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Abstract

ChromaStarPy is a stellar atmosphere and spectrum modeling code written in

python designed to give good approximations of stellar spectra, whilst being easily

accessible to students at a wide range of levels. We present several projects

including: 1) Incorporating a more accurate interpolation of temperature-dependent

partition functions; 2) Fitting more realistic limb darkening curves to surface

intensity distributions; and 3) Using a new model atom treatment for spectral lines.

The new limb darkening curves are based on least-square fitting of linear and

quadratic limb darkening laws to the surface intensity distribution separately at

each wavelength, and for the Johnson-Bessel filters. In doing so more accurate limb

darkening coefficients (LDCs) are produced. The improved partition function

treatment is based on fitting a cubic interpolation function to the variation with

temperature and produces smooth variations of number densities of elements in

each ionization stage with depth. The new model atom treatment allows us to

improve the treatment of natural line broadening, producing line profiles that are

closer to the observed line width.



iii

Improved Spectral Line Treatment and Stellar Atmospheric

Modelling

by Jason H.T. Bayer

submitted on March 31, 2019:



Contents iv

Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Stellar Classification and Photometry . . . . . . . . . . . . 2

1.2 Spectral Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Curves of Growth and Elemental Abundance . . . . 3

1.2.2 Line Broadening Mechanisms . . . . . . . . . . . . . . . 4

1.3 Energy Level Structure and Partition Functions . . . . . 6

1.3.1 Atomic Energy Levels and Ionization . . . . . . . . . . 6

1.3.2 Partition functions and the Saha Equation . . . . . . 6

1.4 Limb Darkening Curves (LDCs) . . . . . . . . . . . . . . . . . . . . . 7

2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 LDC Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Partition Function Interpolation . . . . . . . . . . . . . . . . . . . . . 11

2.3 Incorporation of Model Atom Data . . . . . . . . . . . . . . . . . . . 12



Contents v

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Limb Darkening Curve Fits . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Solar Model Limb Darkening Curves . . . . . . . . . . . . . . 15

3.1.2 Arcturus Model Limb Darkening Curves . . . . . . . . . . . . 19

3.2 Ionization Fractions and Partition Functions . . . . . . . . . . . . . . 22

3.3 Natural Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Solar Model Ca II Triplet Lines . . . . . . . . . . . . . . . . . 27

3.3.2 Arcturus Model Ca II Triplet Lines . . . . . . . . . . . . . . . 30

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Name of your first Appendix . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



List of Figures vi

List of Figures

1.1 Limb Darkening Visualization . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Monochromatic Limb Darkening Plot (Sun) . . . . . . . . . . . . . . 17

3.2 Johnson-Bessel Limb Darkening Curves (Sun) . . . . . . . . . . . . . 18

3.3 Monochromatic Limb Darkening Plot (Arcturus) . . . . . . . . . . . . 20

3.4 Johnson-Bessel Limb Darkening Curves (Arcturus) . . . . . . . . . . 21

3.5 Li I Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6 C I Partition Function . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 NII
NI

Metal Fraction (Sun) . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.8 NIII
NII

Metal Fraction (Sun) . . . . . . . . . . . . . . . . . . . . . . . . 26

3.9 Ca II 849.80 nm Line (Sun) . . . . . . . . . . . . . . . . . . . . . . . 28

3.10 Ca II 854.21 nm Line (Sun) . . . . . . . . . . . . . . . . . . . . . . . 29

3.11 Ca II 866.21 nm Line (Sun) . . . . . . . . . . . . . . . . . . . . . . . 29

3.12 Ca II 849.80 nm Line (Arcturus) . . . . . . . . . . . . . . . . . . . . 30

3.13 Ca II 854.21 nm Line (Arcturus) . . . . . . . . . . . . . . . . . . . . 31

3.14 Ca II 866.21 nm Line (Arcturus) . . . . . . . . . . . . . . . . . . . . 31



List of Tables vii

List of Tables

3.1 Monochromatic LDC values for linear (columns 2-3) and quadratic

(columns 4 - 6) limb darkening laws. Column 1: λ value. Columns

2 and 4: R2 values as defined by Equation 2.1. Columns 3, 5, and 6:

