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Abstract
Question: To what extent do forest edges created by an insect outbreak influence patterns
of moose browsing severity, understorey structure, and species composition?
Location: Balsam fir-dominated boreal forest in Cape Breton Highlands National Park,
Nova Scotia, CA.
Methods: We sampled understorey vegetation (moose browsing damage, sapling density,
plant composition, diversity) in contiguous 1 m* quadrats along six 120 m transects across
the forested edges of insect outbreak areas. Patterns of each response variable across the
disturbed area-forest gradient were determined using generalized additive mixed models.
Randomization tests and wavelet analyses were used to estimate the extent of edge/forest
influence and location of abrupt change along the edge-to-interior gradient, respectively.
Results: Most saplings in the disturbed area were severely browsed and shorter than those
in adjacent intact forest. Although moose preferred to browse on tall saplings, shorter
saplings were severely browsed in the disturbed area. Compared to the forest, the
disturbed area was characterized by more shade-intolerant species, increased graminoid
cover, and reduced bryophyte cover. Distance of edge influence did not extend into the
forest for almost all response variables. Abrupt changes in understorey vegetation
occurred at various distances on both sides of the edge.
Conclusions: Severe moose browsing in the disturbed area is preventing forest
regeneration, resulting in the persistence of forest edges that would typically disappear
after the collapse of an insect outbreak. Different assessments of the forest edge revealed

different results; locations of abrupt change in understorey vegetation occurred even
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44 where plant communities were not significantly different than reference forest and
45  disturbed areas. This study reveals that the combined effects of a small insect defoliator

46  and a large ungulate can substantially affect landscape dynamics.
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Introduction

Forest edges play important ecological roles by mediating species interactions
(Fagan et al. 1999) and by influencing habitat selection (Stewart et al. 2013). Plant
community responses to forest edges affect processes such as herbivory (Cadenasso &
Pickett 2000), which can alter vegetation characteristics over time. Studies on vegetation
at natural edges are required for a better understanding of the spatial-temporal role of
natural disturbances in landscape dynamics.

Although naturally induced forest edges tend to regenerate once the disturbance
agent has subsided, herbivory can maintain forest edges by hindering succession in the
disturbed area and thus sustain the contrast between adjacent communities (Williams-
Linera 1990; Farnsworth & Anderson 2001). Stand-initiating disturbances such as insect
outbreaks create favourable habitat for ungulates such as moose (4/ces alces) by
providing forage (Forbes & Theberge 1993; Lautenschlager et al. 1997). When moose
populations are high, severe browsing on regenerating saplings can ultimately inhibit
forest succession post-disturbance (Smith et al. 2010). Forest edges maintained by
herbivory may be common in ecosystems experiencing a loss of ecological integrity due
to overabundant herbivore populations in the absence of predators (Terborgh et al. 2001;
McLaren et al. 2004).

Due to superior forage production post-disturbance, browsing by moose is severe
in areas affected by disturbances such as insect epidemics (Brassard et al. 1974; Forbes &
Theberge 1993) despite habitat requirements of shelter, optimal snow depth, and cover for

predator avoidance (Timmermann & McNicol 1988). High densities of moose in
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disturbed areas can alter plant structure and composition (De Jager & Pastor 2009)
through severe browsing, which damages saplings by suppressing terminal growth
(Brandner et al. 1990; Thompson & Curran 1993; Smith et al. 2010). We predict more
severe moose browsing and a corresponding decrease in palatable sapling height at forest
edges compared to both interior forests and disturbed areas because edges supply cover
adjacent to abundant forage.

Natural forest edges on northern Cape Breton Island, Nova Scotia, CA were
created by an insect outbreak and have been maintained for nearly three decades by a
large moose (Alces alces andersoni) population that has been inhibiting forest
regeneration (Smith et al. 2010). We evaluated patterns of moose browsing severity, and
understorey structure, composition and diversity across the edge for differences from the
reference forest (edge influence), differences from the reference disturbed area (forest
influence), and abrupt changes (edge detection). Our specific objectives include: 1) to
assess patterns of moose browsing on saplings of different species and of different
heights, particularly where moose browsing habits change in relation to the edge, and 2)
to determine the resulting effects of moose browsing and edges on understorey structure,
composition and diversity. Our results will help us gain a better understanding of the
interplay between natural edge creation and moose browsing, and of the effects on forest

regeneration and understorey diversity.

