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A b s tra c t

” Learning Hand-motion to Music By Example”
By Yasushi Akiyama

The process of creating character animation requires hours of work and years of 
experience by skilled animators. Assisting this process by providing tools to automate 
some of the procedures during the animation creation is, therefore, of interest to many 
computer graphics researchers.

This thesis presents a system that generates arm dancing motion to new music 
tracks, based on sample motion captured data of dancing to other pieces of music. 
Rather than a common approach of creating character animation, which is to synthe­
size motions from an existing motion database, our system is novel in that it analyzes 
both the supplied motion and music data for certain characteristics such as distance- 
from-body, amplitude, and centres-of-motion (for motion data), and melodic contour, 
loudness, and note-density (for music data). It then learns relationships between the 
music and motion. When new music is provided, the characteristics are analyzed as 
before, and used to predict characteristics of the motion. A generative process then 
creates motion according to these constraints.

The system is evaluated with the music data that are used to trained the model, 
as well as new musical data including existing music tracks tha t are not specifically 
created for the purpose of animation creation.

September, 2005
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Chapter 1 

Introduction

1.1 Background

There are limitless possibilities for creating motion to music. Certain characters may 

have particular styles of dancing, based both on their ways of moving, and also on 

how they perceive the music, or based on the directions of a choreographer. There 

are various examples of dance motions in which many salient movements are created 

in such a way that they correspond to some musical characteristics such as pitch, 

loudness, and note density. Although there are no constant relationships between 

motions and musical ideas, there may likely be a particular connection or association 

in certain contexts. This thesis presents an initial approach towards exploring this 

issue by analyzing the characteristics of music and motion data, and by then providing 

a prototype tool for animators to specify some of these relationships implicitly by 

example.

Various work [6, 7, 9,10,13,17,19, 24,31] has focused on the problem of adapting 

existing motions to music. In many of these systems, the primary mappings between 

the features of music and motion are specified explicitly by the user. In others.



motions are synthesized from an existing database. This research proposes a system 

for learning the characteristics of desired motions associated with musical phrases by 

user-provided examples, in order to produce an animated figure that responds not 

only to the musical phrases that are used to train it, but will also be able to handle 

new musical ideas. Such a tool would be intended for use by animators to choreograph 

characteristics of dance for a musical performance, so the final motions can be created 

automatically. For example, ultimately the dance style in a certain nightclub or a set 

of backup singers/dancers for a musical act, or recurring dancers in a video game, 

could be done in this way.

Since the motion-music relationships are inferred from the data, it follows that 

different data sets will lead to different styles of interpreting the music. For example, 

if all of the supplied training data were to depend exclusively on the pitch, and not 

be affected in any way by changes in loudness (e.g. the ‘dynamics of the phrasing’, in 

musical terms), then this should be visible in the resulting animation. The system is 

not intended to learn a single definitive relationship between motion and music based 

on a large comprehensive motion database, but rather to allow certain relationships- 

as needed for a particular set of characters or situations- to be shown by example.

1.2 R elated  W ork

The issue of synchronizing animation to music has been addressed by a number of re­

searchers. Kim et al. [13] created a system using motion graphs [14] and beat analysis 

to synthesize motion from existing sample motions synchronized to background music. 

Alankus et al. [1] use a very similar approach, although they use a genetic algorithm
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to search the solution space, and use a different algorithm for motion analysis. The 

system by Cardie et al. [6] synchronizes motion curves by locally modifying the initial 

motions using perceptual cues obtained from the music, both in the format of MIDI 

and analog signal. The mappings between music and motion features are determined 

by the user. Lee and Lee [17] extended Cardie’s idea by including the modification of 

the music in addition to the modification of the motion curve. Their approach is to 

synthesize background music and motion by locally changing the timing of the music 

and using time-warping of the original motion. Lytle’s [19] system creates animation 

of musical instruments from orchestrated MIDI music. This approach also requires 

input from the animator to ensure that the salient features of music will correspond 

to the output animation. Another system that creates animation from MIDI music 

is presented by Goto and Muraoka [9]. Their approach is to have multiple musicians 

controlling a single animated character. Each musician is assigned to control specific 

features of the animation. Greuel et al. [10] also used explicit mappings between 

music and animation. The analog sound signal was used in the system by Penasse 

and Nakamura [24]. Their approach is to adjust key frames so that they fall on the 

beats of music, although how they get their keyframes in the first place is not clear. 

ElKoura and Singh [7] use input music data in a slightly different form, an augmented 

tablature notation for guitar. This format specifies target locations in space (which 

fret on which string) and time (when to play note(s)). Their system Handrix tack­

les the complexity of multiple concurrent reaching tasks by first mapping arbitrarily 

specified hand configurations to realistic hand configuration that are obtained by a 

k-nearest neighbours search in example space, and then by performing a procedural
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algorithm to minimize a cost function in order to control fretting hand motions. Wang 

et ai [31] predict the joint angle trajectories to create conducting motions by using 

kernel-based Hidden Markov Models. This model produces animation to new music, 

but only by learning the music with the same time signature, or a time signature that 

has the same musical accents. Also, it relies on having beat information provided in 

the MIDI file. These factors may limit its flexibility of creating motions responding to 

music that is played more freely. Using explicit mappings of features between music 

and animation seems like a standard approach.

The study by Lipscomb and Kim [18] suggests that particular mappings between 

music and motion characteristics make sense while the others can have more than one 

sensible combination. As their experiment used only very simple sequences of notes 

such as triads and systematic sequential patterns, it is unclear how their results extend 

to more complicated musical structures. Furthermore, different styles of music may 

lead to different kinds of mappings, and people whose musical experience is derived 

from various cultural backgrounds are quite likely to have different preferences of the 

mappings.



Chapter 2 

System  Overview and Outline of 
the Thesis

The goal of our system is to accept examples of synchronized motion and music, in 

order to learn a relationship between the two, and subsequently use this information 

to generate animation for new music input. For demonstrative purposes, the present 

system focuses on arm motions recorded to melodic lines in MIDI format.

Our system operates in two phases, training and generative phases. During the 

training phase, we train the model so that it learns relationships between certain 

characteristics in example motions and their corresponding music. In the generative 

phase, we construct motions based on the output data obtained from the model, and 

then use an inverse kinematics algorithm (Appendix A.2) to produce animation. The 

model can produce motions to the music data used during the training phase as well 

as new music data.

We now give an outline of this thesis, along with an overview of the two phases.



2.1 Training Phase

A set of examples is provided consisting of hand-motion recorded in synchrony with 

music in MIDI format. The data collection procedures are described in Section 3.1. 

Based on our motion model, the motion data is analyzed for certain characteris­

tics: distance-from-body, amplitude, and centres-of-motion (described in Section 3.2). 

Likewise, the music data is analyzed for characteristics such as melodic contour, loud­

ness, and note density (Section 3.3). A relationship between the input and output 

characteristics is learned so as to be able to generate a distribution over likely out­

put motion characteristics given music input characteristics (Section 4.1). Figure 2.1 

shows the conceptual model of the training phase.

2.2 G enerative P hase

New music input is provided. The system analyzes it, and uses the learned model to 

stochastically generate a set of motion characteristics. A generative process is applied 

to create motions for the final animation th a t satisfies the motion characteristics. This 

phase starts with predicting both temporal and spatial positions of motion peaks. 

The animation frames between these peaks are interpolated using quartic polynomial 

interpolation (Section 4.2), and then the final configuration for each frame is computed 

by inverse kinematics algorithm (Section 4.3). The model of the generative phase is 

shown in Figure 2.2.

