National Library
Bibliothèque nationale

Canadian Theses Division Division des thèses canadiennes
Ottawa, Canada
K1AON4

PXRMISSIONTO MACROFAM - AUTORISATION DE MACROFAEMEA

Titte of Thesis - Titre de la these
FUNDAMENIAL DIGITAL COMPLIER
SKIULS FOR ETECTRONIC TECHNICIANS
ingree for which thesis was presented - Grade nour lequel cette thèse fut presentée.
MASIER OF ARTS

Permission is hereby granted to the NATIONAL LIBRARY OF CANADA to microfilm this thesis and to lend or sell copies of ithe film.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

L'autorisation est, par ia présente, accordée à la BIBLIOTHE. QUE NATIONALE-DU CANADA de microfilmer cette thèse et de prêter ou de vendre des exemplaires du film.
L’auteur se|réserve les autres droits de publication; ni la thèse ni de longs extraits de celle-ci né doivent être imprimés ou autrement reproduits sans l'autorisation écrite de l'auteur.

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially - if the original pages were typed with a poor typewriter? ribbon or if the university sent us a poor photocopy.

Previôusly copyrighted materials (journal arțicles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

La qualité de čette microfiche dépend grandement de la qualité de la thèse soumisé au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.
'S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font. déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etć.) ne *. sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteuŕ, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

LA THĖSE A ÉTÉ
microfilmée telle que NOUS L'AVONS REÇUE

FUNDAMENTAL DIGITAL COMPUTER
SKILLS FOR ELECTRONIC TECHNICIANS

> A Thesis

Presented to the Faculty of Graduate Studies

Saint Mary's University

In Partial Fulfillment of the Requirements for the Degree Master of Arts (Education)

by

John R. Balcony
March 1980
u
(C) John R. Balcom 1980

1
Abstract ii
Acknowledgements iii
List of Tables vi
CHAPTER
I. ${ }^{\text {INTRODUCTION }}$ 1
Definition of Terms 2
Delimitations 4
Limitations 5
II. HISTORY OF COMPUTERS 7
Birth of the Microcomputer 10
Summary 12
III. HISTORY OF ELECTRONIC TRAINING IN REGIONAL VOCATIONAL SCHOOLS 14
Suminary 16
IV. " PROJBCTIONS FOR THE COMPUIER INDUSTRY 18
Microcomputers 18
Data Commincations 20
Word Procesting 22
V. . INDUSTRY REOUIREMRNES, DACUM CHART 25
REVIEW OF TRAINING PROGRAMS IN DIGITAL COMPUTER ELECTRONICS 30
Practical Microprocesisors by Hewlett-Packard 33
Advantages 34
Disadvantages 35
Individual Learning Programs in Microprocessors by HeathKit Continuing Education 35
Advantages 37
Disadvantages 37
Summary 38
Selection of the AIM 65 Microcomputef. 38
VIL. SUMMARY OF THE PROPOSED COURSE OF STUDY 41
Table of Contents for Digital/Computer Technology 45
VIII: CONCLUSIONS/RECOMMENDATIONS 60
Recommendations 66
Conclusions 67
REPERENCES 69
Footnotes 1 - 12 (inclusive) 70
Footnotes 13-17 (inclusive) 71
Bibliography 72
APPENDIX A Digital/Computer_Technology Course af Study 77
APPENDIX B Glossary 374
APPENDIX C Letters of pernission and Information 382
APPENDIX D Course outlines.for "Practical Microprocessors" and "Individual Learning Programs in Microprocessors" 387

There has been a rapid increase in the use of computers. by our society:. This increase has been brought about by the introduction of microprocessors and large scale integrated circuits, and the associated reduction in, cost per gate.. Internationally recognized computer experts are predicting that we are entering a new age, "the computer". age". Many more technicians will be required to install, test and maintain computers.

The purpose of this thesis is to: 1) determine the job skilis (digital/computer) of technicians employed in computer electronics, 2) propose a course of study that will train electronic technicians in fundamental digital/computer skills,

P The Dacum method of occupational analysị was used to determine computer technicians skills. Representatives from several companies, met for a three day workshop and developed the Dacum chart which lists the job skills for a computer technologist.

Two programs designed to teach fundamental skills in microprocessors (Hewlett-Packard and Heathkit) were reviewed to determine if they" were suitable for use in Regional Vocational SchooIs.

The researcher has presented a course of study that will teach fundamental digital computer"skills. This course is:
developed around a micfocomputer trainer using the 6502 chip. It is designed to prepare the student for employment in the digital/computer industry.
. The rapid explosion of microprocessors in our society will require' a workforce traaned.in digital/computer technology. This training car and should be carried oft in Regional Vocational Schools.

ÁCKNOWLEDGĖMENTS

:

I wish to thank Dr. B.E. Davis for his direction of this study and Dr. Dep. Burt for editorial assistance.

- I wish to thank the following: Mr. Louis Gervais for his expert advice on/microcomputers; Mr: John Wilson who was instrumental in developing the Dacum chart for computer technology.

Finally I would like to thank my family for their support and understanding; my wife Alice, who typed the original manuscript, (my son Bruce for constructive criticism and my daughters Karen and Carla.

I INTRODUCTION

The evolution of electronic technology over the past twenty years has been so rapid it has often been called a revolutian, and even compared to the industrial revolutione Not only are computers in the process of changing society but they have also changed many of the techniques used in modern day research. At the heart of the electronic revolution lies the microprocessor, essentially a complete computer on a single.chip no bigger than a dime. Already - these devices have been found in games; consuner prodacts, intelilgent terminals, sophisticated test equipment to name just a few. In the future we will find nicropiocessors in our cars, telephones, washing machines or in any device where electronic control can be applied.

A nicrocomputers. the type used in business and indestry, will consist of a microprocespor (the heart of the computer), inemory and various imputyoutpat dexices. These computers are constructed from-Large Scale Integration (LSI) chips. These chips contain in excess of one hundred thousand $(100,000)$ transistors on a quarter inch squaxe slab. the rpeed of the computer has been increased until it will perform in excess of one
\bar{z}
billion operations per second. All this, and it will fit in a good size suitcase.

Electronic and computer workers are in short supply. "A group of eighty compánies are raising $\$ 250,000$ for a direct mail advertising magazine to lare electronic engineering graduates and technicians to the Ottawa region".? Projections for this region alone are that the digital and Computer industries will require 4000 to 5000 new $+$ electronic and computer workers in the next five years.

Will the youth of' Nova Scotia be adequately trained to fill computer related jobs or will they only be gaalified to fill rapidly disappearing jobsh using technology of the 50's and the 60's?

The purpose of this thesis is to: 1) deternine the job skills (digital/computer) required $\hat{b y}$ the electronics industry, 2) propose course of-study that will train technicians in fundameatal digitai/computer skills.

DRTIMITION OF TBRMS
Assembly Language: A computer language that uses memonic names to stand for one or more machine language instructions. The advantage of ueing assembly language instead of a high level langaage, such as Basic, is speed of uxecution, but a high level-fianguage is usially easier for a hunar being to moderstand.

DACUM: (Developing A Curriculum) is an approach to the development of curriculum combined with an evaluatión process for occupátional training programs. It was created initillily in a foint effort by the Experimental Projects Branch, Canada Departiment of Manpower and Imeigration, and General Learning Corporation of New York. ${ }^{2}$

Digital: Having discrete states. Most digital logic is binary, with two states, on or off.

Central Processor Unit (CPU): Computer modrie in charge of fetching, decoding, and executing instructions. It incorporates a control unit, an Arithsetic Logic Unit, and related facilities (registers, clock, drivers).

Computer: General purpose computing systen incorporating a Central Processor Unit, (CFU), Eenory, Input/Output facilities and power supply.

Digital/Computer: , The field of electronics that eqploys either digital circuits or computer hardware and software or both.

Hardware: Aay piece of data processing equipment is informally called hardware.

High-Levei Language: Problénoriented prograining langaage, as distinguished Ifon machine-oriented progran, ming language. Examples are Basic and Fortran.

Page 4

Integrated Circuit: A circuit which is fabxicated on a single chip of silicon. Initial integrated circuits contained lees than one hundred semiconductors devices on a single chip.

Large Scale Integration (LSI): Technology by which thousands of seniconductors devices are fabricated on a single'silicon chip.

Machine Language: Set or binary codes, representing the instrictions which can be directly executed by the. processor

Microcomputer: Complete system, including CPU; memory, Inpat/Output interfaces and poiver supply. The CPU is normally a Microprocessor.

Microprocessor: LSI inplementation of a conplete' processor (Arithmetic Logic Unit f Control Unit) on a single chip.

管
Software: The prograns that are entered in the compater:

DELTMITATIONS
The purpose of thif stady' is to deternine the kind of Job skill: required by a computer technologist and to develop course materials that will train electronic students in fundamental digital/computer technicinn skils.

This study will not detexinine 11 the skill regpired
by an electronics technician but will limit the field to : digital/computer electronics.

Many of the skill training techniques in the proposed digital/computer technology course can be applied to a range of levels Irom technician to engineer. However, this course was not meant to teach engineering design skills but fundamental skill development in digital/computer techniques.

The Dacum chart, prepared during this study, showed
that there are specific nechanical skills required by a computer technologist. This aspect of training, mechanical skills, has not been included in the proposed Digital/ Computer Technology course. See Chapter V111 for recola mendations: regarding training of mechanical skills.

Related subjects (Math, Physies, Commnications) are not covered by this study; however, a number of employers indicated the importance of fundamental skill development in math. For recomonditions on commnications skills see Chapter vill.

LIMITATIONS

The final draft of the Dacum chart was not received until late February therefore it mas inpossible to receive imput from indietries other than those that directly participated is chart development. Possibly the chart would more accurately reflect the digital/compater indestry with

There was insurficient tipe between the completion of the study and its presentation to have representatives of the digital/computer industry coment on the course content. Before implementation of the Digital/Computer. Technology course input should be sought from industry regatding course objectives.

No evaluation techniques for the teacher are included in the proposed digital/Computer Technology course.

Most of the learning activities have been field tested, however, lack of hardware has meant that some activities are presented without prior testing.

II HISTORY OF COMPUTERS

The earliest recorded digital instruinent was the abacus, it was first used in Rgypt about. 460 B.C. The abacus evolved frop the use of pebbles laid in roweron the sand and used for counting purposes. The pebbles were simply held together by a string to form the first abacus. In the middle ages the abacus moved from Europe to Asia and now is very popular in Rusisia, China and Japan.

The first atonatic digital computer was Pascal's mechanical calculating device (i641). ${ }^{3}$ Both addition and subtraction could be performed on Pascal " instrument. Later (1694) Leibniz advanced the design to do repeated additions and subtractions. Neither Pascal or Leinbniz were engineers (they wexe mathematicians); their machines were not wall construeted and were sometimes not reliable.

Probably the most notable contribution to madern conputers wals made by Charies W. Babbage. Babbage is some. . times called the grandiather of modern conputers. Kis first invention (1822) was ailference ungine, it was used to ficilitate the calculation of inimrance tables.

However his fame rests on the ANALYTIC ENGINE. This was considered by Babbage, in 1833, as a, general purpose calculator as opposed to the specific purpose difference engine. Babbage saw his engine as composed of several smaller engines, each working together with the others; each performing his own separate chore: the "mill", whifch did the arithmetic: the "receiver" to take in information: the "printer" to print out information: a device to transfer information from one component to the other; and a "store" of information, 4 Unfortunately his idea was 100 years ahead of the technology; he, spent the rest of his life working on the analytic engine, but without success.

In 1890 the time required to process the United States census was reduced dramatically. The census was conpiled with the use of a Hollerith computing machine. Essentially it was a card sorter with data supplied to the machine by hollerith cards. Hollerith's company eventually became the International Business Machines Corporation (IBM):

Howard Aiken, math teacher with a doctorate in physics, combined with IBM and Harvard to build the first "electric" computer. This computer, completed in 1944; was called the Mark 1 and used relays for storage. The machine was very large and data was fed in by pünched tape.

The first "electronic" computer was built by Eckert and Mulchy at the University of Pennsylvania (1946). i Called the ENIAC it could multiply two ten digit numbers in three one-thousandth of a second. It contained 18,000 vacuun tubes and occupied a roon forty by twenty feet.

Probably the greatest contribution to computer programming was made by John von Neumann in 1946. His idea Whs to have both instructions and data stored in menory, thi way the computer could be rised to change its own progran.

In 1948 Bardeen, Brattain and Shockley, Working at Bell labs, developed the transistor. This event spelled doon for the vacunn tube and led to the miniaturization of electronic circuits. It is probably the most sigmify icant event in electronics in the first half of the twentieth century.

The Univac I (1950) was the first comercial conputer, it was manufactured by Remington Rand.

Thy IBM 650 whe the nost popalax compmitex of the's0's. The machine was widely used by the insprance, banking and accounting conpanies. It rented for $\$ 50$ per hour versus the-tore powerful IBM 704 at $\$ 100$ per hourit The 704 was a gassive computer requiring very laxge roon for storage. In 1959 InM had 90% of the compater rarket.

The latter part of the 50 ' sam the introduction of
the transistorized computer. The 650 was replaced by the transistorized 1401, much smaller and faster. The 704 was replaced by the 7040 with a reduced size and price, and increased speed.

In 1964. IBM introduced the model 7010, an upgrade from the 1401 and a new series of computers, the IBM 360 family of computers, This was the first family of compatible computerg ranging from small to large. Essentially one could start with a small processor, 33,000 additions per second, and using the same software upgrade to a larger processor, 2,500,000 additions per second. With the IBM 360 came integrated circuits.

The 1970° s saw the introduction of the IBM 370 family of compatible computers. They introduced large.scale integration to both the arithmetic/logic units and the nemory. In addition, "most System/370 models, for example have "Virtual Storage" capability that magnifies the capacity of main memory many times, and enables users to work econorically with millions of characters of information."5 BIRTH OF THR MICROCOMPUTER

Datapoint, a manufacturer of computer terninals, wanted to have a computer terminal that contained computer, that is a "smart" terminal. They contacted Xexas Instrumente and Intel, leaders in meroelectronics, to dde velop such a systez. Intel developed a systen around the

8008 microprocessor, however, Datapoint dropped the idea of a single-circuit computer terminal. Intel was left with the technology but no customer. They decided to market the 8008 microprcessor. Since 1973 they have sold more than three million. ${ }^{6}$

Following the 8008 came the Intel 8080 ; the Motorola 6800, the Ziloz 280 , and the MOS Technoloigy 6502. These are all 8 bit microprocessors as opposted to the 16 and 32 bit central processors used by Digital Equipment Corporation and IBM.

Micro Instrumentation and Telementry Systens (MITS) sold the first icrocomputer, based on the 8080. These were Kits, first advertised in Popuiax Electronics, January 1975, they expected to sell 800 in one year. On the Friday after Populax Electronics was published they received orders for over 400, they went on to sell several thousand.

Radio Shack with its IRS-80, based on the $\mathbf{Z - 8 0}$, was introduced in 1977 and within one year had sold in excess of 100,000 .

In 1977, Comodore Bysiness machines introduced their alcrocompater, the Comodore PET based on the 6502, and within one year sales had passed the 25,000 mark.

Several other companies (Apple, Compucolor, Heathkit) are marketing Bicrocompaters based on the nicroprocessor.

Within the past two to three years sales have passed several thousand.

4
SUMMARY

Computers have essentially passed through four generationt, Vacuus tubes, Iransistors, Integrated Circuits; and Large Seale Integrated Circuits, see Table 1. Until the late seventies the history of computers has essentially been the history of IBM. However, as the sevanties came to a close the sales volume of microcomputers equalled. the combined sales of IBM and all other models of mini and mainfrane computers.

Predietions for the future are that the field will be divided up into two distinct classes:

1. Large volume of sales of microcomputers manufactured by a number of manafacturers.
2. Very few laxge mainframe computers manufactured by a smail numbar. of companies doninated by IEM. 7

The fotiowing chart hows how data proceseing kosts and procesising tine bave decilned during the past two decades. It represents a mix of abont 1700 computer operations, including payroli, discount computation, file maintenance, table 1ookup, and report generation. Figures show costs, of the period not adjusted for inflation.

III HISTORY OF ELECTRONICS TRAINING in
 REGIONAL VOCATIONAL SCHOOLS
 in
 NOVA SCOTIA

The first program in electronics training offered in Nova Scotia was at the Yarmouth Regional Vocational School. The course was called Electrical and Radio Repair and was taught by George Williams. George is presently Vice-principal at the Nova Scotia Institute of Technology. The goal of the course was to develop skills in radio repair based on vacuum tube technology. The first class enrolled in the three year program in September 1950 and graduated in June 1953.

The second program in electronics was offered by the Halifax Regional Vocational School. This was a course in radio repair similar to the course in Yarmouth. Skills taught were confined to the vacuun tube field. The first teacher was Gerry o'maliey now the Principal of Dartmouth Regional Vocational School.

In 1954 the course content was up-dated in both schools to fnclude television repair and the course was changed to Electronic (Radio and TV repair).

In 1962 four additional Vocational Schools were opened in Nova Scotia, each had an Electronics course. The counse was similar to that taught in Halifax and Yarmouth and was called Electronic (Radio and IV). The technology was vacuium tube and the goal of the course was to teach basic electronics with Radio and Television receivers used as the training vehicle. It was felt that general skills in electronics could be taught using radio and television'as a model and those skills would then be transferable to other areas of electronics. These new schools were located at Springhill, Stellarton, Sydney and Kentville.

In the gid 60's transistors were introduced to the school curriculua. At that time Halifax revised their curriculum and concentrated their studies in the seniconductor field. The remajning schools modified their curriculum to include semiconductor technology.

During the years 1968-69 seven new vocational schools were opened, each with a course in electronics. These new schools were located in Shelburne; Bridgewater, Dartmouth, Middleton, Truxo, Port Hawkesbury and Windsor. All the schools offered a progran in Blectromics (Radio and TV). sinilar to that expressef above. In addition Dartmouth, Bridgewater and Kentville offered a course in Electronics (Navigation). This conrse was designed to teach the skills knowledge and attitudes reguired to secure aployment in
the marine navigation field. The technology enployed in both courses was both tube and transistor.

It appears that in the late 60^{\prime} s three closely related, prograns in Blectronics were offered to the youth of Nova Scotia:

1. Electronics (General using radio and TV as a training vehicle.
2. Blectronics (Ravigation) using radio, TV and Navigation equiprent as the training vehicle.
3. Electronics with special emphasis placed on palse and switching circuits at Halifax Regional Vocational School.

In the early 70's integrated circuits were introduced into the electronies program. It is not clear how this affected training however, some schools, Halifax and Truro, became more involved in projects employing integrated circuits (IC). The navigation course at Kentville, the Electronics (Radio and IV) at Dartmouth and the Electronics course at Windsor were dropped. In Bridgewater the two Blectronics courses mere merged.

SUMPARY
Entil the mid or eariy 70's electroniceprograms have been able to keep up with the changes in electronic technology. With the introduction of Large Scale Integrated
circuits and Microprocessors electronics training programs have fallen behind the technology. Normally, this would not cause a problem because the introduction of new training materials usually lag the introduction of net technology. However, the application of microprocessors in both industry and consumer products has taken place at such a rapid pace that this typical lag must be shortened.

The 60's have seen the demise of the vacuum tube. The 70's have seen discrete transistors take the sane route as the vacuun tube. Therefore, IC and LSI will and should become the training vehicle for electronics in the 80's.

After reviewing the history of electronics in Regional Vocational Schools it would appear that renewal in progran materials is required. The purpose, of this, thesis is to present a rationale for such a renewal and to develop a course of study based on integrated circuits and large scale integrated circuits that would be applicable to Vocational Schools in Nova Scotia.

IV PROJECTIONS FOR THE COMPUTER INDUSTRY

It is very difficult to predict trends in an industry that has undergone such rapid change, especially in the \% last $5-10$ years. However, three trends have been emerging in the latter part of the $70^{\prime \prime}$ s, they are:

1. Dramatic increase in the sales of microcomputers.
2. Data Commanications
3. Word Processing

MICROCOMPUTERS:
Iraditional methods of selling conputers will change. Rather than have a corputer salesman order you a corputer, most computers (90% by 1990) will be sold out of computer stores. The world"s first computer store, "The Computer Store", was opened in 1975. By the end of 1978, over 700 stores were opened in the United States alone. This rapid growth is continuing. Digital Equipment Corporation, the vorid's leading minicomputer manufacturer, recently opened a computef store in the MM11, of New Hativehirer, Manchestex, N.H. It was such a success thatt they have planned or are opening several more in the Boston area.

Computer stores have become successful for two reasons:

1. They give you a chance to examine a variety of different systems before you buy.
2. They eliminate sales representatives, who typically cost forty percent of what you pay for the computer system. ${ }^{9}$

Computer stores will almost exclusively sell microcomputers.

In addition to microcomputers being readily available to the public, especially the businessman, they can now, or will be able to in the future, perform most or all of the functions of a mini or small mainframe computer, and at a much lower cost. In fact, electronics already exists to make microcomputers as powerful as a mainframe. The development of the Intel 8086, is an example of the tremendous progress made in microcomputers.

Prediction: By the mid or late 1980's, ninety percent of all computer sales will be microcomputer systems or their equivalent. The remaining ten percent will be the largest, most powerful and most expensive maínframe computers. These mainframe computers will be dedicated to such things as:

1. *Difficult computations associated with weather forecasting and geological data analysis.
2. Control of large information banke.
3. Data processing for state and federal government agencies (for example; the Social Security Administration). 10

Sales of microcomputers will increase at a very rapid rate, and will shortly exceed 1 miliion per year. At a recent international computer conference held in Wolfville, Nova Scotia a Pentagon computex expert predicted that computers will become the world's largest industry in the neár future, dwarfing North America's automobile industry. DATA COMMUNICATIONS

The merger of computers and communications continues at a relentless speed, making a distinction between the two terms becomes more difficult every year. As the boundaries between data processing and commuications continue to merge, it may well be that data processing firms will offer telecommication services as well. Electronic mail appears to be a real possibility. It is expected, that the main competition in data communication for International Telephone and Telegraph (ITT) and American Telephone and Telegraph (AT \& T) will come from IBM and Xerox Corporation.

Canada is presently one of the world leaders in data commanications. The Canadian Telidon "alpha-graphic" approach was developed by the Communications Research Centre,

a branch of the Department of Communications.
The Telidon system is made up of four majox elements:

1. User terminals
2. Information supplier terminals
3. The telephone network and associated data networks such as data pac and data route
4. A computer for information storage, retrieval and switching centre. 11

A modified version of Telidon "Vista" is being field tested by Bel1 Canada Ltd. and Department of Communications. The Department of Communications and Bell Canada are co-sponsoring trials that will•involve 1000 Canadian fade user terminals and up to 100,000 pages of on-demand information, for display on home or office color I. V. sets. It will be one of the world's most advanced trials of Videotex, the internationally recognized tern for such public, network based information systems. ${ }^{12}$

The Vista system, essentially identical to the Telidon, will exploy a conventional Color Television, a control unif to couple the $T . V$. with a normal telephone and a hand held key pad. Pressing a designated key will convert the $T . V$. set into a Vista interactive information user terminal. The user will then have access to a Data
base of a PDP 11/60. Prime user groups of the system will be the home users and the business community. In business applications, a full alpha-numeric keyboard will be used rather than a key pad.

Projections are that this kind of system will make massive amounts of informatiön readily available to the general public. Through such systems as "the Source", l it is now possible to connect your home computer, Radio Shack, Pet, etc., to a large main frame computer in Washington, D.C. This means that your microcomputer has access to literally hundreds of data banks: The largest growth in the computer and computer related industries will take place in a data communications.

Another Canadian company, AES Data, Ltd., world leaders in word processing systems, are combining with CNCP to develop data communications for the business community.

WORD PROCESSING

Word processing is a combination of hardware and software. Usually it consists of a.micro or minicomputer with dual floppy, disc, a Cathode Ray Tube (CRT) and a character printer. In addition the computer contains a software package that allows the operator to type text
into the computer and manipulate the text so that it can be printed ont in some pre-determined manner. The operator can append clauses; adjust page length; put data into alphabetical and numerical order, colunize, move taxt, insert and delete, all viewed on a CRT. To review text or proceseed pages, the operator simply scrolls a cursor either up or down. Files, that is text are stored on floppy disc.

Commancating word processors, data comanications, allow the boss to call up a typed letter on his own CRT terminal, do his own editing and then send the electronic letter to, ultimately anywhere in the world. Infotex, for example, will be capable of transmitting a 300 word letter in seven seconds,"like postman moving near the speed of light. 13 .

ARS Data of Montreal, formed in 1974 are world leaders in word processing. Projected sales for 1979 are in aceess of 125 nillion dollars. It appears that the paperless office has really caught on with business. However, only 15 percent of the market is presently being serviced, therefore, the 8 : should see a tremandoes growth in word processing.

The large scale marketing of compaters mans that thousands of new jobs will be crested to instail and

0
maintain microcomputers and peripherals. In addition the rapid explosion of word processor equipment, essentially a micro or minicomputer will mean additional maintenance jobs. The fundanental skills required for microcomputer maintenance can and should be taught at Regional Vocational Schools.

The rapid expansion of data comenications will' provide additional jobs. Many of these skills will be the same as those required for digital/computer electronics. However, additional skills in broadband commication will be required, these should be investigated by the Department of Education and the appropriate training provided for the youth in Nova Scotia.

V INDOSTRY RECOIREMENTS, DACUM CHART

Bexore developing or reviewing curriculum for training Digital/Computer technicians it was necessary to determine the kind of skills a technician employed in the industry should possess. The following tools were considered in order to find out what these skills were:

1. Inquiry forms filled out in the presence of the questioner. These forms are normally called schedules.
2. The questionnaire, which is probably the most used and abused of data gathering devices.
3. The interview where the questioner asks oral questions and notes or tape records the response.

The first two were considered inappropriate to conduct an industry survey. I discovered that industries 4 are bombarded by questionnaires and they do not normally have the time or interest to respond.

Serious consideration was given to the interview, however, this technique is very time consuming and one of the most difficult to employ successfully. The interviewer must be skilled in asking a sequence of questions and make stimulating comments that will produce the de-, sired results. It would appear that considerable training
is required to make this method successful.
The survey problem wasdiscussed with Dr. D.L. Burt, Director of Instructional Services, Nova Scotia Teachers College. He suggested that I consider an occupational analysis based on the Dacum nodel.

Developing a Curriculum (DACUM) is a system that encompasses three main components:

1. It is an approach to occupational analysis.
2. It is an approach to planning and developing training based on the malysis.
3. It is an approach to training program operation. ${ }^{14}$

The result of an occupational analysis is a chart (Dacus Chart) produced by a comittee of "experts" who participate in a three day workshop. The purpose of this workshop, under the guidance of a skilled co-ordinaton, is to identify the skills associated with their occupation. These skilled experts are normally technicians or working foremen employed in the occupation to be analyred. In this case they world be technicians in the occupational field of Digital/Computer Electronics.

The selection of the Dacun process to deternine Digital/Computer technician skills was based on the following:

```
\(\{\) 1. Several industries andeducational institutions rely on the Dacum method for occupational analysis of a trade or technology, A few of these institutions are: Nova Scotia Institute of Technology (N.S.I.T.)
Adult Vocational Training Centers in Nova Scotia Holland College
Nova Scotia NewStart Inc.
Nova Scotia Land Survey Institute
Scott Paper Company
Ferguson Industries
National Sea Products
2. The Dacum method of occupational analysis has been used by the Electronics Technology program at Holland College since its inception. Sorenson in his article, A Sumary of the Research "Entry Level Skills-Electronics", describes the application of a Dacum chart on Electronics Technology. 15 . This survey illustrates the importance of the Dacum method of occupational analysis at Holland College.
```

3. Local expertise was available for developing a Dacum chart. The Adult Vocational Education program of the Department of Education has a resource facility, under the direction of Mike Kent, for developing Dacum Charts. This facility has developed charts for more than
twenty occupational fields, typical are: Electronic Repair; Radio Announcing and Stenography.

An application; in conjunction with the Nova Scotia Institute of Technology, was made to the Department of Education, Adalt Edacation for approval to construct a Dacum chirt for the occupational field of Digital/Computer Eléctronics.

The application was approved, Janaary 28, 29, and 30th were selected as the days to construct the chart. Jim MacLennan, Departaent of Education, Adult Education was appointed project co-ordinator.

The-following companies provided workshop participants:

1. Department of National Defence (Dockyard), participant Robert George.
2. Bedford Institute of Oceanography, participant Sidney Specce.
3. Control Data Corporation, participant Edward Billerwall.
4. Maritime Telephone and Telegraph, participant Ernest MacPherson.
5. Defende Research Eastern Atlantic, participants Vance Crowe and Howard Hart.
6. National Cash Register, participant Gordon Reffler.

Table 11 is the Dacus Chart containing the skills identified in the workshop. These are actual on the job skills and are representative of the Digital/Computer industry. This chart can be used as alueprint in developing course materials to train Digital/Computer technicians. That is, fundamental skills taught in Vocacional and technical schools should provide a solid background for actual on the job skills performed by industry.
sise cocourics

out muntas	umpicish ras

oss oseluoscons

use woic rames

nemac

crack moumpd	Yon intimer) cuspmith ant mounct:

$\left[\begin{array}{c}\text { arin mint stiont } \\ \ddots\end{array}\right]$

nritionama

(tanceritict

Hefindoritc

$\left[\begin{array}{c}\square \\ \square\end{array}\right]$

FIEAFACE
 Eonitringit

要

DIGITAL/COMPUTER ELECTRONICS

Three methods were used to obtain curriculums or outIines of courses that teach technical skills in digital/ computer electronics.
A. The writer contacted several Community Colleges. and Technical Institutes, New Brunswick Community College; Northern Alberta Institute of Technology, to name just a few, for a copy of their course outline or curriculum used to train digital/computer technicians.
B. A computer search on three data bases at Lockheed Information Systems, 3251 Hanover Street, Palo Alto, California 94304. The data bases are:

1. ERIC (Educational Resources Information Centre)
2. COMPENDEX (Engineering Index Inc.)
3. INSPEC (Institute of Electrical and Electronic Engineers).

For further information contact Mr. Douglas Vaisey, Head Information Sexvices, St. Mary's University.
C. The writer contacted three companies, HeathKit, Hewlett-Packard, Intel Corporation, that produced
commercial training programs ín microprocessors.
A. The Community Colleges that replied to A above did not offer specific training for computer technologist, however, they do supply technicians for'the computer industry. The usual method is to offer options in digital circuits, microprocessors and computers along with the usual electronic options. The student could select courses that provide training in digital computer technology but programs designed to specifically train digital/computer technicians were not available. Some institutions, NSIT and New Brunswick Community College have discussed a computer technology option.

A reply to my request for program information is included in Appendix C.
B. The computer search turned up a number of possibilities but again nothing concrete. The data bases contained in the computer receive their information from articles or journals written by University teachers or professional engineers. The INSPEC data base contains articles from journals published by the Institute of Electrical and Electronic^Engineers (IEEE). These articles are written for the professional electronics engineer. Unfortunately course outlines for professional engineers are not applicable to Regional Vocational Schools.

The following found in the ERIC Data Base.

ED 146012, COED Transactions, Vol IX, No. 6,

June 1977.
An Introductory Course in Microprocessors and Microcomputers.

Marcovitz, Alan B., Ed.
American Society for Engineering Education, Washington, D.C., Computers in Ed. Division.

14 p. June 1977

COED Transactions, ASEE,
P.O. Box 308, West Long Branch, New Jersey.

Again the above program was written with the design engineer in mind.

COMPENDEX is an engineering data base.
C. I was able to obtain on loan, two programs designed to teach fundamental skills in microprocessors.

1. Practical Microprocessors with companion Microprocessors Lab by Hewlett-Packard.
2. Microprocessors including Microprocessor Trainer by HeathKit Continuing Education.

Two criteria were used to revīew the above curricula:

1. Does it meet the requirements of the Electronic Industry? The Dacum Chart for computer, technology was used for comparison purposes. This chart presents a composite of skilis and no course should attempt to teach
all the skills.
2. Are they suitable for use by Vocational or Technical Schools?

PRACTICAL MICROPROCESSORS by Hewlett Packard
Educational Objectives:.
a. Acquire a practical knowledge of microprocessor system hardware.
b. Gain a basic understanding of the software that is used to control a microprocessor system.
c. Learn how the system uses this software to perform a wide variety of operations.
(d. Use this information to learn practical troubleshooting techniques that are applicable, to any microprocessor system. ${ }^{16}$

A complete outline is contained in Appendix D.
Does it meet the requirements of the Digital/ Computer, Industry as identified by the Dacum Chart? ,The genefal areas of competence will be considered.
A. Communicate. These kind of skills are not Covered by the Practical Microprocessors.
B. Use Test Equipment; Test equipment designed to test digital/computer equipment is explained in detail.
C. Repair Equipment. Mechanical skills such as replacing, repairing and adjusting are not part of this
course, however, they can be learned on the job.
D. Instail Equipment. Not covered by this course.
E. Maintain Equipment. Mechanical skills are not covered. A major omission of this program is training in analog to digital and digital to analog conversion. This program provides training in running diagnostics.
F. Analyze System Faults. Provides excellent fundamental training for this area of competence.
G. Interface Communication Equipment. Again fundamental skills developed that are necessary to perform these operations.
H. Design, Modify and Construct Interfaces and Equipment. Skills in assembly language programs only.
I. Operate Computers for Testing Reliability. Requires complete system to develop these skills.

Are they suitable for use by Vocational or Technical Schools?

ADVANTAGES

The text "Practical Microprocessors", used in conjunction with the HP 5036A Microprocessor Lab provides an excellent introduction to hardware, software and troubleshooting of the microprocessor. "A variety of learning experiences are provided. The development of
concepts is sequential and the skills learned in troubleshooting are transferable to other systems. The micro lab has two design features that provide a significant contribution to understanding how a microprocessor works. The hardware step that allows you to process one bit of infoxmation at a time, and the instruction step that allows you to execute one instruction at a tine.

DISADVANTAGES

The major difficulty in selecting this program för use in a Vocational or Technical School is the price, \$1,000. per work station. Considering 16 work stations, this is a considerable cost. In addition the Microprocessox Lab is only a trainer and not a full blown computer, this limits application in interfacing etc.

INDIVIDUAL LEARNING PRÖGRAM IN MICROPROCESSORS by HeathKit CONTINUTNG EDUCATION.

Bducational objectives: When you complete this program you will be able to:

- a. Prograp a representative microprocessor
b. Interface a representative microprocessor with the "outside world". 17

A complete outline is contained in Appendix D.
Does it meet the requirements of the Digital/Computer Industry as identified by the Dacum Chart? The general areas of competence will be considered.
A. Commication. These skills are not covered by Microprocessors.
B. Use Test Equipment. Test equipment is not mentioned in this progran.
C. Repair Equiprent. Mechanical skills such as replacing, repairing and adjusting are not part of this course, however, they can be taught by a companion course or learned on the job.
D. Install Equipment. Not covered.
E. Maintain Equiprent. Provides training in running diagnostics only.
F. Analyze System Fanlts. Provides excellent fundamental training for this area of competence; however, troubleshooting skills are not included. These skills are essential to digital/computer technicians.
G. Interface Commication Equipment. This program coñtains an introduction to interfacing using the PIA.
H. Design, Modify and Construct Interfaces and Equipment. This course does not teach design skills.
I. Operate Compaters for testing reliability.

Skills in assembly language programs only.

Are they suitable for use by Vocational or Technical Schools?

ADVANTAGES

The text "Individual Learning Progran in Microprocessors ${ }^{\text {t" }}$ used in conjunction with the ET- 3400 microcomputer trainex provides a methodical program to introdace students to microcomputers.

It concentrates on programang and interfacing to the real world. Introduction to computer architecture provides an easy transition for those new to microprocessors.

Selection of the 6800 for the microprocessor trainer is a plus because it has an easier instruction set to learn than the more popular 8080. Because the 6800 uses memory mapped I / O, interfacing is simplified especially when used with the PIA.

The cost, less than $\$ 400$., is a realistic price for a'computer trainer used in a Vocational or Technical school.

DI SADVANTAGES

Unfortunately it does not include a section on trombleshooting, and after all, that is how we technicians make, our living. The on boaxd ybiny is too small to
write very extensive programs.

SUMMARY

No one course of study can teach all the skills listed on the Dacem Computer Tecfinology chart. This chart is a composite of the skills of many technicians. Therefore a course of study should provide fundamental skills that allow one to become employed and progress in the industry.

Practical Microprocessors in conjunction with the Microprocessor Lab would develop fundanental skills in computer technology although it has limited application in the real world.

Microprocessors including the Microprocessor trainer develops skills in programing and interfacing, however, becanse of its hexadecimal keypad and limited memory it has little application in the real world.

I propose to develop a course of study that will teach fundamental computer skills on a computer that has application in the real world. This course will be developed around a microcomputer trainer.

SELBCTION OF THE AIM 65 MICROCONPUTER
8 The November 15, 1979 issue of Creative Computing contained an article compuring twenty-six one board computers (cost under $\$ 550.00$) that are available for
teaching students hardware and programming fundamentals and dedicated controller applications. This was the most complete list of one board computers that the writer could find. The article included the HeathKit ET 3400 but excluded the Hewett-Packard HP 5036A because of its cost.

From the list of computers contained in the article the writer selected Rockwell's R6500 Advanced Interactive Microcomputer, the AIM 65, as a computer trainer for the proposed Digital/Computer Technology course.

The AIM 65 was selected for the following reasons:
a) The cost is reasonable, four hundred and fifty dollars American.
b) The AIM 65 contains sufficiênt memory (4K) for extensive programs.
c) The AIM 65 contains a full keyboard versus the keypad on most one board computers.
d) The AIM 65 comes complete with a Versatile Interface Adapter suitable for interfacing with the "real" world.
e) The ArM 65 has a 20 character alpha-numeric display versus the six digit hexadecimal display found on the ET 3400 and the HP 5036A as well as on most single : board computers.
f) The AIM 65 has an on-board Advanced Interactive Monitor ($8 K$) program that provides extensive control and program development functions.
g) ROM space is available for a plug in Basic interpreter or an Assembler. This feature is unique in one board computers, it allows.thef ATM 65 to be used for other than machine language programing.
h) Interfacing for a-TTY and Cassette is included with the AIM 65.
i) The AIM 65 has extensive documentation. The computer is supplied with five different user manuals.
j) The AIM 65 includes an on-board printer. For educational purposes the printer is its most significant feature. The printer provides instant feedback and a permanent record for each operation the student performs.

The AIM 65 offers flexibility and expandability normally associated with only a sophisticated microcomputer development system. Its potential as an educational trainer of microprocessor systems is very extensive.

VII STMMARY OF THE PROPOSED COURSE OF STUDY

In order to meet the requirements of industry, there is a need to introduce Large Scale Integration (LSI) and microproce'ssor technology into the electronics classroom. Microprocessors can provide products with improved reliability, performance, features and sophistication. With these improvements come new service, troubleshooting and repair problems.

A computer has two requirements in order to perform operations, they are:

1. Computer hardware, that is the comonent parts of the computer.
2. Software, that is the program that causes the computer to do its thing. If either is defective or missing the computer will not. function properly.

This means electronic technicians must learn troubleshooting skills in two areas.

1. How to troubleshoot computer software, and
2. How to troubleshoot digital logić circuits (Hardware).

Special tools are available for troubleshooting digital/computer circuits. They can be separated into two classes.

1. Inexpensive logic probes, logic pulsers, and current tracers.
2. Signature analyzers and wide band oscillos-(copes used to trace programs and isolate problems.

Special problems are encountered in computers, in that they cannot normally be stopped to observe each individual operation as in logic circuits. Measurements must be taken while the processor is running and often data presented on the data bus is meaningless because of three-state outputs.

As with any circuit a technician is trying to analyze or troubleshoot, it is helpful to become familiar with the circuit. Studying the theory of operation, the block diagram, and the schematic, provides a base of knowledge from which to work.

The purpose of this course of study is. to enable the student to develop technical entry level skills and knowledge in the field of Digital/Computer Electronics:

These materials have been written with the student in mind, therefore, the following features have been developed:

1. Reference is made to an extensive Glossary.
2. The Bibliography, contained in the main-body of the thesis, includes journals and articles as well as texts. This will be of assistance to those students who wish to expand on their knowledge.
3. The majority of the materials are designed to be interactive; that is, the student will read a short introduction and then be asked to perform an operation. The writer has tried to keep student activity (learn by doing) at a fairly high level and leave extraneous wordage for others.
4. Several of the learning activities may seem incomplete, however, sufficient information has been provided so that the student; after some investigation, will be able to complete all the exercises.
5. Although some of the materials may be suitable for independent learning, they were not designed that way. The teacher and most of the books and articles in the Bibliography, are considered as prinary resources for the student.
6. The writer has tried to separate concepts by having one concept per page, especially in the digital logic section. This has not always been possible; however, there should be a definite break when a new
concept is introduced.
7. Persons entering the course should have completed Math and English to the Grade XII level. In addition, they should have completed a course in Basic. Electronics or the first year of a two year program in a Regional Vocational School. Suggested titles for a Course in Basic Electronics are:

Basic Electronics (Grob)
Applied Electronics Circuits (Weick)
Basic Mathematics for Electronics (Smith or Cooke and Adans)

Basic Electronics Workbook
Applied Electronics Workbook or projects
Fundamental skills (AC and DC) can only be learned by applying them. Projects should be developed that incorporate knowledge studied in the classroom. Listening and seeing is not enough for a skill to be learned, it mast be applied in a realistic situation. We learn by daing and thinking about what we are doing.

Probably the most mppropriate project for a first year student, is to design and construct a regulated power supply. After he builds it, give it to him

TABLE OF CONTENTS FOR DIGITAL/COMPUTER TECHNOLOGY
I. Programming in Basic
II. Digital Logic Circuits

III: Computer*Architecture
Iy. Interfacing Microprocessors and Digital Circuits
V. Troubleshooting of Digital Circuits and Microcomputers
VI. Programming in Assembler Language

Contents of the course are contained in Appendix A_{4}

I Programming in Basic

The writer decided to introduce stuidents to computers via the Basic Language. Basic (Beginners All Purpose Symbolic Instruction Code) is a high level language and is relatively easy to learn. This allows the student to gain "hands on" experience with the microcomputer in a relatively non-threatening atmosphere:

This chapter could be started at any time and the student can proceed ht his own speed. It is hoped that once the student started the prograx he would want to complete it. There are many awkward formulas in AC theory that are quite nice to program; the student may
find it beneficial to complete this chapter while he is studying Basic Electronics. Once students are comfortable with the Basic language, it will provide a nice transition to low level assepbly language.

