis - Morella pensylvanica coastal vegetation 4 

Spartina patens salt marsh 4 

Spartina pectinata brackish marsh 3 

Trichophorum caespitosum bog 11 
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Table 2.7. List of classes from the formation class plant community classification from 

field plot sampling across all three sites. Plant communities with less than three field 

plots were removed and not used for statistical analysis. 

Formation Class Classification 
Frequency 

(# plots) 

Bog 73 

Brackish marsh 3 

Dwarf heath 110 

Lichen 39 

Other 3 

Salt marsh 4 

Seep 13 

Shrubland 127 

Tree island 60 

 

 When 95% confidence intervals were constructed about the mean LDA scores for 

each discriminatory axis for classes from the association level plant community 

classification, only 1 pair (<1%) of 528 possible comparisons of plant communities could 

not be discriminated in any of the dimensions (see plots of confidence intervals in Figures 

A1.1A-AF). The pair that could not be discriminated was Gaylussacia bigeloviana shrub 

bog and Gaylussacia baccata shrub bog. The top 10 indices that explained the most 

variance of plant communities for the association level classification are summarized in 

Table 2.8 (see Table A1.3 for descriptions of indices; see Table A1.8 for complete list). 

The overall classification accuracy of the LDA model using leave-one-out cross 

validation for the association level plant community classification was 63%. Table A1.9 

lists the plant community classifications in order from best to worst classification 

accuracy. 
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Table 2.8. Top 10 indices sorted by their “score” of importance in relation to their 

contribution to the linear discriminant analysis (LDA) model for each plant community 

classification. The score was determined by summing the weighted contributions of each 

index for each discriminatory axis from the LDA model. 

Association Level 

Classification 

Broadened Association 

Level Classification 

Formation Class 

Classification 

Index Score Index Score Index Score 

R mean May 0.98 R mean May 1.10 R mean May 1.24 

Slope SD 0.68 Slope SD 0.75 Slope SD 0.88 

Saturation SD 

May 
0.53 R/G mean May 0.51 R/G mean May 0.55 

CIVE SD August 0.50 
Saturation SD 

May 
0.47 Change R mean 0.40 

Change R mean 0.50 Change R mean 0.45 
CIVE mean 

August 
0.37 

R/G mean May 0.50 TPI mean 5 0.44 CIVE SD August 0.37 

Hue SD August 0.42 
CIVE mean 

August 
0.39 TPI mean 5 0.36 

CIVE mean 

August 
0.39 NIR mean May 0.35 R/B mean May 0.29 

TPI mean 5 0.37 R/B mean May 0.33 TPI mean 111 0.28 

R/B mean May 0.35 CIVE SD August 0.32 NIR mean May 0.28 

 

 Most misclassifications from the association level classification resulted from 

structurally similar plant communities (Table A1.9). For example, all three field plot 

locations of Abies balsamea tree island were misclassified as Picea mariana tree island, 

both of which are coniferous tree islands. Table A1.7 summarizes how plant community 

classifications from the association level were merged to form the broadened association 

level classification to improve classification accuracy. 

 When the LDA was repeated for the broadened association level plant community 

classification, all plant communities could be discriminated from each other when the 

95% confidence intervals of the mean LDA scores in each discriminatory axis were 

compared (see Figures A1.2A-O). The top 10 indices that explained the most variance of 

plant communities for the broadened association level classification are summarized in 
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Table 2.8 (see Table A1.3 for descriptions of indices; see Table A1.8 for complete list). 

The overall classification accuracy of the LDA model improved to 83%. Table A1.10 

lists plant community classifications from the broadened association level classification 

in order from best to worst. 

 In the final LDA, plant communities in the formation class classification could be 

discriminated from each other with 95% confidence when confidence intervals of the 

mean LDA scores in each discriminatory dimension were compared (see Figures A1.3A-

H). Figure 2.9 illustrates the separation of plant communities from the formation class 

classification in 3D when the first three LDA dimensions are plotted. The top 10 indices 

that explained the most variance of plant communities for the formation class 

classification are summarized in Table 2.8 (see Table A1.3 for descriptions of indices; see 

Table A1.8 for complete list). The overall classification accuracy of the LDA model 

improved to 92%. Table A1.11 lists plant community classifications from the formation 

class classification in order from best to worst. 
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Figure 2.9. Plant communities from the formation class classification projected in the first 

three dimensions of the linear discriminant analysis model. Linear discriminant analysis 

projects variables into fewer dimensions while maximizing the separation of a class.  
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Discussion 
 

 In this study, multispectral UAV imagery was evaluated for its ability to 

discriminate plant communities at three classification levels in the coastal barrens of 

Halifax, Nova Scotia. Over 99% of plant community comparisons in the association level 

plant community classification could be discriminated with 95% confidence. The only 

pair that could not be discriminated was Gaylussacia bigeloviana shrub bog and 

Gaylussacia baccata shrub bog. In most aspects, the shrub bogs appear identical, the only 

difference being that they were dominated by different species belonging to the same 

genus. Even in the field, the leaves needed to be closely examined to tell the difference 

between the two species, which explains why differences between the two communities 

were not detected using the UAV imagery. It is possible that the two species could be 

discriminated at a different time of the year, such as the late summer or fall, if they 

undergo senescence at different times. After the accuracy assessment and confused 

classes were merged to form the broadened association level classification, effectively 

reducing the number of classes from 33 to 16, all communities could be discriminated 

with 95% confidence. The same result was found for the formation class plant 

community classification. These findings suggest that UAV imagery can be used to 

discriminate plant communities at different classification levels with high confidence. 

This further suggests that it is possible to use a UAV to map the locations of plant 

communities in the coastal barrens at different classification levels, which has not 

previously been demonstrated. 

 Overall classification accuracy of the LDA model for the association level 

classification was moderate at 63%; however, broadening the association level 
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classification by merging ecologically similar groups that were causing misclassifications 

increased the overall accuracy to 83%. Overall classification accuracy rose to 92% for the 

formation class classification. Most misclassifications were found between plant 

communities that were structurally similar. Part of the reason for misclassifications in the 

association level classification could be due to the limitations in the spectral and 

structural indices chosen for the study to discriminate the plant communities. Another 

reason could be that initial misclassification was caused by uncertainty in assigning 

classifications to the field plot data. Lastly, differences in spatial resolution of aerial 

imagery from different surveys as well as the geopositioning error of the handheld GPS 

and RTK may have introduced error in extracting spectral and structural statistics from 

field plot locations. 

 Classifications were not always straightforward: many communities shared 

similar species but with varying cover, while other communities may not have had any 

species in common except for the dominant species. These gray areas in assigning 

classifications made it challenging to determine the appropriate classification names. One 

such community was Rubus allegheniensis - Morella pensylvanica coastal vegetation; 

initially, this community seemed to be an outlier, and there was uncertainty in whether to 

call it a shrubland or place it in the generic category of ‘coastal vegetation’. Upon 

reviewing the UAV imagery and the spectral and structural characteristics of the plant 

community, it seemed apparent that the community better fit in the category of 

shrublands. A similar finding was made for Carex exilis - Gaylussacia bigeloviana bog; 

at first, the community was classified simply as a bog dominated by sedges and dwarf 

shrubs; however, when the community was analyzed with the UAV imagery, it became 
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clear that the community was most like shrub bogs rather than grass/sedge/open bogs. 

Utilizing the UAV imagery in this way can support the classification of plant 

communities, providing a bird’s eye view of how the communities appear from above 

and offering information on their spectral and structural characteristics in high-resolution 

as another line of evidence for forming the classifications. 

 Sample size, i.e. the number of field plots sampled per community type, is another 

factor that may have impacted the classification results of the LDA model (Burley, 2009). 

Low sample size for vegetation sampling was unavoidable for finer classification levels; 

some plant community types may only have one occurrence within a site, and in other 

cases patches can go undetected when field sampling. A solution to this problem is 

merging classes with low sample sizes to form broader classes, which was done in the 

broad association level classification. One consequence of merging classes to form a 

broader class, however, is that within-class variance is increased, which may cause more 

misclassifications to occur between otherwise dissimilar plant communities. 

 The two indices that explained the most variance of the LDA models for the 

association level classification, the broadened association level classification and for the 

formation class classification were the red band from the May imagery and the standard 

deviation of the canopy’s slopes, respectively. Other top indices included Saturation SD 

May, R/G mean May, and change in R mean. Most of the important indices were spectral 

indices from May imagery; however, some indices from August were important as well. 

This makes sense, because most of the vegetation in August appears in the imagery as a 

bright green color, while in May there is a much greater contrast between vegetation 

types: shrublands appear brown due to leafless branches being exposed, dwarf heaths are 
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different shades of green or yellow, coniferous trees are different shades of green and 

deciduous trees are without leaves and appear as brown or grey. However, some plant 

communities, such as herbaceous vegetation, may only be observable in the summer or 

fall and not in the spring. Another consideration that needs to be made is that imagery in 

the spring had slightly coarser spatial resolutions (4cm) compared to imagery in the 

summer (2cm), which may have also influenced classification accuracy. Furthermore, 

flight conditions in the spring at the three sites were in cloudy or partly cloudy conditions 

while all surveys in the summer were conducted in full sun, which may have further 

influenced the ability to discriminate vegetation. Although the springtime seems to be the 

most advantageous time to discriminate plant communities in the coastal barrens of 

Halifax, Nova Scotia, collecting imagery from more than one season may be necessary to 

observe and discriminate all plant community types depending on the level of 

classification. 

 Some studies have found NIR to be very useful for discriminating plant 

communities and even species (Anderson, 1970; Gilmore et al., 2008; Adam et al., 2010), 

since chlorophyll in plant leaves are highly reflective of the NIR region of the 

electromagnetic spectrum (Galidaki et al., 2017). In this study, indices derived from the 

NIR sensor of the UAV did not appear to be as important for discriminating the plant 

communities as anticipated. The index NIR mean May, however, was listed among the 

top 10 most important indices for discriminating plant communities for both the 

broadened association level classification and for the formation class classification. It is 

possible that the coarser spatial resolution of the NIR sensor (generally 2x coarser than 

the RGB sensor) reduced the ability of the NIR band to discriminate plant community 
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types, and that surveys should be conducted lower to the ground to detect greater 

statistical differences in the vegetation.  

 Interestingly, the standard deviation of the slope of the vegetation canopies was 

the second most important index for discriminating plant communities in all three 

classification levels. Also, the mean topographic position index calculated within a 5-

pixel search window consistently scored in the top 10 most important indices for 

discriminating plant communities. Providing that SfM photogrammetry can accurately 

reconstruct the vegetation canopies in 3D as previous studies have found (Fraser et al., 

2016), it is rational that some structural indices would be important for discriminating 

plant community types, especially plant communities in the formation class classification, 

which is based primarily on physiognomy. The finding that structural indices were 

important for discriminating plant communities across multiple classification levels 

highlights the value of collecting 3D structural information for discriminating vegetation. 

 One limitation with using hue as a spectral index is that it is circular. Values for 

hue range from 0 to 360°, where 0° is red, 120° is green, and 240° is blue (Ford and 

Roberts, 1998). Hue may be a useful index to discriminate vegetation types; however, 

computing linear statistics on a circular index would give misleading results and is most 

likely the reason hue was not found to be important in the linear discriminant analysis. In 

a similar case, Monk et al. (2011) converted aspect, a circular variable describing bearing 

or direction from 0 to 360°, to two linear variables: northness and eastness. Converting 

hue in a similar manner to two linear indices may solve this issue and should be explored 

in future studies. 
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Determining the flight altitude above ground is an important consideration for 

collecting UAV imagery. It directly correlates with the ground resolution/pixel size of 

each image. For example, if an image is captured at 90 m altitude relative to the ground, 

the ground resolution will be approximately 4 cm with the UAV’s RGB camera and 8 cm 

with the NIR sensor compared to only 2 cm and 4 cm respectively if flown at 50 m 

altitude. Point clouds from 50 meters above ground had much greater structural detail 

than images captured at 90 meters. Furthermore, it was much easier to discern important 

details of the vegetation using imagery collected from lower flight altitudes. There are, 

however, some drawbacks with flying lower altitudes. One such consideration is wildlife: 

the lower an aircraft is flown, the more likely wildlife, such as birds, are to respond, 

become stressed, and become aggressive towards the aircraft (Ditmer et al., 2015; Vas et 

al., 2015; Lyons et al., 2017), which creates unsafe conditions due to risks of collision. In 

this study, there were two close encounters with sea gulls when the UAV was flown near 

their nesting sites. For surveying large areas, it may not be practical and safe to fly much 

lower than 50 m altitude above the ground. Another consideration is time: the lower the 

aircraft is flown to the ground, the more images are needed to be acquired to achieve 

enough image overlap to accurately mosaic images and compute 3D information by SfM 

photogrammetry, due to the reduced field of view as objects get closer to the sensor. To 

survey one of the sites in this study (each study occupied approximately 25 ha), it 

required 2 batteries and roughly 40 minutes of flight time when flown at 90 meters 

altitude compared to 3 batteries and over an hour to fly at 50 meters altitude. Although a 

high image overlap was programmed into the Pix4DCapture app for the surveys 

conducted in this study, some images from low altitude surveys were difficult to align 
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during image processing and needed manual tiepoints. It is recommended that if UAV 

surveys are conducted closer to the ground, ensure that there is enough image overlap and 

sidelap for each survey, preferably 80% and 60% respectively. 

Choosing a higher altitude in the spring followed by a lower altitude in the 

summer was a limitation in this study. Imagery acquired at lower altitudes had inherently 

higher spatial resolution than the higher altitude imagery. The resulting differences in 

spatial resolution made the surveys not directly comparable for discriminating the plant 

communities. If multiple surveys are conducted for temporal analysis, it is advisable to 

choose one above-ground altitude for aerial surveys to achieve consistent spatial 

resolutions and allow the imagery to be directly comparable. 

No matter the remote sensing platform, weather conditions will affect the quality 

and output of a sensor, with UAVs being no exception. During this study, many 

environmental factors and weather conditions were found to affect the quality of images 

acquired. Particularly in coastal areas, winds can be a challenge for operating a UAV. 

High winds can cause difficulties in controlling the aircraft, reducing battery life and 

consequently flight time, and can even cause some images to appear blurry due to 

shaking of the aircraft and sensor. To avoid high winds, UAV surveys were generally 

conducted in the mornings or early afternoons before winds got above 30 km/h. Another 

factor that should be considered is insolation and scene illumination. The intensity and 

angle of illumination of the sun changes constantly, and depends on the time of day, time 

of year, as well as atmospheric conditions such as cloud cover. One example of this is 

when images collected in the spring and the summer are compared: evergreen vegetation 

in the summer appeared much brighter in images compared to the same evergreen 
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vegetation in May, simply because the angle of insolation in May was lower than in the 

summer, causing less solar radiation to be reflected towards the sensor. Variability in 

insolation can alter the spectral statistics of an image, which can have consequences for 

image analysis and should be considered when comparing multiple surveys. 

An observed effect of insolation in this study was the opposition surge, also 

known as the opposition effect or hot-spot effect. The opposition surge is an optical 

phenomenon that is caused when the phase angle, the angle between the observer and the 

light source, approaches 0° (Burratti, Hillier, and Wang, 1996). It can cause bright hues 

to appear in images and was observed in this study when UAV imagery was collected in 

the summer, when the insolation angle was at its peak (see Figure 2.10). Interestingly, the 

opposition surge was not observed in the spring imagery, likely since the angle of 

insolation was much lower. To avoid the effects of opposition surge, it is recommended 

to fly earlier in the day when the angle of the sun is lower, especially around summer 

solstice. 
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Figure 2.10. An example of the opposition surge in UAV imagery, also known as the hot-

spot effect or opposition effect (A and B). A) was captured in May of 2016 at Prospect 

Bay and shows no opposition surge because the angle of insolation in the spring is 

relatively low; B) was captured in July of 2016 and shows the opposition surge 

manifested in the eastern part of the image as a bright hue. The optical phenomenon 

occurs when the phase angle, the angle between the observer and the light source, 

approaches 0°. 

 

Aside from the opposition surge, most problems with varying intensity of 

illumination within and between surveys can be mitigated by configuring the settings of 

the sensor and through image post-processing. Fixing the white balance and exposure 

A) 

B) 
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settings to a constant value for an RGB camera will help to keep scene illumination 

constant (Dandois, 2014). An alternative is to collect only raw, unaltered images. The 

disadvantage with collecting raw images is that it is memory intensive and requires a lot 

of storage space, especially when capturing hundreds of images for a single survey. 

Although it was not done in this study, another option is to radiometrically calibrate the 

sensor before each survey. This can be done by capturing an image of a radiometrically 

calibrated target, and then correcting the values of all the images collected in that survey 

to the known radiometric values of the radiometrically calibrated target (Kelcey and 

Lucieer, 2012). If done for each survey, images from one survey to another would 

theoretically be radiometrically comparable, likely enhancing the ability of aerial surveys 

to discriminate vegetation types. 

Despite the effects of weather conditions, such as variability in insolation within 

and between surveys on acquired UAV imagery in this study, evidence of statistical 

differences between plant communities were still found. It is hypothesized that if 

mitigation measures are taken to control scene illumination, such as fixing white balance 

and even radiometrically calibrating the sensor prior to each flight, the variance in 

spectral and structural measurements of plant community types will decrease and 

evidence of statistical differences will become even more apparent. 

 Processing UAV imagery requires a lot of time, computing power and trial and 

error. Processing the imagery by far took the most time of any task in this study. The 

most time-consuming part of processing the UAV imagery was producing the dense 3D 

point cloud. It took one or two days to produce a point cloud for one of the surveyed sites 

using the ‘high’ density setting in Agisoft. The ‘Ultra high’ setting was not possible to 
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execute because the computer used to process the images did not have enough memory. 

Choosing the ‘high’ density setting provided plenty of structural detail for the vegetation, 

producing over a hundred million 3D points across a 25-hectare site flown at 50 meters 

altitude. It is recommended to ensure the computer used to process the UAV imagery has 

sufficient memory for the task. 

 The quality of the orthomosaics produced by Agisoft was excellent. Break lines 

and other artifacts created by mosaicking the images were rare and the opposition surge 

observed in some surveys conducted in the summer was mostly mitigated since landscape 

features that may have occurred within a hot-spot in one image were observed from 

different angles in other images. The orthomosaics made it possible to view the entirety 

of each study site in very high resolution and allowed for the computation of spectral 

statistics to help discriminate the plant communities. 

 The overall quality of the 3D point clouds produced from SfM photogrammetric 

processing of the UAV imagery was very good. Errors in 3D reconstruction of vegetation 

and other landscape features were seldom observed. Trees and shrubs were accurately 

reconstructed; however, canopy heights were generally underestimated based on field 

measurements, which is consistent with Fraser et al. (2016) and Aasen et al. (2015). 

Underestimates of canopy height mostly occur because the ground is not directly visible 

from the aircraft since it is often blocked by foliage, consequently not allowing a 3D 

measurement of the ground to be taken. Canopy height measurements from UAV 

imagery therefore represent the difference between the top of the canopy and the point 

nearest the ground. This is a general limitation with current 3D reconstruction techniques 

using UAV imagery alone. Improved processing algorithms may help to produce better 
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bare-earth (ground) models from UAV imagery and achieve better estimates of true 

canopy height of the vegetation. 

 Featureless and homogeneous surfaces can cause problems in image stitching and 

computation of 3D information using SfM photogrammetry (Eltner et al., 2015). To 

mosaic images and compute 3D information, the software needs to identify 

features/objects to match images. This issue was apparent when processing images in the 

summer, particularly NIR imagery. NIR imagery had slightly lower resolution than the 

RGB imagery (4 cm pixels compared to 2 cm pixels at 50 meters altitude), and vegetation 

captured in the summer can appear very homogeneous, causing certain parts of the study 

sites to have poor image matching. Some options exist to alleviate these problems. Flying 

at a higher altitude will reduce image resolution but increase the viewshed of each image, 

possibly allowing for the detection of more features to match. Another option, which 

proved successful in this study, is to create manual tie points for the problematic images 

within the software, which is like georeferencing a set of images with GCPs except 

manual tie points are only created in the software and are determined solely by the user 

specifically to help match images, since it is likely that some features in the images are 

still recognizable by the user, even though the software was not able to create matches. 

 One of the greatest challenges with processing the UAV imagery was accurately 

georeferencing the surveys and having the surveys accurately overlay on top of each 

other. Initially, using 10-12 GCPs per site allowed surveys to overlay with moderate 

precision. In some areas, particularly between GCPs, positioning errors from one survey 

to another ranged from one to several feet. It is hypothesized that this was caused by 

landforms, such as boulders and hills, being captured from slightly different viewing 
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angles of the aircraft from one survey to another, giving the perception that parts of the 

landscape were shifting while other parts remained in the same place. Normally, 

orthorectifying the images using a digital elevation model is meant to mitigate this 

problem; however, distortions and positioning errors were still noticeable after the initial 

georeferencing. To mitigate this issue in this study, summer surveys were treated as the 

reference and additional targets were created across each site in ArcGIS, which were then 

incorporated for the georeferencing of the spring surveys. This allowed the surveys to 

overlay much better, reducing most of the positioning errors to only a few centimeters, 

and prevented the need to go back into the field to collect more GCPs and re-survey the 

sites. 

The results of this study emphasize the value and effectiveness of using UAVs to 

discriminate and map plant communities in the coastal barrens. Although UAVs currently 

have some limitations, such as constraints on survey size due to battery life, inability to 

penetrate the canopy to obtain elevation measurements directly from the ground with 

standard sensors, and continued tightening of regulations of operating UAVs, their 

benefits for research in plant ecology are many fold: low cost, adaptability for equipping 

different kinds of sensors, including hyperspectral sensors, ease of access to difficult 

sites, and high spatial, spectral, and temporal resolution (Cruzan et al., 2016). 

Satellite imagery has been successfully used to map broad categories of 

vegetation (Ustin and Gamon, 2010); however, they have not yet been adequate for 

mapping plant communities at the fine scale, particularly in the coastal barrens where 

landscapes are patchworks of plant communities. This is because pixel sizes from satellite 

imagery are usually greater than 1m, which would be insufficient to resolve the important 
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details of vegetation (Adam et al., 2010; Cruzan et al., 2016). Furthermore, satellites 

currently lack the ability to collect high-resolution 3D structural information of 

vegetation canopies, which was found to be very useful for discriminating the plant 

communities in this study. Nonetheless, satellite technology is improving very quickly 

and could eventually be very useful for fine scale mapping of vegetation, especially with 

multispectral sensors. 

Manned aircraft can obtain imagery with sub-meter resolution and can also be 

equipped with high-powered sensors like hyperspectral and LIDAR (Light Detection and 

Ranging). LIDAR emits laser pulses to collect 3D data about the earth’s surface. Studies 

have found that it is useful for assessing canopy heights of vegetation, since the laser 

pulses can penetrate canopies and provide ground signal returns (Baltsavias, 1999; Asner 

et al., 2015); however, when compared to SfM photogrammetry from a UAV, LIDAR 

from traditional aircraft platforms are unable to achieve the spatial resolution needed to 

reconstruct fine-scale geomorphological features (Kalacska et al., 2017). Furthermore, 

employing manned aircraft is much costlier than the costs associated with purchasing 

most UAVs. More recently, ground-based LIDAR have been used in various applications 

to create highly detailed 3D point clouds with sub-centimeter resolution, providing the 

ability to accurately quantify biomass of vegetation and compute biophysical parameters 

such as leaf area index (LAI) (Loudermilk et al., 2009). This application of LIDAR 

shows potential for mapping vegetation structure; however, currently costs are very high 

for collecting ground LIDAR and it is limited to relatively small areas (Kalacska et al., 

2017). 
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Although it was not within the scope of this study to compare different remote 

sensing platforms, it may be worthwhile in future studies to examine which platform or 

combination of platforms yield the best results for discriminating plant communities at 

the fine scale. 

 One of the greatest controversies in the field of ecology has been the debate of 

whether plant communities exist as discrete, recognizable units (Clements, 1916) versus 

existing as a continuum of species along environmental gradients (Gleason, 1926). 

Although it is generally agreed upon that species are distributed individualistically, there 

is also growing agreement that assemblages of species as communities can be recognized 

as identifiable units (van der Maarel and Franklin, 2013). Porter (2013) used clustering 

analysis to identify three distinct dwarf heath plant communities occurring in the coastal 

barrens of Nova Scotia. These communities were recurring across multiple sites, had 

similar species abundances and compositions, and had similarly associated environmental 

conditions. The findings of this study add support to the modern synthesis of the two 

plant community paradigms: upon reviewing the field plot data, it was clear that no two 

field plots were exactly the same compositionally, which is in agreement with Gleason’s 

view of species distributions; however, it was also evident that patterns existed in the 

field plot data, and statistical analysis of UAV imagery showed that evidence of 

differences between the classified plant communities existed, suggesting that plant 

communities in the coastal barrens of Halifax, Nova Scotia can be recognized as discrete 

units. 
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Implications and Future Work 

 

This study offers the first empirical evidence that UAVs can be used to 

discriminate plant communities at different classification levels in the coastal barrens. 

This means that, with a certain level of confidence, the distributions of plant communities 

can be mapped. Distribution maps of the communities at a fine scale have not yet been 

possible for the coastal barrens, and producing them will help to further our 

understanding of the spatial patterns of the plant communities, learn more about the 

processes that form and change them and the ecosystem as a whole, assess ecosystem 

health, estimate biophysical parameters such as biomass, and focus conservation efforts 

(Grossman et al., 1994; He et al., 2005; Tart et al., 2005; Adam et al., 2010). It is also 

possible to use the statistical information to build a spectral and structural library of the 

known plant community types to help locate communities and predict their distributions 

in previously unknown areas (Zomer, Trabucco, & Ustin, 2009). This can further make 

field sampling efforts more focused and efficient. Lastly, when assigning plant 

community classification based on field plot data alone was difficult, UAV imagery 

offered a bird’s eye view of the field plots and offered spectral and 3D structural 

information as another line of evidence to form the classifications. The use for UAVs in 

plant ecology research may not be limited to only vegetation mapping, but also for 

assisting field work and how ecologists describe and define plant communities. 