Methods
Study area

The study was conducted in Cape Breton Highlands National Park (46°50°N,
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60°30°W), which encompasses 950 km? of northern Cape Breton Island, Nova Scotia,
CA. Climatic normals (1981 —2010) from Cheticamp (46°39°N, 60°57°W), which was
located 4.5 — 28.5 km from the study sites, indicate mean January and July temperatures
of -4.9°C and 18.3°C, respectively, and mean annual precipitation and snowfall of 1375.1
mm and 312 cm, respectively (Environment Canada 2014). The region is characterized by
a plateau (elevation 350 — 500 m asl) underlain by Precambrian granitic and volcanic
bedrock (Webb & Marshall 1999). The boreal land region, which dominates
approximately 50% of the park, consists mainly of Abies balsamea interspersed with
Picea glauca and Betula papyrifera (Parks Canada 2010). Soils are mostly sandy loam of
moderately coarse texture (Neily et al. 2003). Fire and logging are not common.

The spruce budworm, a native insect defoliator in the boreal forest, feeds mainly
on Abies balsamea, but Picea species are also suitable hosts. The latest budworm
outbreak in the park (1974 - 1984) was considered to be the most severe compared to
prior outbreaks in the area (Ostaff & MacLean 1989); park management refrained from
using pest control for outbreak suppression. Affected stands experienced mortality of
87% Abies balsamea (MacLean & Ostaff 1989) and 27% Picea spp. (Ostaft & MacLean
1989). The population of the western moose sub-species Alces alces andersoni,
introduced in 1947 and 1948 (Pulsifer & Nette 1995) after the extirpation of native moose
(Alces alces americana), has since increased dramatically in Cape Breton (2
individuals/km? in the park in 2011, James Bridgland, personal communication).

Site selection and data collection

Historical aerial photographs of Cape Breton Island taken in 1969 were compared
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to 2009 photographs to identify areas of forest canopy reduction caused by the 1974 —
1984 spruce budworm outbreak. We selected six spruce budworm induced-forest edges
across relatively uniform terrain that were at least 100 m away from another edge, road,
trail, or water body and where both the disturbed and fir-spruce dominated forest areas
extended at least 80 m from the edge. We defined the forest edge as the limit of
continuous canopy between the intact forest and the insect disturbed area. At each edge,
we established a 120 m long transect perpendicular to and centred on the edge. The
distance of 60 m into each ecosystem was chosen to detect edge influence, which usually
dissipates within 20 m from the edge in boreal forests (Harper et al. 2015).

We collected data from June to August 2012 in contiguous 1 m” quadrats along
the entire length of the transects. Three plots of five contiguous quadrats (1 m*) were
established at least 100 m away from the edge to sample reference conditions in the insect
disturbed and forest areas. Some reference plots were only 70 m away from the edge, and
one and two were absent from the disturbed and forest areas, respectively, due to
proximity to other edges.

In each quadrat, we recorded the height and species of each seedling (height <10
cm) and sapling (height > 10 cm, dbh <5 cm). Saplings were classified as short,
intermediate, or tall (< 50, 50 — 99, or > 100 cm height, respectively). We classified
browsing on each sapling based on the presence of live foliage, growth form, and the
proportion of browsed stems (Table 1). If we found fewer than five saplings ina 5 m
interval of contiguous quadrats, we evaluated browse severity of the next closest saplings

up to 5 m from the transect.
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We visually estimated the cover of shrubs, herbaceous plants, ferns, bryophytes,
graminoids, and fine woody debris (diameter < 5 cm) to the nearest 1% up to 5%, and to
the nearest 5% thereafter. We also estimated cover of individual species of shrubs, herbs,
and ferns with the exception of the genera Amelanchier spp., Aster spp. (other than A.
acuminatus), Oxalis spp., Solidago spp. (other than S. macrophylla), and Dryopteris spp.
Species with growth habits classified as dwarf shrub according to CFIA and NRCan/CFS
(2011) were considered part of the herbaceous layer.

Data analysis

We calculated the percentages of Abies balsamea and Betula papyrifera saplings
in each browsing class for each 5 m interval along the edge transects and for the reference
plots. We determined the percentages of saplings in each of the six browse classes for
each height class but excluded Picea glauca saplings since none were browsed and Acer
rubrum saplings due to relatively low densities. Species diversity was calculated using the
Shannon-Weiner index for different categories of plants and for overall understorey
diversity, which included shrubs, herbs, and ferns. Analyses were conducted for
individual understorey species with at least 10% frequency on at least three transects.

