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Abstract

Genetic improvement of grain yield is always an important objective in wheat breeding.

Here, a genome-wide association study was conducted to parse the complex genetic com-

position of yield-related traits of 105 elite wheat varieties (lines) using the Wheat 90K Illu-

mina iSelect SNP array. Nine yield-related traits, including maximum number of shoots per

square meter (MSN), effective number of spikes per square meter (ESN), percentage of

effective spike (PES), number of kernels per spike (KPS), thousand-kernel weight (TKW),

the ratio of kernel length/kernel width (RLW), leaf-area index (LAI), plant height (PH), and

grain yield (GY), were evaluated across four environments. Twenty four highly significant

marker-trait associations (MTAs) (P < 0.001) were identified for nine yield-related traits on

chromosomes 1A, 1D, 2A (2), 3B, 4A (2), 4B, 5A (4), 5B (4), 5D, 6B (2), 7A (2), and 7B (3),

explaining 10.86–20.27% of the phenotypic variations. Of these, four major loci were identi-

fied in more than three environments, including one locus for RLW (6B), one locus for TKW

(7A), and two loci for PH (7B). A cleaved amplified polymorphic sequence (CAPS) marker

Td99211 for TKW on chromosome 5A was developed and validated in both a natural popu-

lation composed of 372 wheat varieties (lines) and a RIL population derived from the cross

of Yangxiaomai × Zhongyou 9507. The CAPS marker developed can be directly used for

marker-assisted selection in wheat breeding, and the major MTAs identified can provide

useful information for fine-mapping of the target genes in future studies.

Introduction

Wheat (Triticum aestivum L.) is one of the most important and widely-grown staple crops.

The continuous decrease in farmland and rapid increase in population results in big problems
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regarding the production of sufficient food to meet the global demand. A previous study exam-

ining food security suggested that food production would need to increase by 70–100% in

2050 [1]. Wheat producers and breeders have managed a considerable increase of yields over

the last 50 years, reaching more than 700 Mt in 2016. Nevertheless, increasing grain yields is

still a primary objective in wheat breeding [2]. The complex genetic relationships between

yield and related traits (e.g., plant height, number of spikes per hectare, number of kernels per

spike, and thousand-kernel weight) need to be clarified to achieve further breakthroughs to

develop high-yielding wheat varieties.

Wheat yield and related traits are controlled by multiple quantitative trait loci (QTLs), and

vulnerable to environmental factors. To date, a considerable number of QTLs associated with

grain yield and related traits have been detected on almost all 21 wheat chromosomes [3–10].

On the other hand, many marker-trait associations (MTAs) for grain yield and related traits

have also been identified under various genetic backgrounds [11–20]. Compared with bi-

parental population mapping largely limited by bi-parental genetic background, genome-wide

association study (GWAS) based on linkage disequilibrium is an effective approach to identify

abundant genetic loci for complex traits in diverse natural populations because of their abun-

dant genetic backgrounds [20–21].

The available genotyping tools have rapidly developed for QTL mapping and GWAS, from

wheat simple sequence repeat (SSR) markers to diversity array technology, then to 9K, 90K,

660K and 820K SNP arrays. The high-density SNP arrays have been widely used to identify

MTAs in GWAS for grain yield and related traits, and most MTAs for these traits have been

identified on chromosomes 1A, 1B, 2B, 3A, 3B, 4A, 5A, 5B, 6A, 7A, and 7B [11–20]. These

MTAs provided useful information for identification of grain yield genes in wheat.

In our previous research, genetic diversities of 190 wheat varieties and advanced lines

were characterized using SSR markers; these varieties were selected from three major wheat-

growing regions in China, i.e., Yellow & Huai Rivers Valley, Middle and Lower reaches of

the Yangtze River, and southwestern China [22]. Among these, we further selected 105 repre-

sentatives with large genetic diversity and wide use in breeding program to identify major

MTAs associated with grain yield and related traits via GWAS using wheat 90K Illumina iSe-

lect SNP array. A cleaved amplified polymorphic sequence (CAPS) marker for thousand-ker-

nel weight (TKW) was further validated in 372 wheat varieties (lines) and 188 lines from

Yangxiaomai × Zhongyou 9507 RIL population. The results will be useful for improvement of

grain yield in wheat breeding.

