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Abstract

The Effects of Binary Stars on Inferred Remnant Populations in

Globular Clusters

by Peter Smith

submitted on May 11, 2022:

Current, state-of-the-art equilibrium mass models of globular clusters assume that all

stars are single, making the effects of binary systems an unknown quantity. In this

thesis we develop a method to include realistic binary populations in these models. We

use our method to fit three sets of models with varying binary fractions to observations

of the globular cluster 47 Tuc. All three sets of models are able to reproduce all

observables and differ almost exclusively in their recovered mass function slopes and

black hole content while retaining consistent estimates for structural parameters.

Models with binary fractions of 0%, 2% and 10% have inferred black hole populations

with masses of 135+104
−92 M⊙, 114+144

−79 M⊙ and 81+121
−81 M⊙ respectively, showing that the

inferred black hole content decreases when increasing the assumed binary fraction.

We show that this effect is due to binary stars filling a similar role to black holes in

the central mass distribution of the cluster indicating that there exists a degeneracy

between the adopted binary fraction and the inferred black hole content for some

clusters. We further discuss the implications of these results for past and future works.
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Chapter 1

Introduction

1.1 Globular Clusters

Globular clusters (GCs) are dense, spheroidal collections of hundreds of thousands of

stars with total masses ranging from 104 to 106 solar masses that are bound by their

own self-gravity. GCs are found in most galaxies, with the Milky Way hosting roughly

150, mostly located in the outer halo (e.g. Heggie & Hut, 2003). GCs represent some

of the oldest stellar populations in the universe and are usually in excess of 10 billion

years old. Figure 1.1 shows the globular cluster NGC 7006, imaged by the Hubble

Space Telescope’s Advanced Camera for Surveys. The dense core of the cluster is

clearly visible and is made up of tens of thousands of stars. The dynamics of globular

clusters are almost entirely governed by the interactions between individual cluster

members, with small effects from the galactic potential of its host galaxy as well as

mass loss due to stellar evolution. Two-body relaxation is the main driver of the

evolution of GCs and, through this process, they display a wide range of dynamical

phenomena. Among these phenomena, mass segregation is a process through which

heavier objects migrate to the centre of a cluster and lighter objects move to the

outer regions. As objects interact with each other, their kinetic energies will tend to

equalize which leads to heavier objects slowing down and lighter objects speeding up
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Figure 1.1: The globular cluster NGC 7006 imaged by the Hubble Space Telescope’s
Advanced Camera for Surveys, photo courtesy of ESA/Hubble & NASA

(e.g. Heggie & Hut, 2003). This process leads to the core of the cluster containing

a much higher proportion of high-mass stars and heavy remnants than the rest of

the cluster. Figure 1.2 shows the mean mass of objects within a realistic model of a

globular cluster as a function of distance from the cluster centre. The regions closest

to the core of the cluster have a much higher mean mass due to the increased presence

of heavy remnants and high-mass stars caused by the effects of mass segregation.

The study of stellar remnants in globular clusters has far-reaching implications

for diverse fields of astrophysics. Due to the effects of mass segregation and the high
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densities within the cores of globular clusters, the central regions of globular clus-

ters are an ideal environment for mergers of compact objects, especially in the early

stages of their of evolution when they are significantly denser than at the present

day (e.g. Portegies Zwart et al., 2004; Rodriguez et al., 2022). These mergers can

be detected through their resultant gravitational waves and the expected rates for

gravitational wave events (in particular black hole-black hole mergers) depend signifi-

cantly on the compact object populations in globular clusters (e.g Weatherford et al.,

2021). These mergers are also thought to be one of the most promising formation

channels for intermediate-mass black holes (IMBHs) (e.g. Giersz et al., 2015), a so-far

undetected class of black holes whose masses fall between those of stellar-mass black

holes and those of supermassive black holes. This means that globular clusters are

one of the most commonly proposed candidates to host intermediate-mass black holes.

The formation of these black holes has important implications for understanding the

formation of the supermassive black holes that we find at the centre of galaxies.

The work presented in this thesis builds on a previous project I worked on which

used pulsar timing data to constrain the properties of the globular cluster 47 Tuc. In

that work, we were able to place stringent limits on the mass in dark remnants (black

holes, neutron stars, white dwarfs) within the cluster, establishing strong constraints

on the black hole content specifically. While this project was able to fully account

for effects like mass segregation and uncertain mass functions, one limitation of the

models that it used (which we will discuss in the following section) was the assumption

that all objects within the cluster are single. Because the masses of some binary stars

are higher than the typical masses of objects within the cluster, they too will mass
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Figure 1.2: Mean mass of objects within a realistic model of the globular cluster
47 Tuc, as a function of distance from the cluster centre. The concentra-
tion of high-mass objects in the central regions of the cluster is obvious,
as is the preference for low-mass objects in the outskirts of the cluster,
clearly demonstrating the effects of mass segregation.

segregate to the core of the cluster like heavy stellar remnants. While the binary

fraction in 47 Tuc is expected to be low (Milone et al., 2012), the effects that a

centrally concentrated population of binary stars might have on the inferred remnant

content of the cluster is still unclear and worth investigating. In particular, there

may be a degeneracy between the assumed binary fraction and the inferred black

hole content of a cluster. The dynamical effects of a small population of black holes

and a small population of centrally concentrated binaries could be very similar which

makes the inclusion of binaries important for models attempting to constrain the

black hole content of a cluster.
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1.2 Modelling Globular Clusters

When modelling the dynamics of globular clusters, there are generally two ap-

proaches commonly used. The first is to model the entire evolutionary history of

the cluster from initial conditions to the present day. The most commonly employed

versions of these “evolutionary models” are direct N -body integration (see for exam-

ple Baumgardt 2017), which directly calculate the gravitational interactions between

each object in the cluster, and Monte Carlo models (e.g. Rodriguez et al. 2022, Hypki

& Giersz 2013), which approximate the gravitational interactions between objects ac-

cording to the method of Hénon (1971). While these models provide insight into the

dynamical history of the cluster, they are very computationally expensive with even

the fastest models taking on the order of a day to model a realistic globular cluster

(Rodriguez et al., 2022).

The second approach is to model just the present-day conditions of the cluster.

These models, which we call “equilibrium models”, capture none of the dynamical

history of the cluster but fully describe the present-day state of the cluster. These

equilibrium models are much less computationally demanding than evolutionary mod-

els. Their relative efficiency allows us to explore a significantly larger parameter space

when fitting the models to observations to constrain the present-day properties of a

cluster. In particular, it is worth highlighting that by using equilibrium models, we

are able to vary the stellar mass function of the cluster as well as the black hole and

remnant retention fractions with more flexibility than what might be possible with

evolutionary models, due to the computational cost of computing extensive grids
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of evolutionary models with many parameters varied in the initial conditions (e.g.

various stellar initial mass functions, initial cluster radii, masses, etc.).

The comparative efficiency of these models further enables the use of statistical

fitting techniques like Markov chain Monte Carlo (MCMC) or Nested Sampling which

would be prohibitively expensive to use with evolutionary models. This means that

instead of computing a grid of models and finding the “best-fitting” model we can

instead recover posterior probability distributions for key cluster parameters.

