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Salt stress response single genes expression in diploid and 

autopolyploid Hordeum bulbosum 

 

Abstract 

Soil salinity is a worldwide problem, which hinders the growth of crop yields and 

brings great challenges to the world. To deal with the reduction of agricultural land, 

research and cultivating the development of salt-tolerant crops are urgently needed. 

Autotetraploidy has played an important role in plant evolution and plant speciation. An 

autotetraploid wild grass species (Hordeum bulbosum) has advantages in high-salt 

environments. However, the function of single genes in autopolyploid for salt tolerance is 

poorly unknown. Physiological activities related to a single functional gene are important 

for the salt resistance in barley; the release of protective metabolites is promoted by the 

single function gene. The purpose of this study is to compare the difference in gene 

expression of single genes between diploid and autotetraploid wild barley. The diploid 

and autotetraploid wild barley that were used in this study were both incubated with 

saline and water before comparing their level of gene expression of single genes. The 

results showed that there is no consistent expression change for all target genes between 

diploid and autotetraploid, which indicated that polyploidization could result in the gene 

expression change, either increase or decrease based on each gene. Even if the use of 

polyploid crops to combat land salinization requires further research, the prospects of 

salt-tolerant crops are promising. 

 

 

 

 

 

by Zhilan Cheng 

Date of submission: April 27th, 2021 



 4 

Introduction 

1.1 Why soil salinization poses a great challenge 

Soil salinization changes fertile land into an unproductive one by impairing crop 

growth and development. There are three ways of soil salinization that damage plant 

growth: (1) due to an increased concentration of solute in the soil, the osmotic potential 

of the root cells of the water in the soil decreases, which limits the water uptake of plants 

(Isayenkov & Maathuis, 2019); (2) the accumulation of soil solute in plants adversely 

affects the physiological activities of plants, better known as cytotoxicity, including an 

excessive uptake of sodium (Na+) and chloride (Cl−) ions that cause drying of leaves, 

damage to fruit and impairment of root growth (Nachshon, 2018); and (3) nutritional 

imbalance in plants caused by competition of sodium and chloride with nutrients like 

calcium, potassium and nitrates, all of which are essential for plant growth (Munns & 

Tester, 2008; Tester & Davenport, 2003). 

The causes of soil salinity are manifold. Some human activities and global warming 

exacerbate soil salinization. Inaccurate irrigation habits in agriculture (using highly saline 

irrigation water), lack of a good drainage system, and over-exploitation caused by 

groundwater inversion may all lead to salinization (Nachshon, 2018). In addition, global 

warming caused by human activities increase the frequency and severity of droughts and 

heatwaves and other extreme weather events. These events accelerate the evaporation of 

water, therefore with more solutes in the water that are left in the soil (Nachshon, 2018). 
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Currently, one-fifth of cultivated land worldwide is being stressed by soil 

salinization, and around one-third of irrigated agricultural land globally are salinized as a 

consequence of poor agricultural practices (Nachshon, 2018). The affected cultivated 

land area is still growing, as it is anticipated that around half of the world’s agricultural 

land will be salinized by 2050 (Food and Agricultural Organization of the United 

Nations, 2009). Moreover, due to the continuous and rapid growth of global population, 

the existing agricultural cultivation is not sufficient to meet the demands. A huge 

challenge is that food production worldwide must increase by 60% in order to meet the 

demands of additional 2.3 billion newborns by 2050 (Food and Agricultural Organization 

of the United Nations, 2009; Singh, 2015). 

Various environmental pressures, droughts, floods, pests, and soil salinity, among 

others, affect crop production. Soil salinity is one of the greatest environmental stresses 

that hinder crop productivity worldwide. Since most farmers, particularly those in 

developing countries, cannot afford the cost of reclaiming saline soils, increasing the salt 

tolerance of crops is crucial (Munns et al., 2006). Thus, research and cultivation of salt-

tolerant crops are highly necessary. 

 

1.2 Advantage of Polyploids 

A polyploid is an organism with more than two sets of chromosomes. 