Finally, in Chapter 5, we evaluate the system. This is done first by using the 

music data that are used to train the system. In this way, we have example motions
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that can be compared with the resulting motions created by the system. It is also 

evaluated with new musical data that are not seen during the training process.



motion data MODELINPUT

I synchronized
synchronized

exli'acl r 
ch.iiaiU'ri'.lics'

music (M IDI) data

Figure 2.1: Training Phase: Synchronized examples of motion and music are provided 
to the system.

generate new motion data

synchronized 
’ „T = m

N r

new music data input

OUTPUT

gen cr.itc
c l u i i a o c i i s l i c s

c \liac t
c l n u a i l c r i s t i c . - ,

INPUT

I.'allied 
m o d e l

Figure 2.2: Generative Phase: New music is now provided, and using the learned 
model, motion is now the output rather than input (as indicated by the reversed 
arrows).



Chapter 3 

D ata Collection and Analysis

3.1 D ata  C ollection

3.1.1 Music D ata

Music is input in the Type 1 MIDI file format (see Appendix A .l), which allows a file 

to have multiple tracks. This is convenient as it lets us focus directly on processing 

individual lines (e.g. melody, bass) and avoid the task of separating a given score into 

parts ( [27,28,30]).

A variety of music data are collected to evaluate the system’s flexibility. These 

include, but are not limited to, one-line melodies, melodies with occasional harmonies, 

music with musical embellishments such as trills and tremolos and/or a few small 

mistakes, piano music (both hands), music arranged for a small jazz combo setting 

(e.g. a few horns and a rhythm section) each part of which to be assigned an individual 

animated character, and so forth. Any of these can be played in a steady tempo (slow, 

medium, or fast), or free of tempo (Rubato).

In addition to the newly collected music data for the purpose of the creation of 

dance movements, we also use existing songs created not specifically for producing 

animations.
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E M #

0

Figure 3.1: Polhemus 3D motion capture sensors are attached to the gloves. (Only 
the left hand is shown)

3.1.2 M otion Capture

A 3D motion capture device (Polhemus Isotrak) is used to collect the sample motion 

data (Figures 3.1 and 3.2). The dancer familiarizes herself with the music prior to the 

motion recording session. It is important for dancers to know the music well because 

in real life, choreographers generally listen to and analyze the music before they come 

up with movements.

Two sensors are attached to the gloves that the dancers wear. We acquire three 

degrees of freedom (DOF) from each sensor, measuring hand position. As the dancer 

is aware that the motion will be used for the arm motion of a character who is standing 

in one spot during recording, the dancer also remains in one spot to ensure that the
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m

Figure 3.2: Motion Capturing

motion examples are representative. A number of different motions are recorded to 

the same music to have a sufficient sample size for the statistical analysis described 

in Section 3.2.

3.2 D ance M otion  A nalysis

Our motion model is developed based on a few key properties observed in the captured 

sequences. In the following discussion, Bi, B 2 , ■. ■, represent N  different recorded 

motions, each of which was danced in sync to the same music track M.

3.2.1 Spatial Characteristics

An important visual feature of the arm motion is the distance of the hands from the 

body, corresponding to extent as described by Laban [15] and Neff and Fiume [21]. We
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O O

Root node

Figure 3.3: Root position (marked with an X) and Dk{t) (dotted line)

first compute Dk{t), the Euclidian distance of the hands from the root node at time 

t, for motion Bk (shown in Figure 3.3). We then estimate the global motion centre by 

computing the mean position of the entire hand motion. Finally, we compute distk{t), 

the Euclidian distance of the hands from the global motion centre. This is shown in 

Figure 3.4. Figure 3.5 shows dist(t) of four sample captured dance sequences to the 

same piece of music M .

The motions tend to be comprised of oscillating segments, corresponding to back- 

and-forth (or side-to-side, up-and-down etc) movement of the hands. We model such 

oscillations by estimating, for each time frame, an approximate centre about which 

the current oscillation is taking place, as well as its approximate amplitude. To do 

this we define a window V (tj) around time b, corresponding to a set of 5 + 1  frames of 

recorded dance motion from (ti — S/2)  to (ti + S/2).  This is shown in Figure 3.6. The
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( 0 0 1 .

Global m otion centre 

 dîk(t)

Figure 3.4: global motion centre and distk{t)

size of V(ti) should be adjusted so it can capture the characteristics of the motion; 

when it is too big, only the condensed information of multiple oscillating segments 

is obtained, while if it is too small, it is unable to capture the ups and downs of 

the curve. The size of V  is determined so that it equals the average duration of the 

oscillations.

For each window V(ti) we compute the mean hand distance:

t j —t i  2

Then, using rrikiti), we compute the variance Vk{U) for window V{ti)\

V k

t j  —t i  2

The square-root of this value {\Jvk{U)) relates to the amplitude of the oscillations;
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X 10®t

Figure 3.5: This illustrates four different sets of dist{t) for a single music track. Each 
colour corresponds to one recorded motion. Note tha t while each curve is different, 
they share certain characteristics, and those characteristics are what we would like 
to learn. For example, the two largest peaks happen around the same time in all the 
motion samples, and the ranges of the oscillation amplitudes are very similar within 
a certain period of time. Also, they share similar oscillatory nature.
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Figure 3.6: Moving window V{ti)

e
K-

t

Figure 3.7: The mean distance The same colors correspond to the same
motions in Figures 3.5 and 3.8.
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127 8 9 to5 6

Figure 3.8: The variance Vk{t)

the larger \jVk{ti) is, the larger movement of the hand is around ti. Figures 3.7 and 3.8 

show nik{t) and Ufc(t), respectively, for clips from a set of motions all corresponding to 

the music track M. Looking at these graphs, we see that, for a given piece of music, 

there are sections where there is considerable variance in the and other sections 

wherein the rrik are relatively tight. Similarly, looking at the oscillation amplitudes 

over the same motion set, more coherence is evident in some areas than in others. 

This suggests that, if we are to generate m{t) and v{t) for some new piece of music, 

and if we want to be able to create multiple animations sharing “characteristics” , 

we would like to generate a distribution which we will specify by a mean and

variance cr^(t), from which we will later sample values (Section 4.2) for m{t). A 

small value of a mit) will lead to values predicted for m(f) that will be close to firn{t)- 

Similarly we will generate a distribution specified by a mean and variance cr„(t)
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of v{t). In order to learn to generate these values for a new piece of music, we first 

estimate them for the given data:

1 ^

k=l

1 ^
{ti) — , r  , ^m{ t i ) )iV — i .

and

fc=i

1 ^

k=l

1 ^
=  irp r

■'■ f c = i

where we have used an unbiased estimator for the variance.

Both the amplitude of the oscillations, and their centre, change throughout the 

sequence. In Section 3.3 we will describe some of the music characteristics that may 

drive m{t) and v{t), but first we consider some temporal characteristics of the motion.