The next steps forward are to apply the knowledge from this study to produce fine 

scale distribution maps of plant communities in the coastal barrens. This will improve our 

understanding of the spatial patterns and distributions of the plant communities that 

inhabit the coastal barrens, in which information is currently limited. Future work should 
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continue to investigate other potentially useful spectral and structural indices that can be 

derived from processed multispectral UAV imagery to discriminate plant communities, in 

addition to exploring the use of image texture metrics, i.e. statistics on the spatial 

arrangements of colors and intensities in an image. Doing so would likely improve 

classification accuracies of the plant communities from UAV imagery. It would also be 

worthwhile comparing UAVs with other remote sensing platforms for mapping plant 

communities in the coastal barrens. Furthermore, identifying the most optimal spatial 

resolution for collecting spectral, structural, and textural statistics as well as season to 

discriminate plant communities based on plant phenologies would further enhance 

mapping efforts. Lastly, UAVs equipped with hyperspectral sensors, although relatively 

costly, have already been shown to discriminate vegetation at the species level 

(Nevalainen et al., 2017) and should be a consideration for discriminating and mapping 

plant communities in the coastal barrens and other ecosystems. 
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Conclusion 
 

 In this study, a UAV equipped with RGB and NIR sensors was used to determine 

if plant communities can be discriminated from each other in the coastal barrens of 

Halifax, Nova Scotia. All plant community classification except for one pair could be 

discriminated with 95% confidence. The formation class classification yielded higher 

classification accuracies than the association level classification. Most confusion was 

found between structurally similar classifications, and merging confused groups 

substantially increased classification accuracy. These results show that when spectral and 

structural characteristics of vegetation are extracted from multispectral UAV imagery, 

plant communities can be discriminated and recognized as discrete units, adding support 

to the modern synthesis of Gleason’s (1926) and Clements’ (1916) views that, although 

species may be distributed individualistically, assemblages of species as communities can 

be recognized as identifiable units. Furthermore, the findings suggest that plant 

communities can be mapped in the coastal barrens at different classification levels using 

UAVs, which has not been demonstrated until now. Producing detailed distribution maps 

of plant communities can be directly used to focus conservation efforts and manage the 

protection of these ecosystems while also telling a great deal about the spatial patterns of 

the plant communities and the processes that govern them. Future research should begin 

using UAV imagery to map the distributions of plant communities in the coastal barrens 

and investigate ways to optimize image acquisition and processing techniques to 

discriminate plant communities with the greatest level of confidence. 
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Abstract 

 The coastal barrens of Halifax, Nova Scotia are patchy mosaics of plant 

communities that experience harsh environmental conditions. Despite the harsh 

conditions, many rare and uncommon species inhabit these ecosystems, making them a 

high priority for conservation. Little is known of the landscape patterns of plant 

communities in the coastal barrens. In 2016, multispectral aerial imagery was collected 

from an unmanned aerial vehicle at three coastal barrens sites in Halifax, Nova Scotia: 

Chebucto Head, Prospect Bay, and Polly’s Cove. Images were processed using structure 

from motion photogrammetry to create 3D models and orthomosaics of the landscapes, 

which were used with ground truthing field plot data to produce detailed maps of plant 

community patches and landscape features. Environmental factors, such as elevation, 

stream networks and wind exposure were also mapped to help understand the structure 

and spatial heterogeneity of the landscapes. Sites were dominated by shrublands and 

dwarf heath; however, many other types of communities co-existed, including bogs, salt 

marshes, and tree islands. Plant community patches varied in size, shape, abundance, and 

spatial distribution from one plant community type to another and in many cases from 

one site to another. Landscape patterns were driven by various combinations of 

environmental factors, including slope position, proximity to stream networks, elevation, 

and distance to coastline. Overall site differences could be mostly explained by the 

degree of topographic heterogeneity of each landscape. UAVs are an excellent option for 

mapping plant communities and understanding the structure of landscapes and future 

research should consider using UAVs for environmental monitoring. 
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Introduction 
 

 Coastal barrens are mosaics of plant communities and different types of habitats 

that exist in harsh environmental conditions (Oberndorfer and Lundholm, 2009; Burley 

and Lundholm, 2010; Porter, 2013). They can be diverse and contain rare and uncommon 

species, making them a high priority for conservation. Near Halifax, Nova Scotia, coastal 

barrens are abundant and previous research has attempted to document their species and 

plant communities (Oberndorfer and Lundholm, 2009; Burley and Lundholm, 2010; 

Cameron and Bondrup-Nielsen, 2013; Porter, 2013). Currently, the distributions, spatial 

relationships, and spatial configurations of species and communities across coastal 

barrens landscapes are unknown. Understanding these aspects of landscape pattern are 

critical to revealing landscape function and processes that govern them, and ultimately 

how to manage and protect them. 

 Landscape ecology is the study of interacting organisms and their distributions 

across landscapes. A landscape is scale-dependent and often refers to a land surface of a 

region and its associated habitats (Turner, 1989). A popular view of landscapes is the 

patch-corridor-matrix model (Forman, 1995), which describes landscapes as being 

composed of patches, corridors, and a background matrix. Patches are relatively discrete 

areas with relatively homogeneous environmental conditions (McGarigal and Marks, 

1995). Corridors are linear elements in a landscape that are usually isolated in a 

background matrix. Lastly, the matrix is the most extensive and connected element in the 

landscape (McGarigal and Marks, 1995). This view of landscapes as mosaics has often 

held true for both urban and natural landscapes. Organisms and their habitats within a 

landscape can occur across a wide range of spatial scales, influencing population 
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dynamics and the overall structure and function of the ecosystem (Johnson et al., 1992). 

To understand the ecological function of landscapes and how they change over time, 

landscape structure must be quantified, i.e. the composition and spatial configurations of 

its components or patches (McGarigal and Marks, 1995). Landscape structure can be 

quantified by computing various kinds of landscape metrics from land cover maps 

(McGarigal and Marks, 1995). Remote sensing is a promising tool that can help to make 

accurate land cover maps. 

Remote sensing is the science of obtaining information from objects at a distance. 

A great deal can be learned from mapping remotely sensed data, including vegetation 

productivity, biomass, stress levels of vegetation, disturbance regimes, nutrient cycling, 

leaf water content, chlorophyll, and lastly the spatial patterns and distributions of 

organisms (Adam et al., 2010; Ustin and Gamon, 2010; Homolova et al., 2013; Asner et 

al., 2015; Minařík and Langhammer, 2016; Galidaki et al., 2017). Many different 

platforms can be used for remote sensing, including satellites, manned aircraft, and more 

recently unmanned aerial vehicles (UAVs). Each platform has its own limitations 

associated with factors such as costs, timing, geographic scale, and resolution. Satellites, 

such as the SPOT4-VEGETATION satellite, which has a 1 km pixel resolution, have 

been used to make global landcover maps (Xie et al., 2008). Most satellites have 

resolutions greater than 1 meter, which is insufficient to resolve important details of 

vegetation for mapping at the fine scale (Adam et al., 2010; Cruzan et al., 2016). Manned 

aircraft can be equipped with sensors and flown much closer to the earth’s surface, 

obtaining sub-meter resolution and having the ability to also collect detailed 3D structural 

information from vegetation canopies and the earth’s surface (Hill and Thomson, 2005; 
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Asner et al., 2015). Manned aircraft are expensive to operate, and the spatial resolution is 

often still too coarse to resolve important morphological features of vegetation to make 

accurate classifications (Kalacska et al., 2017), especially for the coastal barrens where 

plant community patches can be less than a meter wide. A more promising option for 

collecting high-resolution remotely sensed data are UAVs. 

Commercial UAVs can capture very high-resolution aerial imagery across broad 

extents with pixel sizes in the low centimeters, giving landscape ecology an entirely new 

perspective (Gonçalves et al., 2015; Zweig et al., 2015; Sturdivant et al., 2017). They are 

relatively low-cost, can survey many hectares of land in a single flight, and can achieve 

high temporal resolution, since survey frequency mostly depends on the availability of 

the pilot and weather conditions. UAVs can be equipped with many different types of 

sensors as well, allowing them to collect hyperspectral imagery, thermal imagery, and in 

some cases LIDAR at very high spatial resolutions. Another advantage of UAVs is that 

they collect sequential overlapping imagery close to the ground, which allows 3D 

information to be computed for the landscape using structure from motion (SfM) 

photogrammetry (Micheletti et al., 2015). This can provide realistic 3D models of 

landscapes, providing enormous opportunities for quantitative and spatial analysis of 

landscape topography and 3D vegetation structure. Based on previous applications of 

UAVs, UAVs may be a good solution for mapping plant communities in the coastal 

barrens at the fine-scale for quantifying their landscape patterns.  

 The aim of this study is to quantify the landscape patterns of plant communities at 

three coastal barrens sites in Halifax, Nova Scotia. This will be achieved by the following 

objectives: 1) To quantify the landscape composition and spatial configuration of plant 
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community patches at the fine-scale (minimum area of 0.3 m2 per patch) for three coastal 

barrens sites in Halifax, Nova Scotia: Chebucto Head, Prospect Bay, and Polly’s Cove; 2) 

To evaluate the landscape patterns of plant community patches in relation to 

environmental factors; and, 3) To compare the landscape structure of Chebucto Head, 

Prospect Bay, and Polly’s Cove. 
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Methods 
 

Study Area and Scale 

 

 In Nova Scotia and other provinces in Atlantic Canada, coastal barrens are 

abundant (Porter, 2013). Many iconic coastal barrens sites exist near Halifax, Nova 

Scotia and three were selected for this study: Polly’s Cove (Figure 3.1A), Prospect Bay 

(Figure 3.1B), and Chebucto Head (Figure 3.1C). The extent of each site measured 500 

by 500 m in the shape of a square, which is approximately 25 ha per site. Although there 

are many definitions for a landscape (McGarigal and Mark, 1995), for the purposes of 

this study a landscape will be defined as an area of land that contains a mosaic of patches, 

which will be equivalent to a “site”. A “patch” refers to the smallest unit or component of 

a landscape and will be specifically defined as a discrete, relatively homogeneous area 

such as a plant community or a landscape feature (e.g. a boulder). A plant community 

will be defined as “a relatively uniform piece of vegetation in a uniform environment, 

with a recognizable floristic composition and structure that is relatively distinct from the 

surrounding vegetation” (van der Maarel and Franklin, 2013). Finally, a “class” is a 

discrete category within a classification system, such as a plant community type. 

 

 



 

92 

 

Figure 3.1. Three coastal barrens landscapes selected as study sites in the Halifax region 

of Nova Scotia, Canada: Polly’s Cove (A), Prospect Bay (B), and Chebucto Head (C). 

 

 

Data Collection and Processing 

 

 The coastal barrens are known for their high-degree of patchiness, particularly at 

small scales. To capture this fine-scale patchiness for evaluating the landscape structure 

of each landscape, a minimum patch size of 0.3 m2 was designated. Therefore, the 

resolution or grain of the remotely sensed data must be even finer to resolve patches in 

the landscape. For this study, a UAV was selected as the remote sensing platform since 

they can collect aerial imagery with sub-decimeter resolution, are relatively inexpensive, 

and can be used to map large areas in short periods of time. The UAV, a DJI Phantom 3 

Professional quadcopter equipped with an RGB (Red-Green-Blue) camera and a Sentera 

near-infrared (NIR) sensor, was flown in May and August 2016 at the three study sites to 

collect high-resolution multispectral aerial imagery. Pix4DCapture (Pix4D, Lausanne, 

Switzerland), a flight planning mobile application, was used to make customized grid 

missions and autonomously pilot the unmanned aerial vehicle to collect sequential 
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imagery across each site. In May, the aircraft was flown at an above-ground altitude of 90 

m, providing 4 cm pixel resolution for the RGB camera and 8 cm pixel resolution for the 

NIR sensor. In August, the aircraft was flown at 50 m above-ground altitude, proving 2 

cm pixel resolution for the RGB camera and 4 cm pixel resolution for the NIR sensor. 

Image overlap was set to 80% and sidelap at 60% with both sensors oriented downward. 

 Images were processed using Agisoft Photoscan Professional (v. 1.3.2, Agisoft 

LLC, St Petersburg, Russia). Agisoft is one of the most common softwares currently used 

to process aerial imagery using SfM photogrammetry and is often used to stitch aerial 

images together to create high-resolution orthomosaics and compute 3D information to 

generate 3D point clouds and digital surface models. First, images were aligned using the 

Align Photos tool with the Accuracy setting set to ‘High’, Generic preselection 

unchecked, Reference preselection checked, Key point limit set at 40000, Tie point limit 

set at 4000, and Adaptive camera model fitting checked. Afterward, ground control points 

(GCPs) were added to accurately georeference the models. GCPs are commonly used to 

georeference aerial surveys and usually consist of a visible target placed in the field with 

known XYZ coordinates. For this study, 10 to 12 9-inch red plastic plates were evenly 

spread out across each site prior to aerial surveys and a real-time kinematic (RTK) was 

used to obtain the geographic coordinates of the center of each GCP with a horizontal 

accuracy of 1-2 cm and a vertical accuracy of 2-6 cm. Additional control points were 

added to the models from the spring, which were derived from the digital elevation 

models (DEM) from the summer surveys. This improved the alignment of the spring and 

summer surveys. After GCPs were incorporated into the models, the Optimize Cameras 

command was run to georeference the models. Next, the Build Dense Pointcloud tool was 
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run with Quality set to ‘High’ and Depth filtering as ‘Moderate’, creating a dense point 

cloud. Subsequently, the Build DEM tool was used to create an elevation model. Lastly, 

the Build Orthomosaic tool was run with Surface set to ‘DEM’, Blending Mode as 

‘Mosaic’, Enable color correction unchecked, and Enable hole filling checked, which 

created an orthomosaic of the imagery for each survey. The final products that were 

exported from the software and used for further analysis were the RGB & NIR 

orthomosaics and the 3D point clouds. Image acquisition and processing results can be 

viewed in Table 2.1. 

 Spectral indices were derived from the RGB and NIR orthomosaics from the May 

and August surveys. Structural indices were derived from the 3D point cloud and 

subsequently digital elevation model from August. In total, 44 mapped indices were 

created (see Table A2.1). These indices were later used in conjunction with RGB 

orthomosaics to create a classified plant community map for each site. 

 

 

Image Classification 

 

 Plant community maps were generated from UAV imagery using an object-based 

image classification approach (also known as object-based image analysis or OBIA) in 

ArcGIS (v. 10.3.1, Environmental Research Systems Institute, Redlands, California). 

OBIA reduces noise and the undesired salt-and-pepper effect often produced from 

conventional per-pixel classification techniques, particularly from classifying high-

resolution imagery, by segmenting an image into spatially and spectrally-similar objects 

(Blaschke, 2010). A classifier is later used to classify each segmented object rather than 

each pixel. For this study, the support vector machine (SVM) classifier was chosen. It has 
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performed well in previous studies at classifying vegetation compared to other 

classification techniques, can handle high-dimensional datasets, and is robust to having 

low sample sizes (Tzotsos and Argialas, 2008; Dronova et al., 2012; Burai et al., 2015; 

Pande-Chhetri et al., 2017). First, a segmented 3-band raster image, a support raster, and 

ground truthing data were used to generate a classified raster image for each site using the 

SVM classifier available in ArcGIS. Afterward, the classified images were post-

processed to remove noise and fix obvious errors. Lastly, a 10-fold cross-validation was 

done by randomly splitting the ground truthing data 10 times into sets of 50% training 

and 50% testing data to assess the map accuracy. This methodology was applied 

individually to each site. The image classification workflow is illustrated below in Figure 

3.2. 

 
Figure 3.2. Flowchart illustrating the image classification workflow used in this study to 

derive plant community maps from UAV imagery. 

 

 First, UAV imagery were segmented into spectrally-similar objects using the 

Segment Mean Shift tool in ArcGIS. The tool can only operate on an image with a 
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maximum number of 3 bands, so either the May or the August RGB imagery were used 

depending on which yielded the best classification results. The amount of spatial and 

spectral smoothing of the image was controlled by three settings within the tool: spectral 

detail (0-20), spatial detail (0-20) and the minimum segment size (in pixels). From trial 

and error, the most optimal settings were found to be 20, 20, and 20 respectively. 

 To support the classification, a supporting raster was made. A support raster is 

optional for the Train Support Vector Machine Classifier tool in ArcGIS and is used to 

provide additional information (i.e. spectral or structural) to support the classification. 

The support raster was made by running principal components analysis (PCA). Principal 

components analysis is a multivariate technique that transforms a dataset into a new set of 

principal components that have reduced dimensionality, are uncorrelated, and retain the 

maximum amount of variation explained by the original dataset (Jolliffe, 1986). The 

analysis was run using the Principal Components tool in ArcGIS on the 44 spectral and 

structural indices. The first 32 bands of the output PCA raster were extracted, since the 

SVM classifier tool has a 32-band limit.  

 To train the SVM classifier, training samples in the form of polygons were 

required. Ground truthing data from field plots were collected at each site from June to 

August in 2016, with each plot measuring approximately 4 by 4 m (16 m2) except for 

when plant community patches were smaller or irregularly shaped. All taxa were 

recorded in each plot and the percent cover of the most dominant taxa were visually 

estimated. Each field plot was assigned an association level plant community 

classification, which is based on the Canadian National Vegetation Classification 

(CNVC, 2013).  The CNVC is a standardized 8-level hierarchy in which the association 
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level is the finest level of plant community classification and is based primarily on 

floristic criteria such as dominant species. To achieve the greatest level of representation 

of plant community types for each site, field plot locations were determined using a 

combination of stratified random sampling and strategic sampling, including the 

interpretation of aerial imagery and identifying areas to sample while in the field (Table 

2.4). The locations of each field plot were subsequently mapped in ArcGIS. Lastly, plant 

community patches were delineated as training polygons based on the field plot locations, 

UAV imagery, plot photographs, and field data sheets. 

 The segmented RGB orthomosaic, the support raster, and the training sample 

polygons were input into the Train Support Vector Machine Classifier tool in ArcGIS to 

create a classifier definition file. The Segment Attributes parameter within the tool allows 

the user to select the following attributes to compute from the input image: ‘color’, 

‘mean’, ‘std’, ‘count’, ‘compactness’ and ‘rectangularity’. Classification accuracies 

varied using different combinations of these parameters and best results were found 

through trial and error for each site. For Chebucto Head, only ‘mean’ and ‘std’ were 

selected; for Prospect Bay all were selected; for Polly’s Cove ‘color, ‘mean’ and ‘std’ 

were selected. Another optional parameter is Max Number of Samples Per Class; for 

Chebucto Head this parameter was set to the default value of 100 and for Prospect Bay 

and Polly’s Cove it was set to 0, meaning it would use all samples. From the tool inputs 

and the parameter settings, the tool creates a classifier definition file, which was 

subsequently input along with the segmented RGB orthomosaic and support raster into 

the Classify Raster tool to create a classified raster image. 
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 Classified images were post-processed to remove noise, smooth out patch 

boundaries, and remove obvious classification errors. First, the Majority Filter tool was 

used to filter out initial noise with number of neighbors to use set to 8 and replacement 

threshold set to ‘half’. Next, the Boundary Clean tool was used to smooth out the 

boundaries of each patch with sorting technique set to ‘descend’ and Run expansion and 

shrinking twice checked. Afterward, a minimum mapping unit of 30 cm2 was set for each 

patch except for Cladonia spp using the Region Group tool followed by the SetNull tool 

and lastly by running the Nibble tool. Larger plant community types, such as tree islands, 

were given a minimum mapping unit of 1.6 m2. The Region Group tool groups connected 

cells of the same values into regions. Parameter settings for the Region Group tool 

included setting Number of neighbors to use to ‘4’ and Zone grouping method to ‘within’. 

Next, a written expression was input into the SetNull tool to nullify the output regions 

from the Region Group tool that did not meet the minimum size criteria mentioned above. 

Lastly, the Nibble tool was used to replace the nullified regions from the Set Null tool 

with their nearest neighboring regions/patches. Finally, each class was separately 

examined and compared with the original UAV imagery to identify and manually fix any 

obvious classification error. Manually fixing errors was only done after the accuracy 

assessments so as not to introduce bias. 

 To assess the classification accuracy of the maps, a 10-fold cross-validation was 

done by randomly splitting the ground truthing data 10 times into sets of 50% training 

data and 50% testing data. Each training set was used to create a classified map, 

producing 10 validation maps, while the testing sets were used to evaluate whether the 

validation maps correctly classified the locations of the testing data. To assess the 
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accuracy of the validation maps, the centroid point of each polygon was used to extract 

the class values from the validation maps using the Extract Values to Points tool in 

ArcGIS. Tables were later exported from ArcGIS and imported into R (v. 3.4.1; R Core 

Team, 2017) to compute confusion matrices, comparing actual and predicted values from 

the ground truth locations for each class. Overall accuracy was computed by summing the 

total correctly classified ground truth points divided by the total number of ground truth 

points. Classes that were not plant communities, such as rocks or dead trees, were 

excluded from the accuracy assessment. Accuracies were subsequently averaged across 

the 10 validation sets to arrive at a final accuracy estimate. This method for assessing 

map accuracy was chosen to accommodate for classes with low sample sizes. Ideally, a 

leave-one-out cross-validation technique would have been done, where one field plot 

sample is removed from the training set at a time and used to assess whether the 

validation map correctly predicted that location. This method would have resulted in 

creating hundreds of validation maps and would not be feasible due to the length of time 

to create a map.  

 Following the accuracy assessment, plant community types from the association 

level classification with a high number of misclassifications with other plant community 

types were merged together to form a broadened association level classification. The 

Reclassify by Table tool in ArcGIS was used to reclassify the classified rasters. Following 

this, the accuracy assessment was re-run. 
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Landscape Pattern Analysis 

 

 Landscape structure was described in terms of landscape composition (global) and 

the spatial configuration of patch types that make up the landscape (local), such as size, 

shape, and aggregation. Various landscape metrics were used to quantify these aspects of 

landscape structure. Landscape metrics were calculated using FRAGSTATS (v. 4.0, 

McGarigal et al., 2012) and ArcGIS. Measures of landscape composition included: 

number of classes (class richness), most dominant communities, largest patch, total 

number of patches, patch density, and total vegetation cover (Table 3.1; McGarigal et al., 

2012). Class-level metrics for the spatial configurations of patches included: patch area, 

patch perimeter, number of patches, perimeter-area ratio, shape index, and related 

circumscribing circle index (Table 3.2; McGarigal et al., 2012). In addition to these 

metrics, the average nearest neighbor ratio of each class, i.e. plant community type, was 

calculated using the Average Nearest Neighbor tool in ArcGIS. It is a measure of the 

degree of clustering or dispersion of each class across the landscape. Furthermore, a 

neighborhood analysis was done to determine the top three most common neighbors for 

each class. This was done using the Polygon Neighbor tool in ArcGIS, which quantifies 

the length of edge shared between patches and their adjacent neighbors. 

 Some patch metrics listed in Table 3.2 were summarized using the area-weighted 

mean rather than the mean. The area-weighted mean was chosen because it offers a 

landscape-centric perspective of the patches by weighting patches based on their area, 

which reflects conditions when a location on a landscape is chosen at random (McGarigal 

et al., 2012). In landscape ecology studies, it is often the preferred method to calculate the 

mean, because larger patches theoretically have more influence on landscape function. 



 

101 

 

Table 3.1. Landscape-level metrics used to describe landscape composition. 

Metric Description 

Landscape Area Area (hectares) of the landscape or study area. 

Number of Classes Number of plant community classification (also known as class 

richness). 

Most Dominant 

Communities 

Top three most dominant plant communities based on percentage 

of landscape occupied. Expressed as the total area of a class 

divided by the total area of the site, multiplied by 100. 

Largest Patch Largest plant community patch in the landscape (hectares). 

Total Number of 

Patches 

The total number of plant community patches in the landscape. 

Patch Density Density of plant community patches in the landscape. Expressed 

as the number of plant community patches per hectare of land. 

Total Vegetation 

Cover 

The total vegetation cover of the landscape (%). Expressed as the 

total area of all plant communities divided by the total area of the 

site, multiplied by 100. 
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Table 3.2. Class-level metrics used to describe the spatial configurations of plant 

community patches within a landscape. 

Metric Description 

Class Area Total area of a class (hectares). 

Number of Patches The number of patches in a class. 

Patch Area The area-weighted mean area (square meters) of patches in a 

class. 

Patch Perimeter The area-weighted mean perimeter (meters) of patches in a class. 

Perimeter-Area 

Ratio 

The area-weighted mean of the perimeter-area ratio (meters) of 

patches in a class. Expressed as the perimeter divided by the area. 

Commonly used as a measure of shape complexity. 

Shape Index The area-weighted mean of the shape index of patches in a class. 

Expressed as the perimeter divided by the square root of the patch 

area and adjusted by a constant for a square standard. It is a 

measure of shape complexity. Values range from 0 to infinity, 

where a value 1 indicates the shape of a square and increasing 

values indicate increasing shape complexity. 

Related 

Circumscribing 

Circle Index 

The area-weighted mean of the related circumscribing circle 

index of patches in a class. Values range from 0 to 1, where a 

value of 0 indicates a circle and values approaching 1 indicate 

elongated linear patches. 

Average Nearest 

Neighbor Ratio 

A measure of the degree of clustering or dispersion of a class 

across a landscape. It is the ratio of the average distance of each 

feature’s centroid and its nearest neighbor’s centroid of the same 

class, divided by the expected distance from the feature to its 

nearest neighbor of the same class in a hypothetical random 

distribution. Calculated using the Average Nearest Neighbor tool 

in ArcGIS. If the value of the index is less than 1, the pattern is 

clustered; if the value is greater than 1, the pattern is dispersed; if 

the value is 0, the pattern is random. 

