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Chapter 1

Introduction

A differential equation describes how som ething changes. It allows us to  model phe

nom ena th a t change continuously over tim e or space. M athem atical models based on 

differential equations are widely used in the  sciences to  a ttem p t to describe the  real 

world. These models are essential tools from the  molecular level in the analysis of 

chemical reactions, to  the  cosmic level in the m otion of planets or comets.

C om puter modeling of complex phenom ena now plays an  im portan t role in all 

areas of science and engineering. It is usually the  case th a t such models are based upon 

com plicated system s of differential equations. Furtherm ore, the  com plexity of these 

systems implies th a t they  cannot be trea ted  w ith trad itional analytic approaches, 

and  therefore sophisticated, robust software packages for the approxim ate numerical 

solution of these systems m ust be employed.

An ord inary  differential equation (ODE) is an  equation involving a  function of 

one independent variable and its derivatives. There are two m ain types; initial value



ODEs (IVODEs) and boundary  value ODEs (BVODEs). An IVODE consists of a 

system  of differential equations w ith solution inform ation specified a t one initial point. 

A simple IV OD E would have the  form:

;/'(() = / ( ( , ; / ( ( ) ) ,  ( 1.1)

y{a) =  a ,  (1.2)

where y  and  /  are vectors and a is the initial point and o  is a given constant vector. 

A BV ODE consists of a  system  of differential equations on a given interval w ith

conditions on the  solution a t two or more points. We wish to  find the solution of the

BV ODE on th is interval. A simple and common form for a  two-point BVODE is [1]:

%/'(() =  /(^ , !/(()), (1-3)

g(% /(a),2/(b)) =  0 , (1 .4 )

where y, f ,  g, and  0 are vectors and a and b are known endpoints. E quation (1.3) 

subject to  (1.4) is a  first order system  (which means th a t only first derivatives appear). 

In general, if the  ODE is p th  order, the boundary conditions may involve derivatives 

of the unknown function up to  the  {p — l)s t.

This thesis describes software development and modification associated w ith the 

enhancem ent of th e  M IRKDC [18] software package. This Fortran  77 package is used 

for the num erical solution of systems of first order, nonlinear, BVODEs, w ith sep

ara ted  boundary  conditions. Given a mesh of points which partitions the problem  

interval [a,b], it employs mono-implicit R unge-K utta  m ethods [18] for the  discretiza

tion  of th e  ODEs and m onitors the quality of the numerical solution using defect



control. T he discrete systems are solved by modified Newton iterations and extensive 

use of adaptive mesh refinement is employed, based on equidistribution of the defect.

This thesis work has involved two phases. Phase one is concerned w ith the m odi

fication of the  M IRKD C software package in order to  incorporate a  num ber of perfor

mance enhancem ents including analytic derivative assessment, com putational deriva

tive approxim ation, problem  sensitivity (i.e., conditioning) assessment, and the in

troduction  of an auxiliary global error indicator. In each of these modifications, we 

build upon well established theoretical developments, numerical results, and robust 

software com ponents already available, and the  focus is in the introduction of these 

features into the existing M IRKDC package in a  w ell-structured and well-documented 

m anner. Num erical results to  dem onstrate the im pact of these enhancem ents will be 

presented.

T he second phase exam ines new approaches for control of the  defect. The defect 

of a  numerical solution is the am ount by which th a t solution fails to  satisfy the ODE 

system. For exam ple, suppose th a t u{t) is the approxim ate solution to  (1.3), (1.4). 

T hen the  defect, S{t), is defined as follows:

- / ( ( , ? / ( ( ) ) .

T h a t is, we substitu te  the  approxim ate solution u{t) into the differential equation 

y'i.^) =  / (C y{i)) in place of y{t) and see how well u{t) satisfies the differential equation 

by sub tracting  the  right hand side from the left hand side. The difference is called 

the  defect.

This second phase of th is thesis work involves an investigation of new approaches



for the defect control stra tegy  employed w ithin M IRKDC for the estim ation of the 

m axim um  defect on each subinterval of the mesh which subdivides the problem  in

terval. T he m ain goal is to  try  to  com pute an approxim ate solution so th a t the 

corresponding defect is less th an  some user defined tolerance, over the whole problem  

interval [a,b]. We investigate a new class of continuous solution approxim ations which 

lead to an asymptotically correct estimate of the maximum defect, determ ined by a 

single evaluation of the defect on each subinterval. This is potentially  a significant 

im provem ent over the previous strategy  employed in M IRKDC, which estimated  the  

maximum defect by choosing the largest of several samples of the defect w ithin each 

subinterval.

In [16], it is pointed out th a t, for the design and im plem entation of O DE software 

over the last few decades, there are two frameworks where such software is now widely 

used. One of these frameworks is generally referred to  under the title  of Problem  

Solving Environm ents (PSEs), e.g. MATLAB [32] or M APLE [30]. In PSEs, scientists 

and  engineers are often able to  solve their problem w ithout having much knowledge 

of the underlying num erical algorithm s. This convenience associated w ith the PSE  is 

often offset by a  loss in efficiency w ithin the numerical com putation. The second m ajor 

framework, called G eneral Scientific Com puting (CSC), provides more efficiency, bu t 

there is a  cost to  the user in term s of ease of use. In the CSC environm ent, the user 

is able to access high quality, robust, efficient numerical algorithm s through software 

modules available from various libraries, e.g. IMSL [39], NAG [33], and Netlib [37], 

bu t the user m ust be able to  w rite driver program s in a high level program m ing



language, such as F ortran  or C, in order to  call these modules. The M IRKDC package, 

to  be considered in th is thesis, falls into this class, and therefore, th roughout this 

thesis, one im portan t assessment of the m odifications we undertake will be a  measure 

of their contribution  to  the  overall efficiency of the  com putation, as m easured in term s 

of execution or CPU  tim e and of the  com plexity added to the interface.

Recent efforts, e.g. Sham pine et al. [26], have sought to  bridge the gap between 

these two environm ents by employing an updated  version of the Fortran  program m ing 

language known as F ortran  90/95. In this language, one is able to  dram atically  

simplify the interface to  a  sophisticated software module by employing various new 

language features such as optional param eters, s tructu red  d a ta  objects, and dynam ic 

memory allocation. The user can call such a module using a simple driving program  

tem plate, and generally in teract w ith the m odule in a  fairly simple way, while largely 

enjoying the  significant advantages in overall com putational efficiency associated w ith 

a  CSC environm ent.

This thesis involves m odification of the  M IRKDC software package in order to  

incorporate a num ber of significant perform ance enhancem ents including:

1. Computational derivative approximation  — In the  current version of M IRKDC, 

the user m ust supply several subroutines including fsub , gsub, dfsub, and dgsub. 

The first two subroutines describe the ODEs and boundary conditions respec

tively; the  la tte r  subroutines describe the partia l derivatives of the ODEs and 

boundary  conditions. W hen the ODEs are com plicated, it is usually difficult for 

the user to  supply correct dfsub  and dgsub subroutines. By modifying M IRKDC

6



to  allow it to  provide numerical approxim ations to the partia l derivatives, we 

can avoid asking the  user to  supply the dfsub  and dgsub  routines and can sig

nificantly improve the ease-of-use of the package. (We should note th a t the use 

of num erical derivative approxim ation does add to the overall com putational 

costs.)

2 . Analytic derivative assessment — W hen the ODEs are com plicated, the devel

opm ent of a correct Jacobian subroutine is an error prone process. W hen the 

user does provide the  dfsub  and dgsub routines, the purpose of analytic deriva

tive assessm ent is to  let M IRKDC a ttem p t to  check these routines to  see if they 

correspond to  the partia l derivatives of the  expressions given in the f s u b  and 

gsub  routines. This check is done by com paring the results from the dfsub  and 

dgsub  routines w ith numerically generated partia l derivatives.

3. Problem sensitivity (i.e., conditioning) assessm en t— T he M IRKDC solver a t

tem pts to  com pute a  numerical solution whose defect is less th an  a  user pre

scribed tolerance. It can be shown - see, e.g. [25], th a t the  global error, i.e. the 

difference between the  true  solution and the  approxim ation solution, is bounded 

by the  p roduct of the  defect and the  conditioning constant for the BVODE, 

which gives a m easure of the  sensitivity of the BVODE to  slight changes in the 

problem  definition. W hen the conditioning constant is large, the problem  is ill- 

conditioned and a  small defect will not imply a  small error. In the extrem e case 

when the p roduct of the  conditioning constant and the defect of the com puted 

solution is greater th an  one, the error can be very large and the solution may

7



have no correct digits; in this case the com puted solution is sometimes called a 

pseudosolution. In th is modification to  M IRKDC we added the capability  for 

estim ating the  conditioning constant of the BVODE. This estim ate can be re

tu rned  to  alert the user to  the fact th a t the BVODE is ill-conditioned, implying 

the possibility of a loss of accuracy in the solution, and in the extrem e case, the 

possibility of a pseudosolution.

4. New Runge-Kutta methods — As m entioned previously, the discretization of the 

ODEs is perform ed in M IRKDC using R unge-K utta  methods. In [21] new opti

mal m ono-im plicit R unge-K utta  m ethods w ith interpolants are derived. In this 

thesis work, we added a  new interpolant of order 4 to  M IRKDC and com pared 

the perform ance w ith  the original m ethod.

5. Preliminary auxiliary global error indicator — W hile the prim ary mode for 

M IRKD C is defect control, i.e., the com putation of a  numerical solution whose 

defect satisfies a given tolerance, it m ight be considered useful to  also provide 

a low cost estim ate of the  global error in the final com puted solution. The 

global error is the difference between the approxim ate solution and the  true 

solution. T h a t is, if y{t)  is the true  solution to  (1.3), (1.4) and u{t) is an 

approxim ate solution to  (1.3), (1.4), then  the global error is simply y{t) -  

u{t), the  difference between them . In this modification, once M IRKD C has 

obtained a  final approxim ate solution, we com pute a global error estim ate by 

com puting a  second global solution on a new mesh and then com paring it w ith 

the original final solution. This provides a  high quality global error estim ate bu t



the additional costs are significant. However this approach provides a baseline 

for fu ture work in the development of lower cost global error estim ates.

6 . Defect control improvements  — An investigation of new approaches for the de

fect control strategy  employed in M IRKDC is presented. In the current version 

of M IRKDC, relaxed defect control, in which we sample the defect a t several 

points on each subinterval and then  select the largest of these samples as an 

estim ate of m axim um  defect, is used to m onitor the quality of a numerical so

lution. We have investigated another defect control strategy  called strict defect 

control in this thesis. S trict defect control samples the defect a t one point per 

subinterval using a special interpolant and is guaranteed to  give an asymptoti

cally correct estimate  of maxim um  defect when the  subinterval size is sufficiently 

small. In th is thesis, we derive special in terpolants of orders 4 and 6 , th a t lead 

to  asym ptotically  correct defects.

This thesis is organized as follows. In chapter 2, we review standard  numerical 

m ethods for BVODEs. Some software packages for the numerical solution of the 

BVODEs are also discussed. In chapter 3, we provide all the test problems which 

will be used in th is thesis. C hapter 4 presents all the  modifications to  M IRKDC 

we have considered except th a t involving improvement of the defect control strategy. 