II Digital Dogic Circuits

The chapter on Logic Circuits serves two purposes.

1. It provides the necessary background for the study of computers. Most courses on Microprocessors require as a prerequisite, completion of a course in Digital Techniques.
2. It is designed as a "stand alone" introduction to Digital Logic.

Unit A, Semiconductor Review

The purpose of this unit is to provide a short review of semiconductors and to consider the transistor as a switch, that is the transistor is either fully on (conducting) or off (non-conducting). Digital integrated circuits consist of a number of transistors performing these two operations.

Unit B, Number Systems

The relationship between binary, octal, hexadecimal and the decimal system is shown and a number of exercises are provided so that the studen't can gain
skill in converting between the four systems. Bxamples are shown and exercises provided for binary addition and subtraction and a method is develóped for addition of octal and hexadecimal numbers. The use of the microprocessor shift instruction is employed to ilIustrate binary multiplication and division. The concept of BCD is developed and several exercises are provided.

Unit C, Logic Levels
Introduces the student to the concept of Iogic levels, i.e., 1 and O; $H i$ and Lo. Pulses and clocks are introduced and terminology associated with each is described. Characteristics of digital integrated circuits are compared as well as those of microprocessors. A brief explanation is given of the fabrication of integrated circuits.

Unit D, Introduction to the Logic Tester
The rest of the projects in this chapter and many of. the projects in the Computer Architecture chapter require the use of a logic tester." This unit presents fundamental instruction so that a student could construct his own logic tester. Included are list of materials, schematic diagran, printed circuit (PC) board layout, hardware
location etc., and information to enable the student to construct a printed circuit board. Under the guidance of a teacher, the student could construct this project without having studied digital circuits. In any event, a similar tester will be required to complete this chapter.

Unit E, Logic Gates

A number of learning activities have been developed so that the student can gain confidence in the use of the following basic gates: AND, $O R, N A N D, N O R, E-O R, E N-N O R$, INVERTER, TUFFER, TRI-STATE LOGIC. FIO these basic gates, all other digital logic gates can be constructed. These learning activities have been designed to give the stadent the key facts and let them discover how the gates actually work. The teacher should demonstrate setting up the first-few activities and monitor all results.

Dnit F, Boolean Algebra

George Booleideveloped i number of postalates (rules) that apply to binary numbers. Many authors and circuit designérs nse Boolean Algebra to describe circuit operation. Therefore, for technicians, etc, an introduct-. ion to Boolean Algebra is required. A number of exercises in the book PRACTICE PROBLEMS in TNUBER SYSTENS, LOGTC and BOOLEAN ALCBERA (by'Edward Bukstein), have been aselgied
to develop skills in relating circuit function to Boolean equations.

Unit G, Sequential Logic Circuits

Sequential Logic Circuits are used in a variety of timing, sequencing and storage functions. The output of a sequential logic circuit is not only a function of its input circuit but also result of previous operations that may have been stored in the circuit itself. There can exist an almost infinite variety of sequential logic circuits. A representative sample of the most common types are presented in these learning activities.

Unit H, Combinational Logic Circuits
Combinational Logic Circuits are digital círcuits that are made up of gates and inverters. As with sequential logic circuits, a representative sample of the most common typep are presented in the learning, activithes. . After completing these activities two practical priojects are assigned so that the student can apply the skills 1earned.

III Corputer Architecture

All computers, whether micro or maxi, will require certain basic elements. The important thing is to learn how to identify these elements in any computer you
will use. Once this is done you can analyze variations on the basic theme. To fail to learn these basic elements will leave students vulnerable to those "new and improved" computers which always seem to be coming along. As with all engineering activities, there are a few truly basic ideas. Most build on existing activities. Learn the basics and the details will take care of themselves. This chapter is presented in two parts:
A. Introduction to the Microcomputer
B. A Real Computer

Unit A, Introduction to the Microcomputer
The student is introduced to the microcomputer via a block diagram of a pseduo microprocessor (MPI). This is a stripped down version of a real MPU, its purpose is to assist in illustrating signal flow in a microcomputer. The stored program concept, developed by John von Neumann, and implemented on all computers is used to illustrate fetehing and executing machine instructions.

A number of terms used with the elementary microprocessor are defined and an illustration of the arithmetic logic unit (ALU) is included.

The fetch execute method used to process instructions in all microcomputers is introduced. . Each machine
state is shown as the computer sequences through a program. Only three machine instructions are introduced at this time and the immediate mode of addressing (operand is contained in the next address) is employed.

Direct or zero page addressing is introduced, that is the operand associated with the instruction is contained in the low part of memory from. 00 Hex to FF Hex. The pseudo wicroprocessor then sequences through a short program illustrating fetch execute using zero page addressing.

Finally, a new method is introduced to illustrate the fetch execute sequence in computers. This is a shorter method using symbols to illustrate microcomputer operation.

() contents of a register
[] memory location address
([$\quad j$) contents of a memory location address
Unit B; A Real Computer
Introduction to the AIM 65 microcomputer. In order Ior the student to develop skills and Knowledge about gicrocomputers, the following are, required:

AIM 65 microconputer with 4K memory
ATM 65 monitor progran listing (Rockwell)
AIM 65 sumary card (Rockwell)

Microprocessor Systems Engineering (Matrix Publishers)

The AIM 65 is a complete general purpose microcompouter incorporating some of the latest interfacing techniques. The student is given a brief description of the AIM 65 and some possible applications are listed. The power of the AIM 65 comes from its extensive instruction set (machine instructions) combined with an extensive set of addressing modes. A complete list of the 6502 machine instructions is included with a brief explanation of each. All thirteen addressing modes are listed and defined. This course will make application of only the first seven, The remaining six are available for those students who wish to utilize the full power of the computer.

In order to demonstrate how the AIM 65 works the student will write and execute a number of programs using machine instructions. These programs are designed to:

1. Give the student experience using the computer
2. Familiarize the student with the 6502 instruction set
3. Develop skill in converting instructions faiven in mnemonic code) to opcode (machine code)
4. Gain experience in writing machine level programs
5. Develop skill using the extensive AIM 65 operating system,
6. Develop skill in interfacing the AIM 65 with the real world
7. Gain an understanding of how the'microcomputer works

A block diagram of the AIM 65 and the 6502 is included to help the student co-ordinate the operations he will be performing.

The learning activities have been designed so that new concepts are introduced sequentially. The student will write and execiute programs and develop knowledge about the microcomputer. The majority of the activities simulate logic gates, that is the AIM 65 will be used to replace a number of the gates studied in the last chapter.

When the student completes this chapter he will be assigned two activities that interface the computer with
real world activities, they are:

1. Design a real time system that allows the AIM 65 to monitor 8 smoke detectors, 2 burgular alarms and 4 temperature regulators. .The computer must be able to sound an alarm in case of fire, a different alarm in case of break in and switch off or on the furnace to control heat.
2. Write and éxecute a program that will control the bells at Colchester" Regional Vocational School.

IV Interfacing

A computer performs essentially two functions: process data and input/output data. This chapter deals with input/output data.

Almost all microprocessors use the same busses for both memory and input/output (I/O) transfers. Two methods are used to distinguish memory data and address from I / O data and address. They are:

- 1. Isolated $I / 0$ used extensively by the Intel 8080 and the Zilog 280 MPU.

2. Nenory mapped I/O used by both the Motorola 6800 and the Rockwell 6502 MPU.

Nearly all activities in this chapter are designed around the 6502 and use memory rapped $1 / 0$.

Unit A, Serial Interface

Three activities utilizing three different methods illustrate how the AXM 65 can be.interfaced with the real world. They are:

1. Sexial Interface (TII)
2. RS-232C
3. 20 milliamp current loop

Unit B, Parallei Interface
Because all microcomputer data and interface lines are parallel; the easiest way to interface the AIM 65 is to simply connect $1 / 0^{\circ}$ data lines to external devices. Centronics printers, the largest selling in the wosld, have a standard parallel interface.

* An expanded paxallel interface has been accépted b户े the International Electrotechnical Comission (IEC). This: interface bus, called the IEBE 488 bust employs 16 lines, and allows, up to 15 instruments on the same bus. The IRER 488 is the standaxd interface bus for Hewlett Packard and Commodare Business Machines.

This unit has activities on both types of parallel interfaces.

Unit C, UART

ㄴ․․
The UART (Universal Asynchronous Receiterizranseitter) provides simple hardware method for cratyring serial data to parallel or parallel data to serial.

Activities are provided for students to gain experience using UARTs.

Unit D, Analog-to-Digital and Digital-to-Analog
Analog to digital and digital to analog conkerters are used to interface the AIM 65 with the "real" world. Two exercises axe provided to familiarize the student with the above.

Unit E, Software Interface
In order for data to be "sent" to an outpìt port: a short program is required to "handle" the data and control handshake signals. This program is usually called a software interface. In this unit the student is introduced to the concept of a software interface.

Unit F, PIA and VIA
PIA (Peripheral Interface Adapter) and VIA (Versatile Interface Adapter) are lange scale integrated circuits that provide means for the MPU to Eommanicate to the outside world. This unit introduces the PIA and VIA and describes some of their special features and includes timing diagrams.

V Troubleshooting Diqital Circuats and Microcomputers The purpose of this chaptef is to introduce the

 student to different tools used in troubleshooting digital/ computer circuits and present some general troubleshootingtechniques.

Unit Al-A7, Troubleshooting Tools
These units introduce the following tools and provide an application exercise for each:

1. Logic Probes
2. Logic Pulser
3. Current Tracer
4. Logic Comparator
5. Oscilloscope
6. Logic State Analyzer
7. Signature Analysis

Unit B, Troubleshooting Microprocessor Systems
This unit on troubleshooting techniques is presented -
with the permission of Hewlett-Packard.

VI Programing in Assembly Lanquage
There are essentially three levels of languages that
\$ can be used to progran a microcomputer. They are: -

1. Machine Language
2. Assembly Language
3. High Level Language such as Basic or Fortran Machine language prograns are very effieient, however they are difficult to write and because they consist of only l's and 0 's they are prone to error. Assenbly language prograns allow the student to use the

MPU instruction set and enter programs using mnemónic code. These codes are converted to machine language by an assembler.

High level languages are easier to program but are less efficient (i.e.use of machine time) than assembly language programs.

This unit compares the instruction set of the .6800 CPU and the $6502 \mathrm{~A} C P \mathrm{E}$. The 6502 is considered to be an update of the 6800. The students are given assignments in the workbook "Programming the 6800", completion of these assignments should develop skills in assembler programming in both the 6800 and the 6502.

3 Students who have completed all chaptexs of this course should feel quite comfortable working on many different microprocessor systems. Additional instruction should be provided on a full system consisting of:
i. VDU (Visual Display Unit)
2. MPU with 32 to 64 K RAM memory
3. Real World Interface
4. Dual Floppy Disc
5. Dot Matrix Printer, parallel interface
6. Character Printer, serial interface
7. Complete software package for programing in Assemibex, Basic and Fortran.

This syistem could use either a 6800 miv or Z80 MPU. It is important that the student have the opportunity to gain experience on a'complete system.

Happy Computing:

VIII CONCLUSIONS/RECOMMENDATIONS

It is the job of the Vocational or Technical School to teach fundamental skills that will allow a graduate to gain employment and progress in the Digital/Computer field.

The Dacum chart for Computer Technology lists the skills required by a working computer technologist. The proposed course, Digital/Computer Technology, does not attempt to teach all the skills listed on the chart. Some of these skills could not be economically taught because training equipment costs would be too high. Other skilis could be learned on the job after some practical experience. Finally no one technician could be expected to master all the skills listed in the chart because they are a composite of the skills of many people.

Two criteria will be used to review the proposed Digital/Computer Technology Course.

1. Does it meet the requirements of the Digital/ Computer Industry as identified by the Dacur chart? These general areas of competence will be considered.
A. Communicate: In Regional Vocational Schools communication skills are taught as a separate course.

The teacher of the Communications course should stress writing technical reports; interpersonal skills and learning to work under pressure. Reading schematic diagrams is usually taught in Basic Electronics.
B. Use Test Equipment: Thịs course assigns one chapter (Chapter V) to troubleshooting skills and the application of test equipment.
C. Equipment Repair: Soldering skills, component replacement, parts identification are skills normally taught in Basic Electronics. The mechanical skills, such as replacing gears, drive belts and motors are not covered by this course.
D. Install Equipment: Most of these skills require application on expensive equipment, therefore, they cainot be economically taught in a Vocational School. Cable routing, interconnecting of units, shielding and equipment run ${ }^{\text {fop }}$ are all skills that can be readily taught if the school has a small computer system. A system that could be used to teach these skills is listed at the end of this chapter. E. Maintain Equipment: .These on the job skills are not taught directly by this course. Fundamental skills are taught in running diagnostics and digital to analog and analog tondigital interfacing. Course
materials to teach mechanical skills should be developed to supplement this course.
F. Analyze System Faults: The bulk of the course is devoted to developing fundamental skills in Digital/Computer. Electronics so that the technician can analyze system faults.
G. Interfacing Communication Equiprent: Chapter IV is devoted to developing interfacing skills.
H. Design Modify and Construct Interfaces and Equip0
ment: Component selection, component identification, component layout, block diagrams, assembly and construction, reading schenatics are all an integral part of the course and these skills will be learned by the student. Hardware and software design are not considered to be major goals of the course. Designing, modifying and constructing interfacgs are considered to be important parts of this course.

1. Operate Computers For Testing Reliability: Two chapters are assigned to teaching computer progranang. Chapter I is programing in Basic (high level langatae) and Chaptex VI-is Programing in Assembler Language (low level language). Both of these languages are required to operate and test computere.
2. Is it suitable for use by Vocitional or Techinical

Schools?
Yes, the Digital/Computer Technology course was designed to teach fundamental Digital/Computer skills to Electronic students in Regional Vocational Schools. The purpose of this program is to have the student develop sufficient skills to gain employment in the Digital/ Computer industry.

The Educational goals of this course are:

1. To introduce to the student representative Transistor-Transistor-Logic (TIL) digital logic circuits with application.
2. To develop skill in programing a computer in Assembler and Basic computer languages.
3. To develop an understanding of how a computer works.
4. To develop skill in interfacing a computer with external devices.
5. To introduce tools used in troubleshooting Digital/Computer devices.

In order for this program to be successful the following equipnent is required:

1. Digital Logic Trainer for each student, a typical trainer is the Hewlett Packard 5035A Logic Lab. A trainer could easily be built by the student and its
construction become an integral part of the training.
2. Rockwell AIM 65 computer. One computer should be available to each student. All the learning activities in Chapters III, IV and V are developed around the AIM 65. The cost of each computer is five hundred and forty dollars Canadian as of January 1980.
3. Logic probes and analyzers to complete the activities in Chapter V.
4. A complete microcomputer incorporating, but. not limited to the following:
a.. Visual Display Unit
b. CPU with 32-64 K RAM memory
c. Character or Dot Matrix serial Printer
d. Dual Floppy Disk
e. Software packages inclùding Assembler and Basic
f., "Real World" Interface.

This computer. can be used to teach many of the job skills listed in the Dacum chart.

This course should serve as a guide for teachers. The teacher may wish to substitute or ignore any of the activities.

It was to have been the Nuclear Age. It became the Computer Age. This is the title of a booklet published by IBM that traces the development of computers from 1951 to 1976.

At a recent international computer conference held at Wolfville, Nova Scotia, Comodore Grace Hopper, a Pentagon computer expert, predicted that computers will become the world's largest industry in the near future, even dwarfing North America's automobile industry.

The age of the computer. World's largest industry. Experts are making predictions about the rapid growth of computers in our spciety.

Someone will be required to install, test and maintain these computers. This will be the job of a trained technician with skills in the field of digital and computer electronics.

These technicians can and should be trained in Regional Vocational Schools in Nova Scotia... This writer has presented course of study that will train electronic technicians in the fundamental Digital/Computer electronic skills. This course includes skill training similar to that in "Microprocessors", and "practical Microprocessors". In addition the proposed course, Digital/Computer Technology, uses a "real" computer as a trainer so that skills such as interfacing and troubleshooting can be included in the program. Applications in the "real"'world are an inportant part of this course.

RECOMMENDATIONS

During the past twenty years electronic technology has passed through four generations.
a) Vacuun tubes
b) Discrete transistors
c) Integrated Circuits
e) Large Scale Integrated Circuits (LSI) including Microprocessors

We are now in the fourth generntion. Some of our Regional Vocatioal Schools may not be teaching skills in ${ }^{C}$ this area.

1. The writer reconmends that electronics training in Regional Vocational Schools include in their curticulua comprehensive training in Digital/Compater skills using the course of study included in the Appendix of this thesis.

This progran will train the youth of Nova Scotia for employment. in the Digital/Computer industry.
2. Supplementary learning activities; designed to teach the necesemxy mechanical sixils identified by the Dacun chart, shonld be developed by teachersising the Digital/Corputer Technology courese
3. No evaluation is included in the Digital/Computer Technology course. Methods to evaluste the
activities suggested in this program should be developed by the subject teacher.

OONCLUSIONS
"Practical Microprocessors" by Hewlett-Packard contains a mell designed course that would find application in a variety of training situations from technician to the engineering level. The primary disadvantage of selecting this course is the initial cost of the HP5036A Microprocessor Lab. A secondary consideration is insufficient interfacing with.the "real" world.
"Microprocessors" by Heathkit Continuing Edncation is reasonably priced program that teaches skills in programang and interfacing. Unfortunately, the companion computer trainer; ET 3400 , contains too small a memory for comercial applications and the hexadecimal keypad is not designed with efficient programing in mind.

The writer has developed a course of study in Digital/Computer electronics using the AIM 65 as the microprocessor trainer. Because the AIM 65 is a "real" computer and not fust a trainer, the knowledge gained by the student is limited only by his ingenuity and imagination. He will find myraid applications
interfacing printers, AC controllers, DC controllers and analog to digital devices to name but a few.

The key to the writer's program is the Rockwell AIM 65 Microcomputer.

$$
\Gamma \%
$$

$$
-\Omega
$$

$\cdots \cdot(6$

1 Canadian Press, "Electronic and Computer Workers in Canadian Press, "Electronic and Computer Workers in
-Short Supply" (Halifax: Chronicle Herald Ltd.', November 13, 1979), pg. 24.

2 R. E. Adans, Dacum (Ottawa: Department of Regional Economic Expansion, 1975), pg. 23.

3
Keith Reid-Greèn, "A Short History of Computing," - Byte, (July 1978), pg. 86.

- 4

Herman Goldstine, The conputer from Pacal to von
(Puriann (Princeton: Princeton University Press, 1972), P9. 2I.

5 Internstional Business Máchines, "The Computer Age," 1770he pgris. 6 Adan Osborne, Running Wild The Next Industrial Revolution (Berkeley:, McGraw-Hill Inc., 1979), Pg: 25. 7 Ibid., pg.76. C
8
International Business Machines, op. cit., pg. 123.
9 Osborne, op. citb, pg. 73.
10
Ibid: pg. 76.
11

- uvISTA Bell Canada's Interactive Conmicátion Syaten," Compating Canada; (Novamber 15, 1979), pg. 10. 12.

Ibid.

13
John Hewer, "Wp-the industry's \$matimillion. sleeper," Canadian Electronics Engineering, (December 1979), pg. 30.
${ }^{14}$ Robert Adams, "DACUM in Nova Scotia," Journal of Education, (Summer, 1975), pg. 15.

15
Jack:Sorenson, "A Summary of the Research" Entry Level Skills - Electronics", Canadian Vocational Journal, (February 29, 1976), pg. 32.
${ }^{16}$ Michael Slater and Barry Bronson, Practical Microprocessorg (Santa Clara: Hewlett-Packard Company, 1979), pg. xxi.

17
Heathkit Continuing Education (Manual), HesthKit Microprocessors, (Benton Harbour, Michigan: Heath Company 1977), pg. 1.

BIBLIOGRAPHY

Adans, Robert. "Dacum in Nova Scotia," Journal of Education, (Summer, 1975), 14-18.

Adams; Robert. Dacum. Ottawa: Department of Regional Econonic Expansion; 1975.

Ah1, David. 101 Basic Computer Games. Morristown, New Jersey: Creative Computing, 1973.

Best, John Research in Education. Englewood Cliffs, New Jersey: Prentice Hall Inc., 1959.

Burstein, (ed.) Practice Problems in Nurber Systens, Logic, and Boolean Algebra. New York: Howard Surs and Co., 1975.

Camp; R.T. Smay; and C. Triska. Microprocessor Systens Engineering. Portland, Oregon: Matrix Publishersy 1979.

Chronicle-Herald, November 13, 1979. Canadian Press article concerning the shortage of skilled warkers in electronic fields.

Coombs, Clyde. Printed Circuits Handbook. Toronto: McGraw-Fill Inc., 1967.

Diefenderfer, A. Bagic Techiques in Electronic Instrumentation. Toronto: W.B. Saunders Company, 1972.

Dori, Richard. Introduction to Conputers and Computer Science. San Francisco: Boyd and Frasex Publishing Company, 1972.

Fairchild Industries., TIL Databook. Mountain View, Califotnia: Fairchild Camera ind Instrument Corporation, 1978.

Gasperini, Richard. Dicital Buperiments. Los Altos, Californis: Movonics Company, 1976.

Gapperini, Richard. Diaital Troubleshootingi. Los Altos, Californini Movonice Company, 1975.

Scientific American. Microelectronics. Theme issue. New York: Scientific American Inc: September 1977.

Slater, Michael, and Bronson, Barry. Practical Microprocessors. Santa-Clara; California: Hewlett-Packard Company, 1979.

Smith, Julius, Basic Mathematics with Electronics
Applications. New York: The MacMillan Company, 1972.

Sorenson, Jack. "A Summary of the Research" Entry Level Skills - Electronics"; CanadianVocational Journal (February, 1976), 32-34.

Stow, Robert. AIM 65 User's Guide. Anaheim, California: Rockwell International Corporation, 1978.

Sybex. Microprocessor Lexicon. Berkeley, California: Sybex Inc., 1978.
"Vista: Bell Canada's Interactive Communication System, ". Computing Canada, (November 15 , 1979,) 10-12.

Weller, W. Practical Microcomputer Programming:
The M6800. Evanston; Tllinois: Northern Technology Books; 1977."

Zaks, Rodnay. Programing the 6502: Berkeley: Sybex, 1978.

3

5

APPENIIX A

DIGITAL/COMPUTER TECHNOLOGY

The purpose of this course of study in Iisital/Confuter Technolosy is to enable the student to sain entry level skills and knowledge in the field of Pisitial/Computer electronics. Graduates of this proseam should find employment in computer electronics, industial electronics or related fields.

The Educational objectives are:
1 To develop skill in prospamins a computer in Assembler and Basic.

2 To develop an understanding of now a computer works.
3 To develop skill in interfacins a computer with external devices.

4 To introduce tools used in troubleshootins Disital/Computer circuits.

The materials have been written with you, the student, in mind and the followins features have been included:

1 As part of this course you will be intraduced to an extensive slossary of computer related terms;

2 The bibliosraphy contained in the main body of the thesis includes journals and articles as well as texts. This will be of assistance to those of you who wish to expand your knowledse zbout computers and computer related circuits.

3 The majority of the materials are desisned to be interactive, that is you will read a short introduction and then be asked to perforim an operation, i.e. a learning activity.

4 Several of the learnins activities may seem incompleter however, furfther investisation on your own should allow you to complete the exercises.
(You will have your teacher and the followins texts as resources.

Disital Troubleshooting by Richard E. Gasperni
Microprocessor Systems Ensineerins by Campy Smay, and Triska

Introduction to Micropracessors: Software, Hardware, Proxdamins by Lance A. Leventhal

THL Data Book by Fairchild Micropracessor Lexicon by Sybex

Complete set of AIM 65 reference books
Experiments in Disital Fininciplès by Leach
Practice Problems in Number Sustems, Losic, and Boolean Alsebrá

Prosrammins the 6800 Microprocessor by Southern

CONTENTS

I Prosramins in Basic
II Disital Losic Circuits
III Computer Architecture -
IV Interfacins Mieropracessor Circuits and Disital: Circuits
\checkmark Troubleshootins of Ilisital Circuits and Microcomputers

VI Prosrammins in Assembler Lansuase

I Prosrammins invBasic

These exercises are desisned to teach you how to prosian a computer using the Hasic lansuase. In order to use the followins exercises effectively you will renuire a computer (that contains a Basic interpreter) and a computer use manual.

For maximum benefit "write" all the prosrams included.
This part of the course can be started at any time, however it would be benefical for the student to complete the section while stydyins basic electronics. This would allow you to sain "hands on" experience with the. microcomputer in a relatively non-threatenins atmosphere,

In order to commanicate with a computer we must be able to "speak" to it. Unfortunately, the computer cannot speak our lansuase and it is very difficylt for us to "speak" it's lansuage.

The lansuase of the computer is 1 's and 0 's. For example, in order for the computer to add two numbersa (3+4) it would require the following information:

1000,0110
0000,0100
1100:0110
0000:0011
3
0001,1011
1011,0111
0001,0011
0001,0000

This is not a very sood method for "prosinaming" a computer, it is slow and provides lots of room for error. Another method for prosraming the computer to add two . numbers is to use an assembler. The prosispa is written in assembly lansuase and then converted ta * * the assembler.

The following is an example of how two numbers could be added:

LDAA	$\$ 04$
LDAB	$\$ 03$
ABA	
STA	$\$ 0010$

However, this is time consuming and somedhat difficult. A simpler method has been devised where we sibply tell the computer to add two numbers and print the result, That is: PRINT $6+3$.

This is accomplished by the use of a Basic Interpreter. The Basic Interpreter is a program inside the computer that lets us speak to the computer in an almost Enslish-1ike lansuase. That is, the Basic interpreter is similar to a lansuase translator.

BASIC stands for Beginners All Purpose Symbolic Instruction Code.

In order to make use of Basic, we have to learn to "spa kn Basic.

The following sections will introduce you to the Basic lansuase and help you write programs.

BASIC CONCEPTS

STATEMENTS A Basic program consists of one or more	
PRINT $\quad \therefore \quad$ statements. PRINT $27^{n \prime}$ is an example of a	
	PRINT statement.

LINE NUMBER. Each statement must be preceded try a sequential line number, " 10 " is a line number.

END . The end of a Basic program must include the END statement.

The following is an example of it Basic protean: (Type in this program)

READY (This is printed by the computer).
10 Print 27 \% (Return)
20 End (Return)
The prosian is now in the computer to execute the prosizal type:

RUN

LIST
NE M
RUN : (Return) 27 should appear on the screen.

In order to see your program type in: LIST (Return)

In order to delete, an old program type NEW (R). To set if it is deleted, type LIST (R)

You should now be able to use the following:
LINE NUMBERS
PRINT (statement)
END ~ (statement)
RUN
LIST
(command)
(command)
NEH . . (command)

Now RUN and then LIST this prosiam.
Write'a prosram that will print your address RUN and LIST

To expand your programing capabilities we will introduce to you three new concepts.

REMOVE A LINE To remove a line ture in the line number and press return.

OPERATORS Operators - These are + for addition

- for subtraction
$/$ for division
* for multipication
t. for exponents

Be caneful the computer's order of operations will use \uparrow before $*$ and $/$, and * and / before + and -.

VARIABLES This is a variable, A
This is a variable, B
This is a variable, A1*

Variables are alpha numerit but tie first character is always.alphabetic. List 10 variables, remember the first character must be some letter between A and Z, the second character; if useds must be a numeral.
$=$ Example: $A=3$
This means the variable on the left takes on the value to the risht.

Let's write arprosiam using this new concept.

	$A=3$	(R)
	$\mathrm{B}=4$	(R)
	$C=B+A$	(R)
	PRINT	(R)
	END	(R)
RUN		(R)
L.IS		(R)

SUMMARY OF CONCEPTS LEARNED
STATEMENTS.
LINE NUMBERS
PRINT
END
NEU
RUN
LIST
OPERATORS VARIABLES
$=$
Write a prosram usins variables and operators that will sum 25 and 50. Remember to include a Print statement so that you mas see the result.

RUN	(R)
LIST (R)	

MORE NEU CONCEPTS
INPUT Example: INPUT A
The input statement will ask for a value to be assisned to the variable A.

10 INPUT A	(R)
20 PRINT A	(R)
30 END	(R)

RUN (R)
? (computer wants you to input a value) ? 27 (R)
27 (computer prints out 27)
Try Again

* 10 INPUT A,B,C
$20 \mathrm{D}=\mathrm{A}+\mathrm{B}+\mathrm{C}$
30 PRINT I 40 END

RUN (R)

$? f 0$	(R)
P? $20(R)$	(computer keeps asking
?r? 30 (R)	questions until it receives

RELATIONAL OPERATORS

IF.... THEN
*
ceto
= equal
< less then
$>$ greater than
\langle not equal to.
\Rightarrow equal to or greater than
$=<$ equal to or less than
\leftrightarrow
IF THEN statements are used with relational operators and help the computer to make. decisions.
IF ArB THEN PRINT "A IS LARGER"
IF ArB THEN PRINT "A IS SMALLER"

GOTO statements are used to interrupt the normal flow of the program. 10 KOTO 30 means do not soto line 20 but soto line 30 skipping line 20.

Example
$10 \quad A=3$
$20 \mathrm{~B}=4$
30 GTD 50
40 PRINT A
50 PRINT B
60 END
This prospan will print only 4.
Be sure you understand the program logic.

SUMMARY OF CONCEPTS
INPUT
RELATIONAL OPERATORS
IF.,... THEN
GOTO
Now let's use these four new conceptsy Infut, Relational Operatorsy If..... Theny and Goto to write a prosram.

What would haffen if you did not use the GOTO statement?

We are really movins along, now we can do arithmetif and make decisions.
What else can we do? How about writins a prosram that will find the averase of all the marks in sour class and print it out."

How do you find ayerase? Think!
REMARK (Rem) statement is used to insert useful information in the prosram. Howevers itlis isnored durins execution.

```
10 INPUT A,E,C,II
20 REM: THE NEXT STATEMENT WILL ADD THE
            VARIARLES
30 E=A FB+C+H
```

The print statement can be used to print warids (strinss) as variables. The words must be enclosed in auotation marks.

> PRINT "WORDS", PRINT "TEST", A

Example

10 INPUT
A
20 PRINT "NUMBER OF CHAIRS $="$ "A
30 END

RUN

? 24
NUMBER OF CHAIRS $=24$
Try the same prosram usins a before A. RUN Note the difference in spacins.

INPUT " WORIS", A
INPUT " NUMBER OF CHAIRS REQUIRED "; A
Example
10. INPUT "NUMBER DF CHAIRS RERUIRED =", A

20 PRINT "NLMBER OF CHAIRS $=$ " ${ }^{\text {F }}$. A
30 END
RUN
NUMBER OF CHAIRS REQUIRED = (you input 24)
NUMBER OF CHAIRS $=24$
FOR.... NEXT Sometimes. it is necessary to repeat an.
operation over and over. This can be easily
accomelished usins a For Next, loof:
Example
10 FOR I=1 TO 5
20 PRINT I o
30 NEXT I
40 END
RUN
First the value $I=1$, then line 30 NEXT I causes the prosram to loor back to line, 10 and I sets a new value i.e. $I=2$ etc.

STEP
n
5
Line 10. could have been written
FOR $I=1$ TO 5 STEP 1 This means that I increments by 1 each time it soes throush the loof. Note if step is not used the increment is 1 . In addition you mas use:
FOR $I=1$ TO 6 STEP 2 Note I increments by 2 . ANY STEP MAY'BE USED.
Write a prosram. that uses a For Loop with a siep other than 1

MULTIPLE STATEMENTS

SUMMARY OF GENCEPTS COVERED
REMARK
PRINT "WORDS"; A
INPUT "HORDS";A
FOR.... NEXT

Multiple Statements asy be used on one line with the use of a colon example:
$10 \quad A=27: B=33$

DIMENSION
Subscrifted variables greater than 10 must be dimensioned. (that is: space reserved in memors)
Example: DIM $\mathrm{A}(100), \mathrm{B}(50), \mathrm{C}(27)$ O.K. Let's use the last three concepts to write a prosram.
FDR.
....NEXT
Subscripled Variables GIMENSION
5 REM PROGRAM TO READ IN 25 VALUES AND PRINT THEM OUT
10 IIM A(25)
20 FOR I=1 TO 25
30 INPUT A(I): REM FIRST WILL BE A(1), THEN A(2)\% ETC.
40 NEXT I
50 FOR I=1 TO 25
60 RRINT A(I),
70 NEXT I
80 END
RUN
Not a very useful prosram. How about if we find the averase of these values and print it out.

Study this prosiam very carefully as you input and run it. If you have any questions please ask.
Buppose this prosram was used with different populations i.e. 20, 40, 15.
Can you write a universial prosram that will let you find averase scores of different populations.
Try a variable in place of 25.

Sometimes it is convenient to include DATA in the basic prosram. The MATA can then be retrieved by a READ statement.

Example:

$$
10 \text { DATA } 10,20,24,64
$$

20 READ A, $\mathrm{B} \boldsymbol{\mathrm { C }} \mathrm{C}$, D
$30 E=A+B+C+D$
40 PRINT: "SUM=", E
50 END
RUN
Consider the followins
$10 \mathrm{Z}=0$
20 FOR İ 1 TO 5
30 READ A; By, C; D
$40 \mathrm{Z}(\mathrm{I})=\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{II} \quad$:PRINT $\mathrm{Z}(\mathrm{I})$
50 NEXT I
60. IATA 23, 16, 49, 73

70 DATA 68, 47, 77, 19
80 DAझA 37, 29, 77, 76
90 DATA 88, 84, 44, 84
100 DATA 69: 79, 89, 99
110 END
Z(I) is the sum of each row.
READ and DATA statements are often used with statistics.

Write a prosram that uses the temperature recorded five times a month for 6 months. Find the averase temperature for each month and then have the results printed out.
-- SUMMARY OF CONCEPTS
Subseripted Variables DIMENSION
READ
DATA

```
    STRING A$ is a strins variable
VARIABLES
    B% is a string variable
    String variables can equal words, or values,
    or both enclosed in quotation marks:
    A$="YES"
    B%="9 APPLES"
    C$="9"
    Example:
    10 INPUT "UHAT IS YOUR NAME?",A$
    20 PRINT "HOW ARE YOU ";A$
    30 INPUT "DO YOU WANT TO CONTINUE?", B%
    40 IF H$="YES" THEN 60
    50 60T0 999.
    60 PRINT A$;"HOW OLN ARE YOU?",
    70.INPUT C $
    80 INPUT "HOW OLD IS YOUR FRIEND?",II%
    90 E $=C % +is
    100 PRINT "YQUR AGE AND YQUR FRIEND'S AGE
                =";E$
    110 PRINT "DO YOU WISH TO CONTINUE";A$
    120 INFUT B$
    130 GOTO 40
    9 9 9 ~ E N D ~
```

'quIL'T IN FUNCTIONS . Basic contains a larse number of
built in functions.
Example: tris functions
10 A=COS (12:REM COMPUTERS USE RADIANS
20 PRINT A
$10 \mathrm{~B}=\operatorname{SIN}(.7)$
20 PRINT B
10 A1=SQRT(16):REM SQUARE RDOT
20 PRINT Ai .
TAB FUNCTION Tab lets you move the cursor to a
pre-determined position before printins the
character.
10. PRINT TAB (20);"*"
20 PRINT TAB (21) ${ }^{\prime \prime}{ }^{\prime \prime}+{ }^{\prime \prime}$

40 END

It should be clear that usins the tab funcion you can oraw rudieemary pictures. Try writing a prosram to draw a circle.

RND FUNCTION The RND function is used to senerate a randonn number between 0 and 1 .

Example:
10 A=RND 0)
20 PRINT A

RND is useful in sames; Example:
$10 \mathrm{~A}=\mathrm{RND}$ (0) 家5

- 20 B=RND (0) ${ }^{2}$ S

30 IF AンB THEN 70
40 IF B>A THEN 90
50 PRINT "TIE"
60 GOTO 1000
70 PRINT "A>B"
80 GOTO 100
90 PRINT "E>A"
100 END

Prosran the computer to generate several random numbers then have them frinted out.

INT FUNCTION The INT function removes the decimal fortion of 3 number.
$10 A=1.2345$
$20 \mathrm{~B}=\mathrm{INT}$ (A$)$
30 PRINT B
40 END
Usins the RND and INT functions write a prospan which has two players roli a die and frints qut the winner and his roll.

If you, are stuck so on to the next section.

GOSUB...RETURN When part of a prosram is used many times, usually that fartpot the prosram is set aside and called up when needed with a GOSUB statement.

Example:
10 REM DICE PROGRAM
20 REM FIRST PLAYER GETS DICE
30 GOSUB 100
$40^{\circ} P 1=A+B$
50 REM SECOND PLAYER GETS DICE
55 GOSUB 100
60 P2 $2=A+B$
70 IF P1>P2 THEN 130
80 IF P2>P1 THEN. 150
90 PRINT "TIE": GOTO 160
100 A=INT (RND 0) $\$ 6$) +1
$110 \mathrm{~B}=\mathrm{INT}$ (RGD(0)*6)+1
120 RETURN
130 PRINT "PUAYER 1 UINS"

You are now ready to write many more, and larser prosrams. ${ }^{8}$
.DEF FN X ($A, B)_{p}$ User defined functions are similar to Gosubs except they are on one line, and are unreferenced as to. line number when used.

They accept input and return a specific value. The amount of infut they can accept is determined by slots or the number of dumbs arsuments allowed.

10 REM USER DEFINED FUNCTION FOR PYTHEOGRAN THEDREM
20 DEF FN $P(X, Y)=\operatorname{SQRT}((X * X)+(Y * Y))$
$30 \mathrm{X}=20$.
$40 \quad \gamma=30$
$50 Z=F N P(20,30)$
60 PRINT "LONG SIDE OF RIGHJ TRIANGLE ="; 70 ENB

SUMMARY OF CONCEPTS
Strins Variables
Functions
TAB
RND
INT
GOSUB. . . . RETURN
User Defined Functions DEF FN $P(X, Y)$
You now have enoush command of the Basic. vocabulary to implement the other charcteristics of Basic not already mentioned.

IL AIGITAL LOGIC EIRCUITS

- Losic tircuits deal with discreta auantities or valtase levels. For Transistor Transistor Losic (TTL) a losic 1 is +5 volis and a losic 0 is 0 volts. .

This chapter on losic circuits serves two furposes.

1. It provides a backsround in TTL losic. circuits so that you can so on to study microrrocessor circuits.
2. It i.s a foundation course in FTL diaitai losic.

The followins is a sussested order of study for the activits units.
A. Semiconductor Review
B. Number Systems
C. Losic Levels
D. Introduction to the Losic Tester
E. Losic Gates.
F. Boolean Alsebra
G. Sequential Losic Circuits
.H. Combinational Losic Circuits

94

A Semiconductor Review

1 A Frospamised Keview of Transistor Operation

2 The Bipolar Transistor as a Suitch
3. Desisn of Transistor switchins

1

A PROGRAMMED REVIEW OF TRANSISTOR OPERATION

Your understanding of logic circuits is dependent upon a knowledge of bipolar transistor operation. A knowledge of transistor action is a prerequisite to this program, but the following review is included to refresh your understanding of this important subject.

To use this program simply read the information in each numbered frame and answer the accompanying question by filling in the blank(s) or choosing the correct answer. Cover the frames below the one'you are reading with a piece of paper so that you will no't be tempted to look at the answers. As you complete each frame, slide the paper down to reveal the next frame in sequance. The correct answet to the question in the previous frame appears in parenthesis at the beginning. The lesson material then continues. For best results complete this entire section at one time rather than breaking it into several study periods.

1. A transistor is a three element semiconductor device used in electronic equipment for controlling a large currentwith a smaller current. Transistors ars uśed primarily as amplifiers with gain buit are also used as switches in digital logic circuits.

Transistors are made of semiconductor materials such as silicon and germanium. These are matarials whose resistance is somewhere between that of conductors and insulators.

The resistance of silicon is
a. greater than
b. less than
c. the same as
the resistance of a good conductor such as copper.
2. (a. greater than) Since the conductivity is between that of good conductors and insulators, the resistance of a semiconductor like silicon is greater than that of copper but considerably less than the resistance of an insulator such as glass or ceramic.

There are two types of semiconductor material, P-type and N-type. A semiconductor such astillicon is combined with other materials to form these two different types. For example, certain impurities are added to pure silicon to form P-type and other inpurities are added to form the N -type. The resulting N -type material is one which has an excess of free electrons. In other words, the majority current carriers, are electrons. In P-type material, the majority current carriers are holes. A hole is the absencie of an electron in .the atomic structure of P-type silicon material, and it acts like a positive charge. P-type semiconductor material has an excess of holes to support current flow.
Current flow is ${ }^{\prime}$ by \qquad in N-type material and by
\qquad in P-type material.

$$
\%
$$

dIRECTION OF CURRENT FLOM,
B

Figure 2-1
A PN function diode (A) and its schematic nymbol (B)
3. (electrons, holes) Transistors and other semiconductor devices such as diodes and integrated circuits are made by combining P-type and N-type materials. For example; a diode is formed by joining P-type and N -type sections as shown in Figure 2-1A. The P-type section is designated as the anode, and the N-type section is designated as the cathode.

The PN junction thus formed has unilaterial characteristics. That is, current will flow through it ìn only one direction. It blocks current (electron) flow in the opposite direction. Figure 2-18 shows the symbal used to represent a PN junction diode in schematic diagramb,
A junction diode is censitive to the \qquad of current flow.
4. (direction) If we apply a dc voltage to the junction diode, current may or may not flow through it depending upon the polarity of the voltage. This applied voltage is called bias. Figure 2-2 illustrates one way in which a junction diode can be biased. The series resistor R limits the current to a safe level.

In Figure 2-2, electrons flow out of the negative terminal of the battery into the N-type material. If the bettery voltage is high enough to overcome an inherent potential barrier associated with the junction, the electrons will cross the junction and fill the holes. As the holes in the P-type material are filled, new holes are formed as electrons are pulled from the P-type material by the positive terminal of the battery. The result is a continuous current flow through the device. This arrangement is known as forward blas.