Polyploidization plays a vital role in plant evolution and speciation. Polyploids are 

frequently found in extreme environments. They can adapt to many extreme 

environments, including salty, drought or cold environments. They also manifest better 
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disease and pest resistance, and present a broader environmental adaptability than their 

diploid ancestors (Stebbins, 1950; Moore & Purugganan, 2005; Birchler et al., 2010). 

The autopolyploid Hordeum bulbosum is used in this study. The primary difference 

between autopolyploid and allopolyploid is that the former is a containment of multiple 

sets of chromosomes that are derived from a single species, whereas the latter is the 

containment of multiple sets of chromosomes that are derived from different species. 

Autopolyploids are formed from genomes of the same species, while allopolyploids are 

associated with hybridization. To eliminate interferences caused by hybridization, this 

study uses the autopolyploid H. bulbosum for comparison with its diploid ancestor. 

 

1.3 General information of Hordeum bulbosum 

H. bulbosum originates from the west of Iran, and is distributed worldwide (Hamed 

& Hojjatolah, 2011). It is prominent as a wild grass species and is a close relative of 

cultivated barley (Hordeum vulgare L.). Presently, barley (Hordeum vulgare L.) is a 

significant food source for humans. There are up to 30 additional wild Hordeum species, 

but only H. bulbosum can easily crossbreed with H. vulgare, and is the only member of 

the secondary gene pool (Nair, 2019). As a representative of the barley gene pool, H. 

bulbosum is a valuable source for richening barley gene diversity, especially for 

improving the resistance and tolerance of barley to the pathogens in its environment 

(Walther et al., 2000, Ruge et al., 2003). It is a perennial and obligate outbreeder (self-

incompatible), and is widely distributed from the Mediterranean and extended to 

Afghanistan and Tajikistan in Central Asia (von Bothmer et al., 1995). It is caespitose, 



 7 

and its culms are 50 to 100 cm long with swollen features at the base (Culm-internodes 

glaucous). The leaf-sheath auricles of H. bulbosum are falcate. The ligule has a ciliate 

membrane. The leaf blades are 10 to 20 cm long and 3 to 7 mm wide with scabrous, 

glabrous or pilose surfaces. The inflorescence is composed of racemes. Rhachis is fragile 

at the nodes, with spikelet packing broadside to it. Its internodes are oblong. The spikelets 

of H. bulbosum are well-developed (von Bothmer et al., 1995). 

The autopolyploid H. bulbosum and the diploid H. bulbosum can be found 

worldwide. In the Western world, the distribution of H. bulbosum is mostly as a diploid, 

while tetraploids predominate in Asia (Devaux, 2003). 

 

1.4 Mechanism of Barley response to salinity 

To avoid damage caused by high saline concentration in the soil, plants must have 

the ability to sense salt stress, transduce stress signals and regulate their metabolism. 

Plants have developed the capacity to sense both hyperosmotic component and the ionic 

Na+ component of the stress. Hyperosmotic stress may be perceived by a mechanically 

gated Ca2+ channel, as plant hyperosmotic sensors are closely associated with Ca2+ 

channels (Zhao et al., 2020). A recent study has presented that glycosyl inositol 

phosphorylceramide (GIPC) sphingolipids may function as salt stress sensors in plants 

(Jiang et al., 2019). 

Plants overcome salt stress by regulating osmotic pressure. When solute in the soil 

lowers the external water potential and compromises the plants’ ability to take up water, 
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the plants increase their uptake of inorganic ions, and their growth resumes (Zhao et al., 

2020). 

Some halophytes have formed special structures. They accumulate excessive Na+ in 

their vacuoles, making them adapt to high salinity. For instance, seeds of salt-tolerant 

barley absorb water and minimize K+ losses by taking up sodium during germination 

under salinity stress (Zhang et al., 2010). 

1.5 Transcriptional regulation and gene expression 

The two major methods for plants to cope with salt stress are facilitating the 

production of protective metabolites and controlling the expression of downstream genes 

(Agarwal et al., 2013). Hence, the induction of various genes falls into two broad groups: 

single function genes and regulatory genes (Mwando et al., 2019). This study focuses on 

single function genes. 