C hapter 5 describes the m odifications we im plem ented for defect control and gives an 

analysis of our experim ental results. C hapter 6 gives our conclusions and suggestions 

for fu ture work.



Chapter 2

R eview  of Standard Techniques

and Software

2.1 In troduction

M ost approaches for the  numerical solution of BVODEs use a  mesh to  partition  the 

problem  interval [a, 6], into several subintervals. The mesh points are usually cho

sen in an  adaptive way to  control some estim ate of the  error. O n each subinterval 

one employs a  num erical m ethod which discretizes the ODEs; the resu ltan t set of 

equations together w ith the  boundary conditions leads to a large system of nonlinear 

equations, which is usually solved using a modified New ton’s m ethod. Some form of 

error estim ate is also obtained through an auxiliary com putation. Once an  approxi

m ate solution and  error estim ate are obtained, the error is assessed to see if it satisfies 

the  given user tolerance. If not, the error d istribution  over the problem interval is
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used to  guide a  mesh redistribution algorithm . Once the new mesh is obtained, the 

above process is repeated.

2.2 N um erical M ethods for B V O D E s

2.2.1 S h o o tin g /M u ltip le  S h ootin g

One of the  m ost popular approaches for the numerical solution of BVODEs is the 

simple shooting m ethod. It is a  simple, intuitive m ethod th a t builds on the  IVODE 

approach; shooting is a  straightforw ard extension of initial value techniques. Essen

tially, one shoots trajectories of the  same ordinary differential equation, w ith esti

m ated initial values employed a t the  left end of the  problem  interval, until one hits 

th e  given boundary  values a t the  right end of the  problem  interval.

Consider the equation (1.3); we denote by y{x)  =  y (x \c ) ,  the vector solution of 

th e  ODE which satisfies the  initial (or left end point) condition y{a\ c) =  c. We can 

then  w rite h{c) =  g {y{a\ c), y(b; c)) =  g(c, y{b; c)) =  0 , from the  boundary conditions. 

This gives a  set of nonlinear equations for the unknown initial conditions c.

The advantages of th is approach are simplicity and  th e  ability to make use of 

the  excellent initial value ODE software [3]. Difficulties in shooting are th a t the 

conditioning of each shooting step  depends on the conditioning of the IVODE, not 

on the conditioning of the  BVODE. It is well known th a t simple shooting is unstable,

i.e., errors can grow in an  unbounded fashion [1].

An im provem ent on simple shooting is called m ultiple shooting. In this approach,

11



one uses a  set of mesh points or shooting points to  partition  the problem interval, 

and then  on each subinterval one sets up and solves a local initial value problem 

w ith an estim ated initial condition employed a t the left end of each subinterval. This 

gives a  larger set of unknowns, bu t the interval over which each IVODEs needs to 

be solved is smaller, m aking each of the  local IVODEs easier to  solve. Requiring the 

local initial value solutions to m atch a t the  internal mesh points and to  satisfy the 

boundary conditions leads to  a  large system  of nonlinear equations. The shooting 

points are chosen according to  the  difficulty of the local initial value problem, so th a t 

a  problem  of com parable difficulty is solved on each subinterval. M ultiple shooting 

can be ineffective for singularly pertu rbed  problem s because of the possible presence 

of rapidly increasing solution modes th a t can not be dealt w ith using an  initial value 

solver.

2.2 .2  C o lloca tion

A nother popular technique for solving BVODEs is collocation. This approach begins 

by selecting a  set of basis functions, usually piecewise polynomials, defined on a  mesh 

of points which partition  the  problem  interval. Continuity of the basis functions a t 

the mesh points is usually imposed. The collocation approach requires the solution 

approxim ation to  satisfy the differential equation a t a set of collocation points defined 

over the problem  interval. The resu ltan t equations, called collocation conditions, 

together w ith  the  continuity  and boundary  conditions, give a large system of nonlinear 

equations. Im portan t aspects of this approach are the choice of appropria te basis
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functions and collocation points. These have been discussed in many papers, see, 

e.g., [4],[13]. One s tandard  choice is to  use B-splines [6] for the basis functions and 

Gauss points for the  collocation points.

2.2 .3  F in ite  D ifference M eth od s

In the tex t book [1], the basic steps for the use of a finite difference m ethod for the 

numerical solution of a BVODE are as follows;

1. For a  given mesh tt: a = Xi < X2  < ■ ■ ■ < x n  < x^+ i  =  b, define approxim ate 

solution values yj % y{xj).

2. Form a  set of equations for the approxim ate solution values by replacing deriva

tives w ith finite difference quotients in the differential equations and boundary 

conditions, e.g. y'{xj)  %

3. Solve th is set of equations together w ith the  boundary conditions for the ap

proxim ate solution values.

2.2 .4  R u n g e-K u tta  Schem es

Explicit R unge-K utta  (ERK ) schemes were originally proposed for the numerical 

solution of IV ODEs by Runge and then  were further developed by Heun and K u tta  

- see, e.g., [7]. Im plicit R unge-K utta  m ethods were la ter recognized as appropria te  

for stiff initial value differential equations [7]. R unge-K utta schemes have also been 

considered for use in the  numerical solution of BVODEs for some time.
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Again assum ing a mesh and  discrete approxim ation solution values as in section 

2.2.3, on each subinterval we replace the  ODE, y'{t) = f { t ,  y{t)),  using a R unge-K utta  

scheme which discretizes the ODE a t U, the general form being

Vi+i — Vi 
h

S  S

— or yi-fi — Vi h b^Kp
r = l  r = l

where Kr =  /  -I- C r/i, %/i +  , f '  =  1,-.-, s, h =  U+i -  U, and b r , C r

and ürj are the coefficients of the  R unge-K utta  scheme. For example, the  classical 

fourth-order explicit R unge-K utta  m ethod is expressed as follows [7],

K \  =  f{ t i ,  K 2  = f{ t i  +  - h ,  7/i + - h K i ) ,

A'a = f { U +  2 ) Vi +  ^ 4  = f{U + h, 7/i H- hK^),

and we have s ~  =  64 — ^,62 — 63 — 3ÎC4 =  0 ,C2 ~  C3 =  2’0  ^  l,U ii ™

« 1 2  — « 1 3  =  « 1 4  =  0 ,0 2 1  — | , « 2 2  =  «23  =  «24  =  0 ,  O32  =  | , « 3 1  =  « 3 3  =  «34  —

0,043 =  1 , 0 4 1  =  « 4 2  — « 4 4  =  0. These m ethods represent generalizations of the  finite 

difference m ethods and for y'{t) =  f { t , y { t ) )  also include the  collocation schemes.

More recent work [11],[17],[21] has included studies of a  subclass of the implicit 

RK  schemes called m ono-im plicit R unge-K utta  (M IRK) schemes [18], which have 

been found to  be appropria te  for BVODEs. The scheme is defined by the num ber 

of stages, s, the coefficients, [ur]r=i [xrjYjZl’̂^=v aJid the weights [6^]^=!. The 

abscissa, [cr]^^j, are defined by the  condition th a t Cr = Vr + Zr). We also define 

the  following no ta tion  to  be used la ter in this thesis:

Ç = (c i ,C 2, - " , Q ) ^ ,  21= ( f i , ï ;2
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and

b =  (61, 62, • ■ ■,bsŸ

0 0 • ■ ■

3̂ 21 0 ..............

0

0

0

 ̂ 3/si 3^2 ■ ■ ■ 3g g_i 0 ^

T he coefficients of a M IRK scheme are usually presented in a tab leau  [7] of the form 

given in Table 2.1. T he general form of the M IRK scheme, which relates the solution

approxim ation a t U to  th a t a t fj+i, is

Ui+i — ?/i T  6, ^ ] bfKj- (2 . 1)
r=l

where
r—1

Kr =  f \  t i +  Crh, (1 -  Vr)yi  +  Ur2/i+l +  ^ r jK j
1=1

The application of the  R unge-K utta  m ethod on each subinterval together w ith the 

boundary  conditions, leads to  a  large system  of nonlinear equations. In the survey 

paper [10], the  use of im plicit R unge-K utta  m ethods for singularly pertu rbed  problem s 

is discussed, and it is shown th a t some classes of implicit R unge-K utta  formulae are 

bo th  stable and accurate for such problems.
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Table 2.1: Tableau of an s-stage MIRK scheme

2.2.5  Sum m ary

1. The simple shooting m ethod is straightforw ard to  im plem ent and it is good 

for relatively easy problem s th a t m ay need to  be solved many tim es. B ut it 

is unstab le and the  improved version, m ultiple shooting, can be ineffective for 

singularly p ertu rbed  problems.

2. By using basis functions which are high-degree splines (piecewise polynom ials) 

the collocation approach can be superior to  the finite difference approach [24].

3. The a ttrac tio n  of the  finite difference scheme approach is its simplicity. The 

disadvantage of th is approach is th a t th e  one step  m ethods have only second- 

order accuracy a t most. This is not very efficient for m any applications. One 

approach to  extend the  finite difference m ethods is to  define families of higher 

order one-step m ethods such as im plicit R unge-K utta  schemes. A nother exten-
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sion is to  define higher order finite difference schemes over several subintervals.

2.3 N um erical Software

Since the  underlying m athem atical theory for initial value problems is much be tte r 

understood th an  for the boundary value case, and since the former problem class is 

much sm aller th a n  the la tter, the s ta te  of software development for IVODEs is well 

ahead of th a t for BVODEs. For IVODEs, software based on m ulti-step and Runge- 

K u tta  m ethods has been available for over 40 years. Thus, many IVODEs can be 

solved by existing codes w ith reasonable efficiency and reliability. On the other hand, 

the codes for BVODEs, although in wide use, are still less well developed.

2.3.1 S h o o tin g  Softw are

From our previous discussion, we know th a t the simple shooting m ethod is based 

on an IVOD E solver and  a  nonlinear equation solver. Thus, one couples a  program  

module for solving nonlinear equations w ith  a module th a t solves the corresponding 

IVODEs. Exam ples of IVODE solvers include RK SU ITE [36] and CVODE [28] while 

an  exam ple of a  nonlinear equation solver is KINSOL [29].

M ultiple shooting has been im plem ented in m any packages, some of which are 

p a rt of s tandard  libraries for numerical software. For example, MUSL [38] based on 

the  m ultiple shooting m ethod is designed for nonstiff linear BVODEs, while MUSN 

[38] also based on the m ultiple shooting m ethod, is designed for nonstiff nonlinear 

BVODEs.

17



2.3 .2  C O L SY S - Softw are B ased  on C ollocation

COLSYS (CO Llocation for SYStems) [2] and COLNEW  (a later version) [5] are de

signed to  solve mixed order systems of nonlinear BVODEs. The m ethod of spline 

collocation a t G aussian points is im plem ented using a B-spline basis in COLSYS and 

a m onom ial spline basis in COLNEW . A dam ped New ton’s m ethod is employed for 

the  nonlinear iteration. The mesh refinement procedure in COLSYS autom atically  

adap ts the  subinterval d istribu tion  to  accom m odate the solution behaviour based on 

a global error estim ate for the continuous approxim ation. A pproxim ate solutions are 

com puted on a  sequence of autom atically  selected meshes until a set of user-specified 

tolerances is satisfied.