LDC values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Same as Table 3.1 except band-integrated I(θ) values are through the

Johnson-Bessel filters with band center λ0 (Column 1) . . . . . . . . 18

3.3 Same as Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Same as Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



Chapter 1. Introduction 1

Chapter 1

Introduction

The stellar atmosphere is an important structure of stars, as it is the only region of

a star that is observable. This is the region between the interstellar medium (ISM),

and the stellar interior (Gray, 1992). A star radiates nearly as a blackbody showing a

dark line spectrum, as it is surrounded by the atmosphere containing various chemical

species that give rise to their own spectral absorption lines. The overall pattern of a

line is dependent on three basic parameters: effective temperature, Teff , metallicity,

a ratio of other elements to hydrogen, [M
H

], and surface gravity, log(g). Spectroscopy

and photometry are often used to determine these parameters. Bandpass photome-

try is used to construct color-magnitude diagrams of stellar populations to probe the

changes associated with stellar evolution (Gray, 1992).

It is also useful to run simulations so an observer can predict or verify observations.

This process involves computing a stellar atmosphere using Teff , [M
H

], and log(g) to

compute other various properties such as pressure, P (r), and temperature, T (r), as

functions of depth (Gray, 1992). Structures such as P (r) and T (r) are calculated by

finding solutions to energy conservation, hydrostatic equilibrium, and energy trans-

port equations, in addition to the equation of state (EOS) for the simulated stellar

gas and radiation field (See Ch.9. of Gray (1992)). After this an intensity spec-
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trum, Iλ(θ), emerging from the surface is computed using the modelled atmospheric

structure and input elemental abundances that determined the spectral line profiles.

1.1 Stellar Classification and Photometry

It was sought to categorize stars based on what lines were present in their spectra,

and hence the MK system as developed. Both Teff and bolometric luminosity, Lbol,

can be correlated to a given spectral class. The MK system consists of seven classes

in order of decreasing temperature: O, B, A, F, G, K, and M, with subclasses of

decreasing Teff on integer or half values from zero to nine. The 11 most common

luminosity classes in decreasing order of Lbol are: 0, I, Ia, Ib, II-III, IIIa, IIIab, IIIb,

III-IV, and V (Gray, 1992). Both classes together are considered a spectral type. It

is often useful to measure the brightness of a star through photometric bands that

allow only specific wavelength ranges to be recorded on a detector, the most common

of which being the Johnson-Bessel UBVRI filters. A magnitude measured through a

filter, mfilter, can be calculated via:

mfilter = −2.5log

∫ ∞
0

FνWfilter(ν)dν + C (1.1)

where Fν is the monochromatic flux at dν weighted by the spectral window Wfilter(ν)

and C is a constant to normalize the magnitude such that an A0 V star would have

an appropriate value in that band (Gray, 1992). A color is a difference in magnitude
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of an object between two bands, for example:

mB −mV = −2.5log

∫∞
0
FνWB(ν)dν∫∞

0
FνWV (ν)dν

+ 0.0710 (1.2)

(Gray, 1992).

1.2 Spectral Lines

1.2.1 Curves of Growth and Elemental Abundance

Spectral lines arise from atomic transitions between lower energy states, Ei, and

higher energy states, Ej. The line is centered around a wavelength, λ0, being inversely

proportional to the difference in upper and lower energy levels by ∆E = Ej−Ei = hc
λ0

where h is plank’s constant and c is the speed of light. Curves-of-growth (COGs)

allow for consistency between spectrographs, and an expression of line strength in

units of wavelength (Rutten, 2003). A COG is a plot of equivalent width, Wλ(Na),

the normalized area of a spectral line under the flux curve, Fλ, with respect to the

local continuum flux, F c
λ, and be described by the equation:

Wλ(Na) =

∫ λ2

λ1

F c
λ − Fλ
F c
λ

dλ (1.3)

where λ1 and λ2 are the limits of integration that define the region of interest of

a spectrum (Carroll and Ostile, 2007). The Wλ(Na) curve has three regimes that

correspond to different line strengths proportional to Na for weak lines,
√
ln(Na) for
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strong lines, and
√
Na for saturated lines (Carroll and Ostile, 2007). COGs allow

for us to determine the number of absorbing atoms contributing to a spectral line’s

strength, especially for weak lines where a COG is most sensitive.