3.2.2 Temporal Characteristics

While the frequency is of course not constant, there is likely a relationship between 

the motion and the rhythm of the music, and once again, we will be trying to capture 

certain characteristics of this relationship. One type of visually salient event is the 

peak of an oscillation— a hand stopping and going in another direction. This event 

corresponds to zero-crossings of derivative of the distance function dist{t), and we 

would like to model these peak points both in time and in space. The amplitude 

and motion centre predictors Hm, and am) will give us, based on the music

characteristics, a distribution over where the peak point should be in space; another
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predictor will be used to stochastically choose the frame at which that peak point 

should occur so that it is in synchrony with musical characteristics. To provide 

training data for the learning algorithm, we create, for each motion Bk, a binary 

variable

1 if a local maximum occurs in f ±  At,

0 otherwise

where At is a small constant (~  0.1 second) to allow for slight temporal discrepancies

between the data and the music. For each tj, we combine peakk{U) for each Bk, where

k = 1, . . .  ,N ,  to obtain an estimate, for a given piece of music, of the independent

probability of a peak event occurring at each time slice. That is:

1 ^  
peaA(t) =  —

■''' fc=i

We repeat this for each of the given music tracks and corresponding sets of anima­

tions. This gives us a set of music tracks, each with a corresponding function peak{t) 

marking possible moments at which such events may occur.

3.2.3 Testing with Example M otions

We now show how well these features of a motion can be used to recreate a new 

motion, which captures similar characteristics of the example motions. First, we 

extract the parameters peak(t), /irn(t), and as described above,

and then, using these parameters, we will generate a motion curve -  a path of the 

hand motion in 3D space. The process of the motion curve creation using these 

parameters is described in Section 4.2.

Figure 3.9 shows dist{t) function of the motion curve generated by using these
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Figure 3.9: dist{t) of the motion curve generated using parameters extracted from 
examples. The generated motion curve is indicated by the dotted line. Each of the 
other solid lines corresponds to each example of motions to the same music track. Note 
that although the generated curve does not follow the exact path of any of the example 
motions, it roughly emulates the amplitude of the peaks, which approximately happen 
around the time at which the peaks in the example motions happen.

parameters (dotted line), and the example motions from which we have computed the 

statistical parameter values. Although the generated curve does not follow the exact 

path of any of the example motions, it roughly emulates the amplitude of the peaks, 

which approximately happen around the time at which the peaks in the example 

motions happen.

As this only suggests the relevance of using those parameters, we now need to show
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that by interpolating these peaks, it is possible to create a motion curve very similar 

to the original motion curve from which it is derived. The interpolation process is 

also described in Section 4.2.

Figure 3.10 shows the original motion curve of the x-axis component (blue solid 

line), the original peaks (red x’s), and the regenerated motion curve (dotted line) by 

interpolating those peaks. The interpolated curve follows very closely the original 

curve. Therefore, if the parameters peak(t), cr^(i), and (Tmit) are pro­

vided, we are able to re-generate motions very close to the original example motion. 

Figure 3.11 shows the captured images of the original motion (on the left hand side) 

and the motion created by interpolation between the peaks in the original motion (on 

the right hand side). It is seen that the regenerated motion is in fact very similar to 

the original one.

3.3 M usic A nalysis

Before we can apply a machine learning tool to generate the motion characteristics 

described above, we need to consider the ‘input’ variables to the system. That is, we 

now extract certain characteristics of a given musical track that may influence the 

resulting animation. The three key concepts in which we are interested are (1) melodic 

contour, (2) loudness and (3) note density. To realize this, we need to compute various 

quantities as described below.
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Figure 3.10: The original motion curve on x-axis (blue solid line), the original peaks 
(red x ’s), and the motion curve obtained by interpolation those peaks (dotted line).
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frame 94 frame 1194

frame 2037frame 562

frame 711 frame 3076

frame 1171 frame 3108

Figure 3.11: Original motions and motions created by interpolated between the orig­
inal peaks. Within each frame, the pair of hands on the left is the original posture, 
and the pair on the right the one created by interpolation. It is clear tha t the motion 
created by interpolation is in fact very close to the original motion.
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3.3.1 Dealing with M ultiple Scales

Suppose that the current note is somewhat higher (or louder) than the previous note. 

What is the significance of this, with the view of choreographing a dance to the music? 

This would depend not only on the previous note, but also on where this note fits 

within the larger context of the pitch (or loudness) contour.

Figure 3.12 shows a music excerpt from J. S. Bach’s Choral 250. Looking at the 

top part (melody) of this music, there are three occurrences of a note (7^. The note 

first appears at the end of the first bar. This note acts as a passing tone between 

the preceding note B  and the following note D, making this as the leading tone 

resolving to the tonic note {D) of the key of this music^. This is very different from 

the one on the second beat in the next bar, as it serves as a neigbouring tone going 

back to the same note as its previous note. The chord for this second is not the 

dominant chord (V) (as in the first case) but III serving as upper 5th of VI (which 

eventually turns into the diminished chord (VII) ol the dominant of the original key 

by raising the to G^), thus the role of the is different from the previous 

case. Even though it is rather simple to realize these roles of the note in phrases, 

it is impossible to perform this analysis by looking at a single note. Furthermore, 

the detailed analysis of music contour is more likely to have a meaning when the 

events happen right before the current event. The note events happening in the 

near past generally have more influence on the current event than the events that 

happen in the further back in time. This seems a natural phenomenon in most of

^Por information about this kind of musical analysis, see any standard  harmony texts such as [2]
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Figure 3.12: Bach, Choral 250

the regression problems. We use this heuristic information to simplify very complex 

characteristics of music data; we consider musical progression at several time-scales. 

We approach this by a rough approximation in which we compute characteristics for 

three distinct time-windows, Wi = [wo,wi], W 2  =  [wi,W2 ], W3 =  [wa, W3], and refer 

to the collection of these subwindows as W  — fyo, wg], with wj < Wj+i and W3 being 

the current frame. This is illustrated in Figure 3.13.

Note that the windows used here for the music context are different from the 

windows used for the motion data analysis, in that the music windows are to capture 

the music contour that leads up to the current note event, while the motion windows 

are used to capture the behaviour around the current event. This is why the music 

window ends on the current event, but the motion window is centred on the current 

event.
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W:
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Frame

Figure 3.13: The windows Wx,W 2  and Ws for multiple scales.

3.3.2 M elodic Contour Information

Melodic contour refers to the rise and fall of the pitches (high-low quality of a musical 

sound [3]). If a passage is played slowly and staccato, then most of the time there is 

no “active” note, yet a contour is still implied, and animated motion may correspond 

to this contour. This can be solved by simply keeping track of the previous note. 

However, suppose a note is embellished with a trill, tremolo or turn (e.g. notes 

alternating quickly back and forth). The contour could be considered static in this 

case as opposed to varying along with the trill. Furthermore, in a fast passage, notes 

may locally be going up and down, but the overall shape might be a gradually rising 

progression, so tha t the musical contour is rising. This motivates a weighted moving- 

average filter, which also allows the contour value to be expressed as a function of 

frame number. That is, a contour value is expressed even when there is no note being



26

played. This also reduces the effect of a small mistake in which an additional note 

is played around the desired note. The resolution of the interpolation is determined 

according to the sampling rate of the motion capture data, so that each motion frame 

has a corresponding note event. We can then compute the following characteristics;

1. Pitch samples. Once the pitches have been processed as described above, 

processed pitch values p(tj) can be sampled as needed from W.  This input 

parameter describes the general contour of the music in window W.

2 . Mean and variance of pitches. Statistics such as mean p,p and variance Up of 

the pitch contour p(t) can be calculated for each of the windows Wj.  jip can be 

considered as a local phrase centre (i.e., around which register the notes occur) 

while (jp gives us the idea of how quickly the notes go up (or down) in the given 

window.

3. Pitch-peaks. Just as peaks are salient features of motion, they are salient fea­

tures of melodic contour, and therefore a pitch-peak variable is used to flag 

whether the current event is (close to) a local maximum (1), or a local mini­

mum (-1), and 0 is assigned otherwise.

