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Abstract

We consider two algorithmic processes used to sample uniformly from a wide
array of combinatorial classes. First, the recursive method which uses the recur-
sive decomposition of a class in addition to tables of large integers which count
the objects of a given size to generate objects uniformly at random. Second, the
more recent Boltzmann model for sampling is considered. Boltzmann models
rely on the use of the closed form generating function of a class and address
the space constraints imposed by the recursive method with a time efficiency
trade off. Implementations for three classes of objects (binary trees, integer
partitions, and set partitions) are demonstrated for each method. Comparison
and analysis of the two methods are discussed in addition to applications.
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1 Introduction

The main objective of this research is to investigate algorithmic methods for the uni-

formly random generation of combinatorial objects. In particular two major algorith-

mic processes will be explored and implemented: the recursive method of Nijenhuis

and Wilf [9] and the Boltzmann sampling method of Flajolet et al. [4]. Our goal is to

compare and contrast various aspects of these two methods — primarily with respect

to efficiency and applicability.

We shall begin our study by recalling some fundamental concepts and notation

from enumerative combinatorics.

1.1 Combinatorial Classes and Generating Functions

Definition 1.1 (Combinatorial Classes). A combinatorial class is a pair C = (S, | · |)

consisting of a set S together with a function | · | : S −→ N such that Cn := {γ ∈

S : |γ| = n} is finite for every n ∈ N. Said otherwise, a combinatorial class is a set

of objects which have some prescribed notion of size. The added condition |Cn| <∞

is used to express the natural restriction that the number of objects of a given size

must be finite.

We write cn := |Cn| to denote the number of objects of size n contained in a class

C and refer to (c0, c1, ...) as the counting sequence of C . Our classes will all contain a

unique empty object that has size 0 so that c0 = 1. We declare the existence of empty

objects as a matter of convenience. We further note that, for the classes considered,

every object of size n shall have a decomposition into n subobjects of size 1 which

will be refered to as atoms. For certain classes C , the atoms comprising any object

γ ∈ Cn will further carry distinct labels 1, 2, ..., n. In this case we refer to C as a

labelled class, and otherwise we say C is an unlabelled class.
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Example 1.1 (Unlabelled Class). The class S of all finite length binary strings

(sequences of 0s and 1s) is an unlabelled class. The size of such a string is its length

and clearly we have cn = 2n. For this class the empty object is the empty string ε

which has length 0 and is mandated to be unique. Each bit of a string is an atom,

and since we do not distinguish one 0 from another nor one 1 from another, the class

is unlabelled.

Example 1.2 (Labelled Class). The class P of all permutations (or orderings) of

canonical finite sets is a labelled class. The size of a permutation is simply the

cardinality of the set and the empty object is ε (corresponding to permutations on

∅). Each element from the set is an atom and the elements are distinguishable.

The Ordinary Generating Function (OGF) for a class C is defined by

C(x) =
∞∑
n=0

cnx
n

and its Exponential Generating Function (EGF) is given by

Ĉ(x) =
∞∑
n=0

cn
xn

n!

Although the OGF and EGF are defined for any class, we use the OGF for the

unlabelled classes and the EGF for the labelled case.

Example 1.3 (Generating Functions). For the class S of all finite length binary

strings of length n considered in Example 1.1, we get that the OGF is:

S(x) = 1 + 2x+ 4x2 + 8x3 + ... =
∞∑
n=0

2nxn =
1

1− 2x
.

For the class P of all permutations of finite sets shown in Example 1.2, we get that

9



the EGF is:

P (x) =
∞∑
n=0

n!xn

n!
=
∞∑
n=0

xn =
1

1− x
.

Definition 1.2 (Disjoint Union of Classes). Let A , B be classes whose underlying

sets are disjoint. We write C = A + B to signify that C is the disjoint union of A

and B. Let | · |A , | · |B be the size functions for A and B respectively. Then the size

of γ ∈ C is

|γ|C =

{
|γ|A , if γ ∈ A

|γ|B, if γ ∈ B

Lemma 1.1 (Sum Lemma). Let C = A + B. Then the OGF of C is C(x) =

A(x) +B(x).

Proof. By definition

C(x) =
∑
γ∈C

x|γ| =
∑
γ∈A

x|γ| +
∑
γ∈B

x|γ|

and hence

C(x) = A(x) +B(x).

Corollary 1.2. If C = A + B then cn = an + bn.

Definition 1.3 (Cartesian Product of Classes). We write C = A ×B to mean that

C is the Cartesian product of the classes A and B. In other words, we have that

every γ ∈ C can be written as an ordered pair (α, β), where α ∈ A and β ∈ B. Let

| · |A , | · |B be the size functions for A and B respectively. Then the size of γ ∈ C is

|γ|C = |(α, β)|C = |α|A + |β|B.

Lemma 1.3 (Product Lemma). Let C = A ×B. Then the OGF of C is C(x) =

A(x) ·B(x).

10



Proof. By definition

C(x) =
∑
γ∈C

x|γ| =
∑

(α,β)∈A×B

x|α+β|

and hence

C(x) =
∑
α∈A

∑
β∈B

x|α+β| =
∑
α∈A

∑
β∈B

x|α|x|β| =
∑
α∈A

x|α| ·
∑
β∈B

x|β| = A(x) ·B(x)

Corollary 1.4. If C = A ×B then cn =
∑n

i=0 an−ibi.

1.2 Uniform Sampling

In order to demonstrate the difference between naive generation and uniform gen-

eration we will consider generating random binary strings of length n having no

occurrence of the substring 11.

Of course a naive manner in which we could do this would be to select each bit

as follows: flip a coin, if it lands on heads we write a 0, if it lands on tails we write

a 1. We then continue with the added constraint that we are forced to write a 0

immediately following any 1. Clearly this method will only generate legal strings and

it is capable of generating all such strings. There are 5 legal strings of length 3, 2

beginning with 1 and 3 beginning with 0. The strings 101 and 100 both occur with

probability 1
2
· 1 · 1

2
= 1

4
. On the other hand, 001 and 000 occur with probability

1
2
· 1
2
· 1
2

= 1
8

while 010 arises with probability 1
2
· 1
2
· 1 = 1

4
. In a uniform sampling

method we would see each string being generated with equal probability 1
5
. Hence the

issue is that strings are not generated with equal probability — in particular, strings

beginning with 1 are overweighted with this method.

One could instead simply generate random binary strings without restrictions

and discard all illegal strings. While this would result in sampling from a uniform

11



distribution, there remains the problem that it is infeasible for large n. A legal string

can start with a 0 and then be followed by a legal string of length n− 1. Otherwise

it starts a 10 and is followed by a legal string of length n− 2. Let cn be the number

of legal strings of length n. Since there is 1 legal string of length 0 (ε) and there are

2 legal strings of length 1 (0 and 1), the total number of legal strings of length n is

given by the recurrence relation is cn = cn−1 +cn−2, (for n ≥ 2) with initial conditions

c0 = 1 and c1 = 2. This is a Fibonacci recurrence and note cn = fn+1. There are

2n possible bitstrings of length n and it is well known that cn ∼ 1√
5

(
1+
√
5

2

)n+1
. Since

cn
2n
→ 0 as n→∞, the chance of obtaining a legal string with this method approaches

0 for large n.

Given some non-negative integer n, our aim is to draw a random object from Cn

such that the probability of any γ ∈ Cn being generated is exactly 1
cn

. Using the

recursive method we obtain a uniform distribution on Cn. With Boltzmann sampling

we instead sample from a nonuniform distribution on the entirety of C , wherein any

γ ∈ C is generated with probability |γ|
C(x)

for a fixed value of x. If we condition the

Boltzmann sampler to return an object only if it is of size n, then we obtain a uniform

distribution on Cn.

2 The Recursive Method

The recursive method, which first emerged in the 1970’s, has been extensively studied

over the years since its initial conception [9]. As is suggested by the nomenclature, the

recursive method applies to combinatorial classes that possess recursive decomposi-

tions thus allowing cn to be expressed in terms of prior values c0, ..., cn−1. The values

c0, c1, ..., cn−1 are pre-computed and used to assign probabilities to the branches of a

recursive algorithm so as to ultimately have the method return an uniformly random

object of size n.
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Example 2.1 (Recursive Classes). Reconsider the example of binary strings with no

occurrence of substring 11 and the corresponding recurrence relation cn = cn−1+cn−2.

We get 1 = pn + qn, where pn = cn−1

cn
and qn = cn−2

cn
. We then generate strings of

length n with weighted coin flips such that heads turns up with probability pn and

tails with probability qn. If the coin lands on heads, we write down a 0 and recurse

to generate a string of length n − 1, and if it lands on tails, we write down 10 and

recurse to generate string of length n − 2. With this method all strings of length n

arise with equal probability, 1
cn

. For instance, the string 0100010 = 0(10)00(10) arises

with probability p7q6p4p3q2 = c6
c7
· c4
c6
· c3
c4
· c2
c3
· c0
c2

= c0
c7

= 1
c7

.

The main computationally intensive aspect of the recursive method lies within

the need to pre-compute the large array of values c0, c1, ..., cn in order to generate

random objects of size n. If the sequence {ck} is exponential (or worse) then the

array of integers can easily overcome space constraints for large n, even on modern

machines. For example if we wanted to generate uniformly random binary trees on

n internal nodes (see Section 2.1) we must compute the Catalan numbers up to and

including the nth term. The nth Catalan number is cn = 1
n+1

(
2n
n

)
. It was demonstrated

in [12] that

cn ∼
4n

n
3
2
√
π

hence the Catalan numbers grow exponentially fast. Indeed the 1000000th Catalan

number contains 602051 digits, and thus we can see that the tables of values required

for the recursive method can exceed the space limitations of even modern computers.