The synthesis of transporters or channel proteins, and the release of protective 

metabolites such as osmolytes, lipid biosynthesis genes and antioxidative enzymes, are 

promoted by the single function gene (Mwando et al., 2019). Potassium ion (K+) is the 

major cationic inorganic nutrient that is utilized for osmotic regulation, cell growth and 

enzyme activation in plants. K+ transport is regulated by single function genes HvHAK1 

and HvAKT1 (Fulgenzi et al., 2008; Mwando et al., 2019). Some studies showed that the 

mutations in the barley HvHAK1 potassium transporter lead to an improved K+‐- nutrition 

and enhanced resistance to salt stress (Mangano et al., 2008). In barley, the Na+/H+ 

antiporter in vacuolar membranes transports Na+ from the cytoplasm to the vacuoles, and 

stimulates osmotic balancing in the barley cell with its environment by accumulating Na+ 
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in the vacuoles. The vacuolar Na+/H+ antiporter is regulated by HvNHX1 (Fukuda et al., 

2004), HvNHX3 (Roslyakova et al., 2009) and HvNHX4 (Mwando et al., 2019). The 

expression of these genes increases salt stress tolerance in the roots and leaves of barley. 

Sodium ions are transported and compartmentalized in the vacuoles through two types of 

H+ pumps (V-ATPase and H+ -ATPase) and vacuolar pyrophosphatase, all regulated by 

HVA/68 and HvHVP1 (Zhu, 2002). 

1.6 Goal of this study 

Several existing studies demonstrated that autopolyploids have a better capability to 

tolerate abiotic stress than diploid ancestors; however, the molecular mechanism remains 

unclear (Sun et al., 2019). A recent study discussed that microRNAs are related to better 

salt tolerance in autopolyploid (Liu & Sun, 2017). However, the function of single genes 

in autopolyploid for salt tolerance is vague. 

The primary objective of this study is to evaluate if polyploidization results in stress 

response gene expression change by using autopolyploid and diploid H. bulbosum as a 

case study. The goal is to explore the differences in gene expression between 

autopolyploid and diploid H. bulbosum by comparing their single function genes. The 

hypothesis is that salt response genes have different expressions in autopolyploid and 

diploid H. bulbosum, and that polyploidization results in gene expression change. 

 



 10 

Materials and methods 

2.1 Plant growth 

The cultivation of the accessions of Hordeum bulbosum was conducted by Maggie 

Scarrow. Four diploid individual and four tetraploid individual Hordeum bulbosum (wild 

barley) were utilized in this study. There were six pots – three plants in each pot – from 

each accession of H. bulbosum. These pots were divided into two groups: three pots 

comprised the control group, and the other three were the salt treatment group. The plant 

cultivation duration was 28 days. Day 1-14 was the treatment period; the plants in the salt 

treatment group were treated once with 300ml 250mM NaCl solution, while the control 

group was incubated with 300ml H2O. Day 15-28 was the recovery period; all groups 

were made to grow in H2O. The pots were watered every two days continuously for 28 

days. The pots were grown inside a greenhouse situated on the campus of Saint Mary's 

University in Halifax, Canada (latitude 44.636325N, longitude -63.594416W) from May 

4th, 2020 to June 1st, 2020. The temperatures were set at 25/18°C (day/night), and were 

controlled by heating and ventilation. Apart from natural solar radiation, the plants 

received additional lighting provided by 600W SON-T Green Power lamps (Philips, 

Belgium). The minimum photosynthetic photon flux density (PPFD) at bench height from 

the additional lighting was 300 μmol m-2s-1. The photoperiod of the said lighting was set 

as 18/6 hours (day/night). 
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2.2 RNA isolation 

RNA isolation was performed by Maggie Scarrow. The three newly sprouted leaves 

from each individual (young leaves) were obtained for RNA isolation on June 2nd. 150 

mg of leaves from each individual were measured using a high-precision balance scale 

(Mettler Toledo AE163) and were immediately frozen in liquid nitrogen before grinding 

using a mortar and pestle. Each sample was lysed by adding 2 ml of TRlzol, 0.4 ml 

chloroform and centrifuge (10,000 rpm for 5 mins and 10,000 rpm for 15 mins). The top 

clear layer was then transferred for RNA isolation. RNA was isolated by adding 

isopropanol (0.5 ml per 1 ml TRlzol) and applying centrifugation at 10,000 rpm for 10 

mins. The isolated RNA was washed with 75% EtOH (1 ml per 1 ml TRlzol) then 

centrifuged at 7,500 rpm for 5 mins. The RNA was resuspended in 50 μl RNase-free 

water after discarding the supernatant from the RNA wash. The RNA samples were then 

stored at -80°C immediately after applied a 60°C, 15 mins water bath. 