In this work, we use the LIMEPY family of models presented by Gieles & Zocchi

(2015). The LIMEPY models are a set of distribution function-based equilibrium models

that are isothermal for the most bound stars near the cluster centre and described

by polytropes in the outer regions near the escape energy. The models have been

extensively tested against N -body models (Zocchi et al., 2016; Peuten et al., 2017)

and are able to effectively reproduce the effects of mass segregation. Their suitability

for mass modelling globular clusters has been tested on mock data (Hénault-Brunet

et al., 2019) and they have recently been applied to real datasets as well (e.g. Gieles

et al., 2018; Hénault-Brunet et al., 2020).

Figure 1.3 shows the density and velocity dispersion profiles for a simple LIMEPY

model with four components. The lightest components have the highest velocity

dispersion and the most massive components are the most centrally concentrated.

The input parameters needed to compute our models include the central concen-

tration parameter W0, the truncation parameter g1, the anisotropy radius ra which

1Several well-known classes of models are reproduced by specific values of g: Woolley models
(Woolley, 1954) have g = 0, King models (King, 1966) g = 1, and Wilson models (Wilson, 1975)
g = 2.
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Figure 1.3: A simple LIMEPY model with four components with differing mean masses
but equal total masses. The lighter components have higher velocity
dispersions and are less centrally concentrated while the more massive
components have lower velocity dispersions and are more centrally con-
centrated.

determines the degree of radial anisotropy in the models, δ which sets the mass de-

pendence of the velocity scale and thus governs the degree of mass segregation, and

finally the specific mass bins to use as defined by the mean stellar mass (mj) and total

mass (Mj) of each bin, which together specify the stellar mass function. In order to

scale the model units into physical units, the total mass of the cluster M and a size

scale (the half-mass radius of the cluster rh) are provided as well. Finally, we provide

the distance to the cluster (d) which is used in converting between angular and linear

quantities. Figure 1.4 demonstrates the ability of the models to simultaneously fit

many cluster observables, specifically pictured are the line-of-sight velocity dispersion

profile and the number density profile of bright stars. The power of these models lies

in their ability to simultaneously fit not just kinematic and number density data but

also the stellar mass function data of a cluster, Figure 1.5 shows model fits to stellar
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Figure 1.4: The line-of-sight velocity dispersion profile and number density profile
of bright stars in 47 Tuc, simultaneously fit by a LIMEPY model. The
LIMEPY models are able to very accurately reproduce a range of cluster
observables including simultaneous fitting of stellar mass function data
and kinematic data.
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mass function data from the globular cluster 47 Tuc.

In their current implementation, these models assume that all objects within the

cluster are single and make no attempt to model the dynamical effects of stellar

multiplicity. In this thesis, we adapt these models to incorporate some of the effects

of binary stars under the assumption that binaries with very long periods have been

ionized by the present day. This allows us to treat binary systems as point masses

and lets us model their dynamics by simply moving some of the mass in stars into

heavier bins according to the specified binary population.

1.3 Binary Stars

1.3.1 Binaries in Globular Clusters

In general, the binary systems found within present-day clusters differ significantly

from the field binaries that are more easily observed. In particular, we expect very few

long-period binaries, on account of them being ionized by the frequent interactions

with other cluster members (Heggie & Hut, 2003). We frequently use the terms “hard”

and “soft” to describe binaries, where “soft binaries” have binding energies less than or

comparable to the average kinetic energy of a cluster member while “hard binaries”

have larger binding energies. Due to the frequent interactions within clusters, we

expect that all soft binaries have long since been ionized by the present day leaving

only a population of hard binaries with a truncated period distribution compared to

field binaries (Heggie & Hut, 2003).
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Figure 1.5: The stellar mass function data and model fits for the globular cluster
47 Tuc. Each panel shows the mass function for a different radial region.
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The most obvious way that binaries can affect the dynamics of a cluster is through

three- or four-body interactions with other cluster members. When a single star (or

another binary) interacts with a binary system at a close enough range, if the binary is

hard, it will impart some of its energy to the ejected star and “harden” further. If the

binary is soft, it will further “soften”, potentially becoming unbound. Through these

processes, soft binaries get softer and are slowly disrupted while hard binaries become

harder (Heggie, 1975). Hard binary systems can act as a reserve of kinetic energy for

a cluster through these three-body interactions with passing cluster members (Heggie

& Hut, 2003). Binary stars are thought to be one of the primary mechanisms through

which core-collapse (the collapse of the core of a cluster into extremely high density

caused by runaway mass segregation) is halted in some clusters by continually adding

to the energy of stars which migrate to the central regions, thereby pushing them back

out into the extended regions of the cluster (Chatterjee et al., 2013). Because the

models that we will be focusing on do not model the evolutionary history of individual

objects within the cluster, we will instead focus on the second way that binaries can

affect the dynamics of a cluster, as discussed below.

Because binaries are tightly bound, for all interactions except for the very closest,

they effectively act as a single point mass equal to the sum of each component’s mass.

In this way, binaries can affect cluster dynamics in much the same way that a large

population of heavy remnants might. Much like black holes and neutron stars, binary

systems will migrate to the centre of a cluster due to the effects of mass segregation.

This predicted increase in binary fraction as you get closer to the centre of a cluster

is also seen in observations and is illustrated in Figure 1.6 for NGC 3201. It has
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been found (e.g. Kremer et al. 2019) that a central population of black holes is

typically required in addition to binary systems in order to halt core collapse. Both

of these populations slow core collapse by injecting kinetic energy through two-body

interactions within the core of the cluster.

The effect of having a significant central population of binaries could be that

our mass models are overestimating the number of black holes and other high-mass

objects (neutron stars, massive white dwarfs) in the core of the cluster. Because the

gravitational potential in the central regions of the cluster is fairly well constrained

by kinematic measurements, if we are missing a significant contribution from binaries,

the models may be compensating for this “missing mass” by adding more mass to the

heavy end of the stellar mass function which would lead to an overestimation of the

number of neutron stars and black holes and would have a particularly large impact

on the inferred high-mass IMF of globular clusters. By including realistic populations

of binary stars in our models, we hope to recover more accurate present-day remnant

populations.

1.3.2 Observations of Binary Stars in Globular Clusters

In general, there are two methods used to detect binaries within globular clusters:

high-precision photometric observations and radial velocity surveys.

High-precision photometry can be used to detect binaries along the main sequence

which have a significant difference in the mass of their components. We use the ratio

of the mass of the companion star to the mass of the primary star to quantify this
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Figure 1.6: Observed binary fraction vs. projected distance from cluster centre for
NGC 3201 as inferred from multi-epoch radial velocity measurements from
the MUSE instrument. The slight trend in radial binary fraction is visible.
Also plotted is the observed binary fraction in a MOCCA model which
matches well with NGC 3201. MOCCA is a Monte Carlo code designed
to model globular clusters for which there is a large grid of pre-computed
models available. Reproduced from Figure 8 of Giesers et al. (2019).
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difference: an equal mass binary will have a mass ratio of q = 1 while a binary with a

large difference in the masses of its components will have a mass ratio closer to zero.