2.1 Binary Trees

Definition 2.1 (Binary Trees). A tree is an acyclic, connected graph. The acylic and

connected properties of a tree T imply that there exists a unique path between any

two vertices u, v ∈ T . We say that a tree is rooted if one of its vertices is distinguished
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from the others as the root. Thus there is a unique path that exists between the root

and each vertex of a rooted tree. We call u a child of v if v is the immediate neighbour

of u on the path from u to the root. The number of children a vertex has is referred

to as its out-degree. We refer to a vertex with out-degree 0 as a leaf and a vertex

with out-degree ≥ 1 as an internal node. An ordered tree is a rooted tree that has an

ordering imposed on the children of each vertex. Typically we do this by embedding

a tree in the plane by placing the root at the top of the tree and then ordering the

children of a vertex from left to right. A binary tree is an ordered tree where every

vertex has either out-degree 0 or 2.

For example, the 5 binary trees on 3 internal nodes are depicted in Figure 2.1.

Figure 2.1: The 5 binary trees on 3 internal nodes.

Let B be the set of binary trees. Since we can easily see that a binary tree T ∈ B

with n internal nodes has n+ 1 leaves, it makes sense to measure the size of a binary

tree by its number of internal nodes. In other words, we view internal nodes as the

atomic objects for the class B, and the empty object ε is the tree comprised of a

single leaf (the root vertex having no children).

If we remove the root vertex from a tree T ∈ B, we are left with a pair (TL, TR) ∈

B2, consisting of the left and right principal subtrees of T . Thus we have the set
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decomposition B = {◦}∪({•}×B2), where ◦ denotes a leaf and • denotes an internal

node.

Let B = B(x) =
∑∞

n=0 bnx
n be the OGF of B. By Lemma 1.1 and Lemma 1.3

we obtain B = 1 + xB2. By virtue of the quadratic formula, we obtain:

xB2 −B − 1 = 0

B =
1±
√

1− 4x

2x
.

We discard the positive branch as it is not defined at x = 0 and therefore has no

power series expansion, leaving

B(x) =
∞∑
n=0

bnx
n =

1−
√

1− 4x

2x
.

Using the binomial theorem to expand (1− 4x)
1
2 gives

B(x) =
∞∑
n=0

1

n+ 1

(
2n

n

)
xn,

and hence bn = 1
n+1

(
2n
n

)
. This demonstrates the well known fact that binary trees on

n internal nodes are counted by the Catalan numbers.

Using our previous result that B = 1 +xB2, we apply coefficient extraction on xn

to obtain the Catalan recursion

bn =
n−1∑
k=0

bkbn−k−1

with initial condition b0 = 1. Dividing both sides by bn we get:

1 =
n−1∑
k=0

bkbn−k−1
bn

15



We recognize that the summand bkbn−k−1

bn
gives the probability that a tree T ∈ B has

principal subtrees of size k and size n− k− 1. Hence we have the decomposition and

probabilistic requirements necessary to develop a sampler with the recursive method

[9].

Example 2.2 (Recursive Method Sampler for Binary Trees). A pseudo-code imple-

mentation is displayed in Algorithm 2.1. The algorithm takes as input n, the desired

number of internal nodes, and returns a binary tree T ∈ Bn which is selected uni-

formly at random from binary trees of size n. We observe that lines 8 through 14

implement the probability distribution, first we choose a random integer between 1

and the nth Catalan number and initialize tally to 0. For each integer i ∈ [0, n] we

increase the tally by bibn−i−1, once the value of x is less than the tally we set k = i,

break from the loop, and finally in line 15 we return a binary tree with left principal

subtree of size k and right principal subtree of size n − k − 1, BinaryTree(0, 0) re-

turns internal node whose children are leaves. When n = 0, a terminal leaf node is

reached, thus allowing the function to terminate. The implementation of Algorithm

2.1 is shown in Appendix A.1.
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Algorithm 2.1: Recursive method binary tree sampler.

Data: N - the desired number of internal nodes
Result: a randomly generated binary tree on n internal nodes

1 Compute Catalan numbers up to any including the nth term and store in
array b.

2 function genBinaryTree(n):
3 if n = 0 then
4 return ◦
5 else
6 x← random integer between 1 and bn
7 tally ← 0
8 for i from 0 to n do
9 tally ← tally + bibn−i−1

10 if x ≤ tally then
11 k ← i
12 break

13 return BinaryTree(genBinaryTree(k), genBinaryTree(n− k − 1))

Illustrated in Figures 2.2 and 2.3 below are sample outputs of randomly generated

binary trees on 100 and 200 internal nodes respectively, using the recursive method

sampler.

Figure 2.2: Random binary tree on 100 internal nodes.
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Figure 2.3: Random binary tree on 200 internal nodes.

We also note that there exist bijections from binary trees on n internal nodes and

various other objects counted by the Catalan numbers. In principle this implies that

a sampler for binary trees can be used to generate other classes of objects at random,

however in practice this may not be practical.

2.2 Integer Partitions

Definition 2.2 (Integer Partitions). A partition of n ∈ N is a weakly decreasing list

λ = (λ1, λ2, ..., λk) of positive integers such that
∑k

i=1 λi = n. The entries λi are

referred to as the parts of λ.

We illustrate partitions with rows of boxes called Young diagrams, where the

number of boxes in row i corresponds to the value of the ith element of the partition.

For instance, the 7 partitions of 5 are: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1,

1), and (1, 1, 1, 1, 1), which are represented in Figure 2.4 with their corresponding

Young diagrams.
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Figure 2.4: The seven partitions of n = 5.

We measure the size of a partition by the sum of its parts. The boxes of the Young

diagram are the atomic objects and we allow for the unique partition of 0, denoted

ε, which is deemed to have 0 parts. Note in Figure 2.4, each Young diagram is of

size 5 and is composed of 5 atoms. Let P be the class of partitions and consider

subclasses Pk of P consisting of partitions whose parts are at most k. We obtain

the decomposition Pk = ({k} × Pk) ∪ Pk−1 for k ≥ 1, with P0 = {ε}. This

decomposition holds because any partition λ ∈ Pk either has a part equal to k or

does not. If such a part exists then we remove it to get a partition of n−k with parts

at most k. Otherwise all parts of λ are at most k − 1 and so λ ∈ Pk−1. Let p(n, k)

be the number of partitions of n with parts at most k. Then by the decomposition

we have

p(n, k) = p(n− k, k) + p(n, k − 1)

for n ≥ k ≥ 1, with boundary conditions p(0, k) = 1 for k ≥ 0 and p(n, 0) = 0 for

n ≥ 1. Interpreting this recursion, we can develop a recursive method sampler for

integer partitions.

Example 2.3 (Recursive Method Sampler for Integer Partitions). A pseudo-code

implementation is displayed in Algorithm 2.2. The algorithm takes as inputs n, the

integer to partition, k, the maximum part size permitted, and λ, the list of parts.

To sample uniformly from all partitions of n, we initially set k = n and λ = {ε}. In

line 5 we select a random value between 0 and 1 and then in line 6 we let x be the

probability that a partition of n with parts at most k has a part equal to k. Then in
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lines 7 through 11 we have a probability distribution where we assign a part of size

k to the partition with probability x and recurse on partitions of n− k with parts at

most k. Otherwise, with probability 1− x, we recurse allowing parts of at most size

k− 1. Once the first parameter to the function equals 0, the function terminates and

the partition λ of n is returned (lines 3 and 4). The implementation of Algorithm 2.2

is shown in Appendix A.2.

Algorithm 2.2: Recursive method integer partition sampler.

Data: N - the integer to partition
Result: a randomly generated partition of n

1 Compute table of p(n, k) values for 0 ≤ k ≤ n.
2 function genPart(n, k, λ):
3 if n = 0 then
4 return λ

5 u← random ∈ (0, 1)

6 x← p(n−k,k)
p(n,k)

7 if u < x then
8 append k to λ
9 return genPart(n− k, k, λ)

10 else
11 return genPart(n, k − 1, λ)

Illustrated below in Figure 2.5 we see sample output from the recursive method

sampler for integer partitions of n = 100, 500, 1000, and 5000 respectively:
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Figure 2.5: Random partitions of n = 100, 500, 1000, and 5000.
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2.3 Set Partitions

Definition 2.3 (Set Partitions). A partition of a finite set S is a collection {X1, X2, ..., Xk}

of subsets of S such that
⋃k
i=1Xi = S and Xi ∩Xj = ∅ for all i 6= j. We call the sets

Xi blocks of the partition.

For example, the 5 partitions of the set S = {1, 2, 3} are: {1, 2, 3}, {{1, 2}, {3}},

{{1, 3}, {2}}, {{1}, {2, 3}}, and {{1}, {2}, {3}}. We can illustrate these partitions

using Young diagrams where each row demonstrates the size of a block. The elements

of each block are placed in the boxes in increasing order. These diagrams are known

as tableaux and are shown for the above example of S = {1, 2, 3} in Figure 2.6:

1 2 3
1 2
3

1 3
2

2 3
1

1
2
3

Figure 2.6: Tableaux for partitions of {1, 2, 3}.