We evaluated general patterns of response variables along the transects (reference
data were not included) using generalized additive mixed models (GAMM) in the mgcv
package (Wood 2011) in R software (R Core Team 2013). Each site was recognized as a
random variable; data collected at the same site were not considered independent from
one another. We used the binomial, Poisson and Gaussian distributions for browse

severity, count data, and other continuous variables, respectively. Response variables
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were assessed after sequential Bonferroni correction (Holm 1979) for multiple tests.

The distance of edge influence (DEI) and the distance of forest influence (DFI)
are the distances at or near the edge, over which a given response variable is significantly
different from the forest (Harper et al. 2005) and disturbed area references, respectively
(Franklin et al. 2015). We quantified DEI and DFI using the randomized test of edge
influence with no blocking, which compares the average value at a specific distance from
the edge to the reference values using randomizations but does not block by transect
(Harper & Macdonald 2011). We considered a significance level of 0.05 using a two-
tailed test. To address the issue of multiple testing, DEI and DFI were sets of three or
more consecutive distances (or separated by one or two distances) with significant edge
or forest influence.

To complement the DEI and DFI, we introduce the distance of edge change
(DEC), which we define as the set of locations of abrupt change in a response variable.
Edge detection studies have previously considered edges as the location of greatest
change along a transect (e.g., Brunt & Conley 1990). Whereas DEI/DFI can be visualized
as the width of the edge, DEC is the width of the steepest gradient in the response to the
edge. The DEC could not be determined for browsing severity because of missing data
(quadrats with no saplings).

We determined the DEC across the insect disturbed area-forest edge gradient
using wavelet analysis in PASSaGE 2.0 (Rosenberg & Anderson 2011). In wavelet
analysis, different sizes (scales) of a wavelet template are moved along the transect to

quantitatively assess the match of the template to the data (see Dong et al. 2008 for a
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tutorial). Greater values indicate a strong resemblance of the data to the pattern of the
wavelet template at that scale and position. We conducted wavelet analysis on variables
with at least 10% frequency using the Haar wavelet, which detects locations of abrupt
change with high values of wavelet variance, along each 120 m transect for a maximum
scale of 30 m. We assessed position variance, the sum of all values of wavelet variance
over all scales, to determine the abruptness of the gradient at each position along the
transect (see Batllori et al. 2009 for an example). We tested the significance of peaks in
position variance using 999 randomizations. For a conservative estimate of the DEC, we
considered significant peaks of at least two consecutive distances on at least two
transects. To account for variation in the location of 0 m, we also considered distances
with peaks along two transects that were offset by 1 m. DEC was then estimated as the set
of three or more consecutive distances (or separated by one or two distances) with

significant peaks representing abrupt change.

Results
Moose browsing severity

Patterns of herbivory were similar between Abies balsamea and Betula papyrifera
with more prevalent moose browsing on the disturbed side of the edge compared to the
forest (Fig. 1). A greater proportion of living and unbrowsed Abies balsamea saplings
were in the forest reference than in the disturbed area reference (Fig. 1a). The proportion
of live, unbrowsed Betula papyrifera saplings increased from the disturbed area into the
forest, yet percentages were significantly higher at the edge compared to the disturbed

area reference (Fig. 1b). The proportions of lightly and moderately browsed saplings were

10
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generally low and did not reveal any edge or forest influence (Fig. 1¢c-d). The majority of
browsed saplings were severely browsed and stunted. Both Abies balsamea and Betula
papyrifera saplings exhibited significant decreases in severe browsing from the disturbed
area into the forest (Fig. le-f).

Evidence of sapling mortality causes varied between species and across the edge
gradient (Fig. 1g-j). There were more unbrowsed dead saplings on the forest side of the
edge compared to the disturbed side; however, only Abies balsamea revealed significant
edge and forest influence on the percentage of unbrowsed dead saplings (Fig. 1g-h). Abies
balsamea saplings that experienced mortality following severe browsing were more
abundant on the disturbed side of the edge compared to the forest (Fig. 11).