2 .3 .3  T W P B V P  - Softw are B ased  on D eferred  C orrections

A-stable, sym m etric mono-implicit R unge-K utta  (MIRK) schemes have been em

ployed in a  software package for the  numerical solution of BVODEs, called T W P B V P  

[12]. T W P B V P  is designed for the  numerical solution of first order systems of nonlin

ear BVODEs. T W P B V P  uses a  deferred correction m ethod based on mono-implicit 

R unge-K utta  form ulas of orders 4, 6 and 8 . The deferred correction approach involves 

first com puting a 4 th  order solution approxim ation using the 4 th  order form ula and 

then  using the 6th  order formula to  generate a ’’correction” to  the 4th order solution 

to  make it 6th  order. One then  repeats this process using the 8th  order formula to 

correct the  6th  order solution to  make it 8th  order. The code controls a  global error 

estim ate of the solution approxim ations a t the mesh points. Its original version did
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not include an option for a continuous solution approxim ation. However more recent 

work [9] has provided T W P B V P  w ith continuous solution approxim ations for graph

ical purposes only, i.e., a  lower order in terpolant is employed and no a ttem p t is made 

to  control the error in the continuous solution approxim ation.

2.3 .4  M IR K D C  - Softw are B ased  on D efect C ontrol

M IRK software based on defect control called M IRKDC employs continuous M IRK 

(CM IRK) schemes to  provide continuous approxim ate solutions.

The basic algorithm  employed in M IRKDC uses M IRK formulas to discretize the 

O D E system; the  resulting equations, together w ith the boundary conditions, give a 

nonlinear system  for the solution approxim ations a t the mesh points. Once this so

lution is obtained, a  CM IRK scheme is used to  provide a solution approxim ation 

over each subinterval for use in the  com putation  of defect estim ates, mesh redistri

bution, and  initial guesses for subsequent Newton iterates. For the discrete schemes, 

Enright and M uir [18] employ sym m etric M IRK schemes of orders two, four, and six. 

Because it is efficient to  reuse the  stages from the  M IRK scheme w ithin the CM IRK 

scheme, they  em bedded the  M IRK scheme w ithin the CM IRK scheme. In M IRKDC, 

to  solve the  nonlinear system, a  com bination of dam ped Newton iterations and fixed 

Jacobian iterations, w ith a scheme for switching between the two, is used. The Ja- 

cobian m atrices arising from the nonlinear system  have a  special sparsity structu re  

called alm ost block diagonal, and a  software package, called COLROW  [14], designed 

to  handle this kind of structu re , is employed.
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Both the  term ination  criterion for the overall com putation and the mesh selection 

algorithm  require an  estim ate of the m aximum value of the defect on each subinterval. 

In M IRKDC, th is is estim ated by sam pling the defect a t several points w ithin each 

subinterval. T he M IRKD C algorithm  controls defect estim ates ra ther th an  global 

error estim ates. The estim ate of the m aximum defect is required to  satisfy a  user 

provided tolerance.

2.3.5 C om parison

1. An advantage of the  M IRK formulas over the collocation formulas is th a t, be

cause the  m ethods are being used in the BVODE context, the calculations on 

each subinterval are explicit and therefore can be im plem ented more efficiently.

2. For the  M IRK D C software the m ajor new aspects are the  use of continuous 

M IRK  formulas and  the  use of defect estim ation ra ther th an  global error esti

m ation  for accuracy control and mesh selection.

3. T he CO LSY S/C O LN EW  software has proven to  be com petitive w ith  the  other 

robust software for solving BVODEs and to  be particularly  effective for difficult 

problems.
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Chapter 3

Test Problem s

3.1 Test Problem s

We will make use of seven test problem s in this thesis. Unless otherwise stated , no 

closed form solution is available.

The first te st problem  (T P l)  is a  nonlinear fluid flow problem  from [1], page 23, 

Exam ple 1.20:

w ith  boundary conditions

/(O ) =  / ( ! )  =  /'(O ) =  / ' ( I )  =  0 , p (0) =  - 1, p ( l)  =  1; e is a param eter.

The second problem  (TP2) is a  shock wave problem  from [1], page 21, Exam ple
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1.17:

=  0, 

(3.2)

where A{t) = 1 + t^, 'y =  0.04, and e is a  param eter. T he boundary conditions are: 

u(0) =  0.9129, u(l) =  0.3750.

The th ird  problem  (TP3) is a  fluid flow problem from [1], page 22, Exam ple 1.18:

r ( ( ) = f - 2 m r ( t ) +  ( / ( ( ) ) ' - ( g ( ( ) ) ' ,  m  =  2 / % ( t ) - 2 / ( % ' ( ( ) ,  (3.3)

w ith /(O ) =  /'(O ) =  0, ^(0) =  1, / '(o o )  =  0, g{oo) =  7 ; 7 is a param eter.

The fourth  problem  (TP4) is from [31], test problem 17:

-3 e y (t)  
(6 +  (2)2 (3.4)

w ith  ?/(0.1) =  —7/( —0.1) =  ; e is a  param eter. The true solution is y{t) =  ^.

The fifth problem  (TP5) is from [31], te st problem 31:

-Q'{t) =  (%/(() — 1) cos {6{t)) — M {t)  [sec {9{t)) + eQ{t) tan  (6>(t))], (3.5)

w ith  2/(0) =  2/ ( 1) =  0 , M (0) =  M ( l)  =  0.
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The six th  problem  (T P 6) is from [31], test problem  32:

=  - ! /( ( )» " '(* )) , (3.6)

w ith  y(0) =  y '(0 ) =  0 , y ( l)  =  1, y '( l)  =  0 ; E is a param eter.

The seventh problem  (TP7) is from [31], test problem 20:

— 1, (3-7)

w ith y (0) =  1 +  e ln (co sh (~°^ '̂^ )̂), y ( l)  — 1 +  e ln (c o s h (2 ^ ) ) ;  e is a param eter. The 

true  solution is y (t) =  1 +  eln (cosh(*~°̂ ^—)).

3.2 C om puter /  Com piler Inform ation

T he com puter which we used for CPU tim e testing has a 296.0 MHz SPARC-based 

CPU; the  floating-point controller is Sun-4. T he F ortran  compiler is Sun W orkShop 

6 , update  2, FO R TRA N  77, 5.3. The com puter which we used to  do the o ther 

experim ents is an  H P ProL iant DL380G2 w ith two 1.40GHz Pentium  HI processors. 

The compiler is gnu F ortran  (gcc) 3.3.3.
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Chapter 4

M odification of M IRKDC (I)

Software M odifications Based on

Existing M odules and Formulas

In this chapter we describe m odifications to  the M IRKDC package which are based 

on previously developed software modules and formulas and involve straightforw ard 

im plem entations w ithin the  M IRKD C package. The emphasis for this portion  of the 

thesis work is on the  software engineering effort associated w ith modifying M IRKDC 

to  add the  new com ponent, tak ing  care to  pay a tten tion  to  the  user interface, mem

ory m anagem ent issues, docum entation, etc. As well, we have focused on analyzing 

the im pact of each m odification, especially in term s of its contribution to  the over

all execution tim e of the  M IRKD C package. We consider modifications associated 

w ith  com putational derivative approxim ation, analytic derivative assessment, prob
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lem sensitivity assessment, new R unge-K utta m ethods, and a prelim inary global error 

estim ate.

4.1 C om putational D erivative A pproxim ation

4.1.1  In trod u ction

For the O D E system, y'{t) =  f { t , y { t ) ) ,  M IRKDC requires the Jacobian (m atrix) of 

partia l derivatives of / ( t ,  y{t)).  Therefore, in addition to  providing a subroutine which 

com putes f { t , y { t ) ) ,  the  user also has to  provide a  subroutine which com putes the 

Jacobian m atrix . A sim ilar situation  holds for the boundary condition subroutines. 

W hen f { t , y { t ) )  is com plicated, the development of a correct Jacobian subroutine is 

an error prone process for the  user. However, the Jacobian can be approxim ated. 

One possibility is to  use divided differencing to  approxim ate the com ponents of the 

Jacobian m atrix. A basic formula for the  approxim ation of the derivative of a given 

function, f { x ) ,  is the simple forward divided difference formula which gives f ' { x )  % 

{ f { x  + h) — f { x ) ) / h ,  where h is some carefully chosen increm ent, e.g., h  % y/eps,  

where eps is m achine epsilon.

4.1 .2  D escrip tion  o f  th e  Softw are M odification

First, we chose an  existing F ortran  subroutine f d j a c l  from th e  M INPACK software 

library (available a t netlib  [37]) which calculates a finite difference approxim ation to 

the  Jacobian m atrix , evaluated a t y{t),  for a  given vector function, f{y{ t) ) ,  which
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can be evaluated th rough  a  subroutine call. Since the param eter list for the function 

call in f d j a c l  is different from th a t of the M IRKDC function, f sub ,  which evaluates 

f { t , y { t ) ) ,  we modified f d j a c l ,  to  employ the f s u b  param eter list, calling the new 

subroutine f d j a c l  f sub .  To the param eter list for fd ja c l_ f su b ,  we also added the 

independent variable t  in order to be able to  com pute the approxim ate Jacobian of a 

non-autonom ous O DE system , i.e., a system  of the form y'{t) = f { t ,  y{t))  ra ther th an  

y f t )  — f{y{ t) ) .  This does not add ex tra  derivative com putations because M IRKDC 

does not need the  derivative of /  w ith respect to  t. We also w rote a new subroutine 

called d f s u b _ d i f f ,  which can replace the call to  the user defined dfsub  which pro

vides the analytic Jacobian of f { t , y { t ) ) .  The d f s u b _ d i f f  subroutine com putes the 

approxim ate Jacobian by calling the  f d j a c l _ f s u b  routine, mentioned above. We also 

modified the  m ain M IRK D C subroutine by adding the  param eter approx-jac,  which 

the user should set to  be zero if dfsub  is provided, and otherwise, set to  be one. We 

have also developed sim ilar subroutines called f d j a c l  gsub and dgsub d i f f , which 

com pute th e  approxim ate Jacobian m atrix  for the  boundary conditions.

4.1 .3  R esu lts  and D iscu ssion

For the num erical experim ents we ran  bo th  versions of M IRKDC on several of the test 

problems, as indicated below. A fter m aking the above modifications, we did some 

testing of the  d f s u b j d i f f  and d g s u b j i i f  f  routines.

We now present and discuss numerical results for five test problems. In M IRKDC 

there is a param eter nam ed ’m ethod’ which stands for the m ethod order. We chose
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m ethod =  4, tolerance =  10“ ®, the  initial num ber of subintervals, Nsub =  10, e — 

0.04 for T P l ,  T P 4  and T P5, e =  1.4 for TP2; and 7 =  1.4 for TP3. The results given 

in Table 4.1 reveal th a t the differences in the entries of the approxim ate Jacobians 

com puted by d f s u b _ d i f f  and d g s u b . d i f f  range from 10“® to  10“ ®, except the  linear 

te st problem  TP4. These differences are not significant; the differences in the resulting 

num erical solutions to  the  BVODEs are only about 10“ ^ (̂not shown in th is thesis.)