 

2.3 RNA quality determination 

The quality and purity of the RNA template was measured prior to analysis of the 

gene expression. Electrophoresis to identify the RNA’s integrity and overall quality was 

performed by Maggie Scarrow and Zhilian Cheng. 2 ul of isolated total RNA was used 

with Nano-drop to determine the concentration and purity. Quality was detected on 1.0% 

bleach gels (1.5g agarose, 1.22ml bleach and 148.78ml 1x TAE Buffer) (Bio-Basic inc, 

CA). Good-quality RNA that was not degraded was used in the succeeding steps, while 

degraded samples were discarded. 
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2.4 cDNA synthesis and quality determination 

Compared to RNA, cDNA has the advantages of storage resistance and more 

stability. Thus, the RNA was synthesized into cDNA before qPCR. The iscript cDNA 

synthesis kit (Bio-Rad Inc., US) was used to synthesize cDNA. The reaction protocol 

followed its manual, and the complete reaction mix was incubated in Bio-Rad T100 

Thermal cycler (Bio-Rad Inc., US) using the following protocol setup: (1) priming for 5 

min at 25 °C; (2) reverse transcription for 20 min at 46 °C; and, (3) RT inactivation for 1 

min at 95 °C. 

To confirm the successful synthesis of cDNA, cDNA was electrophoresed in 1.0% 

agarose gel with 1X TAE, stained with ethidium bromide, and visualized on gel 

documentation system. Finally, the synthesized cDNA was diluted to 1/75 with nuclease-

free water. 

 

2.5 Gene expression analysis 

Gene expression of H. bulbosum was studied by real-time RT-PCR technique using 

gene-specific primers by Zhilan Cheng. Gene oligo primers (ordered from Bio Basic 

Canada Inc, ON, Canada) (Table 1) of K+ transporters (HvHAK1 and HvAKT1), 

Na+/H+ antiporters (HvNHX1, HvNHX3, and HvNHX4), vacuolar H+ -ATPase 

(HvHVA/68) and vacuolar H inorganic pyrophosphatase (HvHVP1) were used for cDNA 

amplification. The cDNA and their corresponding primers were mixed with iTaq 
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universal SYBR® Green reaction mix (Bio-Rad inc, US) – following manufacture’s 

instruction. The iTaq universal SYBR® Green reaction mix amplificated cDNA with 

specific primer. The reaction was performed in the CFX96 Touch Deep Well Real-Time 

PCR Detection System as per the manual of CFX Maestro Software (Bio-Rad inc, US). 

The protocols set up for qPCR were stage 1, 50°C for 2 mins; stage 2, 95°C for 10 mins; 

stage 3, 95°C for 15 s; stage 4, 56°C for 30 s; and, stage 5, 60°C for 1 min. There were 40 

cycles from stages 3 to 5.  

Each sample was repeated thrice in a Bio-Rad 96 PCR plate, sealed with a 

MicroAmp Optical Adhesive Film Kit (Thermo Fisher Scientific, US). Real-time PCR 

data were analyzed by comparison to the normalized gene expression (ΔΔCq) level of 

target gene using the CFX MaestroTM software (Bio Rad, US), while Actin was applied as 

the control primer. 