To bies a junction diode into conduction, the P-type element is connected to the \qquad terminal of the battery and the N -type element is connected to the \qquad terminal of the battery.
5. (positive, negative) To forward bias in a PN junction diode, the positive (P) battery terminal is connected to the P-type element and the negative (\mathbb{N}) terminal of the battery is attached to the N -type element. The result is a continuous flow of current through the device that is effectively limited by the external circuit resistance. A voltage drop of approximately .7 volts occurs across a silicon diode. This drop is essentially constant regardless of the current value. The drop across a conducting germanium diode is about 3 volt.

How much current flows in the circuit of Figure 2-3?

$$
\mathrm{I}=\ldots \mathrm{ma}
$$

Figure 2-2
Forward blasing a PN function diode so that it conducta

Figure 2-3 A forward biasod diode.
6. (1 milliampere) In this circuit the diode is forward biased because the polarity of the applied voltage is correct. Therefore, current does flow. This current is limited by the resistance, but of course, is also a function of the battery voltage and the diode voltage drop. In this circuit, the diode drop is about 7 volts because the device is silicon. This means that the voltage drop across the resistor is (5 .7) $=4.3$ volts. The current (1) is then found by Ohm's lew.

$$
I=\frac{E}{R}=\frac{4.3}{4.3 K}=\frac{4.3}{4300}=001 \mathrm{amp}=1 \mathrm{ma}
$$

Current flows in a PN junction diode when it is \qquad
7. (forward biased) A forward biased diode conducts and acts as a very low resistance, permitting current to flow through it freely. If the polarity of the applied voltage is reversed as shown in Figure 2-4, the diode is said to be reverse biased.

With this arrangement, the electrons from the negative terminal of the battery fill the holes in the P-type material. The excess electrons in the N -type material are drawn away by the positive terminal of the battery. The effect is to draw the current cariers away from the junction so that no current flows. The diode acts as an effective open circuit. In a practical diode some leakage current does flow across the junction. But in a good silicon device this current is very low, in the microampere or nanoampere range, and for most applications can be considered to be negligible or zero.

To reverse bias a diode so that no current flows through it, the cathode (N) must be \qquad with respect to the anode (P).
8. (positive) If the cathode is positive with respect to the anode, the diode is reverse biased and no current flows. To achieve this, the positive terminal of the battery is comnected to the N -type cathode, -and the negative terminal is connected to the P-type anode.

If the anode is made positive with respect to the cathode then current will flow. True or False?
9. (True) With the anode (P) positive with respect to the cathode (N). the diode is forward biased so current does flow. As you can see, the diode is polarity sensitive and that current does indeed flow through the device in only one direction, from cathode to anode.

Transistors are simply an extension of the junction diode concept. Transistors are formed by combining the P - and N -type material to form two junctions. This is done with three semiconductor elements. Figure $2-5$ shows the two types of transistors.

The device in Figure 2-5A is an NPN transistor and the device in Figure 2-5B is a PNP transistor. Note the two arrangements of alternate P and N type materials.

The symbols used to represent these two types of transistors are shown in Figure 2-6 below.

Figure 2-6 -
Tramsistor Symbols
The direction of the arrow is the distinguishing feature.
A transistor:has (how many?) \qquad PN junctions.

A NPN
日. PNP

Figure 2-5
Types of junction transistors
10. (two) Both types of transistors have two PN junctions. Each junction behaves exactly like the PN junction diode discussed earlier.

The three elements of each transistor are given specific names as indicated in Figure 2-7.

In a transistor, qurrent flows through the device from the emitter through the base to the collector (holes in a PNP transistor and electrons in an NPN transistor). The presence or magnitude of this emitter-collector current is dependent upon the existence or magnitude of the base current.

The control element in a transistor is the \qquad
11. (base) Yes, the base is the costrol element. It effectively determines the magnitude (or presenctiofeny emitter-collector current.

In order for a transistor to function properly, the emitter-base (E-B) and base-collector (B-C) junctions must be properly biesed. Proper bias to cause a transistor to conductoccurs when the E-B junction is forward biased and the B-C junction is reverse biased.

Is the PNP transistor shown in Figure 2-8 properiy biased for conduction? Yes or No? \qquad
12. (No) The B-C junction iśOK since it is reverse biased (+ to N and to P), but the E-B junction is reverse, not forward, biased. The polarity of battery E_{1} must be reversed.

Using the circuit configuration shown in the previous frame, draw the proper biasing for an NPN transistor.
13. (Refer to Figure 2-9). The E-B junction is forward biased $(+$ to P and - to N) and the $\mathrm{B}-\mathrm{C}$ junction is reverse biased (+ to N and- to (T).

In apractical transistor circuit you can measure the voltages at each transistor element and noting the magnitudes and polarities, you can determine if the transistor is conducting or cut off.

Using the knowledge you've obtained to this point, determine the condition of the transistor in Figure 2-10.

This
a. PNP transistor
c. is conducting.
b. NPN
d. is not conducting.
14. (b. NPN, c. is) The transistor is conducting. The base is more positive than the emitter so the E-B junction is forward biased. Note the difference of potential across the conducting E-B junction is .7 volts, the forward voltage drop of a silicon diode. Most modern transistors (diodes and integrated circuits) are silicon devices.

The base is less positive or more negative than the collector by (3.5 $-2)=1.5$ volts so this junction is reverse biased. Therefore the transistor is conducting.

Is the PNP transistor in Figure 2-11 conducting or nonconducting? \qquad \}

Figure 2-9
A properly blased NPN transistor

Figure 2-10.

Figure 2-11

15. (non-conducting) Both the E-B and B-C junctions are reverse

Figure 2-12 Current flow in a properly blased NPN tranaistor
biased so current does not flow from emitter to collector.

The actual path for current (electron) flow in a properly biased NPN transistor is shown in Figure 2-12.

A large current $\left\{I_{E}\right.$) flows into and through the emitter, through the base to the collector. Note that a small amount of emitter current divides off and flows out of the base. This is the E-B junction forward bias current or the base current I_{B}. Its magnitude is usually considerably less than that of the emitter current. The remaining current (I_{C}) flows out of the collector.

Considering the current relationship in Figure 2-12, how do you think the current flowing out of the collector compares to the current entering the emitter? The collector current is
a. equal to
b. less than
c. graater than
the emitter current.
16. (b. less than) The collector current (I_{c}) in reality is very nearly equal to the emitter current (I_{E}) but is less than the emitter current hy an amount equal to the base current (I_{3}). The exact relationshipis as expressed below.

$$
\mathbf{I}_{C}=\mathrm{I}_{E}-\mathrm{I}_{B}
$$

You would expect current to flow in the E-B circuit because this junction is forward biased. But you would not normally expect current to flow in the collector because the B-C junction is reverse biased. The electrons flowing in the emitter enter the base. Here some of the electrons combine with holes in the P-type base anid create the current flow out of the base. However, most of the electrons pass on through the base and into the collector. The reason for this is that the base is extremely thin and has only a minimum of available carriers to support current flow. The electrons passing through the base are then attracted by the positive charge on the collector. The collector current is
a. much higher than
b. much lower than
c. about the same as
the emitter current.

9

$\stackrel{ }{ }{ }^{\circ}$

Semiconductor Davices for Digital Circuits
17. (c. about the same as) Most of the electrons in the emitter pass through the thin base into the collector and become collegtor current. A few electrons do combine with holes to produce a mall base current.

The current flow in a properly biased PNP transistor is as shown in Figure 2-13. It is similar. but not exactly like that in an NPN transistor.

Figure 2-13
Electron and hole flow in a properly biased PNP transistor

The current carriers in a PNP transistor are holes rather than electrons. Internally the holes flow from positive to negative. External to the transistor the currant is electron flow as indicated by the dashed lines. The internal hole currents have the same relationship as electron flow in the NPN device.

$$
\mathrm{I}_{C}=\mathbf{I}_{E}-\mathrm{I}_{E}
$$

The electron flow external to the transistor is perhaps more clearly expressed as

$$
\mathrm{I}_{\Sigma}=\mathrm{I}_{C}+\mathrm{I}_{\Sigma}
$$

Of course these two expressions are mathematically identical since one can be derived from the other by simple algebraic manipulation.

If the emitter current is 4 ma and the collector current is 3.85 ma , what is the base current? $\mathrm{I}_{B}=$ \qquad
18. (. 15 me or $150 \mu \mathrm{~A})$ The base current is the difference between the emitter and collector currents or

$$
\begin{gathered}
\mathrm{I}_{B}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{\mathrm{C}} \\
\mathrm{I}_{\mathrm{B}}=4-3.85=.15 \mathrm{ma}
\end{gathered}
$$

The collector current is less than the emitter current by the amôunt of the base current.

The ratio of the collector to emitter current is approximately one because in most cases the collector current is very nearly equal to the emitter current. This ratio is called the forward current gain (α) or alpha).

$$
\alpha=\frac{\mathrm{I}_{C}}{\mathrm{I}_{E}} \approx 1 \text { since } \mathrm{I}_{C} \approx \mathrm{I}_{B}
$$

(\approx means approximately equal to)
Practical values of alpha run in the .95 to .99 range. The higher the gain the better the transistor.

Using the values in the previous example ($\mathrm{I}_{\mathrm{E}}=4 \mathrm{ma}, \mathrm{I}_{\mathrm{C}}=3.85 \mathrm{ma}$) what is the current gain alpha?
19.

$$
\left(\alpha=\frac{\mathrm{I}_{c}}{\mathrm{I}_{\Sigma}}=\frac{3.85}{4}=.9625\right)
$$

While alpha is always less than one, we still refer to this current ratio as a gain.
Figure 2-14 below.shows another way of connecting the bias to a

Figure 2-14
Biasing an NPN transistor with a common emitter connection

Note here that the emitter is the common element for the supply voltages rather than the base in the previous examples.
will this transistor conduct? \qquad

20. (Yes) The transistar will conduct. Figure 2-15 shows the current paths.

The transistor conducts beceuse the E-B junction is forward blased and the B-C junction is reverse biased. This reverse bias condition can be more readily seen if you consider the voltage on the base. With the E-B junction forward biased the base is 7 volts more positive than the emitter. The collector is more positive than the base with respect to the emitter because E_{3} is usually much greater than .7 volts. For this reason the base is less positive or more negative than the collector, thus the reverse bias.

In Figure 2-15 what is the relationship between the various currents flowing?
a. $\mathrm{I}_{B}=\mathrm{I}_{C}+\mathrm{I}_{B}$
b. $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{E}}+\mathrm{I}_{\mathrm{E}}$
c. $\mathrm{I}_{c}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{E}}$
21. (a. $I_{k}=I_{C}+I_{B}$) The base and collector currents combine at the emitter to form the emitter current. The relationship expressed below

$$
\mathrm{I}_{\boldsymbol{s}}=\mathrm{I}_{\mathrm{c}}+\mathrm{I}_{\boldsymbol{z}}
$$

holds true for any transistor in any bias circuit configuration.
Since both blas voltages E_{1} and E_{5} are positive with respect to the emitter as shown in Figure 2-15 then they can be replaced by a single supply battery as shown in Figure 2-16. The result is proper bias for conduction at a considerable savings in the power supply.

The values of R_{s} and R_{c} are adjusted to provide the desired current levels. The bias voltage is labeled $V_{c c}$ and is called the collector supply.

In Figure 2-16
a. $\mathrm{I}_{\mathrm{s}}>\mathrm{I} \mathrm{c}$
b. $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}$
c. $\mathrm{I}_{\mathrm{B}}<\mathrm{I}_{C}$

Note: $>$ means greater than
< means less than

Figure 2-15
Curreat flow in a common emitter biasing circuit

Figure 2-16 Simple voltage biasing of an NPN transistor
22. (c. $\mathrm{I}_{\mathrm{B}}<\mathrm{I}_{C}$) The base current is always less than the collector current. But they are related as you learned earlier.

$$
\mathrm{I}_{E}=\mathrm{I}_{B}+\mathrm{I}_{C}
$$

The ratio of the collector current to base current is another way of defining the gain of a transistor.

This is known as the dc forward current gain designated as β (beta) or $h_{f E}$.

$$
\mathrm{h}_{F E}=\beta=\mathrm{I}_{C} / \mathrm{I}_{B}
$$

The higher this ratio, the higher the gain.
If $\mathrm{I}_{C}=3.85 \mathrm{ma}$ and $\mathrm{I}_{B}=.15 \mathrm{ma}$ the gain is \qquad ـ.
23.

$$
\left(\mathrm{h}_{\mathrm{F},} \frac{\mathrm{I}_{C}}{\mathrm{I}_{\mathrm{E}}}=\frac{3.85}{.15}=25.67\right)
$$

This current gain figure actually tells us how much control the base current has over the collector current. Remember that if no base current flows due to a lack of forward bias on the E-B junction, then no collector or emitter current flows: It is also true that the amount of collector current flowing depends upon the amount of base current. The collector current is directly proportional to the base current. The I_{C} / I_{B} ratio is essentially constant for a given transistor so increasing I_{B} increases I_{C} by a factor equal to $h_{r z}$.

If I_{C} is $4 \mathrm{ma}, \mathrm{h}_{\text {FI }}=20$

$$
\mathrm{I}_{B}=
$$

\qquad ma.
24. (. 2 ma or $200 \mu \mathrm{~A}$) Since $\mathrm{h}_{f t}=\mathrm{I}_{C} \mathrm{I}_{B}$ then $\mathrm{I}_{s}=\mathrm{I}_{C} / \mathrm{h}_{f t} 80 \mathrm{I}_{B}=4 / 20=.2$

If we decrease I_{B} by .05 ma the new I_{C} will be \qquad ma.

1

g
25. (3 ma) $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{B}} \mathrm{h}_{\mathrm{FE}}=(.2-.05) 20=3 \mathrm{ma}$.

Note that we decreased I_{B} by .05 ma while I_{C} decreased by 1.0 ma , a 20 to 1 ratio (h_{Fs}). Therefore you can see that the smaller base current can control the larger collector current.

As you change the base current to control the collector current the \therefore transistor acts essentially as a variable resistor. A high collector current means a low emitter to collector resistance and a low collector current represents a high emitter to collector resistance.

An increase in base current causes the emitter-collector resistance to \qquad
26.
(decrease) Increasing I_{A} increases I_{C} so that the transistor conducts more and-appears as a lower resistance.

In amplifier applications a small signal such as a sine wave varies the base current to produce a larger collector current variation of the teme shape.

The transistor can also be used as an on-off switch. If no base current is applied no collector current flows so the transistor is cut off. It acts as an open switch. If a high base current is applied, the transistor conducts and acts like a very low resistance. The transistor appears as a closed switch. In this program on digital techniques, the tranisistor will be considered a switch.

UNIT Two

Self Test Rèview

1. Current flow in N-type semiconductor material is by
a. boles
b. electrons
c. positive ions
d. negative ions
2. Current (electron) flow in a PN junction diode is from
a. P to N
b. N to P
c. either a. or b .
3. To cause a current to flow in a PN junction it must be
a. forward biased
b. reverse biased
c. connected to a source of ac
d. subjacted to an electric field
4. Current will flow in a PN junction diode if
a. P is,- N is +
b. the cathode is positive with respect to the anode.
c. the cathode is negative with respect to the anode.
d. P is,$+ N$ is
5. Majority carrier flow through a transistor is from through the \qquad to the \qquad
6. A conducting NPN transistor has which of the following bias conditions?
a. base positive with respect to emitter and collector negative with respect to base.
b. base negative with respect to emitter and collector regative with respect to collector.
c. basénegative with respect to emitter and collector positive with respect to collector.
d. base positive with respect to emitter and collector positive with respect to base.
7. The gain of the common smitter transistor circuit is
a. I_{B} / I_{B}
b. I_{C} / I_{E}
c. $\dot{I_{C}} \dot{I_{B}}$
d. $I_{E} I_{C}$
8. Which expression below accurately describes the relationship between the various transistor currents?
a. $\mathrm{I}_{C}=\mathrm{I}_{E}+\mathrm{I}_{B}$
b. $\mathrm{I}_{C}=\mathrm{I}_{\mathrm{E}}-\mathrm{I}_{B}$
c. $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{C}-\mathrm{I}_{\mathrm{B}}$
d. $\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{C}}+\mathrm{I}_{\mathrm{K}}$
9. The collector current is controlled by varying the \qquad current.
10. The emitter-collector resistance
a. increases
b. decreases
when the collector current decreases.

Answers

1. (b) electrons
2. (b) N to P or cathode to anode
3. (a) forward biased

4. (c) cathode is negative with respect to the anode and (d) P is + and N is
5. emaitter, base, collector
6. (d) base positive with respect to emitter and collector positive with respect to bese
7. (c) $\mathrm{I}_{C} / \mathrm{I}_{\mathrm{B}}=\mathrm{h}_{\mathrm{FI}}$
8. (b) $\mathrm{I}_{C}=\mathrm{I}_{E}-\mathrm{I}_{E}$
9. base
10. (a) increases

Learnins Activity A2
The gipolar Transigfior as a Switeh
Objective: To be able to relate transistor action to losic levels.
\star
There are two basic tupes of transistor switches used in the implementation of disital intesrated circuitsy the bipolar transistor and the metal oxide semiconductor field effect transistor (MDS-FET).

In disital applications the transistor operates as an offion switch, When the transistor is conductins full on (saturated) it 'operates like a closed.switch, When the transistor is cui off il operates like an oren switch.

A cutoft transistor is equivalent to 3 losic 0 and a saturated transistor is equivalent to a losic d,

Learning Activity A3

Desist of a Switching Transistor
Objective: To design a transistor driver for a LEII.

Use the following first approximations:
<a, Voe $=0$ when the transistor is on
b. Voe $=$ Voc when the transistor is off
co Collector to base leakage ignored

Desist Considerations.
1 Define the load, usually voltage and current.
2 Specify supply voltage.
3 Select transistor maximum Ic, must be $2 \times I c$ required and voltase breakdown must be 2 Kif.

4 Determine series dropping resistor.

$$
R c=\frac{V e c-V L}{I c}
$$

5 Calculate Ib

$$
\text { ifc }=\frac{I c}{I b} \quad I b=\frac{I c}{h f e}
$$

to insure saturation half hfé
Ib $=$ Ic $=\frac{2 I c}{\text { hfe/2 }}$

6 Calculate Rb

$$
R b=\frac{V_{i}-V_{b e}}{I b}=\frac{V_{i}-7_{i}}{I b}
$$

Application

Desisn a transistor oriver for a LED

No. 1 Ic $=20$ milliampre
$\mathrm{VL}=1.7$ Volts
No. 2 Vce $=+5$
No. 3 Use transistor 2N3904
No. $4 \mathrm{Re}=\mathrm{VCE}_{\mathrm{L}} \mathrm{VL}=5-.7=165$ ohms
Ic $20 \mathrm{E}-3$
No. $5 \mathrm{Ib}=2 \times \mathrm{xhfe}=2(.02)=.04=.4$ ailibmps

No. $6 \quad \mathrm{Vi}=5$ Volts

$$
\mathrm{Rb}=\underset{-4 \mathrm{E}-3}{5-.7}=\underset{.4 \mathrm{E}-3}{4.3}=11 \mathrm{E}+3 \text { ohms }
$$

Typical circuit

B1. Decimal System

B2 Binary Numbers
B3 Octal Numbers
B4 Hexadecimal
B5 Binary Asdition
B6 Binary Subtraction
B7 Multiplication of Binary Numbers
B8 Division of Einary Numbers
B9 Binary Coded Decimal (BCI)
B10 Addins Uctal Numbers - Addins Hexadecimal Numbers

Learnins Activity B1

Decimal Sustem
The number system most familiar to us is the decimal systery in which the characters have ten possible states.

0	$=0$
0	+1
1	$=1$
$2+1$	$=3$
$3+1$	$=4$
$4+1$	$=5$
$5+1$	$=6$
$6+1$	$=7$
$7+1$	$=8$
$8+1$	$=9$
$9+1$	$=10$
$10+1$	$=11$
1	

$98+1=99$
$99+1=100$
$100+1=101$

The decimal system has the concept of place value.
That is; $71=7 \times 10^{\prime}+1 \times 10^{\circ}$

Dependins upon the position of the numeral, with respect to the decimal point, that numeral is multiplied by some power of 10.

Another exanple:

$$
\begin{aligned}
728 & =7 \times 10^{2}+2 \times 10^{1}+8 \times 10^{0} \\
& =700+20+8=728
\end{aligned}
$$

Binary number sustem is similar to the decimal system excert that there are only two fossible statesy 1 and 0.

Decimal
Binary

Convertins from Binary to Decfral is similar to flace value in the Decimal sustem. i.e.

$$
\begin{aligned}
\langle 1010\rangle_{2} & =<1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2{ }_{10}^{0} \\
& =8+0+2+0=<10\rangle_{10}
\end{aligned}
$$

To develof skill in this arear convert the followins Binary numbers to decima $\frac{1}{3}$:

$1100=$
$1111=$
$10,000=$
$10 \cdot 110=$
Can sou think of a way to convert decimal numbers to binary numbers?

See Introduction to Micraprocessors: Softwarey Hordwäre, Prosfanains by Lance A. Leventhal. P.503-504.

Learnins Activity E3

Detal Numbers

Convertins from octal to decimal is similar to the
place value system used in-decimal:

$$
\begin{aligned}
{ }^{13} 8 & =\left(1 \times 8^{1}+3 \times 8\right) 10 \\
& =8 \cdot+3=1110
\end{aligned}
$$

Practice convertins the followins octal numbers to decimal:

```
11=\cdots++%*+*+*
16=..........
17=\ldots.......
20=
117=..........
```

Can you think of a way to convert decinal numbers to octal?

The followins method can be used to convert from octal to hiñary.

```
(1,7)
```

Separate the numerals and supply the correct dinapy number for each numeral. Note use 3 binary bits for each octal numeral.

Erample $(2,0)_{8}=(010,000)_{2}$
Convert the followins octal numbers to binary.

$11 \cdots+\cdots+\cdots$	16
$17+\cdots+\cdots+\cdots$	24

Jearnins Activity E4
 He\%adecimal

The Hexadecimal (Hex for short) number system is similar to the Decimal number system except the characters have 16 possible states.

necimal	Hexadecimal	Binars
0	$0=0$	0000
1	$0+1=1$	0001
2	$1+1=2$	0010
3	$2+1=3$	0011
4	$3+1=4$	- 0100
5	$4+1=5$	0101
6	$5+1=6$	0110
7	$6+1=7$	0111
8	$7+1=8^{\text {a }}$	1000
9	$8+1=9$	1001
10	$9+1=A$	1010
11	$A+1=E$	1011
12	$\mathrm{H}+\mathrm{I}=\mathrm{C}$	1100
13	$\mathrm{C}+1 \doteq \mathrm{H}$.	1101
14	$\square+1=E$	1110
15	$E+1=F$	1111
16	$F+1=10$.	10000
17	$10+1=11$	10001

Converting from Hexadecimal to llecimal is similar to the decimal place value sustem.

Example:

```
\({ }^{11} 16=\left(1 \times 16^{1}+1 \times 16^{0} 10\right.\)
\(=16+1=1710\)
```

To improve sour skill in convertins from Hex to
necimal, convert the followins Hex numbers to decimal.

```
12
19
= .........
\(1 \mathrm{~A}=\)
1B \(=\)
iF
```

Can you think of a was to convert Ilecimal numbers to Hexadecimal?

The followins method cen be used to convert from. Hex to Binary:

$$
1 B_{16}=(1,8)_{16}=(0001,1011)_{2}
$$

Separate the He\% numerals and supfly the correct binary number for each numeral. Note: use 4:binary bits.

Example: $\quad 20 / 16=(0010,0000)_{2}$
Convert the followins He\% numbers to Binary: .
12
19
18
1F
2E
2F
AF
A6
FF

Rules: $0+0=0$
w $\quad 0+1=1$
$1+1=10$
11 earry
101
011
$-10002=810$
Add the following and check your answer by convertins to decimal.

1011
$+0110+1001$
:---
-

Learnins Activity B6
Binary Subtraction

$$
\text { Rules: } \begin{aligned}
0-0 & =0 \\
1-0 & =1 \\
1-1 & =0 \\
0-1 & =1 \text { with a Borrow }
\end{aligned}
$$

Example: $A=1011 \quad A-B \quad 1011$
$B=0110 \quad-0110$

| A | $\begin{array}{llll}1 & 0 & 1 & 1 \\ B & -0 & 1 & 1\end{array}$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{C} | $=0$ | 1 | 0 | 1 |

Check by adding i.e. $\mathrm{B}+\mathrm{C}=\mathrm{A}$
B

C \quad| 0 | 1 | 1 | 0^{2} |
| :--- | :--- | :--- | :--- |
| \mathbf{A} | $=1$ | 0 | 1 |

Possibly a better method would be to suess the value of C that must be added to B to eaual A.

This method should be demonstrated by the teacher.

$$
\left.\begin{array}{rl}
A & 1
\end{array}\right) \quad 1 \begin{array}{lll}
A & 1 \\
B & - & 0 \\
1 & 1 & 0 \\
C & =
\end{array}
$$

The followins method must be demonstrated. It involves findins the $2^{\prime} s$ comflement of the subtrahend and addins it to the winuend.

How did I get the answer on the risht?

Step I

Find the $1^{\prime \prime} s$ comflement of $\mathrm{B}(0110)$
Step II
Add +1 to form the 2 's complement of $B \frac{t}{1010}$ Step III

Add $2^{\prime} 5$ complement of R to A

$$
A=1011
$$

two's complement of B

$$
=.1010
$$

Ir OF (1) 101

Overflow
Perform the following subtraction by forming the $2^{\prime} s$ complement of the suhtraction and addins.

0110	10100110	00111100	1011
-0011	-01101100	-00011010	-1010
-	-	-	

Convert the followins decimal numbers to binary and subtract.

| 16 | 22 | 7 |
| ---: | ---: | ---: | ---: |
| -12 | -11 | -6 |

Why use this method to subtract?
These operations can be perfor $\begin{gathered}\text { ed } \\ \text { auite easily bu disital }\end{gathered}$ circuits. Also computers like to do things such as. conpleaentins and addins.
-

Learnins Activity 87
Multiplication of Einary Numbers

This can be accomplished by repeated adaition.
Example:

$$
1011
$$

1011
x 0.11
+1011 .
--0---
10110
$+1011$
100001
Another method:
Shiftins"a number to the left is the same as multiplying by 2 .
\& $\begin{array}{r}1011 \\ \\ \hline\end{array}$
10110 Note: A is shifted one flace to the left to set result. Check result by convertins to decimal.

To multrly bu 4, shift the number left pleces.
This interesting concept will be explored with the confuter under prost amming.

Learnins Activits Rg

Division of Einary Numbers
This can be accomplished by refeated subtraction. Method not shown:

$$
\frac{1100}{11}=0100
$$

Another method:
Shift the dividend risht one place for each divide by 2
to find the auotient.
Example: $1100=$ (Shift right 2 flaces) 11 100

This is a very interestins concept and will be explored in the prosrammins section.

Learnins Activity F 9

Einary Coded Ilecimal (BCN)
In ACH four bits are uscd to refresent each number between 0 and 9.

Example:

necimal	BCI
0	0000
0	0001
1	
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Numbers between 9 and 99 are refresented in the folTowins maniner.

09	
10	
11	
69	
99	

Convert the followins decimal numbers to ECn usins eishit bits.

5
33
77
16
ASCII (American Standard Code for Information
Interchan(se) numbers can easily be conver ted to BCD, can you see how this can be done?

Probably the best way to add octal numbers is to use a number line,

Example: $\quad 5+6=13$
number line $\begin{array}{lllllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 10 & 11 & 12 & 13 & 14\end{array} 1516$
Example subtraction $\quad 5-6=-1$
number line $-3-2-10123458789$
Another example

$\therefore \sqrt{2}+13$ number line $\begin{array}{llllllllllllllllllll} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18\end{array}$

More practice may be required add the following octal numbers:
$13+10=$
$16+06=$

$67+06=$

Adding Hexadecimal Numbers
The sane system that was used to add octal numbers can be applied. to heradecintil numbers.

Example:

$$
8+6=E
$$

奖

- Use the Hexadecimal number line to ado the following Hexadecimal numbers.

Answer all the above correctly and you get ra star.

C Clock Fulses and Intesrated Circuits

1 Clock Pulses
2 Application of clock pulses
3 Construction of an intesrated circuit
4 Development of integrated circuits
5 Characteristics of intesrated circuit

Learning Activity Ci

Clack Fulses

Objective: To introduce the conceft of clock fulses.
Clock: Reference timing source in a systemg typically. a microprocessor. A clock provides resular pulses that trisser or synchronize events.

A clock pulse can be described as a transition from a losic 0 to a losic 1 and back to a losic 0 . In TTL positive losic a losic $1=+5$ voltsy and a losic $0=0$ voltsy see fisure 1. A losic 1 is also called a Hi and a logic 0 a L . The concert of a clock pulse with leading and trailins s edse must be thoroughly understood and cammitted to memory. An ihlustnation is presented in fisure 1.

TTL Positive Logic

Logic 1

Logic 2

Logic 0

Trailing Edge Negative Trailing Edge

Figure 1

Figure 2 is an illustration showing tupical clock pulses enterins and leavins a TTL losic circuit. The important characteristics of these circuits are:
t(r) - Rise time, the time it takes the pulse to rise from 10 percent to 90 percent of it's maximum value.
t(f)-Fall time; the time it takes the pulse to fall. from \mathbf{q}_{0} fercent to 10 percent of it's maxifum value.

Profasation belay: The time delay between input transition and output transition.
$t(p h 1)$ - Propasation delay ogcuring while the output chanses from hish to low, usually measured at the 50 percent level.
t(plh) - Propasation delay occurins when the output chanses from low to hisho usually measured at" the 50 fercent level.
t(w) - Pulse widthy usually measured between the 90 percent levels of the pulse:

Figure 2

Learnins Activity C2 Afflication of Clock Fulses

Objectives: To show the relationship between clock pulses, control sisnals, databits and address bus levels.

Figure 3 shows the relationship (time) between clock pulse 1 ($\not(1)$) clock pulse 2 ($\$ 2$) ; Read/Write (R/U) line, Address Rus level, Valid Memory Address (UAA) line and Data « from the microprocessor.

This illustration indicates that when the R/W line is low, UMA line is hish and the $\not \subset 2$ clock goes throush a positive to nesative transitiong nata will be transferred from the Microprocessor to a specific location in memory. This location is determined by the address bus.

For further information see R6500 Hardware Manuel pases 1-15, 1-16, and 5-8,

Figure 3

Figure 4; 35 in figure 3 , shows the relationship (time)
 (R/W) line, Address Bus level, Valid memory Address (UMA) line and Data on the meta Rus.

When the R / W line is hist, the UMA line is hash and \mathbb{C} goes through a positive to negative transition Data will be transferred from memory to the microprocessor. The specific location in memory is determined by the Address bus.

Note: In both figure 3 and 4 the transitions take, place on the trailing edge of the 62 clock pulse:
a

Learnins Activity C3

Fatrication of an intestated circuit

Intesrated circuits are constructed as selectively etchins and diffusion of a silicon wafer. The method used to accomplish the selective etchins is called Fhotolithosraphy. "Photolithosrafhy is the frocess by which a microscopic pattern is transferred from a fhotomask to a material layer in an actual cipcuit."

The followins illustration shows the process of photolithosraphs.

Photo resist apflied to top of the silicon oxide

Photo Resist Silicon Oxide

Photo mask flaced on. tof of resist and the wafer is exposed to ultra violet lisht.

Wafer flaced in develofer solution: Window ofened

$\$$

Wafer immersed in hydrofloric acid, silicon oxide etched away.

Gaseous diffusion by N material to form an NP junction.

In a similar manner other junctions are formed in the silicon wafer. Finally metal contacts are attached to the junction meterial. These contacts then becomé the transistor leads.

Learning Activity C4

Objective: To trace the development and fabrication of integrated circuits,

Read the following articles from Scientific American. September 1977; theme issue on Microelectronics.

Article 1
Microelectronics, by Robert N. Noyce; pase 62.
Article 2
Microelectronic Circuit Elements: by James D. Meindly pase 70.

Article 3
The Fabrication of Microelectronic Circuits by William G. Oldham rise 110.

Additional articles on computers are contained in TIME, February 20, $1978{ }^{\circ}$ 'This journal contains a special section on the Computer Society.

Characteristics of Intesrated Circuits
Objective: To admpare semiconductor technolosies.
TTL losic will be used as the standard for comparins other technolosies.

Characteristics of TTL losic are:
NANI sate losic
Hish level Z out varies from 10 to 70 ohms
Low level \mathbf{Z} out $=R(s a t)$
Power supfly is tupically +5 volts
Power dissifation fer sate is from 12 to 22 milliuatts
Propasation delas varies from 12 to 22 nanoseconds, defending upon circuity

Very sood noise immunity
Masimum fan-out $=10$
The followins semiconductor. technolosies will be compared to TTL lasic. TTL is used for comparison purposes because most disital circuits employ thl losic.

PMOS (P-channel MOS), A relatively dense, cheap, but slow technolosy,

NMOS (N-channel MOS). A denser, cheap; medium-speed technolosy.

CMOS (COmplementary MOS). A low-power, hish noise immunjty technolosy.

- Schottky TTL. A hish speed, hish power, fully compatanle technolosy that is not as dense as MoS.

Low-Power Schotiky TTL. A low. power version of the Schottky TTL.

ECL (emitter-coupled losic). An ultra hish speed, hish power technolosy.

IIL'A new technolosy that has many of the best characteristics of the other technolosies. Theoretical predictions imply that IIL could eventually be denser and chearer than Nidus, faster than TTL, and as low in power. consumption and as hish in noise imaunity as CHOS.

Characteristics used for comparison purposes are:

1 Speed: The delay of a losic sate is a measure of it's switchins time, short delass mean hish switchins speed.

2 Density: Typical sate size is a measure of the technolosy density. Very dense technolosy can produce sinsle-chif microprocessors.

3 Cost: A measure of cost is the tupical cost per sate.
4 Power consumption: A measure of power consumption is the power dissipated in a sate.

5 Noise Immunity: A measure of noise immunity is the variations fermitted in voltase levels before alosic transition accurs.

6 Russedness: Russedness, refers to the ability to withstand extreme conditions or variations in such factors as temperature; fressure, humidity, shock, toraue, Yibration, chemical conditions (such as acidity and sajt huild us), and nuclear radiation.

7 TTL Compatability: TTL compatability is important because most electronic systems are built with standard TTL circuits.

8 Maturity: Use of a mature technolosy makes sustem implementation simpler and avoids many of the difficulties that are always associated with state-of-the-art technoloss.
\rightarrow The technolosies favoured by the various charcteristics are:

1 Speed: ECL and Schottky TTL technolosy is the fastest.

2 Density: PMOS and NMOS have the hishest density and produce sinsle chip microprocessors.

3 Cost: PMOS and NMOS are currently the cheafest per sate.

4 Noise Immunity: CMOS technology has the hishest noise immunity. CMOS; however, mas° be damased by larse current variations or static chanses. IIL has considerable potential here.

5 Power consumption: CMOS technolosy consumes the laast power; ECL and Schotiky TXL the most'. IIL could challense cmos in this erea.

6 Russedness: CMOS technolosy is the most russed.

7 TTL Compatahility: Schotiky TTL technology are completely TTL compatable. Some of the newer NMOS and CMOS processors are also TTL compatadie.

8 Maturity: NMOS is the most common technolosy used with microprocessors and CMOS and TTL are the most common technolosy used with digital circuits.

The above information is from Appendix 4, Introduction to Microprocessors: Saftware, Hardware, Prosramsins. For further information see the above and Chafter 2 in Disital Frasrammins.

Which semiconductor technolosy would you select to interface the data and address lines of a 8502 microprocessor to an external device that uses TTL losic? Justify your decision.

Learning Activity I
 Construction of a Losic Tester

Objective: To construct a logic tester.

The learning activity will outline a method that cantle applied to construct a logic TTL logic tester.

The logic tester will have 7 individual circuits.

1. Power supply
2. 8 bounceless switches
3. 8 LED test monitors
4. One Hz oscillator
5. One hundred KHz oscillator
6. 2 seven segment readouts
7. Speaker with a TTL driver

Mount the following hardware as fer figure 1.
8 SPDT switchers
8 Tips jacks next to the switches
8 LEIS
givip jacks next to the LED
2 Seven seanérit readouts
14 Tip jacks around the 7 segment readouts
1 Jack for the 1 Hz output
1 Jack for the 100 KHz output.
$121 / 2$ inch speaker

Printed circuit boards will be required for each of the following circuits. These circuits could be combined to form 1 large printed circuit board or several seller boards.

1. Power Supply

Schematic diagram 9

Parts:
Ti $120-6 / 12$ val transformer
[11-114 1A, 100 U silicon diodes
CI : 3000 microfarad 25 volt capacitor
C2 10 microfarad 25 volt capacitor Q1 LM 309K 5V voltage regulator Power cord SPST Off-ON switch

Printed Circuit Board layout.

Directions:
Construct printed circuit (PC) board, see Learning Activity 12

Mount the transformer
Hire up bridge rectifiers
Wire up C1 and C2
Install Q1; LM 309K
Install power cord and OFF-ON switch
2. Rounceless switches

Schematic dias tam

Parts:

Partial
switches.

3. LEV test monitors

Schematie diasram,

Parts:

IC1	7404
D1	LED (Lisht Emithins Diode) max $115 / \mathrm{ma}$
R1	200 ohes $1 / 2$ wetts

Partial Pegboard layout.

Directors
Construct PC board see D2
Connect LED between pin 2 and the junction 1
Connect R1 from junction 1 to +5
Pin 1 is the input
Install components in a similar manner for the rest of the inverters in the 7404.

4 and 5 Oscillators
Schematic diagram for the 1 Hz oscillator

Part5:

IC2	\because	7404
C2	1022 microfarad cepacitor	
R2	150 ohm resistor	

PC board layout

Construct PC boardy see p2 for instructions
Connect C1 between pin 1 and pin 4
Connect R1 between pin 1 and pin 2
Connect C2 between pin 13 and pin 10 Connect R2 between pin 13 and pin 12

6 Seven sesment readouts

See Hewlett-Packard optoelectronics desisners catalosuey 1979, pase 41 for additional information.

The seven sesment display should be mounted at the top centre of the losic tester; see fisure 1.

Pictorial layouta for the 7 sesment readout

In order to have the 7 sesment display indicate decimal values from RCD code a 7447 BCD to seven sesment decoder driver must be interfaced with the 7 sesment readout.

Interconnection diasram between 7 sesment display and 7447 decoder driver.

Parts:
$\begin{array}{ll}\text { ICY. } \\ \text { SPF } & 1 / 2 \text { inch low impedance speaker }\end{array}$

Directions:
Construct PC board, see D 2
Connect speaker between +5 and pin 2
TTL input to pin 1

How to make a printed circuit board

Objective: To construct a printed circuit boars.

Most printed circuits consist of etched copfer foil wirins fatterns bonded to any of several insulatins beses. The best bases are mede of glass-epoxy board, slass polyester is next, and phenolic is the cheapest.

The bases are lamenated with 1-ounce and 2-ounce coffer foil on one or both sides. To form a frinted circuit the copper foil must be etched.

Stefs in constructins a printed circuit boars.

1. Master Artwork.

-

क) After decidins on your basic circuit desisn, layout your components on arid so you can determine the interconnectins lines ete.
b) Select a $1 / 10$ inch grid fattern, Place a piece of clear acetate over the srid. pattern.
c) Usins Bishop arafhics pressure sensitive electronic component draftins aids las out your circuit on the acetate overlay.

First lacate all your terminals and IC patterns.
Then join your terminals and patterns usins Bishop graphics tapes.

Bishop spaphics patterns are supplied in $1 火 ; 2 X$, and $4 X$ actuel size. It mas be to your advantase to use the 2 X or 4 X scale and photosrafhically reduce sour. artwork.
2. Producins the Nesative,

Have a photosrapher photosraph your artwork and supply you with the negative, If your artwork was $2 X$ the photosrapher will have to reduce the picture size by $1 / 2$ to sive sou the correct nesative.
3. Select a frinted circuit board.

The size of the printed circuit board will be determined by the size of the nesative.
4. Clean the copfer side of the board.

Clean the copper on the board with coppertone or similar copper cleaner. When the board is clean, runnins water will bead and run off the board in a manner similar to uater on a newly folished car.
5. Dry the surface,

Either blow dry the surface or ory in an warm quen (150 destees F) for ten minutes.

IMPORTANT: The followins sters must be done using a safe lisht, for eample, a yellow bus lisht.
6. Apply the photo resist.

Use Kodak KPR-4 photo resist.
Two methods that can be used to apfls the fhoto resist are:
a) Use a small brush and afply a thin even coat of KPR-4 on the copper side of the board.
b) Apfly a fine spray of photo resist on the copper using an air brush, When sprasing keep the air brush about 8-10 inches from he board. Apply lisht even strokes startins at the upper left hand corner and finishins at he extreme opposite corner. Be sure to overspray on each edse. As soon as the board is completed las it flat, face up for a couple of minutes.

Be sure to clean us with laquer thinner after using the air brush.

It is important that the coatins is even. and will dry without runs. If the coatins is uneven remove it with thinners and start over.
\therefore 7. ary the photo resist.
Three methods are possible:
3) Place the sensitized board in an oven set at 115 degrees F for 20 minutes.
b) Let the board dry overnisnt at room temperature.
c) Force dry the board with a heat gun or spin dry.

REMEMBER: Still under the safe lisht.
8. Exposins the sensitzed board.

Place the poard in a cqntact frame, sensitized surface uf.

Place the nesative, with the pattern showins the was it will finally affear, on tof of the coffer and close the slass frame tof.

Expose the board to ultra violet lisht for 4 to 5 minutes.

Position the ultra violet lisht $6-10$ inches eway from the contact printer.
9. Develor the sensitized boars.

Put $1 / 2$ inch of Kodax KRP developer in an aluminum tray. Place the board in the developer for 1 minute, slishtly asitatins the tray durins this time. This step will remove the fhoto resist that was not hardened by exposure to the ultra violet lisht, because of blockese bs the nesative.

WTORMAL LIGHT NOW OK
10. Harden the resist.

Remove the board from the developer. Stahd the board in a nearly vertical fosition; allow the resist to harden for 3 to 5 minutes.