Most Common 

Neighbors 

Top three most common neighbors of a class. Calculated using 

the Polygon Neighbor tool in ArcGIS. The tool quantifies the 

length of edge shared between patches and their adjacent 

neighbors for each class. 

 

 

Environmental Factors 

 

 Eight environmental factors were chosen to further describe the landscape 

structure of each site and to help interpret the landscape patterns of plant communities. 

These included: elevation above sea-level, distance from coastline, wind exposure, 

hydrology (stream order), incoming solar radiation, slope position classification, local 
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surface ruggedness, and global surface ruggedness (Table 3.3). Each environmental factor 

took the form of a 2 m raster of the landscape. Seven of the environmental factors were 

derived from the DEM produced from SfM photogrammetry of the UAV imagery; 

distance from coastline was computed separately without a DEM. Statistics were 

computed by first running the Region Group tool in ArcGIS on the classified plant 

community raster, followed by inputting the regions and environmental rasters into the 

Zonal Statistics as Table tool. Doing so obtained statistics for each region/patch for each 

environmental factor. Statistics were later exported from ArcGIS as tables and imported 

into R for further analysis. Quantitative variables were analyzed by computing 95% 

confidence intervals about the area-weighted means for each class. Categorical variables 

(i.e. hydrology and slope position classification) were analyzed by computing area-

weighted counts for each class. 
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Table 3.3. Environmental factors computed for plant community patches. 

Environmental 

Factor 
Description 

Elevation Above 

Sea-level 

The area-weighted mean elevation above sea level (meters) of 

patches in a class. Measured from the 2 m bare ground DEM. 

Distance from 

Coastline 

The area-weighted mean distance (meters) of patches in a class 

from the coastline. Calculated using the Euclidean Distance tool 

in ArcGIS. 

Wind Exposure The area-weighted mean value of wind exposure for patches in a 

class. Wind exposure was modeled using a combination of wind 

direction data, in the form of a wind rose, and hillshades from a 2 

m DEM. Values were scaled to range from 0 to 100. 

Hydrology 

(Stream Order) 

Stream networks were derived from a 2 m DEM using the 

Hydrology toolset in ArcGIS. Statistics for patches were 

calculated by first obtaining the maximum stream order value 

within a 10 m search radius of each patch followed by computing  

area-weighted counts of all patches for each class in R. Stream 

order values are expressed as integers and typically range from 0 

to 10, although maximum values could be lower depending on 

the number of intersecting streams. Stream order increases when 

streams of the same order intersect. 

Incoming Solar 

Radiation 

The area-weighted mean incoming solar radiation (Watt 

hours/m2) of one year (2016) for patches in a class. Calculated 

using the Incoming Solar Radiation tool in ArcGIS. Values were 

scaled to range from 0 to 100. 

Slope Position Majority slope position classification for each patch followed by 

computing area-weighted counts of all patches for each class in 

R. Calculated using Slope Position Classification tool from the 

Topography Tools ArcGIS toolbox (Dilts, 2015). Possible slope 

positions include: valley, toe slope, flat, midslope, upper slope, 

and ridge. 

Surface 

Ruggedness 

The area-weighted mean local and global surface ruggedness for 

a patch. Measures of topographic heterogeneity at two scales. 

Calculated using the Roughness tool from the Geomorphometry 

and Gradient Metrics toolbox for ArcGIS (Evans et al., 2014).  

Values were scaled to range from 0 to 100. 

 

 Elevation gradients are known to affect the distributions and structure of plant 

communities (Choler et al., 2001; Lomolino, 2001). Elevation above sea-level can 

potentially influence the amounts of wind exposure, salt spray, precipitation, and other 

environmental factors received by plant communities. Elevation above sea-level was 
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directly derived from the digital elevation model produced from the SfM 

photogrammetric processing of the UAV imagery (Figure A2.1). The DEM was derived 

from the 3D point cloud produced from SfM photogrammetry of the UAV imagery and 

had a 2 m resolution with values representing the minimum elevation of the 3D point 

cloud to simulate a ground elevation model rather than a canopy model. This 2 m bare 

ground elevation model was used for deriving all environmental factors that required the 

use of a DEM in this study. 

 The distance of a plant community patch from the coastline can potentially 

influence the amount of salt spray, wind exposure, and possibly other environmental 

factors received by the patch (Burley and Lundholm, 2009). Furthermore, disturbance 

regimes may be higher near the coastline since all three sites have popular hiking trails 

near the coastline, which may further affect distribution patterns of the plant 

communities. A 2 m raster of distance from the coastline was made by selecting the 

boundary line of the site that runs along the coast and executing the Euclidean Distance 

tool in ArcGIS, with the cell size parameter set to 2 m (Figure A2.2). 

  Wind exposure is likely one of the most important driving forces that influence 

the ecology of the coastal barrens (Burley and Lundholm, 2010; Porter, 2013). Exposure 

to wind can uproot plants, cause physical damage by tearing, stripping, and abrasion, and 

can erode topsoil which can further limit the establishment of plants (Cleugh et al., 1998; 

De Langre, 2008). It can also influence other environmental factors, such as precipitation 

patterns and salt spray (Baker et al., 2001). Creating a model simulating wind exposure 

across a landscape is therefore crucial for examining the landscape patterns of plant 

communities in the coastal barrens. For this study, wind exposure was modeled for each 



 

106 

 

landscape using a combination of wind direction data and a digital elevation model 

(Figure A2.3; Mikita et al., 2010). A wind rose representing three years of wind direction 

data for Chebucto Head was obtained from the Duncan’s Cove weather station 

(https://www.windfinder.com/windstatistics/duncans-cove_halifax); a wind rose 

representing four years of wind direction data for Polly’s Cove and Prospect Bay was 

obtained from the East Dover weather station 

(https://www.windfinder.com/windstatistics/east_dover_nova_scotia). First, the 

Hillshade tool in ArcGIS was used. A hillshade is a hypothetical illumination of an 

elevation model from a hypothetical light source, where each pixel in the raster receives 

an illumination value from 0 to 255. The position of the illumination source is determined 

by setting the horizontal angle or azimuth (0° to 360°) and the vertical angle from the 

horizontal plane (0 to 90°). To mimic wind exposure across an elevation model, a vertical 

angle of illumination of 5° was recommended from previous literature (Boose et al., 

1994; Mikita et al., 2010). Sixteen hillshade models with vertical angles of illumination 

of 5° were created from a 2 m elevation model. Each hillshade model had the horizontal 

angle of illumination set to one of sixteen cardinal directions (e.g. N, NNE, NE, etc.). All 

sixteen hillshades were each weighted by their percent contribution to their corresponding 

cardinal direction in the windrose model. Lastly, all sixteen weighted hillshades were 

added together using Raster Calculator in ArcGIS to form a final model of wind 

exposure. Values were later scaled to range from 0 to 100. 

 An additional consideration for the wind exposure model of Polly’s Cove was a 

large barrier island sitting in front of the site (Figure 3.3). It is possible that the barrier 

island provides sheltering from wind and possibly other environmental factors such as 

https://www.windfinder.com/windstatistics/duncans-cove_halifax
https://www.windfinder.com/windstatistics/east_dover_nova_scotia
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salt spray to parts of the site. To consider these potential effects of the barrier island, an 

additional set of aerial images were collected in August 2016 from the UAV and were 

subsequently processed using SfM photogrammetry to derive an elevation model for the 

island. This additional elevation model was combined with the original elevation model 

for Polly’s Cove. The combined elevation model was only incorporated into the wind 

exposure model and the incoming solar radiation model but was not used for the other 

environmental factors since it was not expected to have influenced them. 

 

 
Figure 3.3. A) color imagery of the Polly’s Cove study site and the barrier island near the 

site. B) A digital elevation model of the Polly’s Cove study site and the barrier island 

near the site. It was hypothesized that the barrier island may shelter parts of the site and 

consequently influence the landscape patterns of the plant communities. 

 

 The flow of water across a surface can influence where different plant 

communities can grow (Silvertown et al., 1999; Zinko et al., 2005). For example, streams 

or rivers flowing through a landscape would likely be inhabited by riparian and wetland 

vegetation. Conversely, areas on exposed ridges would have lower flow accumulation, 
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dryer soil conditions and would be inhabited by more drought tolerant plants. To simulate 

the flow of water across each site, stream networks were derived from 2 m digital 

elevation models using the Hydrology toolset in ArcGIS (Figure A2.4). The following 

methods used to derive stream networks are like the methods used by Murphy et al. 

(2008). First, a 2 m elevation model derived from the UAV imagery was input into the 

Fill tool in ArcGIS. This fills the depressions or sinks of a DEM to remove 

imperfections. Next, the fill raster was used in the Flow Direction tool to create a flow 

direction raster. A flow direction raster indicates the direction that water is flowing across 

the surface. The flow direction raster is then used in the Flow Accumulation tool to create 

a flow accumulation raster. The flow accumulation raster represents for each cell the 

number of adjacent cells that flow into that cell. Areas with high flow accumulation may 

indicate stream channels. Afterward, the flow accumulation raster was input into the Con 

(conditional) tool with Input true raster or constant value set as the flow direction raster 

and Input false raster or constant value also set as the flow direction raster. Doing so 

created a stream network raster. Lastly, the output stream network raster was used in the 

Stream Order tool to assign a stream order value to each stream using the Strahler 

method (Strahler, 1952). According to the Strahler method, stream order is a hierarchical 

classification in which stream order increases when two streams of the same order 

intersect to create a larger stream. Streams with larger stream orders are more substantial 

and have greater water flow than streams with lesser stream order values. 

Plants can respond differently to shaded environments compared to being in direct 

sunlight (Buckland-Nicks et al., 2016). This is because the amount of sunlight received 

on the earth’s surface can influence many biotic and abiotic conditions, such as growth 
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potential for plants (sunlight is a key component for photosynthesis), surface temperature, 

evapotranspiration rate, evaporation rate of water from the soil, and so on. Modeling the 

amount of sunlight received across a landscape could therefore be an important factor 

influencing the landscape patterns of plant communities. To model incoming solar 

radiation, the Area Solar Radiation tool in ArcGIS was used. The 2 m DEM for each site 

was input into the tool along with the following parameter settings: Latitude set as the 

latitude of the input DEM; Sky size / Resolution set as the default value 200; Time 

configuration set to the calendar year of 2016 with Start day as 1 and End day as 366; 

Day interval set to 7; Hour interval set as the default value 0.5. The result is a raster 

representing the maximum possible incoming solar radiation in watt hours per m2 for the 

land surface for the entirety of 2016 (Figure A2.5). Values were later scaled to range 

from 0 to 100. 

Topographic slope position (e.g. valley, ridge, or flat), can influence soil 

conditions, moisture regimes, wind exposure, and other environmental conditions, all of 

which can affect the distributions and composition of plant communities (Zawawi, 2015). 

Slope position was calculated across a 2 m DEM using the Slope Position Classification 

tool from the Topography Tools toolbox for ArcGIS (Dilts, 2015). First, the Topographic 

Position Index tool from the same toolbox was run to create a topographic position index 

(TPI) raster with a certain focal search distance. For the slope position classification, a 

search distance of 30 m was chosen. The TPI raster was subsequently input into the Slope 

Position Classification tool along with the 2 m DEM to create a slope position raster with 

cells classified as either a valley, toe slope, flat, midslope, upper slope, or ridge (Figure 

A2.6). 
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Topographic heterogeneity at different scales can influence the distributions and 

composition of plant communities across landscapes due to its influence on other 

environmental factors such as wind exposure and edaphic conditions, like slope position 

(Vivian-Smith, 1997; Sebastiá, 2004; Burley and Lundholm, 2010). For this study, 

surface ruggedness (topographic heterogeneity) was measured at two distinct scales: a 

3x3 neighborhood from a 2 m DEM (local) and a 51x51 neighborhood from a 2 m DEM 

(global). Surface ruggedness was computed from the 2 m DEM using the Roughness tool 

from the Geomorphometry and Gradient Metrics toolbox for ArcGIS (Evans et al., 2014). 

For local surface ruggedness, the following parameters were used: the 2 m DEM as the 

Select DEM and a rectangular 3x3 cell window for Analysis Window. For global surface 

ruggedness, the following parameters were used: the 2 m DEM as the Select DEM and a 

rectangular 51x51 cell window for Analysis Window. Executing the tool created 2 surface 

ruggedness rasters representing topographic heterogeneity at two scales: local (Figure 

A2.7) and global (A2.8). Values of surface ruggedness were later scaled to range from 0 

to 100. 
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Results 
 

Chebucto Head 

 

 Classification of high-resolution UAV imagery at Chebucto Head yielded a highly 

detailed map of plant community patches at the broadened association level classification 

and landscape features (Figure 3.4). The overall classification accuracy of plant 

communities was 87% (Table 3.4). Generally, misclassifications arose between 

structurally similar communities such as Gaylussacia baccata shrubland and Mixed tall 

shrubs (see confusion matrix in Table A2.2). Plant communities with low field plot 

samples (< 4) also tended to have more misclassifications.  

Table 3.4. Classification accuracies of mapped plant communities from the broadened 

association level classification at Chebucto Head. 

Plant Community Accuracy (%) 

Broadleaf tree island 55 

Calamagrostis canadensis coastal 

vegetation 

80 

Calystegia sepium coastal lithomorphic 100 

Cladonia spp. 100 

Coniferous tree island 93 

Empetrum nigrum - Juniperus communis 

dwarf heath 

90 

Gaylussacia baccata shrubland 86 

Gaylussacia shrub bog 87 

Juniperus communis - Corema conradii 

lithomorphic 

87 

Mixed tall shrubs 55 

Open bog 97 

Osmunda cinnamomea seep 85 

Overall 87 
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Figure 3.4. Mapped plant communities from the broadened association level 

classification at Chebucto Head, Nova Scotia. 
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 The study area at Chebucto Head measured 22.9 ha, consisted of 12 plant 

community types and contained 33,198 plant community patches - a patch density of 

1,450 per hectare. The total vegetation cover of the landscape was 85.7%, the remainder 

being mostly exposed rocks and cliff faces (Figure 3.5C). Generally, the landscape was 

dominated by shrublands (39.2%), dwarf heath (16.9%), and tree islands (14.4%) (Figure 

3.5A). The most dominant plant communities were Gaylussacia baccata shrubland 

(22.9%), Mixed tall shrubs (15.2%), and Coniferous tree island (11.6%) respectively. The 

landscape topography was heterogeneous, consisting of midslopes (30.4%), flats (18.5%), 

and ridges (15.1%), as well as several long and deep valleys (Figure 3.5D). Lastly, a map 

of stream networks showed that three major streams flow across the site and drain into 

the ocean (Figure 3.5B).
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Figure 3.5. Landscape composition of Chebucto Head: A) Coarse classification of plant 

communities; B) Stream networks; C) Vegetation cover; and D) Slope classification. 
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 Total class areas ranged from 13 m2 (Calystegia sepium coastal lithomorphic) to 

5.48 ha (Gaylussacia baccata shrubland) (Table 3.5). The number of patches also ranged 

greatly from 2 (Calamagrostis canadensis coastal vegetation) to 17,040 (Cladonia spp.), 

although most classes ranged from 500 to 5,000 patches. Area-weighted mean patch areas 

were relatively small for coastal vegetation, Open bogs, and Cladonia spp. Interestingly, 

Broadleaf tree islands had small patch areas, suggesting most patches consisted of one to 

several trees. As expected, Juniperus communis - Corema conradii lithomorphic also 

showed small patch areas, since the community is abundant near exposed rock faces. 

Larger patch areas were recorded for shrublands, tall shrubs, Empetrum nigrum - 

Juniperus communis dwarf heath, and Coniferous tree islands. 

 Based on the shape index, classes with the greatest shape complexity were 

Gaylussacia baccata shrubland, Empetrum nigrum - Juniperus communis dwarf heath, 

and Mixed tall shrubs (Table 3.5). Classes with lowest shape complexity were Calystegia 

sepium coastal lithomorphic, Open bog, and Broadleaf tree island. Related circumscribing 

circle index (area-weighted) ranged from 0.57 to 0.78, indicating that most patches were 

more elongated and rectangular rather than circular. Lastly, average nearest neighbor 

ratios for all classes were below 1, signifying that all communities had some degree of 

clustering at the landscape scale. 

 A neighborhood analysis of plant communities at Chebucto Head revealed that 

tree islands were most often neighbored by Mixed tall shrubs and vice versa (Table 3.6). 

Gaylussacia baccata shrublands were often adjacent to Gaylussacia shrub bog, Juniperus 

communis - Corema conradii lithomorphic, and Mixed tall shrubs. Gaylussacia shrub 

bog, Juniperus communis - Corema conradii lithomorphic, and Cladonia spp. were all 
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strongly associated with each other. Open bogs were often found next to Gaylussacia 

shrub bogs, Cladonia spp., and Coniferous tree islands. Interestingly, Osmunda 

cinnamomea seep was often adjacent to Gaylussacia baccata shrublands and Mixed tall 

shrubs, which was observed while in the field. Both Calamagrostis canadensis coastal 

vegetation and Calystegia sepium coastal lithomorphic were associated with Osmunda 

cinnamomea seeps. Lastly, Empetrum nigrum - Juniperus communis dwarf heath was 

often adjacent to Juniperus communis - Corema conradii lithomorphic, Gaylussacia 

shrub bog, and Cladonia spp. 
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Table 3.5. Summary of the spatial configurations of plant community patches at Chebucto Head. *AW = Area-weighted. 

Classification 

Class 

Area 

(ha) 

Number 

of 

Patches 

Patch Area (m2) 
Patch Perimeter 

(m) 

Perimeter-

Area Ratio 
Shape Index 

Related 

Circumscribing 

Circle Index 

Average 

Nearest 

Neighbor 

Ratio 

   AW* 

Mean 

SD AW 

Mean 

SD AW 

Mean 

SD AW 

Mean 

SD AW 

Mean 

SD  

Broadleaf tree 

island 

0.64 586 30.67 14.72 56.45 24.57 2.32 14.48 2.46 0.54 0.57 0.14 0.79 

Calamagrostis 

canadensis coastal 

vegetation 

 < 0.01 2 31.44 22.09 75.49 49.26 2.54 1.89 3.35 0.86 0.78 0.16 0.05 

Calystegia sepium 

coastal lithomorphic 

< 0.01 5 4.19 2.24 12.82 4.47 3.65 2.59 1.60 0.12 0.58 0.07 0.6 

Cladonia spp. 1.20 17040 56.38 6.25 166.79 18.47 5.81 12.76 4.13 0.49 0.67 0.14 0.63 

Coniferous tree 

island 

2.64 798 1118 189.59 1197 202.31 1.44 13.35 7.05 1.10 0.68 0.16 0.92 

Empetrum nigrum - 

Juniperus communis 

dwarf heath 

1.26 928 2870 196.89 3772 258.61 1.85 11.69 15.56 1.11 0.78 0.14 0.48 

Gaylussacia 

baccata shrubland 

5.48 1985 6628 426.82 8313 536.33 1.60 14.32 22.16 1.57 0.77 0.15 0.71 

Gaylussacia shrub 

bog 

1.80 5152 161.58 23.51 413.79 60.94 4.43 10.70 6.25 0.99 0.71 0.14 0.81 

Juniperus communis 

- Corema conradii 

lithomorphic 

2.61 4527 60.87 17.82 124.64 35.90 2.94 12.33 3.64 0.75 0.67 0.14 0.89 

Mixed tall shrubs 3.49 1121 2454 274.60 2812 315.20 1.69 15.15 12.52 1.51 0.76 0.16 0.76 

Open bog 0.03 74 24.32 8.61 50.53 17.43 3.33 15.08 2.64 0.57 0.66 0.16 0.3 

Osmunda 

cinnamomea seep 

0.47 980 112.76 22.69 178.13 35.84 2.98 6.30 3.96 0.65 0.69 0.13 0.55 
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Table 3.6. The top three most common neighbors of each plant community type at 

Chebucto Head. 

Plant Community Top Neighboring Communities 
Shared Edge 

Length (m) 

Broadleaf tree island Mixed tall shrubs 8668 

Coniferous tree island 4031 

Gaylussacia baccata shrubland 1483 

Calamagrostis canadensis 

coastal vegetation 

Osmunda cinnamomea seep 14.0 

Mixed tall shrubs 12.4 

Gaylussacia shrub bog 2.6 

Calystegia sepium coastal 

lithomorphic 

Osmunda cinnamomea seep 2.8 

Gaylussacia baccata shrubland 1.1 

Empetrum nigrum - Juniperus communis dwarf heath 0.6 

Cladonia spp. Gaylussacia shrub bog 22103 

Juniperus communis - Corema conradii lithomorphic 14586 

Gaylussacia baccata shrubland 12297 

Coniferous tree island Mixed tall shrubs 18201 

Juniperus communis - Corema conradii lithomorphic 5221 

Gaylussacia baccata shrubland 4034 

Empetrum nigrum - 

Juniperus communis dwarf 

heath 

Juniperus communis - Corema conradii lithomorphic 4937 

Gaylussacia shrub bog 3507 

Cladonia spp. 3258 

Gaylussacia baccata 

shrubland 

Gaylussacia shrub bog 22358 

Juniperus communis - Corema conradii lithomorphic 18392 

Mixed tall shrubs 16700 

Gaylussacia shrub bog Juniperus communis - Corema conradii lithomorphic 24681 

Gaylussacia baccata shrubland 22358 

Cladonia spp. 22103 

Juniperus communis - 

Corema conradii 

lithomorphic 

Gaylussacia shrub bog 24681 

Gaylussacia baccata shrubland 18392 

Cladonia spp. 14586 

Mixed tall shrubs Coniferous tree island 18201 

Gaylussacia baccata shrubland 16700 

Broadleaf tree island 8668 

Open bog Gaylussacia shrub bog 758.5 

Cladonia spp. 38.5 

Coniferous tree island 25.9 

Osmunda cinnamomea 

seep 

Gaylussacia baccata shrubland 6092 

Mixed tall shrubs 5726 

Gaylussacia shrub bog 647.3 
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Environmental conditions differed greatly for plant communities at Chebucto 

Head (Table 3.7; see Figures A2.1-A2.8 for mapped environmental factors; see Figures 

A2.9-16 for confidence intervals and bar plots). Most plant communities occurred at 

elevations greater than 20 m; however, several plant communities mostly occurred at 

lower elevations, which included Empetrum nigrum - Juniperus communis dwarf heath, 

Osmunda cinnamomea seep, and coastal vegetation. Tree islands, Mixed tall shrubs and 

Open bogs were usually situated greater than 200 m from the coastline; Gaylussacia 

baccata shrubland, Gaylussacia shrub bog, Cladonia spp., and Juniperus communis - 

Corema conradii lithomorphic ranged between 150 to 200 m from the coast; Osmunda 

cinnamomea seep was on average about 100 m from the coastline, and Empetrum nigrum 

- Juniperus communis dwarf heath and Coastal vegetation normally were within 50 m of 

the coastline. 

 Coastal vegetation recorded highest values of wind exposure, although both 

community types had lower sample sizes and consequently had greater error (Table 3.7). 

Other communities with relatively high wind exposure values included tree islands, 

Mixed tall shrubs and Empetrum nigrum - Juniperus communis dwarf heath. Conversely, 

communities with lower wind exposure values were Open bogs, Gaylussacia shrub bog, 

and Cladonia spp. Plant communities with highest stream order values (6 or above) were 

Osmunda cinnamomea seep, Calamagrostis canadensis coastal vegetation, and Open 

bog; the community with the lowest stream order (dryer) value was Cladonia spp. (3); all 

other communities had stream orders of 4 or 5. Incoming solar radiation did not vary 

much between communities, although Coastal vegetation had relatively lower solar 
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radiation values compared to other communities, likely because the communities 

occurred in a sheltered valley. 

 Most communities at Chebucto Head occurred on midslopes, including tree 

islands, shrublands, and dwarf heath (Table 3.7). Interestingly, Gaylussacia shrub bog 

occurred on flats and Open bogs occurred on toe slopes. Cladonia spp. was often 

associated with ridges. Coastal vegetation and Osmunda cinnamomea seep occurred in 

valleys. Local surface ruggedness was generally low for most communities; local 

ruggedness was elevated for coastal vegetation likely because they occurred along a 

rocky shoreline; communities with lowest values were Open bog, Gaylussacia shrub bog, 

Gaylussacia baccata shrubland, and Cladonia spp. Lastly, global surface ruggedness was 

elevated for Coastal vegetation, Empetrum nigrum - Juniperus communis dwarf heath, 

and Osmunda cinnamomea seep; intermediate values were observed for shrublands, 

Cladonia spp., and Juniperus communis - Corema conradii lithomorphic; lower global 

ruggedness values were observed from Open bogs, tree islands, and Gaylussacia shrub 

bog.  
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Table 3.7. Environmental factors for plant communities at Chebucto Head. *AW = Area-weighted; C.I = Area-weighted 95% 

confidence interval. 

Plant Community 

Elevation 

Above Sea-

level (m) 

Distance from 

Coastline (m) 

Wind 

Exposure 

Hydrology 

(Stream 

Order) 

Incoming 

Solar 

Radiation 

Slope 

Position 

Local 

Surface 

Ruggedness 

Global 

Surface 

Ruggedness 

 
AW Mean ± 

95% C.I.* 

AW Mean ± 

95% C.I. 

AW Mean ± 

95% C.I. 

Most 

Frequent 

(AW) 

AW Mean ± 

95% C.I. 

Most 

Frequent 

(AW) 

AW Mean ± 

95% C.I. 

AW Mean ± 

95% C.I. 