Patterns of browse severity differed among saplings in different height classes as
taller saplings were more severely affected by browsing (Fig. 2). The proportion of live
unbrowsed saplings was greatest for short saplings, particularly right at the edge (Fig. 2a).
The shortest 11 cm tall browsed saplings were found in the disturbed area. Percentages of
live unbrowsed saplings of intermediate height were more variable across the gradient
(Fig. 2b). No tall saplings were unbrowsed from the disturbed side up to 15 m into the
forest, after which very few were unbrowsed (Fig. 2¢). Severely browsed saplings of all
heights decreased from the disturbed area into the forest (Fig. 2d-f), yet overall
percentages were greatest for the tallest saplings (DEI = -1 m, Fig. 2f). More taller
saplings were dead compared to shorter ones (Fig. 2g-1).

Understorey structure and composition

Abies balsamea sapling height increased from the disturbed area into the forest

11
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(Fig. 3a). Betula papyrifera was the shortest species at most sampled distances (Fig. 3b).
There was no significant DEI, DFI, or DEC for the height of Picea glauca saplings,
which were more than twice as tall as other saplings in much of the disturbed area (Fig.
3c¢). Total sapling density did not differ significantly across the insect disturbed area-
forest gradient due to contrasting patterns between species. Most saplings were Abies
balsamea, which increased from the disturbed area to the forest interior (Fig. 3d). In
contrast, Betula papyrifera sapling density decreased significantly from the disturbed area
to the forest (Fig. 3e). Abrupt changes in sapling density were restricted to the disturbed
side of the edge (DEC around -50 m for Abies balsamea, throughout the disturbed area
for Betula papyrifera). Picea glauca sapling density did not exhibit any significant
pattern (GAMM: p = 0.08; edf = 2.0). Seedlings, the vast majority of which were Abies
balsamea, increased significantly from the disturbed area into the forest with abrupt
changes in abundance only in the forest (Fig. 3f). Average seedling density of Betula
papyrifera and Picea glauca was very low and did not exhibit significant patterns for
either species (GAMM: Betula papyrifera: p=0.68; edf=1.0, Picea glauca: p=0.28;
edf=1.0).

Graminoid cover decreased from the disturbed area to the forest, with significant
DEC only within the disturbed area (Fig. 4a). In contrast, bryophyte cover increased from
the disturbed area up to 35 m into the forest with significant changes at the edge and in
the forest (Fig. 4b). Fine woody debris cover increased slightly from the disturbed area
into the forest with abrupt changes up to 50 m into the forest (Fig. 4c). Average shrub

cover was significantly lower 11-25 m on the forest side of the edge compared to both

12
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references but with abrupt changes at the edge and up to 56 m into the adjacent
communities (Fig. 4d). Overall herbaceous cover was relatively higher than for shrubs
and decreased from the edge to 25 m into the forest, and then steadily increased (Fig. 4e).
Fern cover exhibited a similar but stronger non-monotonic pattern (Fig. 4f). Abrupt
changes in herb and fern cover matched the patterns determined by the GAMM analysis
and were restricted to the forest for fern cover.

The majority of shrubs and herbs that exhibited significant patterns across the
edge increased in cover from the disturbed area into the forest (Amelanchier spp., Kalmia
angustifolia, Vaccinium angustifolium, Clintonia borealis, Linnaea borealis,
Maianthemum canadensis, Trientalis borealis), although the cover of some species
decreased (Rubus idaeus, Aster acuminatus) (Table 2). The only exotic species, Rumex
acetosella, was exclusively found in the disturbed area.

Species diversity of saplings and seedlings did not display significant patterns
across the disturbed area-forest gradient (GAMM.: saplings: p=0.08; edf=1.0, seedlings:
p=0.48; edf=1.0). Total understorey species diversity was significantly lower 16-40 m
from the edge into the forest compared to the disturbed area reference but abrupt changes
were only found in the disturbed area (Fig. 5a). Herbs accounted for the greatest diversity
and followed a very similar pattern but with no significant DEI or DFI (Fig. 5b). Fern
diversity was relatively lower than herb diversity with abrupt decreases at the edge and 20
m into the forest (Fig. 5¢). Shrub diversity was significantly lower in the disturbed area

and increased into the forest (Fig. 5d).