Binaries that are detectable through this method typically have a mass ratio greater

than q = 0.5. These systems will appear to be raised above the main sequence when

plotted on a colour-magnitude diagram as their colour will be a combination of the

two stars while their luminosity will be the direct sum of each component. Figure 1.7

shows the main sequence of the cluster NGC 2298. The binary stars in this cluster

are visible above the main sequence, raised according to their mass ratio. Milone

et al. (2012) performed high-precision photometry on several globular clusters using

the Hubble Space Telescope’s (HST) Advanced Camera for Surveys and were able to

place strong constraints on the binary fraction for binaries with a mass ratio above

q = 0.5. This method allows for large studies of binary populations in GCs without

the need for dedicated observations of individual systems but suffers from an inherent

bias towards systems with high mass ratios. Systems with mass ratios below q = 0.5

are typically too close to the regular main-sequence to confidently classify as binaries

(see Figure 1.7). This means that studies that employ this method must assume an

underlying mass-ratio distribution for low values of q if they wish to place any limits

on the overall binary fraction of a cluster. Typical values for the binary fraction in

massive clusters found using this method range from almost zero to an upper limit of

around 15% (Milone et al., 2012). Additionally, studies of the mass ratio distribution

within these clusters using the same method find a preference for a uniform or “flat”

distribution unlike the distribution in the solar neighbourhood which is peaked at

q = 1.0 (Milone et al., 2012; Fisher et al., 2005; Reggiani & Meyer, 2013)
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Figure 1.7: The main-sequence portion of the colour-magnitude diagram for
NGC 2298. Binary systems are visible as being raised above the primary
main sequence with systems with a higher mass ratio being raised further
off of the main sequence. Systems below a mass ratio of q = 0.5 are
nearly indistinguishable from the regular spread in main sequence stars.
Reproduced from Figure 1 of Milone et al. (2012).
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Large-scale campaigns to measure the radial velocities for many stars in a cluster

over many epochs are another method that can be used to detect binaries in GCs.

Systems that are found to have periodically varying radial velocities can typically be

confidently classified as binary systems. Giesers et al. (2019) used the MUSE inte-

gral field spectrograph installed at the European Southern Observatory’s Very Large

Telescope to observe several GCs and reported the results for NGC 3201. Integral

field spectrographs provide spatially resolved spectra for the entire field of view of

the detector which enables far more time-efficient surveys than previous methods. Be-

cause this method measures radial velocities over time, periods for the binaries can

be accurately determined and given enough measurements, many other parameters

like eccentricity and companion mass can be accurately constrained in contrast to

photometric methods which can only provide the mass ratio. This method also suf-

fers from biases in that it requires the binary system to be bright enough to enable

good spectroscopic measurements which may bias the sample towards systems with

more massive stars. For NGC 3201, the binary fraction found using this method was

6.75 ± 0.72% (Giesers et al., 2019) which differs from the photometric estimates of

Milone et al. (2012) which range from 10-12% for different fields due to the different

selection effects in each study.

1.4 This Thesis

To summarize, binary systems are an ingredient that is lacking from our current

distribution-function based models. In this thesis we will develop a method to in-
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clude binaries in the LIMEPY models and use this method to investigate the dynamical

effects of the binaries. We will be focusing primarily on the interplay between the

binary content of a cluster and its remnant population, in particular, how binaries

can fill the role of heavy remnants in the overall mass distribution of the cluster.

The remainder of the thesis is structured as follows: Chapter 2 describes the method

used to generate mass functions which include realistic binary populations as well as

the specifics of fitting these modified mass functions to real observations of stellar

mass functions. Chapter 3 discusses the results of the model fits. Chapter 4 dis-

cusses the differences between models with and without binaries as well as the overall

implications of including binaries in our models, specifically when fitting them to

observations. Chapter 5 summarizes our findings and discusses future work.
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Chapter 2

Methods

2.1 Data

We use a wide range of data to constrain the parameters of our models. In general,

we use archival kinematic data from ground-based spectroscopy, proper motions from

HST and Gaia, number density profiles from Gaia supplemented with archival data,

stellar mass function data from HST photometry and pulsar timing data.

2.1.1 Kinematics and density profiles

Proper motion dispersion profiles

We use two sets of Hubble Space Telescope (HST) proper motion data. To probe

the inner regions of the cluster we use the proper motion dispersion profiles (both

tangential and radial components) from Watkins et al. (2015) which are based on a

catalogue of proper motions of bright stars from Bellini et al. (2014). These dispersion

profiles are built from stars brighter than the main sequence turn-off (around 0.85 M⊙

for 47 Tuc). To probe the kinematics in the outer regions of the cluster, we also use

the data from Heyl et al. (2017), for which the mean mass of the measured stars is

0.38 M⊙. The outer proper motion data also allows us to constrain the amount of

radial anisotropy present in the cluster, which can mimic the effect of central dark
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mass in isotropic models by raising the central velocity dispersion (Zocchi et al., 2017).

Line-of-sight velocity dispersion profiles

We use the line-of-sight velocity dispersion profile from Baumgardt & Hilker (2018)

to further constrain the kinematics of the cluster. The dispersion profile is based on

archival ESO/VLT and Keck spectra along with previously published radial velocity

data from the literature. As these radial velocity samples are dominated by bright

stars, we assume that the velocity dispersion profile traces the kinematics of upper

main-sequence and evolved stars in our models.

Number density profiles

We use the number density profile from De Boer et al. (2019) to constrain the size and

structural parameters of the cluster. These profiles are made up of a combination of

cluster members based on Gaia DR2 data in the outer regions and surface brightness

data from Trager et al. (1995) in the central regions. The Gaia data only includes

bright stars (m > 0.6 M⊙, for both clusters) and the literature data is also dominated

by bright stars, therefore in our models we assume the profiles probe the spatial

distribution of upper main sequence and evolved stars.

2.1.2 Stellar mass functions

As a constraint on the global present-day stellar mass function of the cluster, we

use a compilation of HST-based stellar mass function data from Baumgardt1 (2021,

1https://people.smp.uq.edu.au/HolgerBaumgardt/globular/

https://people.smp.uq.edu.au/HolgerBaumgardt/globular/
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priv. comm.), which represent an updated and augmented version of the stellar mass

functions found in Sollima & Baumgardt (2017). This compilation is made up of

several HST fields at varying distances from the cluster centre. These fields extend

out to 14′ from the cluster centre and cover a mass range of 0.16 − 0.8 M⊙. The

large radial and mass ranges allow us to constrain the change of the local stellar

mass function with distance from the cluster centre and therefore the degree mass

segregation in the cluster.

2.1.3 Pulsar Data

We make use of the large population of millisecond pulsars (MSPs) in 47 Tuc to place

further constraints on its mass distribution. We use timing solutions from Freire et al.

(2017), Ridolfi et al. (2016) and Freire & Ridolfi (2018) which include both the spin

and orbital periods. We also consider the dispersion measures of the pulsars which is

a measure of how much gas the signal has passed through on its way to the observer.