The size of the partition is the sum of the block sizes (
∑k

i=1 |Xi| = |S|). Elements

from the set are the atomic objects and we allow for the unique partition ε of the

empty set, which is of size 0 and contains 0 blocks. Let S be the class of all set

partitions. Since elements in the set are distinct, it is evident that S is a labelled

class.

We can form a partition of S = {1, 2, ..., n} by first fixing element n to be in

a particular block. There are k elements not in that block, for some integer k ∈

[0, n − 1]. There are
(
n−1
k

)
ways to choose these elements, and then sk ways to

partition them. To account for all possible values of k, we obtain the recursion for

the famous Bell numbers:

sn =
n−1∑
k=0

(
n− 1

k

)
sk
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with initial condition s0 = 1. Now we divide both sides by sn to obtain a probability

distribution

1 =
n−1∑
k=0

(
n− 1

k

)
sk
sn
.

Interpreting this decomposition, we can develop a recursive method sampler.

Example 2.4 (Recursive Method Sampler for Set Partitions). A pseudo-code im-

plementation is displayed in Algorithm 2.3. The function chooseBlocks(m, blocks)

is responsible for choosing the sizes of each of the blocks in the partition. This is

where the probability distribution and recursion are implemented. First we assign

x a random integer between 1 and sn and we initialize k as 1 (since blocks must be

nonempty) and tally as 0. The probability distribution is then implemented in lines

9 through 13. For each integer i ∈ [0,m] we increase our tally by the next value of

the summand (
(
m−1
k−1

)
sm−k, since k starts at 1). We increment k at the end of each

iteration and break from the loop once the tally exceeds the value chosen for x. We

then append k to our list of block sizes and recurse on m − k, once m = 0 we re-

turn the list of block sizes. The function genSetPart(n) is then responsible for using

chooseBlocks(m, blocks) to create the random set partition. We return {ε} if |S| = 0

and otherwise we first select our block sizes by calling chooseBlocks with parameters

n and an empty list for the block sizes. Next we call on a function that can generate a

random permutation of S. Since the blocks are stored in a list and we place elements

into them sequentially, the random permutation allows each element to have equal

probability of ending up in any block. Consider the example S = {1, 2, 3, 4, 5} where

we have selected blocks of size 3 and 2 respectively. If we place the elements into the

blocks without the permutation then we would always have elements 1, 2, and 3 end-

ing up in the block of size 3 together and elements 4 and 5 in the block of size 2. We

omit the pseudo-code for random permutations in Algorithm 2.3 as there are many

well known simple ways of doing this, however it is included in the implementation
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in Appendix A.3. We then initialize our variables part (as an empty list) and pos

(as 0) and then in lines 23 throgh 31 we build the partition. We iterate over each of

the values in blocks, first creating a temp variable to hold the values assigned to that

block. For each integer j ∈ [0, blocksi] we append Sj+pos to our temp list. We then

append temp to our partition and increment pos by the size of the previous block.

Finally, we return our partition. The implementation of Algorithm 2.3 is displayed

in Appendix A.3.
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Algorithm 2.3: Recursive method set partition sampler.

Data: n - the cardinality of the set to partition
Result: a randomly generated partition of {1, 2, ..., n}

1 Compute Bell numbers up to any including the nth term and store in array s.
2 S ← {1, 2, ..., n}
3 function chooseBlocks(m, blocks):
4 if m = 0 then
5 return blocks

6 x← random integer between 1 and sm
7 k ← 1
8 tally ← 0
9 for i from 0 to m do

10 tally ←
(
m−1
k−1

)
sm−k

11 if x ≤ tally then
12 break

13 k ← k + 1

14 append k to blocks
15 return chooseBlocks(m− k)

16 function genSetPart(n):
17 if n = 0 then
18 return ε

19 blocks← chooseBlocks(n, [ ])
20 randPermutation(S)
21 part← {}
22 pos← 0
23 for i from 0 to length(blocks) do
24 temp← {}
25 for j from 0 to blocks[i] do
26 append Sj+pos to temp

27 append temp to part
28 pos← pos+ blocks[i]

29 return part

Illustrated in Figure 2.7 are random set partitions where |S| = 50, 100, and 200

respectively.
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9 21 29 31 40
4 35 38 47 48
2 8 27 37 49
1 14 16 25 28
7 22 23 39
5 26 34 41
6 17 18 24
15 32 43
33 44 50
3 10
11 36
30 45
20 42
13
12
46
19

5 16 18 22 34 40 45 78 91
15 33 37 42 73 87
6 13 36 39 72 80
46 50 51 60 62 76
1 8 23 27 41 56
44 67 83 84 98
19 59 63 82 97
7 21 66 79 96
35 69 70 71 75
3 32 48 88 95
31 38 64 94
55 74 85 100
9 58 92
12 20 54
25 57 90
10 24 65
4 17 93
28 77 89
26 47 68
30 99
2 14
29 61
11 86
49 52
53
81
43

29 32 59 68 75 92 138 168 178
21 74 114 123 137 140 141 169
38 40 78 91 122 130 135 157
14 15 19 90 93 161 172 199
4 7 8 64 97 110 183 200
42 57 84 111 132 156 164 177
58 67 127 142 146 171 184
1 28 50 79 143 160 181
30 45 77 100 185 189
26 36 76 133 165 186
2 13 47 81 107 196
6 54 73 153 166 174
99 131 145 149 152
39 63 86 154 195
49 52 70 115 116
5 89 105 121 167
51 71 163 191 192
20 22 96 148 155
44 55 128 187 194
80 82 94 106 170
27 33 124 144
60 65 175 193
3 61 108 134
24 41 162 173
11 98 118 147
10 53 62 139
12 69 72 104
25 46 112 182
23 35 113 117
18 119 151
37 83 102
66 125 180
88 101 126
43 150 176
34 95 103
31 120 159
17 85 197
190 198
48 56
158 188
16 136
109 179
9 87

129

Figure 2.7: Random partitions of sets of cardinality 50, 100, and 200.

3 Boltzmann Samplers

The Boltzmann sampling method derives its name from Boltzmann distributions

which give the probability of a system existing in a certain state as a function of

the temperature of the system and the energy of the state [4]. Unlike recursive

method samplers, the Boltzmann sampling method does not require computing the

table of {ck} values, nor does it require a recursive decomposition for the class being

considered. Boltzmann samplers require a closed form for the generating function of

C . The second major difference is that Boltzmann samplers are not guaranteed to

return an object of the desired size on any given call. This of course sounds counter-

intuitive as this means in order to attain an object of size n, multiple runs of the

function would almost inevitably be required.
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Boltzmann samplers rely on calculating a continuous control parameter, x > 0

and in putting a measure over the whole of C . The objective is to tune x in order

to maximize the probability of obtaining some γ ∈ C such that γ ∈ Cn, for the

desired size n. With the Boltzmann model, we sample over the whole of C in such a

way that the object γ that is generated is selected uniformly from all objects of the

same size. This introduces the possibility of two sampling strategies. First we have

exact size sampling wherein we condition the sampler to only return γ ∈ Cn. Second

we have approximate size sampling wherein we condition the sampler to only return

γ ∈ CN , where (1− ε)n ≤ N ≤ (1 + ε)n, for some predetermined ε > 0.

It is evident that Boltzmann samplers, in general, fall short of their recursive

method counterparts with respect to time efficiency. However Boltzmann samplers

offer a space efficient alternative that permit effective sampling of objects of sizes

that are out of reach for the recursive method. We begin by discussing the calculus

behind Boltzmann samplers.

3.1 The Calculus of Boltzmann Samplers

Under the Boltzmann model we aim to select a control parameter x > 0 that maxi-

mizes the probability of generating an object of the desired size. Boltzmann models

come in two varieties, one used in the ordinary (unlabelled) case and another used in

the exponential (labelled) case. Given the OGF and EGF for C specified in Section

1.1 the probability of obtaining any γ ∈ C is

ordinary/unlabelled case: Px(γ) =
x|γ|

C(x)
, C(x) =

∑
γ∈C

x|γ|

exponential/labelled case: Px(γ) =
x|γ|

Ĉ(x)|γ|!
, Ĉ(x) =

∑
γ∈C

x|γ|

|γ|!

Definition 3.1 (Boltzmann Samplers). A Boltzmann sampler is a a process that
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produces objects from a class C in accordance with the appropriate Boltzmann model

(ordinary or exponential) [4]. We denote the Boltzmann sampler for C with parameter

x by ΓC(x).

As mentioned, Boltzmann samplers do not guarantee that an object of the desired

size will be returned on any given call and so we tune x so that the probability

of obtaining an object of the desired size (or within the desired range of sizes) is

reasonably high [4, 3]. The probabilities for the ordinary (unlabelled) and exponential

(labelled) cases of getting an object of exactly size n are given respectively by the

following

Px(N = n) =
cnx

n

C(x)
or Px(N = n) =

cnx
n

n!Ĉ(x)
,

where C(x) =
∑
n

cnx
n and Ĉ(x) =

∑
n

cnx
n

n!

where permissible values for x > 0 are all values such that C(x) (or Ĉ(x)) is defined.

We now consider how to tune the parameter x in order to maximize Px(N = n).

Theorem 3.1 (Moments of the Random Variable N). The random size of the object

produced under the ordinary (unlabelled) Boltzmann model of parameter x has first

and second moments satisfying

Ex(N) =
xC ′(x)

C(x)
and Ex(N2) =

x2C ′′(x) + xC ′(x)

C(x)
.