Broadleaf tree island 27.81 ± 0.27 296.1 ± 7.82 14.63 ± 0.56 4 83.71 ± 0.48 Midslope 1.78 ± 0.11 5.31 ± 0.59 

Calamagrostis 

canadensis coastal 

vegetation 

6.05 ± 1.91 24.85 ± 17.42 24.01 ± 6.54 7 67.14 ± 56.43 Valley 4.27 ± 4.65 38.31 ± 18.3 

Calystegia sepium 

coastal lithomorphic 
4.27 ± 1.09 9.11 ± 4.36 21.28 ± 27.87 5 73.79 ± 12.49 Valley 3.1 ± 4.59 45.36 ± 5.28 

Cladonia spp. 27.1 ± 0.08 182.36 ± 1.19 7.3 ± 0.06 3 85.83 ± 0.05 Ridge 0.41 ± 0.007 8.43 ± 0.11 

Coniferous tree island 27.64 ± 0.31 279.91 ± 6.17 12.29 ± 0.33 5 84.07 ± 0.27 Midslope 1.21 ± 0.07 4.04 ± 0.4 

Empetrum nigrum - 

Juniperus communis 

dwarf heath 

14.64 ± 0.34 46.84 ± 1.11 10.32 ± 0.39 4 81.44 ± 0.29 Midslope 1.23 ± 0.07 34.48 ± 0.83 

Gaylussacia baccata 

shrubland 
25.45 ± 0.21 200.73 ± 3.14 8.27 ± 0.11 4 87.37 ± 0.11 Midslope 0.34 ± 0.01 8.83 ± 0.38 

Gaylussacia shrub bog 27.18 ± 0.14 187.53 ± 2.06 6.5 ± 0.08 4 86.78 ± 0.07 Flat 0.22 ± 0.008 6.82 ± 0.19 

Juniperus communis - 

Corema conradii 

lithomorphic 

26.58 ± 0.16 188.78 ± 2.28 8.74 ± 0.13 4 86.26 ± 0.1 Midslope 0.51 ± 0.02 8.64 ± 0.25 

Mixed tall shrubs 25.98 ± 0.24 253.37 ± 6.21 11.34 ± 0.26 4 84.66 ± 0.26 Midslope 0.88 ± 0.04 8.87 ± 0.57 

Open bog 29.91 ± 0.4 279.57 ± 16.81 5.93 ± 0.2 6 87.77 ± 0.17 Toe Slope 0.04 ± 0.008 0.86 ± 0.45 

Osmunda cinnamomea 

seep 
15.62 ± 0.29 99.06 ± 4.12 10.33 ± 0.45 7 81.96 ± 0.45 Valley 1.03 ± 0.07 22.85 ± 1.03 
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Prospect Bay 

 Classification of high-resolution UAV imagery at Prospect Bay yielded a highly 

detailed map of plant communities and landscape features at the fine-scale (Figure 3.6). 

The overall classification accuracy of plant communities was 85% (Table 3.8). Generally, 

misclassifications arose between structurally similar communities, such as between 

different types of bogs and shrublands (see confusion matrix in Table A2.3). 

Classifications with low field plot samples (< 4) also tended to have more 

misclassifications.  

Table 3.8. Classification accuracies of mapped plant communities from the broadened 

association level classification at Prospect Bay. 

Plant Community Accuracy (%) 

Alnus viridis shrubland 70 

Betula papyrifera tree island 90 

Cladonia spp. 100 

Coniferous tree island 100 

Empetrum nigrum - Juniperus communis dwarf heath 92 

Eriophorum russeolum bog 100 

Festuca rubra - Solidago sempervirens - Trifolium 

repens disturbed coastal vegetation 

100 

Gaylussacia baccata shrubland 79 

Gaylussacia shrub bog 57 

Grass/Sedge/Open bog 85 

Juncus balticus brackish marsh 67 

Juniperus horizontalis dwarf heath 50 

Lonicera villosa shrubland 100 

Maianthemum trifolium bog 100 

Mixed tall shrubs 70 

Morella pensylvanica shrubland 70 

Osmunda cinnamomea seep 78 

Spartina pectinata brackish marsh 73 

Toxicodendron radicans coastal vegetation 80 

Overall 85 
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Figure 3.6. Mapped plant communities from the broadened association level 

classification at Prospect Bay, Nova Scotia. 
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 The study area at Prospect Bay measured 28 ha, consisted of 19 plant community 

types and contained 63,312 plant community patches - a patch density of 2,263 per 

hectare. The total vegetation cover of the landscape was 92.3%, the remainder being 

mostly exposed rocks and cliff faces (Figure 3.7C). Generally, the landscape was 

dominated by dwarf heath (38%), shrublands (22.9%), and bogs (22.5%) (Figure 3.7A). 

The most dominant plant communities were Empetrum nigrum - Juniperus communis 

dwarf heath (37.7%), Grass/Sedge/Open bog (20.6%), and Gaylussacia baccata 

shrubland (14%) respectively. The landscape topography was mostly homogeneous, 

largely consisting of gentle slopes or flats (57.2%) (Figure 3.7D). Most topographic 

heterogeneity was observed along the rocks and cliff faces that follow the coastline. 

Lastly, a map of stream networks showed that two major streams extend across the site 

and drain into the ocean (Figure 3.7B). 
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Figure 3.7. Landscape composition of Prospect Bay: A) Coarse classification of plant 

communities; B) Stream networks; C) Vegetation cover; and D) Slope classification. 
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 Total class areas ranged from 23 m2 (Betula papyrifera tree island) to 10.56 ha 

(Empetrum nigrum - Juniperus communis dwarf heath) (Table 3.9). The number of 

patches ranged from 3 (Toxicodendron radicans coastal vegetation) to 36,523 (Cladonia 

spp.), although most classes ranged between 100 and 6,000 patches. Area-weighted mean 

patch areas were small for most shrublands (< 35 m2) except for Gaylussacia baccata 

shrubland and Mixed tall shrubs which had large average patch areas. Tree islands also 

had small patch areas, as well as Gaylussacia shrub bog, Cladonia spp., Osmunda 

cinnamomea seep, and Eriophorum russeolum bog. Plant communities with the largest 

patch areas were Empetrum nigrum - Juniperus communis dwarf heath and 

Grass/Sedge/Open bog. 

 Perimeter-area ratios (area-weighted) of patches were generally smaller for 

classes with larger patch areas and larger for patches with smaller areas (Table 3.9). The 

only exception was Coniferous tree island, which had an area-weighted mean patch size 

of 37.60 m2 and a perimeter-area ratio of only 2.02, suggesting patches had lower shape 

complexity. This was supported by a shape index score of 2.47 and a related 

circumscribing circle index of 0.48, indicating the patch shapes are regular and more 

circular rather than elongated and rectangular. Other classes with low shape index scores 

were Alnus viridis shrubland, Lonicera villosa shrubland, Gaylussacia shrub bog, and 

Betula papyrifera tree island. Classes with greater shape complexity included Empetrum 

nigrum - Juniperus communis dwarf heath, Grass/Sedge/Open bog, Mixed tall shrubs, 

and Gaylussacia baccata shrubland. Related circumscribing circle index (area-weighted) 

ranged from 0.48 (Coniferous tree island) to 0.82 (Toxicodendron radicans coastal 
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vegetation). Lastly, average nearest neighbor ratios showed that plant communities 

exhibited clustering at the landscape scale. 

 A neighborhood analysis of plant communities at Prospect Bay showed that Tree 

islands were most often adjacent to Mixed tall shrubs and Gaylussacia baccata shrubland 

(Table 3.10). Gaylussacia baccata shrubland and Mixed tall shrubs were the most 

common neighbors of each other. Other shrublands were frequently neighbored by either 

Empetrum nigrum - Juniperus communis dwarf heath or Gaylussacia baccata shrubland. 

Empetrum nigrum - Juniperus communis dwarf heath was most often associated with 

Grass/Sedge/Open bog, Cladonia spp., and Mixed tall shrubs. Juniperus horizontalis 

dwarf heath was largely adjacent to Empetrum nigrum - Juniperus communis dwarf 

heath. Smaller bogs were commonly neighbored by Grass/Sedge/Open bog and 

Empetrum nigrum - Juniperus communis dwarf heath while the larger bog, 

Grass/Sedge/Open bog, was mostly associated with Empetrum nigrum - Juniperus 

communis dwarf heath and Cladonia spp. Gaylussacia shrub bog was often next to 

Gaylussacia baccata shrubland, Cladonia spp., and Grass/Sedge/Open bog. Osmunda 

cinnamomea seep was frequently neighbored by Gaylussacia baccata shrubland and 

Mixed tall shrubs. Coastal vegetation was often adjacent to marshes and Empetrum 

nigrum - Juniperus communis dwarf heath. Marshes were often next to Empetrum nigrum 

- Juniperus communis dwarf heath. Lastly, Cladonia spp. was associated with 

Grass/Sedge/Open bog, Empetrum nigrum - Juniperus communis dwarf heath, and 

Gaylussacia baccata shrubland.  
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Table 3.9. Summary of the spatial configurations of plant community patches at Prospect Bay. *AW = Area-weighted. 

Plant Community 

Class 

Area 

(ha) 

Number 

of 

Patches 

Patch Area (m) 
Patch Perimeter 

(m) 

Perimeter-Area 

Ratio 
Shape Index 

Related 

Circumscribing 

Circle Index 

Average 

Nearest 

Neighbo

r Ratio 

   
AW* 
Mean 

SD AW Mean SD 
AW 

Mean 
SD 

AW 
Mean 

SD 
AW 

Mean 
SD 

 

Alnus viridis shrubland 0.09 715 2.58 1.29 11.01 4.30 5.63 11.80 1.79 0.41 0.53 0.14 0.65 

Betula papyrifera tree island < 0.01 5 6.53 3.27 26.57 13.13 4.53 35.22 2.70 0.97 0.59 0.05 0.60 

Cladonia spp. 1.22 36523 36.15 3.45 112.45 10.85 7.63 19.77 3.73 0.40 0.65 0.13 0.67 

Coniferous tree island 0.20 142 36.70 17.92 60.85 27.17 2.02 21.90 2.47 0.63 0.48 0.14 0.59 

Empetrum nigrum - Juniperus communis 
dwarf heath 

10.56 4884 43096 962.02 43463 970.98 1.55 29.40 45.50 1.38 0.71 0.18 0.79 

Eriophorum russeolum bog 0.03 192 20.34 5.47 65.71 16.81 6.00 18.74 3.47 0.69 0.66 0.13 0.16 

Festuca rubra - Solidago sempervirens - 

Trifolium repens disturbed coastal vegetation 

0.03 97 69.91 15.24 108.96 23.06 3.24 27.15 3.20 0.55 0.68 0.19 0.14 

Gaylussacia baccata shrubland 3.91 4519 3644 176.80 4795 233.16 2.46 25.00 15.27 1.09 0.70 0.16 0.80 

Gaylussacia shrub bog 0.19 1386 4.11 1.95 22.01 9.46 6.70 16.62 2.59 0.63 0.63 0.13 0.51 

Grass/Sedge/Open bog 5.76 5888 10405 317.78 14860 468.95 2.43 27.24 31.03 1.38 0.78 0.18 0.81 

Juncus balticus brackish marsh 0.50 2553 149.01 17.00 343.78 39.27 5.47 20.37 5.52 0.79 0.68 0.14 0.50 

Juniperus horizontalis dwarf heath 0.06 207 40.60 10.76 79.99 20.12 3.98 15.25 3.09 0.59 0.66 0.14 0.21 

Lonicera villosa shrubland 0.02 106 5.42 2.55 20.20 8.30 5.20 18.22 2.19 0.51 0.60 0.15 0.27 

Maianthemum trifolium bog 0.32 462 337.26 48.01 506.46 74.28 2.58 24.66 6.59 0.99 0.75 0.17 0.36 

Mixed tall shrubs 2.34 1689 1650 150.12 3151 291.31 3.08 34.27 16.65 2.05 0.73 0.20 0.57 

Morella pensylvanica shrubland 0.04 140 34.05 9.07 120.64 31.32 4.92 23.02 4.37 0.87 0.67 0.15 0.15 

Osmunda cinnamomea seep 0.46 1750 32.93 8.88 87.92 23.41 4.73 21.79 3.66 0.85 0.63 0.15 0.53 

Spartina pectinata brackish marsh 0.07 109 157.02 31.83 273.63 54.47 2.64 18.43 5.02 0.82 0.74 0.14 0.18 

Toxicodendron radicans coastal vegetation < 0.01 3 19.70 12.01 65.73 37.41 3.53 1.48 3.63 1.00 0.82 0.14 0.31 

   



 

129 

 

Table 3.10. The top three most common neighbors of each plant community type at 

Prospect Bay. 

Plant Community Top Neighboring Communities 
Shared Edge 

Length (m) 

Alnus viridis shrubland Gaylussacia baccata shrubland 1809 

Empetrum nigrum - Juniperus communis dwarf 

heath 
1634 

Mixed tall shrubs 661.1 

Betula papyrifera tree island Gaylussacia baccata shrubland 73.8 

Mixed tall shrubs 12.5 

Coniferous tree island 10.8 

Cladonia spp. Grass/Sedge/Open bog 34567 

Empetrum nigrum - Juniperus communis dwarf 

heath 
31578 

Gaylussacia baccata shrubland 14284 

Coniferous tree island Mixed tall shrubs 1342 

Empetrum nigrum - Juniperus communis dwarf 

heath 
757.8 

Gaylussacia baccata shrubland 703.7 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Grass/Sedge/Open bog 60070 

Cladonia spp. 31578 

Mixed tall shrubs 24277 

Eriophorum russeolum bog Grass/Sedge/Open bog 1772 

Empetrum nigrum - Juniperus communis dwarf 

heath 
23.9 

Maianthemum trifolium bog 10.3 

Festuca rubra - Solidago 

sempervirens - Trifolium repens 

disturbed coastal vegetation 

Juncus balticus brackish marsh 194.1 

Empetrum nigrum - Juniperus communis dwarf 

heath 
176.1 

Grass/Sedge/Open bog 174.9 

Gaylussacia baccata shrubland Mixed tall shrubs 31419 

Empetrum nigrum - Juniperus communis dwarf 

heath 
17385 

Cladonia spp. 14284 

Gaylussacia shrub bog Gaylussacia baccata shrubland 3845 

Cladonia spp. 3192 

Grass/Sedge/Open bog 2570 

Grass/Sedge/Open bog Empetrum nigrum - Juniperus communis dwarf 

heath 
60070 

Cladonia spp. 34567 

Gaylussacia baccata shrubland 10723 

Juncus balticus brackish marsh Empetrum nigrum - Juniperus communis dwarf 

heath 
14704 

Grass/Sedge/Open bog 9832 

Cladonia spp. 646.2 
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(continued) Table 3.10. The top three most common neighbors of each plant community 

type at Prospect Bay. 

Plant Community Top Neighboring Communities 
Shared Edge 

Length (m) 

Juniperus horizontalis dwarf 

heath 

Empetrum nigrum - Juniperus communis dwarf 

heath 
1661 

Spartina pectinata brackish marsh 153.4 

Juncus balticus brackish marsh 134.5 

Lonicera villosa shrubland Empetrum nigrum - Juniperus communis dwarf 

heath 
338.7 

Grass/Sedge/Open bog 184.2 

Mixed tall shrubs 116.7 

Maianthemum trifolium bog Grass/Sedge/Open bog 6173 

Empetrum nigrum - Juniperus communis dwarf 

heath 
627.1 

Juncus balticus brackish marsh 529.2 

Mixed tall shrubs Gaylussacia baccata shrubland 31419 

Empetrum nigrum - Juniperus communis dwarf 

heath 
24277 

Osmunda cinnamomea seep 4972 

Morella pensylvanica shrubland Empetrum nigrum - Juniperus communis dwarf 

heath 
525.2 

Gaylussacia baccata shrubland 495.6 

Osmunda cinnamomea seep 283.2 

Osmunda cinnamomea seep Gaylussacia baccata shrubland 11642 

Mixed tall shrubs 4972 

Grass/Sedge/Open bog 2922 

Spartina pectinata brackish 

marsh 

Empetrum nigrum - Juniperus communis dwarf 

heath 
314.4 

Morella pensylvanica shrubland 249.0 

Juncus balticus brackish marsh 191.3 

Toxicodendron radicans coastal 

vegetation 

Spartina pectinata brackish marsh 50.7 

Empetrum nigrum - Juniperus communis dwarf 

heath 
8.1 

Osmunda cinnamomea seep 8.0 

 

 Environmental factors for plant communities at Prospect Bay indicated many 

interesting relationships (Table 3.11; see Figures A2.1-A2.8 for mapped environmental 

factors; see Figures A2.17-24 for confidence intervals and bar plots). In general, plant 

communities belonged to one of two altitudinal groupings: those occurring at elevations 

less than 15 m above sea-level and those occurring at elevations greater than 15 m. 
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Lower-altitude plant communities included Coastal vegetation, marshes, Juniperus 

horizontalis dwarf heath, and two smaller, i.e. shorter shrublands, (Morella pensylvanica 

shrubland & Lonicera villosa shrubland). Higher altitude communities included bogs, 

tree islands, larger shrublands (Gaylussacia baccata shrubland & Mixed tall shrubs), 

Alnus viridis shrubland, Osmunda cinnamomea seep, Cladonia spp., and Empetrum 

nigrum - Juniperus communis dwarf heath. Distance from the coastline was highly 

correlated with elevation above sea-level (r2 = 0.83), and plant communities similarly fell 

into two groups: lower altitude communities within 150 meters of the coastline and 

higher altitude communities that were further than 150 meters from the coastline. 

 Wind exposure was highest for plant communities nearest the coastline, which 

included Toxicodendron radicans coastal vegetation, Spartina pectinata brackish marsh, 

Juniperus horizontalis dwarf heath, and Morella pensylvanica shrubland (Table 3.11). 

Communities with lowest wind exposure values were Eriophorum russeolum bog, 

Maianthemum trifolium bog, Gaylussacia shrub bog, and Grass/Sedge/Open bog. 

Analysis of stream networks showed that Maianthemum trifolium bog occurred in very 

wet areas (stream order of 7). The next highest stream order was 5, which was recorded 

from the other bogs, Betula papyrifera tree island, and Juncus balticus brackish marsh. 

All other communities had stream orders of either 3 or 4. Incoming solar radiation had 

little variability between communities with values mostly ranging from 88 to 90, 

although communities nearest the coastline appeared to experience higher amounts of 

solar radiation, including Toxicodendron radicans coastal vegetation and Spartina 

pectinata brackish marsh. A closer look at the slope positions of the two communities 

and the solar radiation map (Figure A2.5B) suggests that both communities are angled on 



 

132 

 

upper slopes and midslopes and are facing south relative to the general slope in that area, 

which is likely the optimal position for receiving the most amount of sunlight from both 

the east and west. 

 Most plant communities at Prospect Bay occurred on flat or gentle sloping areas 

(Table 3.11). Several exceptions included Juniperus horizontalis dwarf heath, which 

occurred on ridges, Toxicodendron radicans coastal vegetation and Morella pensylvanica 

shrubland, which occurred on upper slopes, and Coniferous tree island, Lonicera villosa 

shrubland, and Spartina pectinata brackish marsh, all of which occurred on midslopes. 

The strong association of plant communities with flat areas at Prospect Bay was probably 

due to much of the site consisting of flats and gentle slopes (57.2%; Figure 3.7D). Local 

surface ruggedness was generally very low for all communities. Values were larger for 

plant communities nearest the coastline, such as Toxicodendron radicans coastal 

vegetation, Spartina pectinata brackish marsh, and Juniperus horizontalis dwarf heath. 

Local ruggedness values were particularly low for bogs. Similarly, global surface 

ruggedness was high for plant communities near the coastline and low for bogs. 
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Table 3.11. Environmental factors for plant communities at Prospect Bay. *AW = Area-weighted; C.I = Area-weighted 95% 

confidence interval. 

Plant Community 
Elevation Above 

Sea-level (m) 

Distance from 

Coastline (m) 
Wind Exposure 

Hydrology 

(Stream 

Order) 

Incoming Solar 

Radiation 
Slope Position 

Local Surface 

Ruggedness 

Global 

Surface 

Ruggedness 

 AW Mean ± 

95 % C.I.* 

AW Mean ± 

95 % C.I. 

AW Mean ± 

95 % C.I. 

Most Frequent 

(AW) 

AW Mean ± 

95 % C.I. 

Most Frequent 

(AW) 

AW Mean ± 

95 % C.I. 

AW Mean ± 

95 % C.I. 

Alnus viridis shrubland 20.55 ± 0.26 273.65 ± 6.6 4.58 ± 0.35 3 89.29 ± 0.17 Flat 0.03 ± 0.003 9.34 ± 0.78 

Betula papyrifera tree island 20.26 ± 2.66 334.62 ± 214.85 2.84 ± 1.12 5 89.02 ± 0.4 Flat 0.02 ± 0.02 8.46 ± 9.69 

Cladonia spp. 21.41 ± 0.03 301.98 ± 1.01 2.79 ± 0.03 4 89.45 ± 0.01 Flat 0.01 ± 0.0003 7.87 ± 0.08 

Coniferous tree island 21.49 ± 0.59 322.19 ± 20.53 7.18 ± 0.93 4 88.88 ± 0.36 Midslope 0.07 ± 0.01 8.24 ± 1.61 

Empetrum nigrum - Juniperus 

communis dwarf heath 
17.26 ± 0.11 212.2 ± 3.72 4.18 ± 0.06 4 89.93 ± 0.03 Flat 0.02 ± 0.0006 18.06 ± 0.32 

Eriophorum russeolum bog 22.15 ± 0.04 513.37 ± 3.42 1.52 ± 0.02 5 88.47 ± 0.07 Flat 0.001 ± 0.0001 0.86 ± 0.05 

Festuca rubra - Solidago 
sempervirens - Trifolium repens 

disturbed coastal vegetation 

7.11 ± 0.28 35.91 ± 1.45 3.58 ± 0.83 4 89.87 ± 0.42 Flat 0.02 ± 0.007 49.33 ± 3.67 

Gaylussacia baccata shrubland 23.06 ± 0.12 371.94 ± 3.23 3.71 ± 0.07 4 89.42 ± 0.04 Flat 0.02 ± 0.0006 9.3 ± 0.34 

Gaylussacia shrub bog 22.58 ± 0.16 371.88 ± 4.23 2.01 ± 0.05 4 89.42 ± 0.06 Flat 0.01 ± 0.0005 6.95 ± 0.28 

Grass/Sedge/Open bog 18.95 ± 0.1 298.24 ± 3.06 2.07 ± 0.03 5 89.18 ± 0.02 Flat 0.007 ± 0.0003 6.98 ± 0.27 

Juncus balticus brackish marsh 12.37 ± 0.15 118.42 ± 2.54 2.96 ± 0.08 5 89.57 ± 0.04 Flat 0.01 ± 0.0006 18.94 ± 0.5 

Juniperus horizontalis dwarf 

heath 
8.03 ± 0.14 34.2 ± 1.12 12.33 ± 1.05 3 89.97 ± 0.58 Ridge 0.09 ± 0.01 69.68 ± 2.92 

Lonicera villosa shrubland 11.24 ± 0.95 87.24 ± 7.2 6.09 ± 1.09 4 90.2 ± 0.54 Midslope 0.04 ± 0.008 31.23 ± 3.62 

Maianthemum trifolium bog 19.63 ± 0.26 305.83 ± 5.89 1.77 ± 0.06 7 88.94 ± 0.04 Flat 0.003 ± 0.0007 3.01 ± 0.48 

Mixed tall shrubs 22.25 ± 0.12 397.91 ± 4.65 2.74 ± 0.08 3 89.08 ± 0.06 Flat 0.02 ± 0.0009 4.48 ± 0.26 

Morella pensylvanica shrubland 6.79 ± 0.13 33.96 ± 1.14 10.68 ± 1.03 3 91.07 ± 0.46 Upper Slope 0.07 ± 0.009 62.98 ± 3.1 

Osmunda cinnamomea seep 20.68 ± 0.22 355.4 ± 5.73 3.1 ± 0.12 4 88.88 ± 0.09 Flat 0.02 ± 0.001 8.7 ± 0.66 

Spartina pectinata brackish marsh 5.6 ± 0.16 27.75 ± 0.87 17.98 ± 1.69 4 92.33 ± 0.44 Midslope 0.16 ± 0.02 63.95 ± 3.26 

Toxicodendron radicans coastal 

vegetation 
6.02 ± 0.37 24.07 ± 5.51 26.66 ± 11.39 4 95.45 ± 8.61 Upper Slope 0.25 ± 0.11 

83.98 ± 

18.29 
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Polly’s Cove 

 Classification of high-resolution UAV imagery at Polly’s Cove yielded a highly 

detailed map of plant communities and landscape features (Figure 3.8). The overall 

classification accuracy of plant communities was 78% (Table 3.12). Most 

misclassifications arose between structurally similar communities, the majority resulting 

between Gaylussacia baccata shrubland, Mixed tall shrubs, Broadleaf tree island, and 

Rubus allegheniensis - Morella pensylvanica coastal vegetation (see confusion matrix in 

Table A2.4). Plant communities with low field plot samples (< 4) also tended to have 

more misclassifications.  

Table 3.12. Classification accuracies of mapped plant communities from the broadened 

association level classification at Polly’s Cove. 

Plant Community Accuracy (%) 

Broadleaf tree island 53 

Calamagrostis canadensis coastal vegetation 40 

Carex nigra - Festuca rubra coastal vegetation 100 

Carex nigra bog 100 

Carex vesicaria bog 100 

Cladonia spp. 100 

Coniferous tree island 90 

Empetrum nigrum - Juniperus communis dwarf heath 55 

Gaylussacia baccata shrubland 81 

Gaylussacia shrub bog 56 

Ilex glabra shrubland 90 

Juncus balticus brackish marsh 60 

Juniperus communis - Corema conradii lithomorphic 85 

Juniperus horizontalis dwarf heath 60 

Mixed tall shrubs 17 

Osmunda cinnamomea seep 98 

Rubus allegheniensis - Morella pensylvanica coastal 

vegetation 

15 

Spartina patens salt marsh 100 

Thalictrum pubescens coastal vegetation 100 

Trichophorum caespitosum bog 55 

Overall 78 
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Figure 3.8. Mapped plant communities from the broadened association level 

classification at Polly’s Cove, Nova Scotia. 
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 The study area at Polly’s Cove measured 27.4 ha, consisted of 20 plant 

community types and contained 53,595 plant community patches - a patch density of 

1,957 per hectare. The total vegetation cover of the landscape was 79.3%, the remainder 

being mostly exposed rocks, cliff faces, and a body of salt water from the ocean 

occupying the southeast corner of the site (Figure 3.9C). Generally, the landscape was 

dominated by shrublands (38.1%), bogs (17.7%), and dwarf heath (9.2%) (Figure 3.9A). 