When combined with internal gas models from Abbate et al. (2018), the dispersion

measures allow us to constrain the line-of-sight position of the pulsars within the

cluster. The pulsar data is summarized in Tables A.1 and A.2.

2.2 Binary Fraction Measurements

In order to create realistic binary populations we refer to the measurements of Milone

et al. (2012) to inform our choices of binary fraction and mass ratio distribution. For

47 Tuc this means a flat mass ratio distribution and a binary fraction of roughly 2%
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where the binary fraction is defined as the ratio between binary systems and total

systems (Equation 2.1). Because this estimate of the binary fraction is so small, we

will use it as a lower limit for the binary fraction and also test a case where the binary

fraction is around 10%, representing a case where the binary fraction is significant.

fb =
Nbin

Nbin +Nsingle

(2.1)

2.3 Generating mass functions

An important part of this thesis deals with generating mass functions to use as inputs

to the LIMEPY models. We do this in two main steps, we first generate a present-day

mass function comprised of only single stars, and we then modify it to include binary

stars.

2.3.1 Single Star Mass Functions

To generate the mass functions comprised of single stars we use the evolve_mf algo-

rithm from SSPTools2 (first presented in Balbinot & Gieles 2018), a publicly available

package for working with simple stellar populations. As part of the previous project,

we updated evolve_mf to include realistic prescriptions for the BH mass function by

including the effects of natal kicks in addition to dynamical ejections.

The evolve_mf algorithm combines precomputed grids of stellar evolution models,

isochrones and initial-final mass relations to accurately model the evolution of a given

2www.github.com/pjs902/ssptools

www.github.com/pjs902/ssptools
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initial mass function, including the effects of stellar evolution as well as mass loss due

to escaping stars and dynamical ejections. The algorithm returns a binned mass

function at a requested evolutionary time, ideal for use as an input in the LIMEPY

models.

We parameterize the mass function as a broken power-law with breakpoints at

0.5 M⊙ and 1.0 M⊙. We provide to evolve_mf the initial mass function slopes (α1,

α2 and α3) and breakpoints, the cluster age, metallicity and escape velocity, as well as

parameters which control the mass loss due to escaping stars and the specific binning

to be used when returning the final discrete mass-function bins. We finally provide

the black hole retention fraction (BHret) which controls how many of the black holes

created from the IMF are retained to the present day. For this study we do not model

the mass loss due to tidal stripping, so we set the mass loss due to escaping stars

to be zero, and we are effectively specifying the present day mass function for low-

mass stars. Figure 2.1 shows the evolution of a mass function over a span of 10 Gyr

(VandenBerg et al. 2013 found the age of 47 Tuc to be 11.75 Gyr).

2.3.2 Binary Mass Functions

In order to include binary stars in our mass functions we make use of the assumption

that for the vast majority of their interactions with other objects, binary systems

behave essentially as point masses due to the fact that they are tightly bound. This

means that in order to replicate the effects of a binary population in our mass function,

we simply need to shift some of the mass in single stars into heavier bins which act
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Figure 2.1: The evolution of a typical mass function from t = 0 to t = 10 Gyr. The
stellar bins are plotted in green while the remnant bins are plotted in
black, the current main-sequence turn-off is plotted as a dashed black
line. As the cluster ages, more and more main sequence stars evolve into
remnants. The lack of mass loss in the low-mass regime is evident, we
set the mass loss due to escaping stars to be zero, meaning that we are
effectively fitting on the present-day mass function for low-mass stars.
Lower right: The evolution of the total mass of the cluster is plotted as
a fraction of the initial mass. Mass loss is dominated by the effects of
stellar evolution but also has contributions from ejected heavy remnants.
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Figure 2.2: The resulting mass ratio distributions for the “flat” and “solar” mass
ratio distributions. Both distributions are truncated and lowered at q =
0.2 due to the relative lack of low very low mass stars within the mass
functions, making the creation of binary systems with a very low mass
ratio impossible.

as the “binary bins”.

We split this process up into several steps. First, we assign a portion of the

total binary fraction to each value of q in the requested mass ratio distribution. We

weight the fb values assigned to the individual values of q by the chosen mass ratio

distribution. A flat mass ratio distribution would have the total binary fraction

split evenly among the values, while a “solar distribution” (see Reggiani & Meyer

2013) would have a significantly higher number of equal-mass binaries compared to

a flat distribution. Figure 2.2 shows the resulting mass ratio distributions using this

method.

After we have assigned a portion of the total binary fraction to each value of q, we

then go through each bin of main-sequence stars to make binaries. The companion
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mass for a given bin is calculated for each value of q in the mass ratio distribution and

the number of binaries to make is calculated using the portion of the binary fraction

assigned to each value of q. After the companion mass and number of binaries are set,

we then remove mass from the primary bin and the bin that most closely matches the

mass of the companion and add the mass to a new bin with a mean mass equal to

the sum of the primary and companion masses. Through this process we move mass

between bins of differing mean masses while conserving the total mass in stars in the

model.

We repeat this process for each bin of main-sequence stars until each bin has a

binary fraction equal to the total requested binary fraction and a mass ratio distribu-

tion identical to the requested distribution, this results in the overall binary fraction

and mass ratio distribution for the cluster matching the requested values.

This process tends to create on the order of 150 new bins in our mass function

which dramatically increases the runtime of the LIMEPY models. In order to prevent

this, we group together binary bins of similar masses, forming 15 “binary bins” con-

taining binary systems of similar total mass but differing mass ratios. Figure 2.3

shows the original main sequence bins, plotted with the modified main sequence bins,

binary bins and rebinned binary bins.
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Figure 2.3: The main-sequence portion of a mass function before and after binaries
are added. Mj is the total mass within a bin while mj is the mean mass
of the bin. The blue circles are the original main sequence bins and the
crosses are the modified main sequence bins. The orange crosses show
the single stars after mass has been removed to create binaries and the
many green crosses are the binary bins that are initially created. The
red crosses are the rebinned binary bins which are actually used in the
computation of the LIMEPY models.
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2.4 Fitting Models to Data

To fit our models to the data we use the GCfit package3. GCfit provides a uniform

interface for fitting evolve_mf and LIMEPY models to observations of clusters using

either MCMC or Nested Sampling.

For this project we use the MCMC backend which is powered by emcee Foreman-

Mackey et al. (2013, 2019), an affine-invariant ensemble sampler. We use 1024 walkers,

initialized at a small randomized sphere around a reasonable initial guess for the model

parameters. The parameters and their priors are summarized in Table 2.1. We run

the chains for 2500 steps and discard the initial 2000 steps as the burn-in period.

Trace and corner (Foreman-Mackey, 2016) plots for all three chains are shown in

Figures A.4 through A.9.