1.2.2 Line Broadening Mechanisms

Natural Broadening

Natural broadening is a result of the energy time uncertainty principle, namely:

∆t∆Ej≥
h

2π
(1.4)

where ∆t is the average lifetime in the upper energy level, ∆Ej is the uncertainty

in energy of the upper level of a transition, and h is plank’s constant. This causes

a spectral line to have a contribution to width of ∆λ inversely proportional to ∆Ej

(Carroll and Ostile, 2007).

Thermal Broadening

In a gas, particles have randomly distributed velocities which correspond to a

doppler shift in wavelength, ∆λ, given by:

∆λ

λ0

=
vr
c

(1.5)

where λ0 is the center line wavelength of an atomic transition, c is the speed of light,

and vr is the velocity in the direction of observer (Gray, 1992). Taking the average
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velocity, v0, to be (2kT
m

)1/2, where m is the mass of the particle, T is the temperature

of the gas and k is the Boltzmann constant, ∆λ can be written as:

∆λ =
λ

c

(2kT

m

)1/2

(1.6)

(Gray, 1992).

Zeeman Effect

In the presence of a magnetic field of strength B, a particle can have degenerate

quantum states for a principle quantum number, n. For each set of quantum states

defined by n there is 2j + 1 states, where j is the sum of the spin, s, and angular

momentum, l, quantum numbers (Griffiths, 2005). With more allowed energies there

are more transitions allowed with a greater range of wavelengths for the spectral line

causing broadening.

Pressure Broadening

In a gas where particles interactions are frequent, energy levels can become per-

turbed, and lines broaden. This affect is difficult to model, but has similar affects to

natural broadening. The amount of broadening due to these perturbations is approx-

imated by:

∆λ =
λ2n0σ

cπ

(2kT

m

)1/2

(1.7)

where n0 is the number density of the gas, σ is the collisional cross section and the

other variables are described in the Thermal Broadening Section (Carroll and Ostile,
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2007).

1.3 Energy Level Structure and Partition

Functions

1.3.1 Atomic Energy Levels and Ionization

Each electron in an atom is described by it’s own quantum state, and hence

quantum numbers, the most important of which being the principle quantum number

n. The value of n describes which of the many possible discretized energies the

electron has (Gray, 1992). An electron can become excited to higher energy states

when it interacts with other particles, typically a photon (Gray, 1992). In these higher

states the electron is unstable with a preference of occupying the ground state (having

the lowest possible bound-state energy), so shortly after excitation an electron will

move to a lower energy state and release a photon with energy ∆E and center line

wavelength λ0 (Carroll and Ostile, 2007). If an electron gains too much energy it may

become unbound from its nucleus (ionized), becoming a free particle.

1.3.2 Partition functions and the Saha Equation

In order to determine the strength of spectral lines, we need to know the number

density of particles for each species, Na. For a gas dominated by collisions, the

distribution of chemical elements over their ionization stages can be expressed by the
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Saha equation:

Ni+1

Ni

=
2(2πm)3/2(kT )5/2

Peh3

Ui+1(T )

Ui(T )
e

−I
kT (1.8)

where Ni+1

Ni
is the ratio of the density of two successive ionization stages, Ui+1(T )

Ui(T )
is the

ratio of associated temperature dependent partition functions, m is electron mass, I

is the lowest ionization potential of the two species, Pe is the pressure from the free

electrons, and all other variables are as describing the Section 1.1 (Carroll and Ostile,

2007). A partition function can be given by the formula:

Um(T ) =
∑
m

gme
−χm/kT (1.9)

where gm is equal to 2J + 1 where J is the inner quantum of the mth state and χm is

the energy of the mth state (Gray, 1992). It is often difficult to calculate this sum for

any given temperature and hence partition functions are rarely calculated in detail

every time they are needed (Gray, 1992). It will be seen later in Section 2.2 that one

way to help mitigate this is by calculating a partition function for a few temperatures

and interpolating the rest.