13
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Summary of DEI, DFI and DEC

Despite contrasting trends in the proportions of variables with DEI and DFI, there
was no pattern for DEC along the insect disturbed area-forest gradient (Fig. 6). Overall,
maximum DFI extended slightly further from the edge (-35 m) than DEI (25 m). DEC for
individual variables (Table 2, Figs. 3-5) was usually confined to either the forest or the
disturbed area. Some common understorey forest species (e.g., bryophytes, ferns,
Clintonia borealis, Trientalis borealis), fine woody debris, and Abies balsamea exhibited
change mostly on the forest side and other forest species (Cornus canadensis,
Maianthemum canadense, Dryopteris spp., Pteridium aquilinum) changed abruptly on
both sides. Species that also grow in more open habitats (4dmelanchier spp., Aster
acuminatus, Rubus idaeus, Sorbus americana), understorey diversity, and Betula
papyrifera showed abrupt changes mostly on the disturbed side. DEC rarely coincided

with the pre-determined forest edge, with DEI or with DFI.

Discussion
Moose browsing and regeneration

We attribute moose preference for forage in the disturbed area to a combination of
the lack of predators and food quality. Since moose in northern Cape Breton are not
pressured to seek refuge from predators, they can select habitats based on preferred forage
rather than protective cover (Massé & Coté 2009). Moose may browse in the disturbed
area more than the forest as a result of the higher density of Betula papyrifera, a preferred
food source for moose (Peek et al. 1976; Lautenschlager et al. 1997; Smith et al. 2010).

Abies balsamea is an important winter browse species whereas Betula papyrifera is a

14
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substantial dietary component year-round (Peek et al. 1976); therefore browse severity
could be greater in the disturbed area because it provides a constant supply of food
throughout the year.

Moose browse damage was most severe for the tallest saplings, which are
considered most vulnerable to moose (Andrén & Angelstam 1993), as they are not
concealed by deep snow in winter. However, we found moose browsed saplings as short
as 11 cm, a finding that should be considered in studies that have previously ignored
saplings shorter than 100 cm (e.g., Danell & Ericson 1986; Andrén & Angelstam 1993).
Moose in northern Cape Breton may be foraging on shorter saplings because the ungulate
population is relatively high and food may be scarcer.

Moose prevented regeneration of palatable species by restricting sapling growth,
particularly on the disturbed side of the edge where browsing was most severe. Opposing
trends of a decrease in browsing severity and an increase in Abies balsamea sapling
height from the disturbed area into the forest suggest that saplings experiencing less
herbivory pressure had greater opportunities for growth and survival. Other studies
revealed that moose browsing suppresses terminal growth of Abies balsamea
(Risenhoover & Maass 1987; Brandner et al. 1990; Thompson & Curran 1993) and can
inhibit individual trees from growing over one metre in height (Thompson et al. 1992;
McLaren et al. 2004). Betula papyrifera, a shade-intolerant species, was not taller in the
disturbed area where growth conditions were favourable. Moose browsing also restricts
Betula spp. growth (Heikkild et al. 2003; Persson et al. 2005); hence more severe browse

damage in the disturbed area may have limited sapling height causing an insignificant

15
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trend in Betula papyrifera sapling height.

Variation in moose browse severity along the disturbed area-forest gradient could
eventually affect overstorey composition. Severely browsed saplings were common in our
study area (Smith et al. 2010) and in high moose density areas of Newfoundland (Dodds
1960) and Sweden (Andrén & Angelstam 1993). These saplings may not reach their full
growth potential and soon die (Bergerud & Manuel 1968), thereby hindering recruitment
of preferred species to reproductive-aged trees (Mclnnes et al. 1992; Heikkild &
Héarkonen 1996). Moose browsing has hindered forest succession in clearcut areas by
preventing growth of selected sapling species in Fennoscandia (Edenius et al. 2002;
Speed et al. 2013) and Russia (Kuznetsov 2002). In Cape Breton, moose preferentially
feeding on Abies balsamea could prevent the return to the fir-dominated forests that were
typical of the past (Brandner et al. 1990; Mclnnes et al. 1992). Instead, negative effects of
herbivory on sapling growth of browsed species could lead to more successful
regeneration of Picea glauca saplings, which were much healthier and taller than Abies
balsamea and Betula papyrifera, as a result of reduced competition (Snyder & Janke
1976; Thompson & Curran 1993). As browsing was less severe on the forest side of the
edge, changes in canopy composition will be less apparent, leading to greater contrasts in
vegetation composition between the severely browsed disturbed area and adjacent intact
forest. Severe moose browsing may prolong the existence of forest edges in landscapes
affected by other types of disturbances; for example, high moose densities in
Fennoscandia could be maintaining forest edges because they select early successional

forests post-disturbance (Edenius et al. 2002).
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Understorey composition