2.4.1 Likelihoods

The majority of the likelihood functions we use are simple Gaussian likelihoods. Pro-

vided below is the likelihood for velocity dispersion profile data and all other likeli-

hoods are of a similar form:

ln (L) =
1

2

∑

r

(

(σobs(r)− σmodel(r))
2

δσ2
obs(r)

− ln
(

δσ2
obs(r)

)

)

(2.2)

Where L is the likelihood, σ is the line-of-sight velocity dispersion, r is the pro-

jected distance from the cluster centre, and δσ is the uncertainty in the velocity

dispersion. The likelihoods for other observables are formulated in the same way,

3www.github.com/nmdickson/gcfit

www.github.com/nmdickson/gcfit
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Table 2.1: Model parameters and their priors. Most priors are uniform and are chosen
to bound the chains around a reasonable range of parameter values for
47 Tuc. For the mass function slopes we add the additional constraint that
α2 must be steeper than α1 and α3 steeper than α2 to ensure that we are
only testing mass functions that make sense physically. For the distance
we use a Gaussian prior with the distance measurement from Baumgardt
& Vasiliev (2021) providing the mean and standard deviation of the prior.

Parameter Prior
W0 Uniform (4, 10)
M(106M⊙) Uniform (0.1, 1.5)
rh(pc) Uniform (0.5, 10)
log10 ra/pc Uniform (0, 5)
g Uniform (0, 2.3)
δ Uniform (0.3, 0.5)
s2 Uniform (0, 15)
F Uniform (1, 5)
α1 Uniform (0, 2.35)
α2 Uniform (0, 2.35) and ≥ α1

α3 Uniform (1.6, 4) and ≥ α2

BHret(%) Uniform (0, 5)
d(kpc) Gaussian (4.521± 0.031)

and the specifics are discussed in GCfit’s documentation4. The total log-likelihood is

therefore the sum of all the log-likelihoods for each set of observations.

For the mass function and number density profile likelihoods we include additional

nuisance parameters and scaling terms.

In the case of the number density data we introduce a parameter s2 which is added

in quadrature to the existing measurement uncertainties. This parameter allows us

to add a constant amount of uncertainty to all values in the data-set, effectively

assigning less significance to the data located furthest from the cluster centre where

the number density is lowest. This allows us to account for both background effects

on the observations as well as for any effects that may be present near the cluster

4gcfit.readthedocs.io

gcfit.readthedocs.io
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boundary that the LIMEPY models do not account for such as the effects of potential

escapers (see Claydon et al. 2019 for a discussion of potential escapers in equilibrium

models).

For the mass function data the only uncertainty included with the data is the

Poisson counting error. We introduce the nuisance parameter F which is defined as

a factor between 1 and 5 by which we adjust each data point’s absolute error. This

error encapsulates additional sources of error that may not have been accounted for

as well as addresses the fact that the mass function is being approximated as a broken

power-law.

Pulsar Likelihood

As stated previously, the development of a method to use pulsar acceleration mea-

surements to constrain the models was performed as part of an earlier project, but

we provide a description of the process below.

Pulsar period derivatives, as measured by an observer, are made up of several

distinct components, only one of which is related to the cluster potential. The effects

of the proper motion of the pulsar and the galactic potential of the pulsar are fairly

easily constrained based on the pulsar’s position in the galaxy but, the effects of

processes like magnetic breaking or accretion are not. Equation 2.3 shows the break-

down of the measured period derivative into separate components where (Ṗ /P )int is

any change in period due to the effects intrinsic to the pulsar like magnetic breaking

or accretion, ac is the change due to the cluster’s gravitational potential and is the

quantity we are interested in, ag is the effect of the galaxy’s gravitational potential
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and is easily adjusted for based on 47 Tuc’s position within the Milky Way, as is the

effect of the pulsar’s proper motion and is similarly easy to compensate for, aDM is

the effect of the changing dispersion measure between the pulsar and the observer

and is a minor effect which we assume is well compensated for in our treatment of

the intrinsic period derivative.

(

Ṗ

P

)

meas

=

(

Ṗ

P

)

int

+
ac
c
+

ag
c
+

as
c
+

aDM

c
(2.3)

In order to constrain the 3D position of the pulsars within the cluster we adopt

a model for the internal gas distribution of the cluster from Abbate et al. (2018).

We adopt their best fitting model which is a uniform distribution of ionized gas

with a number density of ng = 0.23 ± 0.05 cm−3. We also adopt their estimate for

the total dispersion measure between the observer and the cluster centre: DMc =

24.38 ± 0.02 pc cm−3. By adopting a model for the gas distribution, we are able to

accurately determine the pulsars line-of-sight position (l) within the cluster using the

following equation (Equation 28 in Abbate et al. (2018)):

DM = ngl +DMc (2.4)

Combining the accurate estimate of l with the well-measured projected distance

from the cluster centre allows us to very accurately determine the pulsar’s 3D position

within the cluster.

In order to assign a likelihood to a particular Ṗ /P measurement we first use the

LIMEPY models to generate a line-of-sight acceleration profile for the given model.
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We then use this acceleration profile to interpolate the possible line-of-sight positions

for the pulsar. These line-of-sight positions are then assigned a probability based

on a Gaussian centred at the line-of-sight position as calculated from the DM with

a dispersion equal to the uncertainty of the DM-based line-of-sight position. The

likelihood is the sum of the probabilities at each of the interpolated line-of-sight

positions from the model.

For pulsars that are not consistent with the uniform gas model (pulsars AA and D,

see Abbate et al. 2018 for details) we instead assign a probability distribution to the

line-of-sight position based on the model density of pulsar-mass objects at the given

line of sight. These constraints are less precise than the DM-based constraints but

allow us to use pulsars that are not well-fit by a uniform gas distribution to constrain

the properties of the cluster.

To constrain intrinsic spin-down of the pulsars, we assume the spin-down to be

identical to pulsars found in the galaxy, outside of clusters, and dependant only

on their period. The field pulsars, as they are unaffected by the cluster potential,

can have their intrinsic spin-down determined directly. A Gaussian kernel density

estimator is computed in the field P -Ṗ space, which is sliced along each cluster

pulsar’s period to extract a distribution of possible intrinsic values. This distribution

of intrinsic spin-down values is then convolved with the probability distribution from

the model.

A resulting probability distribution from this method is shown in Figure 2.4, while

figures A.1 through A.3 show the agreement between best-fitting models and the

period derivates for both orbital and spin periods.
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Figure 2.4: The resulting probability distribution for the spin period derivative of pul-
sar 47 Tuc S from the method described above for the best-fitting models
of 47 Tuc. The green line is the likelihood of a given period derivative
measurement given the best-fitting model parameters and the yellow line
is the measured spin period derivative. The asymmetry in the distribution
is due to the intrinsic spin-down of the pulsar, biasing the distribution to
positive values of Ṗ /P .
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Many of the pulsars in 47 Tuc are in binary systems and for 10 of these systems we

have timing solutions for the binary system. These binary periods are useful because

they are on the order of days rather than milliseconds. This means that the intrinsic

effects that affect the spin periods are negligible and any measured change in the

period can be entirely attributed to the acceleration from the cluster. Due to the

much longer period, the number of detections is greatly reduced resulting in a much

larger uncertainty than the spin period derivatives. This large uncertainty means

the likelihood distributions for orbital period derivatives are wider and are not suited

for placing hard constraints on the mass distribution of the cluster, we nonetheless

use the orbital periods of these systems as an additional constraint on the cluster

potential.