The most dominant plant communities were Gaylussacia baccata shrubland (27.9%), 

Gaylussacia shrub bog (16.5%), and Juniperus communis - Corema conradii 

lithomorphic (8.1%) respectively. The landscape topography was heterogeneous, largely 

consisting of midslopes (24.2%), ridges (18%), and valleys (16.6). (Figure 3.9D). Toe 

slopes, flats, and upper slopes were also prevalent, however, indicating a very high 

degree of topographic heterogeneity across the landscape. Lastly, a map of stream 

networks showed that one major stream extended diagonally across the site towards the 

inlet of salt water to the southeast and two other lesser streams flowed north to south, 

draining into the ocean (Figure 3.9B).  



 

137 

 

 

Figure 3.9. Landscape composition of Polly’s Cove: A) Coarse classification of plant 

communities; B) Stream networks; C) Vegetation cover; and D) Slope classification. 
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 Total class areas ranged from 43 m2 (Thalictrum pubescens coastal vegetation) to 

7.64 ha (Gaylussacia baccata shrubland) (Table 3.13). The number of patches ranged 

from 6 (Thalictrum pubescens coastal vegetation) to 23,299 (Cladonia spp.), although 

most classes consisted between 100 and 8,000 patches. Area-weighted mean patch areas 

were small for Juniperus horizontalis dwarf heath, Cladonia spp., Broadleaf tree island, 

Juniperus communis - Corema conradii lithomorphic, and Empetrum nigrum - Juniperus 

communis dwarf heath. Classes with larger patch areas included Gaylussacia baccata 

shrubland and Mixed tall shrubs. 

 Plant communities with low shape complexities based on the shape index (area-

weighted) included Juniperus horizontalis dwarf heath, Broadleaf tree island, Juniperus 

communis - Corema conradii lithomorphic, Empetrum nigrum - Juniperus communis 

dwarf heath, and Cladonia spp. (Table 3.13). Plant communities with larger shape 

complexities included Gaylussacia baccata shrubland, Gaylussacia shrub bog, 

Trichophorum caespitosum bog, and Mixed tall shrubs. Related circumscribing circle 

index (area-weighted) ranged from 0.52 (Carex vesicaria bog) to 0.77 (Mixed tall shrubs 

& Trichophorum caespitosum bog). Average nearest neighbor ratios indicated that plant 

communities were clustered at the landscape scale. 

 Tree islands were often neighbored by Mixed tall shrubs and Gaylussacia baccata 

shrubland (Table 3.14). Shrublands were often associated with Gaylussacia shrub bog, 

Juniperus communis - Corema conradii lithomorphic, as well as other types of 

shrublands. Empetrum nigrum - Juniperus communis dwarf heath was mostly associated 

with Juniperus communis - Corema conradii lithomorphic and Rubus allegheniensis - 

Morella pensylvanica coastal vegetation. Juniperus horizontalis dwarf heath was also 
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associated with Juniperus communis - Corema conradii lithomorphic and Rubus 

allegheniensis - Morella pensylvanica coastal vegetation, as well as Empetrum nigrum - 

Juniperus communis dwarf heath. Juniperus communis - Corema conradii lithomorphic 

was frequently adjacent to Gaylussacia shrub bog, Gaylussacia baccata shrubland, and 

Cladonia spp. All bogs were associated with Gaylussacia shrub bog and Juniperus 

communis - Corema conradii lithomorphic. Gaylussacia shrub bog was often neighbored 

by Gaylussacia baccata shrubland, Cladonia spp., and Juniperus communis - Corema 

conradii lithomorphic. Osmunda cinnamomea seep was associated with Gaylussacia 

baccata shrubland. Both Spartina patens salt marsh and Juncus balticus brackish marsh 

were associated with each other as well as with Calamagrostis canadensis coastal 

vegetation. All Coastal vegetation types were associated with either Mixed tall shrubs, 

Gaylussacia baccata shrubland, or both. Carex nigra - Festuca rubra coastal vegetation 

and Thalictrum pubescens coastal vegetation were also strongly associated with 

Calamagrostis canadensis coastal vegetation. Calamagrostis canadensis coastal 

vegetation also had an association with Juncus balticus brackish marsh. Rubus 

allegheniensis - Morella pensylvanica coastal vegetation was often neighbored by 

Gaylussacia baccata shrubland, Empetrum nigrum - Juniperus communis dwarf heath, 

and Juniperus communis - Corema conradii lithomorphic. Lastly, Cladonia spp. was 

frequently neighbored by Gaylussacia shrub bog, Gaylussacia baccata shrubland, and 

Juniperus communis - Corema conradii lithomorphic. 
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Table 3.13. Summary of the spatial configurations of plant community patches at Polly’s Cove. *AW = Area-weighted. 

Plant Community 

Class 

Area 

(ha) 

Number 

of Patches 
Patch Area (m) 

Patch Perimeter 

(m) 

Perimeter-Area 

Ratio 
Shape Index 

Related 

Circumscribing 

Circle Index 

Average 

Nearest 

Neighbor 

Ratio 

   AW* 
Mean 

SD AW 
Mean 

SD AW 
Mean 

SD AW 
Mean 

SD AW 
Mean 

SD  

Broadleaf tree island 0.24 398 13.85 6.87 34.10 13.60 3.31 12.66 2.34 0.50 0.61 0.15 0.70 

Calamagrostis canadensis coastal 

vegetation 

0.07 63 64.48 24.76 92.46 33.38 2.24 2.58 3.04 0.72 0.75 0.12 0.22 

Carex nigra - Festuca rubra coastal 
vegetation 

0.01 9 119.66 43.58 128.69 45.02 1.36 2.39 2.93 0.56 0.72 0.12 0.16 

Carex nigra bog 0.02 34 57.05 18.40 103.39 31.85 2.65 2.25 3.38 0.67 0.64 0.10 0.16 

Carex vesicaria bog 0.01 7 48.98 19.35 83.90 31.78 2.10 32.57 3.00 0.60 0.52 0.25 0.05 

Cladonia spp. 1.12 23299 10.77 2.21 37.91 7.68 6.84 10.47 2.66 0.42 0.66 0.14 0.62 

Coniferous tree island 1.56 1311 130.73 37.41 146.97 40.91 1.83 7.98 2.94 0.55 0.58 0.14 0.88 

Empetrum nigrum - Juniperus 
communis dwarf heath 

0.28 1023 20.14 6.88 49.93 15.96 3.99 5.87 2.64 0.52 0.67 0.13 0.39 

Gaylussacia baccata shrubland 7.64 3780 6255 352.45 7068 400.33 1.73 11.79 18.98 1.34 0.76 0.14 0.80 

Gaylussacia shrub bog 4.53 7746 629.26 59.95 1460 141.65 3.59 11.50 11.38 1.27 0.76 0.15 0.88 

Ilex glabra shrubland 0.65 967 157.60 31.61 276.92 55.92 2.86 10.31 5.04 0.90 0.72 0.14 0.38 

Juncus balticus brackish marsh 0.06 47 88.38 32.02 129.86 46.30 1.91 2.57 3.46 0.80 0.75 0.14 0.12 

Juniperus communis - Corema 

conradii lithomorphic 

2.21 7472 19.54 6.96 48.04 16.03 3.81 9.17 2.56 0.51 0.63 0.14 0.97 

Juniperus horizontalis dwarf heath 0.03 149 5.92 2.73 18.99 7.39 4.60 10.27 1.99 0.38 0.63 0.13 0.27 

Mixed tall shrubs 2.14 982 1130 154.31 1511 207.73 1.98 13.31 9.72 1.37 0.77 0.15 0.68 

Osmunda cinnamomea seep 0.14 370 83.52 17.45 123.54 25.14 3.04 5.12 3.09 0.47 0.68 0.12 0.45 

Rubus allegheniensis - Morella 

pensylvanica coastal vegetation 

0.58 718 340.06 51.50 384.79 58.78 2.27 7.66 4.93 0.75 0.73 0.13 0.35 

Spartina patens salt marsh 0.14 20 512.83 177.41 262.25 101.08 0.82 20.11 3.19 0.94 0.69 0.20 0.10 

Thalictrum pubescens coastal 
vegetation 

< 0.01 6 23.70 11.93 72.37 34.08 3.53 36.20 3.64 0.96 0.74 0.27 0.03 

Trichophorum caespitosum bog 0.28 385 713.91 71.13 1111 112.93 2.64 9.95 9.91 1.10 0.77 0.14 0.24 
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Table 3.14. The top three most common neighbors of each plant community type at 

Polly’s Cove. 

Plant Community Top Neighboring Communities 
Shared Edge 

Length (m) 

Broadleaf tree island Mixed tall shrubs 3711 

Coniferous tree island 1893 

Gaylussacia baccata shrubland 1737 

Calamagrostis canadensis 

coastal vegetation 

Gaylussacia baccata shrubland 487.5 

Juncus balticus brackish marsh  176.4 

Mixed tall shrubs 143.4 

Carex nigra - Festuca 

rubra coastal vegetation 

Mixed tall shrubs 25.5 

Calamagrostis canadensis coastal vegetation 21.9 

Gaylussacia baccata shrubland 21.2 

Carex nigra bog Juniperus communis - Corema conradii lithomorphic 213.5 

Gaylussacia shrub bog 123.7 

Rubus allegheniensis - Morella pensylvanica coastal 

vegetation 

100.2 

Carex vesicaria bog Gaylussacia shrub bog 33.5 

Juncus balticus brackish marsh  29.2 

Juniperus communis - Corema conradii lithomorphic 21.4 

Cladonia spp. Gaylussacia shrub bog 39483 

Gaylussacia baccata shrubland 7919 

Juniperus communis - Corema conradii lithomorphic 6334 

Coniferous tree island Mixed tall shrubs 10498 

Gaylussacia baccata shrubland 6582 

Juniperus communis - Corema conradii lithomorphic 3257 

Empetrum nigrum - 

Juniperus communis dwarf 

heath 

Juniperus communis - Corema conradii lithomorphic 3878 

Rubus allegheniensis - Morella pensylvanica coastal 

vegetation 

2438 

Gaylussacia baccata shrubland 875.8 

Gaylussacia baccata 

shrubland 

Gaylussacia shrub bog 49204 

Juniperus communis - Corema conradii lithomorphic 19224 

Mixed tall shrubs 14012 

Gaylussacia shrub bog Gaylussacia baccata shrubland 49204 

Cladonia spp. 39483 

Juniperus communis - Corema conradii lithomorphic 34192 

Ilex glabra shrubland Gaylussacia baccata shrubland 8665 

Gaylussacia shrub bog 2791 

Juniperus communis - Corema conradii lithomorphic 2154 

Juncus balticus brackish 

marsh  

Spartina patens salt marsh  279.6 

Calamagrostis canadensis coastal vegetation 176.4 

Gaylussacia shrub bog 133.3 
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(continued) Table 3.14. The top three most common neighbors of each plant community 

type at Polly’s Cove. 

Plant Community Top Neighboring Communities 
Shared Edge 

Length (m) 

Juniperus communis - 

Corema conradii 

lithomorphic 

Gaylussacia shrub bog 34192 

Gaylussacia baccata shrubland 19224 

Cladonia spp. 6334 

Juniperus horizontalis 

dwarf heath 

Empetrum nigrum - Juniperus communis dwarf heath 342.1 

Juniperus communis - Corema conradii lithomorphic 218.9 

Rubus allegheniensis - Morella pensylvanica coastal 

vegetation 

171.3 

Mixed tall shrubs Gaylussacia baccata shrubland 14012 

Coniferous tree island 10498 

Gaylussacia shrub bog 3742 

Osmunda cinnamomea 

seep 

Gaylussacia baccata shrubland 2137 

Mixed tall shrubs 1016 

Rubus allegheniensis - Morella pensylvanica coastal 

vegetation 

557.6 

Rubus allegheniensis - 

Morella pensylvanica 

coastal vegetation 

Gaylussacia baccata shrubland 3773 

Empetrum nigrum - Juniperus communis dwarf heath 2438 

Juniperus communis - Corema conradii lithomorphic 1947 

Spartina patens salt marsh  Juncus balticus brackish marsh  279.6 

Calamagrostis canadensis coastal vegetation 113.6 

Gaylussacia baccata shrubland 11.6 

Thalictrum pubescens 

coastal vegetation 

Calamagrostis canadensis coastal vegetation 65.7 

Juncus balticus brackish marsh  42.8 

Gaylussacia baccata shrubland 19.6 

Trichophorum caespitosum 

bog 

Gaylussacia shrub bog 5016 

Juniperus communis - Corema conradii lithomorphic 341.5 

Cladonia spp. 177.6 

 

 Many associations were observed when plant communities at Polly’s Cove were 

related to environmental factors (Table 3.15; see Figures A2.1-A2.8 for mapped 

environmental factors; see Figures A2.25-32 for confidence intervals and bar plots). 

Mean elevations for plant communities ranged from just below a meter to 16 meters. 

Plant communities at higher elevations included Empetrum nigrum - Juniperus communis 

dwarf heath, Juniperus communis - Corema conradii lithomorphic, Gaylussacia shrub 

bog, Cladonia spp., and Ilex glabra shrubland. Plant communities at lower elevations 
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included Spartina patens salt marsh, Thalictrum pubescens coastal vegetation, Juncus 

balticus brackish marsh, Calamagrostis canadensis coastal vegetation, Carex nigra - 

Festuca rubra coastal vegetation, and Carex vesicaria bog. Tree islands, shrublands, 

Cladonia spp., Trichophorum caespitosum bog, and Gaylussacia shrub bog were situated 

further from the coastline (> 250 m). Other communities, including Juniperus communis - 

Corema conradii lithomorphic, Calamagrostis canadensis coastal vegetation, Thalictrum 

pubescens coastal vegetation, marshes, and Osmunda cinnamomea seep, occurred at more 

intermediate distances from the coastline (between 100 to 250 m). Plant communities 

found nearest the coastline (< 100 m) included Carex nigra - Festuca rubra coastal 

vegetation, Juniperus horizontalis dwarf heath, Carex nigra bog, Rubus allegheniensis - 

Morella pensylvanica coastal vegetation, and Carex vesicaria bog. It should be noted that 

although distance from coastline values for marshes and some of the coastal vegetation 

were recorded at intermediate ranges (between 100 to 250 meters), the plant communities 

in the south-eastern portion of the site were actually near a salt water inlet (see plant 

community map in Figure 3.8). For this study, the inlet was not included as part of the 

coastline. 

 Wind exposure was highest for Rubus allegheniensis - Morella pensylvanica 

coastal vegetation, Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus 

horizontalis dwarf heath (Table 3.15). Communities with low wind exposure values 

included bogs, marshes, and other Coastal vegetation. Analysis of stream networks at 

Polly’s Cove showed a high variability in moisture regimes for different communities. 

Plant communities in the wettest areas were Calamagrostis canadensis coastal 

vegetation, Carex nigra bog, Osmunda cinnamomea seep, Coniferous tree island, and 
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Trichophorum caespitosum bog. Plant communities in dryer areas included Cladonia 

spp., Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus communis - 

Corema conradii lithomorphic. All other communities had intermediate moisture 

regimes. A large amount of variability was observed in incoming solar radiation as well. 

Communities with low solar radiation values included tree islands, Gaylussacia baccata 

shrubland, Mixed tall shrubs, and Cladonia spp. Higher values of solar radiation were 

recorded from Juniperus horizontalis dwarf heath, Rubus allegheniensis - Morella 

pensylvanica coastal vegetation, Carex nigra - Festuca rubra coastal vegetation, and 

Empetrum nigrum - Juniperus communis dwarf heath. 

 Slope position classifications varied for plant communities (Table 3.15). Ridges 

were the most common slope position for Cladonia spp., Empetrum nigrum - Juniperus 

communis dwarf heath, Juniperus communis - Corema conradii lithomorphic, Juniperus 

horizontalis dwarf heath, and Rubus allegheniensis - Morella pensylvanica coastal 

vegetation. Midslopes often associated with tree islands, and Gaylussacia baccata 

shrubland. Flat areas were occupied by Trichophorum caespitosum bog, Gaylussacia 

shrub bog, and Carex vesicaria bog. Toe slopes were common to two of the Coastal 

vegetation types: Carex nigra - Festuca rubra coastal vegetation and Thalictrum 

pubescens coastal vegetation. Valleys were often occupied by marshes, Osmunda 

cinnamomea seep, Carex nigra bog, Calamagrostis canadensis coastal vegetation, Ilex 

glabra shrubland, and Mixed tall shrubs. Local surface ruggedness was high for  

Rubus allegheniensis - Morella pensylvanica coastal vegetation, Empetrum nigrum - 

Juniperus communis dwarf heath, and Juniperus horizontalis dwarf heath. Conversely, 

local ruggedness was noticeably low for Trichophorum caespitosum bog, Carex vesicaria 
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bog, Spartina patens salt marsh, and Juncus balticus brackish marsh. Similarly, global 

surface ruggedness was highest for Rubus allegheniensis - Morella pensylvanica coastal 

vegetation, Empetrum nigrum - Juniperus communis dwarf heath, and Juniperus 

horizontalis dwarf heath. Global surface ruggedness was particularly low for Ilex glabra 

shrubland and Trichophorum caespitosum bog.  
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Table 3.15. Environmental factors for plant communities at Polly’s Cove. *AW = Area-weighted; C.I = Area-weighted 95% 

confidence interval. 

Plant Community 

Elevation 

Above Sea-

level (m) 

Distance from 

Coastline (m) 

Wind 

Exposure 

Hydrology 

(Stream Order) 

Incoming Solar 

Radiation 
Slope Position 

Local 

Surface 

Ruggedness 

Global 

Surface 

Ruggedness 

 AW Mean ± 

95% C.I.* 

AW Mean ± 

95% C.I. 

AW Mean ± 

95% C.I. 

Most Frequent 

(AW) 

AW Mean ± 

95% C.I. 

Most Frequent 

(AW) 

AW Mean ± 

95% C.I. 

AW Mean ± 

95% C.I. 

Broadleaf tree island 9.84 ± 0.34 360.88 ± 9.57 15.08 ± 1 4 76.57 ± 0.89 Midslope 1.17 ± 0.12 6.61 ± 0.53 

Calamagrostis canadensis coastal 
vegetation 

1.54 ± 0.34 212.64 ± 10.1 5.74 ± 0.92 8 81.6 ± 1.24 Valley 0.4 ± 0.07 7.77 ± 1.53 

Carex nigra - Festuca rubra coastal 

vegetation 
2.16 ± 1.02 25.5 ± 72.82 6.95 ± 2.5 5 87.05 ± 2.85 Toe Slope 0.26 ± 0.07 24.46 ± 5.27 

Carex nigra bog 6.25 ± 0.5 34.47 ± 3.95 4.33 ± 1.88 7 85.33 ± 0.97 Valley 0.27 ± 0.25 26.21 ± 2.33 

Carex vesicaria bog 2.62 ± 0.23 41.88 ± 7.2 1.36 ± 0.66 5 83.63 ± 1.9 Flat 0.06 ± 0.06 5.7 ± 0.61 

Cladonia spp. 14.82 ± 0.05 328.97 ± 1.18 7.47 ± 0.08 3 80.89 ± 0.08 Ridge 0.42 ± 0.007 5.35 ± 0.05 

Coniferous tree island 9.47 ± 0.2 345.49 ± 5.33 8.98 ± 0.35 6 80.36 ± 0.33 Midslope 0.63 ± 0.03 5.19 ± 0.25 

Empetrum nigrum - Juniperus communis 

dwarf heath 
16.08 ± 0.39 45.23 ± 1.36 24.71 ± 0.88 3 87.04 ± 0.48 Ridge 2.71 ± 0.19 46.72 ± 1.32 

Gaylussacia baccata shrubland 12.72 ± 0.12 259.96 ± 3.64 10.17 ± 0.14 4 80.47 ± 0.16 Midslope 0.61 ± 0.01 9.81 ± 0.22 

Gaylussacia shrub bog 14.96 ± 0.11 282.66 ± 2.42 5.08 ± 0.1 5 82.1 ± 0.1 Flat 0.26 ± 0.008 6.3 ± 0.13 

Ilex glabra shrubland 14.56 ± 0.18 377.25 ± 5.12 8.2 ± 0.3 4 85.16 ± 0.28 Valley 0.37 ± 0.01 3.85 ± 0.1 

Juncus balticus brackish marsh 1.37 ± 0.17 158.73 ± 17.42 2.93 ± 0.84 5 82.97 ± 0.65 Valley 0.14 ± 0.04 10.86 ± 1.69 

Juniperus communis - Corema conradii 

lithomorphic 
15.22 ± 0.12 222.23 ± 2.85 10.96 ± 0.21 3 83.49 ± 0.16 Ridge 0.73 ± 0.02 12.18 ± 0.27 

Juniperus horizontalis dwarf heath 9.72 ± 1 25.58 ± 3.3 23.58 ± 2.37 4 90.32 ± 0.93 Ridge 2.51 ± 0.67 36.98 ± 2.84 

Mixed tall shrubs 9.76 ± 0.23 317.66 ± 7.08 11.53 ± 0.4 4 78.88 ± 0.36 Valley 0.83 ± 0.03 8.73 ± 0.41 

Osmunda cinnamomea seep 10.96 ± 0.42 106.92 ± 9.23 8.08 ± 0.61 7 81.98 ± 0.57 Valley 0.62 ± 0.09 19.42 ± 1.21 

Rubus allegheniensis - Morella 

pensylvanica coastal vegetation 
12.7 ± 0.39 35.26 ± 1.2 24.98 ± 0.97 4 88.73 ± 0.44 Ridge 2.9 ± 0.29 50.87 ± 1.4 

Spartina patens salt marsh 0.9 ± 0.02 169.87 ± 9.24 2.73 ± 0.78 4 82.24 ± 1.07 Valley 0.13 ± 0.09 15.16 ± 2.68 

Thalictrum pubescens coastal vegetation 1.35 ± 0.1 148.05 ± 19.03 4.16 ± 7.73 5 82.86 ± 6.95 Toe Slope 0.34 ± 0.72 7.02 ± 0.41 

Trichophorum caespitosum bog 12.3 ± 0.33 382.67 ± 8.51 1.82 ± 0.12 6 83.92 ± 0.12 Flat 0.04 ± 0.01 1.18 ± 0.09 
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Discussion 

 For the first time, landscape patterns of plant community patches in the coastal 

barrens near Halifax, Nova Scotia were quantified at the fine-scale. Mapping plant 

community patches using high-resolution multispectral UAV imagery provided many 

insights into the overall structure of coastal barrens landscapes and the spatial patterns 

and relationships of the plant communities that occupy them. All three sites exhibited 

complex spatial patterns of plant communities, a wide spectrum of environmental 

gradients and topographic heterogeneity, and a high degree of patchiness. Furthermore, 

plant community patches varied greatly in size, shape, abundance, and spatial distribution 

from one plant community type to another and in many cases from one site to another. It 

is without a doubt that these complex landscape patterns are linked to various 

combinations of environmental factors; however, which combinations of environmental 

factors and for which communities remains to be determined. 

Coastal barrens landscapes in Halifax, Nova Scotia were dominated by shrublands 

and dwarf heath; however, their spatial patterns were not always consistent among sites. 

Interestingly, the most dominant plant community across the three sites was Gaylussacia 

baccata shrubland, occupying on average 21.6% of the three landscapes. Some studies 

have suggested that Gaylussacia baccata is the dominant shrub in the coastal barrens of 

eastern North America (Strang, 1972; Matlack et al., 1993; Harper, 1995; Dunwiddie et 

al., 1996); however, no study has been able to confirm this until now by using 

distributional maps. Dominance, however, was site-specific, and although Gaylussacia 

baccata shrubland was overall the most dominant community across the three landscapes, 
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Empetrum nigrum - Juniperus communis dwarf heath was most dominant at Prospect 

Bay.  

Gaylussacia baccata shrubland tended to have very large patch areas with 

irregular shapes, occurring mostly on midslopes. Similar to Porter (2013), Gaylussacia 

baccata shrubland was often found in higher elevations further from the coastline. 

However, two types of dwarf heath were most abundant across the three sites but had 

inconsistent spatial patterns among sites: Empetrum nigrum - Juniperus communis dwarf 

heath and Juniperus communis - Corema conradii lithomorphic. At Prospect Bay, 

Empetrum nigrum - Juniperus communis dwarf heath was the most abundant of all 

communities, occupying 38% of the landscape. The community had large patch areas 

with irregular shapes and mostly occurred on flats and midslopes closer to the coastline 

but also extending further inland. Interestingly, since the topography of Prospect Bay was 

homogeneous with few rock outcrops, Juniperus communis - Corema conradii 

lithomorphic was non-existent at the site. Conversely, at Chebucto Head and Polly’s 

Cove, Juniperus communis - Corema conradii lithomorphic was the dominant dwarf 

heath, mostly occupying exposed rock faces and ridges with small to medium patch sizes 

and simpler patch shapes. Empetrum nigrum - Juniperus communis dwarf heath was 

found within 150 m of the coastline for the two sites; however, it’s abundance was much 

lower at Polly’s Cove (0.28 ha) when compared to Chebucto Head (1.26 ha). This may be 

partly caused by the large barrier island (Figure 3.3) at Polly’s Cove providing shelter 

from wind and salt spray for parts of the site nearest the water, which could have created 

more favorable conditions for other communities such as Rubus allegheniensis - Morella 

pensylvanica coastal vegetation and bogs. This would support the hypothesis of Cameron 



 

149 

 

and Bondrup-Nielsen (2013) that taller shrub communities rather than dwarf heath would 

exist near the coastline if it weren’t for the high winds and salt spray. 