Rince the board under sently runnins water.
Bry the board.
Errors in the frinted circuit can be corrected by paintins, the faulty section with fibre tifped recrist pen.
11. Etch the board*

Immerse the board in a tray containins liauid ferric cloride $\begin{gathered}\text { Be careful handins ferric cloridég-Keepictit in a }\end{gathered}$ slass or plastic container.

Slishtly asitate the tray while the board is beins eleched by the ferric cloride. This process may thake from 20 minutes to 2 hours.

Several methods are available to speed uf the process.
a) Heat the solution to 140 desress F.
b) Spray the ferric cloride on the board.

c) Pumf bubbles into the solution, this increases the asitation of the solution and speeds ur etchins.

Remove the board from the resist when the etching is complete, Remainins on the board is the frinted circuit sou desisned.
12. Clean the board.

Use laguer thinner and a soft cloth to remove the resist rembining on the doard. folish the coffer frinted circuit with coffer cleaner and fine steel wool.

Experience is the best teacher; if at first you don"t succeeditry asfin. You too can make prafessional lookins circuit boards.

For further information see
Frinted Circuit Handbook by GC Electranics
Printed Circuit Handbook by Jena
Printed Circuit Handbook by Clyde F Coanos Fublished ay McGraw-Hill: Book Co.

Printed Circuit Boards for Microelechronics by J. A. Scarlett, fublished by Van Nostrand Reinhold.

73 Masazine; November 78; F. 240 June 77, F. 178: March 77, F. 136 Afril 77: F. 58

E Losic Gates

The purpose of this section is to learn how the basic sates operate. The method used will be to observe and verify the TTL losic sates under actual oferating conditions\%.

E1 ANI Gate

E2 OR Gate
E3 NANI Gate
E4 NOR Gaté
E5 Buffer:
E6 Invertier
3
E7 Exclusive-OR
E8 Exclusive-NOR
E9 Tri-State Buffer

Learnins Activity El

AND Gate

Objective: fo verify the oreration of an ANI Gate.

```
Select a 7408 Intesrated circuit.
Look u* Pin connections"in Fairchild"TTL IIata Book.
Wire the 740B on the Losic Board.
t 5 on Pin/4
Ground on Pin 7
Afply Losic A to Fin 2
Apfly Losic B to Pin 1
Connect LEN Monitor to Fin 3
```


Complete the followins Truth Table for the 7408

$H i=1$
Lo $=0$

Draw the symbal for the AND Gate.

Conclusion: The output fram a TLL AND Gate is hish only when

Select a 3 input AND Gate and record it's Truth Table.

Learnins Activity E2

QR Gate

Objective: To verify the oferation of an OR Gate.
Select a 7432 intearated circuit.
Look us fin connections in the Fairchild TTL Dabe Eook.
Wire the 7432 on the Losic Board.
+5 on Pins 14
Ground an Pin 7
Connect Losic A to Fin 1
Connect Losic B to Pin. 2
Connect LED Monitor to Pin 3
Complete the following Truth Table for the 7432

Conclusion: The output from a TTL OR Gate is hish when

Test the other 3 OR Gates in the 7432.

Learning Activity E3:

NANII Gate

OBjective: To verify the operation of a NANS Gate. -
Select a 7400 integrated circuit. Look ur fin connections in the 'Fairchild TTL Data Blok.

Wire the 7400 on the Logic Hond,
$t 5$ on Pin 14
Ground on Pin 7
Connect Losic A to Pin 1
Connect Logic B to Pin 2
Connect LED, Monitor to Fin 3
Complete the following Truth Table for the 7400
$\mathrm{Hi}=1$
$2 \mathrm{Lo}=0$
$=$

Draw the symbol for the NAND Gate.

Conclusion: The output from a. TTL NAND Gate is hish when

Test the other 3 NAND Gates.

Learning Activity E4
 NOR Gate

Objective: To verify the oferation of a NOR Gate. "
Select a 7402 integrated circuit Look up pin connections in the Fairchild TTL Data Eook.

Wire the 7402 on the Losic Board
+5 on Pin 14
Ground on Pin 7
Connect Losic A to Pin 2
Connect Logic B to Pin 3
Connect Len Monitor to Fin 1
Complete the followins Truth Table for the 7402
$\mathrm{Hi}=1$
$-\mathrm{LO}=0$

Draw the sumbal for the NOR Gate.

Conclusion: The output from a TTL NOR Gate is hish when

Selećt a 3 input NOR Gete and record it's Truth Table.

Learning Activity Es

BUFFER
J. Objective: Ta verify" the operation of a BUFFER/Driver.

Select a 7407 intésrated circuit.
Look ur Pin connections in the Fairchild. TTL Iata Book.
Wire ur the 7407 on the Logic Boards; +5 on Pin 14
Ground on Pin 7
Logic switch A on Pin 1
LED Monitor on fin 2
Since this Buffer has open collector A ${ }^{*}$ up"; resistor must be installed between fin 2 and VCC, use $1 K 1 / 4$ watt.
Complete the following Truth Table for the $7 / 407$.
$\mathrm{Hi}=1$
$\mathrm{Lo}=0$

Draw the symbol for a BUFFER.

Give at least one purpose a buffer can serve.

Learnins Activity E6

INUERTER
i
Objechive: To verify the oferation of an INUERTEF.
Select 37404 intesrated circuit. Look up Pin connections in the Fairchild TTL Data Book.

Wire us the 7404 on the Losic Board.
+5 on Pin 14
Ground on Pin 7
Losic switch A on. Pin. 1
LED Monikor on Fin 2 (Q)
Conflete the following Truth Table for the 7404.

$$
\begin{aligned}
& \mathrm{Hi}=1 \\
& \mathrm{LO}=0
\end{aligned}
$$

Draw the symbol for an INUERTER.

Give ai least two uses an inverter can serve.

Learning Activity E7

Exclusive-ar

Objective:- To verify the operation of an Exclusive-of"Gate. Select a 7486 integrated circuit. Look up Fin connections in the Fairchild TTL Iata Book. Wire up the 7486 on the Logic Board. +5 F Fin 14
Ground on Pin 7
Logic A on Pin 1
Logic B on Pin 2
LED Monitor on Final (Q)
Complete the following Truth Table for the 7486.
$\mathrm{Hi}=1$
$\mathrm{LO}=0$
-

A	B	Q
0	0	
0	1	
1	0	
1	1	

Ir aw the symbol for an Exclusive-OR Gate.

Conclusion: When A and B are Low, Q is
When A and B are fish; Q is
When either A or B; but not both; is high, Q is

The output of an Exclusive-OR Gate is only high when either or is Kish.
J

$$
\because \quad . \quad 1
$$

Learnins Activity E8

Evelusive-NOK

Objective: To verify the oferation of an Exclusive-NOR Gate
Select a 74266 intesrated circuit.
Look up Pin connections in the Fairchild TTL llata Book. (Note: Bpen Collector)

Wire up the 74266 on the Losic Board.
+5 on Pin 14
Ground on Pin 7
Losic A on Pin 1
Losic B on Pin. 2
LED Monitor on Pin 3 (Q)
1K $1 / 4$ watt pull upresistor between Fin 3 and VCC (required for aren collector)

Complete the followins Truth Table for the 74266.

$$
\begin{aligned}
& \mathrm{Hi}=1 \\
& \mathrm{Lo}=0
\end{aligned}
$$

A	B	Q
0	0	
0	1	
1	0	
1	1	

- Oraw the symbol for the TTL Exclusive-NOR.Gate.

Conclusion: The output from an Exclusive-NDR Gate is low only when either or is hish but $\cdot . . \ldots \ldots$..... when both are hish.

Tri-State Euffer

```
Objective: To verify the oferation of a Tri-State Fuffer.
Tri-State Buffers are normally used where more than 1 data bus line feeds the same goint. The outfut from the active bu's can be hish or low while the output from the non-active bus will be in a hish impedance staite and have no effect on the other data bus outfuts.
Select a 74126 intesrated circuit.
Look uf gin connections in the Fairchild TTL Bata' Fook.
Wire up the 74126 on the Losic Board.
+5 on pin 14
Ground on pin 7
Losic A on pin 2
Losic B on pin 1 (E)
Hewlett Packard logic probe to monitor pin 3 (Q)
In order for the Tri-state Ruffer to output data \(E\) must be hish.
Comflete the followins Truth Table for the 74126
```

```
\(\mathrm{Hi}=1\)
\(\mathrm{Lo}=0\)
\(X=\) does not natter
```

E	A	Q
1	0	
1.	1	
0	x	

[^0]

F BOOLEAN ALGEBRA

Supfose you are siven the equation $\mathrm{X} 42=\mathrm{X}$, you wduld Frobably*say "That equation is false." Howevery if you limit the value of X to-only 0 and 1 then the eauation is vislid.

Georse Boole (1815-1864), an Enslish mathematican, developed a system of losic based on these two binary numbers, where 1 is true and 0 is false. There are two oferations in this sustem t or $\mathbb{k}_{\text {, thes represent the }}$ losical operstions $O R$ and AND.

Misital losic uses only. two disits 1 and 0. Mathematicans and circuit desisners were auick to adopt Boole's operations and laws. The subject is now known as Roolean Alsebra and provides a method to mathematically. represent disital losic circuits.

Fundamental Boolean Identities
1 true
0 Palse
A and 8 are variables; that is they may represent 1 or 0 .

T meàns not $A *$ means ANI $\quad t$ means $0 R$ Identities Comments

$1 A * A=A$	$A A N D A=A$	$1+1=1$
$2 A+A=A$	A ORA=A	$1+1=1$
$3 A * A=0$	$1 * 0=0$	
$4 A+\bar{A}=1$	$1+0=1$	
$5 A+1=1$	$1+1=1$	$0+1=1$
$6 A * 1=A$	$1 * 1=1$	$0+1=0$

Commutative Laws: Same as in alsebra excepl + means add and means multiply.

$$
\begin{aligned}
& A+B=B+A \\
& A * B=B * A
\end{aligned}
$$

Associative Laws: Same as in alfebra except + means add and * means mulifity.
(A*E)*C=A*(B*C)
$(A+B)+C=A+(B+C)$

Mistributive Laws:
$A *(B+C)=A * B+A * C \quad$ Same as algebra
$A+B * C=(A+B) *(A+C) \quad$ Uniaue to Boolean
alsebra

Froof is supflied below using logic circuits and truth tables. Compare bhe results of the truth tables.

Figure 1

Figure 2

Truth table for fisure 1 Truth table for fisure 2.

	A	B	C	B*C	A + B* ${ }^{\text {c }}$	A	B	C	$A+B$	A +C	$(A+B) *(A+C)$
	0	0	0	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	1	0	1.	0
	0	1	0	${ }^{\circ}$	0	0	1	0	1	0	0
	0	1.	1	. 1	1	0	1	1.	1	1	1
\%	1	0	0	0	1	1.	0	0	1	1	1
	1	0	1	0	1	1	0	1	1	1	1
- \because	1	1	0	0	1	1	1	0	1.	1	1
	1	1	1	1	1	1	1	1	1	1	1

-

The following exercises are intended to sive you the necessary skills in apflsing Boolean Alsebra and to provide for the student an introduction to usins Boolean Alsebra to simplify circuit desisn.
Refrence text: Practice Problems in Number Sustems, Losic and Boolean Alsebra by Bukstein.
Problem Number
31. Theorems; assisnment applyins Boolean theorems or
identities.
32. Removins commón factors, factorins usins Boolean theorems,
33-35. The truth table, applications usins truth tables. (The above should be completed before combinational or sequential losic circuits.)
36-42. Convertins block diasram to truth tables and Roolean eauation or vice versa;
46-53. Developins skill in manipulatins Boolean eauations.
54. Developins skill in manipulating minterm and maxterm equations.
The remainder of the exercises 55-61 invalve construction of Karnaush maps and their application. This section should be considered optional.
The teacher should check all work sheets when the assisned exercises are, completed.

Sequential losic circuits are used in a variets of timins , sequencins and storase functions. There can exist an almost infinite variets of seauential losic circuits. A representative sample of the mast common types are included in these learnins activities.

The method used will be to introduce sou to various losic circuits and have you perform operations on them. The amount of informetion supplied is limited therefore'sou will have to investisate these circuits in more detail than that shown on sour learnins activity sheet.

1 Ástable Multivibrator
2 Monostable multivibrator
3 Schmitt trisser
4 : RS Flip Flop
5 JK Flip Flop

6 D Flip Flor (Latch)
7. Binary counters

8 Sunchronous counters
9. Up/Down counters

10 Decade counters
11 BCD counters
12 Shift resister 1
13 Shift resister, 2
14 Kam nemory
15 Construciion job (decade counter)

Learnins Activity G1
ASTABLE MULTIUIBRATOR

-Objective: To construct an Astable Multivibrator.
 To observe the oreration of an Astable Multivibrator.

The Astable Multivibrator is a fref runnins oscillator whose freauency is determined by the tiage constant in the base of each transistor. Construction of the Astable is accomplished by connectins two-transistor amplifiers'back to back:

* Select $2 N 4401$ transistors to construct the oscillator.

Complete Lab $\ddagger 25$, (Basic Techniaues in"Electronic

- Instrumentation: by Diefenderfer. F. 229.)

Draw a schematic diasram of an astable multivibrator.
Give a brief explaination of it's operation.

Is it possible to construct on Astable Multiviorator Usins Logic Circuits?

Some research reauired.

Learning Activity G2

MONOSTABLE MULTIVIBRATOR'

Ob, ejective: To learn the operating characteristics of a Manostable Multivibrator.

- Select a 74121 intesrated circuit. Look up. 74121 in the Fairchild TTL Data Book.

Complete Experiment $\# 12$ (Experiments in Hisital Principles, by Leach. P.59.). Braw a schematic dias ram of a momostable multivibrator.

How is output pulse. width determined?
When trisserins occurs, can the Monostable be. re-trissered?
Give two applications for a Monostable Multivibrator:

Objective: To observe the oferation of a Schmitt Trisser. To record the Hustenesis Voltase.

- The infut to Schmitt trigser is usyally a nonlinear voltase and the output is a rectansulay voltase.

Select a 74.132 intesrated circuit. Look up Pin connections in Fairchild TTL lata Book.

Wire up the 74132 accordins to the followins diastam.
+5 on pin 14 +5 on pin 14
Ground on pin 7

Set $R(1-)$ at 0 nesistance. Lisht

- Incresse resistance of ${ }^{2}$ (1) until lisht is on. $V(A)$ voltase at Pin 2
Decrease resistence of R(1) until bisht is off. (V(B) voltase at Pin 2

Hysteresis $=(\mathcal{V})-V(B)=$

Wire ur the following circuit usins a 74132.
+5 on pin 14
Ground on pin 7

Learning Activity G4

RS FLIP ${ }^{-F L O P}$

Objective: To verify by experiment an RS Flip Flop using Nand Gates.

A Flip Flop is a fundamental digital circuit whose output is either a 1 or 0 .

Select a 7400 integrated circuit.
Look up. Pin connections in Fairchild TTL Data Book.
Wire up the following circuit.
+5 to Pin 14
Ground to Pin 7

Complete the following Truth Table.

R	S	Q	\bar{Q}
0	0		
0	1		
1	0		
1	1		

Observe the above sequence when switching R and S.

Conclusion: When R is $H i$ and S is Lo then Q When S is Hi and R is to then Q

Note: a is not always opposite ©.
ARS Flip flop can be used to construct a bounceless switch. See: <Basic Techniques in Electronic Instrumentation, by Diefenderter, P. 317).

What are the limitations of the RS Flip Flop (See text).

Draw a schematic dias ran of a clocked flip flop, $(R S)$.

Objective: To observe the oreration of the JK Fitif Flop. Most 'aisital sustems operate in a sunchronous mode; i, e. are sunchronized with a system clock, and the flif flops are reauired to chanse state in synchronism with a clock sisnal.

Select a 7473 JK Flip Flof intesrated circuit. Kook up Fin connections in Fairchild TTL Data Book.
Wire a 7473 on Losic Roard.
+5 on Pin 4
Ground on Pin 11
EED Monitar on Q
Hi to C(H1)
Usins Losic Tester, complete thefollowins Truth Table, A clock pulse (a losic level goins from Lo-Hi-Lo) must be apflied to C(P1) in order to observe the output.

Before clock .. After clock
-Inpul - Dutrut

J	K		\ddots
0	0		
1	0		
0	1		
1	1		\ddots

[^1]Figure 1 is a summary of the 7473 JK Flip Flop. Note: Transfer of data takes place on the negative (Hi-Lo) transition of clock.

With J and K High apply 10 clock pulses.
Record the number of output pulses (Q)
State your conclusion.

Fisc. 1

为家
r

Objection To observe the operation of the If Flif flof. To learn how data can be stored.
$\%$
Sereet a 7474 D Flip Flop intesrated circuit. Look up Pin connections in Fairchild TTL Dala Book.

Wire a 7474 on Losic Board.
+5 an Pin 14
Ground on Pin 7
Hi on both $S(M)$ and $C(1)$
A clock pulse must be afflied to C(P) in order to correctly observe the output.

Complete the following Truth Table.
Before clock : After Clock

$$
H_{i} \doteq 1
$$

$$
L_{0}=0
$$

D	\mathbf{Q}
1	
0	

Repeat several times to check results.
What harpens to 0 if the clock is not applied?

- \quad

Conclusion: It D is low and a clack is applied, $Q \stackrel{ }{=}$
If \mathfrak{D} is hish and a clock is applied, $Q=$
Note: Transfer of data takes place on the nesative to positive (Lo-Hi) transition of the clock.

σ

Construct the following circuit and record your results on the output for various inputs. Note: After clock pulse, data is locked in the output.
Logic Hi on C(D)
Logic Hi on S(D)

What is the purpose of $C(D)$ and $S(D)$?
This is an example of a 4 Bit storage resister. Optional: Construct and test an 8 Bit storage resister. Show finished product to your teacher and be prepared to explain it's operation.

BINARY-COUNTERS

Objective: To construct a divide by $2,4,8,16$ Counter from JK Flif Flops.

Previously we learned that one JK Flip Flop will divides the clock pulse by 2 , that 4 clock pulses in $\mathbb{C}(P)$ sives 2 puises out at Q.

Select two 7473 JK Flif. Flop intesrated circuits. Look up Pin connections in Fairchild ITL Data Book.

Wire us the followins circuit
+5 on Pin 4
Ground on Pin 11
Hi on C(I). Switch Lo to Hi
$\therefore \quad$ LED Monitor on $Q(1)$ and $Q(2)$ and $Q(3)$ Losic Hi on Jand K

Clock
Butput
Decimal
$L(1)=4 \quad L(2)=2 \quad L(3)=1$

0	0	0	0	0
1				
2				
3				
4				
5				
6				
7				
8				

Complete the above table. Rem, clock requires Hi to Lo transition.

Conclusion: $Q(1)$ divides by
Q(i) with $Q(2)$ divides by
$Q(1)$ with $Q(2)$ and $Q(3)$ divides by
Using the above information, Desist and Test a circuit that will st vide by 16.

It is possible to divide by 10 or some other base. Design a circuit that will divide by 10.

For more information see H.P. Video tape binary on counters:

Learning Activity G8

SYNCHRONOUS COUNTERS

Objective: To observe and record the operation of a Synchronous Counter.

A synchronous counter (74160) chances the state of all fip-flops simultaneously providing a much fisher frequency capability. An asynchronous counter (7490) requires the output of one flip-flor to change state to trisser the next flip-flop. In asynchronous counters the maximum input frequency is limited by the time it takes for the pulse to ripple through the flip-flofs.

Select two 7476 and one 7408 integrated circuits. Look up Pin connections in the Fairchild TTL Iata Book.

Wire up the circuit in Pis. 1. +5 on Pin 5; 7476 and Fin 14: 7408 Ground on Pin 13: 7476 and Pin 7, 7408 LED Monitors on Q(1) - Q(4)
Logic A on Set $S(1)$ Logic B on Clear $\mathrm{C}(\mathrm{D})$ Losic $(\mathrm{C}$ on clock C(P) Logic g on $\mathrm{J}(1)$ and $\mathrm{K}(1)$, switch to Hi

Switch Losic Ay Lo - Hi, Note: All LEa's on.
Switch Losic B, Lo - Hi. Note: All LEN's off.
Switch Losic C, Hi - Lo.
This is clock fulse no. 1. Record the outputs, complete Table 1.

Clock		Dutput		$?$	Decimal
,	L(1)=8	- L(2) $=4{ }^{\prime}$	$L(3)=2$	$L(4)=1$	
0	0	0	0	- 0	0
1					,
2				-	!
$\therefore 3$.					
4.	:		1		-
5					
: 6				\therefore	
7	\%		- .	\cdots	
8		-			\cdot
9			.	.	\cdots
10				!	\because
11					:..
12		*	-		' .
13					
-14.					
15			*	-	-

You should observe that the sunchronous counter works similar to the asminchronous counter except that the chanse in Q levels is instantaneous.

Learnins Activity G9
UP/DOWN BINARY COUNTERS

Objective: To observe and record the operation of an - Up/Down Binary Counter with parallelifoad.

Select a 74193 intesrated circuit.
Look up pin out in Fairchild TTL Data Book

Hirg up the 74193 on the Losic board.
+5 on Pin 16
Ground on Pin 8
LED Monitors on $Q(0)-Q(3)$
Losic switches on $P(0)-P(3)$
Clock on count up Pin 5
Clock on count down Pin 4
LED Manitors on terminal count down
LED Monitors on terminal count up
Losic switches on master reset
Losic "switches on parallel load

Set $P(0)=0$
$\therefore P(1)=1$
$P(2)=1$
$P(3)=0$

MR Hi-KO
$\mathrm{PL} \mathrm{Hi}-\mathrm{LO}-\mathrm{Hi}$

Complete the following chart.
Count up Parallel Load

$C(P d)$	$C(P u)$	$Q(0)$	$Q(1)$	$Q(2)$	$Q(3)$	Carry
1	0	0	1	1	0	
1	Γ					
1	Γ					
1	Γ					
1	Γ					
1	Γ					
1	Γ					
1	Γ					
1	Γ					
1	Γ					

$$
\int C L O C K
$$

Count Down Parallel Load

- $\mathrm{C}(\mathrm{Pd})$	$\mathrm{C}(\mathrm{Pu})$	a<0)	$Q(1)$	Q(2)	a(3)	Borrow
0	1	0	1	1	0	\cdots
5	1 ;		\because	$\stackrel{ }{ }$		-
5	1				\because	,
5	1					
5	1.			10	:	\because
F	1.		\cdots		0	
T	1.		:	-		
5	1					
5	1		\therefore	3		
f	1			"		\cdots
F	1			\checkmark		
5	1	\cdots		$\because 6$		

List four functions the 74193 can perform:

Learning Activity G10

DECADE COUNTERS

Objective: To observe and record the operation of a Decade Counter.

Select three 7490 Decade Counters integrated circuits. . Look up Pin connections in the Fairchild TTL Data Book.

Wire up the 7490.
+5 on Pin 5
Ground on Pin 10
Losic A on fin 2 and 3
Lo on pin 6 and 7
LED Monitor on Pin 11
Pin. 1 tied to Pin 12
Suitch Losic A Hi to Lo

7490

Apply 20 clock pulses to Pin 14.
Count pulses out at Pin 11.

A Decade Counter divides' by

Cascade Decade Counters
Pins 1, 5, 10, 3, 6, 2, 7, as betore,

Apply 200 clock pulses to input
Count pulses out
ρ
2 Decade Counters in Cascade (Series) divide by
3 Decade Counters in Cascade divide by

Wire up the followins circuit.
Pins $1,5,10,3,6,2,7$ as before.
To'7. segment display To 7 segment display

Apply clock pulses to input.
Uhat do you observe?

y
 Learnins Activity G11

Binary Coded Décimel (BCD) COUNTER

Objective: To observe the operation of a Binary Coded Decimal Counter.

A BCD Counter is a seouential circuit that counts by tens. That is, the counter will cycle from 0000 to 1001 (9) and back to 0000.

Select a 7490 integrated circuit.
Look up Pin connections in the Fairchild TTL Data Book.
Wire up the 7490 on the Losic Board.
+5 on Pin 5
Ground on Pin 10
LED Konitors on, $Q(0)-Q(3)$
Pin 1 tied to Pin 12
Losic A on pin 2 and 3
Lo on 6 and 7
Switch Losic A Hi to Lo
Apply clock pulse to Pin 14

Complete the followins table.

Clock		Q_{0}	Q_{1}	Q_{2}	Q_{3}		Decimal
L		0	0	0	0		0
L							1
L							2
L	\ddots						3
L						4	
L							5
L				\ddots		6	
Z						7	
2						8	
2						9	

Learnins Activily G12
SHIFT REGISTERS I.

Objective: To be able to construct a Shift Resister fram flip flops.

Resisters are used to store binary information and to perform disitsl arithmetic operations.

Select two 7473 JK Flir Flops intesrated circuits. Select one 7400 Nand Gate intesrated circuits. Look up pin out in the Fairchild TTL Data Book

Wire up the followins Shift Resister usins 7473 Fif Flop and 7400 Nand Gate. +5 on Pin 14, 7400 and Pin 4,7473 Ground on Pin 7, 7400 and Pin íy 7473 Losic Hi on $\mathrm{C}(\mathrm{D})$ LED Monitor on A, By Cy D

Farallè

Apply $\underset{(\mathrm{MSB})}{\text { Pl }}$ (LSB) the input, LSB first
Ladder Chart for the shift register

Serial in (J.) (MSB)l101 (LSB)
Parallel out A,B,C,D 1101
Repeat the above and observe the serial inpet
is shifted through the JK flip flops. Note 4 clock pulses are required to shift in: a 4 bit word.

Learning Activity G13

SHIFT REGISTERS II

Objective: To observe, the operation of a 4-Bit Risht/Left
Shift Resister.

Select a 7495A Shift Resister intesrated circuit, Look up Pin connections in the Fairchild TTL Data Book.

Wire uf the 7495A for synchronous, shift risht serial: infut.
+5 on pin 14
Ground on Pin 7
Losic Lo to Pin 6

Construct a Ladder Chart to compare clock, serial in
(4 Bit.) and $Q(0), Q(1), Q(2), Q(3)$.
How would you resel the output to o?

Learnins Activity G14
 raM Memory

Objective: To write data into a Random Access Memory (RAM). To read data that has been previously uritten into a RAM.

Readins data from a RAM or writins data into a RAM invalves settins up the data lines, address lines, chif select line and the R/W line. For more information on the KAM, read Pase 7-20 to 7-31, (Microrrocessors, Heathkit) or similar text.

Select a 7400,7426 and 2112 integrated circuit. Look up pin out in Fairchild TTL Data Book and MOS Data Book.

Wire up the followins circuit. +5 on pin 14; 7400 and 74126 and fin 16; 2112 Ground on pin 7, 7400 and 74126 and pin 8, 2112.


```
Losic switches A,B,C and D select the RAM address.
Losic switches E,F,G and H select the RAM data.
R/W losic switch controls the read/write data.
Switch A=0, B=0, C=0, D=0
Data on the LEDs=
This is the contents of memory location 0000..
Switch E=0, F=0,G=1; H=1,.
Press R/W switch
Nata on the LEMs=
Note: the contents of address 0000 have chansed.
Why has this harpened?
```

Select odriress 0001 by settins
$A=0, \quad \mathrm{~B}=0, \mathrm{C}=0, \mathrm{D}=1$
Set input déta by selectins
$E=0, F=0, G=0, H=1$

Press R/W switch
Data on tife LEDs=
What is the contents of address 0001 ?

Describe how a RAM can read and write däte.

Note: A ROM is simply a RAM that cannot normally be written into.

Complete the following table by uriting data into the indicated address and then recordins that data.

Address	-Data
0000	0011
0001	0001
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Define the following: RAK.
ROH.
\geqslant
PROH.
...
EPROM.
Extra: Wire up tiva 2112 intesrated circuits to form a RAK with 8 bits of data, Read and write into the RAM. For assistance see (Microprocessors; Heathkit. pase 10-12).

Learnins Activity Gi5

Sequential Circuibs

Objective: To construct a basketbail. scoreboard that will resister scores from 0 to 99. It must be able. to reset to 0 and read out on the losic board (seven sesment).

See Teacher for:
Special instructions for constructing P.C. board. Special instructions for wire wraf.

You-will complete the readout part o this prosect when you complete combinational losic circuits.

H Combinational Losic Circuits

Combinational Losic Circuits are disital circuits that are made up of sates and inverters. The oulpul of a combinational losic circuit is a function of the state of it's inputs; the tyre of sates usedy and how they are connected.
H1 Decoders I
H2 Decoders II
H3 Encoders
H4 Nultiplexers
H5 Demultiplexers
H6 Hultiplexers Demultiflexers
H7 Half Adder
H8 Full Adder
H9 Parity Generator
H1O Parity Checker
H11 Four-Bit Arithmetic Losic Unit
H12 Construction Job

-Learning Activity H1
 deCODERS I

Objective: To verify the operation of the ANI Decoders. To construct and test several decoders.

The input to a decoder is a parallel binary number and the output is a binary signal that indicates if a specific binary number is present at the input.

Basic decoder is the ANI Gate:

- Wire up the following circuit and confirm the Truth Table.

A	\mathbf{B}	X
0	0	0
0	1	1
1	0	0
1	1	0

It is very important that you understand the above Boolean equation.

What is the Boolean equation for the following Decoders?

DECODERS II

Objective: To construct several decoders and record their. oferation.

A Decoder is a Losic circuit that will detect the presence of a seecific binary number or word and output a sfecific binary number or word.

Select a 7442 intesrated circuit.
Look uf Fin connections in the Fairchild JTL IIata Fook.
Wire uf the 7442.
+5 on Fin 16
Ground on fin 8
Losic switches on $A(0), A(1), A(2), A(3)$
LED Monitors on $\mathrm{Q}(0)-\mathrm{O}(9)$
Cpmplete the followins Truth Table.
Binary in
outrut

A3	A2	A1	AO	00	01	02	Q3	04	125	06	Q7	48	89
0	0	0	0	0		1	1	1	1	1	1	1	1
0	0	0	1								!		
0	0	1	0°	.					.		,	.	
0	0	1	1										\therefore
0	1	0	0		.								
0	1	0	1										
0	1	1	0							-			
0	1	1	1										
1	0	0	0										
1	0	0	1			-							
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1								-		
1	1	1	0							,			
1	1	1	1								-		

Which outfut soes low for the binary word 1001 ?

Select a 7454, 1 of ${ }^{7} 16$ Ilecoderp, integrated circuit. Look up Fin connections in the Fairchild TTL Inta Eook. Wire up the 74154.
+5 on fin 24
Ground on pin 12
$E(0)$ ens $E(1)$ to Lo
LEI Monitors to a 0 O - $\mathrm{Q}(15)$
Losic switches to $A(0), A(1), A(2), A(3)$
Complete the followins Truth Table.

AOA	$1{ }^{1}$	42		00	Q1	02	R3		4	as	106	a	a8		09		00	311	Q12		O14	Q15
0	0	0	0	0	1	1	1		. 1	1	1	. 1		1	1			1	1	1	1	1
0	0	0	1																	\cdots		
0	0	1	0	,																		
0	0	1	1												-							
0	1	0	0																			
0	1	0	1				.															
0	1	1	0						-			-										
0	1	1	1								.											
1	0	0	0									-				-						
1.	0	0	1																	-		
1	0	1	0																			
1	0	1	1																			
1.	1	0	0	*																		
1	1	0	1												-							
1.	1	1	0												\cdots							
1	1	1	1																			

Which output soes low for the binary word 1010 ?
How can you wire up the above circuit to give you a 1 of 8 Decoder?

Select a $7447^{\prime} \mathrm{BCD}$ to 7 . sesment necoder. Look uf Pin connections in the Fairchild TTL Itata Eook.

Wire up the 7447.
$t 5$ on Fin 16.
Ground on pin 8
LT and RB1 and $\mathrm{E} 1 / \mathrm{REO}$ to Hi
LED Monitors on a-. 5
150 ohm load resistors between $3-5$ and ts Losic switches $A(0) ; A(1) ; A(2) ; A(3)$

Complete the followins Truth. Tade.

$a-5$ to +5?
This inkesfated circuit is desisned to drive a 7
sesment repdout. Hire up a 7 sesment. readout and check that it can codnt from $0-9$.

Learning Activity H3

ENCOdERS

Objective: To observe and record the operation of an encoder.

An Encoder is a combinational logic circuit that accepts one or more inputs and generates a multi-bit binary output code.

Select a 7486 integrated circuit.
Look us Fin connections in Fairchild TTL Iata Book.
Hire the following Encoder.
+5 on Fin 14
Ground on pin 7
LED Monitor on A and F

IC $=7486$
R. $=1 K$

S(1), S(2), S(3) are Push Rut ton switches.
Complete the following Truth Table.

SE	A	E
si closed		
sh closed		
sh closed		

A
$\rightarrow \quad a$

Encoders can be used by a computer to determine if a whecific switch combination has been closed.
Can you think of any other applications for Encoders?

Qbiective: To observe and record the oferation of a Multiflexer.

A Multiflexer is an electronic circuit that is used to select and route any one of a number of infut-sisnals to a sinsle output.

Select a 74151 integrated circuit.
. Look us Fin connections in the Fairchild TIL IIata Fook.
Wire ur the 74151 .
+5 on fin 16
Ground "an fin 8
Lo on E
Led Monitor on Z
$I(0)=1 ; I(1)=0 ; I(2)=0 ; I(3)=1$
$I(4)=0, I(5)=1 ; I(6)=0, I(7)=0$
Complete the following' Truth Table.

Infut Outfut

$S(2)$	$S(1)$	$S(0)$	Z
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0		
1	$1(2)$		
1	0	1	
1	1	0	
1	1	1	$I(3)$
	$I(4)$		
	$I(6)$		

Iid you confirm that inpul was routed to the outfut? Explain.

Multiflexers are used to convert parallel data to
 serial data.

Desisn a circuit that will cause this to happen? <Consider an 8 Bit Multiplexerg see Heathkitg Digital Techniquesg Experiment no. 20\%.

TEMULTIFLEXERS

Dhjective: To observe and recghd the oferation of a
Demultiplexer.
A nemultiflemer has a sinsle infut and multifle outputs. A nemultiplexer is also callé z deta router.

Select a 74154 intedrated circuit,
Look uF Fin connections in Fairchild TTL Hata Book.
+5 on Fin-24
Ground on Pin 12
LED Monilors on Q(0) - Q(15)
Losic switch on $A(0)-A(3)$
Lo on $E(0)$ and $E(1)$
By selectins address infuts $A(0)-A(3)$, \mathfrak{c}. Lo applied to the enable infuts can be routed to any one 'of the outputs.

Complete the Truth Table.
Adoress
OutFuts

Learnins Activity Ho

MULTIFLEXER IEMULTIPLEXER

Objective: To construct and test a 1-of-16 Multiflexer and a 1-of-16 Demydtiflexer.
Select 74150, 74154, 7493, 7404 integrated circuits. Look up Pin connections in the Fairchild TTL Iata Book.

Wire up the following circuit.
+5 on pin 24, 74150 and fin 24, 74154 and. fin 5, 7493. and fin 14, 7404.
Ground on pin 12, 74150 and fin 12, 74154 and pin 10 , 7493 and fin 7, 74,04.

The 7493 selects the channel over which the data is transmitted. Select channel g by fulsins losic switch no.2. Losic switch 1 inforgedata.

LED reads out data. Make sure data is being transmitted and received. Pulse logic switch 2 and chanse to channel 1.

Locate input and outrut channel.
Infut pin on IC
Output pin........... on IC
Can you infut dota on any input channel and output it on the same channel? Show your teacher.

Conclusion: If this is trueg then one could transport 16 channels with only 5 wires.
half AHIER

Objective: To construct and observe the oferation of a Half Adder.

A Half Adder is a binary adder that adds two binary bits.

Select 'two intesrated circuitsiono. 7486 and no. 7408. Look uf fin connections in Fairchild TTL Deta Fook.

Wire úp the followins circuit:
$t 5$ on pin 14, 7486 and fin 14, 7408
Ground on pin 7, 7486 and rin 7, 7408
Losic switch on A and B
LED Monitor on Sum and Carry

Complete the followins Truth Table.

Infut		Outrut	
A	B	Sum	Carry
0	0	0	0
0	1		0
1	0		
1	1		

Write the Boolean eouation for Sum and Carry.

Learnins Activity HB

FULL ADDER

Objective: To consiruct and observe the oferation of a Full Adder.

A Full Adder is a binary adder that adds two binary bits and the carry from arevious addition.

Select three intesrated circuits; No. 7486, no. 7408. and no. 7432.

Look uf Fin connections in Fairchild TTL Nata Book.
Wire up the following circuit: .
+5 on fin 14, 7486 and pin 14; 7408 and fin 14, 7432
Ground on pin 7, 7486 and fin 7, 7408 and pin 7,7432
Losic switches on A, B and C
LED Monitar on Sum and Caray

Infut			Qutput		
A	B	C	Sum	Carry	
0	0	0	0	0	
0	1	0			
1	0	0			
1	1	0			
1	1	1			

Write the boolean equation for Sum and Carry,
Activity:* Hesisn a 4 Bil Adder. (That is an Adder that will add 4 Bit words with carry out).

Leernins Activitis \#g

PARITY GENERATOR

Objective: To construct and record the operation of a 4 Bit Parity Generator.

A Parity Generator is a combinational losic circuit that observes the 1 bits in the word and senerates the afpropriate farity bit. For even farity, the number of 1 bits in the word plus, the farity bit, will be even.

Select intesrates circuit no. 7486.
Look uf Pin connection's in Fairchild TTL Iata Fook.

Wire uf the followins circuit:
+5 on fin 14
Ground on pin 7
Loșic switches on 1, 2, 4: 5
LED Monitor on Parity git output

4 Bit Even Farity Generator

Complete the followins Truth Table.

Infut : Output
$=$

A	B	C	D	Parity Bit
0	0	0	0	0
0	0	0	1	1
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

For odd farity, the number of 1 bits in the word flus the farity bit, will be odd.

Desisn and test an odd Farity bit senerator.

Learnins Activity HiO

Farity Checker

Objective: To observe and record the oferation of an git parily checker.

A parity checker checks for the number of 1 bits in the word, senerates a farity bit and comfares the senerated bit with the word farity bit. If the word farity bit is incorrect a Hi is senereted at the outfut.

Select a 74180 intesrated circuit, farity senerator checker

Look us fin connec̀tions in Fairchild TTL Hata Fook.
Wire uf the 74180
+5 on fin 14
Ground on fin 7
Losic switches on $I(0)$ - $I(7$.
Losic switches on $E(I)$ and $E(0)$
Note: $E(0)$ must be the inverse of $E(I)$
LED Monitor on $\Sigma(E)$ to check farity hit for even farity $A \mathrm{Hi}$ on $\Sigma(E)$ means the even farity bit is incorrect

Complete the Table
Infuts
Outrut

$E(I)$	$0(I)$	$I(0)$	$I(1)$	$I(2)$	$I(3)$	$I(4)$	$I(5)$	$I(6)$	$I(7)$	$\sum(E)$
0	1	1	0	1	0	1	0	1	0	
1	0	1	0	1	0	1	0	1	0	
0	1	1	1	1	1	1	1	1	1	
0	1	0	0	0	0	0	0	0	0	

* Identify those combinations that have incorrect farity bits.

Show your teacher that you can set uf the farity bit for a word different from those above.

Learnins Activity H11

FOUF-BIT ARITHMETIC LOGIC UNIT

\qquad
Objective: To use an Arithmetic Losic Unit to perform binary addition and subtraction:

The 74181 integrated circuit, 4 Eit Arithmetic Losic Unit provides: 16 Arithmetic oferations

16 Losic oferations on two variables:
Select intesrated dircuit no. 74181.
Look up Pin connectyong in Fairchild TTL Data Book.
Wire uf the 74181
+5 on fin 24
Ground on pin 12
For addition:
Losic switches on $A(0)-A(3)$ and $B(0)-B(3)$
S(0) - Hi
S(1) - Lo
S(2) - Lo
$\mathrm{S}(3)-\mathrm{Hi}$
$M=L_{0}$
$C(n)=H i$
LED Monitor $F(0)$ - $F(3)$
LEN Monitor C(n.t 4)
Complete the truth table for a 4 bit binary adder

$A 3$	$A 2$	$A 1$	$A 0$	$B 3$	$B 2$	$B 1$	$B 0$	$F 3$	$F 2$	$F 1$	$F 0$	$C(n+4)$
0	1	1	0	0	1	1	0					
1	0	1	0	0	1	1	1					
0	1	1	1	1	0	0	1					

Convert the dinars input and output to decimal to check the accuracy of the 4 bit adder

For Subtraction: ,

- $\mathrm{S}(1)-\mathrm{Hi}$
$\mathrm{S}(2) \div-\mathrm{Hi}$
S(3) - Lo
$C(n)=H i$
All others 35 above.
Complete the followins truth table for A minus E minus 1

$A 3$	$A 2$	$A 1$	$A 0$	F3	B2	B1	BO	F3	F2	$F 1$	$F 0$	$C(n+4)$
0	1	1	1	0	1	0	1					
1	0	0	0	0	0	1	0					
1	0	1	0	0	0	1	0					

Convert the binary input and output to decimal to check your answer. Remember you: are subtractins A-B-1.

You may wish to investisate some of the other 30 oferations. See TTL Losic book for information.

Parallel two 74181 intesrated circuits to add two 8 Bit words with carry.

Learnins Activity H12

Construction Job

Objective: To construct a decoder and display for a decade counter.

To construct an interface between the TRS-80 computer and a Centronics printer with parallel interface.

Deaisn and construct a circuit that will decode data from 3 decade counter and displas it in decimal form from 0女o 99. This circuit will interface with the decade counter sou constructed in Learnins Activity G15.

Desisn and construct a circuit that will interface the TRS-80 computer to a Centronics printer with farallel interface: For assistance see Microcompuinins January 1980.

III Computer Architecture

All computers, whether micro or maxi, will reauire certain basic elements. The iaportant thins is to learn how to identify these elements in any computer ypu will use. Once this is done you can analyze variations on the basic theme. To fail to learn these basic elements will leave students vulnerable to those "new and improved" computers which alwass seem to be comins alons. As with all ensineerins activities, there are a few truly basic ideas. Most build on existins activities. Learn the basics and the details will take care of themselves.