2.4.2 Fitting Mass Functions to Observations

When the mass function data was originally extracted, the mass was inferred based on

the position of the star on an isochrone fit to the cluster colour-magnitude diagram

(see Sollima & Baumgardt 2017 for details). This means that any binary stars in

the observed sample are interpreted as single stars with a mass corresponding to

a star with the combined colour of the two binary components and a luminosity

corresponding to the sum of the two components. When comparing our models to

the data, we want to extract the mass function profiles in the same way that the data

was collected.

Additionally, when we move mass around to create binary bins in our models, we
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also affect the surface density profiles which are used to compute the mass function

profiles. In order to compensate for these effects, we rescale the main-sequence surface

density profiles to include the stars which are in binary bins, according to the mass

they would have been assigned using the observational method described above, which

assumed that all stars are single.

In order to determine the “observed” mass we use a grid of MIST isochrones

(Dotter, 2016; Choi et al., 2016)5 computed at a range of metallicities, at the age of

the cluster. We use the isochrone closest to the model parameters (an age of 11.75

Gyr, Fe/H of -0.75, and we assume no stellar rotation) to determine the luminosity of

the binary components and then again use the isochrone to determine the observed

mass of the combined luminosities. Figure 2.5 shows the derived relation between

stellar mass and luminosity used for these conversions. After having determined the

mass that would have been inferred for a binary system if it was assumed to be a

single star, we then scale the surface density profile of the main-sequence bin which

most closely matches the “observed” mass of the binary system to include the total

mass of the binary system which allows us to correct for both effects.

5We use the EZMIST library to fetch and prepare the isochrones. EZMIST is available online:
https://github.com/mfouesneau/ezmist

https://github.com/mfouesneau/ezmist
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Figure 2.5: Relation between stellar mass and luminosity through HST/WFC3’s
F814W filter, derived from a MIST isochrone. The F814W filter is used
to replicate the original observations, see Sollima & Baumgardt (2017)
for further details.
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Chapter 3

Results

3.1 Previous Results

As mentioned previously, this thesis is a continuation of a project done over the

previous year in which we developed a method to use pulsar timing data to constrain

our mass models of the globular cluster 47 Tuc. The final results of that project

were a set of models that accurately reproduce all observables and fully incorporated

the pulsar data in the likelihood. Figure A.10 shows the model fits to most of the

observables while Figure A.11 shows the fit to the stellar mass function data. In

both cases, the model satisfyingly reproduces all observables. The median and 1σ

credibility intervals of the best-fit parameters are listed in Table 3.1.

One of the most interesting results of the previous project was the model’s ability

to constrain the black hole content within 47 Tuc. Figure 3.1 shows the distribution

of mass in black hole mass and number of black holes in our set of best-fit models,

which were found to be 135+104
−92 M⊙ and 26+15

−15 black holes respectively. Both the total

mass and number are quite well contained especially in comparison to the previous

constraints in the literature (see e.g. Hénault-Brunet et al., 2020; Weatherford et al.,

2020).
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Table 3.1: Best-fit parameters with 1σ credibility intervals for models with a binary
fraction of 0%.

Parameter Value
W0 6.26+0.11

−0.10

M/106M⊙ 0.88+0.01
−0.01

rh/pc 6.73+0.06
−0.06

log10 ra/pc 1.50+0.07
−0.05

g 1.37+0.06
−0.06

δ 0.43+0.02
−0.02

s2 0.01+0.01
−0.00

F 3.25+0.14
−0.12

α1 0.35+0.02
−0.02

α2 1.46+0.05
−0.05

α3 2.13+0.04
−0.04

BHret(%) 0.07+0.06
−0.04

d 4.42+0.02
−0.02

Figure 3.1: Distribution in mass and number of black holes for models with a 0%
binary fraction.
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Table 3.2: Best-fit parameters with 1σ credibility intervals for models with a 2% bi-
nary fraction.

Parameter Value
W0 6.28+0.10

−0.10

M/106M⊙ 0.89+0.01
−0.01

rh/pc 6.74+0.06
−0.06

log10 ra/pc 1.50+0.06
−0.05

g 1.36+0.06
−0.06

δ 0.43+0.02
−0.02

s2 0.01+0.01
−0.00

F 3.24+0.13
−0.12

α1 0.37+0.02
−0.02

α2 1.47+0.05
−0.05

α3 2.18+0.04
−0.04

BHret(%) 0.08+0.09
−0.05

d 4.42+0.02
−0.02

3.2 Low Binary Fraction

In the models with a 2% binary fraction, we find a similar ability to reproduce all the

observables, Figure 3.2 and Figure 3.3 show the model fits compared to the data.

The black hole content in these models is also quite well contained, though different

from the models without binaries. Figure 3.4 shows the distribution of mass in black

holes and number of black holes which this time, are found to be 22+13
−19 black holes

or 114+144
−79 M⊙ in black holes. The best-fit parameters and the 1σ credibility intervals

for this set of models are listed in Table 3.2.

A binary fraction of 2% results in a total mass in binaries of around 15800 M⊙,

Figure 3.5 shows the distribution of mass in binaries in our set of best-fitting models.
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Figure 3.2: Model fits to observables for models with a 2% binary fraction.
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Figure 3.3: Model fits to stellar mass function data for models with a 2% binary
fraction.
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Figure 3.4: Distribution in mass and number of black holes for models with a 2%
binary fraction.

Figure 3.5: Distribution of mass in binaries for models with a 2% binary fraction.
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Table 3.3: Best-fit parameters with 1σ credibility intervals for models with a 10%
binary fraction.

Parameter Value
W0 6.36+0.09

−0.09

M/106M⊙ 0.89+0.01
−0.01

rh/pc 6.77+0.06
−0.06

log10 ra/pc 1.48+0.06
−0.05

g 1.34+0.06
−0.06

δ 0.41+0.01
−0.01

s2 0.01+0.01
−0.00

F 3.16+0.13
−0.12

α1 0.45+0.02
−0.02

α2 1.53+0.05
−0.04

α3 2.46+0.05
−0.05

BHret(%) 0.17+0.18
−0.12

d 4.43+0.02
−0.02

3.3 High Binary Fraction

As is the case for the models with a low binary fraction, the models with a 10%

binary fraction fit the observables very well. Figures A.12 and A.13 show the model

fits compared to the data.

With a higher binary fraction, we now find fewer black holes, Figure 3.6 shows the

distribution in mass and number which are found to be 12+13
−12 black holes or 81+121

−81 M⊙

in black holes.

With a 10% binary fraction we now have a significant amount of mass in binaries,

roughly 81000 M⊙ (see figure 3.7), which is a bit less than 2% of the total cluster

mass.
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Figure 3.6: Distribution in mass and number for models with a 10% binary fraction.