 Tree islands were common at Chebucto Head and Polly’s Cove but were seldom 

at Prospect Bay. Coniferous tree island patches were mostly large with simple shapes 

while Broadleaf tree islands also had simple shapes but had much smaller patch areas and 

were often intermixed with Coniferous tree islands and Mixed tall shrubs. Mixed tall 

shrubs were more prevalent across the three sites and had large irregular patch areas. 

Analysis of stream networks indicated that both tree islands and tall shrubs mostly 

occurred in moderately wet areas and further inland, which is consistent with Burley and 

Lundholm (2010). Although tree islands were recorded as occurring on midslopes from 

the slope position model, they actually occurred in valleys and on flats. The 

misclassification of slope position resulted from the limitation of computing ground 

elevation models from UAV imagery; 3D information can only be computed from what 

the UAV can ‘see’, so only vegetation canopies, not the ground beneath vegetation 

canopies, were reconstructed. This can be mostly alleviated by generalizing the elevation 

model to a coarser resolution, for example 2 m, and assigning the minimum elevation 

value within each cell. This technique of computing a ground DEM will still be limited 

for larger stands of trees when there is no visible ground nearby. This issue was not as 

apparent for Mixed tall shrubs, where they were found mostly on midslopes at Chebucto 

Head, flats at Prospect Bay, and valleys at Polly’s Cove. Interestingly, a strong 

relationship was found between tree islands and tall shrubs, where tall shrubs often 

surrounded tree islands (Burley et al., 2010). It is possible that this was due to succession, 

where tree islands colonized valleys and gradually succeeded the original tall shrub 
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communities. Another explanation could be due to topographic gradients: tree islands 

may be more suited to sheltered valleys and the transition from valleys to midslopes 

provided more suitable habitat for tall shrubs rather than tree islands. 

 Various types of bogs were present at all three sites although they were most 

abundant at Prospect Bay and Polly’s Cove. Patch areas, numbers, and shapes varied 

according to the type of bog, but most had small to medium sized patch areas with simple 

shapes. The main exception was at Prospect Bay, where Grass/Sedge/Open bogs were the 

second most dominant plant community type, occupied 20.6% of the landscape, and had 

irregular patch shapes. What was most interesting was that the majority of bogs seemed 

to depend on two main environmental factors occurring at two different scales: slope 

position classification (local) and the spatial distribution of stream networks across the 

landscape (global), which would depend on the shape of the landscape as a whole. Bogs 

mostly occurred on flat areas that had one or more higher order streams either flowing 

directly into it or was flowing nearby. This dependency of bogs on flat areas and stream 

networks would explain the large prevalence of bogs at Prospect Bay, since the site was 

mostly composed of flat areas or gentle slopes and had two main streams that undulated 

across the site, tracing the distribution of the bogs. 

In addition to slope position and location of stream networks, bogs also occurred 

in areas of low wind exposure, low local and global topographic ruggedness, and mostly 

at higher altitudes and distances further from the coastline. One exception was at Polly’s 

Cove, where two bogs were found occurring near the coastline. Their unusual occurrence 

near the coastline was likely caused by the sheltering of wind and salt spray from the 

large barrier island to the south-west of the site (Figure 3.3). 
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 Spatial patterns of marshes and seeps varied from one site to another. Osmunda 

cinnamomea seep was the only kind of seep detected and was present at all sites. Spatial 

patterns were very similar at Chebucto Head and Polly’s Cove, where Osmunda 

cinnamomea seep inhabited valleys with highest stream orders, mostly occurred within 

150 meters of the coastline and in intermediate elevations. Conversely, at Prospect Bay 

Osmunda cinnamomea seep was recorded in higher elevations, further from the coastline 

(> 300 meters), in flat areas and with medium stream orders. Patches were small to 

medium-sized and had low shape complexity. Interestingly, across all three sites 

Osmunda cinnamomea seep was most often adjacent to Gaylussacia baccata shrubland 

and Mixed tall shrubs. 

 Marshes were only observed at Prospect Bay and Polly’s Cove. Spatial patterns of 

marshes at the two sites were quite different. At Prospect Bay, Juncus balticus brackish 

marsh was observed in an alluvial fan in the south-western portion of the site 

accompanied by Grass/Sedge/Open bogs, whereas at Polly’s Cove, Juncus balticus 

brackish marsh accompanied Spartina patens salt marsh in a salt water inundation zone in 

the south-eastern portion of the site and in much lower elevations (< 2 m). These findings 

are consistent with Porter et al. (2015), who found that Spartina patens salt marsh often 

was competitively dominant in the lower areas of salt water inundation zones with higher 

salt concentration and Juncus balticus brackish marsh occupied slightly higher elevations. 

The other marsh at Prospect Bay was Spartina pectinata brackish marsh, which occurred 

in low elevations closer to the coastline and on midslopes. All types of marshes generally 

had small to medium-sized patch areas with low to intermediate shape complexities. It is 

hypothesized that marshes were not observed at Chebucto Head because of the 
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topography of the site. Based on observations from Prospect Bay and Polly’s Cove and 

previous studies on salt marshes (Porter et al., 2015; van Proosdij et al., 2006), marshes 

are more suited to low elevations, particularly for salt water marshes requiring tidal 

inundation, and simple flat terrain. Since much of Chebucto Head’s coastline is rugged 

cliffs with few flat areas near the coastline, there is no suitable habitat for marshes at the 

site. 

 Coastal vegetation was a class used to capture all other communities occurring 

along the coastline, mostly being herbaceous. Each site had unique coastal vegetation 

types, although Calamagrostis canadensis coastal vegetation was present at both 

Chebucto Head and Polly’s Cove. Coastal vegetation mostly inhabited areas of low 

elevation closest to the coastline and experienced medium to high amounts of wind 

exposure and surface ruggedness (local and global). Patch numbers were mostly low and 

sizes of patches were small to medium-sized with low to medium shape complexity. 

 Perhaps one of the most unexpected results of this study was the sheer abundance 

of Cladonia spp. at all three sites. Lichens can be very sensitive to disturbance and many 

species of lichens are listed as either uncommon or rare, making them a high priority for 

conservation efforts (Christensen and Johnsen, 2001; Porter, 2013). The presence of 

lichen in the coastal barrens in Nova Scotia has been previously noted (Oberndorfer and 

Lundholm, 2009; Cameron and Bondrup-Nielsen, 2013; Porter, 2013); however, no study 

to date has been able to quantify its abundance across a landscape due to the coarseness 

of previous remote sensing techniques. The amount of lichen occupying each site was 

very similar: Chebucto Head had 1.2 ha of Cladonia spp.; Prospect Bay had 1.22 ha; and 

Polly’s Cove had 1.12 ha. Patches were numerous across each landscape (> 15,000) and 
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tended to be small to medium-sized with low to intermediate shape complexity. At 

Chebucto Head and Polly’s Cove, lichen was most abundant on ridges and rock 

exposures with low moisture availability. At Prospect Bay, however, rock exposures were 

infrequent, and lichen instead inhabited flat, gentle sloping areas that were moderately 

wet. Interestingly, this same habitat type occurred on the eastern part of Chebucto Head, 

50-100 m from the coastline, where an unexpectedly dense population of Cladonia spp. 

was observed. This suggests that there are at least two environmental scenarios for which 

Cladonia spp. are likely to occur in dense populations on a landscape: on dry rock-

exposed ridges or on moderately wet flats or gentle slopes. This is supported by 

Oberndorfer and Lundholm (2009), who found that various species of Cladonia occupy 

different niches and habitats in the coastal barrens. Having knowledge of the locations 

and environmental requirements of rare or uncommon species across a landscape could 

help to better focus conservation efforts for protecting sensitive species like lichen. 

 Patch perimeters were highly correlated with patch areas (r2 = 0.99). Perimeter-

area ratios (area-weighted) of patches were generally smaller for classes with larger patch 

areas compared to classes with smaller patch areas. Although perimeter-area ratio and 

shape index are both measures of shape complexity, results from the two metrics were not 

consistent for classes with larger patch areas. For example, Gaylussacia baccata 

shrubland had an area-weighted perimeter-area ratio of 1.60, the second lowest score, but 

had an area-weighted shape index of 22.16, the highest shape index recording for any 

class at Chebucto Head. This is consistent with Patton (1975), who proposed the shape 

index as an alternative to the conventional perimeter-area ratio as a measure of shape 

complexity, since perimeter-area ratio fails to account for differences in patch sizes. 
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Instead, shape index evaluates the complexity of a patch by comparing it to a circle or 

square standard. 

 In this study, environmental factors, including elevation and wind exposure, were 

mapped across each site to help understand the structure and spatial heterogeneity of the 

landscapes. Chebucto Head and Polly’s Cove had similarly high degrees of topographic 

heterogeneity and as a result had similar landscape patterns for the dominant vegetation 

types. Topographic variability of Prospect Bay was much different, having a much more 

homogeneous and uniform landscape. Not surprisingly, plant communities and their 

spatial patterns were quite different. Based on these findings, using 3D models from the 

SfM photogrammetric processing of UAV imagery and GIS techniques to model 

environmental factors gave many useful insights into the dynamic nature of coastal 

barrens and helped to explain the complex spatial patterns of the plant communities. 

Further research should continue to fine-tune the current methods used to derive 

environmental conditions for landscapes, such as wind exposure models, and develop 

new techniques for modeling other environmental conditions that may be useful for 

characterizing a landscape’s environment and understanding its landscape patterns. 

 Historically, humans have caused a wide range of disturbances to coastal barrens, 

in some cases maintaining them by preventing re-forestation, such as accidental or 

purposeful fires, grazing from livestock, clear-cutting for timber, and creation of hiking 

trails (Heikens and Robertson, 1994; Mitchell et al., 2000; Motzkin and Foster, 2002; 

Kerbiriou et al., 2008; von Oheimb et al., 2008). These activities have been found to 

impact biodiversity, species richness, and threaten rare species. Anthropogenic 

disturbances were clearly visible at all sites using high-resolution UAV imagery. At 
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Chebucto Head, numerous hiking trails extended along the coastal cliffs and dwarf heath 

and several paths were noticed further inland that traced through shrublands and several 

tree islands. At Prospect Bay, two main hiking trails dissected the site horizontally, one 

along the coastline and the other 100-150 m from the coastline. Polly’s Cove was perhaps 

the most disturbed, with numerous hiking trails tracing the coastline as well as multiple 

ATV Trails carving out bogs at the back of the site (see mapped ATV trails in Figure 

3.8). To gain a better understanding of the extent and impacts of disturbances on coastal 

environments and how they impact the landscape patterns of vegetation, the use of 

multispectral imagery and the Normalized Differentiation of Vegetation Index (NDVI) is 

a strong possibility. For example, Minařík and Langhammer (2016) used multispectral 

UAV imagery to assess disturbance dynamics in a forest and found that NDVI was one of 

the best indices for identifying individual trees that were healthy, dead, and infested with 

bark beetles. It is unfortunate that coastal ecosystems like the coastal barrens are subject 

to such amounts of disturbance, which highlights the importance of developing better 

monitoring tools and management practices to protect them. 

 Harper et al. (2005) discuss the importance of edge to interior relationships and 

how the amount of edge of a habitat patch can influence habitat fragmentation, habitat 

loss, changes in biodiversity and species richness, and community structure. Although it 

was not within the scope of this study to quantify edge-interior relationships of plant 

community patches in relation to habitat fragmentation and biodiversity, several metrics 

were quantified for patches in this study that relate to edge-interior relationships, 

including perimeter-area ratio, shape index, and the amount of edge shared with other 

plant communities. Natural edges of fine scale plant community patches were detectable 
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from UAV imagery which made it possible the quantify edge-interior relationships. 

Given the important implications of edge-interior relationships for habitats and ecosystem 

biodiversity, future research should consider the use of UAVs as a tool to detect natural 

edges of plant communities and to quantify edge-interior relationships at different spatial 

scales. 

 Classifying landscapes with UAV imagery can be highly accurate and can offer 

an unprecedented level of detail about the structure and composition of a landscape 

(Cunliffe et al., 2016; Fraser et al., 2016). Furthermore, maps provide a way to 

qualitatively and quantitatively analyze spatial patterns and relationships of vegetation 

and other features across landscapes, offering many different avenues for research in 

landscape ecology and other scientific fields. Although final overall classification 

accuracies of plant community patches from UAV imagery were very good for all three 

sites, many challenges were encountered, and it was a lengthy process to optimize the 

image classification methodology. The Support Vector Machines classifier in ArcGIS 

proved to be excellent for classifying UAV imagery compared to other methods tested, 

such as Supervised Maximum Likelihood. The classifier was quite robust for low sample 

sizes, although most issues encountered with misclassifications were related to classes 

with not enough samples. A minimum of 4 field plot samples is ideal for each class, 

although realistically this isn’t always possible. Consider the example of Toxicodendron 

radicans coastal vegetation (poison ivy) at Prospect Bay: only two patches were 

identified in the entire landscape, therefore it would be impossible to have any more than 

two field plot samples unless samples were pseudoreplicates (i.e. multiple samples from 
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the same patch). As with many tools, trial and error was needed to find out the best 

settings and parameters for the image classifier. 

 The most challenging communities to classify were those with low field plot 

samples and those that were either structurally and/or spectrally similar to other 

communities. Rubus allegheniensis - Morella pensylvanica coastal vegetation at Polly’s 

Cove was one of the more difficult communities to classify because it only had a few 

samples and it was similar in appearance to several other communities, such as 

Gaylussacia baccata shrubland. Mixed tall shrubs were also challenging to classify at 

Chebucto Head and Polly’s Cove because of a similar appearance to Gaylussacia baccata 

shrubland. To reduce misclassifications between these two communities at the two sites, 

a decision tree approach was used after the initial image classification procedure; the two 

shrublands were temporarily joined as one group and subsequently re-split based on a 

cutoff value using a structural index, such as Topographic Position Index (TPI), since 

Mixed tall shrubs have greater structural variability and are generally taller than 

Gaylussacia baccata shrubland. The cutoff value was selected by calculating 95% 

confidence intervals of the mean values of the structural index for each community and 

the value that best split the two groups as chosen. Doing so improved classification 

accuracies of the shrublands at both sites, although Mixed tall shrubs still classified 

poorly at Polly’s Cove due to low sample sizes. Using this post-classification technique 

may be helpful when the initial classification yields poor results for one or more classes 

and there is a known index or parameter that can later be used to separate them. 

 From observation, many misclassifications should have been preventable. For 

example, sometimes Coniferous tree islands were misclassified as dwarf heath due to 
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their similar spectral appearance; however, their differences in structure should have 

prevented those misclassifications. Furthermore, most communities could be easily 

discriminated by visually inspecting the RGB imagery alone, suggesting that the SVM 

classifier wasn’t always making the best decisions given the information provided. 

Although results were overall still very good using the SVM classifier, future research 

should continue to explore, improve, and develop better machine learning algorithms for 

classifying UAV imagery. 

 In this study, detailed 3D models of landscapes were made by processing UAV 

imagery in Agisoft software using SfM photogrammetry. The purpose of generating high-

resolution 3D models was 2-fold: 1) to assist image classification by digitally 

reconstructing vegetation canopies and deriving structural indices of plant communities, 

and 2) to model environmental factors such as elevation and wind exposure to understand 

the landscape patterns of plant communities. Using Agisoft to create 3D landscape 

models provided realistic representations of the landscapes with very few computational 

errors. Many structural differences were found between plant communities using the 3D 

landscape models, and environmental factors derived from the elevation models were 

able to explain many important landscape patterns and relationships of the plant 

communities across the landscapes. One challenge with using UAV imagery to derive 3D 

models is the creation of bare earth/bare ground models. Objects or surfaces can only be 

digitally reconstructed if they are in direct view of the aircraft, so the ground beneath 

vegetation canopies is often not measured and incorporated into the 3D models. This 

poses limitations for estimating canopy height of vegetation and computing bare ground 

models for deriving environmental indices such as stream networks and slope position 
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classifications (Dandois, 2014; Aasen et al., 2015; Cunliffe et al., 2016; Fraser et al., 

2016). One option is to generalize the elevation model to a coarser resolution and assign 

the minimum elevation value observed for each cell. Future research should investigate 

techniques to optimize the derivation of bare ground models from UAV imagery when 

bare ground is not visible and further improve the computation of 3D models from UAV 

imagery using SfM photogrammetry. 

 

Implications and Future Work 

 To the author’s knowledge, this is the first study to reveal the landscape structure 

of coastal barrens using detailed maps of plant communities, landscape features, and 

environmental factors. Novel techniques in remote sensing and image processing were 

used to derive high-resolution 3D models and orthomosaics of coastal barrens landscapes, 

shedding a new light on their true complexity and patchiness. The findings of this study 

show that landscape patterns of plant communities in the coastal barrens are very 

complex but are linked to various combinations of environmental factors, particularly 

slope position, proximity to stream networks, elevation, and the distance from the 

coastline. Furthermore, creating highly detailed maps of plant community patches and 

quantifying their spatial patterns and distributional statistics, such as total area occupied, 

can help to better inform conservation managers about what measures are needed to 

protect these ecosystems and where to allocate resources in future efforts. Maps not only 

serve as communication tools for scientific researchers but can also help to better inform 

the public and showcase the brilliant diversity and complexity of these ecosystems. 

Future work should continue to expand on spectral and structural indices to use for 
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discriminating plant communities, explore other environmental factors for characterizing 

coastal environments and how they relate to the landscape patterns of plant communities, 

and investigate new ways to quantify and interpret the spatial patterns of vegetation from 

plant community maps. Optimizing and standardizing image acquisition techniques, 

camera settings, and image processing techniques for UAV imagery will help to improve 

classification accuracies of plant community maps, conduct temporal analyses, and will 

make maps more comparable. Lastly, more work is still needed to document the different 

species and plant communities occurring in these coastal environments and assign 

classifications using standardized classification systems, such as the Canadian National 

Vegetation Classification (CNVC). 
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Conclusion 

 In this study, the landscape structure of three coastal barrens sites in the Halifax 

region was revealed through maps of plant community patches, landscape features, and 

environmental factors. Coastal barrens were dominated by shrublands and dwarf heath; 

however, many other types of communities co-existed, including bogs, salt marshes, and 

tree islands. Sites displayed a wide spectrum of environmental gradients and topographic 

heterogeneity, providing many different habitat types and niches, resulting in complex 

spatial patterns of vegetation and a high degree of patchiness. Plant community patches 

varied in size, shape, abundance, and spatial distribution from one plant community type 

to another and in many cases from one site to another. One of the most unexpected results 

of this study was the predominance of Cladonia spp. lichen; lichen occupied 4-5% of 

each landscape and dense populations were found on dry, rock-exposed ridges and on 

mildly wet slopes and flats. This is a significant finding because many species of lichen 

are uncommon or rare, highlighting the conservation value of coastal barrens and the 

need to protect them. 3D models from the SfM photogrammetric processing of UAV 

imagery were essential for computing structural indices for image classification and for 

deriving environmental factors such as stream networks and wind exposure models. 

Lastly, mapping plant community patches at the fine-scale with high accuracy would not 

have been possible without the use of aerial imagery with sub-decimeter resolutions. 

Maps offer tremendous potential for quantifying spatial patterns and relationships of 

species and communities across landscapes, can inform conservation managers, and can 

be used as communication tools to inform and engage the public. Future research should 
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continue to explore the use of UAVs for mapping species and communities across coastal 

barrens landscapes and quantify their landscape patterns. 
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The coastal barrens of Chebucto Head, Nova Scotia viewed from a UAV  
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 The coastal barrens of Halifax, Nova Scotia are patchy mosaics of plant 

communities that experience harsh environmental conditions. Despite their harsh 

conditions, coastal barrens are diverse ecosystems and are inhabited by rare and 

uncommon species, making them a high priority for conservation (Oberndorfer and 

Lundholm, 2009; Burley and Lundholm, 2010; Porter, 2013). Currently, maps have never 

been made of the plant communities in the coastal barrens of Halifax, Nova Scotia, and 

thus there is little knowledge of their distributions, spatial patterns and relationships, and 

spatial configurations across the landscapes. The purpose of this study was to evaluate the 

use of an unmanned aerial vehicle (UAV) to discriminate plant communities, map their 

distributions, and to quantify the landscape structure of coastal barrens in the Halifax 

region of Nova Scotia. 

 In 2016, a UAV was used to collect high-resolution multispectral imagery at three 

coastal barrens sites in the Halifax region of Nova Scotia: Chebucto Head, Prospect Bay, 

and Polly’s Cove. Ground truthing field plot data were also collected in 2016 to 

document the locations of plant communities at all three sites. Plant communities were 

classified at three classification levels based on the Canadian National Vegetation 

Classification (CNVC, 2013): the association level, which is based primarily on floristic 

criteria; the broadened association level, which was formed by merging confused classes 

from the association level; and the formation class, which is based primarily on 

physiognomy. Images were processed using structure from motion (SfM) 

photogrammetry to create 3D models and orthomosaics of the landscapes, from which 

spectral and structural indices were derived and evaluated for discriminating the plant 

communities using linear discriminant analysis (LDA). All plant communities from the 
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three classification levels were discriminated with 95% confidence except for one pair in 

the association level classification – two very similar shrub bogs. Overall classification 

accuracy for the association level classification was lower (63%) than the formation class 

classification (92%); however, merging confused groups to form the broadened 

association level classification improved the accuracy to 83%. It was found that most 

confusion arose between plant communities that were structurally similar. These results 

show that plant communities in the coastal barrens can be discriminated at different 

classification levels using UAV imagery. 

 In the second part of this study, UAV imagery from 2016 was classified using the 

support vector machines (SVM) classifier in ArcGIS to produce detailed maps of plant 

community patches from the broadened association level classification based on the 

CNVC as well as landscape features. Environmental factors were also mapped to further 

describe landscape structure and to understand the landscape patterns of plant 

communities. Sites were dominated by shrublands and dwarf heath; however, other 

communities co-existed as well, including bogs, salt marshes, and tree islands. 

Interestingly, the most abundant community across all sites was Gaylusaccia baccata 

shrubland, which is consistent with several other studies on coastal barrens (Strang, 1972; 

Matlack et al., 1993; Harper, 1995; Dunwiddie et al., 1996). Site-specifically, however, 

Prospect Bay was dominated by Empetrum nigrum - Juniperus communis dwarf heath. 

Each site showed complex spatial patterns of plant communities, a wide spectrum of 

environmental gradients and topographic heterogeneity, and a high degree of patchiness. 

Plant community patches varied in size, shape, abundance, and spatial distribution for 

different types of plant communities. Landscape patterns of most plant communities were 
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related to various combinations of environmental factors, including slope position, 

proximity to stream networks, elevation, and distance to coastline. Furthermore, the 

degree of topographic heterogeneity of the site could explain the landscape patterns of the 

dominant plant communities. For example, Chebucto Head and Polly’s Cove had 

similarly high levels of topographic heterogeneity and was composed of many valleys, 

midslopes, flats, and ridges. As a result, most inland vegetation were shrublands with 

dwarf heath and lichen inhabiting rock-exposed areas and dwarf heath and other coastal 

vegetation occupying areas nearest the coastline. Conversely, Prospect Bay had very flat 

at homogeneous terrain, providing habitat for bogs and dwarf heath. 

 The findings of this study show that plant communities in the coastal barrens can 

be discriminated at different classification levels using high-resolution multispectral 

imagery collected from a UAV. Classifying UAV imagery with ground truthing data 

from field plots can yield highly accurate and detailed maps of plant community patches 

across landscapes, offering tremendous potential for quantifying landscape patterns, 

spatial interrelationships, and revealing the underlying structure of landscapes. 

Applications for using UAVs as a mapping and monitoring tool for these ecosystems are 

limitless: mapping disturbance regimes, stress, and health of vegetation and ecosystems; 

evaluating impacts of climate change; informing conservation managers about how to 

design protected areas and where to allocate resources; communicate, inform, and engage 

the public using maps; quantifying interior-edge relationships for assessing habitat 

fragmentation and impacts on ecosystem biodiversity; quantifying spatial distributions, 

relationships, and configurations of vegetation and their patches; mapping biophysical 

parameters, such as biomass, chlorophyll content in leaves, nutrient cycles, leaf water 
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content, and vegetation productivity; and lastly, conducting preliminary surveys of 

landscapes to evaluate types of habitats and to target field sampling efforts. These 

applications of UAVs are not limited to the coastal barrens and can be applied to nearly 

any terrestrial ecosystem. 

 Aircraft altitude, seasonality, weather conditions, and camera settings are all 

important considerations for classifying UAV imagery to develop landcover maps. Flight 

altitude of the aircraft determines the ground resolution/pixel size of the imagery. For this 

study, 50 m altitude offered plenty of spectral and structural detail of plant communities 

and landscape features and only required 1 additional flight to encompass the same study 

area as compared to the 90 m altitude surveys. Surveying the sites in both the spring and 

summer offered contrasting views of plant communities and their changes in phenology. 