1.4 Limb Darkening Curves (LDCs)

Limb darkening is an observable affect where the intensity, Iλ(θ), decreases from

the center, θ = 0, to the limb, θ = 90o (See Figure 1.1). After a monochromatic inten-

sity distribution is modelled, a limb darkening law can then be fit to this distribution
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usually via a linear function:

Iλ(θ)

Iλ(0)
= 1− ε1(λ)(1− cosθ) (1.10)

or quadratic:

Iλ(θ)

Iλ(0)
= 1− ε1(λ)(1− cosθ)− ε2(λ)(1− cosθ)2 (1.11)

where ε1(λ) and ε2(λ) are the linear and quadratic monochromatic limb darkening

coefficients respectively (Claret and Bloemen, 2011). These models become useful

when examining eclipsing binary systems and line-of-sight transiting exoplanets as

they change the amount of flux reaching a detector.

Figure 1.1: Limb darkening of the Sun through a Gaussian filter cen-
tered at 380nm and width 0.1nm (computed using ChromaStar:
http://www.ap.smu.ca/ ishort/OpenStars/ChromaStar/ChromaStar.html).
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Chapter 2

Methodology

2.1 LDC Fitting

The source file LDC.py holds functions that determine ε values for a wavelength

grid, lambdaScale, and for the Johnson-Bessel U, B, Bx, V, R, I, H, J, K filters. All

of these functions return an array of ε sorted by either increasing wavelength, λ, or

index associated with a Johnson-Bessel filter that is determined by the input array

holding filter intensities, Ifilter(θ), bandIntens. The LDCs in Section 3.1 are created

using a separate program, from the computed ε values in the output files created by

running the main program ChromaStarPy.py.

All functions that determine ε values for lambdaScale have the following input

parameters: number of λ values in wavelength grid, numLams; the wavelength grid,

lambdaScale; the number of angles where emergent Iλ(θ) values were calculated,

numThetas; the cosine of θ values with respect to the local surface normal, cosTheta;

and Iλ(θ) at each θ for all λ in the grid, contIntens. For functions determining ε

values of the Johnson-Bessel filters, εfilter, all parameters are similar except, numLams

is replaced with numBands, the number of bands we are calculating εfilter values for,

and contIntens is replaced with bandIntens, which holds Ifilter(θ) at each θ as seen

through each band. With these parameters Iλ(θ) in Equations 1.10, and 1.11 or
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Ifilter(θ) can be fit with LDCs that best approximate the distribution of intensities.

To get the best ε for a given Iλ(θ) or Ifilter(θ) the Python scipy.curve fit fitting

method was used. The parameters for curve fit are, the function we are fitting (Equa-

tions 1.10 and 1.11) and coordinates for the points we are trying to fit, in this case

each point having at Iλ(θ)
Iλ(0)

(or Ifilter(θ)
Ifilter(0)

) on the vertical axis and cos(θ) on the horizontal.

Non-linear least-squared statistics were used to determine the ε values that give the

best R2 value (R2
L for ε1 and R2

Q for ε2), which is given by:

R2 = 1− ∆yr
∆y

(2.1)

where ∆yr is the summed residuals and ∆y is the variance of Iλ(θ)
Iλ(0)

. If R2 = 1 then

the model is a perfect fit for Iλ(θ)
Iλ(0)

. The ε that gives an R2 closest to one is stored as

the ε for that band or λ. Residuals are determined by the expression:

∆yr =
N∑
k=0

(yk − fk)2 (2.2)

where k is the index of the cosTheta and contIntens (or bandIntens) arrays, N is

numThetas, yk is Iλ(θ)
Iλ(0)

for a given cos(θ), and fk is the modelled functional value at

cos(θ). The variance is given by the standard formula:

∆y =
N∑
k=0

(yk − ȳ)2 (2.3)

where ȳ is the mean of the Iλ(θ)
Iλ(0)

values. After determining the ε values for each band

and λ, the contIntens, bandIntens, and corresponding ε arrays are sent to a separate
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file that uses the Python numpy package to plot the Iλ(θ)
Iλ(0)

(or Ifilter(θ)
Ifilter(0)

) with ε values

given by Equations 1.10 and 1.11.