4. Duration to next/previous closest peaks. A peak may be perceived to be more 

significant if it is more isolated from any other nearby peaks. By including these 

parameters, one can perceive whether or not the peak is isolated from others or 

just one of many peaks happening in a short period of time.
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5. Phrase endings and duration of phrase. Although algorithms to detect phrase 

endings are widely available ( [25,29] ), a very simple procedure of hnding two 

consecutive notes with the inter-onset time larger than a threshold was used in 

this study. This method is inspired by Pachet’s Continuator [22]. The threshold 

is typically based on the average inter-onset time of all the notes. Phrase ending 

is important as it indicates a break in music, and it oftentimes corresponds to a 

break in dance motion.

3.3.3 Loudness Characteristics

Although loudness information is not present in MIDI data, it can be expressed 

implicitly as velocity, which refers to the speed of a key being pressed when a note is 

played (see Appendix A.l); The faster the key is pressed, the louder the note sounds.

Loudness information is processed differently from the pitch information. Firstly, 

we assume that when a note is played, it decays at a fixed rate while the key is 

pressed, and then as soon as the key is released, the note stops. This phenomenon 

of decaying sound is observed in many of acoustic instruments such as piano and 

guitar. Although the MIDI information may request a non-decaying instrument such 

as organ and wind instruments, we only concentrate on simulating those instruments 

with decaying sound at this time. (For non-decaying instruments, we can simply keep 

loudness to be constant while the key is being pressed. Our tests have shown that 

this works well with our system.)

For each time frame, we compute a sum of the loudness of all the notes that are 

decaying. The loudness lj(t) of a jth. note at time is given by;
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where Ijitjo) and tjo are the initial loudness and NOTE ON time of the j th  note, 

respectively, and k the decay constant {k < 1). Note that if the key is held long 

enough, lj{U) ultimately nears 0 even before the key is released. The sum of the 

loudness L{ti) at time tj is computed as:

L{U) =  (4 (̂ «))
Noteje^t f

where denotes all the notes that have NOTE ON time prior to time ti but have 

not been turned off yet. This cumulative loudness is relevant because it captures ar­

ticulation of notes as well as events that are important for realization of the loudness. 

For example, in the events such as trills and tremolos, the overall loudness is kept 

near constant as if a single note ringers without decaying even though there are many 

notes played one after another. In another case when a group of notes are played 

simultaneously (e.g. chords), the music is usually louder than one-line melodies. Fig­

ures 3.14 and 3.15 show the result of the cumulative loudness and its corresponding 

analogue audio loudness.

Once we have obtained the cumulative loudness of the music, we then extract the 

information in a manner similar to the process of pitch information, (i.e. loudness 

samples, mean and variance, peaks, and duration to neighbouring peaks.)
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Figure 3.14: Cumulative loudness processed from MIDI data
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Figure 3.15: Loudness in analogue audio format
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3.3.4 D ensity

At each time tj, the density p{ti) of notes is computed for each of the three windows 

leading up to that time. Let the number of notes in a window Wfc(L) and the time 

duration of Wfc(L) be, A'fc(L) and ATk(ti), respectively, pk(ti) is computed as:

This information describes how many notes are played in a given window, hence, 

it gives us a general idea of how fast the music is played. Because of the filtering of 

the pitch information and the cumulation of the loudness, the information of the note 

density is somewhat lost without explicitly providing it.

Alternately, the average inter-onset time in a given window can be used. It also 

describes how fast the music is played, and both cases show very similar results in 

this study.



Chapter 4 

Learning and Generation of 
Output Anim ation

4.1 Learning

Once the various characteristics have been selected and extracted, standard feed­

forward neural network models are used to learn relationships based on the provided 

example data.

Our system predicts two types of characteristics of the output motion; temporal 

and spatial characteristics. The input data is based on a series of music tracks, 

each with a set of corresponding recorded motions. The input data is processed as 

described in Section 3.3, so that each time slice of the music contributes one training 

example. For each frame at time ti, let u{ti) represent the set of musical characteristics 

computed as described in Section 3.3. One model is trained to predict the probabilities 

peak{t) given input u{ti) (Section 3.2). The other model learns to estimate the spatial 

characteristics (/r„(t^), Prn(ti), and (7 m(ti)) of the distribution (also described

in Section 3.2). These output values are then used to create motion curves. The 

details of the motion curve creation are discussed in Section 4.2.

31
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# P a ra m e te r
1 - 10 distances in time to the last 10 peaks in pitch

11 distance in time to the next peak in pitch
12 - 21 distances in time to the last 10 peaks in loudness

22 distance in time to the next peak in loudness

Table 4.1: Input parameters for the temporal predictor

4.1.1 Neural Network Structure

The structure of both the models is a feed-forward network with one hidden layer 

(6  hidden units). Tanh functions are used in the hidden layer, and logistic functions 

in the output layer. Although we have tried different numbers of hidden units and 

different types of output functions such as linear function, this model resulted in the 

best performance by far. ( [5])

The temporal model has 22 input parameters (Table 4.1) and 1 output parameter 

(Table 4.3), which is the probability peak{t) indicating the likelihood of the frame at 

time t  being a peak in the motion output. The spatial model has 41 input parameters 

(Table 4.2) and 4 output parameters, jJ-mit), CTmit), and ay{t) (Table 4.3),

which are used to form distribution functions. How these output parameters are used 

to generate motion curves is discussed in Section 4.2.

4.1.2 Training of the M odels

Each time frame contains the combination of music data and the corresponding mo­

tion data (a posture). Each of these combinations contributes one example of the 

training data, thus a single training set contains a number of examples which is the 

same as the number of frames in the music data. The frames at the beginning and
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Input luiits H idden units Output units

Figure 4.1: Neural Network Structure: feed-forward neural network with one hidden 
layer.

# Param eter
1 - 10 Pitch values in window W

11 - 20 Velocity values in window W
21 - 23 Density of notes in windows Wi, W 2 , and
2 4 -2 6 Mean of pitch in windows W\, W 2 , and FF3

2 7 -2 9 Variance of pitch in windows Wi, W 2 , and IF3

30 - 32 Mean of loudness in windows kFi, W 2 , and I-F3

33 - 35 Variance of loudness in windows Wi, W 2 , and IF3

36 Flags to indicate peaks in pitch
37 Flags to indicate peaks in loudness
38 Time duration of peak in pitch to the next minimum
39 Time duration of peak in loudness to the next minimum
40 Flags to indicate phrase endings
41 Time duration of phrases

Table 4.2; Input parameters for the spatial predictor
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# P a ra m e te r
1 Tm (t) (from spatial model)
2 (from spatial model)
3 (from spatial model)
4 (Jy (t) (from spatial model)
5 (from temporal model)

Table 4.3; Output variables

end of each data set are excluded from the training data as they typically contain 

irrelevant data: due to the lack of a system for cuing exactly when to start moving, 

it is almost impossible for the dancer to synchronize the motion with music for the 

first few seconds. Also, for a similar reason, the ending frames usually do not reflect 

well what the dancer intends to do because the music sometimes stops unexpectedly 

despite the fact the dancer familiarizes herself prior to the recording sessions.

The models are trained using a scaled conjugate gradient optimization algorithm, 

which sometimes results in faster convergence than conventional conjugate gradient 

algorithms ( [5]). The training process continues until 1) the number of iterations 

reaches the maximum value, or 2 ) the error function returns a value smaller than the 

threshold. The results of the training are discussed in Section 5.1

4.2 G enerating M otion  Curves

To generate a motion curve from the parameters obtained from the learning module, 

the following steps are performed.