Materials and methods

Plant materials and field trials

The association mapping panel comprised 105 elite wheat varieties and advanced lines with

abundant phenotypic variations (S1 Fig) from three major winter wheat -growing regions

in China, i.e., Yellow & Huai Rivers Valley, Middle and Lower reaches of the Yangtze River,

and southwestern China, based on genetic diversities [22]. A natural population composed

of 372 wheat varieties (lines) and a RIL population (188 lines) derived from the cross of

Yangxiaomai × Zhongyou 9507 were used to validate the association of a CAPS marker

(Td99211) with TKW on chromosome 5A.

The association mapping panel was planted at the Dayangdian experimental farm of Anhui

Agricultural University in Hefei (31˚930N, 117˚210E) and the Guohe experimental farm of

Anhui Agricultural University in Lujiang (31˚470N, 117˚250E) during the 2014–2015 (desig-

nated as E1 and E2, respectively) and 2015–2016 (designated as E3 and E4, respectively)

cropping seasons. Each plot comprised five 4.0-m rows spaced 25 cm apart. The Natural
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population and the RILs population were planted at the Dayangdian experimental farm of

Anhui Agricultural University in Hefei (31˚930N, 117˚210E) with two 2.0-m rows spaced 25cm

apart per material during the 2015–2016 and 2016–2017 cropping seasons. Field trials were

conducted in randomized complete blocks with two replications. Test plots were managed

according to local practices. All fields were kept free of diseases and weeds.

Phenotypic trait evaluation and statistical analysis

The 1,300 seeds were sown in each plot. At the two- or three-leaf stages, seedlings were

counted and thinned for about 1,000 evenly distributing plants each plot. Three 1.0-m sections

were chosen and marked in each plot. The maximum number of shoots per section was scored

during the elongation stage, and then converted to maximum number of shoots per square

meter. The leaf-area index (LAI) was measured with five replications per plot at the heading

stage using the SunScan Canopy Analysis System (Delta-T Devices Ltd., Burwell, Cambridge,

UK). The effective number of spikes per square meter (ESN) was counted at the ripening

stage, and then the percentage of effective spikes (PES) was calculated. Plant height (PH) was

measured with five replications per plot at the yellow maturity stage, and the mean value of

five scores was used for subsequent analysis.

When plants reached physiological maturity, 20 spikes per plot were harvested and manu-

ally threshed. The total number of kernels was determined using the WSeen SC-G Seed Test

System (WSeen Testing Technology Co., Ltd., Hangzhou, China), and then converted to num-

ber of kernels per spike (KPS). The remaining spikes in each plot were harvested and threshed

using Wintersteiger Plot Combines (Wintersteiger AG, Ried i.I., Austria). Grain yield (GY)

was calculated as the weight of wheat grain harvested from whole plots. TKW was measured

using 1,000 randomly selected kernels with two replicates, while the ratio of kernel length/ker-

nel width (RLW) was determined using 100 correctly placed kernels in the WSeen SC-G Seed

Test System in duplicate.

Statistical analysis of phenotypic data

The best linear unbiased predictions (BLUPs) can eliminate the environmental deviation and

estimate the real individual breeding value, so it has gradually become more common applica-

tion by plant breeders who wish to generate more precise estimates of genotypic values [23–

25]. Therefore, the broad sense heritability (HB
2) and BLUPs were determined using the ‘lme4’

package of the R3.1.3 software (www.r-project.org), with year and location as random effects

in the model [Y = lmer (X~(1|LINE) + (1|LOC) + (1|YEAR) + (1|LINE:LOC) + (1|LINE:

YEAR)] [26–27]. The descriptive statistics of different traits, correlations between BLUP and

the measured values among different environments, and those among BLUPs of different phe-

notypes were analyzed using SPSS Statistics 20 (http://www.ibm.com/analytics/).

DNA extraction and genotyping

Dry seeds were ground to powder using the FastPrep-96™ Homogenizer (MP Biomedicals,

USA) for genomic DNA extraction following the MPure Nucleic Acid Purification system

(MP Biomedicals). The DNA quality was checked by 1.0% agarose gel electrophoresis, and the

concentration was determined with the NanoDrop ND-200 Nanophotometer (Thermo Fisher

Scientific Inc., USA).

Samples were genotyped using the wheat 90K Illumina iSelect array containing 81,587 SNP

markers at Beijing Compass Biotechnology Co., Ltd., following the manufacturer’s protocol

[28], in which 46,977 SNPs were genetically mapped using eight mapping populations [29].

The SNP allele clustering and genotype calling were completed with the Genome Studio
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program (version 2011.1) (Illumina; https://www.illumina.com/). The accuracy of the SNP

clustering was visually validated, and incorrectly clustered SNPs were manually adjusted. The

SNP markers with a missing rate exceeding 0.1 or a minor allele frequency less than 0.05 were

removed, and 31,250 effective SNPs were used for subsequent population structure, principal

component, and kinship analyses. Of these, 15,430 SNP markers mapped on different chromo-

some regions based on the genetic and physical maps [29] (S1 Table) were used for further

genome-wide association analysis.