2.2 Partition Function Interpolation

ChromaStarPy uses three procedures to calculate opacity, κ, for different chemical

species, i, at 48 optical depths, τ : KappasRayl.py does so for Rayleigh scattering

of the neutral elements HI and HeI; KappasMetal.py which does so for bound-free

transitions of CI, MgI, MgII, AlI, SiI, SiII, and FeI; and Kappas.py which deals

specifically with κ related to the elements H, and He, from free-free, bound-free

transitions, and molecular H, H2. Using LevelPopsServer.py the number density of

i, ni, for a given τ can be calculated. For KappasRayl.py, KappasMetal.py, and

LevelPopsServer.py these processes require knowledge of U(T ) (See Equation 1.8).

Previously ChromaStarPy calculated U(T ) via piece-wise linear interpolation for a

set of U(T ) values at five temperature points 130, 500, 3000, 8000, and 10000 K from

Barklem and Collet (2016), and now utilizes a cubic fit. The fit was done using the

Python numpy.polyfit method, which minimizes a least squares fit statistic, and takes

arrays holding U(T ) values as input for the dependent variables and temperatures for

the independent variables, ordered by increasing temperature (e.g. the zeroth index

of U(T ) corresponds to T = 500K). The last polyfit parameter is polynomial order,

which for this case was set to three for a cubic fit. The output array of polyfit holds
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the coefficients A, B, C, and D for a generalized cubic of the form:

y = Ax3 +Bx2 + Cx+D (2.4)

where y = U(T ) and x = T in this case. After a fit is made and stored for each U(T ),

an array of coefficients and any T can be used to determine the U(T ) value for any

τ(λ), which helps to determine both κ and Ni+1

Ni
.

2.3 Incorporation of Model Atom Data

ChromaStarPy previously used line list data, but now uses both model atom

and line list data to compute spectral lines for any chemical species. A line list

is frequently used as it is presorted via λ0, holding a corresponding Ei value and

Einstein coefficient for a dexcitation between Ei and Ej, Aij, among other relevant

quantities to computing spectral lines. Model atom data has the same information

but is organized such that transitions from Ej for a given species are easily accounted

for, but has to be sorted by λ0 after the value is computed. Once all lines from the

line list are read, Ei, Ej, Aij and other relevant information to compute spectral lines

from Hauschildt et al. (1999) are read in as binary model atom data. The species

specified to be treated as a model atom is skipped in the line list as to not compute

a spectral line more than once.

The value of Aij is used to compute γR, the radiative dampening constant for

the transition, can be determined by summing the Einstein coefficients of downward
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transitions from Ei and Ej. The relationship between γR and Ej is more explicit for

model atom data as compared to the line list as it does not require the sorting of an

entire line list via species to compute. The value of γR hence can now be computed

accurately as a result via the equation:

γR =

Njk∑
k=0

Ajk +

Nik∑
k=0

Aik, where


k < j ∀ j

k < i ∀ i

(2.5)

and Njk, Nik are the number of transitions downward from j and i respectively. The

value γR is also the inverse of ∆t described in Section 1.2.2 and hence is used to

determine the amount of natural broadening in the line. The shape of weak, strong,

and saturated spectral lines is described by the Voigt function:

ψ(λ− λ0) =
λ2

0

c
√
π(λ− λ0)

a

π

∫ ∞
−∞

ey
2

(v − y)2 + a2
dy (2.6)

where:

y =
ζλ0

c∆λ
,

ζ =
(λ− λ0)

λ0

,

v =
(λ− λ0)

∆λ
,

a =
γλ2

0

∆λ4πc
,

and,

γ = γR + γC
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where γC is the collisional damping constant, and all other variables are described in

Section 1 (Rutten, 2003).
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Chapter 3

Results

3.1 Limb Darkening Curve Fits

The Sun and Arcturus are the two chosen test stars for examining limb darkening. The

Sun is the most well studied and understood G2 V star, while Arcturus (HR 5340, HD

124897, HIP 69673, α Boo) is a standard K2 III (red giant) and is the fourth brightest

star in the sky with an absolute magnitude, MV , of -0.31, an apparent magnitude,

mV , of -0.05, and from Carroll and Ostile (2007), a color, B − V , of 0.9 (Prieto and

Ramirez, 2011). The Sun by comparison has mV = -26.7, and from Carroll and Ostile

(2007), MV = 4.82 and B−V = 0.65 (Engelke et al., 2011). Limb darkening generally

is most prominent and linear with respect to cos(θ) in the ultraviolet (UV) becoming

non-linear in the infrared (IR). This is a result of the general shape of blackbody,

having larger variations in I(θ)
I(0)

at smaller λ.