Becasue the execution tim e for the  dgsub d i f  f  subroutine is too small to  be tim ed, 

we focused only on tim ing d f s u b _ d i f f .  We chose both  a  non-autonom ous ODE system  

(TP2) and an autonom ous ODE system  (T P l)  for our test problems. Tim ing the  cost 

of calling d f s u b _ d i f f  and  the overall cost for the main M IRKDC subroutine on T P l  

and TP2 were done separately. Results are given in Table 4.2 and Table 4.3. We 

chose m ethod =  4, tolerance =  10“ ®, num ber of subintervals, Nsub =  10, and e =

0.04 for T P l ,  e =  1.4 for TP2. For T P l ,  the call to  d f s u b - d i f f  is about 4 tim es 

more th an  the call to  dfsub  bu t the  overall execution cost for M IRKDC when divided 

difference Jacobians are used is only about 5 percent more th an  M IRKDC when an 

analytic Jacobian is provided. For TP2, the call to  d f s u b - d i f f  is about 3 tim es more 

th a n  the call to  dfsub  and the divided difference approxim ation of the Jacobian adds 

abou t 4 percent to  the overall cost.
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T P l T P2 TP3 T P4 T P5

m ax difference 5.96 X 10-^ 1.23 X 10-G 2.72 X 10-^ 0 2.38 X 10-'^

Table 4.1: Absolute maximum difference between analytic and approximate Jacobian on

T P l - TP5, method =  4, Nsub =  10.

CPU  tim e T P l TP2

dfsub 0.44 X 10-^ 0.22 X 10-5

d f s u b _ d i f f 1.97 X 10-G 0.62 X 10-5

Table 4.2: CPU time for dfsub and dfsub-d i f f  for T P l and TP2; method =  4, toi =  10 

Nsub= 10, e =  0.04 for T P l, e =  1.4 for TP2; time in seconds.

T P l T P 2

£ 0.004 0.004 0.0004 0.04 0.04 0.04

Toi 10-5 10-^ 10“ ® 10-5 10“ ® 10- “

M I R K D C  w i th  dfsub 0.28 1.22 2.98 0.06 0.24 0.40

M I R K D C  w i th  d f s u b _ d i f f 0.29 1.27 3.08 0.06 0.24 0.46

Table 4.3: CPU time for overall MIRKDC computation with dfsub A i  f  f  and dfsub on 

T P l and TP2; time in seconds.

28



4.2 A nalytic  D erivative A ssessm ent

4.2 .1  In trod u ction

For the ODE system , y'{t) =  / ( ( ,  y{t)),  we recall from the previous section th a t one of 

the  options available to  the user of the M IRKDC package is to  provide a subroutine 

which gives the Jacobian  of partia l derivatives of / ( f ,  y{t)).  However it is com m on for 

users to  make m istakes in the development of this subroutine. The idea we discuss 

in this section is th a t, prior to  using the Jacobian subroutine provided by the  user, 

M IRKDC should a ttem p t to  check if th is subroutine is correct or not. O ur basic 

approach is to  com pute finite difference approxim ations to  the Jacobian (based on 

evaluations of / ( f ,  y(t)) a t the  points of the initial mesh, using an initial solution 

approxim ation, and  then  com pare these w ith evaluations of the analytic Jacobian 

provided by the  user.

4 .2 .2  D escr ip tio n  o f Softw are M od ification

We wrote a  new subroutine, df subjcheck,  which com pares analytic and approxim ate 

Jacobian values. Its purpose is to  com pute the maximum difference between the 

analytic Jacobian com puted by the  user-supplied subroutine dfsub  and the divided 

difference Jacobian com puted by the  M IRKDC subroutine d f s u b Æ f f . If the m ax

imum relative difference is g reater th an  1%, then  the dfsub^check  routine gives an 

ou tp u t message which warns the user th a t the user-supplied subroutine, dfsub,  may 

not be correct. T he subroutine also will identify which entries of the Jacobian may
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have errors. The final action of this subroutine is to  set a  fiag which causes M IRKDC 

to  te rm inate  when an incorrect Jacobian has been encountered. We also developed 

a similar subroutine called dgsub^check, which checks the Jacobian m atrix  generated 

by the user-supplied subroutine dgsub for the boundary conditions.

We modified the m ain M IRKDC subroutine to  add calls to the dfsub-check  

and dgsub-check subroutine. If approx-jac — 0 (which implies th a t the user will 

provide dfsub  and  dgsub),  then  the m ain M IRKDC subroutine autom atically  calls 

dfsubjsheck  and  dgsubjzheck  to  perform  a  check on dfsub  and dgsub.

4 .2 .3  R esu lts  and D iscussion

We employed te st problem  T P l  w ith m ethod =  4, tolerance =  10^^, initial Nsub =  

10, e =  0.04 and approx- jac =  0. We introduced several deliberate errors w ithin 

th e  dfsub  and dgsub  routines. Test results (not included in this thesis) show th a t 

dfsub-check  and dgsub-check are able to  detect typical errors in dfsub  and dgsub 

routines. If there are errors in dfsub  a n d /o r dgsub, the dfsub-check  and dgsub-check  

routines will indicate which com ponents of the  user defined subroutine may contain 

errors by o u tp u ttin g  the row num ber and column num ber for each com ponent.
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4.3 P roblem  S en sitiv ity  (C onditioning) A ssessm ent

4.3 .1  In trod u ction

As sta ted  earlier, M IRKD C controls the  defect or residual of the numerical solution. 

This is the  am ount by which the  numerical solution fails to  satisfy the ODEs and 

boundary  conditions. An advantage of considering the  defect is th a t it allows one to  

adopt a  backward error analysis viewpoint for the error in the numerical approxim a

tion. W hen com putation  and control of the defect are coupled w ith an estim ate of the 

sensitivity or conditioning of the  BVODE, as we describe in this section, a backward 

error analysis provides us three kinds of inform ation:

1. the knowledge th a t we have a  numerical solution whose com puted defect is less 

th a n  the given user tolerance,

2. an indication of the  sensitivity of the problem  to  small changes in its definition 

(i.e., an estim ate of the m agnitude of the conditioning constant).

3. an upper bound on the  m agnitude of the global error (equal to the product of 

the  m axim um  defect and the  conditioning constant).

T he second of these is particu larly  im portan t as it gives the application expert, who 

is using the  M IRK D C software, an indication of the sensitivity of the solution to  

the  accuracy of th e  application dependent param eters present in the m athem atical 

model. T h a t is, based on the size of the conditioning constant estim ate, the user can 

tell how much small changes in these param eters will affect the solution.
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If u{t) is the num erical solution to (1.3), (1.4), then  S{t), the defect of u{t)  w ith 

respect to  the  ODEs, is given by

(^(f) =  K'(() -  /( ( ,ir ( ( ) ) ,

and the defects, and Sb, of u{a) and u{b) w ith respect to  the boundary conditions, 

are given by

The above equations can be rew ritten  as

=  +  (4-1)

and

ga{u[a)) — Sa = 0, gb{u[b)) — (5(, =  0. (4.2)

Equations (4.1) and  (4.2) are im portan t because they  show us th a t u{t), the  numerical  

solution of (1.3), (1.4), is the  exacisolution to  the  ’’nearby” problem  (4.1), (4.2). This 

pertu rbed  problem  differs from the original problem by the am ounts 5{t), 5a, and 5b, 

which are usually small; in the  case of M IRKDC these quantities are required to  be 

less th an  the  user tolerance.

However, even when 5{t), 5a, and 5b are small, the size of the  difference between 

u{t)  and th e  true  solution y{t),  i.e., the global error, depends on the conditioning of the 

problem. A well-conditioned problem  can be described as follows: if there is a  small 

change in / ,  ga, or gb arising in the  BVODE problem  definition, y'{t) =  f ( t , y { t ) ) ,  

ga{y{o)) =  0 , gb{y{b)) =  0 , then  it will produce only a small change in the solution y{t).  

Otherwise, it is called an ill-conditioned problem. Thus, if a stable, accurate numerical
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m ethod is applied to  solve a  well-conditioned BVODE, the numerical solution will be 

accurate; i.e., the  difference between the numerical solution and the true solution will 

be small. The conditioning of a  BVODE is characterized in term s of a  conditioning 

constant.

We consider th is in more detail; the following is based on [1] and [25]. Let us 

consider the  linear BVODE,

?/'(() =  v4(()%/(t) +  g(t), a < ( < 6 ,  ga?/(a) +  B by(b)=^ , (4.3)

w ith sm ooth coefficients A{t)  G q{t) G R^,  y{t) G jR” , and j3 G E ", Ba,Bb G

j[^nxn Under certain  assum ptions, the solution can be represented as [[1], pg. 111- 

112 ],

y{t) = Y{t)Q~'^P + [  G{t ,z )q{z)dz,  (4.4)
Ja

where Y {t) is a  fundam ental solution defined by

y'(t) = A(()y((), o < ( < 6, y(o) =

Q  =  B a Y  (a) -j- B b Y  (b) , and  G(t, z)  is the n x n  G reen’s function [[1], pg. 94-95], given 

by

0 ( ( ) B a $ ( a ) $ - X z ) ,  z  <  (, 

- $ ( ( ) g 6 0 ( 6 ) $ - X z ) ,  z  >  ,̂

where $ ( t)  =  Y(t)Q~^.

Let u(t)  be the  num erical solution to  (4.3). In this case, the defects S(t) and Sab 

are given by

S(t) = u'(t)  -  (A(t)u(t)  +  q(t))
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and

ôab =  B a u {a ) + Bbu{b) -  13.

If we rew rite these two equations, we observe th a t the approxim ate solution u{t) 

satisfies

u'(t) = A{t )u(t)  + q{t) + 0(t), Bau{a) + Btu{b) = P + Sab- (4.5)

T h a t is u(t)  is the exact solution to (4-5). Of course y(t)  satisfies

?/'(() -  +  g(t), -  /), (4.6)

and we have seen th a t  y{t)  is given by expression (4.4). Since u{t) is the exact solution

of equation (4.5), we can also use (4.4) to  write

ii(t) =  y(()Q -X /) +  <̂o6) +  r % z ) ( g ( z )  +6(z))dz. (4.7)
Ja

Therefore, from (4.4) and  (4.7) we have

u{t)  -  y{t) =  Y{t)Q~'^ôab +  [  G{t, z)6{z)dz.  (4.8)
Ja

Taking || • ||oo norm s on each side of equation (4.8) and using s tandard  norm  inequal

ities, we get

lk (()  -  !/(()||oo =  %  +  /  G((, z )6(z)dz||ooû<t<o J d

-  /  l l % z ) | | « , | | 6 ( z ) | | o o d z

-  /  ||G ((,z)||oodza<t<o Ja

-  l l < ^ ( ^ ) l l o o ,  l l < ^ a 6 | | o o )  ^ l | y ( ( ) 0 ' ^ | | o o  +  ^  | | G ( t ,  z ) | | o o d z j
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=  K ■ m ax ( m ax ||5(i)||oo, Ĥ abllc
\ a < t < b

where

K =  m ax ( /  \\G{t,z)\\oodz + \\Y{t)Q
a < t < b  y J a

Thus e{t) = u{t) — y{t) satisfies

(4.9)

max |je ( t) |U  <  a  ■ max max ||(5(i)|U , I l i i lU  ) ■ (4.10)
a < t < b  \ a < t < b  /

Equation (4.10) says th a t the  error is bounded by the conditioning constant, /t, times 

the m axim um  of the  defects of the ODE and the boundary condition. A given BVODE 

is well-conditioned if k is of m oderate size.