Population structure, principal component, and kinship analyses

The population structure of the association mapping panel was assessed with all 31,250 effec-

tive SNP markers on 21 wheat chromosomes, using the fastStructure algorithm in Python

(http://rajanil.github.io/fastStructure/). Multiple K values ranging from 1 to 10 were imple-

mented using the Simple Model prior to obtaining a reasonable range of values for the appro-

priate model complexity required to explain the population structure [30]. A useful heuristic

technique based on the tendency of mean field variation schemes was used to select K [30].

The estimated Q matrix was obtained based on a variation inference executed for a choice of

K, and the ancestry contribution of each model component was computed as the mean admix-

ture proportion for all samples [30].

The principal component analysis (PCA) was conducted with numerical values for geno-

types (31,250 SNP markers) using the genome association and prediction integrated tool

(GAPIT) of the R software [31–32]. A turning point of the eigenvalue change was chosen as

the optimal number for the principal component (PC).

The marker-based kinship matrix (K�) was calculated with the same genotypes using the

VanRaden method, and then used to create a clustering heat map of the association mapping

panel in the GAPIT [32].

Genome-wide association analysis

A GWAS was performed using the mixed linear models in TASSEL (version 5.2) [33–34].

The significant MTAs between 15,430 SNPs and traits were identified using a model with a Q
matrix as the fixed effect and a kinship matrix as the random effect (Q + K�) [35] as well as a

model with a PC matrix as the fixed effect and a kinship matrix as the random effect (PCA +

K�), at a threshold of P< 0.001. Because the degree of the correlation with different models

varied from trait to trait, a Bayesian information criterion (BIC)-based model comparison

was used for each phenotype [36]. The criterion value for a model was calculated as BIC =

−2�maximized log-likelihood + log(n)�number of estimated parameters (n = sample size). The

model with Q + K� or PCA + K� as covariates was selected for each trait according to the maxi-

mum BIC value [37–38]. The SNPs with the genetic distance less than 5 cM were assumed as

one MTA, and the MTA identified in more than three environments (P< 0.001) was assumed

as a major locus.

Based on a SNP (Tdurum_contig71499_211) on chromosome 5A significantly associated

with TKW (P< 0.001), a CAPS marker was developed, designated Td99211 (F: GCTGGAGCA
AAGTTGTATT, R: GGTTATGTCGCTTGAGTTAT), using Primer premier 5.0. PCR was per-

formed in a total volume of 10 μL, including 1.0 μL of 10 × PCR buffer, 200 μM of dNTPs, 4

pmol of each primer, 0.5 U Taq DNA polymerase and 100 ng of template DNA. The PCR pro-

cedure included a denaturation at 94˚C for 5 min, followed by 38 cycles of denaturation at

94˚C for 30 s, 60˚C for 30 s, 72 ‘C for 30 s, and a final extension at 72˚C for 8 min. The PCR

products were digested with AluI at 37˚C for 3 h (restriction site: AG/CT, http://www.neb-

china.com) according to the manufacturer’s directions, and separated on 1.5% agarose gel.
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The SPSS Statistics 20 software was used for data analysis, and t-tests were performed using

the independent-samples t-test.

Results

Grain yield and related traits

The phenotype values of GY and related traits (i.e., MSN, ESN, PES, KPS, TKW, RLW, LAI,

and PH) of the association panel in different environments were shown in Table 1. The HB
2

and BLUPs were used for evaluating the genetic variance components of the target traits (S2

Table and S2 Fig). The HB
2 of GY and related traits had a wide range from 0.43 (LAI) to 0.92

(PH). Among three major yield components, TKW (0.88) had the highest HB
2, followed by

KPS (0.75), and ESN (0.64).

The BLUPs for GY and related traits were positively correlated with the measured data in

different environments (0.61–0.97) (S3 Table). There was no significant correlation between

GY and MSN, ESN, or PES. However, KPS and TKW were positively correlated with GY (0.20

and 0.34, respectively) (S4 Table). A significantly positive correlation (0.62) was identified

between MSN and ESN, but no correlation between KPS and TKW. Additionally, we observed

a positive correlation (0.35) between ESN and LAI. These results fully revealed the complexity

and instability of wheat yield formation.