1. Stochastically mark candidate peaks by using the peak{t) estimator

2. These candidate peaks are further trimmed down based on human physical
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ability and the constraints specified by the user

3. For each peak point occurring at time tq, a local mean distance of the hand 

position m { t q )  and the variance v { t q )  are sampled from distributions specified 

by and and by and respectively

4. d i s t ( t q )  is given by: d i s t { t q )  =  m { t q )  +  \ J v { t q )

5. Ok is randomly chosen from several pre-defined angles. This is the rotation angle 

of an axis along which the hand motion occurs (to simplify the problem, the 

hand motion is currently restricted only on the x-y plane)

6 . 6 q is then sampled from a distribution specified by a mean at Ok and a variance

7. Peak point q { t q )  =  { x { t q ) , y { t q ) , z { t q ) }  is calculated as:

x { t q )  =  d i s t { t q )  ■ s i n  0 { t q )

=  d Z S t( tg )  - COS

Z{tq) =  0

8 . After determining the locations of the peak points in space and time, another 

set of peaks are computed so as to create oscillating curves

9. A hand motion is computed by using a quartic polynomial interpolation. This 

interpolation is performed separately on each axis.
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10. For each frame, the final configuration of the hand and arm motion is computed 

using an inverse kinematics algorithm. Some heuristic methods are used to 

further determine the orientations of the hand and arm.

Now we discuss each of these steps in details.

4.2.1 Generating and Trimming Candidate Peaks

The generative procedure begins by analyzing a new musical input track, and using 

the peak(t) estimator (predicted by a sigmoidal unit, which is a value between 0 

and 1) to stochastically select certain times as moments where motion peaks can 

occur. The system then goes through all the candidate peak points to make sure 

that the consecutive peaks are not too close in time. Whether or not they are too 

close is determined by two factors; one based on human physical ability and the other 

specified by the user. The maximum values of velocity and acceleration are obtained 

from the example motions. If the candidate motion peaks require movements with 

values higher than these maximum values, one of them is excluded from the list of 

peaks. The system also gives the user an option to control the number of possible 

peaks. The more peaks in a motion, the faster the hand has to move in general. 

Therefore, controlling the number of peaks indirectly corresponds to the control of 

the speed of the hand motion. The current system allows the user to select from four 

different settings; fast, medium, slow, and very slow. This is particularly useful when 

animators desire different dance movements to exactly the same music, depending on 

circumstances. Figures 4.2 and 4.3 show example motions generated according to 

the user’s choice of the speed. Both are generated from the same musical data.
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Figure 4.2: Motion with fast movement
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Figure 4.3: Motion with slow movement
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A common previous approach to create animation to music is to assume the beat 

information is embedded in the MIDI file [13,31], which is contingent on having an 

unwavering tempo throughout the piece, or by using beat extraction algorithms such 

as [20]. However, restricting dance motions synchronizing only to beat is merely one 

aspect of choreography, and the movements seen in dance are not necessarily accented 

only by the beat factor. Furthermore, consider music played ruhato (freedom of 

tempo) as often found in classical and jazz music, or music in tempo but with tuplets 

(e.g. triplets, quintuplets). In these cases, synchronizing the motion with the beat 

is only one of the possible options; having motion that can be synchronized with 

articulation and melodic aspects of music is equally important.

4.2.2 Calculation of Spatial Peak Locations

Once the peaks have been selected, the system computes an exact location of the hand 

as follows. Let Pm(tg), crm(^,), P-u(4); cTvitq) be predicted by the model according 

to the music characteristics u ( t q )  at t i m e  t g  at which a peak occurs. A local mean hand 

distance and amplitude for d i s t { t q )  are chosen by sampling a gaussian distribution 

p{m) and p{v) with these parameters. p{m) and p{v) are given by;

1
p(m) = — -—~—= e  (m, > 0 )

V 27T

and.

p(v) = --- -—;—7= e  fy >  0 )

Note that the dist[t) function specifies distance of the arm, but does not indicate the
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direction in which the distance should be chosen. While this is an additional charac­

teristic that could be predicted by the system (discussed in Section 5.2), we currently 

randomly set several primary axes of motion on the x-y plane, with rotation angles 

around the origin being 9i, 6 2 ,. ■ ■ ,0r for each character’s hands as mean directions, 

and then we randomly choose one of them 9k, and sample from a normal distribution 

centered at 9^. 9k is used for the fixed duration of time ATg, in order to avoid too 

much randomness in the resulting motion. ATg can be fixed for the entire motion, or 

change according to the length of musical phrases.

Together, the axis and distance specify a point relative to the character. The 

following are the steps to calculate the peak point q(tg) = z{tg)} at time

tq. (Figure 4.4)

1. Sample a local mean distance m{tg) and variance v{tg) from p{m) and p{v), 

respectively.

2. Randomly choose a mean primary axis 9k from 9\,92, ■ ■ ■ ,9r

3. Sample motion axis 9(tg) from pg(9)

1

ag\/27T

where cr| is the variance of the the distribution pe{9), which is randomly chosen 

(0 < (Tg < 5).

4. signed distance dist{tg) is given by:

dzg^ (tg) =  m (^ g ) -t-
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Local motion centre

/  /ampUtudi

Global motion centre

Figure 4.4: Calculation of Peak Locations 

5. Finally, q{t^  =  {x{tq),y{tq), z{tq)} is calculated as:

x { t q )  =  d i s t { t q )  • s i n 9 { t q )

Z((g) =  0

4.2.3 Insertion of M inimum Points

From the peak points computed in Subsection 4.2.2, we now insert another set of 

peaks, each of which appear in between the pre-defined peak points. The first group of 

peaks will become the zero-crossing points of the velocity along the motion direction, 

and near each peak, the first derivative is positive before and negative after the peak
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Signed distance from motion centre

Time

Figure 4.5: Signed distance and two sets of peaks

(black circles in Figure 4.5). On the other hand, the second groups of peaks will be the 

zero-crossing points of the velocity along the motion direction, but with its function’s 

first derivative being negative before and positive after each peak (red squares in 

Figure 4.5).

To meet this condition, a peak point of the second group at time U must have 

a smaller (signed) distance than the peaks on its neighbouring peaks. The tentative 

location of this point is given by:

z ( ^ r )  =  d f g ^ ( ( r ) ' 8 i n ^ ( ( g )

^(4) =  d%gt(4)'C08^(fg)
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where

Max point
Local motion centre

\  /  /amplitude

Tentative min point

amplitude^/ dist(ti)

Global motion centre

Figure 4.6; Tentative minimum point 

z ( t r )  =  0

d i s t { t r )  =  m { t g )  —

and this is shown in Figure 4.6.

Ideally, this tentative point will have a smaller value than both the neighbouring 

peaks. However, the signed distance of the next peak may be smaller than this 

tentative point. In this case, during the interpolation stage, it will create a saddle 

point, as shown in Figure 4.7, instead of creating an oscillating curve that is desired 

here.

Therefore, another tentative point that is computed from the next peak point is 

also considered at this time; th a t is:
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Tentative distft,)

Figure 4.7: Tentative peak point has the larger distance than the next peak

d i s t { t r + l )  =  m { t q + l )  -  \ / v { t q + l )

x { t r - \ - l )  =  d i s t { t r - \ . \ )  ■

3/(4+l) =  d2g((^r+l)'C0Sg(t,+l)

z(tr+i) — 0

and, choose the appropriate minimum point according to the following criteria.