This chapter is presented in two parts:
A Introduction to the Microcomputer
B A Real Computer

A Introduction to the Microcomputer

1 Hicrocomputer Architecture
2 Basic Computer Operation
3 Fetch/Execute of a Computer Prosram
4 Fetich/Execute Usins Zero Pase Addressing
$5_{\&}$ A Symbolic method to Illustrate H icrocomputer Operation

Learninģ Activity A1
Microcomputer Architecture

The purpose of this unit is to introduce the student to the computer via the microprocessor. Therefore all references to a computer are essentially references to.. microcomputers.

The microcomputer has three essential components:
1 The Microprocessor Unit (MPU), also called the Central Processor Unit (CPU): The MPU is considered to be the heart of the computer.

2 Memory, either Random Access Memory (RAM) or Read Only Memory (ROM).

3 Input/Outpút (I/O), provides a means of connectins the computer to the outside world.

A microcomputer is siemilar to a mini or mainframer computer, it does similar thinss but much slower. Essentially it receives data from the outside warld via the input port, processes this data, and delivers the resultant data to an outpui port.

Fisure 1 is a block diasram of a Microcomputer.

Basic computer operation

The icroeorputer uses the stored prosram concept. That is a prosram is stored in seauential memory locations and the MPU selects the address that contains the prosram data. This is done by sendins pulses out the address bus and control lines to a specific address. The contents of this address are output to the MPU vis the data bus. This data is then processed and the KPU selects a new address for datá

Fisure 2 will be used to explain the operation of an elementary microprocessor. This is a pseudo microprocessor, however, the ideas learned here are sufficient for you to understand the operation of most microprocessors. This is an eisht bit icroprocessor, data words are eisht bits wide and each memory location holds eisht bits of data;

Figure 1

Followins is a list of termsy including definitions, that are used with this microprocessor:

Accumulator: A special purpose resister associated with the Arithmetic and Losic Unit (ALU), which temporarily stores sums and other arithmetical and logical resuts of the ALU.

Arithmetic Losic Unit \{ALU): One of the three essential components of a microprocessor. The other two are the resisters and the control block. The ALU performs various forms of additions, subtraction and losic operations" such as ANDing the contents of two resisters and maskins the contents of a resister. .

Operation of an ALU utilizins the ADD instruction.

The control lines tell the ALU to add the two inputs. The result is stored in the accumulator.

Accumulator

Address Bus: Set of wires (lypically 16) used to trensmit an eddress from the microrrocessor to memory or I/D device.
σ

Address Resister: Temporary storase resister, it holds the address of the memory location presently under access.

Condition Code Resister: (This resister consists of a series of flas bits whose settinss reflect the state of the MPU after an oferation has been ferformed.
nata Bus: Set of lines carryins data. The data bus is usually bidirectional and tri-state.

Mata Résister: Temporary storase resistér for data soins to or conmins from the dita bus.

Instruction decode and control: As it's name implies it decodes instructions ans senerates control sisnals for the MPU and external devices such as memory and $1 / 0$.

Instruction Resister: Contains the opcode for the instruction bein's eغecuted.

Prosean Counter: Resister which contains the adoress of the next instruction to be executed.

MPU

Figure 2

Fetch/Execute of a computer prosram

A microcomputer seauences throush a prosram by followins a series of fetch; execute operations.

Durins the fetch fhase an instruction is read from memory and decoded by the MPU. Durins the execute shase the instruction operations are carried out. This sequence is repeated for the next set of instructions etc.

The followins are examples of MPU instructions, LDA, ADI, HLT; with a deseription of each:

To run this prospal the prosram counter is set to zero and the MPU sequences throush the prosram.

The followins pases are a series of illustrations that show MPU operation as the HPU seauences throush a prosran.

Run the Program
Fetch Cycle
${ }^{\circ} \mathrm{PMPU}$
Machine State No. I

The contents of the program counter are loaded into the address register and placed on the address bus.

Fetch Cycle

The contents (instruction) of the first address are placed on the data bus and read into the data register

Fetch Cycle

MEMORY

Address	Dath
$00 \ldots \ldots . .000$	10000110
$00 \ldots \ldots . .001$	00000100
$00 \ldots . \ldots .010$	10001011
$00 \ldots . \ldots .011$	00000101
$00 \ldots . \ldots .100$	00111110
$00 \ldots . \ldots .101$	00000000

The instruction in the data register is transfered to the instruction register for instruction decode and execution The program counter is incremented by 1
This completes the fetch cycle.

MPU

Machine state No.

Address	Data
00....... 000	10000110
00........001	00000100
00......... 010	10001011
On........ 011	00000101
00100	00111110
00........ 101	00000000
	-
\cdots	"

The contents of the program counter are loaded into the address register and then placed on the address bus

Execute Cycle

The contents (operand) of the selected address are placed on the data bus and. read into the data register

Execute Cycle

MPU
Machine state No. 3

MEMORY

Address	Data
$00 \ldots \ldots .000$	10000110
$00 \ldots \ldots .001$	00000100
$00 \ldots \ldots .010$	10001011
$00 \ldots \ldots . \ldots 01$	00000101
$00 \ldots \ldots . \ldots 100$	00111110
$00 \ldots . \ldots .101$	00000000

The contents (operand) of the data register are transferred to the accumulator

The program counter is incremented by 1 .

Fetch Cycle

PU
Machine state No. 1

T The contents of the program counter are loaded into the address register and then placed on the address bus

Fetch Cycle

The contents (instruction) of the selected oddress is placed on the data bus and read into the data register

MPD
Machine state No. 3

Address Data

The instruction in the data register is transferred to" the instruction register for instruction decode and control. The program, counter iss incremented by 1.

This completes the fetch cycle.

Execute Cycle

The contents of the program counter are loaded into the address register and then placed on the address bus.

Execute Cycle

MPU
Machine state No. 2

The contents (operandi) of the selected address are placed on the data bus and read into the data register.

Execute Cycle

MEMORY	
Address	Data
$00 \ldots000$	10000110
.00. $\mathrm{O}^{\text {. } 001}$	00000100
00........ 010	10001012
00........ 011	00000101
00....... 100	00111110
00........101	00000000
$\because \quad \cdots$	'
L \quad,	

The contents of the data register are loaded into the ALU The contents of the accumulator are loaded into the ALU

* The program counter i's incremented.

MEMORY

Address	Data
$00 ., \ldots . .000$	10000110
00....... . 001	00000100
00........ 010	10001011
00......... 011	00000101
00....... 100	00111110
00........ 101	00000000
.	

The sum of the accumulator and the data register are loaded into the accumulator. This is the end of the execute cycle.

Fetch Cycle

The contents of the program counter are loaded into the address register and then placed on the address bus.

- Fetch Cycle

MPU
Machine state No. 2

The contents (instruction) of the selected address are placed on the data bus and read into the data register.

MEMORY

Address.	Data
00. $\therefore \therefore . .000$	10000110
00........ 001	00000100
00,...... 010	10001011
00.....0.012	00000101
00....... 100	00111110
00........ 101	00000000

The instruction in the data register is transferred into the instruction register for instruction decode and execution. The program counter is incremented.

Execute Cycle

MPU
Machine state No. l

Address	Dets
$00 \ldots \ldots . .000$	10000110
$00 \ldots \ldots . .001$	00000100
$00 \ldots . \ldots .010$	10001011
$00 \ldots . . .011$	00000101
$00 \ldots . \ldots .100$	00111110
$00 \ldots \ldots . . .101$	00000000

The control stops producing control signals, all computer operation stops.

Learnins Activity A4
Fetch/Execute usins Zero Pase Addressing

The frosram in the previous illustration used the immediate mode of addressins. That is the operand was located in the address followins the instruction. -

Another common method of addressins is direct or zero pase addressins. In zero pase addressing, the address of the operand is contained in the second byte of the instruction.

This address must be between 00 Hex and FF hex.

The following progrem uses zero pase addressing:
Mnemonic code Address LSB Operation code Address LSB of the operand of the op-nd

In words, the contents of memory location 07 will be lozded into the accumulator and the contents of meinory location 08 will be added to the contents of the accumulator. The result will be stored in the accumulator.

The following pases are a series of illustrations that show MPU operation as the MPU sequences throush a prosram usins zero pase addressins. Fetch Cycle

Machine state No. 1

Address	Data
00........000	10010110
00.... $\therefore .001$	00000111:
On=........010	10011011
00........ 011	00001000
$00 . \ldots . .100$	00111110
00........ 101	00000000
00........ 110	00000000
00......... 111	00000100.
00....... 1000	00000101

The contents of the PC are put on the address bus.

The contents (instruction) of the first address are placed on the data bus and read into the address register.

The instruction in the data register is transferred to the instruction register for instruction decode and execution The program counter is incremented. This completes the fetch cycle.

Execute Cycle

MPU
Machine state No. 1

- The contents of the PCis placed on the address bus:

Execute Cycle

MPU

The contents (address LSB) of the selected abdress are placed on the data bus and read into the data register

The contents (address LSB) of the data register are read into the address register and placed on the address bus.

Execute Cycle

MPU
Machine state No. 4

The contents (operand) is placed on the data bus and read into the data register.

Execute Cycle

MPU
Machïne state No. 5

MEMORY

Addross	Data
$00 \text {. . . . } 000$	10010110
00...... . . 001	00000121
00.e.e.e. 010	10011012
00......... 011	000C. 1000
00........ 100	00111110
00........ 101	00000000
00........110	00000000
00........111	00000100
00....... 1000	00000101

The contents of the Data Register are transferred to the accumulator.
The PC is incremented

To complete the prosram the MFU must seauence throush the followins:

Fetch
1 The contents of the prosiami counter $\mathbf{(0 0 0 0 0 0 0 0 0 0 0 0 0 0 -}$ 10) are placed on the address bus.

2 The contents (opcode) of the selected address are transferred to the data resister.

3 The contents of the data resister are transferred to the instruction resister for instruction decode and execution, The frosram counter is incremented.

Execute
counter $100000000000000-$ 11) are placed on the address bus.

2 The contents (address LSB) of the selected address are transferred to the data resister.

3 The contents (address LSB) of the data resister are transferred to the sdress resister. The address contained in the address resister is placed on the address bus.

4 The contents (aperand) of the selected address is transferred to the data resister.

5 The contents of the data resister are transfered to the Arithmetic Losic Unit. The ALU adds the contents of the accumulator and the data resister and stores the result in the accumulator. The prosram counter is incremented.

The prosram will fetch and execute the HLT instruction as before

A Ssmbolic method to illustrate microcomputer operation

Ssmbols have been devised so that we can illustrate microcomputer operation in a shorter formg they are:

<---------> Data exchanse
(ADDR) Contents of a register
ADDR] Memory location address
([ADIR $]$) Contents of a memory location address MA Address pointed to by the ..address resister

Example (PC) --------> AR would represent. the transfer of the prosram counter, into the memory address resister.
-
The instruction fetch cscle could be represented as:

Compare the above method to the previous illustrations for the fetch cycled

Instruction execution (immediate adoressins)

State 1	(PC) .--m-->
State 2	([MA]) ----> ${ }^{\text {(}}$ (
State 3	

Instruction execution using zero pase addressins
State 1 (PC) ————— AR
State 2 ([MA]) ——— DR
State 3 (DR) ————AR
(PC) +1 ----> PC
Contents of the data resister are transferred to the LSB of the address resister and placed on the address bus. The prostam counter is. incremented.

State 4 ([HA]) ---> DR
State 5 (DR) ----> Acc.

Compare the above method to the previous illustrations showins the MPU sequence for execute usins zero pese addressins.

241

Learning Activity AG

Introduction to the STA (store) instruction usins zero fase addressing and sumbolic notation.

- ${ }^{\text {- }}$.	Mriemonic Code	Operatiort code	
Store the accumulator ai	STA	10010111	2
the address determined			
by the contents of the			
next location	\cdots		

Fetch

State 1	(PC) ---- AR
State 2	([MA]) ----> DR
State 3	(DR) ---m) IR
	(PC) $11-\ldots$ - PC

Execute
State 1 (PC) ————AR
State $2 \quad$ ([MA]) $\rightarrow \cdots$ DR
State $3 \quad \because$ (DR) $-\cdots$ AR
(PC) $+1 \cdots$ PC
Contents of the data restister are placed on the address bus via the address repister.

State 4 (A) ---m--> DR
Contents of the accumulator are
transfered to the data resister
State 5 (IR) $\rightarrow-\rightarrow$ AR]
The contents of the data resister are transferred to the address specified by tie memory address resister.

This completes your introduction to fetch/execute operation of the nicrofrocessor. The next section involves a real microcomputer. You will be asked to pertarm a series of operations. These are desisned to teach you MPU operation as well as the hPU instruction set.

B A Real Computer

1 Advanced Interactive Computer AIM 65
2 The AIM 65 Instruction set
3 AlM 65 Addressins Modes
4 AIM 65 Course Objectives
5 Uritins and Executins the ANB Prosram on the AIM 65
6 OR (IMMEDIATE)
7 Zero Pase Addressins
8 OR Zero Pzse Addressins
9 ADC (Addition)
10 SBC (Subtraction)
11. Printins out the result of an Addition

12 Input Data from the Kesboard
13 1/0
14-15 Instruction Entry (I), Disassembly (K)
16 Usins input and output ports
17 The AIM 65 as an AND sate
18 AIM 65 Simulatins Losic Gates
19 Subroutines
20 stack
21 The Traffic Lisht Problem
22 Simulation of a Monostable Multivibrator
23 Simulation of a D Latch
24 Simulation of a BCD to 7 Seśment Decoder
25 Hardware Interrupts ${ }^{-}$
26 Break
27. Interrupts usins the VIA

28 Computer as 3 Shift Regtister
29 Alar. Prostam
30 Bell Proxram

Learnins Activity B1

In order to demonstrate how the AIM 65 works we will write a number of prosrams usins the machine instructions and initially only imediate and zero pase addressins. These mrograms are desisned. to:

1) Give yau experience in using the computer. 2) Familiarize you with the AIM 65 instruction set.* 3) Develop skill in convertins instructions fsiven in mnemonic code) to opcode (machine code).
2) Give you experience in writing machine level prosrams.
3) Develop skill in usins the extensive AIM 65 operetins sustem.
4) Develop skills in interfacins the AIM 65 with the real morld.
5) Help you understenf how a miciocomputer works.

You will reauire the followins:
The 6502 instruction sets part of the AIM 65 instruction set. See also learnips activity B3 and B4.

AIM 65 Microcomputer.
AIM 65 manitor prosram listing.
AIM 65 users suide.
R 6500 micracomputer systen hardware manual. R 6500 microcomputer system prosianinins manual

- A block diasran of the AIM GS-is included to illustrate the relationship between the different parts of the microcomputer. See fisure i.

The AIM 65 is a complete seneral purpose microcomputer featurins advanced hardware and software.

The heart of the AIM 65 is the 6502 microprocessor. The cycle time (1 microsecond) of the 6502 is controlled by a 4 Mhz crustal.

The computer contains a full keyboard, twenty character display module, two sof tware controlled 1/0 forts and a twenty character on board rrinter. In addition it is switch selectable to orerate a TTY.

An 8K ROM is, included in the system, this provides fowerful sof tware features that allow you to enter and debus prosrems from the keyboard. In addition $4 K$ RAM workspace is provided for the user.

Other 6500 devices in the AIM 65 are, 6520 Peripheral Interface Adapter (PIA) for the display, 6532 RAM-Y/O Timer for the Kesboard interface, and the Versatile Interface Adafter (UIA) for interface with the real world.

Althoush the AIM 65 is an ideal educational system it is a full fledsed computer with power to handle any of the followins:

```
1 Factory data collection terminal
2 Intesrated circuit tester
3 Automatic service monitor
4 \text { Process control}
5 Motor contral
6 \text { Navisation calculator}
The list can be very extensive.
```

To use the AIM 65, simply switch on the computer and it will cycle throush a reset and print out ROCKUELL AIM 65 on the printer and the disp-lay. To switch the printer off or on simply press CTRL/PRINT, try it; the display uill indicate the condition of the printer.
(CTRPMfff means press both keys at the same time)

The fower of the AIM comes from it's extensive instruction set combined with an extensive set of addressins modes.

The followins is the Machine instructions set for the AIM 65 with a brief explanation of their function:

MACHINE INSTRUCTIONS

ADC Add memors to accumulator with carris
AND AND memors with accumulator
ASL Shift left one bit (memory or accumulator)

BBC eranch on carry clear
BSC-Branch on carry sel
BEQ Branch on result zero
BIT Test bits in memory with accumulator
BMI Branch on result minus
BNE Branch on result not zero
BPL Enanch on result not plus
BRK Force break
BUC Branch on overflow clear
gVS Branch on overflow sel

CLC Clear carry flas
CLD Clear decimal mode
CLI Clear interrupt disable bit
CLV Clear overflow flas
CMP Compare memory and accumulator
CPX Compare memory and index x resister
CPY Compare memory and index y resistor

DEC Decrement memory by one
DEX Decrement index x resister by one
DEY Decrement index y resister by one

EOR Exclusive-OR memory with accumulator

```
    Hidy Increment memory by one
    INX Increment index x register by one
    INY. Imcrentent indes y resister by one
    JMP Jump to new location (return addrass not saved)
    JSR Jume to new location (return address saved):
LDA Load accumflator with memory
    LIX Load index|x resister with memory
LIIY Load index y resister with memory
    LSR Shift right one bit (methory or accumulator)
```

 NOP No operation
 ORA Or memory with accumulator
 PHA Push accumulator on stack
 PHP Push grocessor status on stack
 PLA Puly accumulator trom stack
 PLP Pull processor status from stack
 ROL Rotate one bit left (memory or accumulator)
 ROR Rotate one bit risht (memory or accunulator)
 RTI Return from interrupt
 RTS Return from subroutine
 SBC Subtract memory from accumulator with borrow
 SEC Setcarty flas
 a SED Set decimal mode
 SEI Set interrupt disable status
 STA Store accumilator in memóry
 STX Store index \(x\) resister in memory
 STY Store index 4 resister in mewory
 TAX Transfer accumulator to index \(\times\) register
 TAY Transfer accumulator to index y resister
 TXA Trañfer index \(x\) resister to accumulator
 TSX Transfer stack pointer to index \(x\) resister
 TXS Transfer index \(x\) resister to stack pointer
 TYATransfer index stresister to accumulator
 The following are the adoressing wodes for the AIM 65. with a brief explanation of their function. This course will concentrate on the first seven.

ADIRESSING MODES

IMM - Immediate addressing- The orerand is contained in the second mart of the" instruction.

ABS - Absolute addressins- The second byte of the instruction contains the 8 low order bits of the effective address. The third byte contains the 8 hish order bits of the effective address. \rightarrow :

Z Fase-Zero pase adoressins- Second bute contains thé 8 low order bits of the effective address. The 8 hish prder, bits are zero.

A -Accumulator-One byte instruction affyctins the Becumulator.

IMP -Implied adoressiñg-que bute instructian affectins registers in the MPU.

RELC - Relative adoressing- Two bute instruct fon, the second byte is an offset fron the prosram counter tist determines. the address of the'next instruction. See mantyl for method to determine the offset.

- Absolute Indirect- This is a three byte instrifition used exclusively with the JMP instruction:

Z Pase; X -Z Paséy -Zero pase indexed-'The second byte of the instruction is added to the index restster co form the Low order byte of the effegtive address. The hish order bute of the effective ading is all zeros:

ABS,X-ABSy -Absolute indexed- The effective address is formed by addins the index to the second and third byte of: the instruction.

INX, \dot{X}-INAEXED INDIRECT-TKE second bute of the instruction is added to the X inde\%. The result points to a location on Fase zero which contains the low order 8 bits of the effective address. The next bute contains the 8 hish order bits.

INI, Y-Indirect Indexed-The second bute of the instruction points to a location in pase zero. The contents of this location is added to the y index, the result beins the low ofder 8 bits of the effectiva address. The carry from this operation-ismadded to the contents of the next pase zero location, the result beinst the 8 hish order bits of the effecive zodress:.

Learning Activity ES
Writins and Executins the AND prosiram on the AIM 65

Objective: To write and execute a prosram on the AIM 65.

A frosram is a detailed inst of instructions that tell the microprocessor what to do step by step.

The prospam is usually written in assembly lansuase first, usins memonics, then disassembled to set the computer opcode and data.

The opcode and data in Hex (converted to binary by the computer software) is entered into the computer memory in seauential memory locations.

Following is an example of a prosram written ih assembler lansuase, disassembled to opcode and daton This Frosrami will AND the data stored in two words and store the result in a third word. Unless otherwise indicated all numbers are hexadecimal.

Assembler
Prosram

LAA $\$ 17$
ANB $\$ 05$
STA 08
BRK

Comiments

Load the accumulator in the imaediate node AND the accumulator in. the immediate mode Store the result in wettory location 08, this instruction uses zero pase addressins Stop prosram execution

Use the 6502 instruction set to verify the followins apcode.

Mnemonic Code Opcode
LDA A9
AND 29
STA 85
BRK 00
Assembled Disassembled
Prosram \quad Prosram
LIA ¹7. A9 2
AND $105 \quad 29$
-
85
08
BRK $\quad .00$

```
Load the prosram into sequential memory locations startins at memory location \(0 .\).
Press (in seauence) ESC • M O Return
This seavence will cause the botom four memory locations to be disflayed.
Press / to chanse memory contents.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|r|}{\multirow[t]{2}{*}{\(\begin{array}{llll}\text { A9 } & 17 & 29 & 05 \\ 85 & 08 & 00 & \text { Return }\end{array}\)}} \\
\hline & & & & & & \\
\hline
\end{tabular}
Fress M 0 . Return
Check that memory corresponds to:
6
0000 A9
\(0001 \quad 17\)
\(0002 \quad 29\)
000305
(Press sface bar for next set of memory data)
000485
000508
000600
To set the prosràm-counter to zero
Press ESC * 0 Return
To execute the prosram
Sress G Return
To cheak results:
Press M 08 Return
Data in memory location \(0008=\) 00010111 ANI 00000101 =
If the above are not eaual repeat.
Can you explain why they should be equal?
Review the above prosian very carefully. You uill be asked to write your own prosians in the future. Be sure you understand and can execute this prosiam.
```

Objective: To write and execute a proaram that will OR two computer words (numbers).

The method used to AND two words in B5 can be used to .OR the same two words (17,05).

1 Write a frosram/in assembler lansuase fusing memonic code) that will dR the contents of two memors locations.
2 Disassemble the code. Same method as with AND.
3 Load it in sequential memory locations.
When enterins code in memory you can thre space for any value you want to leave unchansed, asain same method used with AND.

4 Execute the prosram, i,e: set prosiam counter to zero and press G, asain same method used with AND.

The momonic for $O R$ is ORA, opcode is 09.

Prosram	LDA 17
	ORA $\ddagger 05$
	STA 08
	BRK

This is the frosram for number 1 above, nou disassembleg. load and execute.

Calculate the $O R$ of the two words
Computer OR of same two words
If. The above answers are not eaual, do asain!
Consratulationsg you have just uritten your first prosram in machine gode.

Learnins Activity B 7
Zero Paśe Addressins

Ohjective: To write and execute a prosraminsins zero fase addressins.

Mnemonic codes that use the first 256 locations in memory are said to use दुero pase addressins. These are two byte instructions i.e. the first byte is an ofcode and the second hyte is an adoress.

Example: LDA AD means load the accumulator with the contents of memory location OOAD (173 in decimal).

Write a prosram that will AND the contents of two memory locations usins zero pase adoressins.

Assembly Ofcode
Prospam and liata
$\operatorname{LDA} A D \quad A E$
$\therefore \quad A D$
$A N D$ AE $\quad 25$
STA OF $\quad 85$
BRK

The disassembled frogram is also shown above.
Use your 6502 instruction set to check the opcode. If you have a problem ask for a demonstration!

Load data (17,05) into memory locations 00AD and OOAE
Press ESC or Reset
Press M $\quad 0 \mathrm{AD}$
Display reads 00 AD
To indicate data in memory locations $\overline{A D}, \overline{A E}, \overline{A F}, \overline{B O}$

To chanse data in AD to 17 and AE to 05
Press / $17 \% 05 \%$ Return $+$

Load your AND́ prosram, starting at memory location 0 , check memory, execute.

Hata in memory location 000F
00010111 AND 00000101
If the above answers are not equal refeat!
You have just completed an exercise usins zero pase atdressins. Already you have extended the power of the computer.

Learnins Activits BB
OR Zero Pase Addressing

Objective: To write and execute a frosram that will or two computer words (numbers). Use zero pase. addressins.

Write and execute a prasram usins zero pase addressins that will OR the'same two words used in $\mathrm{B7}$.

Opcode for OR usins zero pase addressing is 05.
Here is a chance for you to really show your stuff. Use the last frosram 35 a, model.

Summars

Mnemonic
LDA
AND
ORA
STA
BRK

Orcode

immediate	zero pase	implied
A9	AS	
29	25	
09	05	
	85	00

Learnins Activity 89

ADC (Addition)

Objective: To write and execute alprosram that will add two computer words (numbers).

Usins immediate and zero fase addressins write a proseam that will;

1) add 17 and 05
2) and store the result.

Before an add (Mnemonic code ADC) or subtract (memonic code SBC) can be carried out the carry flas must be cleared usins a CLA instruction. This should be the first instruction in your prosrain. In addition we will have to clear the decimal $113 s^{(m n e m o n i c ~ c o d e ~ C L D) ~ t o ~ m a k e ~ s u r e ~ o u r ~}$ addition takes place, in binary and not BCD.

Prosram in assembler lansuase

CLC
CLI
LIA OI
AIIC OE
STA. OF
BRK

Ofcode for CLC 18
Opcode for CLI
Opcode for Allc(zera fase) 65
Misassemble and load the machine code prosram into sequential memory locations startins at 0000 . Use the memory chanse function (/) to load 17 into memory location 0001 and 05 into memory locetion OOOE.

Execute your prosram.
The resdits will be contained in memory location 000F.
Compare your results with normal addition.

6 Learning Activity Blo
SBC (Subtraction)

Objective: To write and execute a prosiam that will subtract two numbers.

Write and execute a prosiam to sublract the two numberg (17 and $05 \mathrm{Hes:}$.

Compare results with normal subtraction.
SBC is memonic for subtract. What is the opcodet
Use the prosram you wrote in 89 as a model.

Learnins Activity Eli
Printins out the result of an addition

Objective: To be able to frint out the result of an operation ferformed by the AIM 65.

The computer has a frosram at EA46 that will print out the contents of the accumulator. We can use this frosram by simply jumpins (mnemonic code JSR) to EA46.

Example:
Load 17 in memory location FD
Losd 04 in Memory location FE

Prosram
CLC
CLD
LDA FD
ADC FE
JSR EA46
JSR EAI3 output carriase return

Disasembled prosram

18	BA	A5	FD
65	$F E$	20	46
$E A$	20	13	$E A$
00			

Load the prosram startins at memory location zero.
Press CTRL/PRINT, to turn the printer on.

Press	*	0	Return
Press	G	Return	

The contents of the accumulator \{i.e, the sum of 17 and 04 Hex) will be printed at the left side of the lape.

Remember $((A O)\}$ means contents of memory location $A O$
Check \{(FD)\}+(\{FE)\}= $17+04=$

NOTE addition takes place in Hex.

Input Data from the Keuboard

Od.jective: To be able to infut data from the keyboard, process ity and output data to the printer.

With the addition of one more bit of information we can use the full power of the computerg that is we can;

1 input data
2 process it

3 output the result.

The computer has a prosram at memory location EZFD that will infut two Hex disits from the keyboard and rack then in the accumulator. Each time this prosram is called up we can set two more Hex numbers. These numbers can then be stored in memory for later use.

Example;

CLC
CLD
JSR E3FD InPut two hex disits to the accumulator
STA FD
JSR EJFD Get two more
STA FE

We could now use previous information obtained in B11 to complete the prosrams that is, add the two numbers and print out. the sum.

Example complete prosran
JSR E3FD Get two disits:
STA FI
JSR E3FD
STA:FE
JSR EA13 Output carriase return
CLC Remenber clear carry flas
CLD $\quad \therefore$ Remenber clear decimel flas
LDA FB
ADC FE
JSR EA46
JSR EA13
Dutput carriase return
BRK

Prosram lisassembledy check for error with your instruction set.

20	$F I$	$E 3$	85
$F D$	20	$F D$	$E 3$
85	$F E$	20	13
$E A$	18	DB	$A 5$
$F B$	65	$F E$	20
46	$E A$	20	13
$E A$	00	00	

Load into sequential memory locations starting at 0000.
Press CTRL/PRINT, Renember to turn the frinter on.
Press * $\quad 0 \quad$ Return

Press . G Return
Input daba. $17 \quad 05$
Data recorded on the printer just below input data =----
Is this data correct i, e. does it = th7tex $+05 H e x ?$

Write a similar prosram usins memonic code that will input two Hex numbers from the keyboarde subtract them and print out the result.

Misassemble the code
Load. it into sequential memory locations startins at 0000
Executa the prosran
Record results, compare win normal subtraction
Repeat if not correct.

You should now feel confident to write meny mechine lansuase prosfans.
7. 7

ObJective: To be able to set up the input and output ports,

The AIM 65 uses memory mapped I/D, that is the CPU will address infut/output in exactly the same way it normally address memory.

For example, to read the data on an input port you simply LDA (load the accumulator) with the contents of the input port. That port has a specific address (A001) just as a specific memory location has a specific address.

To send data out a port just SJA (store the accumulator) at a specific port (AOOO).

Before A001 can becone an input port and A000 3n output port a short prosram must be written to ouset up" the infut and output ports. We will"name this prosram "set up", and it will be stored starting at memory location 0400 .

Address	Prosram
0400	LDA
. 0402	STA A003
0405	LDA FFF
0407	STA A002
040A	LIA $\$ 00$
040C	STA A00B
040F	STA A0OC
0412	STA A00E
0415	RTS

Comments

Put 0 in the accumulator
Put 0 if data direction restister to ake AOd1 an input port
Put all 1 's in the accumulator Put 1 's in the data diréction resister to make A000 an inputport

Housekeeping

Instruction Entry (I), Disassenbly (K)

onjective: To be able to enter data using the instruction entry function. To be able to disassemble data in the computer memory to symbolic 6502 instructions.

The AIM 65 has a really neat feature, called instruction entry (K), that lets you write prosrans in assembly languase and enter them directis into the computer without disassembly. That is the memonics and data can be entered directly from the Keyboard.

For example, to enter the prosram "set up" into the compuler 5 tartins at memors location 0400 proceed as follows:

Enter the prosram "sel up" in the followins manner;

To see it the prosran is entered correctly you can use the disassemble memory function. (K).

Press ESC or Resel
Press CTRL/Print
Press K
Display reads K $\mathrm{*}=$ Press 09

Turns printer on
Press 0400 C/R
To disassemble $9:$
instructions and print them out.

Compare the printout with the prosram entered and $j f$. an error "spears, correct it using the I function.

This program can also be checked using the M examine memory) function.

The contents of the first four memory locations starting at 0400 , will be displayed. i.e.

It should be clear that fou have two was to enter - program into the copeuter:

1 Write the prosran in assembler language using mnemonics code, disassemble by hand and use the memory alter (/) function to enter the machine code.
2. Use the Instruction Enter. Function. (1) to enter the program into the computer i:

You should become completely-familiar with the I ind K function. Go back to five of your previous prospinsy Use the fofunction to enter thew, then use the K function to see if they are entered correctly.

Use the tuition to see how good you were at hand disassembly. (You probably, will never do il asian!)

Execute each ot your programs and, show the printed result to your teacher.

Learnins Activits B16

Usins Infut and Output Ports

Objective: To setup port A as an input port and Port beas
an output port.

The subroutine "set uF" sets up Port A (pins $14,4,3,2,5,6,7,8$) on the edse connector 11 as an inpul port and Pori B (pins $9,10,11,12,13,16,17,15$) on the edse connector 51 as an qutput port.

By callin's up the subroutine, ite. JSR to the address of the subroutine, we can use the computer to simulate losic sates, combinational and or seauential losic circuits.

Subroutine "set up"

This subroutine can be relocated, iö. it could start at 0420 or at ans location available"in sour. memory.

Learnins Activity E17
The AIM 65 as an AND Gale

Objective: To sipulate an AND Gate with the AIM 65.

Load in subroutine "set up" at 0400, See B16.

Connect losic A to Port.A bit O, pin 14 on 31
Connect losic B to Port A bit 1, pin 4 on J1
Connect Led monitor to Port B bit 0 , fin 9 on J 1

Following is an assembly prospam that will simulate an AND sate:

解

Adores's Prosram. Coments
0200: JSR 0400 Subroutine to set up forts, must be
$0203 \quad$ LDA A001 Get data at port A
$0206 \quad$ Clear all but bit 0
0208
020B LDA A001
O20E AND $\$ 02$
0210 LSR A
$0211 \therefore$ AND 04FF
0214 STA 4000 0217 BRK
in the computer

Clear all but bit 0 Save bit 0 . Get data at port A Clear all but bit 1 Line up bit 1 with bit 0

Qutput result of AND operation: Stop

Enter the above prosram into the computer usins the I' function.

Remember in order to execute, this prosram:
Press ESC * $0200 \ldots$ C/R

Press G
C/R
Use the losic switches to chanse the infuts to your simulated losic sate. After each chanse execute the prosran and complete 3 tridh table for your AND sate.

Objective: To write and execute programs that will allow the AIM 65 to simulate the basic gates.

Write and execute a program that will simulate the OR sate. Use the AND sate simulation as a model. Complete the truth table for your simulated sate.

Write and execute a similar pros ram that will simulate an EX-OR sate. Complete the truth table for your simulated sate.

The NAND, NOR, and EX-NOR sates can be simulated by inverting respectively the $A N D$, $O R$, and EX-OR sates.

Following is a program to simulate a NAND, print out the result; as well as output data to port B.

0200	JSR 0400
0203	RDA A001
0206	AND 001
0208	STA 04FF
$020 B$	LA A001
$020 E$	AND 102
0210	ESR A
0211	AND 04FF
0214	ER $\$ 01$
0216	STA A000
0219	SR EA46
$021 C$	SR EA13
$021 F$	ARK

Press ESC or Reset Press CTRL/Print

Inverts the simulated AND sate.

Execute the prosram.
Data at port B will be printed under the G on the printer tape.

Complete a standard truth table for the NAND sate.
Write and execute a prosram to simulate the NOR and EX-NOR sates and have the result printed out on thotepe.
This completes your exercises using the computer. to simulate basic sales

SUMMARY

You have sained experience in usins some of the followins machine instructions. For the instructions listed below sive the operation each one performs.

AnC-
AND-
BNE-
ERK-
ClC-
nEC-
DEX-
DEY-
EOR-
INC-
INX-
INY-
JMP-
JSR-
LDA-
LDX-
LDY-
LSR-
NOP-A
\therefore ORA-
PHA-
PLA-
RTS-
STA-

Learnins Activity B 19

Subroulines

Objective: To illustrate the $J S R$ (jump to subroutine) and RTS (return from subroutine) instructions

A Subroutine is a sroup of instructions that perform some limited but.frequently reauired tasks. In many cases the easiest way to firfte a prosran is to break the overall job down to many stmme operations, each of which can be performed by a sybroutine.

The micropfocessor has special instructions to handle subroutines.

JSR - jump to the subrcutine
RTS -.return from the subroutine
JSR The contents of the prosram counter to are pushed into the stack. The subroutine address is then loaded into the prostam counter, This is called a subreutine "call".

RTS Restore the prosram counter from the stack and increment it by i. Adjust the stack pointer.

The followins illustration shows how the flow of the prosrem is interrupted by a JSR (Jump to subroutine) instruction.

- Main Prosram

Subroutine

Stack

Before JSR the stack painter was set at 0.100
After $J S R$ the stack pointer is decremented to 00FE After RTS the stack pointer is incremented to 0100

Dnce the JSR instruction is decoded the contents of the frosfam counter are incremented by 2 and stormd in the stack. The stack pointer is also incremented bu 2, one for bach bute.

Controi of the prosiran is then transferred to the address contained in the operand of the JSR instruction. The subroutine resides at this address.

The MPU then seauences throush the subroutine untilit encounters an RTS (return from subroutine) instruction:

New contents for the prosram counter"are. "pulled" from the tof of the stack and incremented by I. This returns the MPU to the main Frosram and normal fetch/execube continues.

Objective: To introduce the concept of the stack, and explain how data can be, dumped into the stack.

The stack is an area in. memory set aside to store data from the MPU. Data is stored in the stack when an interrupt in the normal flow of the prosham occurs. Instructions used by the stack are:

PHA - The contents of the accumulator are pushed into the stack, the stack pointer is decremented.

PLA - The top word of the stack is pulled back into the accumulator, the stack pointer is incremented.
PHP" - The contents of the processor status resister are fushed into the stacky the stack fointer is incremented.
PLP - The top wordof the stack is pulled back into the processor stack, the stack rointer is incremented.

The stack pointer, a resister in the CPU, or just stack contains"the address of the stack. When an interrupt occurs data from the Accumulator, or other CPU resisters, is stored in the stack (PHA instruction) at the address indicated by the stack pointer. The address in the stack pointer is decremented by 1.

To restore the data to the accumulator from the stack 8 PLA instruction is used. The address in the stack pointer is incremented.

> Other resisters can be pushed into the stack by transferrins their data to the accumulator first and then duwpins the accumulator into the stack.

Objective: To write a prosran that will allow the AIM 65 to operate a set of traffic lishts.

When desisnins a complex prospam you should follow an orderly sequence. The followins is a sussested frocedure:

1 Define the problem
2 Desisn the solution
3 Flowchart the prosfam
4 Write the program
5 Test and debus the prosram (execute it)

Define the problem:

A traffic lisht controller must seauence a series of lishts accordins to the followins:

1 Light A is red; lisht B is sreen
2 Wait sreen time
3 Chanse lisht B to yellou
4 Wait yellow time
5 Chanse lisht B to redy light A to green
6 Hait Sreen time
7 Chanse lisht A 女o yellau
8 Wait yellow time
9 Go to step 1 and. repeat the process

Mesisn the solution.:
It looks like a linear prostram would work auite nicely. and subroutines could be used to call up the delay.

These sroupinss are required to set up the lishts.

Condition 1

Red on Yellow oft Green oft

Red on Yit off
ion on GiR off

Red on
Yer off

Red on
Y,G otf

Condition 5 Same as condition 1

Program Name
\square Action

Decision

Flow chart symbols used in the following activities

Flow Chart

Prosram:
In order to output data we have to set up the ouptut ports.
This can-be done with the prosram "set UF": see Bi6. locate the "set up" prosram at memory location 0420.

Port A will become the outrut fort and the pin connections on edse connector Jl are as follows:

Pin 9 - bit 0 - will Iisht A sreen
Pin 10 - bit 1 - \quad A yellow
Pin 11 - bit 2- A red
Pin 12 - bit 3 - Notused
Pin 13- bit 4 - A sreen
Pin'16 \quad bit $5-\quad B \quad$ yellow
Pin 17 - bit 6- Bired
Pin 15 - bit 7 - $\quad \because \quad$ Not used
Connect these outputs to the LED monitors on the losic board.

Main Traffic Lisht Prosram

Execute:

Load the above prosrpm into the computer.
Press - EsC C/R
Press
E
Check the lisht seauences to you have p probem recheck the main prosran and subroulines.

Melay Prosran

Address	Prosram	Comments
0400	LDA \#A0	Start sreen delay
0402	JMP 0407	
0405	LIA	Start yellow delay
0407	STA 00	
0409	LITY \#FF	Delay
040B	LDX FFF	Delas
0401	DEX	
040E	BNE 040]	
0410	BEY	
0411	BNE 040B	
0413	DEC 00	
0415	BNE 0409	
0417	RTS	

The followins exercise is desisned to help you understand how the delay times are determined.

1 Listy. in a vertical column all the instructions used in the delay prosram.

2 Look upg in the R6s00 prospamins manualy the number of cucles required for each instruction.

3 Manually follow throush the delay prosran to deteratne how many times each instruction is used.

4 Multiply the number of cycles used for each insiruchion by the number of times that instruction is used bu 1E-6-40 set botal time in seconds.

5 Total all individual times to set. total delay time.
Example usins yellow delay
Instruction Cyeles Times used \quad Total tiee

Chanse the delay time for the yellow and sreen lishts and execule the traffic light pritigran."

Write a prosram that will have different delay times for A and B sreen.

Do the same for A and B yellow.
Can you think of a better way to write this prosiram?
How about asking the operator to input the delay prosram time before the maincerosram is executed.

Do you think you could sell this program to the Toun of Truro? They seem to have a bis problem with their traffic lisht timins.

Most of the skills gou have learnedin this exercise are directis applicable to industry.

Some examples are: Process control, Bunsular alarms, Electronic locks etc.

Objective: To simulate a monostable multivibrator with the AIM 65.

A monostable multivibrator (MMU) is a switchins circuit that has one stable state and one auasi stable state. That is, the MMU is normally in one conditiong i.e. the outrut is Lo. When an input pulse is received, it's outrut switches to a Hi for a predeterained time and then switches back to a Lo. It stays in this condition until another input pulse is received.

Monostable multivibrators can also be desisned so that the output is normally Hi and it's aussi stable state is Lo.

Problem:
Write a prosram to simulate a monostable multivibrator with autput normally Lo and it soes Hi for 2 milliseconds when it receives an input pulse or trisser.

Solution:

- Duteut Lo Port b bit 0 Trisser fulse Port A bit 0 Qutput Hi Port B bit 0 Delibs 2 milliseconds Dutput Lo pori B bit 0

Flow chart on the next pase;

Flow Chert:

0.

Program:

0200	JSR 0420	
0203	LDA $\geqslant 00$	+
0205	STA A000	Port B bit 0 Lo
0208	LDA A001	
020B	AND	
0201	BEC 0208	Look for inisser
020F	LINA $\geqslant 01$	
0211	STA A000	Output Hi
0214	JSR' 0500	Timins routine
0217	LIA	
0219	STA A000	Outrut Lo
021 C	LIAA A001	
$021 F$	AND $\$ 01$	
0221	BNE 021C	Trisser sone?
0224	JMP 0208	

"Set up" subroutine

0420	LDA $\$ 00$
0422	STA AOO3
0425	LDA $\# F F$
0427	STA AOO2
$042 A$	LDA $\neq 00$
042 C	STA AOOB
042 F	STA AOOC
0432	STA AOOE
0435	RTS

S "DELAY" subroutine

0500	LDY	$\neq 2$
0502	LDX	$\ldots C O$
0504	DEX	
0505	BNE	0504
0507	DEY	
0508	BNE	0502
0504	RTS	

Execute: ~
Execute the prosran, use Hewlett Pcakard lowferobe to monitor Port B bit 0 . Use 3 Losic switch or pulse.to inful trisser on Port abito.