Model-based population structure, principal component, and kinship

analyses

To effectively evaluate population compositions, a Q matrix (K = 4) and kinship matrix (K�) as

well as a PC matrix (PC8) and kinship matrix (K�) were used as the covariates for a subsequent

association study. The panel of 105 wheat varieties and advanced lines was divided into four

subpopulations based on model complexity. The 105 elite breeding varieties were assigned to

each subpopulation according to ancestry contributions (Fig 1a). A significant change in the

variances was detected in the eighth PC (Fig 1b), indicating the cumulative variance contribu-

tion (> 40%) was relatively high for the first eight principal components. These varieties were

assigned to three genetic clusters in a three-dimensional plot of the first three principal compo-

nents (i.e., PC1, PC2, and PC3) (Fig 1c). Genetic clustering with the kinship matrix indicated

that the association mapping panel was mainly divided into three groups, with considerable

genetic differences among the varieties (i.e., red to yellow in the clustering heat map of Fig 1d).

Marker–trait association analysis

According to the BIC values of different traits, a Q + K� model was selected for association

analysis of MSN, ESN, KPS, TKW, LAI, PH, and GY. A PC8 + K� model was chosen for PES

and RLW (S5 Table). In total, 24 highly significant MTAs (P< 0.001) were detected on chro-

mosomes 1A, 1D, 2A (2), 3B, 4A (2), 4B, 5A (4), 5B (4), 5D, 6B (2), 7A (2), and 7B (3) using

the Q + K� or PC8 + K� models for these traits. These MTAs could explain 10.86–20.27% of

the phenotypic variance (Table 2).

Four MTAs for ESN were identified on chromosomes 1D (Ku_c16809_845, 78.36 cM),

3B (wsnp_Ex_c15944_24350833,62.57 cM; Excalibur_c15944_70, 62.67 cM), 4A (Kukri_
c12563_52, 66.28 cM), and 4B (Kukri_rep_c104277_1326 and Excalibur_c55463_232, 26.00

cM), explaining 12.18–16.01% of the phenotypic variance. However, all SNPs related to ESN

were only detected in one environment or not (P< 0.001), suggesting the genetic instability of

these MTAs in different environments.
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For KPS, we detected only one MTA (Kukri_c14516_224, Tdurum_contig10002_533, and

BS00108184_51) on chromosome 7A (130.27 cM), explaining 11.78–12.45% of the phenotypic

variance.

For TKW, one MTA harbored three SNP markers (BS00073670_51,wsnp_Ex_c1138_2185522,

and Tdurum_contig71499_211) on chromosome 5A (84.13–86.36 cM), accounting for an average

phenotypic variation of 12.62%. Another one with two SNPs (Excalibur_c14451_1313 and Kuk-
ri_c19251_579) significantly associated in three environments (E1, E2, and E4) (P< 0.001) on

chromosome 7A (156.23 cM), explained 13.91% of the TKW variation, which implied this MTA

is a major one.

Four MTAs were identified for RLW on chromosomes 5A (wsnp_Ex_c2526_4715978, 99.56

cM), 5B (Ex_c24031_300, 212.43 cM), 6B (Tdurum_contig14046_364, 67.24 cM), and 7B

(wsnp_Ex_c24376_33618864and wsnp_Ex_c24376_33619527,52.18 cM). Of them, the MTA

on 6B was more stable and significant (P< 0.001) in four environments (E1, E2, E3, and E4),

explaining a higher phenotypic variance (17.68%), which implied this region covered a credi-

ble QTL.

Five MTAs for PH on chromosomes 5B (Excalibur_c1925_2569, 131.79 cM), 5D (Kukri_
c9285_762, 200.74 cM), 6B (Kukri_rep_c106092_300, 113.67 cM), and 7B (wsnp_Ex_c11003_
17857272, 77.13 cM; wsnp_Ex_rep_c68762_67626384,Excalibur_c50612_409, and Tdurum_con-
tig77073_193, 129.77 cM) explained 13.74–20.27% of the phenotypic variance. Of them, both

two MTAs on 7B (77.13 cM and 129.77 cM) were identified in three environments, indicating

two independent major loci on 7B. Of these associated SNPs, wsnp_Ex_rep_c68762_ 67626384
on 7B was more significantly associated with PH, suggesting the importance of this region.

Table 1. Phenotypic variation and broad sense heritability of the grain yield and related traits.