Moose browsing could indirectly affect understorey composition by altering
interspecific competition. The overall decrease in the shrub and herbaceous layers, ferns,
and understorey diversity approximately 10-25 m from the edge into the forest
corresponded to the area of high seedling density, relatively low browse severity, and
increased sapling height. Reduced herbivory could have benefited palatable saplings but
consequently kept the abundance of non-dietary herbs, shrubs, and ferns low, as these
understorey species experience greater competition for resources with vigorous saplings
and seedlings. Densities of unpalatable shrub species were found to be lower inside
moose exclosures, where the lack of moose browsing resulted in greater sapling density
and consequently more shading (Thompson & Mallik 1989). The zone of change in
understorey composition 10-25 m into the forest may be related to an overlap in increased
light near the edge of the disturbed area and decreased browsing in the forest.

Species diversity was not higher at the edge compared to the adjacent ecosystems,
possibly due to the gradual transition between disturbed and forest oriented species.
Although greater diversity at other forest edges (Harper et al. 2005) usually results from
the edge functioning as an adequate habitat for species found on both sides of the
interface (Harris 1988), the opposite effect may have occurred at these insect-induced
forest edges. Species that were either disturbed area oriented (e.g. Rubus ideaus) or forest
oriented (e.g. Kalmia angustifolia) were less abundant within 20 m from the edge, which
could reflect a distinct contrast in growing conditions between the two ecosystems.

In contrast to the forest, the disturbed area was characterized by species that thrive

17
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under low canopy cover, such as Rubus idaeus (Ricard & Messier 1996). The disturbed
area also contained the only exotic species, Rumex acetosella, which is an early
successional weed (Stopps et al. 2011). Species that were able to grow in shaded as well
as open canopy conditions, such as Cornus canadensis (Hall & Sibley 1976), did not
exhibit edge influence and were ubiquitous across the disturbed area-forest gradient.
Therefore, the disturbed area was an attractive growing habitat for fast growing shade-
intolerant species, which would have most likely been outcompeted by shade-tolerant
species had forest regeneration progressed post-disturbance.

Edge/forest influence and methodological considerations

Weak edge influence on the understorey suggests that vegetation at the edge is
relatively similar to the forest reference. Edge influence on understorey vegetation was
also not very extensive at forest edges induced by wildfire (Harper et al. 2014) and at
anthropogenic edges in the boreal forest, where DEI is usually less than 20 m (Harper et
al. 2015). Species experiencing periodic natural disturbance could be more resilient to
changes in environmental conditions and therefore less affected by edge creation (Harper
etal. 2015).

Our findings reveal the challenges associated with defining forest edges, which
have been considered the location of greatest change as determined by wavelet analysis
(e.g., Camarero et al. 2006). Based on our findings, edges of spruce budworm outbreaks
would be difficult to detect using our DEC analysis. The location of DEC was usually
very different from our pre-defined edge (as determined visually on site) and from any

determination using DEI or DFI. Rather than identifying boundaries as the locations of
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greatest change, an edge could instead be located at the intersection of the proportion of
response variables with DEI and DFI. In our study this would be 10 m into the disturbed
area, which suggests that there might have been edge degradation since edge creation.
Our results also highlight the importance of sampling the entire gradient between the two

communities, particularly when studying older edges, which may have shifted over time.