Figure 3.7: Distribution of mass in binaries for models with a 10% binary fraction.
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Chapter 4

Discussion

In each set of models, all observables are very well reproduced, showing the flexibility

of the LIMEPY models. Due to this flexibility, it is unlikely that with current obser-

vations we would be able to infer anything about the binary population of a cluster

using this technique. Instead, this method should be used in cases where there are

existing estimates of the binary population within a cluster in order to add a realistic

binary component to LIMEPY models

4.1 The Effects of the Binaries

Table 4.1 shows the recovered parameters for each set of models. We can see a clear

agreement in the recovered values of the parameters which affect the overall structure

of the cluster. In particular, the total cluster mass, half-mass radius, anisotropy

radius, truncation parameter, degree of mass segregation and distance are all either

identical or within 1σ of each other for all three sets of models.

The most striking change in model parameters are the values pertaining to the

mass function, in particular, the α3 parameter which controls the slope of the high-

mass mass function (above 1.0 M⊙). In the case with a 10% binary fraction, this

parameter is much larger than in the other two cases showing that the abundance of

binary stars reduces the need for high-mass stars and remnants.
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Table 4.1: Best-fit parameters with 1σ credibility intervals for all sets of models.
Parameter Value
fb 0% 2% 10%
W0 6.26+0.11

−0.10 6.28+0.10
−0.10 6.36+0.09

−0.09

M/106M⊙ 0.88+0.01
−0.01 0.89+0.01

−0.01 0.89+0.01
−0.01

rh/pc 6.73+0.06
−0.06 6.74+0.06

−0.06 6.77+0.06
−0.06

log10 ra/pc 1.50+0.07
−0.05 1.50+0.06

−0.05 1.48+0.06
−0.05

g 1.37+0.06
−0.06 1.36+0.06

−0.06 1.34+0.06
−0.06

δ 0.43+0.02
−0.02 0.43+0.02

−0.02 0.41+0.01
−0.01

s2 0.01+0.01
−0.00 0.01+0.01

−0.00 0.01+0.01
−0.00

F 3.25+0.14
−0.12 3.24+0.13

−0.12 3.16+0.13
−0.12

α1 0.35+0.02
−0.02 0.37+0.02

−0.02 0.45+0.02
−0.02

α2 1.46+0.05
−0.05 1.47+0.05

−0.05 1.53+0.05
−0.04

α3 2.13+0.04
−0.04 2.18+0.04

−0.04 2.46+0.05
−0.05

BHret(%) 0.07+0.06
−0.04 0.08+0.09

−0.05 0.17+0.18
−0.12

d 4.42+0.02
−0.02 4.42+0.02

−0.02 4.43+0.02
−0.02

We can see that there is still some need for black holes in some of the models with

a high binary fraction as the BHret parameter is much larger in the model with many

binaries, this means that even though the initial mass function produces many fewer

black holes, more of these black holes need to be retained throughout the evolution

of the cluster.

Table 4.2 and Figure 4.2 show the distribution of BHs for each set of models. We

can see a clear decrease in the inferred black hole content as we add more binaries

though we also note that all three sets of models are consistent with zero black holes

within their 2σ credibility intervals. This effect of binaries reducing the need for black

holes was also found by Mann et al. (2019) (see also associated erratum Mann et al.

2020) when they modelled the central kinematics of 47 Tuc. This effect is due to the

high-mass binary systems which have mass-segregated to the central regions of the

cluster contributing to the central mass distribution in a similar way to heavy stellar

remnants. Through this process, fewer black holes are needed to create the observed
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Figure 4.1: Enclosed mass profiles for the stellar remnants in the fb = 0% model
and the remnants and remnants plus binaries in the fb = 10% model.
The two remnant profiles are very different between the fb = 0% and
fb = 10% cases which mirrors the lower black hole content. The most
interesting part of these profiles is the fact that when the binaries are
added to the remnants the enclosed mass profiles match very well. This
demonstrates very clearly that the binaries are filling the same role as
the heavy remnants in the central regions of the cluster and explains why
adding binaries reduces the need for black holes in the models.

central velocity dispersion. This effect is particularly clear in Figure 4.1 where we

examine the enclosed mass profiles of remnants and binaries for the no-binary and

high-binary cases.

When we examine the density profiles for the models with a binary fraction of

10% (see Figure 4.3), we can see that the binary stars are indeed more centrally

concentrated than typical main-sequence stars as predicted and in the central regions,

make up almost all the main-sequence contribution, while they contribute more than
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Table 4.2: Black hole content in each set of models
Binary Fraction (%) Mass in BHs Number of BHs

0 135+104
−92 M⊙ 26+15

−15

2 114+144
−79 M⊙ 22+19

−13

10 81+121
−81 M⊙ 12+13

−12

Figure 4.2: Posterior probability distributions of mass and number of BHs in each
set of models. Distributions are represented by a Gaussian kernel density
estimator of the discrete values for easier visual comparison.
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Figure 4.3: Mass density profiles for the models with a binary fraction of 10%

the neutron stars at all radii.
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Chapter 5

Conclusion

The effects of binary systems have long been a missing ingredient in equilibrium mass

models of globular clusters. Due to the effects of mass segregation, heavy binaries

will quickly become centrally concentrated, much like heavy remnants. A centrally

concentrated population of heavy binary systems could emulate the effects of heavy

remnants in the central regions of a cluster and thus by ignoring their effects the

remnant populations that we infer for these cluster might be biased.

To investigate this effect we have developed a method to include realistic binary

populations in LIMEPY models. We used this method to fit three sets of models to

observations of the globular cluster 47 Tuc, a set with no binaries, a set with a binary

fraction of 2%, and a set with a binary fraction of 10%. Despite their different binary

fractions, all three sets of models were able to satisfyingly reproduce all observables

and recovered the same structural parameters for the models. The three sets of

models differed primarily in their recovered mass functions and black hole content.

As more binaries are added, fewer high-mass remnants are required to reproduce the

kinematics of the cluster. This results in a lowered α3 parameter and less mass in

black holes and other heavy remnants.

We further showed how binaries fill the same role as heavy remnants in the central

mass distribution of the cluster, explaining why adding binaries to a model reduces
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the need for heavy remnants.

The implications of this work depend on the binary fraction of the cluster in

question. For 47 Tuc, our best estimates place the binary fraction at around 2%, so

this effect is likely negligible. If however, future observations or models suggest that

47 Tuc might be host to more binaries, then it is important that future studies include

their effects in their models if they wish to recover accurate remnant populations.

More generally, for clusters where we expect a high binary fraction like, for exam-

ple, NGC 3201, binaries should certainly be included in any attempts to model the

mass distribution of the cluster, especially if the goal is to constrain the population

of heavy remnants within the cluster.

5.1 Future Work

In this work, we only considered binaries made up of two main sequence stars. In

reality, binaries can be formed from any cluster members and binaries where one

or both components are heavy remnants would have an even larger effect on the

kinematics of the cluster then main-sequence binaries. The reason we did not consider

this class of binaries in this project is because we have essentially no constraints on

what these populations might look like. The usual photometric methods cannot be

used because there is at most one main-sequence star and radial velocity searches

will only uncover them if the binary contains a bright star. It’s possible that in this

case, we could turn to N -body or Monte Carlo models to constrain the present-day

remnant binary populations, but the binary populations in these models are likely to
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be highly dependent on the primordial binary population and initial conditions of the

models.