Let V denote the variance operator, then

Vx(N) = x
d

dx
Ex(N).

Proof. If we consider the Boltzmann model for the ordinary case then the probability
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generating function of N is

∑
n

Px(N = n)zn =
∑
n

cnx
n

C(x)
zn =

C(xz)

C(x)

since Px(N = n) = cnxn

C(x)
. We then make use of the generating function given above

for the ordinary, unlabelled case. Since derivatives tell us about how a function

changes and our control parameter x is always continuous over some domain, we can

differentiate setting z = 1:

Ex(N) =

(
∂

∂z

C(xz)

C(x)

)
z=1

=
xC ′(x)

C(x)

Ex(N(N − 1)) =

(
∂2

∂z2
C(xz)

C(x)

)
z=1

Ex(N2 −N) =
x2C ′′(x)

C(x)

Ex(N2) =
x2C ′′(x)

C(x)
+
xC ′(x)

C(x)

=
x2C ′′(x) + xC ′(x)

C(x)
.

Now we consider the formula for variance

Vx(N) = Ex[(N − µ)2].

Since Ex(N) is the first moment of the random variable N , we have µ = Ex(N).
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Therefore

Vx(N) = Ex[(N − Ex(N))2]

= Ex[N2 − 2NEx(N) + (Ex(N))2]

= Ex(N2)− 2Ex(N)Ex(N) + (Ex(N))2

= Ex(N2)− 2(Ex(N))2 + (Ex(N))2

= Ex(N2)− (Ex(N))2

=
x2C ′′(x) + xC ′(x)

C(x)
−
(
xC ′(x)

C(x)

)2

.

Now we differentiate Ex(N) and multiply by x and note that we obtain the same

result

x
d

dx
Ex(N) = x

d

dx

(
xC ′(x)

C(x)

)
= x

(
C(x)(C ′(x) + xC ′′(x))− C ′(x)(x(C ′(x))

C(x)2

)
=
x2C ′′(x) + xC(x)

C(x)
−
(
xC ′(x)

C(x)

)2

= Vx(N).

Replacing C(x) with Ĉ(x) gives the first and second moments satisfied in the expo-

nential case [4].

Using Theorem 3.1 we can effectively tune the parameter x in order to maximize

the probability of generating an object of size n by solving Ex(N) = n for x.

The calculus behind Boltzmann samplers allows us to build up samplers from

simpler classes of objects to sample from more complex classes. This is done through

a variety of constructs including finite sets, the disjoint union, the cartesian product,

sequences, and set classes [4]. If C can be expressed in terms of simpler classes of

objects, say A and B, using the constructs discussed later in this section, and we
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have Boltzmann samplers ΓA(x) and ΓB(x) for A and B respectively then we can

create from them a new Boltzmann sampler which is equivalent to ΓC(x) [4].

3.1.1 Probability Distributions and Random Variables

Definition 3.2 (Bernoulli Distribution). Let 0 ≤ p ≤ 1. A Bernoulli distribution

with parameter p is a discrete probability distribution of a random variable that takes

the value 1 with probability p or 0 with probability q = 1− p. Let Bern(p) denote a

generator for a Bernoulli variable with parameter p. That is,

Bern(p) = 1 with probability p and Bern(p) = 0 with probability q = 1− p.

Note that this is a Boolean variable with 1 corresponding to true and 0 correspond-

ing to false. A Bernoulli trial refers to a random experiment having two possible

outcomes: success or failure.

Definition 3.3 (Geometric Distribution). A geometric variable with parameter p

counts the number of successes before a failure in a sequence of repeated independent

Bernoulli trials, each equipped with parameter p. The corresponding geometric distribution

is then the distribution of this variable. The probability that k successes occur before

a failure is

P(X = k) = pk(1− p)

Let pk be the probability that a random variable with the geometric distribution

has value k. Let Geom(p) denote a generator for a geometric random variable with

parameter p. Then

Geom(p) = k with probability pk = (1− p)pk.

Definition 3.4 (Poisson Distribution). A Poisson distribution is a discrete proba-
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bility distribution that expresses the probability that a particular number of events

occur in a set interval of space or time. The events must occur at a known, constant

rate and their occurrence is independent of all previous events. Let λ denote the av-

erage number of events that occur in an interval. Then the probability that k events

occur in an interval is given by

P(X = k) = e−λ
λk

k!
.

Let pk be the probability that a random variable with the Poisson distribution has

value k. Let Pois(λ) denote a generator for a Poisson random variable with parameter

λ. Then

Pois(λ) = k with probability pk = e−λ
λk

k!
.

3.1.2 Finite Sets

We can sample from a finite set F = {z1, z2, z3, ..., zn} by selecting the ith element of

F with probability

P(zi) =
x|zi|

F (x)
, where F (x) =

∑
i

x|zi|

This is key as drawing from singleton classes is deterministic and we can form objects

by considering two singleton classes, the one element of size 0 and the atomic object

of a class, denoted Z , from which all larger, more complex objects can be formed

[4]. For example, in the case of binary trees the 0 element is a leaf and the atomic

element is an internal node.

3.1.3 Disjoint Unions

Let C = A + B. Let ΓA(x), ΓB(x) be the Boltzmann samplers for A and B

respectively. We can implement a Bernoulli distribution to sample from C by using
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the samplers for A and B. By definition, the probability of obtaining some α ∈ A

from the sampler ΓC(x) is

PC ,x(α) ≡ x|α|

C(x)
=

x|α|

A(x)
· A(x)

C(x)

and similarly for the probability of obtaining some β ∈ B. It therefore follows that

the overall probabilities of a randomly sampled γ ∈ C being from A or B are

PC ,x(γ ∈ A ) =
A(x)

C(x)
and PC ,x(γ ∈ B) =

B(x)

C(x)
.

Let pA be the probability that a randomly sampled γ ∈ C is from A . We use

the Bernoulli generator Bern(pA) to develop the Boltzmann sampler ΓC(x) which

generates objects from C = A + B. The pseudo-code is given in Algorithm 3.1.

Algorithm 3.1: Boltzmann disjoint union constructor.

1 function ΓC(x):

2 pA ← A(x)
A(x)+B(x)

3 if Bern(pA) then
4 return ΓA(x)
5 else
6 return ΓB(x)

We abbreviate this as

(
Bern

(
A(x)

C(x)

)
−→ ΓA(x)|ΓB(x)

)
.

3.1.4 Cartesian Products

Let C = A ×B. If we have Boltzmann samplers ΓA(x) and ΓB(x) for A and B

respectively then we can create the sampler for C [4]. Since C = A ×B we have by
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Lemma 1.3 that the generating function of C is

C(z) = A(z) ·B(z) =
∑

(α,β)∈A×B

z|α|+|β|.

As such the probability of obtaining any given γ ∈ C where γ = (α, β) is

PC ,x(γ) ≡ x|γ|

C(x)
=

x|α|

A(x)
· x

|β|

B(x)

and so we can construct the sampler ΓC(x) for C by drawing independently from

the samplers ΓA(x) and ΓB(x) to obtain an ordered pair (α, β) = γ ∈ C which is

generated uniformly at random [4]. The sampler for C is demonstrated in Algorithm

3.2.

Algorithm 3.2: Boltzmann Cartesian product constructor.

1 function ΓC(x) :
2 return (ΓA(x),ΓB(x))

We abbreviate this as ΓC(x) = (ΓA(x); ΓB(x)). We can also use the natural

extension (f1; f2; ...; fr) where r-tuples are involved [4].

3.1.5 Sequences

We write C = S(A ) to denote that C consists of all finite lists of elements from A

(C = {ε}+ A + A 2 + ...). We deduce that C = {ε}+ A ×C [4]. Hence by Lemmas

1.1 and 1.3 we have C(x) = 1 + A(x)C(x) and thus

C(x) =
1

1− A(x)
.

From here we can develop the sampler ΓC(x) either through a recursive design which

relies on Bernoulli variables or a geometric design that calls for the use of Geometric

variables. The pseudo-code for the recursive sampler is given in Algorithm 3.3 and
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the pseudo-code for the geometric sampler is shown in Algorithm 3.4.

Algorithm 3.3: Boltzmann recursive sequence sampler.

1 function ΓC(x):
2 if Bern(A(x)) then
3 return (ΓA(x); ΓC(x))
4 else
5 return ε

Algorithm 3.3 works because ΓC(x) is built via disjoint union, hence we get a

Bernoulli switch with

p =
A(x)C(x)

1 + A(x)C(x)
=
A(x)C(x)

C(x)
= A(x).

Algorithm 3.4: Boltzmann geometric sequence sampler.

1 function ΓC(x):
2 draw k based on Geom(A(x))
3 return k-tuple given by (ΓA(x); ΓA(x); ...; ΓA(x))

Algorithm 3.4 is effectively a simplification of Algorithm 3.3 since instead of re-

peatedly drawing from a Bernoulli random variable until a result of 0 is attained, we

simply use a geometric random variable with rate A(x) [4]. We abbreviate this as

ΓC(x) = (Geom(A(x)) =⇒ Γ(x).