Trait Ea Mean±SD Range HB
2 Trait E Mean±SD Range HB

2

MSN E1 1337±230 833–2054 0.73 RLW E1 1.9±0.1 1.7–2.2 0.85

E2 1263±241 803–2201 E2 2.0±0.1 1.7–2.4

E3 1136±242 714–2187 E3 1.9±0.1 1.7–2.2

E4 1165±256 617–2263 E4 2.0±0.1 1.8–2.3

ESN E1 546±102 400–935 0.64 LAI E1 - - 0.43

E2 555±90 384–851 E2 - -

E3 591±116 314–924 E3 5.1±0.9 3.5–7.5

E4 615±128 307–951 E4 4.8±1.1 2.5–7.2

PES E1 0.41±0.07 0.29–0.64 0.56 PH E1 81.6±8.5 64.0–104.5 0.92

E2 0.45±0.08 0.31–0.66 E2 81.9±8.7 64.1–106.5

E3 0.53±0.10 0.30–0.87 E3 83.3±9.8 63.7–121.0

E4 0.54±0.11 0.31–0.92 E4 83.6±10.1 65.7–117.2

KPS E1 45.8±6.3 29.3–60.9 0.75 GY E1 3.2±0.6 1.8–4.5 0.63

E2 47.0±6.0 31.6–60.8 E2 3.0±0.7 1.2–4.4

E3 44.7±6.0 33.2–62.9 E3 3.6±0.5 1.0–4.5

E4 42.9±6.1 28.6–57.5 E4 3.5±0.5 2.0–4.6

TKW E1 43.0±3.7 33.0–56.8 0.88

E2 41.6±3.7 30.9–57.3

E3 43.8±4.2 29.4–55.5

E4 43.3±4.0 32.8–53.3

aE1, E2, E3, and E4 represent Dayangdian (2014–2015), Guohe (2014–2015), Dayangdian (2015–2016) and Guohe (2015–2016), respectively.

MSN, maximum number of shoots per square meter; ESN, effective number of spikes per square meter; PES, percentage of effective spike; KPS, number

of kernels per spike; TKW, thousand-kernel weight; RLW, the ratio of kernel length/kernel width; LAI, leaf-area index; PH, plant height; GY, grain yield

https://doi.org/10.1371/journal.pone.0188662.t001
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Four MTAs associated with GY were identified on chromosomes 2A, 5A, 5B, and 6B,

respectively, with phenotypic contributions ranging from 11.50% (Excalibur_c92223_97) to

15.91% (wsnp_BQ166999B_Ta_2_1), and an average of 13.86%. Similar to ESN, all MTAs for

GY showed a poor genetic stability in different environments.

CAPS marker development and validation of a SNP for TKW on

chromosome 5A

A SNP (Tdurum_contig71499_211) on chromosome 5A for TKW was developed into the

CAPS marker (Td99211), and genotyped in 372 wheat varieties (lines) and 188 lines from

the RIL population of Yangxiaomai × Zhongyou 9507 cross. Two allelic variations were

detected, designated Td99211-A and Td99211-G (Fig 2). There was a significant difference

in TKW between the two alleles in the two populations (P< 0.01), and the varieties

(lines) harboring Td99211-G had a higher TKW compared with those carrying Td99211-A
(Table 3).

Fig 1. Population structure, principal component, and kinship analyses, respectively, with the district

plot (a), the screen plot (b), and the genetic clustering heat map (d). The district plot (a) was generated

using the mean of the variation posterior distribution over inferred admixture proportions. The screen plot (b)

was generated with the changes in variances in each principal component. Three-dimensional plot of the first

three principal components (c) along with the results of the kinship analysis with the genetic clustering heat

map (d) was created with a kinship matrix for evaluating the genetic differences among 105 wheat varieties.

https://doi.org/10.1371/journal.pone.0188662.g001
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Table 2. Details regarding the significant marker–trait associations (P < 0.001) for grain yield and related traits.

Trait Marker Chr. Pos (cM) Alleles P (×10−4) R2 (%)