3.1.1 Solar Model Limb Darkening Curves

Limb darkening curve fitting for the Sun producing best fit LDC values, ε, and as-

sociated R2 statistics for linear, R2
L, and quadratic R2

Q fits. This was done for both

representative λ values and the Johnson-Bessel bands which are represented in Tables

3.1 and 3.2. These fits used the following stellar parameters: Teff = 5777K, [A
H

] = 0.0,
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and log(g) = 4.44 (Grevesse et al., 1992). The λ values from lambdaScale were chosen

to accurately represent limb darkening at UV, visible, and IR wavelengths. The R2

statistics (See Equations 2.1, 2.2) in Tables 3.1, 3.2 are a measure of how well a model

with a computed set of ε fit the distribution of I(θ)
I(0)

. For the λ values it can be seen

that both linear and quadratic models are a better fit than previous method in the IR

and visible, whereas only the linear fit shows improvement in the UV. For the chosen

set of λ, the visible and IR values are best fit by quadratic limb darkening curves

while the linear fit is best for UV as expected. Table 3.2 holds similar information to

Table 3.1 but for the Johnson bands with central band wavelength λ0. In Figure 3.2

a similar trend can be seen, where quadratic fits better describe bands with λ0 in the

visible and shorter λ0 IR bands, while bands closest to the UV are best represented

by linear fits. Longer IR bands begin to show less variation in I(θ)
I(0)

, and hence are

more linear as shown.
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Table 3.1: Monochromatic LDC values for linear (columns 2-3) and quadratic
(columns 4 - 6) limb darkening laws. Column 1: λ value. Columns 2
and 4: R2 values as defined by Equation 2.1. Columns 3, 5, and 6: LDC
values.

λ [nm] R2
L ε1 R2

Q ε1 ε2
352.35 (UV) 0.9984 0.8308 0.8398 0.02402 0.8108

653.09 (Visible) 0.9524 0.4651 0.9804 0.3007 0.2148
997.64 (IR) 0.9293 0.3343 0.9451 0.2726 0.1075

Figure 3.1: Monochromatic limb darkening for 352 (blue), 653 (green), and 997 (red)
[nm]. New best fit linear, quadratic, and old limb darkening laws (dashed,

dark, and light lines respectively). Dots: Computed I(θ)
I(0)

values from
ChromaStarPy.
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Table 3.2: Same as Table 3.1 except band-integrated I(θ) values are through the
Johnson-Bessel filters with band center λ0 (Column 1)

.

Band: λ0 [nm] R2
L ε1 R2

Q ε1 ε2
Ux: 365 0.9979 0.8142 0.8556 0.0440 0.7776
Bx: 445 0.9875 0.6795 0.9598 0.1988 0.5141
B: 445 0.9879 0.6824 0.9584 0.1963 0.5191
V: 551 0.9687 0.5509 0.9893 0.2796 0.3181
R: 658 0.9545 0.4726 0.9826 0.2974 0.2251
I: 806 0.9378 0.3900 0.9606 0.2940 0.1455

J: 1230 0.9310 0.3118 0.9462 0.2556 0.0991
H: 1630 0.9132 0.2885 0.8953 0.2859 0.0507
K: 2190 0.9043 0.2169 0.8785 0.2217 0.0324

Figure 3.2: Same as Fig. 3.1 except band-integrated I(θ) values are through the

Johnson-Bessel filters. The colored dots are computed I(θ)
I(0)

values from
ChromaStarPy color-coded according to the plot legend.
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3.1.2 Arcturus Model Limb Darkening Curves

The same statistics and fitting procedures were done for the K star Arcturus using the

parameters: Teff = 4300 K, [A
H

] = -0.7, and log(g) = 2.0 (Griffin and Lynas-Gray,

1999). The same trend for UV, visible, an IR bands are seen as in Section 3.1.1.