3.1.6 Set Class

This construct applies only to the labelled case. The class C is the set-class of another

class, A , denoted C = P(A ), if C is the quotient of sequences S(A )/ ≡, where

≡ is the relation that deems two sequences to be equivalent if one derives from the

other via an arbitrary permutation of components [4]. Now let Â(x) be the EGF of

A , and note that the EGF of C is

Ĉ(x) =
∞∑
k=0

1

k!
Â(x)k = eÂ(x).
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Consider the exponential Boltzmann model. The probability that a set C has k

components of A is

1

Ĉ(x)

1

k!
Â(x)k = e−Â(x)

Â(x)k

k!

which is equivalent to a Poisson law of rate Â(x). Hence we can devise a simple

algorithm for generating sets, the pseudo-code is given in Algorithm 3.5.

Algorithm 3.5: Boltzmann set class constructor.

1 function ΓC(x):

2 return Pois(Â(x))

We abbreviate this as ΓC(x) = Pois(Â(x)) =⇒ ΓA(x).

3.2 Binary Trees

To create a Boltzmann sampler for binary trees we first consider Defintion 2.1 and

recall the decomposition B = {◦} + ({•} ×B2) . We can determine the parameter

x that should be used in order to maximize the probability of attaining trees of size

n using the closed form OGF given in Section 2.1 in combination with Theorem 3.1:

B(x) =
1−
√

1− 4x

2

B′(x) =
1√

1− 4x

Ex(N) =
xB′(x)

B(x)
=

2x

4x+
√

1− 4x− 1
.

Setting Ex(N) = n and solving for x, we obtain

n =
2x

4x+
√

1− 4x− 1
=⇒ x =

n(n− 1)

(2n− 1)2

for n ≥ 0.

We modify the decomposition to be B = Z + (B ×B), where Z is the class
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comprising of the generic node and so we count only with respect to leaves. We can

do this as the sampler ΓZ(x) is deterministic and consists only of the instruction

to generate a node. Thus the Boltzmann sampler then follows from the Cartesian

product and union constructs:

ΓB(x) = (Bern(p0)→ Z |(ΓB(x); ΓB(x)))

where p0 =
x

B(x)
=

x
1−
√
1−4x
2

=
2x

1−
√

1− 4x
.

That is, with probability p0 we terminate at a leaf node and with probability

1 − p0 we sample from the Cartesian product (ΓB(x); ΓB(x)). We demonstrate a

pseudo-code implementation of the sampler ΓB(x) in Algorithm 3.6.

Algorithm 3.6: Boltzmann sampler for binary trees.

Data: n - the desired number of internal nodes
Data: x← n(n−1)

(2n−1)2

1 function ΓB(x):
2 p0 ← 2x

1−
√
1−4x

3 u← rand(0, 1)
4 if u < p0 then
5 return Z
6 else
7 return (ΓB(x),ΓB(x))

The implementation of ΓB(x) (Algorithm 3.6) is displayed in Appendix B.1.

It must be noted however that the above sampler has an extraordinarily poor hit

rate for large n and as such is undesirable for practical use. Indeed we can observe

based on Theorem 3.1 that the theoretical variance is

Vx(N) = x
d

dx
Ex(N)

= x
d

dx

(
2x

4x+
√

1− 4x− 1

)
=

x

(1− 4x)
3
2

.
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At the optimal value, x = n(n−1)
(2n−1)2 , this gives

Vx(N) =

n(n−1)
(2n−1)2(

1− 4n(n−1)
(2n−1)2

) 3
2

= n(n− 1)|1− 2n|

= (n2 − n)(2n− 1) (since n ≥ 1)

hence

σ =
√

(n2 − n)(2n− 1).

For example, for n = 500 we get x = 0.2499997495 and Vx(N) = 249250500, and

consequenty σ = 15787.669, a standard deviation that exceeds 31 times the expected

mean. Indeed, we can see that σ ∼
√

2n3.

3.2.1 Pointed Binary Trees

In order to circumvent the above downfall of the Boltzmann sampler for binary trees

the notion of the pointing operation becomes key. In the standard implementaion

outlined above, a binary tree is thought of in a similar manner as in Section 2.1

where

B = Z + (B ×B).

However as noted the implementation that results has severe performance deficiencies.

Definition 3.5 (The Pointing Operator). Given a class C we refer to C • = {(γ, i) :

γ ∈ C , i ∈ {1, 2, ..., |γ|}} or equivalenty C •n ∼= Cn×{1, 2, ..., n} as the class of pointed

objects from C [4]. Objects in C • are effectively objects from C where we distinguish

one of the atoms by pointing to it.

From Definition 3.5 we have |Cn| = n|C | and hence the generating function for

C • is C•(z) = z d
dz
C(z). Let B• be the class of pointed binary trees, the OGF of B•
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is

B•(x) = x
d

dx
B(x) =

x√
1− 4x

.

Thus we obtain a new decomposition for B•

B• = Z • + (B• ×B) + (B ×B•).

We again make use of the cross product and disjoint union constructs to develop a

new sampler, ΓB•(x) which builds upon the original sampler ΓB(x) in the following

way. First we determine Ex(N)

B•(x) =
x√

1− 4x

B•
′
(x) =

1− 2x

(1− 4x)
3
2

Ex(N) =
xB•

′
(x)

B•(x)

=
1− 2x

1− 4x
.

Setting Ex(N) = n and solving for x we get

n =
1− 2x

1− 4x
=⇒ x =

n− 1

4n− 2
.

Then we construct ΓB•(x) as follows:

ΓB(x) = (Bern(p0)→ Z |(ΓB(x); ΓB(x)))

ΓB•(x) = (Bern(p1, p2)→ Z •|(ΓB•(x); ΓB(x))|(ΓB(x); ΓB•(x)))

where p0 is as before,

p1 =
√

1− 4x , p2 =
1

2
− 1

2

√
1− 4x,
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and Bern(p1, p2) is a probabilistic switch where we terminate with a pointed leaf

with probability p1, sample from (ΓB•(x); ΓB(x)) with probability p1 + p2, or sample

from (ΓB(x); ΓB•(x)) with probability 1 − (p1 + p2). Taking note of the fact that

p1 ≈ 0 for x ≈ 1
4
, it is evident that ΓB•(x) will produce a terminal node with

extremely low probability, and with high probability it will generate a sequence of

calls to itself and to ΓB(x) which itself produces either calls to itself or a terminal

node each with probability close to 1
2
. As a result ΓB• effectively controls for the

issue of generating an excessive quantity of small trees. The implementation of ΓB•

is displayed in Algorithm 3.7.

Algorithm 3.7: Boltzmann sampler for pointed binary trees

Data: n - the desired number of internal nodes
Data: x← n−1

4n−2
1 function ΓB•(x) :

2 p1 ←
√

1− 4x

3 p2 ← 1
2
− 1

2

√
1− 4x

4 u← rand(0, 1)
5 if u < p1 then
6 return Z •

7 if p1 ≤ u < p1 + p2 then
8 return (ΓB•(x),ΓB(x))
9 else

10 return (ΓB(x),ΓB•(x))

The implementation of ΓB• (Algorithm 3.7) is displayed in Appendix B.1.

While this does not yield a perfect sampler, the pointing mechanism ensures signif-

icantly higher probabilities of obtaining larger trees and moreoever, a greater prob-

ability of obtaining trees in the vicinity of the desired size. By Theorem 3.1 the
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theoretical variance and standard deviation with the pointing operator are:

Vx(N) = x
d

dx
Ex(N)

= x
d

dx

(
1− 2x

1− 4x

)
=

2x

(1− 4x)2
.

At the optimal value, x = n−1
4n−2 , this gives

Vx(N) =

2(n−1)
4n−2(

1− 4(n−1)
4n−2

)2

= (n− 1)(2n− 1)

hence

σ =
√

(n− 1)(2n− 1).

For example, for n = 500 we get that x = 0.2497497497 and that Vx(N) = 4985 and

consequenty σ = 706.046, a significant improvement over the non-pointed sampler

[4]. Indeed we now see that σ ∼
√

2n.

To further illustrate by the example with n = 500 and the aforementioned x values

we get the following size trees on a run of 25 samples for each:

ΓB(x)→ {2, 1, 1, 11, 5, 1, 2, 1, 19, 56, 1, 9, 1, 1, 1, 2, 2, 1, 3, 1, 1, 4, 33, 1, 1}

ΓB•(x)→ {6, 1580, 181, 11, 135, 3178, 1139, 4, 74, 1872, 7, 698, 1671, 118, 54, 778,

120, 97, 16, 126, 112, 199, 364, 8, 1}

cementing the utility of the pointing mechanism.
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3.3 Integer Partitions

In order to design a Boltzmann sampler for integer partitions we must first consider

Definition 2.2 recalling that integer partitions are lists of integers. Since λ is a weakly

increasing list of integers, we ensure that each partition is obtained in only one way.

As with the recursive method implementation, there are some unique properties of

integer partitions that must be carefully considered. Since Boltzmann samplers are

not required, on any given iteration, to produce an object of the exact size desired, we

have that partitions greater than or less than n may be produced (for any n ≥ 1). In

order to ensure that the sampler will produce an output, as with the recursive method

we will only consider partitions with parts at most n if we desire a partition of n.

This then results in a sampler that will produce uniformly random integer partitions

with parts of at most n. In the case that the output partition is not larger than n,

this will be a partition chosen uniformly at random from all possibilities [2].

From the above definitions it follows that an integer partition is the Cartesian

product of sequences of integers i ∈ [1, n]. Let Pn denote the subclass of all partitions

with parts at most n, then

Pn = S(Z )×S(Z 2 )× · · · ×S(Z n).