BLUP E1 E2 E3 E4 BLUP

MSN RFL_Contig2531_2144 4A 145.19 T/C 6.73 - - 5.79 - 12.37

Kukri_c49033_52 5A 120.44 C/T 8.76 - - - 1.73 11.33

ESN Ku_c16809_845 1D 78.36 G/A 6.53 - 5.36 - - 12.18

wsnp_Ex_c15944_24350833 3B 62.57 G/A 7.88 - - - - 15.47

Excalibur_c15944_70 3B 62.67 A/G 8.89 - 1.30 - - 15.2

Kukri_c12563_52 4A 66.28 C/T 5.72 - - - 4.24 15.82

Kukri_rep_c104277_1326 4B 26.00 A/G 5.99 - - 4.55 - 16.01

Excalibur_c55463_232 4B 26.00 T/C 8.06 - - 9.79 - 15.3

PES Kukri_c46939_83 1A 30.99 C/T 8.34 - 9.93 - - 14.95

Excalibur_c33675_410 5B 94.89 A/G 8.06 - - - - 14.93

KPS Kukri_c14516_224 7A 130.27 C/T 6.72 - 7.48 - 5.51 12.45

Tdurum_contig10002_533 7A 130.27 C/T 8.09 - 8.89 - 6.41 12.21

BS00108184_51 7A 130.27 A/C 9.56 - 9.43 - 7.89 11.78

TKW BS00073670_51 5A 84.13 A/G 3.88 5.27 9.19 - - 12.9

wsnp_Ex_c1138_2185522 5A 86.36 A/G 4.01 7.10 7.24 - - 12.83

Tdurum_contig71499_211 5A 86.36 A/G 7.60 - - - - 12.13

Excalibur_c14451_1313 7A 156.23 G/A 2.48 2.53 4.25 - 0.52 13.95

Kukri_c19251_579 7A 156.23 C/T 2.53 2.72 4.02 - 0.52 13.86

RLW wsnp_Ex_c2526_4715978 5A 99.56 C/A 9.33 - - - 8.48 14.1

Ex_c24031_300 5B 212.43 G/T 7.20 - - 5.23 1.21 11.42

Tdurum_contig14046_364 6B 67.24 C/T 0.33 2.60 8.22 2.25 1.35 17.68

wsnp_Ex_c24376_33618864 7B 52.18 C/T 9.26 - - 5.30 - 10.86

wsnp_Ex_c24376_33619527 7B 52.18 T/G 9.26 - - 5.30 - 10.86

LAI GENE-1177_195 2A 62.51 G/T 5.18 - - - - 12.62

PH Excalibur_c1925_2569 5B 131.79 T/C 9.01 - - - - 14.74

Kukri_c9285_762 5D 200.74 G/A 3.65 - - 7.27 0.18 13.74

Kukri_rep_c106092_300 6B 113.67 C/T 5.38 - - 0.38 1.15 16.33

wsnp_Ex_c11003_17857272 7B 77.13 A/G 3.03 4.80 9.55 - 1.57 17.72

wsnp_Ex_rep_c68762_67626384 7B 129.77 G/A 1.13 3.92 - 0.34 0.30 16.32

Excalibur_c50612_409 7B 129.77 A/G 1.54 - 9.24 2.10 0.33 20.27

Tdurum_contig77073_193 7B 129.77 T/C 2.04 - - 2.51 0.39 19.94

GY Ex_c6937_1992 2A 156.09 A/G 5.12 - - - - 12.5

RAC875_c2926_371 5A 32.33 G/A 9.65 - - - - 14.5

wsnp_Ku_c7890_13513783 5A 32.33 C/T 9.74 - - - - 14.47

wsnp_BQ166999B_Ta_2_1 5B 39.64 T/G 7.29 - - - - 15.91

Excalibur_c92223_97 5B 39.64 G/A 8.40 - - - - 11.5

Tdurum_contig52439_196 5B 40.56 C/T 3.88 - - - - 15.74

RAC875_c31299_1215 6B 110.45 T/C 3.88 - - - - 12.38

Note: MSN, maximum number of shoots per square meter; ESN, effective number of spikes per square meter; PES, percentage of effective spikes; KPS,

number of kernels per spike; TKW, thousand-kernel weight; RLW, the ratio of kernel length/kernel width; LAI, leaf-area index; PH, plant height; GY, grain

yield per plot. E1, E2, E3, and E4 represent Dayangdian (2014–2015), Guohe (2014–2015), Dayangdian (2015–2016) and Guohe (2015–2016),

respectively. Markers highlighted in bold were detected in more than three environments (P < 0.001), and markers underlined with the genetic distance less

than 5 cM was assumed as one MTA.

https://doi.org/10.1371/journal.pone.0188662.t002
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Discussion

Analysis of phenotype heritability

In the current study, 105 elite wheat varieties and advanced lines had extremely diverse genetic

backgrounds and highly variable phenotypes. Because of the excellent agronomic traits, most

of them were widely used as parents in breeding [22]. However, the complex genetic relation-

ships between GY and related traits dramatically hindered relevant research process of GY for-

mation and the breeding application of obtained achievements. Therefore, investigations of

MTAs for GY and related traits in these varieties will provide useful information for wheat

breeding programs.