Change the monostiable width to $\cdot 5$ milliseconds and execute the prosram. Show the results to, wour teacher.

Learning Activitu 823

Qbjective: To simulate.a D Latch with the AIM 65.
Operation of a D-type flip flop (latch):
Information at the infut is transferred to the output on the positive edse of a clock pulse. After data has been clocked in, further input date is blocked until another clock pulse is receivedf

Problem:

Simulation of \mathfrak{a} LATCH

Write a prosiam to simulate a p-tsee plif flof, data must be transferred when a clock pulse rises from Lo - Hi.

Solution:
Clock fulse in on Port A; Bit 0
Mata pulse in on Port As, Bit 1
Data transfer when pulse soes from Lo to Hi
Data out on Port B, Bit 0
Look for new clock pulse.
Flow Chart:

Prosram:

0200	JSR 0420	Set up ports
0203	LDA 101	
0205	STA 01	
0207	LDA A001	
020A	AND 01	Isolate Bit 0
020C	ENE 0207	Is: Bit 0 Lo?
020E	LDA A001:	
0211	STA 02	
0213	AND 01	Isolate Bit 0
0215	BEQ 020E	Is Bit 0 Hi ?
0217	LIAA 02	
0219	AND $\$ 02$	Isolate Eit 1
0218	STA A000	Output data on Port B, Bit 1
021E	JMP 0207	Get new data

"Set up" subroutine:

-0420	LDA $\ddagger 00$
0422	STA A003
0425	LIA $\ddagger F F$
0427	STA A002
$042 A$	LDA 100
$042 C$	STA A00B
$042 F$	STA A00C
0432	STA AOOE
0435	RTS

Execute prosramy use LED to monitor Port By Bit 1. Losic switches on Port A, Bit 0 and 1 to input data and trisser.

Eisht 0 latches in parallel can serve as a resister It may appear difficult to simulate an 8 bit resister. (eisht lines plus thisser are reauired); however, a 4 bit resister should be refativelu easy.

Write a prosian that will allow the AIM 65 to simulate 34 bit resister.

Learnins Activity 824
Simulation of a BCI to 7 sesment DECODER

Objective: To write a prosram that will allow the AIM 65 to simulate a 7 sesment Decoder.

For more information on a BCD to 7 sesment Decoder, see Fairchild lata Book, Pase 4-44.

Problem:

Write a prosram to decode BCD to seven sesments.
Solution:
Set Port A input and Port B output
For 0 input, output 01
For 1 input: outfut 47
For 2 infut, outfut 12
For 3 input: outfut 06
For 4 input, gutpu't $4 C$
For 5 input, outrut 44
For 6 input, output 60
For 7 input: outrut of
For 8 input, output 00
For 9 infut, output. 0C

Port B output connections for 7 sesment

Bit $0=5$
Bit $1=\mathbf{f}^{-}$
Bit $2=e$
Bit $3=d$
Bit $4=c$
Bit $5=b$
Bit 6='a

Fort A input connections for RCI

Bit $0=$ LSB
Bit $1=\mathrm{LSB}+1$
Bit $2=$ LSB +2
Bit $3=\mathrm{HSB}$

Flow Chart:

Prosram:

0200	LIAA $\neq 00$
0202	STA A003
0205	LIA $\$ F F$
0207	STA A002
$020 A$	LAA A001
0200	AND $10 F$
$020 F$	TAX
0210	LBA $10, X$
0212	STA A000
.0215	BRK

Set ur the followins memors locations with the corresfondins 7 sesment data:

0010	01
0011	47
0012	12
0013	06
0014	4 C
0015	44
0016	60
0017	0 F
0018	00
0019	0 C

Execute:
Connect LED on Port B
Connect Losic twitet on Port A
Run the prosran.
Compare the output to the Truth Table you develored in Combinational Losic Circuits for a BCD to 7 sesment Decoder:

Activity: The output of Port B will not sink enoush current to drive a 7 sesment readout. Interface Port B output and the 7 sesment readout with a buffer driver.

See TTL Data Book for buffer selection.

Demonstrate your simulated. BCD to 7 sesiment readoul to your teacher.

HARDWARE INTERRUPTS

Objective: To write and execute a prospme illustratins the use of interrupts.

INTERRUPT:

Attention sisnal sent from an $1 / 0$ device or chip to the MPU to obtain service. Hhen accepteds the Interrupt results in haltins the MPU which preserves its internal resisters and branches to the appropriate interrupt service routine. Prosram execution resumes upon completion of the interrupt service routine.

INTERRUPT SERUICE ROUTINE:

Prosiam that is executed unen an interrupt occurs.

INTERRUPT MASK:

Resister that has one bit to control each interrupt. Used to selectively disable specific interrupts.
-
POLLING:
Schedulins techniaues for $I / 0$ devices; where the prosiam interrosates in turn (the status of) each peripheral, and gives service when reauired.

INTERRUPT UECTOR:
An Interrupt Vector is simply an adoress that is'loaded into the prosram counter when an interrupt occurs.

A computer normally sequences throush a prosram responding to the MPU instruction set. Since the computer can handle only one instruction at a iimes how is it ppssible that it can play a same and check and adjust the room temperature at the same time?

One method is to periodically jump from the main routine and check the port monitorins the temperature. This could be done several times a second; however, if no chanse has taken flacey it should be clear that this method wastes CFU time,

A preferred method would be to have the $1 / 0$ device "interrupt" the main prosram onls when a correction to the temperature is reauired. The MPU will then'aranch to a routine to adjust the temperature and then return to the main erogram.

Interrufts allow the computer to seeminsly perform several operations at the same time.

The following seauence of events illustrate how Interrupts affect the flow of the prospam:

Mein
Prosram

Interrupt
Service
Routine

A Low appears on the Interrupt request line (IRQ),

1. The current instruction beins processed by the CPU is completed.
2. The interrupt tlas'is checked and if set, no interrupt occurs; if not set. an interrupt occurs.
3. The CPU resisters are pushed into the stack.
4. The interrupt request flas in the processor status resister is set.
5. The lower byte of the prosran counter (PC) is loaded with the contents of FFFE (78).
6. The upper byte of the prospam counter is loaded with contents of FFFE (EO).
7. E078 contains a jump to A404.
8. The computer proceeds to service the routine startins at the address in location 4400.
9. The last instruction in the routine is a RTI ©return from interrupt): This, causes the contents of the stack, previously dumped from the CPU, to return to the CPU.

10, Normal prosraming continues.

Load "Do Nothing" prosram into memory starting at location 0200:

Set A400 to 0400.

Load interrupt routine into memory startins at location 0400.

Set PC to 0200. Press G to execute the prosram.
Momentarily Ground IRQ Pin 4 on J 3 . The computer will service the interrupt and print at 99.

Review the above prosram several times, execute it, make sure you understand each instruction and its purpose.

Write a prospan that will print out. the data on port A when the IRQ in momentarily grounded.

The NMI (non maskable interrupt) and the RES (reset) lines perform as similar aperation to the IRQ. For more information see your manual.

Is there some was for Port A to sisnal the MPU that it has data ready and that it should be'read in?

BREAK

objective: To write and execute a prosram usins the BRK instruction.

The BRK instruction operates like an interrupt, When a BRK is encountered the prosram counter and the processor status resister, after the B flas has been set, are pushed into the stack. The prosiam then branches to the same adoress 35 the IRQ interrupty that is the address (E154) at location A404.

The status resister is pulled from the stack, pushed back into the stack, and flas B is tested to differentiate a BRK from an IRQ.

The normal preak prosram (at location E163) dumps the erosiram counter-1 and the associated instruction onto the display and returns to the monitor. The followins prosram illustrates the BRK instructions:

0200	LDA FFF
0203	STA 00
0204	BRK
0205	LDA 00
0207	JSR EA46
020A	JSR EA13
0200	JMP 020D

Note: Make sure A404, A405 contains 54, E1.
Set prosram counter, Press G. Prosram runs, dumps PC and the associated instruction.

Press G. Progran continutes until camplete.
The BRK is normally used when debussins a prospan.
Execution continues until it reaches a BRK, the PC and associated instructions are dumped. Pressing G causes prosiam execution to continue.

Write a prosram that includes 3 BRK instructions. Run the prosiam.

Modifying the address contained at A404 will allow you to write your oun service routine. This routine will start at the memory location you load into A404, A403.

The BRK instruction is sometimes referred to as a software interrupt.

Objective: To interrupt program sequence using the VIA Interrupt.

As stressed previously, computers essentially do two. inns; process data and input/output date. The AIM 65 inputs and outputs data via the UIA (versatile interface adapter). The UIA also allows the computer to communicate to other computers using the UIA and handshaking signals.

Handshaking:
Control signals at an interface in which the seridins device senerates a signal indicating that new information is availables and the receiving device that responds with another siṣnal indicating that the data has been received.

The interrupt line IRQ is an essential part of the handshaking signals. The sending device sends out a signal to CA1 on the UIA: see Fis.1. In order to interpret this signals the "interrupt enable resister", bit 1 , must be set to a 1. The peripheral control resister y bit 0 , must be, set to a 1 so that a nesative transition on CAL will set bit 1 of the interrupt las resister and a low will be. placed on the IRQ line.'

The low on the interrupt line will cause an interrupt in the flow of the main program and the interrupt routine. will be serviced.

The followins prosram will set up Port $A^{-\mu}$ to recosnize a "data ready" sishal, initiate an interrupt, read the data at Port A, and senerate a "data taken" sisnal. The "data taken" sisnal is automatically senerated by a read statement to. Port A if bit 1; 2 and 3 of the peripheral control resister are set to $1,0,1$ consecutively.

The address of the Peripheral Control Resister (PCR) is A00C. The address of the Interrupt Enable Resister (IER) is AOOE, Port A is automatically set as an input on reset.

Ground CA1, fin 20 on Ji.
Load the prosram into memory.
Set the PC to 0200 Press G C/R

Each time CAI is interrupted, i.e., removed from ground and replaced, the interrugh routine is serviced and the data at Port A is printed on the Display and Tafe. Trs chansins the data at Port A.(Sroundins some of it's input) and running the prosram asain.

You can ofeserve the data taken" sisnal at CA2, Pin 21 on J1, with a losic probe containins memory. This pulse, "data taken", is only one microsecond lons.

Write a similar routine but rather than printins out the data' output it to Port B. Connect Port 8 output to the LED Monitor on your losic tester.

To sel Port B as an output port:

LDA
STA A002

This could be written in sour prosram just before sou output the data to port B.

Pérform the same operation usins Port B as an input Port and Port A as the output Port, Reag peses 6-22 to 6-28 in the R6506 Hardware Manual that accompanies the Alk 65 or interpret the information for the PCR and IER on the Rockwell AIM 65 Summary Card.

Learnins Activity 828
COMPUTER as a SHIFT REGISTER

Objective: To simulate a Shift Resister uith the AIM 65.

The VIA has a shift resister which can be used to convert data between serial and parallel forms.

Auxiliary control resister; address A008, bits 2, 3 and 4 control this resister as shown in the followins table.

Bit 4 Bit 3 Bit 2
$\because \quad$ Mode

0	0	0	Shift resister disabled
0	0	1	Shift in under control of timer 2
0	1	0	Shift in under control of clock 2
0	1	1	Shift in under control of external
1	0	0	Free runnins output at rate determined
1	0	1	Shift out under control of timer 2
1	1	0	Shift out under control of clock 2

Prosran to shift out 8 bits fron memory location 40 under control of clock 2 .

041A LDA $\$ 00$

041 C STA A00B Shift register disabled

Set shift resister for shifl out under clock 2 Load accumulator with contents. of memory location 40 Start shift out of data Check for H las to indicate data shifted out

042C AND $\$ 04$
042 E BEQ 0429
0430. JMP 041A

Load AA into memory location 0040.
Connect oscilloscope to CB2.
Execute prosran.
Observe a series of AA pulises on CB2. These are shifted out from memory locaton 40 by the AIM 65 shift resister.

Chanse data in memory location 40 and execule asain.

Prosram to shift in 8 bits under contral okphase 2 clock and store the data in momy location 40.

03B8 LDA $\$ 00$

03BA STA AOOR Shift resister disabled
03BM LDA $\$ 08$
03RF STA A00B Shift resister in under clock 2
03C2 LDA AOOA
03C5 LDX $\$ 04$

294

Lo on CB1.
Execute prosrami:
Check memory location 40. Data.

Hi on CB1.
Execute prosram.
Check memory location 40 . Data

Is the above data correct? Explain.

Onjective: To write a program that will monitor 14 infuts and control 2 outputs.

Write a computer prosram that will allow the AIM 65 to monitor 8 smoke detectors, 2 hursular alarms and 4 temperature resulators. Thè AIM 65 will output a losic 1 on Fort B bit 0 for an alarm. A losic 1 on fort B bit 1 will turn the furnace on and a losic 0 on the same port will turn the furnace off:

Design an interface for the smoke detector and burgular Elarm so that the AlM 65 input port will sense a losic 1 for an alarm.

Desisn an interface so that an output fromport bit 0 will sound an alarm.

Mesisn an interface so that the output fromport b bit 1 can turn off and on a furnace.

Learnins Activity R30

Fell Program

Objective: To write a computer prosram for the AIM 65 that will simulate the bell, ringins in gour school.

Write a prosram that will output a fulse on port E bit 0 for 3 seconds each time the bell should rins in sour school. This frogram should repeat every 24 hours.

Ilesisn'an interface so. that the data at fort B bit 0 will-close a relay as lons as bit 0 is a losic 1.

IV INTERFACING

A Serial
B Parallel
C Uart
D Analos - Disital and Disital-Analos
E Software interface (Z-80)
F PIA: UIA (6502)

A computer performs essentially two functions,

1. Process data, 2. infut/output data. This section deals with input/output data.

Almost all microprocessors use the same busses for both memory and infut/output transfers. Two methods are used to distinsuish memors data and address from infut/output data and adtress.

1. Isolated input/output (I/0) in which memory and $I / 0$ addresses are decoded separately. Typical microprocessors thit use isolated I/O Bre Intel 8080 and Zilos-Z80.
2. Memory - mapped input/output in which I/O ports are treated exactly the same as memory locations. Typical microprocessors that use memory - mapped I/O are Motorola 6800 and Rockwell 6502.

Fisure 1 shows a microcomputer with an isolated $1 / 0$ section. The sisnal select line will select I/O address and data when the line is driven His a Lo will select memory zodress datz for the mierocomputer.

Features of isolated $1 / 0$:

1. Short adidressing instructions (OUT 01, A)

2, Prosrams are clearer using I/O instructions
3. Reauires extra decodins and machine instructions for I/0

Figure 2

Fisure 2 shows a microcomputer with memory - mapped 1/0. The processor uses the same instructions for memory and I/0 transfers. Specific addresses must be set afide for $1 / 0$ transter of data. The AIM 65 reserves A000 to AFFF for $1 / 0$.

Features of memory - mapped I/0:

1. Rifficult to distinsuish between complex I/O instructions and memory instructions.
2. I/O forts use up memory address sface. 4 K of memory is used up for addressins in the AIM, 65.
3. Incorforates LSI devices (FIA: VIA) that aid in interfacins external devices.
4. I/O chips may be difficult to prospam.

Usually memory .. mafped $1 / 0$ is best suited to systems that use complex interface chifs, whereas isolated $1 / 0$ is better for systems that use small and medium - scale intestated circuits.
A Serial
A1 Serial Interface
A2 EIA Standard RS-232C Interface
A3 20 Milliamp Current Loop

SERIAL INTERFACE

Objeciive: To write a prosram to convert serial data to farallel.

The computer processes data in farallely in fact the data bus is 8 bits wide. SuFfose you wish to output data to a frinter; there are two possibilities:

1. Eisht parallel lines between the frinter and the computer flus a common line.
2. One line between the printer and the computer plusfa common line.

In order for the eight bits to be transmitted or received over 1 line; the data must be converted from farallel to serial.

Normal serial transmission is as.follows:

LSB : MSB

Each 8 bit character is converted to 11 serial bits, 1 start bit. 8 data bits, 2 stop bits.

Supfose the data transmission rate is 10 characters per second and there are 11 bits per character; then the transmission rate is $10 \times 11=110$ bits per second or 110 Haud. The width of each bit is $1 / 110=9.1$ milliseconds.

This is standard TY transmission.
For a compúter to froperly receive data from a TTY, the followins procedures are necessary.

1. Locate the start bit. (Losical 0)
2. Centre reception on the start bit by waitins $1 / 2$ time, i+e,; 4.5 milliseconds.
3. Wait 9.1 milliseconds, i.e., centre on first data bity the Least. Sisnificant Bit (LSE).
4. Shift that bit into the carry flas.
5. Wait 9.1 millisecondsy shift second bit into carry flas and first bit into computer word.
6. Continue shiftins all 8 bits into the computer word vie the carry flas.
7. When all 8 bits are shifted into a word, return from
subroutine.

The followins prosram will fetch serial data from a TTY via bit $=7$, fort A on the UIA and flace the data in menory location 0060.

Remember: Bit 0 of data is received first at Pin 7 on Port A.

- Nefine the followins:

BMI

- ROL

ROR
BCC
The sisnals used in the above illustration are all TTL losic levels.

This prosram will be reauired for learning activity $A 3$, be sure you understand the prosran losic.

Modify the above prosram so that the received data is displayed on the AIM 65 Display.

2

Learning Actrivity A2

EIA Standard RS-232C Interface

Objective: To interface TTL losic to RS-232,

The EIA standard interface between computers and peripherals consists of the following sisnals and circuits "from" and "to" data communications equipment (DCE) at the terminals:

Ground (as a basic refrence)
Common return
Transmitted data (to)
Received data (from)
Request to send (to)
Clear to send (from)
Data terminal ready (to):
Ring indicator (from)
Receive line sisnal detector (from)
Sisnal Quality detector (froni)
Two nata-Rate selectors (to data terminal equipment or ITE source; and from data communications eauipment or DCE source)
Two transmitter sisnal elemént tinings (to IITE source and from. DCE source)
Receiver sisnal element timins (from)
Secondary transmitted data (to)
Secondary received data (from)
Secondary reauest to send (to)
Secondary clear to send (from)
Secondary received line sisnal detector (from)

The various circuits determine the "hand shaking" needed to establish interface connections.

Usually we will be concerned with only the first eisht, Por example to send data from a computer to a printer only the following sisnals are required at the printer:

Received data
Data terminal ready
Sisnal comsion (azy be attached to signal ground)

RS-232C sisnals are desisned for serial transmission over lons distances; up to 100 feet. These sisnals have the followint voltase levels; compared to TTL losic. -12 and a low is +12 \%

Since most computers and ferifherals work at TtL losic levels the following circuits can be used to convert RS-232 to TTL losic levels and TTL to RS-232.

Wire uf the above circuits, connect Fig, 2 RS-232 output to Fis. 1 Rs-232 input.

Place a losic 0 on the TTL input in Fis. 2
Fis. 2 RS-232 output $=$
Fis. 1 TTL output. $=$
Place a losit hish on the TTL input in fis. 2
FIG. 2 RS-232 output $=$
Fis. 1 TTL output $=$

Desisn a circuit that will:

1 Accert data from the AIm 65 in serial form and convert it. to EIA RS-232, this sisnal should be able to drive any RS-232 Jevice (orinter).

2 Accept a data terminal ready (ITA) sisnal from the RS-232 device and change it to TTL losic.

3 Write a prosram that will take data from sequential memory locations starting at 0200, output it to a RS-232 device and halt the output when it receives a DTR sisnal from the RS-232 device.

For additional information see Introduction to. Micror ocessors, Software, Hardware, Prosramins by Lance A. Leventhal, pase 424-427.

Show the completed project to your teacher. He will have an RS-232 device you can use to test your prosian and interface.

20 MILLIAMP CURRENT LOOP

Objective: To interface 20 Millianp Current Loop to TTL.

The Model 33 ASR Teleture (TTY) communicates with computers throush current loops. Current loors have the followins characteristics:

1. Losic 1 state: presence of current of approximately 20 me in the current loop.
2. Losic 0 state: absence of current in the current

- loos.

Current loops are low imfedance transmission lines. that are hishly resistant. to noise. Disital sisnals can be transmitted via current loops for distances of up to a mile with no loss of information.

Interfacing the TTY 20 mA oreration with TTL Josic reauires the use of opto-isolators.

Fisure 1 is an illustration of such a circuit.

Wire up the above circuit.
Connect the serial out to the AIM 65.
4. Load a serial print prosram. (See learning activity Al)" Dutput data from the TTY to the AIM 65. Show the communication to your teacher.

Objective: To farallel interface the AIM 65 to a centronics rrinter.

Probably the easiest way to interface the AIM 65 is farallel. All the data lines are parallel, the memory is farallel and the UIA has two parallel output forts.

To parallel interface the AIM 65 to a printer, the following sisnals are required:

1. Eisht data bits (Bit 7 is not normally used).
2. Strobe (Active on Hi to Lo transition).
3. Busy (Indicates the prínter is not ready to receive data).
4. Sisnal ground.

Several other control lines may be usedg however, these are considered a minimum.
Prospam to parallel interface printer to the Aim 65..
0400. LIA $\# 00$

0402 STA AOOC
0405 LDA $\# 00$
0407 STA A003
040A LIA \#FF
040 C STA A002
040 F LIA A001

* 0412 AND $\$ 01$ Mask off bit 0, to check busy

0414 BNE 040F Check busy
0416 JSR E93C Get data
0419 STA A000 Output data and strobe on CR2
041C JSR E97A Data to Display
041F JMP 0400
Set CR2 in pulse mode output
Set ur Port A as input
Set up Fort B as output

Dutput data and
Data to Display

Wire up the centronics printer to the AIM 65.
Use buffers to insure no damase to the printer. You
will have to determine fin connections from the centronics manual and the above interface prosram,

Have the teacher check your tuirins.
Load the prosram intio the AIM 65 .
Execute the prosram.
Data printed on your display should now be printed on the external printer.

Improve the above interface by includins the ACK (acknowledse) sisnal in your prospan.

Learnins Activity H 2

FET and the IEEE-488 Bus

FET and the IEEE-488 Eus is a book available from Oshorne/McGraw-Hil1, 630 Rancroft Way, Eerkeley, California 94710.

This is the only complete suide available on interfacins PET to the IEEE-488 Rus.

From this book you will learn how to prosram the PET Interface to control fower sufflies, sisnal sourcesy sisnal analyzers and other instruments. It is full of practical informationg as one of the authors assisted in the orisinal design of the PET IEEE-488 interface:

The output ports of the PET are identical to the output Forts on the AIM 65. Both use the UIA and PIA for interfacins. Unfortunately, this book, ordered January 1980 has not been received at the time of the fublication of this document.

FET and the IEEE-488 will frovide extensive interface learnins sctivities for the student.

UNIUERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
Objectives: Memonstrate how to send an 8 bit binary word serially from the transmitter section to the receiver section of the UART.

Examine the hehavior of the outruts at pins 19;
22, 24 and 25 on the UART chif.

Hemonstrate how you can control the number of bits in the assnchronous character transmitted bs a UART.

UART stands for Universal Asynchronous
Receiver/Transmitter, Essentially it can receive parallel data and transmit it serial or receive serial data and tfransmit it farallel.

Complete experiments No. 1, 2 and 3 in the Busbook II by Larsen.
These evercises could be shared by a sroup of students.
Activits:

1. Wire up a UART (AY-5-1013) so that it will accert Farallel data ofrom the AIM 65 and transmit it serially.
2. Feed the serial data to another UART, at a remote location, output parallel data to drive a set of LED'S. Inrut characters from the AIM 65 kesboard and monitor the ASCII code on the LED'S.

Srecial Instructions:
Oine group set up number 1 .
Second sroup set up number 2 .
nemonstrate the finished product for your teacher!
For additional information see Microcomputins, April 1969, Fase 62.

Learning Activity HI

Aisital to Analog

Objective: To construct e disital to analogs converter. To interface the digital to analog converter with the AIM 65.

A digital device deals with discrete voltage levels either a Hi or a Lo.

Analog signals have voltage levels that vary over a wide range and can be either positive or nesative.

A digital to analog converter (DAC) converts digital voltases to analog voltases or current.

Schematic dias ram of a digital to analog converter.

IC1	MC1406 MAC
IC	301 OF amp
RI	$27001 / 2$ watt resistor
RT	$27001 / 2$ watt resistor
RX	$20001 / 2$ watt resistor
RU	1000 ohm variole resistor $1 / 2$ watt.
Ci	100 picofarad capacitor
CZ	47 picofarad capacitor
	100 picofarad capacitor

Wire up the circuit in fisure 1.
Interface the AIM 65 and IC1 via the versatile interface adarter fort E.

The followins frosram is desisned to control the output voltase of IC2, i, , the analos voltase.

The maximum voltase will be set at +5 volts. This will occur when the data fom the UIA is 00 , remember only 6 bits will be used gu the disital to analos converter.

Minimum output will occur when the data at fort B is $3 F$, i.e. 3ll 1's.

Frosram
0200 JSR 0400 Set up fort B as an output fort. See learnins activity B 16.
0203 ISR ESFI Infut 2 characters from the keyboard to the sccumulator.
0206 STA A000 Outfut data to the DAC
0209 JMP 0203 Get 2 more characters
Connect a IUC voltmeter detween IC2 pin 6 and ground.
Execute the frosram.
Infut 00 from the keyboard.
Adjust R4 so that the voltmeter reads 5 volts.
Complete the followins table.
Kesboard Voltmeter
00
10
20
30
38
$3 F$

Write up a short summary on how the data from the keyboard is converted to an analos voltase.

```
IISital to Analos
```

Objective: To interface the the disital outrut of the AIM 65 with an analos voltase.

The outrut of the disital computer in parallel mode is normally 8 bits. A simple disital to analos converter uses specifed data, usually in parallel formit to suitch off or on $A C$ analos devices.

Fisure 1 is a typical AC rower controller manufactured by MIEGO, Inc. Bo\% 3009, Foulder, Colomado 80307.

Mescriftion of the cifcuit:
Mata is afplied, in parallel; to ICB and IC11, When the correct address and a strobe is afelied to ICI and ICS a trisser is developed at ICS pin 8 which latches the data into IC8 and ICII.

If any one of the outruts of ICB or IC11 is a losic 1 current will flow throush the correspondins ortoisolator and suitch on the triac. An AC load must be placed in series with 120 VAC and across fins 1 and 2 of the triac.

Afplication
Place a 50 watt 120 lisht bulb in series with 120 VAC. Connect one side of the AC to fin 1 of 01 and connect Fin 2 of Q1 to the opfosite side of the $A C$ load.

In fisure 1 connect the followins jumpers:
$\overline{\mathrm{AO}}$ to Fin 3 IC1
AI to fin 4 IC1
A2 to Fin 5 IC1
A3 to pin 13 IC5
A4 to fin 1 ICS
AS to pin 2 IC5
AB to pin 3 IC5
Connect the AIM 65 to the AC power controller.
Wire up Port B to the data lines
Wire up Port A to the address lines
Connect an inverter between CA2 and pin M (the strobe line)

Proseman

L.ITA	$\ddagger 0 \mathrm{~A}$	
STA	AOOC	CA2 mulse mode output
LIA	+FF	
STA	A003	
STA	A002	Set uf forts
LIIA	\#00	
STA	A000	
LIA	101	Clear ortoisolators
STA	A001	
LDA	\$01.	
Sta	A000	Data to turn on Q1
LDA	401	
STA	A001	Latch data to optoisol

Write a frosram that will alternately switch off and on Q1 and Q2, Connect a 50 watt lisht bulb in series with 120 UAC across each.

Execute the prospan. Show the result to your beacher.
Can you make the lishts flash?

Learnins Activity n 3

Anelos to pisital

Objectivet To construct an analos to disital converter.
A. The 6502 Afflications Fook by Rodney Zacks contains a circuit that converts an analos voltase, chanse in thermistor resistance, to a disital voltase.

See pase 206 to 215
Construct the circuit in fisure 5-47, pase 206.
Load in the prosram on pase 210 and 211.
Execute the prosram.
Nescribe the prosram oferation.
B. Microprocessors by Heathkit Continuins Education contains a prosram and cireuit diasram that will convert an analos sisnal to a disital sisnal.

This circuit (fisure 10-84) could be used to emulate a disital voltmetery for. additional information see : Microrrocessors pase 10-108.

Construct the circuit in fisure 10-84 and write a Frosram so that the AIM 65 can siniulate a disital voltmeter. See figure 10-85 for additional information. Beins able to read the 6800 assembler frosram on pase 10-109 will assist you in writins a prosram for the AIM 65 usins memonic codes.

SOFTWARE INTERFACE

Qijective: To introduce a software interface.
Software prosiram to outrut the contents of accurulator to a printer via fort 3 and a strobe outrut on bit 3 , port 1. This prosram can be used with a Intel 8080 or Zilos-80 MPU that emploss isolated infut/outrut.

0618	Push	AF	-
0619	Push	BC	4
061A	Push	DE	
0618	Push	HL	
061 C	Push	AF	
0610	IN	01	
061 F	Bit	7,A	Check Port 1 Bit for busy sisnal
0621	JR	NZ,FA	If busy, read port asain *061的
0623	NOP		
0624	POP	AF.	Accumulator from stack
0625	OUT	03	Output data fort 3
0627	XOR	A	Clear accumulator
0328	OR	F7	Clear bit 3
- 0662 A	Qut	01	Output Lo on bit 3, all dther Hi.
062C	SET	3;A	Bit 3 Hi
062E	OUT	- 01	Output strobe
0630	POP	HL	Pop stack
0631	POP	DE	Por stack
. 0632	POP	BC	Por stack
0683	POP	AF	Por stack
0634	RET		Return'from print subroutine

1. When a print is required, the data to be printed is in the accumulator.
2. The main prosfan calls, up a subroutine at memory location 0618.

Hrite a similar subroutine for the Arm 65 so that it will print data on an external. parallel printer whenever a special print is called, i.e.; f_{1} on the kesboard.

```
* Learning Activity Fi
Peripheral Interface Adapter (PIA)
Objective: To be able to set the Control Resisters and Iata direction Resisters of the FIA. "
```

The FIA is an I/0 device which 3065 as an interface between the microprocessor and ferifherels such as printers, displays, Keyboards etc. It is comprised of two almost identical sections: A and By each capable of receiving or transmitting eight bits of data.

See figure 1
CRA --> Control Resister A
CRB --> Control Resister B
QRA --> Peripheral Output Resister A
ORA --> Peripheral Output Resister B
III --> Data Input Resister
For further information on the PLAy see Rockwell's R6502 Microcbrruter data sheet on the FIA. Available from Rockwell Intermptionaly Anaheim CA 92803 USA.

Because of fin limitations the Rata Direction Resister (DNRA) and fort A both have the same address; ACOO. For BRRB and fort B the address is AC02.

In order to read data from fort A the foil lowing sequence of events must occur.

1 Control Resister $A(C R A)$ address ACO1 bit 2 is reset to a logic zero, this means that zodoress AC00 serves nara. If bits? is set to a logic 1 then AC00 serves Port A.

2 Reset all 8 bits of IMRA to losic 0 makes port A an ${ }^{\circ}$ input port.

3 Set CRA bit 2 sdóress ACO1 to logic 1 , causes ACOO to serve part A.

4 Read ACOO i.e. read data at port A.
Typical assembler program to read data at port A.
LID \ddagger PB

AND. ACC
STA ACO1 CRA bit 2 logic 0
IDA $\$ 00$
STA ADO
LDA Set data direction
ORA ACOI
STA ACO1
LD A ADO
Port A active

FIC. 1

Write an assembler frosram to. read the data at fort E.
ACO2 is the address of OMRB and Fort B
ACO3 is the address of CRB
Write an assembler prosram that will output data to

The following example will be used to illustrate some: of the features of Control Fesister A (CRA) and Control. Resister B (CRB).

Examfle
1 Fort A will be used for infut
2 fort B will be used for output.
3 Set uf control resister A and B for the followins When data appears on fort A and the perifheral sisnals the PIA that data is readsy the PIA (via CA1) will interrupt the CPU, read port A and senerate a. data laken sisnal.

4 After the CPU processes data it outputs the data via fort B. Fort E will senerate a data. available sisnal.

Solution

1 Write an assembler prosram to set fort A as infut.
2 Write an assembler prasram to set fort B as outrut.
3 Bit 0 on CRA must be set to a losic 1 to senerate an interruft (IRQA) when CA1 sqes La. Bit 3 and 5 on CRA must be set to a losic 1 to senerate a data taken sisnal on CA2 after port A is "read".

LIA
STA ACO1 set bit 0,3,5 clear other bits
4 Bits 3 and 5 CRB must be set to losic 1 to senerate a data available on CR2.

Combine $1,2,3$, and 4 to write a prosram that will set. CRA, CRB, DDRA Bnd DDRB to accomodate the example above.

Use the memory examine function to check data in CRA, CRE, DDRA: DARB.
Show your teacher the result.

R6500 Microcomputer System

PERIPHERAL INTERFACE ADAPTER (PIA)

DESCRIPTION

- The R6520 Peripheral Interface Adapter is designed to solve a broad range of peripheral control problems in the implementation of microcomputer systems. This device allows a very effective trade-off between software and hardware by providing siznificant capability and flexpility in a low cost chip. When coupled with 'the power and speed of the R6500 family of microprocassors, the R6520 allows implementation of very complex systems at a minimum overall cost.

Control of peripheral devices is handed primarily through two 8-bit bidirectional ports. Each of these lines can be programmed to act as either an input or an output. In addition, four peripheral controlfinternupt input lines are provided. These lines can be used to interrupt the processor or for "hand-shaking" data between the processor and a peripheral device.

Ordering Information

NOTE: Contact your local Rockwell Representative concerning availability.

Basic R6520 Interface Diagram

SUMMARY OF R6520 OPERATION

See Rockwall Microcomputer Hardware Manual for datailed description of R6520 operation,
CA1/CB1 Control

CRA (CRE)		Active Trunsition of Input Signal*	: Intarrupt Outputs
Bit 1	Bit 0		
. $\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 .\end{aligned}$	0 1 0 1	Negative Nepative Positive Positive	Disable - remain high Enable - goes low when bit 7 in CRA (CRB) is set by active transition of signal on CA1 (CB1) Disable - remain high Enable - as explisined above
- Notg: Bit 7 of दRA (CRB) wid be set to a logic 1 by an active transition of the CA1 (CBil signal. This is independent of the state of Bir 0 in ena (CRE).			

CA2/CB2 Input Modes

CRA (CRE)			Cactive Transition of Imput Signal*	IAQA (IRQB) Interrupt Output
Bit 5	Bit 4	Bit 3		
0	0	0	Negative	Disable - remains high
	0	1	Negative	Eneble - goes low when bir 6 in CRA (CRB) is set by active transition of signal on CA2 (CB2)
0	1	0	Positive	Disatale - remains high
0	1	1	Positive	Ensble - as explained above

Note: Bit 6 of CRA (CRB) will be set to a logic 1 by an active transition of the CA2 (CB2) signal. This is independent of the state of Bit 3 in CRA (CRB).

CA2 Output Modes

CRA			Mode	
Bit 5	Eit 4	Bit 3		i . ${ }_{\text {i }}$ (${ }^{\text {ascription }}$
1	0	0 .	"Handshake" on Read	CA2 is set high on an active transition of the CA1 interrupt input signal and set low by a microprocassor "Read A Data"' operation. This allows positive control of data tramsfers from the peripheral davice to the microprocessor.
1	0	1	Pulse Output	CA2 goos low for one cycle after a "Road A Data" operation. This puise can be used to signal the peripheral dovite that data was taken.
1	1	0	Manual Output	CA2 ret low
1	1	1	Manual Output	CA2 set high

CB2 Output Modes

CRE			Moda	- -
Bit 8	Eit 4	Et 3		Deneription
1. 1. 1 1	0 0 1 1		"Handernake" on Write Puise Ourput Manual Output Manual Output	CB2 Is set Jow on microprocessor "Write 8 Data"' operation and is set high by an active transition of the CB1 intarrupt input signal. This aliowe positive control of data transfart from the microprocessor to the peripherel dovica. CB2 goes low for one cyclo after a microprocassor "Wrya B Data" operation. This can be uned to sligel the pefiphered device that deta is simeble. CB2 set low CB2 bat hifh

[^2]
A.C. CHARACTERISTICS

Read Timing Characteristics (Loading 130 pF and one TTL load)

Charactaristics	Symbol	1 MHz		2 MHz		Unit.
		Min	Max	Min	Max	
Delay Time, Address valid to Enable positive transition	${ }^{\text {T }}$ AEW	180	-	- 90	-	ns
Delay Time, Enable positive transition to Data valid on buis	${ }^{T}$ EDR	-	395	-	190	ns
Peripheral Data Setup Time	$\mathrm{T}^{\text {PDSU }}$	300	-	150	-	ns
Data Bus Hold Time *	$T_{\text {HR }}$	10	-	10	.-	ns
Delay Time, Enable negative transition to CA2 negative transition	${ }^{T}$ CA2	-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time, Enable negative transition to CA2 positive transition	$\mathrm{T}_{\mathrm{RS} 1}$	-	1.0	-	0.5	$\mu \mathrm{s}$
Rise and Fall Time for CA1 and CA2 input signals		-	1.0	-	0.5	$\mu \mathrm{s}$
Delay Time from CA1 active transition to CA2 positive transition	$\mathrm{T}_{\text {RS2 }}$	-	2.0	-	1.0	$\mu \mathrm{s}$
Risa and Faill Time for Enable input	${ }^{\text {t }} \mathrm{FE}^{\prime}{ }^{\text {t }} \mathrm{fE}$	-	25	$\stackrel{-}{-}$	25	ns

Write Timing Characteristics

Characteristics	Symbal	1 MHz		2 MHz		Unit
		Min	Max	Min	Max	
Enable Pulse Width	${ }^{T} E$	0.470	25	0.235	25	$\therefore H 5$
Delay Time, Address valid to Enable positive transition	$T_{\text {AEW }}$	180°	-	90	-	ns
Delay Time, Data valid to Enable negative transition	$\mathrm{T}_{\text {DSU }}$	300	-	150	-	ns
Delay Time, Read/Write negative transition to Enable positive transition	T WE	130	-	65	-	ns
Data Bus Hold Time ${ }^{\text {- }}$	$T_{\text {HW }}$	10	-	10	-	ns
Delay Time, Enable negative transition to Peripheral Data valid	$T^{\text {PDW }}$	-	1.0	-.	0.5	μs
Delay Time, Enable negative transition to Peripheral Data valid CMQS $\left\{V_{C C}-30 \%\right)$ PAO-PA7, CA2	${ }^{T}$ CMOS	-	2.0	-	1.0	- ${ }^{\text {s }}$
Delay Time, Enable positive transition to CB2 negative transition	$\mathrm{T}_{\text {CB2 }}$	-	1.0	-	0.5	$\mu 5$
Delay Time. Peripheral Oata valid to CB2 negative transition	$T_{\text {DC }}$	0	1.50	0	0.75	μs
Delay Time, Enable positive transition to CB2 positive transition	TRS1. .	-	1.0	-	0.5	$\mu 5$
Rise and Fall Time for CB1 and CB2 inputsignals	$\mathrm{t}^{\text {r }}$, $\mathrm{T}_{\mathbf{f}}$	-	1.0	. --	0.5	μ^{5}
Delay Time, CB1 active transition to CB2 positive tramsition	$\mathrm{T}_{\mathrm{RS} 2}$	-	2.0	-	1.0	μs

This device contains circuitry to protect the inputs against damage due to high static voltages, however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this circuit.
Static D.C. Characteristics
$\left(V_{C C}=5.0 V \pm 5 \%, V_{S S}=0 . T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

NOTE: Nagative sign indicmes ourward current flow, positive indicates inward flow.
ROCKWELL INTERNATIONAL - MICROELECTRONIC DEVICES


```
Opjective: To be able to set the Feripheral Control Resister (PCR), Interrupt Flas Resister (IFR), Interrupt Enable Resister (IER) and the Data Direction Resister ( InfR).
```

The UIA is an I/O device which acts as an interface between the microprocessor and qer ifherale such as printersy displays, keyboards etc. It is comprised of two almost identical sections, A and k, each cafable of receivins or transmittins eishts nits of data. In addition it contains a fowerful interface timer, serial-to-parallel and parallel-to-serial shift register and input data latchins on the ferifheral forts.

See fisure 2

The VIA will be set up usins the same example as the FIA, For further information on the VIA see Rockwell's R6522 Microcomputer data sheet on the VIA. Available from Rockwell Internationel, Microelectronic Devices; Anaheing, CA 92803 USA.

Fort A Mata Direction Resister (DIRA) is located at adriess A0O3 and fort B ADRB is located at A002.

To set fort A or B for output load $F F$ into the DDR and to reset fort A or B as infut $10 a d 00$ into the apfropriate nor.

The followins example will be used to illustrate some of the features of FCR, IFR: IER and the IDR's.

Erample
1 Fort A will be used for the insut
2 Fort B will be used for the outrut
3 Set uf PCR, IFR and IER for the following When data appears on Port A and the peripheral sisnals the VIA via CAI (nesative transition) that data is readyy the UIA will interrupt the CPU, read port A and senerate a data taken sispal.

4 After the CPU processes the data it will output it via port B. Port B will then senerate a data available sisnal.

1 Address of fort A is A001 Address of InRA is A003 For port A insut
LIIA $\$ 00$

STA AOOS
2 Address of fort E is A000
Address of IIDRE is A002
For port F outfut
LIIA \#FF
STA A002
3 Reset bit 0 on PCF to losic 0
Set hit 1 on IER to a losic 1 so that a nesative trensition on CA1 will cause an interruft (IRQ) to be senerated.

Set bit 1 and 3 on FCR to a losic 1 so that CA2 will senerete a data taken fulse after the CFU reads fort. A.

LIAA	$\ddagger 0 A$	set bit 1 and 3 clear all other bits
STA	AOOC	address of FCF
LDA	$\$ F F$	clear IFR
STA AOOM	address of IFR	
LIA	$\$ 82$	CA1 interruFt enable
STA AOOE	address of IEF	

4 Set bit 5 and 7 to a losic 1 and clear bit 6 on the PCF so that after data is written into fort B a data available sisnel will ge senersted by CR2.