1 . The tentative point with d i s t { t r )  is chosen if it is smaller than both d i s t ( t q )  and

2. The tentative point with d i s t ( t r - i - i )  is chosen if d i s t ( t r )  is larger than d i s t { t q ^ i ) ,  

but d i s t { t r + i )  is smaller than both d i s t ( t q )  and d i s t { t q ^ i )
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Note that there may be a case, in which both dist(tr) and dist{tr+i) are smaller 

than both dist{tg) and dist{tg+i). This can be caused by the different 9 values from 

which the two consecutive maximum points are computed. In this case, we enforce 

the minimum value to be zero. In other words, this peak point will be positioned 

at the global motion centre. This enforcement in fact ignores the amplitude value 

predicted by the model, but it makes sense as this point will be around the transition 

time (i.e., the time to change the direction of the movement, or the time when a newly 

computed theta becomes in effect) and it can be considered that the hand retracts 

before moving on to the next motion direction.

4.2.4 Interpolation

W ith the locations of peaks and their timing information, it is possible to interpolate 

between peak points using a quartic polynomial interpolation. Although these peaks 

are used as control points, all of them are also either local maxima or minima. There­

fore, the first parametric derivatives of all the control points must be zero. However, 

this does not guarantee the continuity of the acceleration of the hand movements. 

To enforce the continuity, the second derivatives of both sides of a control points 

should be equal. Let the quartic function p of u defined as:

p{u) =  Co +  CiU -b C2Û  +  CsÛ  +  C4Û

where
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Figure 4.8: Interpolating between control points p(0) and p(l) on the x-coordinates

c = Co Cl C2 C3 C4

and

u

u

u

u

u

Then, the conditions to interpolate between the control points (shown in Figure 4. 

are expressed as:
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and in a matrix form,

p(0 ) = Co

= Co +  Cl +  C2 +  C3 +  C4

p'(0 ) = 0 = cl

m = 0 = Cl +  2 c2 +  3cg +  ^

/ ( O ) = a = 2 cz

Po 1 0 0 0 0

Pi 1 1 1 1 1

A = 0 = 0 1 0  0 0

0 0 1 2  3 4

a 0 0 2 0 0

A =

where

p(0)

P(l)

p (̂O)

P'(l)

p"(0 )

and a  is the second derivative of the end point of the previous curve segment. Having 

the second derivative of the beginning point of the current segment equal to a  ensures 

continuity at the joining points.
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Therefore, the interpolation matrix M  for this interpolation is given by;

M  =

1 0 0 0 0

- 1

1 0 0 0 0

1 1 1 1 1 0 0 1 0 0

0 1 0 0 0 = 0 0 0 0 1
2

0 1 2 3 4 - 4 4 - 3 - 1 - 1

0 0 2 0 0 3 - 3 2 1 1
2

Note that although we have shown the interpolation using the values for the x-axis 

as an example, the same interpolation matrix can be used for all the axes without 

losing generality. We perform this interpolation separately for each axis.

Now we define the blending polynomials b{u) of this interpolation as:

h{u) =

and then we can rewrite the equation for p{u) as:

p{u) =  b{u)'^X

=  6oWp(0) +  (1) +  62W p'(0) +  +  64(r/)p"(0)

Therefore, these blending polynomials are given by the equations:
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Figure 4.9: Blending functions

b(u) =

3^4 _  4^3 2 {u — 1Y{3v? +  277 +  1)

— +  4u^ —3u^{u — | )

2u^ — 3u^ + u = 2u{u — i y { u  +  | )

v?{u — 1)

+  ~v? l ( u ~  1)^

As seen in Figure 4.9, these five polynomials have none of their zeros inside the 

interval (0 , 1) and they are smooth in the range.

4.3 Inverse K inem atics (IK) and Link O rientations

The orientation angles at the characters’ links are computed using an IK algorithm 

(see Appendix A.2). The shoulder position in 3D space can be specified by the user,
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o o

z

Figure 4.10; Conventional right-hand 3D coordinate system

or by reading in a file containing a specification of the character’s body structure 

(.asf files of Acclaim format). Because the solutions to this IK problem only occur 

on the plane O that is defined by the two links, humerus and radius, we first solve 

it analytically on Ü (2D), which is kept at an orientation such that fl is always 

perpendicular to the x-z plane (the figure is looking in the positive z-axis direction 

in the conventional right-hand coordinate system, as shown in Figure 4.10), and 

then find orientation of Q based on the hand orientation. Even with this constraint, 

however, there may be two correct solutions, as shown in Figure 4.11. In this case, 

we use a heuristic approach to choose the solution that has a lower elbow location.
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b) I m p la u s ib le  s o lu t io n  

a )  S e in s ib le  so lu t io n  i

Figure 4.11; Solutions to IK. The red spheres indicate target point and shoulder 
position

4.3.1 Computing Orientations

Define the hand’s default orientation such that the palm faces the positive z-axis 

direction while the fingers are pointing upwards (the positive y-axis direction) and its 

bottom center positioned at the origin of its local coordinate system (Figure 4.12). 

The orientation of the hand is typically determined by three rotation angles but we 

consider two; one is the rotation around the z-axis and the other around the x-axis in 

the local system. Let the rotation angles around the local x-axis and z-axis be (f)̂  and 

0 2 , respectively (Figure 4.13 and 4.14). While there are other options, we use two 

different heuristics to determine (f)̂  and 0 ;̂ 0 z is determined based on the locations 

of the hand and shoulder to attain  a natural posture, and 0  ̂ is obtained from the 

velocity of the hand movement to  add some fluidity to the motion.



51

Figure 4.12; Default Hand Orientation

D eterm ining

([>x is determined so that the normal vector of the palm is collinear with the vector from 

the shoulder position to the hand position. Let the shoulder position in the global 

coordinate system be Ps =  [a;,, ?/,, Zg], and the current hand position ph =  [xh, Vh, ^h], 

the vector w from the shoulder to the hand is given by:

Therefore, is computed as:

=  arccos V v
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Figure 4.13: Hand orientation about the x-axis (px

D eterm ining

Unlike (p̂ , which is computed in relation to the locations of the hand and shoulder, 

(pz is computed from the x  component of the velocity of the hand movement as:

pz — CVx

where C  is a constant value controlling the amplitude of pz-

By setting this rotation angle pz proportional to the velocity, the wrist move­

ment looks more fluid as this imitates one aspect of the physical properties (inertial 

property). Although setting C to a value that is too large results in unnatural wrist 

motion, a larger C  usually adds some effects such as exaggeration and appeal that are 

part of the principles of animation described in [16].
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Figure 4.14; Hand orientation about the x-axis

D eterm ining Arm Orientation

Finally, the orientation of the arm is determined based on the orientation of the 

hand. Let a  be the line through the locations of the hand and shoulder, and {3 the 

line passing through the center of the hand from the bottom of the palm to the tip 

of the middle finger, we rotate around a  so that Q. contains (3. This is shown in 

Figure 4.15.
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Figure 4.15: Orientation of Arm: Rotating plane Q, to contain line a



Chapter 5 

R esults and Conclusion

5.1 R esu lts  and D iscussion

The model was trained on a data set consisting of several music pieces, with multiple 

motion recordings for each piece. We first show the results of the creation of new 

motions, corresponding to the music data that were used to train the model, and then 

the results of the new motions generated using new musical data that the system has 

not seen during the training process.