W hile (4.9) does give us an expression for the conditioning constant, we need a

more practical way of estim atingbe. From [[1], pg. 202], let

/  \
G{ti , t2)  G{ti , tN+i)  y { t i ) Q  ^

M~'^ =  : :

^G{tN+l , t2 )  ■■■ G{tN+l, tN+l)  Y{tN+i)Q~^ J

where is a  mesh of V  +  1 points which partitions the  problem interval [a,b]

(w ith ti = a and tjv+i =  b). W hen a  R unge-K utta  m ethod is used to  discretize 

the linear ODE system  (4.3), the  resu ltan t equations, together w ith the boundary

conditions, form a  linear system  w ith coefficient m atrix

/
S \  R i

\

%

A  =

S n  Rj\f

Ba Bu
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where Sj,  R j  are n x n  m atrices. Also as in [[l],pg- 202], let D  be the block diagonal 

m atrix  given by

D  =

\

/

Define hi =  tj+i — U and h =  m ax^^ hi. Then Theorem  5.38 of [1] sta tes th a t

N

| |M - ‘D |U  =  j^max _ I E  +  0 (fc)j .

Assuming sufficiently small h  and approxim ating the sum by an integral, we have 

||M “ ^D||oo «  max^ ^ ||T (t)(5 “ |̂|oo +  ^  ||G ((,z)||oodzj .

Finally, Theorem  5.38 of [1] also sta tes th a t for a  sufficiently fine mesh, ||M “ ^D||oo 

||A “ ^||oo. This gives

- i i max
a<t<b

and we note th a t the  right hand side of th is equation is k . Thus, we have ||A “ |̂|oo ~  K.

The m atrix  A  arises in the com putation  of the  numerical solution; we need to  setup 

and  solve linear system s having A as the  coefficient m atrix, and during th is solution 

process it is possible to  estim ate ||A~^||oo, as we describe in the next subsection. The 

algorithm  described in [25] also takes into account th a t the error and the  defect are 

in fact scaled, b u t we do not include these details here.
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4.3 .2  D escr ip tio n  o f th e  Softw are M odification

T he original M IRK D C used COLROW  [14] for the  linear equations which arise in the 

com putation. In the  new version of M IRKDC, we employ a slightly updated  version 

of the COLRO W  [19] subroutine, and also a  modification of the subroutine BSPCND  

[20] called BSPCND M AX  [22]. The new COLROW  has a param eter called ’jo b ’ which 

can be used to  specify which of A x  =  6 or A ^ x  =  6 is to be solved. BSPCND  uses 

th is feature to  com pute an estim ate of the condition num ber (cond{A)  =  ||v4||||v4''^||) 

in the 1-norm. BSPCNDM AX is a  modification of this which uses the infinity or max 

norm.

In the  BSPCND M AX  routine, ||A||oo is com puted by calling the ABDNRM M AX 

[19] routine. Then, a  factorization of A is perform ed using the subroutine CRD CM P 

[19] from COLROW , which decomposes the m atrix  A using modified a lte rna te  row 

and column elim ination w ith partia l pivoting. Then, an estim ate of ||A “ |̂|oo is ob

tained by using th e  D O N EST [19] and CRSLVE [19] subroutines. The D O N EST 

subroutine estim ates the  norm  of a m atrix. CRSLVE will solve a linear system  once 

A is decomposed. We modified BSPCNDM AX so th a t it does not com pute ||A||oo 

and  cond(A) =  HAIIoollA^^ljoo bu t ra ther only com putes and returns an  estim ate of 

||^~^||oo) since th is is all th a t is needed for the  estim ate of k , as explained in the 

previous section.

We added a  new param eter, called cond^check,  to  the param eter list of M IRKDC. 

If cond-check =  0, M IRKDC will not com pute the  conditioning constant estim ate. If 

cond-check =  1, M IRKD C will com pute an estim ate of k .
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C PU  Time N s u b  =  100 N sub  =  500 N s u b  = 1000

calling C O L R O W 0.02999 0.149999 0.319999

calling B S P C N D M A X  and C R S L V E 0.0499991 0.259999 0.529999

Table 4.4: Execution times for T P I for COLROW and BSPCNDMAX/CRSLVE.

CPU  Time T P l T P 3 T P 4

without  K es t imate 0.10 0.04 0.01

w ith  K es t imate 0.13 0.07 0.01

Table 4.5: Execution times for overall MIRKDC computation with and without condition

ing constant estimate for T P l, TP3, and TP4, method =  4, toi =  10“ ®, e =  0.04, 7 =  1.4, 

initial Nsub =  2.

4.3 .3  R esu lts  and D iscu ssion

Using T P l ,  we did some tests  of the  CPU  tim e for calls to  the BSPCNDM AX, 

CRSLVE, and COLRO W  subroutines. We chose m ethod =  4, tolerance =  10“ ® and 

e =  0.04, initial Nsub =  100,500, and 1000. We also did tests to  measure the  CPU  tim e 

for the overall execution of M IRKD C on T P l ,  T P 3  and TP4, using the conditioning 

constant estim ation option.

The te s t results are shown in Table 4.4 and Table 4.5. From Table 4.4, we see th a t 

the  CPU  tim e for calling BSPCNDM AX and CRSLVE together is approxim ately 1.5 

to  2 times more th an  th a t of calling COLROW  alone. Table 4.5 shows th a t for T P 4  

there is no additional cost for the  k estim ate, for T P l  there is about a 30% cost, and
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for T P3 the  cost is abou t 75%.

In the  new version of M IRKDC we com pute an  estim ate of | | ^ “ |̂|oo whenever we 

set up and factor a  new A  m atrix. This makes estim ates of k  available throughout the 

com putation  and these estim ates could be used to  m onitor and guide the com putation. 

A much less expensive alternative would be to  only com pute the estim ate of ||A~^||oo 

after an acceptable solution has been obtained. This would involve a few ex tra  back 

solves involving the  final A m atrix  and would add very little to  the  overall cost, while 

providing the  user w ith an  estim ate of k for the  BVODE.

4.4  Im proved R u n ge-K u tta  M ethods

4.4.1  In trod u ction

Recall th a t the  general form of a  discrete M IRK scheme is as given in (2.1), w ith the 

coefficients usually represented in the tab leau  given in Table 2.1. The general form 

of a  CM IRK scheme on the subinterval [U, tj+i] is

u {ti +  dhi) — Hi + h i'Ÿ ^  br{6)Kj.,
r = l

where Kr = f { t i  + Crhi, (1 — Vr)yi T  Ur2/i+i +  h E j= î and  br{0) is a polynom ial

in ^ E [0,1], and  s* is the  num ber of stages. T he general form of the corresponding 

tab leau  is

Ç U X
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where b{0) =  [bi{9), b2{0), ■ ■ ■ ,bs*{0)]'^. A p th  order m ethod has a local error th a t is 

A M IRK or CM IRK m ethod w ith stage order q has coefficients which satisfy

In the original M IRKD C software, the discrete 3-stage, 4 th  order, stage order 

3, M IRK scheme has the  tab leau  th a t is shown in Table 4.6. This scheme can be 

em bedded in a 4-stage, stage order 3, CM IRK scheme which provides the in terpolant 

for the discrete solution values. The tab leau  for this continuous scheme is given in 

Table 4.7, where

g ( 2 g - 3 ) ( 3 g ^ - 3 g  +  2) # 2 ( 1 2 # :-2 0 9 +  9)
61 (9)

0 0 0 0 0

1 1 0 0 0

1/2 1/2 1/8 - 1/8 0

1/6 1/6 2 /3

Table 4.6: Tableau for 3-stage, 4th order, stage order 3, MIRK scheme.

In the  paper[21], M uir derived a  new optim ized 4 th  order CM IRK scheme, con

taining the discrete scheme of Table 4.6. It has the tab leau  shown in Table 4.8. 

where

12 6
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0 0 0 0 0 0

1 1 0 0 0 0

1/2 1/2 1/8 - 1/8 0 0

3/4 27/32 3/64 -9 /6 4 0 0

62(g) 4,(g) &;(g)

Table 4.7: Tableau for original 4-stage, 4th order, stage order 3, CMIRK scheme.

0 0 0 0 0 0

1 1 0 0 0 0

1/2 1/2 1/8 - 1/8 0 0

2/5 2/5 17/125 -1 3 /1 2 5 -4 /1 2 5 0

61(g) 4Kg) 63(g) &l(g)

Table 4.8: Tableau for new 4-stage, 4th order, stage order 3 CMIRK scheme.

In  th e  new version of M IRKDC, we replaced the original CM IRK scheme of Ta

ble 4.7 w ith  the  new CM IRK  scheme of Table 4.8.

Muir[21] also describes an optim ized 5-stage discrete, sixth order, stage order 3, 

em bedded in a  6th  order, 8-stage CM IRK scheme and has reported test results for 

these schemes which showed th a t the  new schemes led to  significant improvements in 

overall perform ance. These had already been added to  M IRKDC; we simply modified
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the code to  make these formulas the  default 6th  order schemes.

4.4 .2  R esu lts  and D iscu ssion

T he purpose of our experim ents is to  investigate the im pact of the new 4 th  order 

in terpolant. We did some testing using the two test problems T P l  and TP2. The 

testing was done w ith a tolerance of 10“ ®, e equal to  0.001 and 0.0001 for T P l ,  e equal 

to  0.1 and 0.01 for T P2 (7 =  1.4), and a uniform  initial mesh of 2 subintervals. The 

results are given in Table 4.9 and Table 4.11 for T P l ,  and Table 4.10 and Table 4.12 

for TP2.

From Tables 4.9 - Table 4.12, we see th a t the improved interpolant leads to  a  defect 

of com parable size using fewer mesh points. The improvement is more significant for 

the  more difficult problems. T he fact th a t the  code uses fewer mesh points leads to 

significant savings in execution time.

4.5 Prelim inary G lobal Error Indicator

4.5 .1  In trod u ction  and D escrip tion  o f Softw are M od ification

T he prim ary approach used in M IRKDC for m onitoring the quality of the numerical 

solution is defect control. M IRKDC will norm ally re tu rn  a solution whose defect sa t

isfies the  user tolerance. After th is com putation is completed, it might be considered 

useful to  also have a rough, low cost indicator of the global error of the numerical 

solution.
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Old In terpolant New Interpolant

Nsub Def Est Nsub Def Est

2 R89 2 Z03

8 11.49 8 1.21

16 7dM*10-2 16 T72*10-2

64 3.96 * 10-'* 64 9TK)*10-4

256 5/m *10-9 256 &53*I0-?

844 T80*10-^" 699 7.57* 10-9

1069 7.73 * lO-io 853 6.32*10-^

Table 4.9: Comparison of MIRKDC mesh sizes and defect estimates for T P l, toi =  10~®, 

method — 4, e =  0.001, for old interpolant from original MIRKDC (Table 4.7) and new 

interpolant from Table 4.8.

Over th e  last 20 years, there have been a  num ber of papers, see, e .g .,[8], [23],[27] 

which have considered the  development of global error estim ation techniques. The 

paper [27] classified, described and com pared 13 ways to estim ate global error. We 

note th a t alm ost all of these techniques are applied only to  initial value problems. 