LIIA \ddagger BF
AND AOOC
ORA \#AII
STA AOOC clear bit 6 and set bit 5 and 7 of PCR
4 could be combined with 3 above to form
LIA \#AA sel bit $1,3,5$, and 7 clear all other. . bits
STA AOOC
Combine $1,2,3$ and 4 to write a prosram that will set PCR, IFR, IER, DIRA and DNRE to accomodate the above example.

R6500 Microcomputer System DATA SHEET

VERSATILE INTERFACE ADAPTER (VIA)

DESCRIPTION

The R6522 Versatile Interface Adapter (VIA) features two 8-bit bidirectional $1 / 0$ data ports, four $1 / 0$ control lines, two inde pendent 16 -bit timers and an 8-bit serial-to-paratiel/parallel-to-s serial Shift Register. Seven detectable $1 / 0$ conditions are indicated in an Interfupt Flag Register. These conditions may be programmed to issue an interrupt requast to the processor to allow polled andor immediate processor response to selective, HO Line, timer, and Shift Register operation

Control and monitoring of peripheral devices is handled primarity through the two 8-bit 1/O ports. Each $1 / \mathrm{O}$ line can be programmed to latch input data. The four I/O control lines provide an expanded handshaking capability which allows control of data transfer between the R6522 and interfacing peripherat devices or between separate VIAs in multiple processór systems. Programmable negative or positive edge detection capability on the $1 / 0$ contro fines allows the R6522 to be easily included in a variety of exist ing and new control applications. Each controt line may be pro grammed to interrupt the processor upon detection of a rising or falling edge.

One 1/O line can be selectively controlled by a timer to generate a programmable-frequency square wave or a variable-widit rec tangular wave. Anothar $1 / 0$ line can be configured to "count externally generated pulses using the other timer.

Positive programmable control of the R6522 VIA is achieved through its internal register organization: the Interrypt Enable Register, the Interrupt Flag Register and two function/peripharal control registers, the Auxiliary Control Register, and the Peripheral Conirol Register.

Ordering Information

FEATURES

- Organized for simplified saftware control of many functions
- Compatible with the R650X and R651X family of microprocessors (CPUs)
- Bi-directional, 8-bit daia bus for communication with micropracessar
- Two Bi-directional, 8-bit inputoutput ports for interface with peripheral devices
- CMOS and TTL compatible input/output peripheral ports
- Dats Direction Registers allow each peripheral pin to act as either an input or an output
- Interrupt Flag Aegister allows the micraprocessor to readily determine the source of an interrupt and provides convenient control of the interfupts within the chip
- Handshake control logic for inputoutput peripheral data transfer operations
- Data latching on peripheral input/output ports
- Two fully-programmable. 16-bit interval timers/counters
- Eight-bit Shift Register for serial interface
- Forly-pin plastic or ceramic DIP package
- Timer 1 with four modes:
- One shot interval timer
- Free running mode
- Both above modes with toggte output to PB7 enabled or disabled
- Timer 2 with three modes:
- One shat interval timer
- Counts external pulses on PB6
- Clock sarial shitrregister

Pin Confiyuration

REGISTER ADDRESSING

The four Register Select Lines are normally connected to the processor address bus lines to allow the processor to select the internal R6522 register which is to be accessed. The sixtean possible combinations access the regisfers as follows:

Note: $1=0.4 \mathrm{VDC}, \mathrm{H}=2.2 \mathrm{VDC}$

FUNCTION CONTROL

Control of the various functions and operating modes within the R6522 is accomplished primerily through two registers, the Peripheral Control fegister (PCR), and the Auxiliary Control Register (ACR)

PERIPHERAL CONTROL REGISTER (PCR)

The PCR is used primarily to select the operating riode for the four peripharal control pins fCA1, CA2, CB1 and CB2). The Peripheral Control Registarjs organized as follows:

CA1 Control

PCRO $=0$. The CA1 Interrupt Flag (IFR1) will be set ty a negative transition (high to lowl on the CA1 pin.
$=1$ The CAl Interrupt Flag (IFR1) will be set by a positive rransition flow to high! on the CA1 pin.
CA2 Control

PCR3	PCR2	PCR1	Mode
0	b	0	CAR nagative edge detect (IFRO/ORA clearl mode-Set CA2 interrupt fieg llf ROl on a negative transition of the CA2 input signal. Clear IFRO on 8 read or write of the ORA or by writing logic 1 into IFRO.
0	0	1	CA2 negative edge detect (IFRO clear) mode - Set IFRO on a negative transition of the CA2 input signal. Clear IFRO by writing logic 1 into IFAO.
0	1	0	CA2 positive edge detect (IFRO/ORA clear) mode - Set CA2 interrupt flgg (IFRO) on a positive transition of the CA2 input signal. Clear IFRO on a read or write if the ORA orby writing: logic 1 into IFRO.
0	1	$1{ }^{*}$	CA2 positive edge detect (IFRO clear) mode - Set IFRO on a positive transition of the CA2 input signal. Clear IFRO by writing logic 1 into IFRO.
1	0	\circ	CA2 handshake output mode - Set CA2 output low an a read or write of the Peripharal A Output Register. Peset CA2 high with an active trangition on CA1.
1	0	5	CA2 pulse output mode - CA2 goes low for one cycle following a read or write of the Periptiofal a Output Register.
1	1	0	CA2 low output mode - The CA2 ouput is held low in this med 3 :
1	1	1	CA2 high output mode - The CA2 output is held high in this mode.

CB1 Control
PCR4 = 0 . The CBy interrupi FIge (IFR4) will be sat by a negative transition (high to low) on the CBI pin.
$=1$ The CB4 intarrupt Fleg (IFR4) will be sat by spositive transition (low to high) on the CBI pin.
CB2 Control

AUXILIARY CONTROL REGISTER (ACR)

The ACR selects the operating mode for the two interval timers (T1 and T2) and the Serial Register (SA). The Auxiliary Contrul Register Is organized as follows:

Bit No.	7	6	5	4	$\therefore 3$	2	1	0
Bit Deaignation	ACR7	ACR6	ACR5	ACR4	ACR3 -:	ACR2	ACR1	ACRO
Function	Timer 1 Conirol		Timer 2 Control	Shift Register Contral			Port B Latch Enable	Port A Latch Enabla

Port A Latcir Enable

ACRO 1. Port A tatch is enabled to latch input data when CAI Interrupt Flag ($\{$ FRI) is set.
$=0$ Port A latch is disabled, reflects current date on PA pins:

Port B Latch Enable

ACR1 = 1 Port B latch is enabled to latch the voltage on the pins for the input lines or the ORB contents for the futput tines when $=0 \quad$ Port B latch is disabled, raflects current data on PB pins.
Shift Register Controt

ACR4	ACR3	ACR2 -	: \because Mode
	$\begin{gathered} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	Shift Register Disabled: Shist in under control of Timer 2. Shift in under control of 02. Snift in under control of externas cloçk. Frea-running output at rate determined by Timer 2. Shift out under control of Timer 2. Shift out under control of 02. Shift out under control of external clock.

Timer: 2 Control

ACR5 $=0 \quad$ T2 acts as an interval timer in the one-shot mode.
$=1$ T2 counts a predetermined.number of pulses on PB6.
Timar 1 Control

ACRT	ACR6	Mode
0	0	T1 one-shot mode - Generate a single time-out interrupt éach time T1 is losded. Output to PB7 disabled.
0	1	T1 freq-running móde - Generate continuous interrupts. Output to PB7 disabled.
1	0 -	T1 one-shot mode - Generate a single time-out interrupt and an output pulsa on PB7each time T1 is loeded.
1	1	Ti free-running mode - Generase continuous interrupts and toggle the output on PB7.

INTERRUPT CONTROL

The interrupt control is performed with iwa registers, the Interrupt Flag Register (IFR), and the Interrupt Enable Register (IER).

INTERRUPT FLAG REGISTER (IFR)

The IFR indicates detection of up to seven I/O conditions associated with the two interval timers \{T1 and T2), the controllinas (CA1, CA2, CB1, and C82) and the Shift Register (SR). In addition, whenever any bit from IFRO through IFR6 is set to logic 1 , if the corrasponding bit in the IER is set to logic 1 , the $\overline{\operatorname{IRO}}$ interrupt output line is driven low and IFR7 set to logic 1 to indicate that an IRO interrupt has been generated.

The Interrupt Flag Register is organized as follows:

INTERRUPT ENABLE REGISTER (IER)

For bits 0 to 6 in the IFR there is a corresponding bit in the IER. If one of these bits is set to logic 1 in the iER, an IRQ intarrupt will be genarated if the corresponding bit in the IFR is set to logic 1.

The lniterrupt Enabte Register is organized as follows:

Interrupt Enable tits (IERO-6)
IERn = 0 Diseble Interrupt

- 1 Enable ínserrupt

IER Control (IERT)
1ER7 = O For asch dita bus bit sat to logic 1 , the corresponding IER bit is cleared

- 1 For each data bus bit set to logic 1 , the corramponding IER bit is set

Note: IER7 is active only when $R \bar{W}=L$; when $R \bar{N}=H, I E R 7$ will read logic 1.

READ TIMING CHARACTERISTICS

(Loading $\mathbf{1 3 0} \mathbf{~ p F}$ and one TTL load)

Charseteriaties	Symbol	1 MHz		2 MHz		Unit
		Min	Max	Min	Max	
Delay Time, Address valid to Clock positive transition Delay Time, Clock positive transition to Data valid on bus n / W valid before positive edge of clock Peripheral data valid before positive transition of clock Data Bus Hold Time Delay 'Time, Clock negative transition to CA2 negative transition Delay Time, Clock negative trensition to CA2 positive transition Rise and Fall Time for CA1 and CA2 input signals Delay Time from CA1 active transition to CA2 positive transition Rise and Fall Time for Clock input	T^{\prime}	180	-	90	-	ns
	${ }^{T}$	-	-396	-	190	ns
	$\mathrm{T}_{\text {WCA }}$	180	-	90	-	ns
	$\mathrm{T}_{\mathrm{PCR}}$	300	-	150	-	ns
	T_{HR}	10	-	10	-	ns
	${ }^{\text {T }}$ CA2	- '	1.0	-	0.5	μ
	$\mathrm{T}_{\text {RS1 }}$	-	1.0	-	0.5	μ
	$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	-	1.0	-	0.5	us
	TRS2	-	2.0	-	1.0	μ
	${ }^{1} \mathrm{rC},{ }^{\text {t }} \mathrm{fC}$	-	25	-	25	ns

WRITE TIMING CHARACTERISTICS

Characteristies	Symbol	1 MHz		2 MHz		${ }^{\prime}$ Unit
		Min	Max	Min	Max	
Clock Pulse Width ,	${ }^{T} \mathbf{C}$	0.470	10.	0.235	10	$\mu *$
- Deloy Time. Address valid to Clock positive transition	$\mathrm{T}_{\text {ACW }}$	180	-	90	. -	n\%
Delay Time, Dase valid to Ctock negative transition	$\mathrm{T}_{\text {DCW }}$	300	-	150	-	ns
Delay Time, Read/Write negative transition to Clock positive transition	TwCW	130	-	65	- -	ns
Data Bus Hold Time	$\mathrm{T}_{\text {HW }}$	10	-	10	-	ns
Deapy Time, Clock negative transition to Peripheral Data valid	$\mathrm{T}_{\text {CPW }}$	-	1.0	-	0.5	μ
Detay Time, Clock negative transition to Peripheral Data valid CMOS ($\mathrm{V}_{\mathrm{CC}}{ }^{-30 \% \text {), PAO-PA7, PBO-PB7, CA2 }}$	${ }^{\text {T CMOS }}$	- -	2.0	-	1.0	μ
Delay Time, Clock positive transition to CB2 negative transition	$\mathrm{T}_{\text {CB2 }}$	-	1.0	-	0.5	$\mu 5$
Delay Time, Peripharal Data valid to CB2 nepative tramsition	$T_{\text {DC }}$	0	1.5	0	0.75	μ
Delay Time, Clock positive transition to CB2 positive transition	$\mathrm{T}_{\text {RS } 1}$	-	1.0	-	0.5	$\mu \mathrm{s}$,
Rise and Fall Time for CB1 and CB2 input signals		-	1.0	-	0.5	μs
Delay Time, CB1 active transition to CB2 positive transition	$\mathrm{T}_{\mathrm{RS} 2}$	-	2.0	-	1.0	μs

I/O TIMING CHARACTERISTICS

\therefore Characteristic	Symbol	1 MHz		2 MHz		Unit
		Min:	Max	Min	Max	
Rise and fall time for CA1, CE1, CA2 and CB2 Knput signals	$T_{\text {RF }}$	-	1.0	-	$0.5{ }^{\circ}$	$\mu \mathrm{E}$
Delay time, clock negative transition to CA2 nequtive transition (read handshake or pulse mode)	${ }^{\text {C CA2 }}$	-	1.0	-	0.5	$\checkmark \mu 8$
Deldy time, clock negative transition to CA2 positive transition (pulsa mode)	$\mathrm{T}_{\text {RS } 1}$	-	1.0	-	0.5	μ
Delay time, CA1 active transition to CA2 positive transition (handshake mode)	$\mathrm{T}_{\text {RS2 }}$	-	. 2.0	- -	. 1.0	μ
Delay time, clock positive transition to CA2 or CB2 nogative transition (write handshake)	TWHS	-	1.0	- _	0.5	$\stackrel{\mu}{2}$
Delay time, peripheral data valid to C82 negative transition	${ }^{T}$ DC	0	1.5	0	0.75	μs
Delay time, clock positive transition to CA2 or CB2 positive transition (pulse mode)	$\mathrm{T}_{\text {RS3 }}$	-	1.0	- .	0.6	us
Delay time, C81 active transition to CA2 or CB2 positive transition (handshake mode)	$T_{\text {RS4 }}$	-	2.0	-	1.0	183
Delay time, peripharal data valid to CA1 or CB1 active transition (input latching)	$T_{\text {IL }}$. 300	-	1501	-	ns
Delay time C81 negative transition to CB2 data valid (internal SR clock, shift out)	$\mathrm{T}_{\text {SR1 }}$	-	300	-	150	H8
Delay time, negative transition of CB1 input clock to CB2 data valid (external clock, shift out)	$T_{\text {SR2 }}^{*}$	-	300	-	150	n8
Delay time, CB2 data valid to positive transition of CB1 clock (shift in, internal or external clock)	${ }^{\mathbf{T}}$ SR3	-	300	\bigcirc	150	ns
Pulse Width - P86 Input Puise	$T_{\text {IPW }}$	2	-	1		μ
Pulse Width - CB1 Input Clock	TICW	2	-	. 1	-:	14
Pulse Spacing - PB6 Input Pülso	TIPS	2	- .	1	-	μ
Pulse Spacing - CB1 Input Pulsé, i,	TICS	2	-	$\therefore \quad 1$	-	48

SPECIFICATIONS

Maximum Ratings

This davice contains circuitry to protect the inputs against damage due to high static voltages. However, it is advised that normal precautions be saken to ayaid application of any voltage higher than maximum rated voltages.

Electrical Charactoristics

(VCC $=5.0 \mathrm{~V} \pm 5 \%$, VSS $=0)$

Charactarintic	Symbol	Min	Max	Unit
Input high voltage fnormal operation) except 02.	$V_{1 H}$	$\cdots+2.2$	vcc	Vde
Input high voliape (normal operation) 02	$\mathrm{V}_{1 \mathrm{HC}}$	+2.4	VCC	Vdc
. Input low voltage (normal operation)	$V_{\text {IL }}$	0.3	+0.8	Vdc
Input leakage current $-V_{\text {in }}=0$ to 5 Vdr RN, RES, RSO, RS1,RS2, RS3, CSI. CS2, CA1. 02	${ }_{\text {IN }}$		± 2.5	- Adc
Offstate input current $-V_{\text {in }}=0.4$ to 2.4 V VCC = Max, 00 to D7	${ }^{\text {ITSI }}$		$\pm 10 \quad \therefore$	MAdc
Input hligh current $-\mathrm{V}_{1 \mathrm{H}}=\mathbf{2 . 2 V}$ PA0-PA7, CA2, PEO-PB7, CB1, C82	${ }_{1 / H}$	-100	-	MAdc
\therefore Input low current $-V_{1 L}=0.8 \mathrm{Vac}$ PAO-PA7, CA2, PBO-PB7, CB1, CB2	$I_{\text {IL }}$	-	: 1.6	madc
Outpur high voltege $V C C=m i n, I_{\text {Igog }}=-100 \mu A d c$ PAO-PA7, CA2, PBO-PB7, CB1, CB2	- V_{OH}	2.4	- .	Vdc
Output low voltega $V C C=\min , 1_{\text {lood }}=1.6 \mathrm{mAde}$	$v_{\text {OL }}$	$\cdots \quad$ -	± 0.4	Vdc
Output high current (sourcing) $\begin{aligned} V_{\mathrm{OH}} & =2.4 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OH}} & =1.5 \mathrm{~V}, \mathrm{PBO}-\mathrm{PB} 7, \mathrm{CB1}, \mathrm{CB2} \end{aligned}$	${ }^{1} \mathrm{OH}$	-100 -1.0	-	$\begin{array}{r} \text { } \quad \text { MAde } \\ \hline \end{array}$
Ourput low eurrant (sinking $\bar{v}_{\mathrm{OL}}=0.4 \mathrm{Vdc}$	${ }^{1} \mathrm{OL}$	1.6	\cdots	mAdc \because
Output leakaje current foff statel - TRO	'off.	.	10	$\mu A d c$
Inpur Capacitanct $-T_{A}=25^{\circ} \mathrm{C}$. f $=1 \mathrm{MHz}$ RMW, RES, RSO, AS1,RS2, RS3, CS1, CS2, DO-D7, PAO-PA7, CA2, PBO-PB7: C81. CB2 $\$ 2$ input	$c_{\text {in }}$	$-$	7.0 10 20	pF.
Output empxitance $-\mathrm{T}_{A}=25^{\circ} \mathrm{C} .4{ }_{\sim} 1 \mathrm{MHz}$	$\mathrm{C}_{\text {out }}$	-	10	pF
Power dissipation	P_{d}	- .	750	$m \times$

ROCKWELL IMTERNATIONAL - MICROELECTRONIC DEVICES neovomal sale of fices

 Contaci Auberf O. Whiretell is Ausciates Coti Easi Wrahinglon Sirapt indionpootis. indipma alate [317) 350 maci
 TWK: © 10.341 -3320

Carober Ollice tuibding Golto U.S. Rout 9 North Curapticin, New Jionsy 00002

Aockwell
internetionel

Euncer
 Mockinell internelional ambit
 Meroenctronic Derices:

 (0) ted
 ferp: 0s21/2we

FAn EAT
Aockmeli Intemational Overtieds Corp.
Hochpit Hiratumy-cho Eide
74 Nirleawecho 2 -thom.
Chiyodetiu. jepen
for 2ux J20ct

- Adeo applicalions Centera

\because Trouhleshooting Misital Circuits and Microcomputers

```
A Tools used to troubleshoot disital/computer sustems. E Troubleshootins microfrocessor sustems.
```

The furfose of this chafter is to introduce the student to different tools used in troublesfootins digital/comfuter circuits and some seneral techniaues in troubleshootins. Each manufacturer hes develofed troubleshootins methods for his froducts; therefores rather than concentratins on Sfecific techniaues the followins froblem solving method is Fresented. It has semeral arflication and can be modified to zFFly to sfecific froducts.

Steps of thinkins in froblem solvins (Easic. Frincifles of Curriculum end Instruction by Tuler)

1 Sensins 3 difficulty or question that cañot te snswered at fresent.

2 Identifyins the froblem more clearly hu analysis.
3 Collectins relevant facts.
4 Formulatins fossible hupothesiss that is developins possitile solutions to the problem.

5 Testing the hyfothesis by aforofriate neans.
6 Irawins conclusions - that is solvins the problem.

A Tools used to Troubleshoot Ilisital/Computer Systems
1 Logic Frobes
2 Logic Fulser.
3 Current Tracer
4 Losic Comperator
5 Occillascopes
b Lusic State Analyzer
7 Sisnature Analysis
The circuit in fisure 1 will be used to illustrate the application of these tools.

Functional oferation of the circuit in fisure 1 .
If address lines A13 or A14 are Lo and address line A15 is Lo the outfut of $\mathrm{Z}-13 \mathrm{~A}$ will be Hi , and if fl 2 and the syne'line, both so Hi as well then the outfut of $\mathrm{Z}-20$ soes * Lo.

With the Sinsle Step switch on Run this operation has no effect on the computer, however if the switch is on sinsle gter the NMI line is pulled low and the interrupt is
serviced.

Address lines A13, A14 and A15 are used thy the ROM therefore Sinsle Step will not work while a ROM prosran is beins run.

To make sure the AIM 65 is not addressins ROM you can load in this short frosram and execute it before each afplication of the ahove tools if arplicable.

0000 JMF
0001 01
0002

Learnins Activity Ai
The Losic Frobe
TyFicel Losic Frobe Hewlett Fackard (HF) 545A
Objective: To affly the Losic Frobe to disital circuits.
The losic erobe is a disital state insicator (Hi or Lo) which provides, via e lamp, an indication of a mish level; lou level or bed level sisnel.

Mrishtly lit lamp indicates a hish.
Lamp off indicates a low.
fimly lit lamf indicetes a bad sisnal or hish impedance stete.

The logic probe also hes pulse stretchins cafability so that it can detect fulses as narrow as 10 , nanoseconds, and blink on and off for, 1 seconds.

In eddition the losic probe will detect pulse tráins (clocks) ur to 50 MHZ . When detectins these hish freauencs fulse treins the lamp will blink off and on at a 10 HZ rate.

Afrlication of Losic Probes
Equifment Fequired: Aim 65 Computer
$\therefore \quad$ HF 545A Losic Frobe
Connect the losic probe to fin $10, Z-16$ some as pin 11 , Z-20 (see fis.1) and observe the 82 clock. Probe action
(while performins the followins test switch off and on your short prosram)

Connect the losic probe to fin 7, $7-9$ same connection 35 Fin 9, Z-20. Frobe action

Conmect frobe to pin $10, Z-13 C$. Probe action

You have observed the three different actions of the Frobe: 1 rulse train 82

2 short pulse at pin $7, Z-9$
3 Losic Hi or Lo at' fin 10; $\mathrm{Z}-13 \mathrm{C}$

Learnins Activity A2
The Losic Fulser
Tspical HF 546A

Oujective: To effly the Losic fulser to disital losic circuits.

The losic puiser injects the circuit with a sinsle 500 nanosecond wide fulse of froper amplitude and folarits each time the button is Fushed.

In addition fulse streams of 1,10 and 100 Hz and pulse bursts of 1,10 and 100 Hz can be selected.

Node: Each foint in the circuit is called a node. All Foints that, are wired tosether are fart of the same node.

The fulcer. is cafable of sourcing or sinking. 5 A for 500 nanoseconds to insure that the node is fulsed.

Stimulus-response testins is an effective techniaue to locate troubles in disital circuits. The losic fulser serves as the stimuls and the losic probe is used to monitor the result..

Apflication of the Losic Fulser
Equirment required: : Aim 65 Computer
Losic Pulser
Losic Probe.
Connect the logic pulser to fin 9, Z-13A.
Connect the losic probe to fin $8,2-13 A$
Press the button on the pulser

- Record the output on the lesic probe

You should have abserved that the output chansed when
\therefore the gutton in the pulser was pressed.
To oheck multiple input sates they will have to be tied tosether and pulsed with the losic pulser if

Typical HF 547A
Objective: To affly the current tracer to disital circuits.

The current tracer detects current activity on losic nodes bu means of an inductive piok-uf at it's tif. In order to use the current tracer it must be fositioned Ferpendicular to the line beins traced and the small hole in the tif slisned with the direction of the current beins treced. The sensitivity control is adjusted for half intensity on the current tracer lamp.

Afrlication of the Current Tracer
$\begin{aligned} & \text { Equipment reaured: } \text { Arm } 65 \text { Computer } \\ & \text { Losic pulser } \\ & \text { Current tracer }\end{aligned}$
Place the curcent tracer over the line soins to pin 5 , Z-13B, Adjust the sensitivity control for half brilliance.

You afe observins the activits on 82 clock line.
Usins the current tracer; trace the line back to it's orisin i.e. fin 10, Z-16.

You can use the losic pulser to inject current pulses into a shorted line and use the current tracer to locate the short. The followins diasran illustrates how this is done.

The current tracer can trace the pulse from the logic pulser to the shorted gate.

Learnins Activity A4

Losic Comparator

The losic comparator compares the operation of a TTL IC, under actual oferation, to a known reference IC.

In operation the comparator crips onto a powered IC and the same ture of IC is placed in the comparator. The outputs" of both IC's are compared and if they are not the same a $E E D$ is lit correspondins to the location of the error.

For troubleshootins furfoses the losic comparator is simply clipped across a powered IC and a refrence. IC is Flaced in the comparator. This sequence is continued until. the bad IC is located.

Learning Activity AS
 Oscilloscofes

Qbiective: To affly the Oscilloscorq to disital circuits.

Stimulus resfonse techniaues, usins senerators and oscilloscopes; normally associated with analos circuits will not normally work with microcomputers. Sisnal lines are tri-state, data and address lines are multiplexed and - onls the CFU really knows the purfose of the Bus activity. However, there are afplications suited for an ascillascopey with at least 50 MHZ beridwidth.
\square
1 Monitor clock activity: all CFU operations are timed, - Ds a sustems clock. The clock's waveform can be observed on an oscilloscofe and it's freauency determined.

2 The first 12 address 1 ings, the data 1 ines znd the F/W line can be observed on the pscistoscore by uritins. 3
 short routine and havins the computer continually logp throush it. This sives the data and address lines a refetative freauencs necessary for oscilloscore observation\%. The oscilloscofe can he sunchronized by the clock or read urite lines.

3 The $1 / 0$ ports can be observed on and osedlloscofe if a short loopins routine is used to continuedigoddress the 1/0 ports.

Application of the Oscilloscope

Equipment required: AIM 65 Computer
\qquad 50 MHZ Ileal Chañ̃nel Oscilloscope

1 Record the voltage on 81 clock Determine it's frequency
2 Record the voltage on 82 clock $\ldots \ldots$. Metermine-it's frefousency
3 Connect $\not 01$ to channel 1
Connect 82 to channel 2
observe that tine two clocks are phase shifted by 180.
degrees.
4 Load the following frosram into the AIM 65
$03 F \mathrm{~F}$ J MF
03FE FD
\therefore.
03FF 03
Execute the program

The address lines should repeat after' 3 data bits. Sketch the waveform you observed on address line 0 . Indicate time versus amplitude

Show it to your teacher for conformation.
Deserve the data on all twelve address lines and the data, finest sketch a sEraph of the data an data bit. 2, show amplitude versús time.
R()

```
Objective: To apply the Losic State Analyzer to digital
circuits.
```

The losic state anslyzer captures up to 64, 16 git words at clock speeds up to 10 MHZ . Thse words are stored in the losic analyzers memory and may be displayed in Hex, Detal, Decimal or Binary, The losic state analyzer can be used to monitor the address bus, data bus, control lines or input/output activits.

Application of the Losic Analyzer

```
Equirment required: AIM 65 Computer
                                    1602A Losic State Analyzer
```

 - . . J
 Settins up the losic state analyzer to observe the data lines. -
Connect the 8 LSB probes to the AIM 65 data lines
Clock to 02
Ground to Computer sround
Select fositive losic polarits
Select nesative clock edse
Select Heヶpdecimal
Hord width $=8$ (8 bits only on data, bus)
Press Trisser =, (used to set trisser word)
Pressins Trace instructs the analyzer to start lookins for the trisser word.

Load in the traffic lisht prosram (see Learnins Activity III B2I.)

Set trisser wordy Press trisser $=20$ (Hex for JSR)
Press Trace
Run traffic lisht prosiam
64 data words will now be stored in the losic analyzer:

The data in tha analyzers memory may be viewed, on the display using the four keys in the display block.
-Thes are: Next Word - view next word in memory
Prior word - so back one word
At trisser word - in this case 20
Word number - display a specific word
Compare the traffic lisht prosiram to the data stored in the losic analyzer".

Set up the losic state analyzer to trace address lines,
Connect 16 probes to address lines
Clock to 02
Ground to Computer sround
Positive losic polarits
Nesative clock ense
Select Hexadecimal
Word width $=16$
Trisser $=0200$

- Loas traffic lisht prosram

Press trace
Efecute prosram

64 data words 16 bits wide will now be stored in the losic analyzer.

Use the 4 display keys to observe address words stored in memory. Compare to the traffic lisht prosram.

Objective: To introduce the student to Sisnature Analysis.

Abstract

Sisnature Analysis is an eass to use and hishly accurate technioue for identifying faulty logic nodes. The sisnature analyzer can convert the lons complex serial data streams present on microprocessor sustem losic nodes into four-disit "sisnatures".

In order to use the sisnature analuzer the product under test myst have been desisned for test by the sisnal analyzer. Essentially the instrument under test must contain a ROM that senerates a series of sisnals.

To'test a computer or disital instrument switch on the sisnature analyzer and place it in the diasnostic mode. Place the sisnature analyzer probe on a desisnated node. Compare the signature on the node to that on the schenatic diasram of the instrument under test. Each node on the schematic is marked with a specific sisnature. Once a bad sisnature is identified the faulty component can be easily located.

Component problems can be identified by detectins sood

 sisnatures soins into a component and bad sisnatures at the output. Bad components on a nôde can also be isolated by- ETroubleshootins Microprocessor Systems

The following lesson is from the "Hewlett-Packard Practical Microprocessor Textbook" and is included with the Permission of Hewlett-Packard (Canada) Ltd.

Troubleshooting Microprocessor Sustems

The troubleshooting philosophy for microprocessor-based products is fundamentally no different than for standard digital designs. As with any circuit you are trying to analyze or troubleshoot, it is helpful to first become familiar with the circuit. Studying the theory of operation, the block diagram, and the schematic provides a base of knowledge from which to work. In this lesson, problems relating to microprocessor systems and the troubleshooting techniques for dealing with them are discussed.

There are a number of testing problems'somewhat uniqueito microprocessor systems. For one thing, most of the control is in the software, so that signal flow is hard to trace. Another difficulty is that everything happens too rapidly to see in real time. In most cases, a microprocessor system, unlike many logic circuits, cannot be stopped and manipulated. Measurements must be taken while the microprocessor is running. This requirement reduces the effectiveness of the logic probe and pulser but enhances the usefulness of the current tracer, oscilloscope, signature analyzer, and logic anatyzer beciause these instruments rely on circuit activity for their measurements.

Microprocessor bus structures pose additional difficulties. Data on these buses is often unstable or meaningless because of three-state outputs, multiplexing, and switching transients. These conditions cause no problems for the system itself, since it is synchronous and knowis when the bus lines contain stable signals. The signature analyzer and the logic analyzer also know when these lines are valid, because of clock signals provided to them. The oscilloscope does not have this capability. It provides little quantitative information, but is useful for examining qualitative factors, such as general activity, logic levels, waveform timing, and bus conflicts.

Since bus structures also make it possible for many devices to be connected together on a single node, finding the one bad device on such a node can be difficult. The current tracer is useful for this purpose. The data bus also acts as a digital signal feedback path and tends to propagate errors through good

INTRODUCTION

MICROPROCESSOR TROUBLESHOOTING PROBLEMS

circuits and then back to the fautt source. The best way to deal with this problem is to open the feedback path when possible. Techniques for doing so are discussed in this lesson.

Complex devices are often connected to the microprocessor buses. It is difficult to test these devices using simple stimulus-response testing. The correct operation of these devices can be verified by swapping them with a known good chip. or by observing that the function they perform for the system is being performed correctly.

Microprocessors are sequential machines. Program flow depends on a long sequence of instructions and events. If even a single bit of information is incorrect, the whole system can go awry. Noise glitches and bad memory bits are the most common sources of single-bit errors. Others are also discussed in this lesson. These failures are difficult to pinpoint because the entire system may. appear to be operating incorrectly.

Experience gained from doing the Microprocessor Lab troubleshooting experiments in Lesson 19 will provide you with a good foundation for troubleshooting other microprocessor-based products. Such experience can prevent the really difficult troubleshooting problems from being thrown under ypurbench (or worse). Now things always seem more ditficult at first, and the same is true of microprocessors. Designed-in serviceability and good documentation by the manufacturer can make troubleshooting much easier. The use of signature analysis and other highlevel servicing aids can greatly reduce the task of troubleshooting.

Lesson 18

Dozens of different microprocessors exist, and hundreds of people design products and service procedures for them. Since the $\mu \mathrm{Lab}$ is specifically designed for educational purposes and for teaching troubleshooting, the corcepts developed using the μ Lab should be applicable to many classes of microprocessor systems. It is as close to a typical (but small) system as is practical.

Clocks

Bad clocks can cause fouled, but "running," systems. There are a number of malfunctions that can result in system clocking problems. Clock problems can show up as a failure of the system to function at all (no activity), the ability to function only open-loop (free-running), or semifunctional activity (a meaningless and undefined program sequence). Some microprocessors are sensitive to clock sped. Since many systems run "at spec," even a small variation in clock rate (too fast) can cause system failures. If the system runs too slow, dynamic storage cells on ICs in the system may fail. Both of these problems are more likely to occur when resistor and capacitor (RC) clock circuits are used instead of the more accurate and stable crystal-controlled circuits. However, crystals can sometimes break into their third overtone oscillation mode, causing a much .higher than expected clock rate. In addition, some processors require multiphase and nonoverlapping clocks with very stringent timing requirements. Also, clock voltage levels are not necessarily. TTL compatible, but, may be much wider in voltage swing. Microprocessor clock specs can be found on the device data sheets and can be checked using conventional frequency counters and oscilloscopes.

Power-Up Resel

The microprocessor's power-up reset circuit can also cause fouled, but running, system operation. A reset pulse that is nonexistert, too short, too noisy, or too slow in transition can start everything off on the wrong foot, resulting in out-ofsequence, partial, or no reset activity. Problems can alsò "occur in reset circuits that are susceptible to power supply glitches. Even wherr Schmitt input circults are used, slow edges can cause reset timing skew from one device to another within some systems. This will cause some of the devices to power-up before the others, resulting in erroneous behavior. A too rapid ON-OFF-ON system power sequence will fail to restart many systems (e.g., the $\mu \mathrm{Lab}$). It may then be necessary to increase the OFF time to allow the power supplies and restart circuits to discharge.

None of these reset failures will necessarily prevent the system from running. It may run for a short time and then stop, or lock up in a meaningless program loop. or even perform most of its normal operations. The key point to remember is that the system must complete the power-up reset sequence to insure that all of the test, control, and initialization operations necessary to bring the system up have been performed.

Power-up reset circuits are normally operative only when the system is initially powered-up. They can be monitored at that time with storage oscilloscopes, logic analyzers, and in some cases, signature analyzers. They can also be manually overdriven and controlled externally for testing purposes.

```
Lesson 18
```

Practical Microprocessors

Interrupts
Stuck or noisy interrupt lines can cause faulty system operation. The system may work with a stuck line but it will do so very slowly (spending most of its time servicing the "phantom" interrupt). Noisy interrupt lines can cause sporadic system changes to occur, or peripheral inputs or outputs may take place at improper times. Sometimes the system will not respond at all to certain I/O devices, which can occur when a higher priority interrupt has disabled the lower ones.

Interrupt line activity can be monitored with a logic probe, logic analyzer, or oscilloscope. Interrupts are asynchronous in nature and can often be manually controlled (enabled or disabled) for testing purposes.

Signal Degradation

The long paraliel bus and control lines present in medium-to-large microprocessor systems are sometimes susceptible to crosstalk and transmission line problems on critical lines (such as clocks and enables). These problems can show up as glitches on adjacent signal lines or ringing on the driving line (causing multiple transitions through a logic threshold). Either of these situations can inject faulty data or control signals that are very difficult to detect. This problem is most common when signal lines are long and already taxing the timing and noise margins of the system. When extender cards are added to these systems or high-humidity conditions exist, failures may occur. Cross-coupling of lines on extender cards can be a problem when fast signal transition lines (such as Schottky gate outputs) run alongside other signal lines, even when they are on opposite sides of a PC board.

Memorles

Memory failures in microprocessor systems can produce deviant system be havior in a number of ways. Anything from a total system failure to a single faulty bit of stored"data can occur. Most memory failures can be found during the power-up self-test program, unless the memory failure prevents this program from running. If the 'system doesn't do a RAM veritication test and no RAM test service fixtures or procedures áre provided, it is nearly impossible to test the RAM.'You will probably need to resort to substitution techniques when a RAM becomes sulspect.

RAM failures occuring in the area of the memory used for the stack will usually cause the systern to crash, even for a single-bit error. Otherwise, RAM failures may cause soft errors that result in unreliable system operation. Faulty dynamic RAM refresh circuitry is another factor to consider in diagnosing apparent RAM failures.

ROMs can also tail. Such failures are more frequent when nonmask programmable types are used. A single bad bit could crash the system or, even worse, 99 percent of it could work and 1 percent could produce erroneous results. ROMs can be effectively tested during power-up self-test; if such tests are

Using Signature Analyzer to Troubleshoot Microprocessor-Based Product
designed in. But, unlike RAMs, ROMs can also be tested by other techniques if no self-test is provided. One such technique involves free-running the system and then using the signature analyzer to either verifygocumented signatures or compare the outputs of a suspected ROM with that fo a ROM in a known good system (see Experiment 17-2). 4.

The programmability of microprocessor-based systems can be used to great advantage in assisting system testing. Programs stored in the system's ROM can test ROMs, RAMs, and the processor itself. Often the I/O can be tested to some extent. Software can also be used to provide stimulus for an external test instrument, such as as signature analyzer.

ROM Testing

The most compon technique for testing ROMs uses a checksum. When the ROM is programmed, all of its words are added together, ignoring any carries that result. This number is complemented and stored in the last (or sometimes the first) word of the ROM, so that when all the words are added together (including the checksum stored in the last byte), the result is zero. If the total is not zero at the end of the test sequence; then something is wrong with the ROM. (In actual practice, the checksum is usually calculated to make the total a specific number other than zero.)

Unfortunately, the checksum is not totally reliable. It detects any single-bit error and most multiple-bit errors; however, there are intany combinations of two or more ersors that still produce the correct checksum. Thus, a ROM that passes a checksum test is probably good. If the test fails, something is definitely wrong (though it might not be the ROM itself).

RAM Testing

RAMs are tested by writing a pattern into the memory, reading it back, and then verifying that has changed. Of the many different patterns that can be used, a common one is the checkerboard. In this pattern, all the bits are set to alternating ones and zeros. Once all memory locations have been tested, the pattem is repeated with each bit reversed, verifying that each bit of the RAM can store a one and a zero. Many other patterns used to test RAMS are specifically aimed at detecting varlous fallure mechanisms within the RAM.

No memory test can guarantee 100 percent accuracy, even though it may show that each bit can store a one or a zero. RAMs can be pattern sensitive. For example, one location might correctly store 01010101 and 10101010 but fail when 01111000 is stored: Even for a small RAM, it would take an extremely long time to test every possible pattern sequence. For this reason, RAM test credibility is generally much lower than that of ROMs. As with the checksurn test, if a RAM passes the system self-test program, it is probably good. If it fails the test, something is definitely wrong.

MULTIPLEXED I/O
Muliplexed keyboards and displays often share some of the same scanning circuits (as does the $\mu \mathrm{Lab}$). In these situations a stuck key can appear to make The display fail. Likewise, a bad display driver input could cause a keyboard error. The interaction between common scan circuits must be considered in making a diagnosis.

INTERFACES

ε
Many microprocessor systems interiace with other systems through external communication lines (e.g., IEEE-488, RS-232C, telephone modem). These lines are frequently long and are often exposed to sources of electrical interference, such as relays, transformers, motors, solenoids, and even. lightning. Electromagnetic interference (EMI) emanating from these sources can cause the transmission of faulty data, overstressing of interface circuits, and, especially in the case of lightning, gross component failures. Generally, output line driver circuits tend to have higher-than-average failuce rates, due both to EMI stressing and to the high transition currents that result from driving capacitive interfacing cables.

TROUBLESHOOTING TREES

A troubleshooting tree is a graphical means of showing the sequence of tests performed on a product under test. These trees are often drawn as flowcharts in which the results of each test determine what step is taken next. Thie use of troublestiooting trees for repairing microprocessor-based products can save considerable time and effort.

Figure 18-1 shows a portion of the troubleshooting tree for the HP 3455A Digital Voltmeter. Theoretically, it should lead you to the products fault by means of the actions taken and decisions made along the tree. Unfortunately; such is not always the case. A perfect troubleshooting tree must consider all possible failures, a difficult criterion for the person writing the troubleshooting tree to meet. Also, troubleshooting trees tend to be fairly generalized; lacking the specifics desired for making tests and decisions. Few troubleshooting trees provide practical information about how a specified test or measurement relates to what the circuit does or is supposed to do. If the troubleshooting tree fails to direct you to the actual fault, you may be lett.at a dead-end, with no idea of where to go next. However. the troubleshooting tree will often be your best guide (gt least to begin with).

Figure 18-1. . Typical Troubleshooting Tree for Product Incorporating Signature Analysis

There are good troubleshooting trees and there are bad troubleshooting trees. The good ones seldom lead to a dead-end and provide a logical, well-directed sequence of tests and. measurements, requiring a minimum level of understanding of the circuit under test, Often they include advanced techniques such as signature analysis to simplify the procedure. In troubleshooting a procuct, even the poorer troubleshooting trees can be useful for localizing a fallure drea in the system and canisave considerable time and etfort.

For many experienced troubleshooters, working from product block diagrams can supply the right amount of information to understand how the different parts of the circuit work together. A product's theory of operation and its troubleshooting trees do not relate as closely to the hardware. The schematics often provide too much detailed information, making it difficult to see the "big picture."

The remaining portion of this lesson outines a loose strquence of general steps that you can take to troubleshoot a microprocessor-based product. Numerous servicing techniques and "tricks of the trade" are interspersed with the descriptions.

OTHER DOCUMENFATION

IS THERE REALLY

 \Rightarrow A PROBLEM?> WHAT CAN BE LEARNED FROM THE FRONT PANEL?

WHAT DOES THE MANUAL SAY?