Some communities were best discriminated during the spring, such as Cladonia spp., and 

others during the summer, such as coastal herbaceous vegetation. It is therefore highly 

recommended to consider seasonal changes in vegetation for mapping plant communities 

across landscapes. Weather conditions, such as wind, time of day, time of year, cloud 

cover and illumination, and temperature, can affect the acquisition and quality of aerial 

imagery collected from the UAV. For coastal environments with high winds, it is 

recommended to survey earlier in the day. For illumination, cloudy skies are preferable 

because the landscape is more evenly lit and surface reflectance of sunlight for water and 

plant leaves is much lower. In cases where cloudy skies are infrequent, it is alternatively 

best to survey in full sun with no clouds. Lastly, most problems with illumination can be 

mitigated by controlling the settings of the UAV sensor(s). Setting the white balance and 

exposure settings to a constant value will help keep illumination and colors constant in 
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images. Another option is to collect only raw images; however, this requires much more 

storage space and potentially a lot of image editing. For this study, white balance was 

fixed for summer surveys but was set to automatic for the spring; consequently, colors of 

vegetation were not as consistent for spring surveys, particularly at Prospect Bay, which 

may have resulted in lower classification accuracies for some communities. 

 One of the greatest debates in ecology is whether plant communities exist as 

discrete patches (Clements, 1916) or as a continuum of species along environmental 

gradients (Gleason, 1926). The modern synthesis of these two views assumes that plant 

species are distributed individualistically but can form associations or communities that 

are in discrete and recognizable units (van der Maarel and Franklin, 2013; Porter, 2013). 

The findings of this study add support to the modern synthesis of the plant community: 

when field data were reviewed, it was clear that no two plant communities that were 

sampled had identical compositions, which agrees with Gleason’s view of species 

distributions. What was also apparent, however, was that there were trends in the field 

plot data and it was clear that discrete, recurring associations existed. This was further 

supported when spectral and structural indices from UAV imagery were used to 

successfully discriminate 99% of plant community comparisons with 95% confidence, 

indicating that there are inherent differences between plant community types. 

Furthermore, for the first time classified UAV imagery showed plant communities 

distributed across each coastal barrens landscape as discrete patches with various shapes, 

sizes, and abundances, which can be verified by comparing the classified maps to the 

original RGB imagery. Classified maps of plant community patches were highly accurate 

at predicting the plant community classification from ground truthing field plot data, 
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adding insurmountable evidence that plant communities in the coastal barrens can be 

observed as discrete, recognizable units. 

 

Implications and Future Work 

 For the first time, empirical evidence has shown that multispectral imagery 

collected from UAVs can discriminate plant communities in the coastal barrens at 

different classification levels. It is also for the first time that detailed maps of plant 

community patches were made for coastal barrens in Nova Scotia. Furthermore, no other 

study to the author’s knowledge has revealed the structure of coastal barrens landscapes 

at the level of detail of this study. This was all made possible by using novel techniques 

for acquiring images with UAVs, such as using mobile applications to autonomously 

control the UAV to collect sequential overlapping images and using SfM 

photogrammetry to create high-resolution orthomosaics and compute 3D landscape 

models. Applications of UAVs and their use for mapping and monitoring ecosystems like 

the coastal barrens are limitless. Future research should continue to explore, develop, and 

improve methods for acquiring and processing UAV imagery. Researchers should also 

explore new spectral and structural indices to help map vegetation types and improve 

methods for deriving environmental factors from 3D surfaces, such as wind exposure. 

Lastly, mapping coastal barrens landscapes and documenting their species and 

communities will improve our understanding of their landscape structure, function, and 

dynamics – all of which can better inform land managers, conservation managers, and 

policy makers. 
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Tables 
 

Table A1.1. Specifications of the unmanned aerial vehicle used in this study. 

Aircraft 

Model DJI Phantom 3 Professional 

Aircraft Type Quadcopter 

Weight  1.280 kg  

Max Speed  16 m/s or 58 km/h  

Max Flight Time  ~23 minutes  

Operating Temperature  0° to 40°C  

Satellite Positioning System  GPS/GLONASS  

Sensor 1: RGB Gimbal Camera 

Sensor  1/2.3” CMOS  

Effective Pixels  12.4  

Lens  FOV 94° 20 mm (35 mm format equivalent) f/2.8 focus 

at ∞  

ISO Range  100-3200 (video); 100-1600 (photo)  

Image Size  4000x3000  

Still photography modes  Single shot; Burst Shooting (3/5/7 frames); Auto 

Exposure Bracketing (AEB) (3/5 bracketed frames); 

Time-lapse  

Video Recording Modes  UHD: 4096x2160p 24/25. 3840x2160p 24/25/30; FHD: 

1920x1080p 24/25/30/48/50/60; HD: 1280x720p 

24/25/30/48/50/60  

Max Video Bitrate  60 Mbps  

Photo  JPEG, DNG (RAW)  

Video  MP4, MOV (MPEG-4 AVC/H.264)  

Supported SD Cards  Micro SD 

Ground Sampling Distance  ~4 cm (90 m altitude); ~2 cm (50 m altitude)  

Sensor 2: Sentera NIR Sensor 

Sensor  1.2MP CMOS  

Lens Focal Length  4.14 mm  

Image Format  JPEG, TIFF  

Supported SD Cards  Micro SD 

Ground Sampling Distance  ~8 cm (90 m altitude); ~4 cm (50 m altitude)  
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Table A1.2. Flight times and conditions for UAV surveys from May to August in 2016. 

Site Date 

Altitude 

Above 

Ground 

Start 

Time 
End Time Weather 

Chebucto 

Head 

May 25, 2016 90 m 2:05 pm 2:34pm 
Partly 

sunny 

August 8, 2016 50 m 9:46 am 11:01am Sunny 

Prospect 

Bay 

May 27, 2016 90 m 10:11 am 10:34am Cloudy 

August 9, 2016 50 m 9:34 am 11:06am Sunny 

Peggy’s 

Cove 

May 29, 2016 90 m 9:47 am 10:09am 
Partly 

sunny 

August 5, 2016 50 m 9:31 am 10:46am Sunny 
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Table A1.3. Full list of indices extracted from UAV imagery and the 3D point cloud. 

Index Description 

R Mean May Mean of Red channel within a training polygon in May 

R SD May Standard deviation of Red channel within a training polygon in 

May 

R Mean August Mean of Red channel within a training polygon in August 

R SD August Standard deviation of Red channel within a training polygon in 

August 

Change in R 

Mean 

Change in mean of Red channel within a training polygon from 

May to August 

G Mean May Mean of Green channel within a training polygon in May 

G SD May Standard deviation of Green channel within a training polygon in 

May 

G Mean August Mean of Green channel within a training polygon in August 

G SD August Standard deviation of Green channel within a training polygon in 

August 

Change in G 

Mean 

Change in mean of Green channel within a training polygon from 

May to August 

B Mean May Mean of Blue channel within a training polygon in May 

B SD May Standard deviation of Blue channel within a training polygon in 

May 

B Mean August Mean of Blue channel within a training polygon in August 

B SD August Standard deviation of Blue channel within a training polygon in 

August 

Change in B 

Mean 

Change in mean of Blue channel within a training polygon from 

May to August 

R/B Mean May Mean of Red channel divided by Blue channel within a training 

polygon in May 

R/B SD May Standard deviation of Red channel divided by Blue channel within 

a training polygon in May 

R/B Mean 

August 

Mean of Red channel divided by Blue channel within a training 

polygon in August 

R/B SD August Standard deviation of Red channel divided by Blue channel within 

a training polygon in August 

Change in R/B 

Mean 

Change in mean of Red channel divided by Blue channel within a 

training polygon from May to August 

R/G Mean May Mean of Red channel divided by Green channel within a training 

polygon in May 

R/G SD May Standard deviation of Red channel divided by Green channel 

within a training polygon in May 

R/G Mean 

August 

Mean of Red channel divided by Green channel within a training 

polygon in August 

R/G SD August Standard deviation of Red channel divided by Green channel 

within a training polygon in August 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

Change in R/G 

Mean 

Change in mean of Red channel divided by Green channel within 

a training polygon from May to August 

G/B Mean May Mean of Green channel divided by Blue channel within a training 

polygon in May 

G/B SD May Standard deviation of Green channel divided by Blue channel 

within a training polygon in May 

G/B Mean 

August 

Mean of Green channel divided by Blue channel within a training 

polygon in August 

G/B SD August Standard deviation of Green channel divided by Blue channel 

within a training polygon in August 

Change in G/B 

Mean 

Change in mean of Green channel divided by Blue channel within 

a training polygon from May to August 

NIR Mean May Mean of Near-Infrared within a training polygon in May 

NIR SD May Standard deviation of Near-Infrared within a training polygon in 

May 

NIR Mean 

August 

Mean of Near-Infrared within a training polygon in August 

NIR SD August Standard deviation of Near-Infrared within a training polygon in 

August 

Change in NIR 

Mean 

Change in mean of Near-Infrared within a training polygon from 

May to August 

NDVI Mean 

May 
Mean of NDVI within a training polygon in May. NDVI = 

NIR-R

NIR+R
 

 

NDVI SD May Standard deviation of NDVI within a training polygon in May. 

NDVI = 
NIR-R

NIR+R
 

 
 

NDVI Mean 

August 
Mean of NDVI within a training polygon in August. NDVI = 

NIR-R

NIR+R
 

 

NDVI SD 

August 

Standard deviation of NDVI within a training polygon in August. 

NDVI = 
NIR-R

NIR+R
 

 

Change in NDVI 

Mean 

Change in mean of NDVI within a training polygon from May to 

August. NDVI = 
NIR-R

NIR+R
 

 

CIVE Mean 

May 

Mean of Color Index of Vegetation (CIVE) within a training 

polygon in May. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

CIVE SD May Standard deviation of Color Index of Vegetation (CIVE) within a 

training polygon in May. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

CIVE Mean 

August 

Mean of Color Index of Vegetation (CIVE) within a training 

polygon in August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

CIVE SD August Standard deviation of Color Index of Vegetation (CIVE) within a 

training polygon in August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Change in CIVE 

Mean 

Change in mean of Color Index of Vegetation (CIVE) within a 

training polygon from May to August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Hue Mean May Mean of Hue in degrees (0-360°) within a training polygon in 

May. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Hue SD May Standard deviation of Hue in degrees (0-360°) within a training 

polygon in May. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Hue Mean 

August 

Mean of Hue in degrees (0-360°) within a training polygon in 

August. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Hue SD August Standard deviation of Hue in degrees (0-360°) within a training 

polygon in August. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Change in Hue 

Mean 

Change in mean of Hue in degrees (0-360°) within a training 

polygon from May to August. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Saturation Mean 

May 

Mean of Saturation within a training polygon in May. 

Saturation = 1- (
R + G + B

3
) *a 

Saturation SD 

May 

Standard deviation of Saturation within a training polygon in May. 

Saturation = 1- (
R + G + B

3
) *a 

Saturation Mean 

August 

Mean of Saturation within a training polygon in August. 

Saturation = 1- (
R + G + B

3
) *a 

Saturation SD 

August 

Standard deviation of Saturation within a training polygon in 

August. 

Saturation = 1- (
R + G + B

3
) *a 

Change in 

Saturation Mean 

Change in mean of Saturation within a training polygon from May 

to August. 

Saturation = 1- (
R + G + B

3
) *a 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

Intensity Mean 

May 

Mean of Intensity within a training polygon in May. 

Intensity = 
R + G + B

3
 

Intensity SD 

May 

Standard deviation of Intensity within a training polygon in May. 

Intensity = 
R + G + B

3
 

Intensity Mean 

August 

Mean of Intensity within a training polygon in August. 

Intensity = 
R + G + B

3
 

Intensity SD 

August 

Standard deviation of Intensity within a training polygon in 

August. 

Intensity = 
R + G + B

3
 

Change in 

Intensity Mean 

Change in mean of Intensity within a training polygon from May 

to August. 

Intensity = 
R + G + B

3
 

Vegetation 

Height Mean 

Mean of vegetation height calculated within a training polygon in 

August. Vegetation height was calculated by subtracting the 

minimum from the maximum elevation value within a 50-cm 

search radius of each pixel using the 10-cm elevation model 

Vegetation 

Height Max 

Maximum vegetation height calculated within a training polygon 

in August. Vegetation height was calculated by subtracting the 

minimum from the maximum elevation value within a 50-cm 

search radius of each pixel using the 10-cm elevation model 

Vegetation 

Height SD 

Standard deviation of vegetation height calculated within a 

training polygon in August. Vegetation height was calculated by 

subtracting the minimum from the maximum elevation value 

within a 50-cm search radius of each pixel using the 10-cm 

elevation model 

TPI Mean 5 Mean of Topographic Position Index (TPI) within a training 

polygon in August. TPI was calculated from the 10-cm elevation 

model using a 5x5 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI SD 5 Standard deviation of Topographic Position Index (TPI) within a 

training polygon in August. TPI was calculated from the 10-cm 

elevation model using a 5x5 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

 

 



 

184 

 

(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

TPI Mean 11 Mean of Topographic Position Index (TPI) within a training 

polygon in August. TPI was calculated from the 10-cm elevation 

model using a 11x11 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI SD 11 Standard deviation of Topographic Position Index (TPI) within a 

training polygon in August. TPI was calculated from the 10-cm 

elevation model using a 11x11 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI Mean 33 Mean of Topographic Position Index (TPI) within a training 

polygon in August. TPI was calculated from the 10-cm elevation 

model using a 33x33 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI SD 33 Standard deviation of Topographic Position Index (TPI) within a 

training polygon in August. TPI was calculated from the 10-cm 

elevation model using a 33x33 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI Mean 111 Mean of Topographic Position Index (TPI) within a training 

polygon in August. TPI was calculated from the 10-cm elevation 

model using a 111x111 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI SD 111 Standard deviation of Topographic Position Index (TPI) within a 

training polygon in August. TPI was calculated from the 10-cm 

elevation model using a 111x111 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

DEV Mean 5 Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 5x5 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV SD 5 Standard deviation of Deviation of Mean Elevation (DEV) within 

a training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 5x5 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV Mean 11 Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 11x11 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV SD 11 Standard deviation of Deviation of Mean Elevation (DEV) within 

a training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 11x11 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV Mean 33 Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 33x33 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

DEV SD 33 Standard deviation of Deviation of Mean Elevation (DEV) within 

a training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 33x33 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV Mean 111 Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 111x111 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

DEV SD 111 Standard deviation of Deviation of Mean Elevation (DEV) within 

a training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 111x111 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in 

the neighborhood 

Curvature Mean Mean of Curvature Index (concavity/convexity) within a training 

polygon in August. Curvature Index was calculated from the 10-

cm elevation model using the Curvature tool with the Profile 

setting within the DEM Surface Tools toolbox in ArcGIS. 

(http://www.jennessent.com/arcgis/surface_area.htm) 

Curvature SD Standard deviation of Curvature Index (concavity/convexity) 

within a training polygon in August. Curvature Index was 

calculated from the 10-cm elevation model using the Curvature 

tool with the Profile setting within the DEM Surface Tools 

toolbox in ArcGIS. 

(http://www.jennessent.com/arcgis/surface_area.htm) 

Slope Mean Mean of Slope in degrees (0-90°) within a training polygon in 

August. Slope was calculated from the 10-cm elevation model 

using the Slope (Spatial Analyst) tool in ArcGIS. 

Slope SD Standard deviation of Slope in degrees (0-90°) within a training 

polygon in August. Slope was calculated from the 10-cm elevation 

model using the Slope (Spatial Analyst) tool in ArcGIS. 
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(continued) Table A1.3. Full list of indices extracted from UAV imagery and the 3D 

point cloud. 

Index Description 

3D Surface Area 

Ratio 

3D Surface Area – Planimetric Area ratio within a training 

polygon in August. 
3D Surface Area of triangulated point cloud

2D Planar Surface Area
 

 

Point Cloud 

Density 

Density of 3D point cloud (per m2) within a training polygon in 

August 
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Table A1.4. Final list of indices after redundant and multicollinear indices were identified 

and removed using variance inflation factor (VIF) analysis. 

Index Description 

R Mean May Mean of Red channel within a training polygon in May 

R SD May Standard deviation of Red channel within a training polygon in May 

Change in R 

Mean 

Change in mean of Red channel within a training polygon from May 

to August 

R/B Mean 

May 

Mean of Red channel divided by Blue channel within a training 

polygon in May 

R/B Mean 

August 

Mean of Red channel divided by Blue channel within a training 

polygon in August 

R/G Mean 

May 

Mean of Red channel divided by Green channel within a training 

polygon in May 

R/G SD May Standard deviation of Red channel divided by Green channel within a 

training polygon in May 

R/G SD 

August 

Standard deviation of Red channel divided by Green channel within a 

training polygon in August 

G/B SD May Standard deviation of Green channel divided by Blue channel within a 

training polygon in May 

NIR Mean 

May 

Mean of Near-Infrared within a training polygon in May 

NIR SD May Standard deviation of Near-Infrared within a training polygon in May 

NIR Mean 

August 

Mean of Near-Infrared within a training polygon in August 

NDVI Mean 

May 
Mean of NDVI within a training polygon in May. NDVI = 

NIR-R

NIR+R
 

 

NDVI SD 

May 

Standard deviation of NDVI within a training polygon in May. NDVI 

= 
NIR-R

NIR+R
 

 
 

NDVI Mean 

August 
Mean of NDVI within a training polygon in August. NDVI = 

NIR-R

NIR+R
 

 

NDVI SD 

August 

Standard deviation of NDVI within a training polygon in August. 

NDVI = 
NIR-R

NIR+R
 

 

CIVE Mean 

August 

Mean of Color Index of Vegetation (CIVE) within a training polygon 

in August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

CIVE SD 

August 

Standard deviation of Color Index of Vegetation (CIVE) within a 

training polygon in August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Hue Mean 

May 

Mean of Hue in degrees (0-360°) within a training polygon in May. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
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(continued) Table A1.4. Final list of indices after redundant and multicollinear indices 

were identified and removed using variance inflation factor (VIF) analysis. 

Index Description 

Hue SD May Standard deviation of Hue in degrees (0-360°) within a training 

polygon in May. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Hue SD 

August 

Standard deviation of Hue in degrees (0-360°) within a training 

polygon in August. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Saturation 

SD May 

Standard deviation of Saturation within a training polygon in May. 

Saturation = 1- (
R + G + B

3
) *a 

Saturation 

SD August 

Standard deviation of Saturation within a training polygon in August. 

Saturation = 1- (
R + G + B

3
) *a 

Vegetation 

Height SD 

Standard deviation of vegetation height calculated within a training 

polygon in August. Vegetation height was calculated by subtracting 

the minimum from the maximum elevation value within a 50-cm 

search radius of each pixel using the 10-cm elevation model 

TPI Mean 5 Mean of Topographic Position Index (TPI) within a training polygon 

in August. TPI was calculated from the 10-cm elevation model using a 

5x5 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI Mean 

111 

Mean of Topographic Position Index (TPI) within a training polygon 

in August. TPI was calculated from the 10-cm elevation model using a 

111x111 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

DEV Mean 5 Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 5x5 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 
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(continued) Table A1.4. Final list of indices after redundant and multicollinear indices 

were identified and removed using variance inflation factor (VIF) analysis. 

Index Description 

DEV SD 5 Standard deviation of Deviation of Mean Elevation (DEV) within a 

training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 5x5 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV Mean 

33 

Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 33x33 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV SD 33 Standard deviation of Deviation of Mean Elevation (DEV) within a 

training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 33x33 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV Mean 

111 

Mean of Deviation of Mean Elevation (DEV) within a training 

polygon in August. DEV was calculated from the 10-cm elevation 

model using a 111x111 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV SD 111 Standard deviation of Deviation of Mean Elevation (DEV) within a 

training polygon in August. DEV was calculated from the 10-cm 

elevation model using a 111x111 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

Curvature 

Mean 

Mean of Curvature Index (concavity/convexity) within a training 

polygon in August. Curvature Index was calculated from the 10-cm 

elevation model using the Curvature tool with the Profile setting 

within the DEM Surface Tools toolbox in ArcGIS. 

(http://www.jennessent.com/arcgis/surface_area.htm) 
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(continued) Table A1.4. Final list of indices after redundant and multicollinear indices 

were identified and removed using variance inflation factor (VIF) analysis. 

Index Description 

Slope SD Standard deviation of Slope in degrees (0-90°) within a training 

polygon in August. Slope was calculated from the 10-cm elevation 

model using the Slope (Spatial Analyst) tool in ArcGIS. 

3D Surface 

Area Ratio 

3D Surface Area – Planimetric Area ratio within a training polygon in 

August. 
3D Surface Area of triangulated point cloud

2D Planar Surface Area
 

 

Point Cloud 

Density 

Density of 3D point cloud (per m2) within a training polygon in 

August 
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Table A1.5. List of plant species identified and their frequencies from field plot sampling. 

Plant Species Name Common Name 
Frequency 

(# plots) 

Abies balsamea Balsam fir 9 

Acer rubrum Red maple 22 

Achillea millefolium Common yarrow 4 

Agrostis capillaris Colonial bent grass 3 

Alnus viridis Green alder 124 

Amelanchier spp Serviceberry 51 

Ammophila breviligulata American beach grass 1 

Andromeda polifolia Bog rosemary  2 

Aralia nudicaulis Wild sarsaparilla 62 

Arctostaphylos uva-ursi Common bearberry 37 

Arethusa bulbosa Dragon orchid 19 

Betula papyrifera Paper birch 19 

Calamagrostis canadensis Bluejoint reed grass 10 

Calamagrostis pickeringii Pickering's reed grass 44 

Calopogon tuberosus Tuberous grass pink 24 

Calystegia sepium Hedge false bindweed 2 

Campanula rotundifolia Common harebell 4 

Carex bullata Button sedge 2 

Carex exilis Coastal sedge 12 

Carex folliculata Northern long sedge 3 

Carex nigra Smooth black sedge 64 

Carex pauciflora Few-flowered sedge 3 

Carex stricta Tussock sedge 2 

Carex trisperma Three-seeded sedge 18 

Carex vesicaria Inflated sedge 1 

Chamaedaphne calyculata Leatherleaf 18 

Cladonia spp Cladonia lichen 115 

Clintonia borealis Yellow bluebead lily 7 

Corema conradii Broom crowberry 78 

Cornus canadensis Bunchberry 132 

Danthonia spicata Poverty oat grass 9 

Deschampsia flexuosa Wavy hair grass 31 

Dicranum spp Dicranum Moss 3 

Drosera intermedia Spoon-leaved sundew 7 

Drosera rotundifolia Round-leaved sundew 55 

Eleocharis spp Eleocharis 1 

Empetrum eamesii Red crowberry 11 

Empetrum nigrum Black crowberry 131 
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(continued) Table A1.5. List of plant species identified and their frequencies from field 

plot sampling. 

Plant Species Name Common Name 
Frequency 

(# plots) 

Eriophorum vaginatum Tussock cottongrass 23 

Eriophorum virginicum Tawny cottongrass 11 

Festuca rubra Red fescue 20 

Fragaria virginiana Wild strawberry 5 

Gaultheria procumbens Eastern teaberry 104 

Gaylussacia baccata Black huckleberry 182 

Gaylussacia bigeloviana Dwarf huckleberry 71 

Glaux maritima Sea milkwort 5 

Hudsonia ericoides Pinebarren golden heather 3 

Ilex glabra Inkberry 15 

Ilex mucronata Mountain holly 94 

Ilex verticillata Common winterberry 18 

Iris spp Iris 21 

Juncus balticus Baltic rush 12 

Juncus gerardii Black-grass rush 3 

Juniperus communis Common juniper 185 

Juniperus horizontalis Creeping juniper 24 

Kalmia angustifolia Sheep laurel 188 

Kalmia polifolia Pale bog laurel 35 

Larix laricina Tamarack 19 

Lathyrus japonicus Beach pea 5 

Ledum groenlandicum Common labrador tea 95 

Ligusticum scoticum Scotch lovage 2 

Limonium carolinianum Sea lavender 1 

Linnaea borealis Twinflower 1 

Liverwort spp Liverwort 1 

Lonicera villosa Mountain fly honeysuckle 10 

Luzula multiflora Common woodrush 1 

Lycopodium spp Club moss 8 

Maianthemum canadense Wild lily-of-the-valley 76 

Maianthemum stellatum Starry false solomon's seal 1 

Maianthemum trifolium Three-leaved false soloman's 

seal 

52 

Melampyrum lineare Narrowleaf cow wheat 12 

Morella pensylvanica Northern bayberry 126 

Myrica gale Sweet gale 39 

Oclemena acuminata Whorled wood aster 34 
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(continued) Table A1.5. List of plant species identified and their frequencies from field 

plot sampling. 

Plant Species Name Common Name 
Frequency 

(# plots) 

Osmunda cinnamomea Cinnamon fern 62 

Panicum spp Panicum 3 

Photinia melanocarpa Black chokeberry 113 

Picea glauca White spruce 5 

Picea mariana Black spruce 48 

Pinus banksiana Jack pine 3 

Pinus strobus Eastern white pine 6 

Plantago maritima Seaside plantain 9 

Potentilla anserina Silverweed cinquefoil 3 

Prenanthes trifoliolata Lion's paw 39 

Prunus pensylvanica Pin cherry 12 

Pteridium aquilinum Bracken fern 118 

Rhododendron canadense Rhodora 102 

Rhynchospora alba White beakrush 10 

Ribes spp Gooseberry 2 

Rosa virginiana Virginia rose 14 

Rubus allegheniensis Alleghaney blackberry 38 

Rubus chamaemorus Bake apple 8 

Sagina nodosa Knotted pearlwort 1 

Sarracenia purpurea Northern pitcher plant 66 

Scutellaria galericulata Marsh skullcap 1 

Sibbaldiopsis tridentata Three-toothed cinquefoil 42 

Sisyrinchium montanum Mountain blue-eyed-grass 2 

Solidago bicolor White goldenrod 23 

Solidago puberula Downy goldenrod 31 

Solidago rugosa Rough-stemmed goldenrod 5 

Solidago sempervirens Seaside goldenrod 17 

Solidago uliginosa Northern bog goldenrod 42 

Sorbus aucuparia European mountain ash 2 

Spartina pectinata Prairie cord grass 3 

Sphagnum spp Sphagnum moss 94 

Spiraea alba White meadowsweet 9 

Symphyotrichum novi-belgii New York aster 17 

Thalictrum pubescens Tall meadow-rue 3 

Toxicodendron radicans Poison ivy 2 

Triadenum fraseri Fraser's marsh St John's-wort 1 

Trichophorum caespitosum Tufted clubrush 63 
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(continued) Table A1.5. List of plant species identified and their frequencies from field 

plot sampling. 