Thus the corresponding Boltzmann sampler is the Cartesian product of sequence

samplers [2, 4]. For each Z k we have OGF xk and hence probability p = xk for each

S(Z k). Since the desired result is to have the Boltzmann sampler achieve partitions

of either exactly n or approximately n, we must make use of Theorem 3.1 again and

thus we note that the OGF for integer partitions with parts at most n is

Pn(x) :=
∑
m≥0

p(m,n)xm =
n∏
i=1

1

1− xi
.
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Differentiation yields

P ′n(x) = Pn(x)
n∑
k=1

kxk−1

1− xk
,

and by Theorem 3.1 we get

Ex(N) =
xP ′n(x)

Pn(x)
= x

n∑
k=1

kxk−1

1− xk
=

n∑
k=1

kxk

1− xk
=

n∑
k=1

k

x−k − 1
.

In order to attain the greatest probability of the sampler producing partitions

of n, we need to find x ∈ (0, 1) such that the sum given by Ex(N) is exactly n.

However as n grows in size this task becomes increasingly out of reach even via the

use of numerical computing. As a result we instead aim to find x ∈ (0, 1) such that

Ex(N) ≈ n. To do this we will make use of the integral approximation of Ex(N):

n∑
k=1

k

x−k − 1
≈
∫ n

0

z

x−z − 1
dz.

In this integral the parameter x is constant and there is a singularity at z = 0, however

we can apply l’Hopital’s rule to show that the limit exists

lim
z→0

z

x−z − 1
= lim

z→0

−1

x−z lnx
=
−1

lnx
.

Further note that x ∈ (0, 1) so ln x will be defined and lnx 6= 0. We will now replace

x−z with e−z lnx and use the substitution u = −z lnx to get

∫ n

0

z

x−z − 1
dz =

1

(lnx)2

∫ −n lnx

0

u

eu − 1
du→ 1

(lnx)2

∫ ∞
0

u

eu − 1
du

as u→∞. Now note that the Riemann zeta function has integral representation

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx
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where, if s is a positive integer, we have

Γ(s) = (s− 1)!.

Now let s = 2 and note

ζ(2) =
1

Γ(2)

∫ ∞
0

x

ex − 1
dx =

1

1!

∫ ∞
0

x

ex − 1
dx =

∫ ∞
0

x

ex − 1
dx.

Thus we obtain the same integrand as before and given the well known result

ζ(2) =
π2

6

we have

1

(lnx)2
π2

6
= n.

Thus we obtain as our solution

(lnx)2 =
π2

6n

lnx = ± π√
6n

and since we require x ∈ (0, 1) we take the negative branch

lnx =
−π√

6n

x = e
−π√
6n .

With a feasibly computable equation now to obtain x we can now develop our

sampler ΓP (x). A pseudo-code implementation is shown in Algorithm 3.8.
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Algorithm 3.8: Boltzmann sampler for integer partitions.

Data: n - the desired integer to partition
Data: x← exp( −π√

6n
)

1 function ΓP (x) :
2 λ = [ ]
3 p← 1
4 for i from 1 to n+ 1 do
5 p← px
6 do
7 u← rand(0, 1)
8 if u < p then
9 append i to λ

10 else
11 break

12 while True;

13 return λ

The implementation of ΓP (Algorithm 3.8) is displayed in Appendix B.2.

Applying Theorem 3.1 to the integer partition sampler we obtain

Vx(N) = x
d

dx
Ex(N)

= x
d

dx

n∑
k=1

k

x−k − 1

=
n∑
k=1

k2x−k

(x−k − 1)2
.

We see that Vx(N) is given by a computation that quickly becomes out of reach for

large n, and so as before we approximate the sum via an integral

Vx(N) ≈
∫ n

0

z2x−z

(x−z − 1)2
dz

=

∫ n

0

z2e−zlnx

(e−zlnx − 1)2
dz

= − 1

(lnx)3

∫ −nlnx
0

u2eu

(eu − 1)2
du.
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As before we have made the substitution u = −z lnx. When x = α = exp( −π√
6n

), and

therefore lnx = −π√
6n

, we have

Vα(x) ≈ (6n)
3
2

π3

∫ π
√

n
6

0

u2eu

(eu − 1)2
du.

As n→∞ ∫ π
√

n
6

0

u2eu

(eu − 1)2
du→

∫ ∞
0

u2eu

(eu − 1)2
du =

π2

3
.

Thus we have an approximation for the variance when x = α

Vx(N) ≈ 2
√

6

π
n

3
2

and so

σ ≈

√
2
√

6

π
n

3
2 =

(
24

π2

) 1
4

n
3
4 .

Using n = 100 as an example we get that Vα(N) ≈ 1559.39 and consequently σ ≈

39.099429, noting that the true values are Vx(N) = 1528.77 and σ = 39.099488.

Running the sampler 1000 times for n = 100 we obtain µ = 93.727, σ2 = 1386.5209,

and σ = 37.236.

3.4 Set Partitions

To develop a Boltzmann sampler for set partitions we first consider Definition 2.3 and

note that a set partition is a set of sets. As a result it is evident that the use of the

set class construct is required for such a sampler. Since set partitions are counted by

the Bell numbers, we have that the closed form of the EGF for set partitions is

S(x) =
∞∑
n=0

snx
n

n!
= ee

x−1
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Applying Theorem 3.1 we determine the appropriate value to choose for x

Ex(N) =
xS ′(x)

S(x)
=
xex+e

x−1

eex−1
= xex.

Note that xex is the inverse of the Lambert W function, denoted W (x), and thus we

choose x such that W (n) = x.

We now apply the set class construct to develop the Boltzmann sampler for set

partitions. First we define P≥1 as the set class constructor with the additional con-

straint that there must be at least one component. As such we can define the set of

all set partitions S = P(P≥1(Z )), where the atom Z is labelled and is an element.

We then require the use of two Poisson distributions; first one to select the number

of blocks, k, which as a result the definition of set partitions will be Pois(ex− 1). We

then select each of the block sizes, b1, b2, ..., bk such that each block size is indepen-

dently selected at rate x from the Poisson law conditioned to accept only sizes of at

least 1 and hence

ΓS(x) =
(
Pois(ex − 1) =⇒

(
Pois≥1(x) =⇒ Z

))
.

The pseudo-code implementation of the Poisson generators for ΓS(x) are given in

Algorithm 3.9.
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Algorithm 3.9: Poisson generators for set partitions.

1 function Pois(x):
2 u← rand(0, 1)
3 k ← 0
4 tally ← 0
5 do
6 if u < tally then
7 return k − 1
8 else

9 tally ← tally + e−x x
k

k!

10 k ← k + 1

11 while True;

12 function Pois≥1(x):
13 u← rand(0, 1)
14 k ← 1
15 tally ← 0 do
16 if u < tally then
17 return k − 1
18 else

19 tally ← tally + 1
ex−1

xk

k!

20 k ← k + 1

21 while True;

Taking a random permutation of the set S = {1, 2, ..., n}, where n =
∑k

i=1 bi,

and placing the elements accordingly into each block will complete the process. The

resulting output will be a partition of S that is randomly selected from all possible

partitions of S. The pseudo-code for ΓS(x) is shown in Algorithm 3.10.
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Algorithm 3.10: Boltzmann sampler for set partitions

Data: n - the desired cardinality of the partitioned set
Data: x← W (n)

1 function ΓS(x) :
2 k ← Pois(ex − 1)
3 n← 0
4 blocks← [ ]
5 for i from 0 to k do
6 append Pois≥1(x) to blocks
7 n← n+ blocks[i]

8 S ← {1, 2, ..., n}
9 randPermutation(S)

10 part← { }
11 pos← 0
12 for i from 0 to k do
13 temp← { }
14 for j from 0 to blocks[i] do
15 if i = 0 then
16 append Sj to temp
17 else
18 append Sj+pos to temp

19 append temp to part
20 pos← pos+ blocks[i]

21 return part

The implementation of ΓS(x) (the combination of Algorithms 3.9 and 3.10) is

displayed in Appendix B.3.

It can be demonstrated, by Theorem 3.1, that choosing the value for the parameter

x according to the Lambert W function yields a reasonably high likelihood of obtaining

a partition of a set that is close to or exactly the desired cardinality. By Theorem 3.1
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we obtain as theoretical variance and standard deviation:

Vx(N) = x
d

dx
Ex(N)

= x
d

dx
(xex)

= x(xex + ex)

= xex(x+ 1)

= n(x+ 1)

since n = xex. At the optimal value, x = W (n), this gives

Vx(N) = n(W (n) + 1)

hence

σ =
√
n(W (n) + 1).

Using n = 100 as an example, we get that Vx(N) ≈ 438.563014 and consequently

σ ≈ 20.941896. It is known that for n ∈ (0,∞) we have W (n) ∼ lnn and thus

σ ∼
√
n lnn [1].

4 Comparitive Analysis

In the previous two sections, the algorithmic methods for random generation have

been discussed in depth with several implementation examples. These examples were

chosen to be the same between the two methods so that we may draw some com-

parisons between the strengths and shortcomings of each of the methods. As was

mentioned, first and foremost we make note that the recursive method in general sees

its largest shortcoming with regards to space requirements, which is not of concern

to Boltzmann samplers. On the other hand, even for approximate size sampling,
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Boltzmann samplers can require far more time to achieve the desired object when

compared to the recursive method counterpart.