 

2.6 Electrophoresis gel verification product 

To determine whether the primers bind to a specific sequence as designed, the size of 

the product can be roughly measured by using 1.0% agarose gel electrophoresis (Bio-

Basic inc, CA) with 1X TAE electrophoresis. 25-500bp Low Range DNA Marker A 

(Bio-Basic inc, CA) was used as size reference to compare with the qPCR product to get 

a product size range. Then primer blast (National Center for Biotechnology Information, 

US) was used to calculate the theoretical product size. If the actual product size matches 

the theoretical product size, then the specific primer is considered to be correctly bound 

with the designed fragment. 
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Gene name Gene function Sense Primer Anti sense primer Prouduct size (bp)

HvACTIN Housekeeping 5'- CGTGTTGGATTCTGGTGATG -3' 5'- AGCCACATATGCGAGCTTCT -3' 208

HvHAK1 K
+
 transport 5'- TGGTGATAGGCGATGGAAC-3' 5'- GAGAGACCCATCCACTCTTC -3' 324

HvHKT1 Na
+
/K

+
 -symport 5'- ACTTTGCCGTGATCCATATC  -3' 5'- CTGGATTCTTGATCATGAGC -3' 327

HvHVA/68 H
+
 pumps 5'- AGTACAGTCTGCAGGATACTG -3' 5'- GAGTACTTTGAGAGCGCCTG -3' 350

HvHVP1 H
+
 pumps 5'- TACCCACTCCTAATCAGCTC  -3' 5'- GCTTGTGTAGTACTCTGTAATG -3' 306

HvNHX1 Na
+
/H

+
 antiporter 5'- TCCAGGTGAAGAAGAAGCAG  -3' 5'- GTGGCATCGTTCACAACAC -3' 274

HvNHX2 Na
+
/H

+
 antiporter 5'- GGCTATCTTCTCAGCAACC  -3' 5'- CAAGAACGGTGCTGGTGAG -3' 227

HvNHX3 Na
+
/H

+
 antiporter 5'- CGATGCGACATCAGTTGTG -3' 5'- CAGGTATAGTGCGACATTAC -3' 312

HvNHX4 Na
+
/H

+
 antiporter 5'- AGGAGTAATGCAGCAGGAG -3' 5'- GTTTCAGCCAAAGATGATAGC -3' 344

HvAKT1 K
+
 transport 5'- GGGTTCGATGTGCAAAGCTC -3' 5'- CTCCCGTATGTTCTCCGCATG -3' 236

 

Table 1.  List of Primers for gene expression analysis by RT-PCR 
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Result 

3.1 Product analysis 

The size of the qPCR products of the target genes were between 200 bp and 350 bp 

(Figures 1 & 2). The markers were used as the standard, and the qPCR product sizes 

between 200 and 300 bp were Actin, HvAKT1, HvHVA/68, HcNHX1 and HvNHX2. The 

product sizes between 300 and 400 bp were HvHVP1, HvHAK1, HvNHX3 and HvNHX4. 

In melt peak diagrams, most of the curves were single peaks, while a few had small 

peaks when encountering the largest peak (Figures 3& 4). 

 

3.2 Different ploidy on the expression of salt-stressed genes 

In highly saline environments, some autopolyploid exhibit better adaptability. To 

compare and study the differences in adaptation caused by ploidy, this experiment 

analyzed the expression of specific salt-related genes of H. bulbosum in different ploidy. 

Diploid and autopolyploid under the same treatment were evaluated for different target 

genes. 

Due to variability among individuals, some accessions have very low relative 

normalized expression (RNE) levels. The RNE levels of genes HvHAK1 (Figure 5) and 

HvHVA/68 in autopolyploid (Figure 7) are higher than that in diploid. For genes HvHKT1 

(Figure 6), HvNHX1 (Figure 10), HvNHX2 (Figure 11) and HvNHX4 (Figure 13), the 

expression level in autopolyploids and diploid is not obvious difference.  The expression 
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of genes HvHVP1 (Figure 8), HvAKT1 (Figure 9) and HvNHX3 (Figure 12) in diploids 

was slightly greater than in autopolyploid. 

 

3.3 Treatments on salt related gene expression 

To study the adaptability of H. bulbosum of the same ploidy in a saline environment, 

both diploid and autopolyploid were cultivated under salt stress and no salt stress 

conditions. The subjects under different treatments were then compared. 

The expression of the target gene greatly varies. For genes HvHAK1 (Figure 5), 

HvHVA/68 (Figure 7), HvNHX1 (Figure 10), HvNHX3 (Figure 12) and HvNHX4 (Figure 

13), the RNE levels of tetraploid individual 2 (treated) and diploid accession # 1 (treated) 

were significantly higher than those of the remaining individuals. Diploid accession # 2 

(treated) also had a high RNE level for target gene HvAKT1 (Figure 9). 