The yield-related traits belong to typical quantitative traits controlled by multiple QTLs,

and highly vulnerable to environmental factors. The use of BLUPs can eliminate the environ-

mental deviation and estimate the real individual breeding value [23–25]. In the present study,

we investigated nine yield-related traits, including MSN, ESN, PES, KPS, TKW, LAI, RLW,

PH, and GY, and analyzed their BLUP values. There was a highly significant correlation

between BLUP values and the measured values in different environments, indicating that the

BLUP values are suitable for GWAS.

In addition, we also analyzed the HB
2 values of the above nine traits. The PH had highest

HB
2 values (0.92), followed by TKW (0.88) and RLW (0.85), while the LAI was the lowest

(0.43). The difference of heritability is consistent with GWAS results, that is, only one SNP for

LAI was detected, while four major MTAs for PH (2), TKW (1), and RLW (1) were stably iden-

tified across environments.

Fig 2. Two allelic variations (Td99211-A and Td99211-G) of the CAPS marker (Td99211) digested by AluI in part

wheat materials.

https://doi.org/10.1371/journal.pone.0188662.g002

Table 3. Validation of a SNP (Tdurum_contig71499_211) for TKW on chromosome 5A in the natural population (NP) composed of 372 wheat varie-

ties (lines) and the RIL population derived from the cross of Yangxiaomai × Zhongyou 9507 across environments.

Population genotype Number TKW (2015–2016) TKW (2016–2017)

Mean ± SD t-test R2 (%) Mean ± SD t-test R2 (%)

NP (n = 372) Td99211-A 323 32.50 ± 8.32 3.606** 3.4 32.39 ± 8.15 3.670** 3.5

Td99211-G 49 37.11 ± 8.36 36.97 ± 8.10

RILs (n = 188) Td99211-A 96 33.34 ± 4.42 6.572** 18.8 33.49 ± 3.37 4.606** 10.2

Td99211-G 92 37.68 ± 4.86 35.75 ± 3.35

Note: TKW, thousand-kernel weight;

**, significant at 0.01 probability level.

https://doi.org/10.1371/journal.pone.0188662.t003
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Evaluation of population structure

Because of the limitations of the Structure [39] and Admixture [40] programs regarding the

number of markers used for population structure analysis, only a small proportion of SNP

markers were utilized in previous studies [13–18]. This probably produces false-positive

results. In contrast, we used 31,250 effective SNP markers to accurately analyze the population

structure (Fig 1a) with the fastStructure algorithm that estimates the approximate posterior

distributions on ancestry proportions in two orders of magnitude faster than Structure, with

ancestry estimates and prediction accuracies comparable to those of Admixture [30]. The con-

siderable improvement in runtime and comparable accuracies of fastStructure enables the

application of this algorithm for analyzing large genotype data sets, generating results clearly

different from those of previous studies.

The use of different models is suitable for studying different traits, but blindly using the Q +

K� model for all traits probably results in an over-correction of the population structure and

some false-negative results [17, 32, 36]. Therefore, the principal component (Fig 1b and 1c)

and kinship (Fig 1d) of the association mapping panel were also accurately calculated with all

31,250 effective SNP markers to build the Q + K� and PC8 + K� models.

Comparison of the present study with previous researches

Based on 90K-derived genetic map described by Wang et al. [29] (S6 Table), we further com-

pare the partial MTAs identified in the present study with previous researches. In this study,

the MTA (Ex_c24031_300) significantly associated with RLW was detected on chromosome

5B (212.43 cM). Chen et al. [20] also identified a MTA (IACX2594) for RLW in the same

genetic position (212.43 cM) using a high-density Illumina iSelect 90K single nucleotide

polymorphism assay in a Chinese winter wheat population. For GY, we identified a MTA

(RAC875_c2926_371 and wsnp_Ku_c7890_13513783) on chromosome 5A, which was only

3.62 cM from the QTL (wsnp_Ex_c31830_40573624and wsnp_Ex_rep_c69526_68472665) for

GY reported by Li et al. [8]. Therefore, we suggest that the above two QTLs belong to the same

locus controlling the GY trait. In addition, in the present study, we also identified a major

MTA (Excalibur_c14451_1313 and Kukri_c19251_579) for TKW on chromosome 7A (156.23

cM), which was adjacent to the QTLs (wsnp_Ex_c11047_17915103,wsnp_Ku_c8437_14341371,

BS00021657_51,wsnp_JD_c20555_18262317, and CAP7_c2350_105) controlling TKW

reported by Li et al. [8] and Su et al. [10]. For PH, a significant MTA (Kukri_c9285_762) was

detected on chromosome 5D in this study, which was close to BS00089597_51 (known as

GA20ox1 in rice) associated with PH reported by Zanke et al. [15]. In the present study, the

SNPs within 5 cM associated with the same traits were assumed as one MTA/QTL. Therefore,

the MTAs/QTLs for TKW (7A) and PH (5D) identified in the present study were the same loci

with those previously reported by Zanke et al. [15], Li et al. [8] and Su et al. [10]. Notably, no

MTA or QTL associated with PH was reported on chromosome 7B, suggesting that the two

MTAs on 7B (77.13 and 129.77 cM) identified in the present study are likely to be novel.