4.1 Binary Trees

The first most evident difference in performance with binary trees is the hit rate

achieved, even in the pointed case, by the Boltzmann sampler. The standard devia-

tion exceeds the expected size, and so we can infer that obtaining a tree, even with

approximate size sampling, will likely require multiple runs. On the other hand, the

amount of space required for the recursive method to produce a random tree of a

given size becomes increasingly out of bounds for particularly large n, whereas in

theory the Boltzmann sampler can produce such a tree without any issues insofar as

space is concerned.

First we illustrate that the samplers achieve uniformity. One particular parameter

that this can be measured by is the average depth of a tree of size n. The depth of

a given node vi in a tree is defined as the length of path which connects vi to the

root. By the depth of the tree itself we then mean the length of the maximum of

these paths. The height of a tree is given by the depth + 1, the average height of

a binary tree of size n is known to be asymptotic to 2
√
πn, and hence the average

depth is asymptotic to 2
√
πn [6]. Figure 4.1 compares the average depth of randomly

generated trees among 1000 iterations using the recursive method sampler for each

interger n ∈ [1, 1000] (left) with the plot of f(n) = 2
√
πn (right). We note some

fluctuation for larger values of n, but generally similar plots are produced overall.
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Figure 4.1: Average depths for binary trees on n internal nodes using the recursive

sampler versus the asymptotic depth estimate.

.

Running the Boltzmann sampler 10000 times with the x parameter set accordingly

for n = 100, 500, 1000, and 2000 yielded the resulting statistics: µ100 = 101.1883,

σ100 = 139.8712, µ500 = 500.2984, σ500 = 707.4485, µ1000 = 999.8445, σ1000 =

1419.1528, µ2000 = 1993.1494, and σ2000 = 2807.1803. The resulting historgrams can

be seen in Figure 4.2. As expected, we note that the distributions are right skewed.
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Figure 4.2: Histograms for 10000 iterations generating binary trees with Boltzmann

sampler parameter set for n = 100, 500, 1000, and 2000.

We recall from Section 3.2 that the theoretical standard deviation for binary trees

of size n using the Boltzmann sampler for pointed binary trees is σ =
√

2n2 − 3n+ 1.

In Figure 4.3 we display the plot generated by calculating the standard deviation

from 1000 iterations with the Boltzmann sampler for each integer n ∈ [1, 500] (left)

compared to the plot generated by f(n) =
√

2n2 − 3n+ 1 (right). We note that,

although the plots do not match, it can be seen that the plot for the theoretical

standard deviation is undoubtedly the line of best fit for our computed results.
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Figure 4.3: Standard deviation for trees of size n with Boltzmann sampling.

4.1.1 Timing

Timing is an import aspect to consider for samplers with respect to utility and effi-

ciency. In Figure 4.4 we compare the average time (over 100 iterations) required to

generate binary trees on n internal nodes for n ∈ [1, 100] using the recursive method

(left) and Boltzmann sampling (right). As expected, we see that the recursive method

exhibits far superior performance with respect to time efficiency.

Figure 4.4: Average time required to generate a binary tree on n internal nodes:

recursive method versus Boltzmann sampling.

Using approximate sampling, we can achieve better speed efficiency with Boltz-
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mann sampling, albeit still inferior to the recursive method. Figure 4.5 demonstrates

this with objects permitted to be within 5% and 10% of the desired size respectively.

The same values of n and number of iterations were used as in the case of Figure 4.4.

Figure 4.5: Time required to generate random binary trees on approximately n in-

ternal nodes.

4.2 Integer Partitions

In order to assess the uniform randomness of the integer partitions we generate, we

can use the average number of parts in a partition of n ∈ N and compare this with

the expected value. Kessler and Livingston demonstrated that the expected number

of parts in a partition of n is asymptotic to

√
n

v
lnn

where v =
√

2
3
π [8]. In Figure 4.6 we compare the results obtained from averaging

1000 interations using the recursive method sampler for partitions of each integer

n ∈ [1, 1000] with the plot given by f(n) =
√
n
v

lnn and note the similarity between

the plots.
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Figure 4.6: Average number of parts over 1000 iterations of the recursive method

sampler versus expected number of parts.

Running the Boltzmann sampler 10000 times with the x parameter set accordingly

for n = 1000 and 5000 yielded the resulting statistics: µ1000 = 990.3959, σ1000 =

223.3896, µ5000 = 4974.6955, and σ5000 = 735.8441. The resulting historgrams can be

seen in Figure 4.7. As expected, the distributions appear relatively normal.

Figure 4.7: Histograms for 10000 iterations generating partitions of n = 1000 and

5000 with Boltzmann sampling.

We recall from Section 3.3 that our estimate for the theoretical standard deviation

for integer partitions using Boltzmann sampling was σ ≈
(
24
π2

) 1
4n

3
4 . In Figure 4.8 we

display the plot generated by calculating the standard deviation from 1000 iterations
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with the Boltzmann sampler for each integer n ∈ [1, 500] (left) compared to the plot

generated by f(n) =
(
24
π2

) 1
4n

3
4 (right). Though there does exist some variation (caused

by fluctuations in the computed case), the curves displayed remain generally similar.

Figure 4.8: Standard deviation for partitions of n with Boltzmann sampling.

4.2.1 Timing

To assess timing performance, we compare the time required to generate uniformly

random interger partitions using the recursive method and using Boltzmann sampling.

In Figure 4.9 plots display the average time required to generate partitions of integers

n ∈ [1, 200]. 100 iterations were used with the recursive method (left) and Boltzmann

sampling (right). As expected we see clear superiority with respect to time efficiency

from the recursive method.
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Figure 4.9: Time required to generate random partitions of n: recursive method

versus Boltzmann sampling.

Using approximate sampling, we can achieve better speed efficiency with Boltz-

mann sampling. Figure 4.10 demonstrates this with objects permitted to be within

5% and 10% of the desired size respectively. The same values of n and number of

iterations were used as in the case of Figure 4.9.

Figure 4.10: Time required to generate partitions of approximately n.

4.3 Set Partitions

To test for true uniform randomness in our generation of set partitions we can compare

the average number of blocks over multiple iterations with a sampler with the actual
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average number of blocks over all possibilities. The average number of blocks in

a set partition of size n is given by sn+1

sn
− 1. In Figure 4.11 we have the average

number of blocks over 1000 iterations of the recursive method sampler for each integer

n ∈ [0, 300] (left) and the plot given by f(n) = sn+1

sn
− 1 (right). We note that the

two plots are nearly identical.

Figure 4.11: Average block sizes over 1000 iterations of the recursive method sampler

versus actual average block sizes.

Running the Boltzmann sampler 10000 times with the x parameter set accordingly

for n = 100 and 500 yielded the resulting statistics: µ100 = 99.8614, σ100 = 21.1103,

µ500 = 499.9603, and σ500 = 53.2078. The resulting historgrams can be seen in Figure

4.12. Note that the distributions appear relatively normal, as expected.
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Figure 4.12: Histograms for 10000 iterations generating set partitions with Boltzmann

sampler parameter set for n = 100 and 500.

We recall in Section 3.4 it was demonstrated that the theoretical standard devi-

ation for set partitions using Boltzmann sampling was σ =
√
nW (n) + n. In Fig-

ure 4.13 we display the plot generated by calculating the standard deviation from

1000 iterations with the Boltzmann sampler for sets of cardinality n for each integer

n ∈ [1, 300] (left) compared to the plot generated by f(n) =
√
nW (n) + n (right).

Though there does exist some variation (caused by fluctuations in the computed case),

the curves displayed remain generally similar.

Figure 4.13: Standard deviation for sets of cardinality n with Boltzmann sampling.
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4.3.1 Timing

To assess timing performance, we compare the time required to generate uniformly

random set partitions using the recursive method and using Boltzmann sampling. In

Figure 4.14 plots display the average time required to generate partitions of sets of

size n for n ∈ [1, 100] ∩ Z. 100 iterations were used with the recursive method (left)

and Boltzmann sampling (right). We see, as expected, that the recursive method

exhibits superior speed performance on average.

Figure 4.14: Time required to generate random sets of cardinality n: recursive method

versus Boltzmann sampling.

Using approximate sampling, we can achieve better speed efficiency with Boltz-

mann sampling. Figure 4.15 demonstrates this with objects permitted to be within

5% and 10% of the desired size respectively. The same values of n and number of

iterations were used as in the case of Figure 4.14.
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Figure 4.15: Time required to generate random sets of approximately cardinality n.

4.4 General Timing Comparison

As discussed and demonstrated in Sections 4.1.1, 4.2.1, and 4.3.1, the recursive

method exhibits superiority to the Boltzmann method when concerning time effi-

ciency in sampling from Cn. Indeed sampling from Cn, the recursive method sampler

will generate an object in O(n log n) time with O(n2) or O(n1+ε) (0 < ε < 2) integer

arithmetic operations (pre-processing time) required for the array of values from the

counting sequence to be computed [9, 4].

On the other hand, to sample from Cn using the Boltzmann model, we require

O(n2) time per generation in the worst case scenario. Using strategies introduced by

Flajolet et al., this can be reduced to O(n1+ε) (0 < ε < 2) or even O(n) time per

generation for certain classes. If instead we want to sample from CN (approximate

size sampling) then we can achieve O(n) time per generation using the Boltzmann

method given some interval [n(1−ε), n(1+ε)] for a particular ε > 0. With this in mind

however, the optimal scenarios for Boltzmann sampling occur under the assumption

that we have an oracle that can perform efficient and perfectly accurate floating point

arithmetic. Thus we require floating point approximations in practice which results

in some small amount of preproccessing time for both the exact and approximate size
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sampling cases. Typically this time is O((log n)k), where k is small [4].