However, for target gene HvHKT1 (Figure 6), except for diploid individual 1 

(untreated) and tetraploid individual 2 (untreated), which manifested slightly higher 

expressions, the other individuals had relatively average RNE levels. The RNE level of 

diploid individual 2 (untreated) was the highest, followed by tetraploid individual 2 

(untreated) for HvHVP1 (Figure 8). The RNE levels of genes HvHKT1 (Figure 6), 

HvHVP1 (Figure 8) and HvAKT1 (Figure 9) in tetraploid individual 2 (treated) were close 

to zero. 

To summarize, two individuals (D1_treated and T2_treated) with saline treatment 

had significantly higher RNE levels for most salt-related genes (HvHAK1, HvHVA/68, 
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HvNHX1, HvNHX3, HvNHX4 and HvAKT1 for the diploid individual, and HvNHX2 for 

the tetraploid individual) than in other individuals. However, in other genes (HvHKT1 

and HvHVP1), this trend did not exist. 

 

 

Figure 1. Agarose gel electrophoresis image of qPCR products with target gene specific 

primer. DNA size marker in column 1 &8, Actin on column 2, HvAKT1in column 3, 

HvHVP1 in column 4, HvHAK1 in column 5, HvHVA/68 n column 6, HvNHX1 in column 

7. 
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Figure 2. Agarose gel electrophoresis image of qPCR products with target gene specific 

primer. DNA size marker in column 1, HvNHX2 in column 2, HvNHX3 in column 3, 

HvNXH4 in column 4. 
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Figure 3. The melt peak of Tm analysis of the negative value of the change in relative 

fluorescence unit (RFU) over the change in temperature (−dRFU/dT) versus temperature 

(degrees Celsius) for housekeeping gene (Actin) and target gene HvAKT1, HvHKT1 and 

HvHVP1. 

 

Figure 4. The melt peak of Tm analysis of the negative value of the change in relative 

fluorescence unit (RFU) over the change in temperature (−dRFU/dT) versus temperature 

(degrees Celsius) for housekeeping gene (Actin) and target gene HvHAK1, HvHVA/68 

and HvNHX1. 
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Figure 5. The Bar chart of relative normalized expression of target gene HvHAK1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 6. The Bar chart of relative normalized expression of target gene HvHKT1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 7. The Bar chart of relative normalized expression of target gene HvHVA/68 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 8. The Bar chart of relative normalized expression of target gene HvHVP1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 9. The Bar chart of relative normalized expression of target gene HvAKT1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 10. The Bar chart of relative normalized expression of target gene HvNHX1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 11. The Bar chart of relative normalized expression of target gene HvNHX2 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 12. The Bar chart of relative normalized expression of target gene HvNHX3 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Figure 13. The Bar chart of relative normalized expression of target gene HvNHX1 for 

different ploidy (diploid and tetraploid), individual and treatment (Salt-treated and 

control) with standard error of the mean expression. D1&D2 refer to diploid individual 1 

and diploid individual 2, T1&T2 refer to tetraploid individual 1 and tetraploid individual 

2. There are three replicates for each sample. Relative normalized expression (ΔΔCq) 

calculated using Actin as housekeeping gene. 
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Discussion  

4.1 Correct qPCR product 

To ensure that the primer would be bound to the designed sequence, the qPCR 

products were analyzed by agarose gel electrophoresis. The theoretical product sizes as 

calculated by the primer blast were: Actin, 208 bp; HvAKT1, 236 bp; HvHVP1, 306 bp; 

HvHAK1, 324 bp; HvHVA/68, 250 bp; HvNHX1, 274 bp; HvNHX2, 227 bp; HvNHX3, 

312 bp; and HvNHX4, 344 bp. It can be deduced from the results that the product sizes 

fall within the range that matches primer blast analysis. 