Conclusions

Moose browsing appeared to be maintaining the spruce budworm-forest edges by
restricting sapling height and preventing forest regeneration on the disturbed side of the
edge. Overall sapling density did not differ significantly across the edge, yet greater
density of Betula papyrifera saplings in the disturbed area suggests that diet preference
may be based on variety rather than quantity. Graminoids and other shade intolerant
species capable of thriving in the disturbed area benefitted from the hindrance of forest
succession, which could result in moose diet preferences ultimately altering species
composition. Consequently, forest previously dominated by Abies balsamea may become
dominated by unpalatable Picea glauca, and grassland expansion may lead to habitat loss
for species dependent on closed-canopy forest. The spruce budworm-induced forest edges
reveal that naturally created edges, once thought to be typically short-term features of the
landscape (Thomas et al. 1979), can persist when affected by ecological processes such as
herbivory.
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Figure 1. Mean percentage of Abies balsamea saplings (n = 824) and Betula papyrifera
saplings (n = 315) in individual browse severity classes at each 5 m interval along insect
disturbed area-forest edge transects (n = six). Negative and positive distances represent
the disturbed and forest sides of edge, respectively (DR = disturbed area reference, FR =
forest reference). Standard error bars are included for the reference means but not at other
distances for clarity. Trend lines (solid = significant smoothing term, dashed = not
significant) represent the fitted generalized additive mixed model with 95% CI (dotted
lines), p-values and estimated degrees of freedom (edf). Horizontal lines near the top of
the graphs represent significant distance of edge influence (solid line) and of forest
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influence (dashed line).

Percentage of saplings

50

o
|

100

a
o
|

o
|

100

50

0-e

50

Abies balsamea

Betula papyrifera

a. unbrowsed live

100 - : p=0.13

50 °

b. unbrowsed live

Distance from edge (m)

o p=0.49
edf=1.0
o
]
p<0.0001 p<0.0001
edf=3.1 edf=2.9
0
o
¢ "
o .
] s, 20
N0 o )
h. unbrowsed dead
p<0.0001 oo p=0.01
edf=3.5 edf=1.0
O’,
=] e
i. browsed dead j . browsed dead
- . <0.001 o =0.14
100 : Fedt=2.7 &i=10
; ; 0o ©°
o e
P Pt - SO
&2 ° %005 T066606-0" ~00- °
T T T T T T T T T T T T T T
D.R. -60 -30 0 30 60 F.R. D.R. -60 -30 0 30 60 F.R.

25



Journal of Vegetation Science

Figure 2. Percentage of Abies balsamea and Betula papyrifera saplings divided by three

height classes (short = < 50 cm, intermediate = 50-99 cm, tall => 99 c¢m) in individual

browse severity classes along the insect disturbed area-forest edge gradient. See Figure 1

for further details.
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Figure 3. Mean maximum sapling height for (a) Abies balsamea, (b) Betula papyrifera,
and (c) Picea glauca; and mean density of (d) 4. balsamea saplings, (e) B. papyrifera
saplings, and (f) 4. balsamea seedlings along the insect disturbed area-forest edge
gradient. See Figure 1 for further details; the gray horizontal line near the top of the plots
represents significant distance of edge change.
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Figure 4. Mean cover of (a) graminoids, (b) bryophytes, (¢) fine woody debris, (d) shrub
layer species, (e) herbaceous layer species, and (f) fern species along the insect disturbed
area-forest edge gradient. See Figures 1 and 3 for further details.
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Figure 5. Mean species diversity of (a) understorey plants (shrubs, herbs, and ferns
combined), (b) herbs, (c) ferns, and (d) shrubs along the insect disturbed area-forest edge
gradient. See Figures 1 and 3 for further details.
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Figure 6. Percentage of response variables with significant distance of edge influence,
distance of forest influence, and distance of edge change along the insect disturbed area-
forest edge gradient. Response variables include percentages of Abies balsamea and
Betula papyrifera saplings in each of six different browse classes; percentages of short,
intermediate, and tall saplings in each of six different browse classes; maximum sapling
height; sapling and seedling densities; cover of graminoids, bryophytes, fine woody
debris, shrub layer (height > 15 ¢cm), herb layer (height < 15cm), ferns, and individual
species; and diversity of understorey species, herbs, fern, and shrubs.
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Table 1. Criteria used for determining severity of moose browsing on individual saplings.
The classification system was adapted from Smith et al. (2010).

Live Dead

Browse class Unbrowsed Lightly = Moderately Severely Unbrowsed Browsed

browsed browsed  browsed
Live foliage Yes Yes Yes Yes No No
Browse evidence No Yes Yes Yes No Yes
Altered growth form No No Ye?, (some Yes. (drastic No Yes

evidence) evidence)

Proportion of stems >1/3,
browsed None <1/3 <23 >2/3 None N/A
Cylindrical and dense
(Abies balsamea)/
Multiple dead stems Na No No Yes No Yes
(Betula papyrifera)
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