4.5 Space

As discussed in Sections 1 and 2, the recursive method’s primary shortcoming lies

within the requirement to compute and store the values {ck}nk=0. This requires O(n)

large integers to be stored in memory. Boltzmann samplers on the other hand require

O(1) constants to be stored in memory, regardless of the desired object size [4].

Therefore, the only space constraint for Boltzmann samplers is that there be enough

memory to store the object itself. As a result there is a value of n for which the

recursive method will be unable to sample from Cn due to space constraints, where

the Boltzmann method will, in theory, remain capable. Of course we may reach a

point where, due to time constraints, only approximate size sampling may be feasible.

5 Conclusions

It is evident that both the recursive method and the Boltzmann method for uniformly

random generation of combinatorial structures possess strengths and weaknesses as

well as applications. It is clear that, when time constraints are of concern, the re-

cursive method reigns superior. However if we are in need of generating especially

large objects, it may only be possible via Boltzmann sampling. For particularly large

objects, approximate sampling becomes more useful as well, thus again promoting the

use of Boltzmann samplers. Applications and future work shall now be addressed.

5.1 Applications

It is important to note the applications of the end results of implementing these

algorithmic methods. Of course one can state that these methods allow us to know

what various structures of a given size look like on average, but it is important to see
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how this applies to a variety of other problems.

5.1.1 Binary Trees

Binary trees are used to model various data structures as well as searching and sorting

algorithms in computing science. Random binary search trees and the related objects,

treaps, are used in developing efficient binary searching algorithms. Furthermore, the

famous Quicksort algorithm is related to and modelled by random binary trees [5].

In theory, we can expand on the samplers used for binary trees to develop samplers

for more general trees. Randomly generated trees have been applied to a variety of

problems. For example, caching protocols that mitigate the issue of hot spots on the

Internet as well as search algorithms [7].

5.1.2 Integer Partitions

Random integer partitions can be applied to various areas of mathematics to gain

insight. One such area is with regards to the general linear and the symmetric group,

denoted S(n). Integer partitions index irreducible representations of S(n). Moreover,

the Plancherel measure on the set of partitions of n is a probability measure that is

closely related to the Fourier transform of S(n) [10].

The number of ways in which we can grow the Young diagram of a partition λ from

the empty partition to n while maintaining a partition has numerous applications to

understanding various growth processes in representation theory among other fields

[10]. It is evident that understanding the average way we expect to grow a partition

can be discovered through uniform sampling of partitions.

5.1.3 Set Partitions

Set partitions are equivalent to equivalence relations on a set. Therefore, sampling

uniformly from all partitions of a set of cardinality n lends information regarding the

64



equivalence relations on that same set [11].

5.2 Future Research

First and foremost it is evident that making use of the applications discussed in

Section 5.1 would be of the utmost importance for future research. Both the example

classes considered, as well as a multitude of other combinatorial classes, have countless

applications to a variety of problems. Understanding general properties of these

classes is possible through uniform sampling.

It must be noted that there exists a package in Maple called CombStruct which

implements the recursive method, allowing for user specified classes so long as they

meet the decomposition requirements. It then stands to reason that another impor-

tant area of future work would be to develop such a package or library that would

implement the Boltzmann sampling method in a similar fashion. The major differ-

ence in this respect would be the requirement of the closed form expression for the

classes generating function, as well as a general definition of the structure of objects

belonging to the class considered.
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Appendices

Appendices A - B contain the source code for the sampler examples considered in
this thesis. All code is written in the python-based mathematical system SAGE
math. In order to attain particularly large objects using the recursive method, it is
in some cases necessary to import the sys module and manually change the python
recursion limit. This also applies to the Boltzmann sampler for binary trees, due to
the inherently recursive nature of the class.

A Recursive Method Source Code

A.1 Binary Trees

de f genBinaryTree (n ) :
i f n == 0 :

re turn
e l i f n == 1 :

re turn BinaryTree ( [ ] )
e l s e :

x = randint (1 , b [ n ] )
t a l l y = 0
f o r i in range (0 , n ) :

t a l l y += b [ i ] ∗ b [ n−i −1]
i f x <= t a l l y :

k = i
break

re turn BinaryTree ( [ genBinaryTree ( k ) , genBinaryTree (n − k − 1 ) ] )

A.2 Integer Partitions

import random

def makeTable (n ) :
p = [ [ 0 f o r x in range (n+1)] f o r y in range (n+1)]
f o r m in range (0 , n+1):

f o r k in range (0 , n+1):
i f m == 0 :

p [m] [ k ] = 1
e l i f k == 0 :

p [m] [ k ] = 0
e l s e :

p [m] [ k ] = p [m−k ] [ k ] + p [m] [ k−1]
r e turn p
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de f genPart (n , k , p , part ) :
i f n < 1 :

r e turn part
u = random . uniform (0 , 1 )
x = p [ n−k ] [ k ] / p [ n ] [ k ]
i f u < x :

part . append ( k )
re turn genPart (n − k , k , p , part )

e l s e :
r e turn genPart (n , k − 1 , p , part )

A.3 Set Partitions

import random

def Rand Permutation ( a r r ) :
n = len ( a r r )
f o r i in range (0 , n−1):

j = random . rand int ( i , n−1)
temp = arr [ i ]
a r r [ i ] = ar r [ j ]
a r r [ j ] = temp

de f chooseBlocks (m, bn , b ) :
i f m <= 0 :

re turn b

x = randint (1 , bn [m] )
k = 1
t a l l y = 0
f o r i in range (0 , m) :

t a l l y += binomial (m−1, k−1) ∗ bn [m−k ]
i f x <= t a l l y :

break
k = k + 1

b . append ( k )
re turn chooseBlocks (m − k , bn , b)

de f RandSetPart (n ) :
i f n == 0 :

re turn [ ]
s = range (1 , n+1)
bn = [ ]
f o r i in range (0 , n+1):
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bn . append ( bel l number ( i ) )

b locks = chooseBlocks (n , bn , [ ] )
Rand Permutation ( s )
part = [ ]

pos = 0
f o r i in range (0 , l en ( b locks ) ) :

temp = [ ]
f o r j in range (0 , b locks [ i ] ) :

i f i == 0 :
temp . append ( s [ j ] )

e l s e :
temp . append ( s [ j+pos ] )

part . append ( temp )
pos = pos + blocks [ i ]

r e turn part

B Boltzmann Samplers Source Code

B.1 Binary Trees

import random

def GammaB( x ) :
g l o b a l nodes
p0 = (2∗x ) / f l o a t (1 − math . s q r t (1 − 4∗x ) )
u = random . uniform (0 , 1 )
i f u < p0 :

nodes += 1
return

e l s e :
r e turn BinaryTree ( [GammaB( x ) ,GammaB( x ) ] )

de f GammaBP( x ) :
g l o b a l nodes
p1 = math . s q r t (1 − 4∗x )
p2 = 0 .5 − 0 . 5∗ ( math . s q r t (1 − 4∗x ) )
u = random . uniform (0 , 1 )
i f u < p1 :

nodes += 1
return

e l i f p1 <= u < p1 + p2 :
re turn BinaryTree ( [GammaBP( x ) , GammaB( x ) ] )
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e l s e :
r e turn BinaryTree ( [GammaB( x ) , GammaBP( x ) ] )

B.2 Integer Partitions

import random

def RandIntPart (n ) :
i f n == 0 :

re turn [ ]
x = f l o a t ( e∗∗(−pi / s q r t (6∗n ) ) )
part = [ ]
p = 1
f o r i in range (1 , n+1):

p = p∗x
whi le True :

u = random . uniform (0 , 1 )
i f u < p :

part . append ( i )
e l s e :

break
re turn part

B.3 Set Partitions

import random

def Poisson ( x ) :
u = random . uniform (0 , 1 )
k = 0
t a l l y = 0
whi l e True :

i f u < t a l l y :
r e turn k − 1

e l s e :
t a l l y += e∗∗(−x ) ∗ ( x∗∗k/ f l o a t ( f a c t o r i a l ( k ) ) )
k += 1

de f Poisson NonEmpty ( x ) :
u = random . uniform (0 , 1 )
k = 1
t a l l y = 0
whi le True :

i f u < t a l l y :
r e turn k − 1

e l s e :
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t a l l y += (1/ f l o a t ( e∗∗x − 1) ) ∗ ( x∗∗k/ f l o a t ( f a c t o r i a l ( k ) ) )
k += 1

de f Rand Permutation ( a r r ) :
n = len ( a r r )
f o r i in range (0 , n−1):

j = random . rand int ( i , n−1)
temp = arr [ i ]
a r r [ i ] = ar r [ j ]
a r r [ j ] = temp

de f RandSetPart (m) :
x = lambert w ( f l o a t (m) )
k = Poisson ( e∗∗x − 1)
b locks = [ ]
n = 0
f o r i in range (0 , k ) :

s e l = Poisson NonEmpty ( x )
b locks . append ( s e l )
n += s e l

a = range (1 , n+1)
Rand Permutation ( a )
part = [ ]

pos = 0
f o r i in range (0 , l en ( b locks ) ) :

temp = [ ]
f o r j in range (0 , b locks [ i ] ) :

i f i == 0 :
temp . append ( a [ j ] )

e l s e :
temp . append ( a [ j+pos ] )

part . append ( temp )
pos = pos + blocks [ i ]

r e turn part
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