In melt peak diagrams, most of the curves were single peaks, which proved the 

appearance of a single product. However, there were a few that had small peaks when 

encountering the largest peak. Generally, if there are two peaks in the melting curve, it 

indicates that there are two amplicons, and no single product is produced. However, this 

is not the case in this experiment. The products were analyzed by electrophoresis gel, and 

the results showed that the curves generated a single amplicon, validating a single PCR 

product. A possible reason why small peaks were formed was perhaps due to the high 

primer concentration, as it might be a non-specific primer binding and primer dimer 

formation. 
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4.2 There is no consistent expression change for all target genes between diploid 

and autotetraploid. 

Polyploidization is common among plants. The doubling of the genome caused by 

polyploidization is a driving force for plant evolution and is the primary way for plants to 

adapt to their natural environment. When the plant genome is doubled, theoretically all of 

the genes are doubled. Will these genes remain the same and just multiply by two? In this 

experiment, the salt resistance-related single gene expressions of diploid and 

autotetraploid H. bulbosum were tested. Autotetraploid H. bulbosum had the same 

chromosomes as diploid H. bulbosum. If a single gene related to salt resistance is 

maintained the same in autotetraploid except for doubling the ancestral chromosome 

complement, theoretically, the gene expression in autotetraploid should be double that of 

diploid. 

 From the experiment outcomes, among the target genes monitored in this 

experiment, polyploidization did not result to constant changes in the expression of salt-

tolerant genes. Except for target genes HvHAK1 and HvHVA/68, the expression in 

autotetraploid was slightly higher than that in diploid; even those genes did not reach 

double the RNE of diploid. Among the other target genes, none of the autotetraploid 

individuals presented higher expression levels than diploid; for target genes HvHVP1, 

HvAKT1 and HvNHX3, the gene expression of autopolyploid was lower than that of 

diploid. Based on this outcome, it is presumed that polyploidization does not result to 

constant changes in gene expression. 
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Why does the duplicate gene caused by gene doubling in autotetraploid not continue 

to be expressed as in diploid? A possible reason is that, during the evolution of polyploid, 

some duplicated genes are lost, and others may be retained. A study (Liu et al., 2015) on 

soybeans revealed the loss and retention of duplicated genes formed by plant 

polyploidization. 

For major genetic changes like polyploidization and whole genome duplications 

(WGDs), most duplicate gene copies will be lost over time (Lynch & Conery, 2000; 

Karev et al., 2004), while few duplicates will remain. The repetitive genes that are 

reserved tend to be certain functional genes (Geiser et al., 2016; Li et al., 2016). In the 

evolution process, the mechanisms of deletion and retention of duplicate genes caused by 

polyploidy are still unclear. 

 

4.3 Treated Individuals tend to have higher gene expressions than untreated 

individuals 

Plants are indispensable in the environment. They rely on and influence each other. 

The impact of environmental changes on plants has always been a hotspot in biological 

and agricultural research. In the past, the development of salt-tolerant crops did not attain 

much success, which might be due to the fact that, in addition to genetic factors, the 

growth of crops was also cumulatively influenced by various environmental stresses 

(Jamil et al., 2011). With the increase in soil salinization, in order to examine the 

adaptation mechanisms of the H. bulbosum gene under salt stress, both diploid and 

tetraploid barley were cultivated without salt and with salt conditions. 
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 The gene expression levels of plants were not static. As certain environments put 

pressure on the individual, related genes may be upregulated to help plants better survive. 

Under highly saline specific conditions, some cellular responses are mediated by osmotic 

potential changes in the initial stage of salt stress (Ueda et al., 2004), which can be the 

cause of increases in the expression of a specific gene. Some existing studies have 

conducted related experiments. Toranj et al. (2020) studied the gene expression of 

salinity stress in rose madder (Rubia tinctorum). They found that the expression of the 

vacuolar H+-pyrophosphatase pump (AVP) and tonoplast Na+/H+ antiporters (NHX) were 

up-regulated under salt stress condition.  

Fukuda et al. (2004) tested the expression levels of vacuum H+-pyrophosphatase 

in barley, H+-ATPase subunit A and Na+/H+ antiporter-related genes in barley under salt 

stress and indicated that salt stress increased the transcription level of some related genes. 

They further mentioned that salt stress led to the increase in the transcription level of 

HvNHX1 in barley, with the results of this study further supporting their view. However, 

they also concluded that the transcript levels of HvHVP1 was increased under salt stress 

and coordinated with HvNHX1 in barley roots as a response to salt and osmotic stresses. 