Plant Species Name Common Name 
Frequency 

(# plots) 

Trifolium repens White clover 1 

Triglochin maritima Seaside arrowgrass 1 

Vaccinium angustifolium Late lowbush blueberry 140 

Vaccinium macrocarpon Large cranberry 50 

Vaccinium oxycoccos Small cranberry 31 

Vaccinium vitis-idaea Mountain cranberry 22 

Viburnum nudum Northern wild raisin 109 
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Table A1.6. Full list of classes from the association level plant community classification 

across all three sites from field plot sampling. 

Association Level Classification 
Frequency 

(# plots) 

Empetrum nigrum - Ammophila brevigulata dwarf heath 1 

Empetrum nigrum - Juniperus communis dwarf heath 40 

Empetrum nigrum dwarf heath 14 

Juniperus communis - Corema conradii dwarf heath 2 

Juniperus communis dwarf heath 18 

Juniperus horizontalis dwarf heath 8 

Alnus viridis shrubland 3 

Gaylussacia baccata shrubland 79 

Gaylussacia bigeloviana shrubland 7 

Ilex glabra shrubland 8 

Lonicera villosa shrubland 1 

Morella pensylvanica shrubland 4 

Mixed tall shrubs 22 

Spiraea alba shrubland 2 

Abies balsamea tree island 5 

Acer rubrum tree island 7 

Betula papyrifera tree island 9 

Larix laricina tree island 8 

Picea glauca tree island 5 

Picea mariana tree island 26 

Pinus strobus tree island 2 

Carex exilis - Gaylussacia bigeloviana bog 6 

Carex nigra - Carex bullata bog 1 

Carex nigra bog 13 

Carex vesicaria bog 1 

Eriophorum russeolum bog 1 

Gaylussacia baccata shrub bog 4 

Gaylussacia bigeloviana shrub bog 9 

Gaylussacia shrub bog 7 

Iris spp. - Carex nigra bog 1 

Maianthemum trifolium bog 3 

Morella pensylvanica shrub bog 1 

Open bog 13 

Trichophorum caespitosum bog 11 

Festuca rubra brackish marsh 1 

Juncus balticus brackish marsh 7 

Spartina patens salt marsh 4 
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(continued) Table A1.6. Full list of association level plant community classification 

across all three sites from field plot sampling. 

Association Level Classification 
Frequency 

(# plots) 

Spartina pectinata brackish marsh 3 

Liverwort spp. seep 1 

Osmunda cinnamomea seep 13 

Calystegia sepium coastal lithomorphic 1 

Corema conradii lithomorphic 5 

Empetrum eamesii lithomorphic 1 

Festuca rubra coastal lithomorphic 2 

Hudsonia ericoides lithomorphic 1 

Juniperus communis - Corema conradii lithomorphic 25 

Lathyrus japonicus coastal lithomorphic 2 

Plantago maritima coastal lithomorphic 1 

Solidago sempervirens coastal lithomorphic 2 

Trichophorum caespitosum coastal lithomorphic 1 

Cladonia spp. 39 

Calamagrostis canadensis coastal vegetation 3 

Carex nigra - Festuca rubra coastal vegetation 1 

Carex nigra coastal vegetation 1 

Festuca rubra - Solidago sempervirens - Trifolium repens 

disturbed coastal vegetation 
1 

Juncus balticus - Rosa virginiana coastal vegetation 1 

Photinia melanocarpa coastal vegetation 1 

Rubus allegheniensis - Morella pensylvanica coastal vegetation 4 

Thalictrum pubescens coastal vegetation 1 

Toxicodendron radicans coastal vegetation 1 
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Table A1.7. Plant community groupings for the association level classification, 

broadened association level classification, and formation class classification. 

Association Level 

Classification 

Broadened Association Level 

Classification 

Formation Class 

Classification 

Gaylussacia baccata shrubland 

Gaylussacia shrubland 

Shrubland 

Gaylussacia bigeloviana 

shrubland 

Mixed tall shrubs Mixed tall shrubs 

Alnus viridis shrubland Alnus viridis shrubland 

Ilex glabra shrubland Ilex glabra shrubland 

Morella pensylvanica 

shrubland Rubus allegheniensis - Morella 

pensylvanica coastal vegetation Rubus allegheniensis - Morella 

pensylvanica coastal vegetation 

Acer rubrum tree island 
Broadleaf Tree Island 

Tree island 

Betula papyrifera tree island 

Abies balsamea tree island 

Coniferous Tree Island 

Larix laricina tree island 

Picea glauca tree island 

Picea mariana tree island 

Corema conradii lithomorphic 

Empetrum nigrum - Juniperus 

communis dwarf heath 
Dwarf heath 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Empetrum nigrum dwarf heath 

Juniperus communis - Corema 

conradii lithomorphic 

Juniperus communis dwarf 

heath 

Juniperus horizontalis dwarf 

heath 

Cladonia spp. 
Cladonia spp. Lichen 

Gaylussacia baccata shrub bog 

Gaylussacia shrub bog Bog 

Gaylussacia bigeloviana shrub 

bog 

Gaylussacia shrub bog 

Carex exilis - Gaylussacia 

bigeloviana bog 
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(continued) Table A1.7. Plant community groupings for the association level 

classification, broadened association level classification, and formation class 

classification. 

Association Level 

Classification 

Broadened Association Level 

Classification 

Formation Class 

Classification 

Carex nigra bog 

Grass/Sedge/Open Bog Bog 

Juncus balticus brackish marsh 

Open bog 

Trichophorum caespitosum 

bog 

Maianthemum trifolium bog Maianthemum trifolium bog Bog 

Osmunda cinnamomea seep Osmunda cinnamomea seep Seep 

Spartina pectinata brackish 

marsh 

Spartina pectinata brackish 

marsh 
Brackish marsh 

Spartina patens salt marsh 
Spartina patens salt marsh Salt marsh 

Calamagrostis canadensis 

coastal vegetation 
Calamagrostis canadensis 

coastal vegetation 
Other 
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Table A1.8. Full list of indices sorted by their “score” of importance in relation to their 

contribution to the linear discriminant analysis (LDA) model for each plant community 

classification. The score was determined by summing the weighted contributions of each 

index for each discriminatory axis from the LDA model. 

Association Level 

Classification 

Broadened Association 

Level Classification 

Formation Class 

Classification 

Index Score Index Score Index Score 

R mean May 0.98 R mean May 1.10 R mean May 1.24 

Slope SD 0.68 Slope SD 0.75 Slope SD 0.88 

Saturation SD 

May 

0.53 R G mean May 0.51 R G mean May 0.55 

CIVE SD 

August 

0.50 Saturation SD May 0.47 change R mean 0.40 

change R mean 0.50 change R mean 0.45 CIVE mean 

August 

0.37 

R G mean May 0.50 TPI mean 5 0.44 CIVE SD August 0.37 

Hue SD August 0.42 CIVE mean August 0.39 TPI mean 5 0.36 

CIVE mean 

August 

0.39 NIR mean May 0.35 R B mean May 0.29 

TPI mean 5 0.37 R B mean May 0.33 TPI mean 111 0.28 

R B mean May 0.35 CIVE SD August 0.32 NIR mean May 0.28 

R G SD August 0.34 Hue SD August 0.29 R G SD August 0.28 

R B mean 

August 

0.32 R G SD August 0.28 R G SD May 0.25 

NIR mean May 0.31 R G SD May 0.26 Saturation SD 

May 

0.21 

R G SD May 0.26 R B mean August 0.23 Point Density 0.20 

DEV mean 111 0.25 Curvature mean 0.22 Saturation SD 

August 

0.19 

Point Density 0.24 NDVI mean May 0.22 DEV mean 5 0.19 

Veg SD 50cm 0.24 DEV mean 111 0.21 DEV mean 33 0.19 

DEV mean 33 0.23 DEV mean 33 0.20 DEV mean 111 0.19 

NDVI mean 

May 

0.20 Point Density 0.19 Veg SD 50cm 0.18 

Curvature mean 0.20 TPI mean 111 0.18 R SD May 0.16 

Hue SD May 0.19 DEV mean 5 0.15 NIR mean August 0.16 

DEV mean 5 0.18 NIR mean August 0.15 Curvature mean 0.16 

TPI mean 111 0.18 Hue SD May 0.15 Hue SD May 0.15 
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(continued) Table A1.8. Full list of indices sorted by their “score” of importance in 

relation to their contribution to the linear discriminant analysis (LDA) model for each 

plant community classification. The score was determined by summing the weighted 

contributions of each index for each discriminatory axis from the LDA model. 

Association Level 

Classification 

Broadened Association 

Level Classification 

Formation Class 

Classification 

Index Score Index Score Index Score 

Saturation SD 

August 

0.16 R SD May 0.14 Hue SD August 0.15 

R SD May 0.15 DEV SD 33 0.14 R B mean August 0.14 

NDVI SD 

August 

0.15 NIR SD May 0.14 NDVI mean 

August 

0.14 

NIR SD May 0.15 Veg SD 50cm 0.13 DEV SD 33 0.14 

NIR mean 

August 

0.15 NDVI mean August 0.13 NDVI mean May 0.13 

DEV SD 111 0.14 Saturation SD 

August 

0.12 NIR SD May 0.12 

G B SD May 0.14 G B SD May 0.12 DEV SD 111 0.10 

NDVI mean 

August 

0.13 Surface Area 0.11 G B SD May 0.10 

DEV SD 33 0.13 NDVI SD August 0.11 Surface Area 0.09 

DEV SD 5 0.11 DEV SD 111 0.10 NDVI SD May 0.09 

Surface Area 0.09 DEV SD 5 0.10 NDVI SD August 0.07 

NDVI SD May 0.08 NDVI SD May 0.08 Hue mean May 0.04 

Hue mean May 0.06 Hue mean May 0.04 DEV SD 5 0.03 
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Table A1.9. Classification accuracies of the linear discriminant analysis (LDA) model for 

the association level plant community classification. 

Association Level 

Classification 
Accuracy (%) Majority of Misclassifications 

Ilex glabra shrubland 100 None 

Maianthemum trifolium bog 100 None 

Spartina patens salt marsh 100 None 

Cladonia spp. 
97 

Juniperus communis - Corema 

conradii lithomorphic 

Picea mariana tree island 85 Betula papyrifera tree island 

Gaylussacia baccata shrubland 
80 

Gaylussacia bigeloviana 

shrubland 

Osmunda cinnamomea seep 77 Mixed tall shrubs 

Alnus viridis shrubland 67 Larix laricina tree island 

Spartina pectinata brackish 

marsh 
67 

Morella pensylvanica shrubland 

Empetrum nigrum - Juniperus 

communis dwarf heath 
65 

Empetrum nigrum dwarf heath 

Trichophorum caespitosum bog 64 Carex nigra bog 

Juniperus horizontalis dwarf 

heath 
63 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Open bog 62 Trichophorum caespitosum bog 

Mixed tall shrubs 59 Gaylussacia baccata shrubland 

Juniperus communis - Corema 

conradii lithomorphic 
56 

Juniperus communis dwarf heath 

Carex exilis - Gaylussacia 

bigeloviana bog 
50 

Gaylussacia bigeloviana shrub 

bog 

Gaylussacia baccata shrub bog 
50 

Gaylussacia bigeloviana shrub 

bog 

Juniperus communis dwarf heath 
50 

Juniperus communis - Corema 

conradii lithomorphic 

Carex nigra bog 46 Trichophorum caespitosum bog 

Betula papyrifera tree island 44 Larix laricina tree island 

Gaylussacia bigeloviana shrub 

bog 
44 

Carex exilis - Gaylussacia 

bigeloviana bog 

Acer rubrum tree island 43 Gaylussacia baccata shrubland 

Abies balsamea tree island 40 Picea mariana tree island 

Larix laricina tree island 38 Picea mariana tree island 
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(continued) Table A1.9. Classification accuracies of the linear discriminant analysis 

(LDA) model for the association level plant community classification. 

Association Level 

Classification 
Accuracy (%) Majority of Misclassifications 

Calamagrostis canadensis 

coastal vegetation 
33 

Osmunda cinnamomea seep 

Empetrum nigrum dwarf heath 
29 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Gaylussacia bigeloviana 

shrubland 
29 

Gaylussacia baccata shrubland 

Juncus balticus brackish marsh 29 Carex nigra bog 

Morella pensylvanica shrubland 25 Gaylussacia baccata shrubland 

Rubus allegheniensis - Morella 

pensylvanica coastal vegetation 
25 

Morella pensylvanica shrubland 

Gaylussacia shrub bog 
14 

Gaylussacia bigeloviana shrub 

bog 

Corema conradii lithomorphic 
0 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Picea glauca tree island 0 Picea mariana tree island 
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Table A1.10. Classification accuracies of the linear discriminant analysis (LDA) model 

for the broadened association level plant community classification. 

Broadened Association Level 

Classification 
Accuracy (%) Majority of Misclassifications 

Ilex glabra shrubland 100 None 

Maianthemum trifolium bog 100 None 

Spartina patens salt marsh 100 None 

Cladonia spp. 
97 

Empetrum nigrum - Juniperus 

communis dwarf heath 

Empetrum nigrum - Juniperus 

communis dwarf heath 
96 

Gaylussacia shrub bog 

Coniferous tree island 84 Broadleaf tree island 

Gaylussacia shrubland 84 Gaylussacia shrub bog 

Osmunda cinnamomea seep 
77 

Spartina pectinata brackish 

marsh 

Grass/Sedge/Open bog 73 Gaylussacia shrub bog 

Gaylussacia shrub bog 69 Grass/Sedge/Open bog 

Broadleaf tree island 69 Gaylussacia shrubland 

Alnus viridis shrubland 67 Coniferous tree island 

Spartina pectinata brackish 

marsh 
67 

Gaylussacia shrub bog 

Mixed tall shrubs 59 Gaylussacia shrubland 

Rubus allegheniensis - Morella 

pensylvanica coastal vegetation 
38 

Gaylussacia shrubland 

Calamagrostis canadensis 

coastal vegetation 
33 

Osmunda cinnamomea seep 
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Table A1.11. Classification accuracies of the linear discriminant analysis (LDA) model 

for the formation class plant community classification. 

Formation Class 

Classification 
Accuracy (%) Majority of Misclassifications 

Salt Marsh 100 None 

Lichen 97 Dwarf heath 

Dwarf heath 96 Lichen 

Shrubland 91 Dwarf heath 

Bog 90 Shrubland 

Tree island 88 Shrubland 

Seep 77 Shrubland 

Brackish Marsh 67 Bog 

Other 33 Dwarf heath 
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Figures 

Figure A1.1. 95% confidence intervals for the mean linear discriminant analysis (LDA) 

scores of plant communities from the association level classification for each 

discriminatory axis. 
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Figure A1.2. 95% confidence intervals for the mean linear discriminant analysis (LDA) 

scores of plant communities from the broadened association level classification for each 

discriminatory axis. 
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Figure A1.3. 95% confidence intervals for the mean linear discriminant analysis (LDA) 

scores of plant communities from the formation class classification for each 

discriminatory axis. 
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Tables 
 

Table A2.1. List of spectral and structural indices derived from UAV imagery and the 3D 

point cloud to classify plant communities. 

Index Description 

R May Red channel in May 

G May Green channel in May 

B May Blue channel in May 

R/B May Red channel divided by Blue channel in May 

R/G May Red channel divided by Green channel in May 

G/B May Green channel divided by Blue channel in May 

NIR May Near-Infrared in May 

NDVI May NDVI in May. NDVI = 
NIR-R

NIR+R
 

 

CIVE May Color Index of Vegetation (CIVE) in May. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Hue May Hue in degrees (0-360°) in May. Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Saturation 

May 
Saturation in May. Saturation = 1- (

R + G + B

3
) *a 

R August Red channel in August 

G August Green channel in August 

B August Blue channel in August 

R/B August Red channel divided by Blue channel in August 

R/G August Red channel divided by Green channel in August 

G/B August Green channel divided by Blue channel in August 

NIR August Near-Infrared in August 

NDVI August NDVI in August. NDVI = 
NIR-R

NIR+R
 

 

CIVE August Color Index of Vegetation (CIVE) in August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Hue August Hue in degrees (0-360°) in August. Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Saturation 

August 
Saturation in August. Saturation = 1- (

R + G + B

3
) *a 

Change R  Change in Red channel from May to August 

Change G Change in Green channel from May to August 

Change B Change in Blue channel from May to August 

Change R/B Change in Red channel divided by Blue channel from May to August 

Change R/G Change in Red channel divided by Green channel from May to 

August 

Change G/B Change in Green channel divided by Blue channel from May to 

August 

Change NIR Change in Near-Infrared from May to August 
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(continued) Table A2.1. List of spectral and structural indices derived from UAV 

imagery and the 3D point cloud to classify plant communities. 

Index Description 

Change NDVI Change in NDVI from May to August. NDVI = 
NIR-R

NIR+R
 

 

Change CIVE Change in Color Index of Vegetation (CIVE) from May to August. 

CIVE = 0.441*R – 0.881*G + 0.385*B + 18.78745 

Change Hue Change in Hue in degrees (0-360°) from May to August. 

Hue = cos-1 
(0.5*(R-G)+(R-B))

(((R-G)2+(R-B)(G-B))0.5)
 

Change 

Saturation 

Change in Saturation from May to August. Saturation = 1-

(
R + G + B

3
) *a 

Vegetation 

Height 

Vegetation height in August. Vegetation height was calculated by 

subtracting the minimum from the maximum elevation value within a 

50-cm search radius of each pixel using the 10-cm elevation model 

TPI 5 Topographic Position Index (TPI) in August. TPI was calculated 

from the 10-cm elevation model using a 5x5 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI 11 Topographic Position Index (TPI) in August. TPI was calculated 

from the 10-cm elevation model using an 11x11 pixel search 

window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI 33 Topographic Position Index (TPI) in August. TPI was calculated 

from the 10-cm elevation model using a 33x33 pixel search window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 

TPI 111 Topographic Position Index (TPI) in August. TPI was calculated 

from the 10-cm elevation model using a 111x111 pixel search 

window. 

TPI = zo - z̅ 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood 
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(continued) Table A2.1. List of spectral and structural indices derived from UAV 

imagery and the 3D point cloud to classify plant communities. 

Index Description 

DEV 5 Deviation of Mean Elevation (DEV) in August. DEV was calculated 

from the 10-cm elevation model using a 5x5 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV 11 Deviation of Mean Elevation (DEV) in August. DEV was calculated 

from the 10-cm elevation model using an 11x11 pixel search 

window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV 33 Deviation of Mean Elevation (DEV) in August. DEV was calculated 

from the 10-cm elevation model using a 33x33 pixel search window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

DEV 111 Deviation of Mean Elevation (DEV) in August. DEV was calculated 

from the 10-cm elevation model using a 111x111 pixel search 

window. 

DEV =  
zo - z̅ 

SD
 

Where zo = elevation of central point, z̅ = mean elevation of 

neighborhood, and SD = standard deviation of elevation values in the 

neighborhood 

Curvature Curvature Index (concavity/convexity) in August. Curvature Index 

was calculated from the 10-cm elevation model using the Curvature 

tool with the Profile setting within the DEM Surface Tools toolbox 

in ArcGIS. (http://www.jennessent.com/arcgis/surface_area.htm) 

Slope Slope in degrees (0-90°) in August. Slope was calculated from the 

10-cm elevation model using the Slope (Spatial Analyst) tool in 

ArcGIS. 
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Table A2.2. Confusion matrix of plant communities from the broadened association level classification at Chebucto Head. 
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vegetation 

0 8 0 2 0 0 0 0 0 0 0 0 

Calystegia sepium coastal lithomorphic 0 0 10 0 0 0 0 0 0 0 0 0 
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dwarf heath 
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Table A2.3. Confusion matrix of plant communities from the broadened association level classification at Prospect Bay.  
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Alnus viridis shrubland 14 0 0 0 1 0 0 4 0 0 0 0 0 0 0 0 1 0 0 

Betula papyrifera tree island 0 9 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Cladonia spp. 0 0 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Coniferous tree island 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Empetrum nigrum - Juniperus communis dwarf 

heath 
0 0 0 0 277 0 0 0 0 12 4 1 0 0 3 3 0 0 0 

Eriophorum russeolum bog 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 

Festuca rubra - Solidago sempervirens - Trifolium 

repens disturbed coastal vegetation 
0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 

Gaylussacia baccata shrubland 4 0 0 0 0 0 0 63 1 0 0 0 0 0 4 0 8 0 0 

Gaylussacia shrub bog 0 0 0 0 0 0 0 5 17 8 0 0 0 0 0 0 0 0 0 

Grass/Sedge/Open bog 0 0 0 0 3 12 0 0 0 127 2 0 1 5 0 0 0 0 0 

Juncus balticus brackish marsh 0 0 0 0 1 0 0 0 0 9 20 0 0 0 0 0 0 0 0 

Juniperus horizontalis dwarf heath 0 0 1 0 9 0 0 0 0 0 0 10 0 0 0 0 0 0 0 
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Mixed tall shrubs 0 0 0 0 3 0 0 5 1 0 0 0 0 0 21 0 0 0 0 

Morella pensylvanica shrubland 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 7 1 0 0 

Osmunda cinnamomea seep 1 0 0 0 0 0 0 7 0 0 0 0 0 0 3 2 47 0 0 

Spartina pectinata brackish marsh 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 22 3 

Toxicodendron radicans coastal vegetation 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 8 
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Table A2.4. Confusion matrix of plant communities from the broadened association level classification at Polly’s Cove. 
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Spartina patens salt marsh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 
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Trichophorum caespitosum bog 0 0 0 0 0 0 0 0 0 13 0 0 2 0 0 0 0 3 0 22 



 

243 

 

Figures 
 

Figure A2.1. Elevation above sea-level at A) Chebucto Head, B) Prospect Bay, and C) 

Polly’s Cove. 

 
 

Figure A2.2. Distance from the coastline at A) Chebucto Head, B) Prospect Bay, and C) 

Polly’s Cove. 

 
 

Figure A2.3. Wind exposure at A) Chebucto Head, B) Prospect Bay, and C) Polly’s 

Cove. 
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Figure A2.4. Stream orders of stream networks at A) Chebucto Head, B) Prospect Bay, 

and C) Polly’s Cove. 

 
 

Figure A2.5. Incoming solar radiation at A) Chebucto Head, B) Prospect Bay, and C) 

Polly’s Cove. 

 
 

Figure A2.6. Slope positions at A) Chebucto Head, B) Prospect Bay, and C) Polly’s 

Cove. 
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Figure A2.7. Local surface ruggedness at A) Chebucto Head, B) Prospect Bay, and C) 

Polly’s Cove. 

 
 

Figure A2.8. Global surface ruggedness at A) Chebucto Head, B) Prospect Bay, and C) 

Polly’s Cove. 
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Figure A2.9. 95% confidence intervals for the area-weighted mean elevation of plant 

communities at Chebucto Head. 

 
Figure A2.10. 95% confidence intervals for the area-weighted mean distance from the 

coastline for plant communities at Chebucto Head. 
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Figure A2.11. 95% confidence intervals for the area-weighted mean wind exposure of 

plant communities at Chebucto Head. 

 
Figure A2.12. Most frequent (area-weighted) stream order for plant communities at 

Chebucto Head. 
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Figure A2.13. 95% confidence intervals for the area-weighted mean incoming solar 

radiation received by plant communities at Chebucto Head. 

 
Figure A2.14. Most frequent (area-weighted) slope position classifications for plant 

communities at Chebucto Head.
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Figure A2.15. 95% confidence intervals for the area-weighted mean local surface 

ruggedness of plant communities at Chebucto Head. 

 
Figure A2.16. 95% confidence intervals for the area-weighted mean global surface 

ruggedness of plant communities at Chebucto Head. 
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Figure A2.17. 95% confidence intervals for the area-weighted mean elevation of plant 

communities at Prospect Bay. 

 
Figure A2.18. 95% confidence intervals for the area-weighted mean distance from the 

coastline for plant communities at Prospect Bay. 
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Figure A2.19. 95% confidence intervals for area-weighted the mean wind exposure of 

plant communities at Prospect Bay. 

 
Figure A2.20. Most frequent (area-weighted) stream order for plant communities at 

Prospect Bay. 
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Figure A2.21. 95% confidence intervals for the area-weighted mean incoming solar 

radiation received by plant communities at Prospect Bay. 

 
Figure A2.22. Most frequent (area-weighted) slope position classifications for plant 

communities at Prospect Bay. 
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Figure A2.23. 95% confidence intervals for the area-weighted mean local surface 

ruggedness of plant communities at Prospect Bay. 

 
Figure A2.24. 95% confidence intervals for the area-weighted mean global surface 

ruggedness of plant communities at Prospect Bay. 
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Figure A2.25. 95% confidence intervals for the area-weighted mean elevation of plant 

communities at Polly’s Cove. 

 
Figure A2.26. 95% confidence intervals for the area-weighted mean distance from the 

coastline for plant communities at Polly’s Cove. 
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Figure A2.27. 95% confidence intervals for the area-weighted mean wind exposure of 

plant communities at Polly’s Cove. 

 
Figure A2.28. Most frequent (area-weighted) stream order for plant communities at 

Polly’s Cove. 
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Figure A2.29. 95% confidence intervals for the area-weighted mean incoming solar 

radiation received by plant communities at Polly’s Cove. 

 
Figure A2.30. Most frequent (area-weighted) slope position classifications for plant 

communities at Polly’s Cove. 
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Figure A2.31. 95% confidence intervals for the area-weighted mean local surface 

ruggedness of plant communities at Polly’s Cove. 

 
Figure A2.32. 95% confidence intervals for the area-weighted mean global surface 

ruggedness of plant communities at Polly’s Cove. 

 