In the tex t book [1], global error estim ation strategies for BVODEs are discussed in 

section 9.3.

In the  new version of M IRKDC, the prelim inary technique we use for obtaining 

a global error estim ate involves calculating a second numerical solution to  the  same 

problem using a  doubled mesh, i.e., we repeat the final calculation using a  mesh in
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Old Interpolant New Interpolant

Nsub Def Est Nsub Def Est

2 244 2 1.05

4 &41*10-s 4 E86*10-2

16 5.38 * IQ-'̂ 16 4.07* 10“ 4

64 9.19* 10“ ^ 64 5/M) *10-7

256 2Xh)*10-9 256 1.56* 10“ ®

375 T 23*10-w 340 T88*10-w

Table 4.10: Comparison of MIRKDC mesh sizes and defect estimates for T P 2, toi =  10“ ®, 

method =  4, e =  0.1, for old interpolant from original MIRKDC (Table 4.7) and new 

interpolant from Table 4.8.

which each subinterval is split in half. We com pare the numerical solutions from the 

original mesh and  the  doubled mesh a t th e  mesh points of the  original mesh to  get 

a  global error estim ate for the  original num erical solution. In order to  com pare this 

estim ate w ith  th e  true  error, we choose a  test problem, T P7, having a  closed form 

solution.

4 .5 .2  R esu lts  and D iscu ssion

We employ a tolerance set of 10“ ®. We use an absolute measure of the error —

y 2 *Nsub\, where Yf^sub is the  numerical solution from the original mesh, V2 *Nsub is the 

num erical solution from the  doubled mesh. In Figures 4.1 - 4.2, we plot the errors
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Old Interpolant New Interpolant

Nsub Def Est Nsub Def Est

2 18.84 2 1&56

32 2.11 32 R43

64 5.96 * 10-^ 64 ^66*10-2

256 3.75 * 10-5 256 T63*10-5

1024 84%; *10-9 1017 T22*10-8

1638 2.05 * 10-9 1334 1.29 * 10-9

1801 2.02 * 10-9 1467 1.09*10-9

1981 2^5*10-^' 1613 4 ^ 2 * 1 0 -^

Table 4.11: Comparison of MIRKDC mesh sizes and defect estimates for T P l, toi =  10“ ®, 

method =  4, e =  0.0001, for old interpolant from original MIRKDC (Table 4.7) and new 

interpolant from Table 4.8.

for solution com ponents yi  and r/2- From the  results, we see th a t the error estim ate 

is w ithin a  factor of 10 of the true  error.

In order to  examine the  cost of com puting this global error estim ation in M IRKDC, 

we m easured the CPU  tim e for M IRKDC w ith and w ithout the global error indicator. 

T he results, shown in Table 4.13, indicate th a t the CPU tim e for com puting the  global 

error estim ate increases the  cost of the com putation by a factor of 2 or 3. For large 

Nsub the  factor will be bigger.

W hile the  global error estim ates in this test are of reasonable quality, the cost of
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Old In terpolan t New Interpolant

Nsub Def Est Nsub Def Est

2 — 2 —

4 — 4 —

8 — 8 —

16 — 16 —

32 — 32 —

64 2.95 * 10-^ 64 1.27* 10-2

256 4.64 * 10-G 256 64M*10-G

929 1.32 * 10-8 818 7.74 * 10-9

1205 9.67* 10“ °̂ 1035 1.49* 10-9

1138 3.07* 10-19

Table 4.12: Comparison of MIRKDC mesh sizes and defect estimates for TP2, toi =  10“ ,̂ 

method =  4, e =  0.01, for old interpolant from original MIRKDC (Table 4.7) and new 

interpolant from Table 4.8.

obtain ing them  is too high. However, these results can serve as a  baseline for future 

work in which th e  tradeoffs between the quality of the  global error estim ate and its 

cost are explored.
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 ̂0.5

m esh points

Figure 4.1; Com parison of ratio  of estim ate error and true  error of solution com ponent 

1 on TP7, m ethod =  4, toi =  10~®.

m esh points

Figure 4.2: Com parison of ratio  of estim ate error and true  error of solution com ponent 

2 on TP7, m ethod =  4, toi =  10“ ®.
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(m ethod, toi, Nsub, e) W ith  global error indicator W ithou t global error indicator

(4,10-G,10,0.5) 0.03 0.01

(4,10-^,20,0.06) 0.11 0.04

(6,10-^20,0.5) 0.04 0.02

(6,10-^20,0.06) 0.17 0.07

Table 4.13: Comparison of CPU times for MIRKDC global error estimation.
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Chapter 5

M odification of M IRKDC (II) 

Design and Analysis of Defect

Control Strategies

5.1 Introduction

In this chapter we consider techniques which can lead to  improved control of the 

defect of the  approxim ate solution to  a  BVODE system. The approach is based 

on considering special kinds of in terpolants for the representation of the continuous 

solution approxim ation.

The paper[15] considers specially constructed  continuous solution approxim ations 

which lead to  defects having the  special form,

6( )̂ =  (5.1)
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where 9 = {t — t i ^ i ) / h ,  and (pp{9) is a  polynomial in 9 whose coefficients depend 

on the m ethod bu t not on the  problem  and the step size h. Kp depends only on 

the  test problem , and p is the order of the RK method. In this case, the  defect 

is said to  be asymptotically correct because as h ^  0 , the m aximum of the defect 

on each subinterval is located a t the maximum of the polynom ial Pp{9), which can 

be determ ined ahead of time. In order for the defect estim ate to  be asym ptotically 

correct, the term  m ust be significantly bigger th an  the term . If Kp+i{9) 

is com parable in size to  p'p{9)Kp and h is not sufficiently small, then we cannot in 

practice expect the  m axim um  defect to  be a t the maximum of y>'p{9).

We can sam ple the  defect a t a set of points in the subinterval and use the maxim um  

of these samples as an  estim ate of m aximum defect. This is called ’relaxed defect 

control’; it is reliable and  effective for m any practical problems. However, as explained 

above, we can employ one-point sam pling of the defect provided we employ a  special 

kind of in terpolant, which leads to  an asym ptotically correct form for the defect. This 

is called ’s tric t defect contro l’.

5.2 D escrip tion  o f th e  Software M odification

We have designed new in terpolan ts (based on CM IRK schemes) th a t lead to  asym p

totically  correct defects, im plem ented them  as an option w ithin M IRKDC, and  then 

perform ed experim ents to  test our new schemes to  see if they in fact give asym pto ti

cally correct defects and to  see w hat the  im plications are for the execution time.

It tu rn s out th a t the second order continuous scheme already employed in M IRKDC
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leads to  an asym ptotically  correct defect. We will consider this in more detail shortly. 

We have added new schemes for orders 4 and 6. We have also added an option called 

’d e fec tx o n tro l’ to the param eter list for the new version of M IRKDC to  let the user 

choose the type of defect control: ’relaxed defect control’, or a modification of ’stric t 

defect contro l’ which we call ’safe-guarded stric t defect control’, to  be described mo

mentarily. W hen the user selects ’relaxed defect control’, we choose two-point sam 

pling for the defect estim ate using the 4 th  and 6th  order continuous schemes discussed 

in the previous chapter. W hen the user selects ’safe-guarded stric t defect control’, we 

will use new 4 th  and 6th  order continuous R unge-K utta  schemes which yield a  defect 

w ith  the form given in (5.1). The basic idea for ’safe-guarded stric t defect control’ is 

th a t the step  size h should be small enough so th a t we can use one-point sampling; 

otherw ise we will employ ex tra  sample points in order to estim ate the maxim um  de

fect on each subinterval. If we are not in the asym ptotic region because the  step size 

h  is not small enough (we have experim entally determ ined a threshold of 0.01 for the 

m ethods of orders 2 and 4, and a  threshold of 0.002 for the m ethod of order 6), the 

new version of M IRKD C will do two ex tra  samples (at 9 = 0.55 and 9 =  0.47 for the 

2nd order m ethod, a t ^ =  0.54 and 9 =  0.56 for the  4 th  order m ethod, and aX 9 =  0.22 

and  9 =  0.81 for the 6th  order m ethod) determ ined through numerical experim ents 

(see Tables 5.1 and 5.2). Otherwise, we will only do one point sampling a t d =  0.5 

for the 2nd order m ethod, at 9 = 0.5453 for the  4 th  order m ethod and a t 0 =  0.5 for 

the  6th  order m ethod. These are the points where the maximums of the (pg(^), <̂ 4(6*), 

and  <Pg(d) polynom ials occur. (We will consider the details shortly.)
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In itial Nsub T P l TP2 T P3

100 0.54 -  0.55 0.55 0.55

50 0.54 -  0.55 0.54 -  0.55 0.55

40 0.54 -  0.55 0.55 -  0.56 0.55

30 0.54 -  0.55 0.54 -  0.57 0.54 -  0.55

20 0.53 -  0.56 0.53 -  0.58 0.54 -  0.55

10 0.42 -  0.66 0.55 -  0.59 0.54 -  0.55

8 0.44 -  0.64 0.55 -  0.6 0.54 -  0.55

Table 5.1: The locations of the maximum defect for different numbers of subintervals, 

method =  4, toi =  10~®, T P l - TP3.

5.3 C ontinuous R u n ge-K u tta  Schem es

5.3 .1  A  C ontinuous R u n g e-K u tta  Schem e o f 2nd Order

T he continuous scheme for second order has the form

u ( t ) — u{t i  +  Ohi) — yi -\ - hi [ h \ {6 )K i  +  b2{d)K2 ) ,

where

— -^2  — /(^ i+ i )  2/ i+ i))  an d  bi{6) — 6(1 — 6 2 (0 ) — — .

This scheme has coefficients which satisfy

C V
c = X e  + v  and  ÿ  =  A c +  =
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Initial Nsub T P4 TP5 T P 6

100 0 .5 4 -0 .5 5 0.54 -  0.56 0 .5 4 -0 .5 5

50 0.54 -  0.55 0.54 -  0.55 0.54 -  0.55

40 0 .5 4 -0 .5 5 0.54 -  0.55 0.54 -  0.55

30 0.53 -  0.56 0.53 -  0.57 0.54 -  0.57

20 0 .5 1 -0 .5 7 0.52 -  0.57 0.53 -  0.58

10 0.49 -  0.93 0.42 -  0.69 0.29 -  0.59

8 0.48 -  0.93 0.43 -  0.67 0.54 -  0.60

Table 5.2: The locations of the maximum defect for different numbers of subintervals, 

method =  4, toi =  10“ ®, for TP4 - T P 6.

where e =  (1,1, • • •, 1)^, and  it therefore has stage order 2. Letting y{t) be the  true 

solution, we know from standard  theory  for R unge-K utta  m ethods, [7], th a t a  local 

error expansion for this scheme has the  form

y{t) — u{t)  =  Cz h? -\-

where h is the  size of the  step or subinterval,

f  (g) =

\ 62(g)

and Cz is problem  dependent bu t not dependent on 9. Substitu ting  the above values 

into <̂2(g) =  b^{9)c^ -  y  gives 02(g) =  y  -  y  and then 02(g) =  0 - 9 ^ ,  w ith a 

m axim um  at 9 — y  We will explain further in the next section how the above form 

of the  error leads to  the specific form of the defect in (5.1).
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5.3.2 A  N ew  C ontinuous 4 th  O rder Schem e

A standard  continuous R unge-K utta  scheme for fourth order requires 4 stages. A 

continuous R unge-K utta  scheme which gives a  m aximum defect having th e  special 

form will be presented here; it uses 5 stages. The tableau of coefficients for this 

scheme which we denote by CM IRK543 is shown in Table 5.3. It has the 3-stage 

discrete 4 th  order M IRK scheme of Table 4.6 em bedded w ithin it. The continuous 

solution approxim ation u{t)  based on this CM IRK scheme has the form

u{t) ^  Vi +  h i J 2 b r { 0 ) K r
r=l

We now discuss th e  derivation of this scheme. Let

(5.2)

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

1
8 0 0 0

C4 V4 Z41 2:42 2:43 0 0

C5 V5 3:51 3:52 X53 Z54 0

61(g) 6 2 ( m b3(̂ ) b4(̂ ) 65( m

Table 5.3: General form for the tableau of 5-stage, 4th order, stage order 3 CMIRK scheme 

with the discrete 3-stage, 4th order, stage order 3 MIRK scheme of Table 4.6 embedded.