Conversely, the present experimental data were opposite to their conclusions, the results 

indicated that the expression of HVP1 on tested individuals was relatively low under salt 

stress (Figure 8). Similar to HvNHX1, the expression of HvNHX3 (Figure 12) during salt 

stress was increased several-fold in roots and leaves of barley seedlings in previous 

studies (Roslyakova et al., 2009). In this experiment, only a treated diploid had higher 

HvNHX3 expression. 
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 A study (Fulgenzi et al., 2008) suggested a regulatory effect of the ionic 

environment on the contribution of AKT1 (Figure 9) and HAK1 (Figure 1) transporters. 

They believe that a high-concentration ion environment will increase the expression of 

AKT1, but the effect of ion concentration on the HAK1 transporter is still unknown. In 

this study, the expression of HAK1 tends to increase in a high ion concentration 

environment, this may suggest that the environmental ion concentration will affect the 

expression of HAK1. From the result, only small part accessories have increased the 

expression of AKT1 under high ion concentration. Qiu et al (2011) evaluated salinity 

tolerance and analysis of the allelic function of HvHKT1 in Tibetan wild barley. They 

pointed out that the increased expression of HvHKT1 contributes to the salt tolerance of 

barley. The results in the present study are not consistent with their opinion, the salt-

treated accessories did not have higher HvHKT1 expression (Figure 6). 

 The results presented that the expression of different genes in plants under salt 

stress was not constant, as there were more salt-treated individuals that showed higher 

expressions of salt-tolerant genes. It could be implied that different accessions collected 

from adverse environmental pressures could change the expressions of related genes in 

plants. 

 

4.4 Limitations of this study 

The two main outcomes of this study are as follows: (1) polyploidization changes the 

expression of salt resistance-related single gene in H. bulbosum, and no constant change 

between autotetraploid and diploid has been found; and, (2) salt-treated individuals tend 
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to have higher gene expressions than untreated individuals. However, from a statistical 

perspective, due to the small number of accessions used in this experiment, the deviation 

of data caused by individual variations resulted to a weak reliability of the experiment. 

Similar limitations are reflected in sample type selection. In this experiment, only the 

new leaves of plants were used; relatively, gene expressions in other parts could be 

different. Especially for the rhizome of plants, it should be noted that it has the most 

direct contact with the soil and salt for a plant, and that the expression of salt resistance-

related genes in rhizomes may be contrasting from that of leaves. 

The selection of the target genes is a limitation of polyploidization analysis. There 

are more than one kind of gene that are related to salt resistance in barley. This 

experiment focuses on the analysis of single genes. Related studies (Agarwal et al., 2013) 

have presented that regulatory genes that control the expression of downstream genes 

also play a great function in salt resistance of barley. Regulatory genes like bZIP, WRKY, 

AP2, NAC, C2H2 zinc finger gene, and MYC/MYB (myelocytomatosis/ myeloblastosis) 

are called transcription factors (TFs) (Mwando et al., 2019). These factors are the most 

vital regulators of gene expression under salinity stress (Gupta & Huang, 2014). They 

interact with diverse cis-elements (non-coding DNA that regulates the transcription of 

neighboring genes) in the promoter regions of various downstream genes and modify 

their expressions. There are several different types and functions of TFs. For instance, 

DREB is a dehydration-related TF that promotes the gene expression of barley for salt 

tolerance (Mwando et al., 2019). 

 



 35 

 

4.5 Future research 

As discussed, this study has limitations. Expanding the number and types of samples 

in future research can improve the reliability of the results. In addition, salt stress-related 

regulated gene expressions may be tested in future studies to evaluate if polyploidization 

results in regulatory gene expressions change under salt stress, and if such changes 

correspond well with what has been detected for function genes. 

 

 Conclusion 

The results indicated that polyploidization can result in gene expression changes, 

whether an increase or a decrease based on each gene. Duplicate genes caused by 

polyploidization may either be lost or retained. Individuals treated with salt stress are 

more likely to have higher or lower expressions of single genes related to salt resistance 

depending on the function of each gene in the metabolic pathway. 
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