Visible λ and λ0 values still seem to be best fit by quadratic limb darkening for values

> 500[nm], and the old method of fitting for λ tends to be the same for UV λ but

worse than linear fitting otherwise. Quadratic limb darkening tends to be a worse fit

for the UV, and longer IR λ and λ0 values when compared to a linear fit.



Chapter 3. Results 20

Table 3.3: Same as Table 3.1.
λ [nm] R2

L ε1 R2
Q ε1 ε2

352.35 (UV) 0.9895 0.9791 0.5260 -0.2997 1.2284
653.09 (Visible) 0.9896 0.5868 0.9686 0.3001 0.3370

997.64 (IR) 0.9405 0.4237 0.9640 0.3158 0.1610

Figure 3.3: Same as Figure 3.1.
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Table 3.4: Same as Table 3.2.
Band: λ0 [nm] R2

L ε1 R2
Q ε1 ε2

Ux: 365 0.9926 0.9561 0.5899 -0.2408 1.1564
Bx: 445 0.9960 0.8190 0.8630 0.0560 0.7724
B: 445 0.9971 0.8220 0.8592 0.0509 0.7797
V: 551 0.9839 0.6830 0.9705 0.2312 0.4906
R: 658 0.9698 0.5900 0.9893 0.2940 0.3454
I: 806 0.9519 0.4934 0.9799 0.3240 0.2238

J: 1230 0.9424 0.4000 0.9662 0.3983 0.0686
H: 1630 0.9139 0.3989 0.8948 0.2959 0.1525
K: 2190 0.9080 0.3095 0.8830 0.3154 0.0471

Figure 3.4: Same as Figure 3.2.
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3.2 Ionization Fractions and Partition Functions

Figures 3.5 and 3.6 show the difference between linear piece-wise (old) and cubic

(new) fits for Li I and C I partition function values, U(T). In Figure 3.5 it can be

seen that cubic fits better represents the five U(T) values from Barklem and Collet

(2016). In Figure 3.6 it can be seen that although the cubic polynomial does not fit

the U(T) values exactly, but allows for more variation between values. Figure 3.7

shows the relative difference of the ionization fractions computed with new and old

U(T) fits between singly-ionized and neutral elements. Again a solar model using the

parameters described in Section 3.1.1 was used. To examine the effect of our models

it was best to use some of the most abundant metals in the Sun, which includes Ca,

Na, K, Fe, Al, Si and Mg. All elements show a relative difference greater than zero for

most temperatures, with the greatest difference of 23% deep in the Sun’s atmosphere

(T > 10000 [K]), which is significant. This is also seen in Figure 3.8 which shows the

relative difference between doubly-ionized and singly-ionized elements. The results

indicate that our cubic partition functions affect the number density of elements in

successive ionization stages as expected.
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Figure 3.5: A plot of fitted U(T) values for Li I including linear piece-wise (blue)
and cubic (red) fits. The black dots are the published U(T) values from
Barklem and Collet (2016).
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Figure 3.6: Same as Figure 3.5 except for C I.
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Figure 3.7: Relative difference between the ionization fractions of singly-ionized and
neutral species computed with new and old U(T) fits (See Section 3.2).
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Figure 3.8: Same as Figure 3.7 but for a ratio of doubly-ionized and singly-ionized
species.
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3.3 Natural Broadening

Figures 3.9 - 3.14 show an observed spectrum and two synthetic spectra computed

with and without the improved treatment of natural broadening, and the relative

difference between the synthetic spectra. As a test case, the Ca II Triplet, a group of

lines in the IR band, were chosen as they arise from an upper energy level with a small

∆t, hence will be greatly affected by natural broadening (See Section 1.2.2). These

lines are particularly prominent in giant (II) stars such as Arcturus, and comparing

these lines to the Sun is a good test as pressure broadening is more dominant in dwarf

(V) stars. This implies that the line profile will be more sensitive to the improved

natural broadening treatment in giants as compared to dwarfs (See Section 3.1 for

each star’s parameters). It must be noted that generally computed spectral lines are

less broad than observed lines as it is difficult to account for all processes contributing

to line width. This is consistent throughout Figures 3.9 - 3.14.