Ç =  (0 , 1, 1/ 2, C4, Cs)^, v =  (0 , 1, 1/ 2 , V4 , 

e  =  ( 1 , 1 , 1 , 1 , 1 ) ^ ,  6 ( g )  =  ( 6 i ( g ) ,  6 2 ( g ) ,  6 3 ( g ) ,  6 4 ( g ) ,  6 s ( g ) ) ^ ,
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and

X  =

\

0 0 0 0

0 0 0 0

1
8

1
8 0 0

Z 41 3:42 3:43 0

3:51 3:52 3:53 3:54 /
The em bedded discrete m ethod is said to  have stage order 3. This means th a t

Here ç" m eans th a t the  every element of c should be taken to  the n th  power. We will 

also require the  ex tra  stages 4 and 5 to  satisfy these stage order conditions. Requiring 

th a t these stage order conditions be satisfied allows us to  fix X 4 1 ,0:42, X 43, X 52, Z 5 3 , T54 

in term s of the free variables C4, C5, U4, U5, X 51.

The 4 th  order continuous order conditions for a R unge-K utta m ethod w ith  stage 

order 3 are

b^e = 9, b^{6)c^ = Y ,  b^{9)c^ = — .

T he two order conditions for 5 th  order are

By satisfying the first 5 th  order condition above in addition to  all the 4 th  order 

conditions, we get five sets of equations for the  coefficients of th e  five weight polyno

mial bi{d), - ■ ■, bs{9). This leaves us w ith the 5 free coefficients C4, C5, U4, Ug, X51. We 

arb itrarily  chose: C4 =  U4 =  % =  % =  3:54 =  (A more optim al choice of
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these free param eters could lead to  a  b e tte r  m ethod w ith smaller error coefficients 

bu t this is left for future work.) This leads to  the tableau of coefficients for the 

CM1RK543 scheme shown in Table 5.4. The weight polynomials are

61(g)

6 3 (g)

g g^
—  ( 8 g - 9 ) ( 3 0 g ^ - 6 0 g ^  +  3 7 g - 6 ) ,  6 2 (g) =  — ( - 2 7  +  2 3 6 g - 4 5 0 g ^  +  240g^),

g2 125
— ( - 2 7  +  2 1 8 g - 3 0 0 g ^  +  120g^), 6 4 (g) =  g ^ ( - 2 7  +  7 4 g - 7 2 g ^  +  24g^),

6 5 (g) = ( - 3  -b 26g  - 48 g ^ -b 2 4 g ^ ) .

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2

1
2

1
8

1
8 0 0 0

1
10

1
10

69
1000

21
1000

6
125 0 0

9
10

9
10

3
40

3
40

3
40

3
40 0

6 1 (g) 6 2 (g) 6 3 (g) 6 4 (g) 6 5 (g)

Table 5.4: Tableau of 5-stage, 4th order, stage order 3 CMIRK scheme which gives an 

asymptotically correct defect estimate.

We conclude this section by considering how this continuous scheme leads to a 

defect th a t has the form (5.1).(The basic idea applies generally to  p th  order schemes 

as well.) Suppose th a t y{t)  is the true  solution of the BVODE. Then we know th a t 

(according to  s tandard  theory  for R unge-K utta  m ethods, [7],)

y ( t )  -  ?r(t) =  C l  ( f  (g )e  -  g )  /r -b C 2 (g )c  -
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+C3 (g)ç" -  y )  +  Q

+  ^ C 's i  +  c*52 ( ^ { ( ^ )  ï )  ~  ^ ) )

where h is the  subinterval size. For a fourth order m ethod the coefficients of h, 

and h'  ̂ are zero. We have explained above th a t we also chose the coefficients of onr 

scheme such th a t { ^ { 9 )  — =  0. This leaves

;/(() -  ?/(() =  (5.3)

where 0 4 ( 0 )  =  ^ {9){Xc^  f )  ~  f o  ^ 5  =  C*5 2 -

Recall th a t t = ti + 9h which implies 9 = We therefore have th a t =

Taking derivatives in equation (5.3) w ith respect to  t, we get

^  (y(0  “  ^(^)) =  y'i't) — u'{t) — — [j)A{9)K^h^ +  0 (/i^)j =  — 4>a{9) +  0{h^),

=  +  0 ( /^ ')  =  0 l(0 );r5A ' +  0(/,S ),

where ' =  ^  on the  right hand side of the  above equation.

Thus

? / '( ()- ü ' ( ( )  =  0;(0)R:5/i" +  o(/i5).

T he defect, S(t) = u'i t )  — f { t , u ( t ) ) ,  can be rew ritten as follows (recall th a t y'{t) — 

f { t , y { t ) )  =  0 because y{t)  is the  true  solution):

6(() -  u '(() -  / ( ( ,u ( ( ) )  -  (?/'(() -  /((,? /(^ ))) ^  u (t) -  y ( t )  -  ( / ( t ,u ( t ) )  -  / ( t , ^ ( t ) ) ) .

Assuming /  satisfies a Lipschitz condition with constant L, then

!/(( , u ( t)))  -  / ( ( ,  ?/(())| <  Tl'u(t) -  ?/(t)| =  O(h^).
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Thus

j(^) =  ?/'(() -  ?/%() +  o(A^) -  +  o(/i^), (5.4)

where we recall th a t 4>a{0) =  b^{0){Xc^  +  f)  ~  fü- From this we have th a t

« ( » )  =  - - ^ o ( e  -  i)(iooe^  - 1 2 4 0  -  3),

and the m axim um  value of the defect, when the stepsize h is sufficiently small, is a t 

the m axim um  of (b' îO) for 9 =  [0, 1] which tu rns out to  be about 0.5453.

5.3 .3  A  N ew  C ontinuous 6 th  Order Schem e

In the new version of M IRKDC, the  discrete 5-stage, 6th order, M IRK scheme is 

em bedded in an 8-stage, 6 th  order CM IRK scheme - see Muir[21]. Here we present a 

9-stage, 6 th  order CM IRK scheme, containing the discrete 5-stage, 6th order M IRK 

scheme, which leads to  a  defect which is asym ptotically correct. The coefficients of 

th is scheme are shown in Table 5.5, where 

^ 3 1  =  M  +  W '  ^ 3 2  =  3 4  +  W '  ^ 4 1  =  n  -  ^ 4 2  =

T r .  =  ^  7 - . ,  =  T  o -  - 7 V ^51 1 2 8 ’ 52 1 2 8 ’ 53 128 ’ 53 128 ’

.r  — I _3_ „  _  ̂ _____ ^
G1 1960 112 ’ -^62 I960 112’

7-.0  =  1 1 ^ 7  , 3y /m  _  11n/7 _  3 V n  „  _  -2 6 y /7
■^63 840 r  n g  , 4/64 g40 112 ’ ■ ^65— 735 ,

-  - 9 \ / 7  I _  _ _- 9 \ / 7 ____ 3_
*^71 I960 “^ 1 1 2  >-^72 I960 112 ’

=  - 11 v T  , 3 ^  ^  - l l% /7  _  h / K  ^  2 6 ^
■I-73 840 ^  112 ’ 1̂ 4 840 112 ’ ^5 735 ,

_  7 2 9 , 764 _  - 2 8  , 7 2 9 v ^
81 500000 1" 15625 ’ "^82 15625 1 '  500000 ’

_  - 5 1 0 3 \ /2 Ï  _  -8 3 4  _  729
84 250000 ’ “̂ 85 15625 31250 ’

58



0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0

1 +  Æ
2 ^  14

1 8 v T i
2 98 % 1 3:32 0 0 0 0 0 0 0

1 _  Æ
2 14

1 , 8 v ^
2 ' 98 Z 41 3:42 0 0 0 0 0 0 0

1
2

1
2 3:51 3:52 3:53 3:54 0 0 0 0 0

1 _  n/7
2 14

1 _  Cz
2 14 3:61 3:62 3:63 3:64 3:65 0 0 0 0

1 +  ^  
2 ^  14

1 1 Ç Ï
2 ' 14 X 71 3:72 3:73 3:74 3:75 0 0 0 0

1
10

1
10 3:81 3:82 0 3:84 3:85 3:86 3:87 0 0

9
10

9
10 3:91 3:92 0 0 3:95 3:96 3:97 3:98 0

6 1 ( g ) 6 2 ( m 6 3 ( m 6 4 ( g ) 6 5 ( m 66( g ) 6 7 ( g ) 68( g ) & 9 (^ )

Table 5.5: Tableau of 9-stage, 6th  order, stage order 3 CMIRK scheme which gives an 

asymptotically correct defect estimate.

5481 v/7 I 5 1 0 3 \ /^
15625 500000 ^  250000 ’ "^87

49 49 I 5481\/7  , 5 1 0 3 C ^
15625 ' 500000 ' 250000 ’

=  -8 5 8 1  „  _  -27931  „  _  17607
91 500000 ’ 500000 > 95 125000 >

_  -6 2 3 7 7  _  1323%/7 _  -6 2 3 7 7  , 1 3 2 3 ^ 7  _  _  _81_
•^96 90625 5 8 0 0 0 0  ’ -^97 go625 580000 >-^98 —  n eO  ’

and where

6i(g

63(0

b4(^

66(^

- ;^ (4 0 6 3 5 g  -  133610^^ -h 202540^^ -  141948^ +  35000g^ -h 2000^^ -  4860), 

- ^ ( - 2 5 6 5  -h 27070g -  87800g^ +  110052g3 _  49000g^ _p 2000g^), 

- ^ g ^ ( - 1 3 5  -h 1510g -  5630g^ -h 9250g^ -  7000g^ +  2000g^),

- ^ g ^ ( - 1 3 5  -I- 1510g -  5630g^ -h 9250g^ -  7000g" -h 2000g^),

16
135 g^(-135 -I- 1510g -  5630g  ̂4- 9250g  ̂ -  7000g'̂  +  2000g^),

49
4698 g^(g- l)^(22000g^ -33000g^ -600\/7g^ + 14132g+600\/7g-1566 -8 1 ^ 7 ),
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6y(g) = ^g^(g-l)^(22000g^-33000g^+600\/7g^ + 14132g-600\/7g-1566+81\/7), 

&8(0) =  -  1)^^ (̂27 +  76g -  396g  ̂+  3200 )̂,

69(g) =  g ( g  -  l)^g^(-27 +  244g -  564g  ̂+  320g^).