MTAs with pleiotropic effects

We detected a MTA on chromosome 6B with PH (Kukri_rep_c106092_300, 113.67 cM) and

GY (RAC875_c31299_1215, 110.45 cM), indicating the importance of PH to GY. However, sev-

eral MTAs for different traits were detected in the same or neighboring positions as those iden-

tified in previous studies. For example, wsnp_Ex_c24376_33618864 for RLW on chromosome

7B (52.18 cM) was also identified for PH by Zanke et al. [15]. Wsnp_Ex_c11003_17857272 for

PH on chromosome 7B (77.13 cM) was detected for TKW (Ex_c12057_797, 77.13cM) [18].

Wsnp_Ex_c15944_24350833and Excalibur_c15944_70 for ESN on chromosome 2A were
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located in the same position (62.57 cM) as Kukri_c21467_571 for TKW [18] and wsnp_JD_
c8158_9193784 for KW [20]. Additionally, the MTA was also close to Kukri_c48750_1372
(61.89 cM) for chlorophyll content (measured as SPAD value) during grain filling [17] and

BS00074688_51 (65.55 cM) for days-to-heading [19]. Tdurum_contig14046_364 for RLW on

chromosome 6B was only 0.84 cM from the QTLs for the number of spikes per square meter

(wsnp_Ra_c14498_667649,wsnp_Ex_c34011_42398664, and wsnp_Ex_rep_c67012_65465394)

[8]. RAC875_c31299_1215 for GY on chromosome 6B was located only 0.59 cM from the QTLs

for TKW (wsnp_Ex_c3025_5587183,wsnp_Ex_rep_c66342_64519823, wsnp_Ex_rep_c69373_
68311942, and wsnp_Ex_rep_c69373_68312188) [8], and was also close to the MTA (RAC875_
rep_c71463_98) for PH [15]. These results revealed the pleiotropism of QTLs/MTAs for the GY

and related traits, which may be due to the complex relationships among these traits.

Development of CAPS marker for TKW on chromosome 5A and its

application in wheat breeding

The SNP (Tdurum_contig71499_211) on chromosome 5A was identified to be significantly

associated with TKW based on BLUP values, and a CAPS marker (Td99211) for the SNP was

successfully developed. Using 372 wheat varieties (lines) and 188 lines from the RIL population

of Yangxiaomai × Zhongyou 9507 cross, we further validated the association of the CAPS

marker with TKW. Moreover, the Td99211-G allele was associated with higher TKW com-

pared with Td99211-A, and thus considered as a favorable allele. Notably, only 49 (13.17%)

harbored the Td99211-G allele in 372 wheat varieties (lines), indicating the Td99211-G allele

have not been widely utilized in genetic improvement of wheat yield. By contrast, the favorable

variations of several genes controlling TKW, such as TaGW2 [41], TaCWI [42], TaGS-D1 [43],

TaGASR7-A1 [44], have been positively selected in wheat breeding. However, the candidate

genes controlling TKW on chromosome 5A had not been reported in previous studies. There-

fore, cloning of the target gene controlling TKW on chromosome 5A is necessary for pyramid-

ing breeding for wheat yield.

Supporting information

S1 Table. Distribution of 31,250 and 15,430 effective single nucleotide polymorphism

markers throughout the wheat genome.

(XLSX)

S2 Table. The phenotypic BLUPs of different varieties.

(XLSX)

S3 Table. Correlations between best linear unbiased predictions and the measured values

among different environments.

(XLSX)

S4 Table. Correlations among best linear unbiased predictions of the grain yield and

related traits.

(XLSX)

S5 Table. Bayesian information criterion values for various traits analyzed using a model

with Q + K� or PC8 + K� covariates.

(XLSX)

S6 Table. The comparison of 90K markers identified in different studies.

(XLSX)
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S1 Fig. The GWAS panel of 105 winter wheat varieties with abundant phenotypic variation

used in this study.

(TIF)

S2 Fig. Frequency distributions of different phenotypic BLUPs.

(TIF)
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