The musical pieces range from highly rhythmic with steady tempo, to having 

rhythmic patterns that shift from slow and rubato to fast, demonstrating that the 

characters respond appropriately to these complex changes. Table 5.1 shows the 

music tracks tha t are used to train the models (and also used to test and evaluate 

the system’s output), and Table 5.2 shows the list of music tracks that the models 

are tested on.

5.1.1 N ew  M otions to the M usic D ata Used for Training

Comparing the results with the examples is one of the important ways to evaluate 

the system. In this section, we train the models on the music listed in Table 5.1, with
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# G enre Tem po D escrip tio n  (M etre)
1 Classical/Ethnic Slow 1 notes. Exaggerated variation in loudness ( |)
2 Popular/Jazz Medium My Favorite Things (~)
3 Popular Fast 8th  notes improvised line ( |)

Table 5.1; The list of music tracks used to train the model, and also test to evalu­
ate how closely it produces output animation that shares the characteristics of the 
example motions.

# G enre Tem po D escrip tion  (M etre)
4 Jazz Fast/Medium Four (1)
5 Ethnic Slow to fast (varying tempo) (Î)
6 Classical/Folk Medium Mazurka |

Table 5.2: The list of new music tracks that are used to generate motion curves. Note 
that these are not used during the training phase.

the several motion tracks danced to the music, and then use the same music tracks 

to create new motions.

Figures 5.1, 5.2, and 5.3 show the original values (blue) of spatial parameters 

a^, Urn, and cr^ and the output result from the model (dotted lines), and Figures 5.4, 

5.5, and 5.6 show the original and predicted values of temporal parameter peak. 

Figure 5.7 also shows the target and predicted temporal parameter values for the 

music track 1 , but shows only a smaller section for a more detailed view. Although 

the predicted data are not exactly on the target, the predicted peaks happen in a 

certain range from the target peaks.

Using these output values from the models, we now generate motion curves as 

described in Section 4.2. Figures 5.8, 5.9, and 5.10 show several motion curves that 

are newly created (dotted line), with their original example motion curves for the 

same music (other solid lines). The peaks of the new motion occur around the frames
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a) M ean value o f  m otion centre |i.n b) Variance o f  m otion centre Om

o

c) M ean value o f  amplitude p. d) Variance o f  amplitude o.

Figure 5.1; Values learnt by the model for the training music #1
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c) M ean value o f  amplitude p.
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d) Variance o f  amplitude a.

Figure 5.2: Values learnt by the model for the training'music # 2
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b) Variance o f  m otion centre a.n
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c) M ean value o f  amplitude p. d) Variance o f  am plitude m

Figure 5.3: Values learnt by the model for the training music # 3
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aQ,

frame

Figure 5.4: Peak probability peak for the training music #1: Blue (target data),
Green (likelihood predicted by the model)
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I

frame

Figure 5.5: Peak probability peak for the training music #2: Blue (target data),
Green (likelihood predicted by the model)
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Figure 5.6; Peak probability peak for the training music #3: Blue (target data),
Green (likelihood predicted by the model)
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1900 2000

Figure 5.7; Peak probability peak for the training music #1 , sampled to show in 
detail: Blue (target data), Green (likelihood predicted by the model). Although the 
predicted data are not exactly on the target, the predicted peaks happen in a certain 
range from the target peaks.
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dist(t)

Figure 5.8: New motion (dist{t)) and the original example motions for the training
music #1
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dist(t)

Figure 5.9; New motion (dist{t)) and the original example motions for the training
music #2
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dist(t)

Figure 5.10: New motion {dist{t)) and the original example motions for the training
music #3
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at which many peaks of the example motions occur, and at these peak points, the 

amplitude of the generated motion curve approximately follows that of the example 

motions. This suggests the system did indeed generate new motions that share certain 

characteristics of the original example motions by analyzing the proposed features of 

music and motions.

5.1.2 New M otions to the New Music D ata

One of the features of the system is to be able to create motions to musical lines that 

were not used in the training process, yet automatically produce resulting motions 

that are similar in style to the example motions. Using the models trained in the 

previous section, we now generate new motions to the new music tracks shown in 

Table 5.2 on Page 56.

Figures 5.11, 5.12, and 5.13 show the motion curves (distances from the global 

centre) created by analyzing the music tracks in Table 5.2, and Figures 5.14, 5.15, and 

5.16 show screenshots of the resulting animation. The system was capable of handling 

highly rhythmic music (track 4) as well as responding to tempo changes within a single 

tune (music track 5). Because the peak points are stochastically chosen and the user 

can select different motion speed, the system has created a few motions, which are 

not identical yet able to share certain characteristics, to one music track.

5.2 C onclusion and Future W ork

We have demonstrated a novel approach to creating animated motion to new musical 

scores. We propose a set of key features of music and motions, and then extract these



dist(t)

Figure 5.11: New motion curve (distance) to the testing music # 4
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dist(t)

Q.

Figure 5.12; New motion curve (distance) to the testing music #5
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dist(t)

Figure 5.13: New motion curve (distance) to the testing music 7^6
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Figure 5.14: Screenshots of the motions to the testing music # 4
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Figure 5.15: Screenshots of the motions to the testing music # 5
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Figure 5.16: Screenshots of the motions to the testing music # 6
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features. Rather than adapting existing recorded dance motion, we then use recorded 

motions synchronized to music soundtracks, and automatically analyze salient charac­

teristics of both the motion and the music. A feed-forward neural network can then 

be used to learn the relationship between these characteristics by example, rather 

than by requiring an animator to specify mappings explicitly.

Even though it can generate animations automatically, the system provides flex­

ibility for the animator to control the speed of the animation. It is very likely that 

two different animators would like different motion speeds to the same sound track, 

depending on their needs.

Our work focuses on animating motion of hand and arm, yet the same ideas could 

be extended naturally to include a range of body motion. An obvious target would 

be legs. For this, unlike somewhat free movements of hands, we would have to have 

more constraints in order to attain physically plausible postures. For example, the 

maximum extent of legs cannot go lower than the floor level, or at least one of the feet 

must be touching the floor at all time. Another possible way to include more parts 

of body is to use techniques such as style-based inverse kinematics [11] to manipulate 

many more degrees-of-freedom with a low-dimensional representation such as hand 

position.

Another aspect to be explored is to incorporate a predictor for the direction in 

which the hands move. The current system chooses a few directions from a Gaussian 

distribution, but this characteristic, too, can be learnt from examples. It may be the 

case that the directions and other characteristics are affected not only by the musical 

features, but are dependent on the temporal information as well.
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Currently, our system extracts only a limited number of features of motion and 

music. We would like to extend our system to include more parameters to capture 

more features. For investigation purposes to determine which features to be included, 

only a small number of points indicating some of the body parts such as hands, feet, 

elbows, and shoulders, rather than rendering full links may be performed. Doing so 

may help us understand other visually salient features in the motion. Our system 

could also be extended by further analysis of the musical input, such as harmonic 

function, and again, use of the temporal information of music may be very useful as 

the repetitive occurrences of musical phrases may be matched to that of the motions.