3.3.1 Solar Model Ca II Triplet Lines

Figures 3.9 - 3.11 show the three Ca II singlet lines that are part of the Ca II Triplet

for the Sun. In the wings of Figure 3.9 and 3.11 there is a difference of no more

than 2%, while in Figure 3.10 a difference of 3% can be seen. For each singlet this is

inconsistent between each wing, hence indicating that natural broadening contributed

minimally to spectral line width. Towards line center larger variations are seen but

they are not important when examining broadening.
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Figure 3.9: Ca II 849.8 [nm] region in the solar flux spectrum. The upper plot shows
continuum normalized observed (black line), and synthetic spectra (col-
ored lines). The lower plot shows the relative difference between synthetic
spectra.
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Figure 3.10: Same as Figure 3.9 except for the Ca II 854.21 [nm] region.

Figure 3.11: Same as Figure 3.9 except for the Ca II 866.21 [nm] region.
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3.3.2 Arcturus Model Ca II Triplet Lines

Figures 3.12 - 3.14 show the three Ca II singlet lines that are part of the Ca II Triplet

for Arcturus. In the wings of Figures 3.12 - 3.14 there is a relative difference between

10 and 15% that is consistently decreasing toward the continuum, where the relative

flux between the old and new methods are zero. This is consistent with what would be

expected if natural broadening were contributing to line width over other broadening

mechanisms.

Figure 3.12: Same as Figure 3.9 except for Arcturus.
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Figure 3.13: Same as Figure 3.12 except for the Ca II 854.21 [nm] region.

Figure 3.14: Same as Figure 3.12 except for the Ca II 866.21 [nm] region.
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Chapter 4

Conclusion

ChromaStarPy is a stellar atmosphere and spectrum modelling code designed

to be more responsive, and accessible than research grade legacy codes. ChromaS-

tarPy’s modelling is approximate, but allows for calculations of potentially observable

quantities such as LDC, ε, values. Throughout this thesis, the code was developed

and the effect on predicted observables was studied. This was done for three sepa-

rate projects including: incorporating a more accurate interpolation of temperature-

dependent partition functions; fitting more realistic limb darkening curves to surface

intensity distributions; and using a new model atom treatment for spectral lines.

A least-square fitting procedure for linear and quadratic limb darkening laws

was fit to the monochromatic intensities, I(θ)
I(0)

, for monochromatic λ values and band-

integrated intensities for the Johnson-Bessel filters with center band wavelength λ0.

The previous fitting method only fit a linear limb darkening law which was done by

solving for ε values in Equation 1.10 and averaging for all θ values. Monochromatic

λ and λ0 ultraviolet, UV, filters showed either a similar or better fit when compared

to the previous method. Monochromatic λ values and bands with λ0 in the shorter

infrared, IR, are best fit by quadratic ε values, and linear ε values better fit longer IR

λ0 bands. Generally the UV and far IR exhibit linear darkening, while intermediate
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values are better fit by a quadratic limb darkening law. Overall the limb darkening

fits behave as such for both the Sun and Arcturus, and linear fits show an either a

better or similar fit.

Additionally, the new cubic interpolation of partition functions, U(T), better

fits published U(T) values from Barklem and Collet (2016), showing that the new

interpolation is an improvement. The new U(T) values were shown to influence the

ionization fractions of the Sun, NII

NI
by up to 23% and NIII

NII
by up to 14%. This differ-

ence would be significant enough to influence the metallicity of a star observationally,

and is hence significant.

Lastly, the model atom treatment allowed for a more complete calculation of

natural line broadening. Comparing the Ca II IR Triplet computed for the Sun and

Arcturus proved to be insightful, as these lines are predominantly affected by natural

broadening in luminosity class III (giant) stars. For the Sun, a luminosity class V

star, no broadening in the spectral wings of the triplet can be seen when using the

model atom treatment, which was to be expected as V stars are dominated by pres-

sure broadening. Arcturus, a luminosity class III star, showed a relative difference

between the line list and new model atom treatment of 10 to 15%. This analysis

showed that the new model atom treatment provided a more accurate calculation of

natural line broadening.
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