It is important to have a general understanding of the defective piffuct so that you can be sure that a problem really exists. To some degree, you should know what it does and how it operates. Microprocessors allow designers to design, products that are not only complex in function, but sometimes complex to operate as weli. Be sure the apparent problem is not a user error, but a real product malfunction. Few things are more frustrating than trying to fix something that is not broken. In some situations, it appears that a product should do something it was not actually designed to do. For example, a DVM AC select switch may work on VOLTS but not on AMPS. This "design limitation" can usually be verified in the operating manual and does not-constitute a product malfunction;- it is only a shortcoming.

Design "bugs" in the firmware (ROM) can sometimes cause failures when used under operating conditions that were not anticipated during the product design. These are more likely to occur in early production runs and can best be verified (if suspected) by contacting the manuffacturer. At the other extreme, a problem may actually exist but not show up because the product is not adequately exercised. These kinds of problems are often very simple to detect (e.g., observing a burnt out OHMs LED indicator when pushing the OHMs button on a DVM). They can also be complex problems. For example, errors can occur when an unusual sequence of operations is performed. Because the complex problems are much more difficult to test for, extensive test procedures are used to test products at the factory. The customer, bringing in a product for repair, has no ${ }^{*}$ trouble pointing out a problem. It is up to the troubleshooter to solve it.

A great deal of diagnostic infórmation can often be obtainëd without even removing the product's covers. Most microprocessor-based products have some sort of front panel. On it there may be switches and indicators, inputs and outputs. Milking the front panel is a process in which the switches, buttons, and other inputs are used to solicit responses from the product that can be observed using its indicators'and other outputs. For instance, if the indicators are all dead when the power is tumed on, you might suspect a bad switch, fuse, power cord, battery connection or power supply. If one segment of a display is dead, the problem is probably the display itself or the circuit that drives it. If the only failure of a DVM is in the 1-10 VOLT range, the problem area can be narrowed downto a relatively small portion of the circuit (the attenuator).

Always take advantage of any designed-in perfomance verification or power-up test modes and diagnostic messages that are available. These are specified in the product manual.

At this point you may have some idea of where the problem is or you may have. even fixed it. But in all likelihood, neither has taken place.
"If all else fails, look' at the manual." 'This rather poor (but prevalent) attitude makes even less sense for microprocessor-besed products than for conventional ones. There may be a bonanza of service aids and procedures in the manual juat waiting for you to try out. Special service switches, jumpers, test fixtures, indicators, and test techniques can make the job much easier.

Try to understand the circuits and figure out where thinigs are. Check out the manual's theory of operation section, the block diagrams, and the schematics.

Lesson 18 Practical Microprocessors

You do not have to do this in great tetail but just enough to hive some idea of what is going on. Identify the microprocessor, ROM, RAM, I/O, addresis decoder, clock bus, control, and interrupt portions of the system.

The life of an IC is generally a sequence of predictable events. It is born in the IC factory and is sent to a product manufacturer. Theng it is inserted into a circuit board, which in turn is inserted, into a product. Then the product goes into service, and the IC remains there for the rest of its useful life. Needless to say, not all ICs live a long and healthy life.

Product manufacturers estinate that approximately 2 percent of all incoming ICs are defective. Testing incoming ICs on an IC tester will detect most of these. The effective cost of finding a defective IC at this point is about 10 cents. Oncetcs are loaded into clrcuit boards, the bad ones cost about $\$ 1$ to find. If they are not detected uptil the boards are assembled into the end product, this "in-situ". troubleshooting and repair costs about $\$ 10$ at the factory. Replacing, a bad IC' in the field is ever more expensive: a typical bill for finding and replacing a faulty IC in a customer's product is about $\$ 100$. Clearly, it makes sense to find and eliminate the detective ICs as early in the cycle as possible.

$\therefore \quad$ HP-3845A Digital tC, Tester Used to Porform Incoming Inspection

- Types of Falures

Common fault sources and the best troubleshootingatechniques for inding them depend on the history of the product and the environment in which it is tested. When a new product is first tumed on at theftactory, almost anything might be wrong with it. Products that fail in the field have all worked at one time. Assembly egrofs, such as mistoaded components and miswired circuits, generaliy need not 7 considered in field frilures Also, the likelihood of solder shorts and multiple Paulss is much greater on the production line than in the field. Field failures are usually caused by compoments or connections that have fellad.

Lesson 18 Matal
: Practical Micróprocessors

A

- Automatic Testers
- Because of the volume of identical products tested at the factory, specialized testing and troubleshooting equipmpnt and technlques can be justified. Automatic board testers and test fixtures are often used to minimize the time it takes to locate faults. In general, they provide fast, economic, and accurate verification "and fault diagnosis. Do not, however, fail victim to overconfidence in computercontrolled automatic board testers. Occasionally, toards passed by a production board tester are actually defective as a result of deficiencies (timing, loading, or component exercisting) in the tester or the test program being run. However, newer board testerg that perform more sophisticated dynamic, functional, and parametric tests have greatly increased credibility.
to five volts (a safe voltage for logic clrcuits). Then, with cables solidiy connected to the two shorted nodes and proper polarity observed, discharge the capacitor into them and listen for a snapping sound on the board. Check continuity to see if the short has been opened and, if not, try again. This technique should be used with caution since it will open the weakest link of the current path, which may not always be the fault source, but may be a fine trace or a plate-through. The current tracer provides a much safer means for finding shorts, as demonstrated in Experiment 16-4.

A relatively new problem in production is the occurrence of bent-under IC pins caused by automatic component insertion equipment. These can result in an open electrical connection between the IC and the PC board, an intermittent connection, or shorts to traces near or under the IC. The bent-under pin is aften difficult to spot visually because it may look as though it is properly soldered in place. The best way to tell is to look at the bottom of the board for the ends of any IC pins or along the plane of the board to spe under the ICs.

PC board edge connectors are commonly used. They may cause problems in production when their borders are cut off center or when they are accidentally covered with solder resist or board sealing spray. Visual inspection can reveal such problems.

Multilayer. P . boards suffer from all of the problems of regular boards plus some of their own. Misregistration and contamination of inner layers (which can cause high frequency or leakage problems) can often be observed by holding the board up to the light. Since repair of the inner layers is often impossible, the enties board may have to be scrapped.

Wire-wrap'boards are prone to bent posts that cause shorting. Other common production problems include 14-pin ICs loaded into the wrong end of a 16-pin socket; miswiring, wire shorts between pins, and signal coupling (crosstalk) due to closely bunded wires.

Visual inspection of a product that fails in the field can reveal such things as loose wires, broken traces, cracked ceramic ICs and resistor packs, bent wire-wrap posts, and dirty connectors. A "calibrated fist" on the side of the cabinet can often be used to detect loose or intermittent connections and stuck relays. Mechanically stressing boards and connectors (by twisting and flexing) can often help to locate some of these problems. You might suspect the PC board edge connectors

- when a product is "D.O.A." (dead on arrival) or fails in a hostile physical environment. You may want to try reseating all of the assembilies and circuit board connections to determine if the problem is poor connector contact. A pencil eraser is useful for cleaning dirty edge connectors.

Boand Swapping

If any of the PC boards are easy to rencove and replace and known good ones are at hand, you can try swapping them. When duplicates of the same board or assembly are used in one product, they can be swapped with each other. The risk involved in board swapping is that you could damage a good board because of the same electrical overioad that damaged the bad one when it was installed. In any case, power to the product should be turned off when removing or installing boards or assemblies.

MECHANICAL FIELD FAILURES

GENERAL TROUBLESHOOTING TECHNIQUES

Lesson 18

Practical Microprocessors

If an identical product is available, funttional comparisons can sometimes be informative. This comparison can be especially useful in situations in which it is not clear that there is actually a hardware problem (it may be a product idiosyncrasy or design limitation).

If a device in a socket is suspect, try tapping it first to see if there is a loose connection and then try substituting a known good one. Note, however, that one of the last devices you should suspect, but that is most often the first to be replaced, is the microprocessor. The actual failure rate for microprocessors is very low. However, because they are complex and their correct operation is difficult to verify, they are often the first to be plucked from a PC board. This is also true of the LSI chips used with them.

Stress Testing

A technique referred to as stress testing can be very effective in dealing with marginal or intermittent failures. Stress testing can often, cause these types of failures to temporarily improve or deteriorate; either case is beneficial in locating a fault. Boards are stressed physically by tapping or twisting them, thermally by heat (air gun or hair dryer) or by cooling them (from an aerosol freeze can), and electrically by varying the supply voltage. Thermal stressing can be used to isolate a fault in a specific device on a board more precisely than the other methods because heat or cold can be applied directly to a single component. Intermittents can result from marginal chips, lead bonds, solder joints, connections, and drive and timing circuits.

- . Cold Spray Helps Identify Faulty and Marginal Devices

Briefly touching each device on a circuit board can pinpoint a component that is running hot (much hotter than the others). When a particular device runs significantly hotter than others of the same type, a probiem may-exist. 'A faulty device
can sometimes be hot enough to burn your finger, so use this technique with caution. Be aware also that some good devices may run hotter than you expect during normal operation, and that temperatures may vary widely from one device to another.

Power Supply Shorts

There are some effective ways of dealing with shorts across the power supply. The first thing to do in a multiboard system is to try to localize the short to a single board. This can be done by removing one board at a time until the power supply is no longer shorted. The last board to be removed is the shorted one.

One technique, for finding the short on a faulty board is to inject current through the two shorted lines with the logic pulser. The current tracer is then used to follow this current to the short. Keep in mind that capacitors (especially electrolytics) will have some current going into them because of the pulsing current. Shorted capacitors can be found by using the current tracer to compare the current levels going into identical capacitors on the same board. The capacitor that shows a much higher level than the others is likely to be shorted. This technique is particularly useful for finding shorted ceramic bypass capacitors.

Another technique for locating power bus shorts is to supply a relatively high current (about 3-5 Amps) into the short. Be sure to maintain the same voltage polarity and not to exceed the supply voltage normally present. The current path to the short can often be determined by using a DVM with high resolution (. 01 mV) to look at voltage drops on the power bus traces. Voltages are developed across the traces that are in the path going to the short, and not elsewhere (see Figure 18-2).

Figure 18-2. Using Sensitive Voltmeter for Locating Power Bus Short
A less scientific, but much more dramatic, technique for finding power bus shorts is to freeze the entire board (to about -10 degrees C), allow moisture to condense on it, and then power it up with a 3-5 Amp supply. As it warms up and defrosts, the current path becomes visible and, in many cases, will pinpoint the short

Once the easy things have been tried unsuccessfully, it is time to get down to business. At this point individual troubleshooting skills, intuition, and knowiedge of the product really make a difference.

HOW CAN THE FAULT PE ISOLATED?

```
Lesson 18
Practical Microprocessors
```


First, be sure to take advantage of any designed-in and documented circuit isolation features, such as selected board removal, service jumpers, and special test modes and procedures. It can be very useful to separate the microprocessor system from the peripheral circuits to allow you to diagnose each portion independently.

An important troubleshooting concept is half-splitting. Although the term may be new to you, you've probably been using the process for years without even knowing it. Half-splitting involves choosing a point roughly in the middle of the circuit. It is just as likely that a fault exists before as after that point. If the perfomance is correct up to that point, the fault lies after it. If not, then the fault is before that point. This process works best in circuits that have clear, unidirectional signal paths without large feedback loops. Even with microprocessor-based systems; this approach can be effective because the circuits outside the microprocessor portion often fit these guidelines.

In a typical product, the first half-split is generally done at the digital-to-analog interface, if possible. Analog circuits often have higher failure rates (due to higher "demands made on speed, power, temperature, sensitivity, accuracy, zdjustment, external overtoads, and reduced component safety margins)-नThe contribution of a product often relates to its analog circuits. These are often the circuits thedt represent the "high-technology". contribution and that may be operating hear their limits. They may also outnymber the digital ones. Be awarentso of the possibility of the electrical interaction of clock and TTL power gus lines with analog circuits, which can cause serious system noise problems.

When suspicion falls on the digital portion, the first thing. to look for is signal activity. With a logic probe you can examine activity on the clock signals, bus lines, chip enables, and control lines. Absence of activity on any of these nodes indicates a possible problem. You may wish to refer back to Experiment 16-1 to refresh your memory about troubleshooting with the logic probe.

The most common failure mode for digital ICs is open lead bonds inside the package. There are thin wires connecting-the package pins to the IC chip. If an output lead bond opens, the output pin floats and the logic probe will probably indicate a constant floating logic level because of other device inputs comnected to that node. If an input lead bond opens, one or more of that IC's outputs will usually appear to malfunction (stuck high, low, or executing its logic function incorrectly). If any of these outputs goes to a three-state bus, it can cause bus conflicts (more than one output on at a time), and the current tracer can be used to find these. Bus conflicts are often observed on an ascilloscope by the presence of bad, but solid, logic levels on bus lines, but the scope provides no information as to the source of the fault (see Figure 18-3). Good bus lines can also appear to have solid, bad levels present when all devices on the bus are off.

Another common digital IC failure is a shorted input pin to ground. This fault is often caused by a bad input protection diode on the chip. It usually appears as a stuck low level, which can be seen with a logic probe. An oscilloscope connected to a node with this type of problem shows a voltage level near ground being pulled up, perhaps a fow hundred millivotts, whenever_a logic 1 output on that node turns on (see Figure 18-4). The current tracer provides an excellent imeans of pinpointing shorted input pins.

$1 \mathrm{~V} / \mathrm{div}$

Figure 18-3. Bus Conilicts Cause Bad, But Solid, Logic Levels

200 mv/div

Figure 18-4. Shonted Substrate Diode on Gate Input Pin Clamps Node to Ground

If a current tracer is not available, another means for locating stuck inputs and outputs involves the use of a sensitive (high resolution) DVM and a can of-cold spray. Connect the DVM to the stuck node and select the most sensitive DC voltage range available. Then, while monitoring the voltage, spray each IC connected to the stuck node, one at a time, to change its temperature. Any noticaable change in voltage (more than 10 mV) on the node indicates that the IC being sprayed is drawing current. If a freeze can is not avallable, a heat source can be used instead. This technique relles on the properties of the semiconductor material used in the IC that relates voltage to temperature.

Lesson 18

Practical Microprocessors

ISOLATION TECHNIQUES

Once a particular input or output pin is suspected, it is useful to isolate it from the rest of the circuit. A quick, nondestructive way to do so is to suck the soldder away from the area between the pin and the PC board pad, using a vacuum desoldering tool or solder wicking braid. Then bend the pin so that if is centered in the pad's hole, not touching it at any point. Use a continuity tester to verify that the pin is. no longer in electrical contact with the board.

The techniques that you can use to lsolate the digital blocks of a microprocessorbased product are entirely dependent upon its electrical and mechanical architecture. If some of the digital boards can be removed and still allow the kernel to operate, this procedure can be useful. If the kernel can be allowed to run openloop (no feedback from the data bus), a free-run mode can sometimes be used to check the kernel and address bus activity.

An extender board with switches on bus and signal lines can be used to break selected signals betwoen a PC board and the rest of the system. In this manner, feedback paths and stuck buses can be removed from the main system.

An even simpler way to open selected signals going through a board edge connector is to place a piece of tape or stiff paper ont the-RC board edge fingers that you wish to isolate. Be careful to note to which board(s) you have done this to so that you will remember to remove the tape or paper later

A somewhat unconventional, but often effective means of detecting bus line problems is to measure the resistance to ground (with the power off) of each of the bus lines in a particular bus (e.g., data bus, address bus). The resistance of each of these lines is usually the same. If any one differs substantially, you may suspect a problem on this line. If two lines show the same (lower) resistance, the two lines may be shorted together. In either case, check the schematic to see if the arrangement of circuits connected to these lines could explain the differences before going further.

Overriding interrupt lines and chip enable pins on suspected devices can be used to verity that the IC is functioning correctly. This can'Be done by momentarily shorting the appropriate pin high or low, or by using a logic pulser (refer to Experiment 16-2).

Digital feedback loops are often difficult to troubleshoot because errors propagate around and around. A feedback loop with a taulty output signal sends this signal back to the input to produce more bad outputs. Opening this feedback path prevents the faulty outpuksignals from going back to the input. Then, if controlled inputs to the loop can be generated; the signal flow from the infput to the output can be observed. Often, however, it is not easy to provide this input (many lines may need to be controlled). It may also be difficult to predict correct circuit operation. If another working product (or board with the same circuitry) is available, it is sometimes practical to allow the output of the good circuit to

Lesson 18
control the inputs of both circuits. In this manner, you know that the circuit under test is getting the correct input signal. It is then a matter of comparing the nodes of the two circuits and looking for differences. A signature analyzer can be useful for doing this comparison.

Piggy-backing ICs is a technique that can sometimes be used to locate defective ICs. It molves looking at suspicious IC outputs' with an oscilloscope or signature analyzen and then placing an identical IC package directly on top of it. The pins should be bent slightly, if necessary, so they are all in contact. A signal change can indicate problems with that device. If no change is observed and the output is not stuck, it can generally be assumed that the IC is not the problem. Be cautious of sequential circuits (such as counters and shift registers) that may cause output differences because of start-up conditions. A better way of 'performing this test is to use an IC comparator, such as the HP 10529A Logic Comparator:

Lesson 18
Practical Microprocessors

No amount of knowledge and experience can totally compensate for inadequate service documentation. In some cases, shotgunning (replacing components until the problem disappears) may be the only solution. Most microprocessor-based products, fortunately, do not fall into this class. Future products will probably incorporate advanced service techniques, such as signature analysis, as more designers realize that the old troubleshooting methods and tools used for random logic are not very effective in dealing with microprocessors.

Occasionally Shotgunning Produces Unfavorable Results

Microprocessor systems can be thought of as an extension of traditional digital logic. Many of the components, circuit designs, and troubleshooting tools and techniques are the same. However, there are some differences. Microprocessor systems are bus, structured, and many of the devices on the bus are complex LSI devices. The signal activity between the devices on the buses is constant and complex. It is often useful to break the data bus, which is the system's main feedback path, to help isolate a fault that causes the entire system to malfunction.

Although troubleshooting trees provide an orderly approach for locating system faults, they are not always adequate. There are numerous techniques, procedures, and tricks that can be effective in diagnosing, isolating, and locating faults in microprocessor-based products. Many of these were discussed.

Lesson 18
Practical Microprocessors

\qquad .

Lesson 18

1. In microprocossor buses, oscilloscopes are least effective when looking for:
a. Improper data.
b. faulty logic levals.
c. timing problems.
d. bus contlicts.
2. The most effective tool for finding the defective device on a stuck bus is the:
a. Signature analyzer.
b. logic analyzer.
c. oscilloscope.
d. current tracer.
3. A-potential problem with troubleshooting trees is that:
a. they are hard to follow.
b. they have termites.
c. they require too much knowledge of the product.
d. they may lead you to a dead-end.
4. The first troubleshooting step should be to:
a. read the product service manue
b. check the fuse and power cond.

- c. shake the product and tisten for rattes.
d. determine the nature of the problem.

5. A key requirement for halfspifiting is:
a. unidirectional signal paths.
b. SA test modes.
c. boaird swapping.
d. having a good comparison product availabie.
6. The most common failure mode for digital ICs is:

- a. a wrong chip in the pacikage.
b. a shorted input diode.
c. an open lead bond.
d. a bad output logic level.

VIProsrammins in Assembler Lansuase

Prosrammins the 6800 microprocessor is a self-instructional workbook for assembly lansuase and machine code prosramins for the 6800 family of microprocessors and peripherals.

The 6502 is essentially. an ursiade of the 6800. The 6502 and it's peripherals are very similar or the same as those of the 6800 family. Enoush similarity exists between the two that a student cang by completins the workbook; become skillful in programming a computer using the 6800 and at the same time develor skills that are transferable to the 6502.

The followins table compares the resisters and control sisnals of the 6800 and the 6502:
$6800 \quad 6502$

Prosram Counter.	16 Eits	16 Hits
Accumulator	Accumulator A	Aecumutator A

Condition Code Resister

Index Register

Stack Pointer

Arithemetic Losic. Unit

Accumulator. B

6 Flass
X resister 16 Rits

7 Flass
status resister
Xresister
Y resister
8 bits each
8 Rits
located in zero pase only
works primarily with Accumulator A

56 instruclions

16 lines
8 lines
01 and 02
IRQ
NMI
Resel

CFU control	Halt	RDY
Control lines	R/W	R/W
	UMA	SHNC
	IBE	Set overflow
		RA

Control lines or resisters that are not similar in the two processors are discussed below.

Accumulator B, the 6800 has one additional accumilator however most operations are carried out usins accumulator A.

RDY (ready): delays execution of any cycle durins which the RDY line is pulled low. The RIY function will not stof the processor durins a write cycle.

HALT, a low on the HALT line causes the CPU to stof.
Vifa (Valid Memory Address), this signal is output high whenever a valid address has béen output on the address bus.

SYNC, a sisnal is provided to identify those cycles in which the processor is doins an orcode feich.

DEE (Lata Bus Enable), will enable the bus orivers when in the hish state.

BA (Bus Available)! the bus available sisnal will normally. be in a low statef when activated, it will so to a hish state indicating that the microprocessori has stopped and that the address bus is available.

Set Overflow, not normally used.
TSC (Three State. Control), thistinput is used to float the address bus ang thé. read/write control output.

Common addressins modes:

Imflied	same 356502	same as 6800
Relative	same 356502	same 356800
Indexed	uses all of memory only fase zera is	

The 6502 has 6 other adoressins modes not found on the 6800 .

Probably the main difference between the two ins the pipelinins concefty that isy the 6502 will adoress new data while it is still frocessins ofcode. This gives the 6502 e . look ahead feature that speeds up execution time.

Prospamains the 6800 Microprocessor
The tities of the chafters are listed with comments if applicable. It is imfortant to do all the exercisesy if you have a froblem kindly ask for assistance.

1 Review of binary and Hexadecimal numbers.
2 Accunulator oferations: Similar to the 6502 except two accumalators are used.

3 Symbolic Addressins,
4 Index Resister: Intoduces addressins via the index register.

5 Branchins-assembly لansuase.
6 Branchins-wachine code.
7 Assnchronous Communication Interface Adafter: Probably this chapter should be done last.

8 Peripheral Interface Adarter: Similar to the Versitale Interface; Adafter.

9 Subroutines: Similar to the 6502.
10 Stack Operation: Similar to the 6502.
11 Interrupts: Similar to the 6502.

After you colplete the workbook you will have gained considerable skiAl in writions prosrams in 6800 assemibler lansuase and machine fode fhd you will also be able io prosram in 6502 assemaled code.

Switch on the AIM 65, type N, you are now reads to prosran the AIM 65 in assembler lansuase. For more information see pase 5-1 in the AIM 65 Users Guide. Happy Prosiamins!

Accumuletor: A special furfose resister in which the results of Arithmetic Losic Unit oferations are placed.

Acoustic Coufler: Hevice for connectins the telerhone handset to the computer infut fort,

A/It : Analos to disital. Conversion from sensor's analos voltases to the dieital refresentation used bs computer systems. This is so computers can sense the "real world".

Adrress: Number indicatins the fosition of a word in the memory. Typial adoresses ranse from 0 to 64 K .

Alsorithm: A set of well-defined instructions to carcy out a frocess in a finite number of sters. -
Alphenumeric: The set of all alfhabetic characters and numeric chracters.

ALU : Arithmetic Losic Unit.
Analos: Havins a continuous ranse of voltase or current velues.

ANSI : American Nationel Stendards Institute.
Arithmetic Losic Unit: Element which can perform the basic deta manifulations in the central processor. Usually the AlU can add, subtract, complement, nesate, rotate, ANI 2 and 0 F .

ASCII : America Stndard Code for Information Interchanse. Character code used for representins information in most non-IRM or jWestern Union eauipment.

Assembler: A frosram that translates assembly lansuase into machine lansuase.

Assembly Linsuase: A computer lansuase that uses minemic names to stand for one or more machine languase instructions.

BASIC: An acronym for Besinners All Purpose Symbolic Instruction Code. A hish-level conversational; interfretive, prosramins lansuage in wide use.

Gaud: Bits Per Second. Actually binary units of information fer second. Teletupes transmit at 110 baud. Each character is 11 bits, and the TTY transwits 10 characters per second.

Binary Number: Representation of a decimal number in the binary systemy usins a sequence of $0^{\prime} 5$ and $1^{\prime} s$.

Bit: Contraction of Binary Disit. A bit is a " 0 " or a " 1 ".

Areadboard: A oreadhoard refers to e prototspe circuit. Comes from when radios were made on mother's breadhoard.

Roolean Losic: Named after Georse Hoole who defined binary arifnmetic and logicel oferations such as ANI, OR, NOT, end XOF.

Bootstraf: Frosram used for startins the computer. Usually clears memory, sets up I/O devices, and loads the oferatins sustem from ROM, disk or cassette.

Breakfoint: Sofiware or hardware device which will stof a frosrem and dump the current machine status.

Bus: A mistake. Gettins gut the mistakes is known as. dehussins.

Eus: Feth for sisnals havins 3, common function. Every "stendard" MPU areates three auses: the data bus, address bus, and control hus.

Gute: Set of 8 bits. A byte is universally used to rearesent a character. Microcomputer instructions reauire ones two or three butes.

Ca1l: Instruction used to transfer the frosram execution sequence to a subroutine or suberosram:

Corraige Return: Standard typewriter key causins the frinting element to move back to the besimnins of the line.

CCD : Charse Coufled Device. Serial storase technolosy that uses MOS cafacitors.

Chracter Generator: Circuit which forms the letters or numbers on a disflas or printer.

Checksum: Method used to verify the intesrity of data loaded into the computer. .

Chif: Rectansular silicon die cut from the wafer. By extension, every LSI packase is commonly called a chif.

Combinational Losic: Circuit arransement in which the output state is determined only by the present state of. the infut.

Comment Field: Field within an iñstructiong reserved for comments, which is isnored by the compiler or the assembler.

Compiler: Translation prosram which converts hish-level instructions into a set, of binary instructions (object code) for execution. Each hish-level languase.reauires a compiler or an interpreter. A compiler iranstates the complete prosram which is then executed.

Computer: General-purpose computins system incorforatins a CFU, memory, $1 / 0$ facilities and power suffly.

Control Rus: Set of control lines in a computer system. Frovides the synctironization and control informion necessary to run the system.

Core: Small masnetic toruses of ferrite which are used to store a bit of information.

CFU : Central Processins Unit. Comruter module in charse of fetchins, decodins and executins instructions. It incorporates a control unit, an ALU and related facilities (resisters,’clocks; drivers)

Crash: Hardware or software malfunction that causes the ssstem to halt or become lost in a loof.

Crosstalk: Interference between two sisnals.
CRT Terminal: Computer terminal usins a CRT disflas and Keyboard, usually connected to the terminal by a serial link.

Current Loop: Means of communicating data via presence or absence of a two-wire cable.
n/A : Bisital to analos. Conversion from the oisitep representation used in comfuters to the analosisignals used to drive speakers, motors, etc.

Data Rus: Set of lines carryins data. In a "standard" 8 bit MPU, the deta bus is bidirectionaly iristate and has 8. lines.

Debouncins: Elimination of the accidental bounce signals characteristic of mechanical switeties. Debouncins mas be ferformed by hardware (latch) or software (delay),
necoder: Losic device that decodes binary infuts. A 3-bit decoder (e.s. 74138) will have $2 \uparrow 3=8$ outpuls because a 3-bit number can have 8 different values.

Revelorment system: Microcomputer. system with all the facilities required for efficient hardware and software development for a given mieroprocessor. It includes at least a microcomputer bow; plus a CRT display (or TTY), printer, mass-storase (usually dual. floppies), PROM prospammer paper-tafe reader (as a back up), and in circuit emulator.

Miesnostics: Set of routines used to diasnose system malfunctions.

Misital: Havins discrete states. Most losic is binary losicy with two statesy on or off.

Diskette: Flofy disk. A circular mslar substrate coated with a masnetic oxide, rotatins inside a special jacket which internally cleans the surface.

Mirectory: Table of contents sisned to allow convenient eccess to specific files.
IMA: Inrect memory access method used to provide hish speed data transfers betwgen a perifherial and memory
nos: fisk Operatins Sustem intesratins disk-file
facilities.
मot Matrix: A method of forming characters by usins many small dot.
nouble Iensits: Techniaues used to double bit density on a masnetic storese mediumiy such as MFM, N2FM.

Dynamic Memory: MOS RAM memory usins dunamic circuits. Each bit is stored as a charse on a sinsle MOS transistor. This results in vers hish density (only one transistor per ait)

ERCDIC: 8-bit code used by IBM to encode alfhanumeric symbols. It is essentially analosous to ASCII, with a different seauence.

Editor: Frosram desisned to facilitate the entry of lext in a confuter system. Typical facilities include: inseri/liney append; search for "string": substitute (from...to....)

EIA: Electronic Industries Assóciation.
EIA-RS232C: Serial interface standard for asynchronous communications, Data are sent in 10 or 11 bit lons serial bundies. The first is a start bit indicatins the besinnins of the data. The next is the LSB of the fata. After the last bit comes the stop bit or bits.

EPROM: Erasable Prosramable Read Ondy Memory. A PROM Lhat can be reused. Most EPROMs can be erased by exposins them to ultraviolet lisht.

Fairchild: The oldest semiconductor manufacturer in Silicon Valley.

Fan-in: Electrical load fresented to an output by an infut.

Fan-out: Electrical load that an outrut can drived Usually expressed as the number of inputs that can be oriven.

Fetch; Reedins an, instruction from memory.
Firmware: Frosram stored in ROM. Normally, firmware designates any fom-implemented frosram.

Floppy Misk: Mass-storase device that uses a flexible (florfs) diskette to record information.

Flowhert: Grafhical representation of of prosran losic. Flowcharts enable the desisner to to visualise the frocedure necessary for each item in the frosram. A complete flowchart leads directis to the final code.

GIGO: Garbase in, sarbase out Implies that uisinformation apflied to the cifu will result in misinformation output.

Glitch: A fulse or burst of noise.
Half-duplex: Commication techniaue where data may travel in only one direction at a time.

Hantassemble: Translate a frosram from assembly lansuase to machine code without the assistance of an assembler - prosram.

Hard-cony: Computer outrut on pafer.
Hardware: The bolts, nuts, poards, chips, wires, transformersy etc. The fhysically existing components of a system.

Hish-level Lansuase: Prosrammins lansuse resemblins "natural lansuase", with powerful instructions. Examples are Fortran, Basic, APL, ALGOL, COBOL, PL/M. All require a compiler, or an interpreter.

Impact Printer: Any mechanical imprintins device where the characters are formed by strikins the ribbon onto the pofer.

Infub/Outfut: Lines or devices used to obtain or to display information outside.

Instruction: Single command within a profiram. Instructions may be arithmetic or losicely may operate on resistersy memory, or $1 / 0$ devices, or mas specify control oferations. A sequence of instructions is a prospam.

Intesrated circuit: A circuit which is fatoricated on a a sinsle chif of silieon.

Interruft: Involves suspension of the norman frosramithat. the microfracessor is executing in "orderyto handlea. a sudden reauest for service (interrupt). e

Interruft Vectorins: Providins a device In number or an actual briañchins adoress in resfonse, to theointerrupt acknowledse sisnal. Allows each interrupt to be serviced by a different routine.

K゙ansas City Standard: Standard for cassette tare secordins and Flayback of EIA-RS232-C data. Uses freauency-double feauency encodins techniques where a 1 is refresented by 8 cycles of 2400 hertzy and a 0 bu. 4 cycles of 1200 hertz.

Line Frinter: Hish sfeed printer cafahle of printins simultaneousis e complete line $\{90$ to. 120 characters).

L5B: Least Sishtificant Bit.
Machine Lansuase: Set of binary codesy refresentins the instructions which can be directlyexecuted diy a processar.

Memory: Storase area for ninary data prosrams.
Microprocessor: LSI implementation of a complete processor (ALU + Control Unit) on a sinsle chip.

Mnemonic: Symbolic refresentabions generally an opcode.
Modem: Modulator-demodulator Used to interface a disital device to a telefhone line. Encodes and decodes serial bits into freauencies.

Object code: Code produced by 3 translator prosram; such 35 compiler or assembler, which can be' executed hy the Frocessor.

Ofer and: Second fart of an instructiong usuaily data or an eddress.

Qreratins Sustem: Software required to manase the mardware resources of a sustem and its losical resourcesy includins schedulins and file manasement.

Oferation Code (opcode): Used to describe the sesfent of the machine lansuase or assembly lansuase instruction specifuing the operation to be performed.

Pascal: A hish level prasrammins languase

Fort: Physical $1 / 0$ connection. Usually involves 8 bits, for 8-bit nicroprocessor.

Fuli-ur Resistor: Used to frovide the source current for open-collector losic sates of a termination for unused hish infuts.

RAM: Random Access Memory, Denotes in fact Read/Urite ESI memory.

KOM: Read Only Memory.
S100: Popular hobbyist istandardized bus characterized by 100 fins, and suited to an. 8080 type system.

Seratchead: Group of seneral purpose resisters without specific function providing a hish speed workspace. Usually, an internal RAM.

Sector: Triansular section of a disk surface. A block of dota is addressed by its-track and sector numbers. A
('typical disk ssector has 128 bytes of data.
Silicon Valley: Area around Sunnisvale, California where most of the semicanductor manufacturers are installed. Also called Silicon Gulch.

Sourse Code: User written prosram, once entered in the systemy. usually in ASCII code.

Static Memory: MOS memory which uses a flip-flop as a - Storase element. It does not need to be reffeshed and does not reauire a clock. It does not lose its contents as lons as,power is applied.
:TTY: Teletype or teletypewriter.
Variahle:- Symbolic entify which mas assume a number of values.

U SI: Very Larse Scale Intesration. In practice, over 100,000 transistors per chip.

Word:' Losical unit of information, May have any number of bits, but is usually 4, 8 , or 16 for MPU's.

APPENIIX C
LETTERS OF PERMISSION
REPLY TO REQUEST FOR INFORMATION QN COMPUTER TRAINING PROGRAM

Mr. John R. Balcom, 356 Pleasant St., TRURO, NS
BEN 3T4

Ref: \# 008292 G.

Dear Mr. Balcom:-

Thank you for your recent letter concerning the Heathkit digital techniques training program.

Please accept this letter as our permission for you to reproduce pages 2-5 to 2-18 of the Heathkit digital techniques' program, as part of your thesis. The only stipulation we place on the reproduction of this material is that. you clearly indicate the material is produced with permission of the Heath Company and reference be made to the fact that it was obtained from the Heathkit model EE-3201, digital techniques learning program.

Thank you for contacting us in this matter and we trust that the foregoing will be satisfactory.

GAB/ah
Gar/ah

Yours truly,

HEATH COMPANY, a division of ZENITH RADIO CANADA LIMITED

G. A. Harris, Manager, Marketing Services.

HEWLETT hp PACKARD

HEWLETT-PACKARD (CANADA) LTD. - 800 Windmill Rood, Diertmouth, Nove Scotio B3B 1LT, Telaphons 469.7820

January 25, 1980

Mr. John R. Balcom, 356 Pleasant Street, Truro, Nova Scotia B2N 3T4

Dear John,
Thank you for your letter of January 23 rd regarding your Thesis that you will be submitting to the University.

Please consider this letter your authority to include Pages 295 to 313 of the "Hewlett-Packard Practical Microprocessor Textbook" in your Thesis.

Should you have any additional questions please feel free to contact me at your convemience.

Yours truly,
HEWLETT-PACKARD (CANADA) LTDं.,

RAL: 1 cb

Here's the literature you requested on Rockwell's Microelectronic Products

To get more detailed literature, Applications Engineering or other assistance, please contact your nearest Rockwell repre: sentative or distributor, shown on the included list.

If, for any reason, you do not get the immediate and complete service you need, please call this number:
(714) 632-3729

We appreciate your interest in our micrơelectronic products, and look forward to satisfying your requirements.

ROCKWELL INTERNATIONAL
Microelectronic Devices
P.O. Box 5669

Anaheim, CA 92803, U.S.A.
Marketing Phone: (714) 632.3729
\qquad

- Department of Edmonton. Alberta. Canada T5G 2 R1 Advanced Education and Manpower

Faculty of Education
Saint Mary's University
Halifax, Canada
B3H 3C3
Attention: Mr. John R. Balcom
Dear Sir:
In response to your request of October 25, 1979 (just received), I have enclosed copies of the following:

1. ' 1979/81 NAIT Calendar?
2. Electronics Engineering Technology Course Outlines

- Year 1 and 2.

3. Electronics Engineering Technology student book/ materials 1ists.

While our two-year Diplona program in Electronics Engineering Technology is not specialized solely to train computer technicians/ technologists, employers have expressed a high degree of satisfaction in using our graduates in this capacity.

I hope the information supplied will be useful to you. I would more than welcome information relating to the outcome of your investigation.

APPENDIX II,
COURSE DUTLINESAFOR PRACTICAL MICROPROCESSORS AND INDIVIDUAL LEARNING PROGRAM IN MICROPROCESSORS

PRACTICAL MICROPROCESSORS by HEWLETT-PACKARD
Course Objectives and Dutline.

Course Objectives
a). Acquire a fractical ynowledse of microprocessor
system harduare.
b) Gain a basic understanding of the software that is used to control a microprocessor system.
c) Learn how the system uses this software to perform a wide variety of operations.
d) Use this information to learn practical troubleshootins techniaues that are applicable to any mierofrocessor system.

Course Outline
Section 1. Micropracessor Fundamentalsy contains three lessons that provide a basic introduction to microprocessor sustems.

Lesson 1. Introduction to Mieroprocessor Systems.
Lesson 2. Number Systems.
Lesson 3. Software Fundamentals.

Section 2, Introduction To Prosrammins, contains three lessons that provide an introduction to prosramins and instructions for usins the Microprocessor Lab.

Lesson 4. Usins the Microprocessor Lab.
Lesson 5. Software Concepts.
Lesson 6. Inside the Microprocessor.

Section 3, Microprocessor System Hardware, contains four lessons that describe microprocessor hardware in detail.

Lesson 7. Basic Hardware Concepts.
Lesson 8. Address Decoding.
Lesson 9. Memories and Peripherals.
Lesson 10. Control Circuits.

Section 4. Prosrammins Microfrocessors, contains five lessons that cover some of the more advanced concepts and techniaues for prosramming microprocessors.

Lesson 11. Resisters and Breakpoints.
Lessan 12. The 8085 Instruction Set.
Lesson 13. Software Desisn Technigues. Lesson 14. Software Control of Peripherals.io Lesson 15. Number Representations and Alsorithms.

Section 5. Tröoubleshootins Microprocessor Sustems, contains four lessons that deal with the theors of troubleshootins and the new tools and techniaues that have been develofed to troubleshoot microprocessor systems.

Lesson 16. Hand-Held Troubleshootins Tools.
Lesson 17. Sisnature and Losic Analyzers.
Lesson 18. Troubleshootins Microprócessor Systems.
Lesson 19. Troubleshootins the Mitroprocessor Lib.

Section 6. Other Microrrocessors, contains only one lesson. It provides a survey of several currently available microprocessors.

Lesson 20. Microfrocessor Survey.

INDIUIDUAL LEARNING PROGRAM IN MICROPROCESSORS bs HEATHKIT Continuins Education

Course Objectives:

When you have completed this course, you will be able to do the followins:

If Frosram a refresentative microprocessor.
2. Interface a representative microprocessor with the "nputside world."

Course Outline:
Unit 1, Number Sustems and Codes
a) Introduction
b) Decinal Number Sustem
c) Binary Number Sustem
d) Dctal Number Sustem
e) Hexadecimal Number System
f) Binary Codes
5) Exferiment

Unit 2. Microcomputer Basics
3) Introduction
b) Terms and Conventions
c) An Elemeintary Microcomputer
d) Executins a Prosian
e) Addressing Modes
t) Experiment

Unit 3. Compuler Arithmetic
3) Intraduction
b) Binary Arithmetic
c) Two's Complement Arithmetic
d) Boolean Operations
e) Experiment.

Unit -4. Introduction to Prospameins
3) Introduction
b) Branchins
c) Conditional Branchina
d) Alsorithes
e) Adaitional Instructions
f) Experiment

Unit 5. The 6800 Micropracessor - Part 1
a) Introduction
b) Architecture of the 6800 NPU
c) Instruction Set of the 6800 MPU
d) New Addressins Modes
e) Experiment

Unit 6. The 6800 Microprocessor - Part 2
a) Inlioduction
b) Stack Operations
c) Subroutines
d) Input-Dutput (I/O) Operations
e) Interrupts
t) Experiment

Unit 7. Interfacins - Part 1
a) Introduction
b) Interfacins Fundamentals
c) Interfacins With Random Access Memary.
d) Interfacins With Displays
e) Experiment

Unit 8. Interfacing"- Part 2
a) Introduction
b) Interfacins With Switches
c) The Peripheral Interface Adarter (PIA)
d) Usins the PIA
e) Exiferiment

Unit 9, Prosramanins Experiments
3) Introduction
b) Exferiment 1. Binary/Decimal Irainins Prosram
c) Experiment 2, Hexadecimal/Decimal Trainins Prospan
d) Experiment 3. Straisht Line Prosrams
e) Experiment 4. Arithmetic and Losic Instructions
f) Experiment 5. Prosram Branches
5) Experiment 6. Additional Instructions ap
h) Experiment 7. New Addressins Modes
i) Experiment 8. Arithmetic Operations
j) Experiment 9. Stack Operations
K) Exferinent 10.Subroutines

Unit 10. Interfacins Experiments
a) Introduction
b) Experiment 1. Memory Circuits
c) Experiment 2. Clock
d) Exferiment 3. Address Decodins
e) Experiment 4. Datia Dutput
f) Experiment 5. Data Infut
5) Experiment 6. Introduction to the Peripheral Interface Adapter (PIA)
h) Experiment 7. Audio Output
i) Experiment 8. Kes Matrix and Parallel-toSerial Conversion
j) Experiment 9. Disital-to-Analos and Analos-to-Disital Conversion

[^0]: You should observe that the guffer cannot process data when E is Lo. The buffer is in the high impedance state.

 This followins circuit allows several butfers to be connected to a foint but only the buffer with E enabled controls the line. Wire uf the circuit and test the above hypothesis.

[^1]: Conclusion: If J and K are low, application of the clock pulse has no effect on the output.

 If Jis hish and k is lou after the clock pulse is applied, 0

 If K is hish and J is low after the clock pulse 05 applied: Q

 If K is hish and J is low after the clock pulse is applied, Q.

[^2]: 1.