In the future it would be a interesting application of this method to examine

a cluster like NGC 3201 where we know there is likely to be a fairly large binary

population. This might allow us to place stringent and reliable constraints on the

black hole population in NGC 3201 while accounting for the degeneracy between black

hole content and mass in binaries that we have demonstrated can be important using

47 Tuc as a test case.
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Appendix A

Supplementary Material
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Table A.1: Pulsar timing data for 47 Tuc, spin periods. Reference key is as follows: a:Freire & Ridolfi (2018), b:Freire et al.
(2017), c:Ridolfi et al. (2016)

IDreference r [arcmin] P [ms] ∆P [ms] Ṗ [s/s] ∆Ṗ [s/s] DM [pc/cm3] ∆DM [pc/cm3]
aaa 0.465 1.8453805296800 6× 10−13 −4.5890× 10−20 0.0015× 10−20 24.971 0.007
abb 0.2092 3.7046394947985 5× 10−13 9.820× 10−21 0.008× 10−21 24.373 0.020
cb 1.2298 5.7567799955164 1× 10−13 −49.850× 10−21 0.002× 10−21 24.600 0.004
Db 0.6483 5.35757328486572 7× 10−14 −3.4219× 10−21 0.0009× 10−21 24.732 0.003
Eb 0.6205 3.53632915276243 3× 10−14 98.5103× 10−21 0.0005× 10−21 24.236 0.004
Fb 0.2149 2.62357935251262 3× 10−14 64.5031× 10−21 0.0007× 10−21 24.382 0.005
Gb 0.2781 4.0403791435651 1× 10−13 −42.159× 10−21 0.002× 10−21 24.436 0.004
Hb 0.7677 3.2103407093504 1× 10−13 −1.830× 10−21 0.001× 10−21 24.369 0.008
Ib 0.2772 3.4849920616629 1× 10−13 −45.873× 10−21 0.002× 10−21 24.429 0.010
Jb 1.0185 2.10063354535248 6× 10−14 −9.7919× 10−21 0.0009× 10−21 24.588 0.003
Lb 0.1627 4.3461679994616 3× 10−13 −122.0406× 10−21 0.0010× 10−21 24.400 0.012
Mb 1.0688 3.6766432176002 3× 10−13 −38.418× 10−21 0.005× 10−21 24.432 0.016
Nb 0.4793 3.0539543462608 1× 10−13 −21.857× 10−21 0.002× 10−21 24.574 0.009
Ob 0.0806 2.64334329724356 4× 10−14 30.3493× 10−21 0.0006× 10−21 24.356 0.002
Qb 0.9502 4.0331811845726 2× 10−13 34.0076× 10−21 0.0006× 10−21 24.265 0.004
Rb 0.1519 3.4804627074933 2× 10−13 148.351× 10−21 0.003× 10−21 24.361 0.007
Sb 0.2150 2.83040595787912 7× 10−14 −120.541× 10−21 0.001× 10−21 24.376 0.004
Tb 0.3179 7.5884798073671 9× 10−13 293.80× 10−21 0.01× 10−21 24.411 0.021
Ub 0.9386 4.3428266963923 1× 10−13 95.228× 10−21 0.002× 10−21 24.337 0.004
Wc 0.087 2.3523445319370 3× 10−13 −8.6553× 10−20 0.0001× 10−20 24.367 0.003
Xc 3.828 4.77152291069355 5× 10−14 1.836 09× 10−20 0.000 07× 10−20 24.539 0.005
Yb 0.3743 2.19665714352124 6× 10−14 −35.1720× 10−21 0.0008× 10−21 24.468 0.004
Zb 0.1506 4.554447383906 3× 10−12 −4.56× 10−21 0.1× 10−21 24.450 0.040
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Table A.2: Pulsar timing data for 47 Tuc, orbital periods. Reference key is as follows: a:Freire & Ridolfi (2018), b:Freire et al.
(2017), c:Ridolfi et al. (2016)

IDreference r [arcmin] Pb [day] ∆Pb [day] Ṗb [s/s] ∆Ṗb [s/s] DM [pc/cm3] ∆DM [pc/cm3]
Eb 0.6205 2.2568483 0.0000009 4.8× 10−12 0.2× 10−12 24.236 0.004
Hb 0.7677 2.357696895 0.000000010 −0.7× 10−12 0.6× 10−12 24.369 0.008
Ib 0.2772 0.2297922489 0.0000000004 −0.8× 10−12 0.2× 10−12 24.429 0.010
Qb 0.9502 1.1890840496 0.0000000004 −1.0× 10−12 0.2× 10−12 24.265 0.004
Rb 0.1519 0.06623147751 0.00000000006 0.19× 10−12 0.04× 10−12 24.361 0.007
Sb 0.2150 1.2017242354 0.0000000006 −4.9× 10−12 0.4× 10−12 24.376 0.004
Tb 0.3179 1.126176771 0.000000001 2.5× 10−12 1.1× 10−12 24.411 0.021
Ub 0.9386 0.42910568324 0.00000000008 0.66× 10−12 0.05× 10−12 24.337 0.004
Xc 3.828 10.921183545 0.000000001 6× 10−12 2× 10−12 24.539 0.005
Yb 0.3743 0.5219386107 0.0000000001 −0.82× 10−12 0.07× 10−12 24.468 0.004
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Figure A.1: Maximum acceleration profiles for set of best-fit models with a 0% binary
fraction. The accelerations of the pulsars, as derived from their period
derivates, are plotted with accelerations derived from orbital periods in
blue and upper limits for accelerations derived from spin periods in or-
ange. All accelerations are consistent with the maximum acceleration
allowed by the model within their 1 σ credibility intervals.
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Figure A.2: Probability distributions for measurements of orbital period derivatives
for a set of best-fit models with a 0% binary fraction. The measured
period derivates for each pulsar are plotted in orange.
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Figure A.3: Probability distributions for measurements of spin period derivatives for a set of best-fit models with a 0% binary
fraction. The measured period derivates for each pulsar are plotted in orange.
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Figure A.4: Trace plot showing the evolution of the MCMC chain for model with a
0% binary fraction.
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Figure A.5: Corner plot showing the marginalized posterior probability distributions
of models parameters with a 0% binary fraction.
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Figure A.6: Trace plot showing the evolution of the MCMC chain for model with a
2% binary fraction.
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Figure A.7: Corner plot showing the marginalized posterior probability distributions
of models parameters with a 2% binary fraction.
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Figure A.8: Trace plot showing the evolution of the MCMC chain for model with a
10% binary fraction.
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Figure A.9: Corner plot showing the marginalized posterior probability distributions
of models parameters with a 10% binary fraction.
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Figure A.10: Model fits to the observables for models with no binary stars.
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Figure A.11: Model fits to stellar mass function data for models with no binary stars.
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Figure A.12: Model fits to the observables for models with a 10% binary fraction.
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Figure A.13: Model fits to the stellar mass function data for models with a 10% binary
fraction.
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