A ppendix A  

Techniques Overview

A .l  M usical Instrum ent D ig ita l Interface (M IDI)

To understand how music applications can be implemented, one must understand how 

music data can be transferred between digital instruments and computer hardware 

media, in addition to the music theory and tonal systems. W ith its first standard­

ization in 1983 [12], MIDI has gained popularity among musicians, who have been 

interested in using computer technologies to produce their music. MIDI in its pure 

format can be thought as the representation of notes that are to be played. There 

are three kinds of basic information contained in MIDI messages;

1. Command: W hat to do e.g., play a note {NOTE ON), or stop a note {NOTE

2 . Pitch: Which note should be played {middle C  is set to the value 60, one half­

step corresponds to 1 of the pitch value: e.g. C #  =  61, D =  62)

^Command can be also a command to  switch the sound voice or other controls to affect the 
system’s configurations, but only the NOTE ON and NOTE O FF commands are relevant for the 
purposes of this research.

76



77

3. Velocity: How fast a key is pressed; hence, how loud the note should be played 

(ranging from the minimum value of 0 to the maximum value of 127).

A typical MIDI message is represented with a series of bytes such as:

10010000 00111100 01000000

The interpretation of this message is “Play a note (NOTE ON; the first 4 bits are 1001) 

with the pitch 04 (OOIIIIOO2 =  6O10 =  04) and the velocity 64 (OIOOOOOO2 =  64io)” 

When MIDI messages are played and received in real time systems, such as press­

ing keys on the keyboard, messages are generated and directly sent to a device that 

synthesizes sound {synthesizer). In this case, it is unnecessary to have the information 

about timing. However, if the messages are stored and played back later, some sort 

of the timing information is necessary. In the standard MIDI files, a MIDI message 

of each note is associated with a time at which the note should be played.

There are three types of the standard MIDI file formats: Type 0, 1, and 2. Files 

in Type 0 format store all the MIDI messages in a single data stream, or a track, 

while Type 1 files can have multiple tracks, which make it easy to view and edit the 

music when it has more than one part, such as orchestral and choral music. Type 2 

files are very rarely used in MIDI sequencer applications, even though they can store 

multiple songs or patterns in a single file.

A .2 Inverse K inem atics (IK)

Forward kinematics is the process of computing the position of the end effector of 

a structure by specifying the angles of all the joints. This is fairly straightforward.
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and it always has exactly one solution. Inverse kinematics, on the other hand, is the 

process of figuring out the joint angles when given the position of the end effector 

and possibly other constraints, such as the orientation of the end effector. There 

can be zero, one, or more solutions, depending on the constraints given by the user. 

The term overconstrained means that there is no solution because there are too many 

constraints on the configuration. It is said underconstrained when there are more 

than one solutions because there are not enough constraints.

When the mechanism is simple, then the final configuration of the joint angles can 

be solved analytically. In this case, the animation of the mechanism can be done by 

interpolating the angles between the initial and final pose vectors (vector of all the 

joint angles). When it is much more complicated, the solution is usually obtained 

by employing the Jacobian matrix, which relates the incremental changes in the joint 

angles to the changes in the position and orientation of the end effector. ( [23])

A .2.1 Analytical Solution for a Simple System

Suppose a very simple system in two-dimensional space shown in Figure A.I. Li 

and L 2 are the length of the first and second links respectively, 6*1 the joint angle of 

the first link relational to the fixed wall, and 6 2  the joint angle of the second link 

relational to the first link. Assuming the base is fixed at the origin, the values of the 

{X, y )  coordinate is given by the user as the desired position of the end effector.

By computing the distance from the origin to this desired position, it is possible 

to determine the joint angles 9i and 6 2 - First, we compute the interior angles of the 

triangle shown in Figure A.2 .
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Figure A.l: Analytical solution for a two-link system

(0. 0)

A'

1^0  -0->

%

Figure A.2: The triangle used to compute 6̂ 3 (shaded).
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Figure A.3; The triangle used to compute cos(0i — 6 3 ) and cos(180 — ^3) (shaded). 

Prom the law of cosines, 6 3  is given by:

y
Ô3 = arccos

Similarly considering the triangle shown in Figure A.3,

C 0 8 ( # i - - # 3 ) 2 . +  y2

and,

cos (180 — 6*2) =
-  (%2 + y2) 

2 T 1 T 2

Therefore,

il =  arccos 4- da



and

! ji- -L?

I .!

L}+L2

Figure A.4: Reachable area by the system

.L^4-;r2 F ir: _ _ J ^ 2
arccos —— :--------------------+  arccos2 +  y2

0 2  = arccos
L j + L l -  (%: +  y :)

2 • L i  • L / 2
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Note that we have assumed that the (X,Y) coordinate values given by the user are 

in the reachable area by this system. The minimum distance this system can reach 

is \Li — T2I and the maximum is Li +  L 2 . This is shown in the Figure A.4

Even for this simple mechanism, there are two correct solutions to satisfy the 

criteria. These two solutions are symmetric along the line between the origin (0, 0) 

and the desired position (X, F ), as shown in Figure A.5.
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F

Figure A.5: Two correct solutions for the two-link system



A ppendix B 

Features of the Software

The complete software program of the system has not only the functionalities to 

perform the necessary tasks discussed in the main part of the thesis, but it also has 

useful features that are commonly used for research in interactive animations and 

computer music.

B .l  M o cap V iewer

This module reads in the motion capture data and plays it back as animation. The 

file format that this module is capable of handling is called Acclaim format ( [8]). 

The Acclaim format requires two types of files; .asf, which contains the specification 

of the bone structure of the figure, and .amc, which is the joint angle trajectory data 

for all the frames to animate the figure. (Shown in Figure B.l)

The viewer allows the user to control many properties of the output animation 

(Figure B.2). These include the animation properties such as animation speed, types 

of primitive shapes for links, roughness of the primitives, and link size (thickness), 

as well as some basic on/off settings such as showing of floor/shadow/axes, applying 

of joint angle limits, effect of the light source. The user can also extract the hand
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Figure B.l: Mo cap Viewer 

position data from data of whole body motion.

B .2 Isotrak C ontroller and 3D  M otion  Capturer

This module reads in the 12 DOF motion (6 DOF each of two sensors) data from Iso­

trak device in real-time, and renders the hand movements on the screen (Figure 3.2). 

The user can save the entire session in a file, and then play it back later.

B .3 Interactive C ontrol o f A n im ation  in Low D i­
m ensional Space

Another novel feature of the system is that it can synthesize new postures from the 

data that are obtained by using algorithms for nonlinear dimensional reduction, such 

as Isomap ( [4]) and Locally Linear Embedding (LLE) ( [26]), applied to the original 

high-dimensional joint trajectory space. Figure B.3 shows two windows, one with
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► initview -a'P*: tl'iiii .uni(*î 1 liHhl

bone: shape jsPHERE roughness :10 20 30 40 50
(3 repeat frame n V.........................* fps # 60 0 60 120 180240 300 360

Figure B.2: Control panel for mocap viewer

the low dimensional data and the other the corresponding synthesized posture. By 

dragging the mouse in the low dimensional space, the system creates a posture, in 

real time, by linearly interpolating the joint angles of k nearest neighbours of the 

current location of the mouse. As the number of the nearest neighbours k increases, 

the flexibility of the figures’ posture also increases, at the cost of realism.

B .4  M ID I R ecorder w ith  A nim ation  Playback

This feature is in fact very useful as the user can record music while she watches 

the sample animation, thus creating the sample training sets of music-motion com­

binations. Although we have recorded motions in synchrony with existing music, it 

is possible to collect data using sample hand motions that are extracted by the fea­

ture described in Appendix B .l, and then play new music that matches the sample



Figure B.3: Controlling animated figure in low dimensional space

motions. This module also includes the feature of MIDI playback synchronized with

animation.
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