We next consider the derivation of this scheme. We use a H erm ite-Birkhoff inter

polation approach. T he general form for the continuous solution approxim ation on 

the  zth subinterval is

u{t)  =  u{ti + Ohi) = do{6)y^ + di{9)y^+i 

+ h i  { b i ( 6 ) K i  +  6 2 (g ) ^ 2  +  6 e(g)A'G +  b-j{0)K-j +  6 g(g)Afg +  b g { 6 ) K g ) , (5 .5)

where K j  =  f {U  + Cjh, %), j  =  1, 2, 6, 7, 8, 9, w ith Ci =  0, == yi, c-2 = I, m  = Vi+u

the  other Cj and % values are to  be determ ined.

We consider the  local error associated w ith each of the term s in (5.5). Since we 

are looking a t local error, yi and K i  =  f { t i , y i )  are considered to  be exact. The 

right end point value, yi+i, for a  6th  order m ethod has local error 0 { h \ )  as does 

7^2 — yi+i) (assum ing a  Lipschitz condition on / ) .  We note th a t the factor of

hi m ultiplying the  sum  of K j  term s implies th a t the contribution to the error in u{t) 

in (5.5) from K 2  will then  be 0 {h f ) .  W ith  a similar argum ent we see th a t we want 

the  rem aining K j  term s, Kq, • • •, Kg, to  also have a local error th a t is 0 { h j )  so th a t 

they  will also contribu te an  0 { h f )  error to  u{t).  This will leave only the yi+i term  

contribu ting  an  0 { h j )  te rm  to  the error.

The m ain task  is to  construct four new stages, Kq, Ky, Kg, Kg, each of which is 

based on a  corresponding argum ent y&,y7 ,y^,yg- Those argum ents have to  have a 

local error th a t is 0 {h j ) .  This is done by requiring ÿ?, ÿs, ÿg, to satisfy the  stage
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order 6 conditions. T hen on subinterval u{t)  will be based on 7 pieces of

0 { h f )  d a ta , and one piece of 0 { h j )  data , nam ely yi+i. Since the in terpolation error 

will be 0 { h f ) ,  the  only contribution to  the  leading term  in the defect will come from 

th e  term  di(0)yj+i. T he value ye has the  general form

5

ÿe =  (1 — ve)yi + veVi+i +  ^
t= i

and y 7 ,ys,  and y  g are given by similar expressions.

For the  new four stages, we m ust apply the stage order 6 conditions,

+  y  =  Z - 1, - , 6.

We can apply these 6 equations to  ye to  solve for Cg, Xei,Xe2 , ^e 3 , Xg4, xee in term s of 

ve- Similarly, we can apply the stage order 6 conditions to  yj  to  solve Xrj{j  =  1, • • •, 6) 

in term s of Cy, u?; to  ÿg to  solve xgj {j =  1,- • - , 7 ,j ^  3) in term s of cg, %, xgg; and to  

yg to  solve Xgj{j =  1, • • • , 8 , j  ^ 3  and j  ^  4) in term s of Cg,Vg,Xg3 ,Xg4 . F inally we 

make some a rb itra ry  assignments; ve =  |  ~  ct = vy = |  cg =  ug =  cg =  

Vg =  ^ , x s 3 =  xgs =  Z94 =  0. (A different choice of the values could lead to  a  m ethod 

w ith a sm aller trunca tion  error bu t this is left for fu ture work.)

Having constructed  the  four extra stages, we now consider the weight polynom ials, 

do(O),di(0),bi(6),b2(O),be(O),b7(9),b8(O),bg(9),  which are degree 7 polynomials. The 

Herm it-Birkhoff in terpolan t (5.5) interpolates the % value a t 0 and the yi+i value a t 

1, and its derivative will in terpolate K i  a t Ci =  0, 7̂ 2 a t C2 =  1, Ke a t Cg, K j  a t Cy, 

Kg a t cg, and Kg a t cg.

Each of these in terpolation conditions leads to conditions on the weight poly
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nomials do{6), di{9), bi{9), 62(6̂ ), bQ{9), 67(0), bs{9), bÿ{9). For example the first 

in terpolation  condition,

u{ti) =  u{ti +  Ohi) = do{0)yi + di{0)yi+i

+ h i  ( b i { 0 ) K i  +  b2{0)K2  +  bQ{0)K^  +  bj{0)K-j  +  6g(0)A'g +  6g(0)Aig) =  j/i,

implies do(0) =  l ,d i(0 )  =  0,61 (0) =  62(0) =  65(0) =  67(0) =  6g(0) =  69(0) =  0. 

Applying all eight in terpolation conditions similarly leads to  a  to ta l of eight conditions 

on each of the weight polynomials. These conditions tu rn  out to be sufficient to 

uniquely specify each of the  degree 7 polynomials. By com paring powers of 9 and 

the  corresponding coefficients of the weight polynom ials, the in terpolation conditions 

reduce to  a  m atrix  system  of the form

M  =

M C =  / ,

coefficients of the weight polyr

0 0 0 0 0
\

0

1 1 1 1 1 1

0 0 0 0 0 0

2 3 4 5 6 7

2cg 3c^ 4c3 5 4 6c| 7c#

2C7 3 Cy 4 Cy 5 Cy 6(4 7c?

2cg 3c| 5c| 6c | 7c#

2Cg 3c0 4c| 5(4 6c# 7c# ^
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It then  follows th a t the columns of C  are the columns of M~^;  we can com pute 

these explicitly using M aple [30], and from these we get the coefficients which define 

do{9), di{9), bi{9), 62(^), be{9), 67(0), bs{9), 69(d). The final step is to substitu te  in ( 5.5) 

for yi+i using the discrete 6th  order M IRK scheme to convert ( 5.5) to  the  standard  

CM IRK form sim ilar to  th a t given in ( 5.2) bu t w ith 9 stages.

5.4 N um erical E xperim ents and R esults

In order to  ob ta in  a  good estim ate of the actual location of the m aximum defect on 

each subinterval, we added some (tem porary) code to  the new version of M IRKDC 

to  perform  100-poin t sam pling of the defect on each subinterval.

5.4.1 E xp erim en ta l L ocation  o f M axim um  D efect  

2nd order m ethod

The 2nd order schemes which are employed in the new version of M IRKDC are the 

same as in the original M IRKDC. For order 2 , we chose the  num ber of subintervals, 

Nsub =  10, 50, 100 and  the tolerance to  be 10“ ^, for all six test problems. The 

results are shown in Figures 5.1 - 5.3. From these results, we see th a t when the  step 

size h is sufficiently small, the  location of maxim um  defect will be abou t 0.5. The 

results further show th a t the 2nd order continuous m ethod in the original version of 

M IRKD C gives an asym ptotically  correct defect. This is supported by the  theoretical 

analysis of this scheme, given earlier in this chapter.
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I  0.4

I

N sub .1 0

Figure 5.1: Location of maximum defect on each subinterval for six test problems with 

Nsub =  10, method =  2, toi =  10"^.

We note th a t for the  sixth test problem  (TP6), the  true  solution near the left 

boundary  exhibits a  sharp  boundary layer; th a t is, the  solution derivatives in this 

region are very large. In this case the  term  in (5.1) is not dom inated by

the 0{hP)  te rm  and we can see from Figures 5.2 - 5.3 th a t the location of m aximum 

defect is no t a t 0.5 for th e  first few subintervals, a t the left end of the domain.

During a s tandard  com putation, as M IRKDC adap ts its mesh, it would place 

m ore subintervals in th is layer using sm aller subintervals where appropriate leading 

to  smaller h values, which would restore the dominance of the  0{h^)  term  in the 

defect, and give the m axim um  defect a t 0.5.

4th  order m ethod

First, we tested  the  4 th  order continuous scheme which we im plem ented as described 

in section 4.4 (which we will call the old 4 th  order scheme) w ith all six test problems
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Nsub =50

Figure 5.2: Location of maximum defect on each subinterval for six test problems with 

Nsub =  50, method =  2, toi =  10“ .̂

Nsub -1 0 0

Figure 5.3; Location of maximum defect on each subinterval for six test problems with 

Nsub =  100, method =  2, toi =  10“ ^.
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-  ^

s  0 .5

N sub -1 0

Figure 5.4: Location of maximum defect on each subinterval for six test problems with 

Nsub =  10 for the old 4th order method, toi =  10~®.

for Nsub =  10, 100, 300, and toi =  10“ ®. The results are shown in Figures 5.4 - 5.6. 

Secondly, we tested  the  new 4 th  order continuous scheme described in section 5.3.1 

w ith all six te st problem s for Nsub =  10, 50, 100, and toi =  10“ ®. Figures 5.7 - 5.9 

show the results.

From Figures 5.4 - 5.6, we see th a t old 4 th  order scheme does not lead to  an 

asym ptotically  correct estim ate; even w ith h fairly small, the position of the  m axim um  

defect is not consistently in the  same location over all problem s and subintervals. 

From Figures 5.7 - 5.9, we see th a t new 4 th  order scheme does give an asym ptotically 

correct estim ate and  th a t the location of maxim um  defect is abou t 0.54 — 0.55. This 

is consistent w ith the theory  shown earlier in this chapter which predicts th a t the 

location of the m axim um  defect will be a t abou t 0.5453.
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Figure 5.5: Location of maximum defect on each subinterval for six test problems with 

Nsub =  100 for the old 4th order method, toi =  10“ ®.

j:
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*  TP3

• T PS 

-  -  TP2

10 20 30 40  SO 60  70 80 90 100 110
N sub -3 0 0

Figure 5.6: Location of maximum defect on each subinterval for six test problems with

Nsub =  300 for the old 4th order method, toi =  10“ ®.
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■o 0,6

.2 0-4

Figure 5.7; Location of maximum defect on each subinterval for six test problems with 

Nsub =  10 for the new 4th order method, toi =  10~®.

S  0 .5

N sub  >50

Figure 5.8: Location of maximum defect on each subinterval for six test problems with

Nsub =  50 for the new 4th order method, toi =  10“ ®.
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Figure 5.9: Location of maximum defect on each subinterval for six test problems with 

Nsub =  100 for the new 4th order method, toi =  10~®.

6th order m ethod

First, we tested  th e  6 th  order continuous scheme, described in section 4.4, (which we 

will call th e  old 6 th  order scheme) w ith all six test problems for Nsub — 10, 100, and 

toi =  10“ ®. Secondly, we tested  the new 6th  order scheme, described in section 5.3.2, 

w ith all six te st problem s for Nsub — 10, 100, 300, and toi =  10“ ®. Figures 5.10 

- 5.11 show the  results for the  old 6 th  order m ethod; Figures 5.12 - 5.14 show the 

results for the  new 6th  order m ethod.

From Figures 5 .l0  - 5.11, we see th a t old 6 th  order scheme does not give an 

asym ptotically  correct estim ate. From Figures 5.12 - 5.13, we see th a t new 6 th  order 

scheme is giving a defect for which the maxim um  is either a t 0.5 or a t abou t 0.8. 

This tells us th a t for this value oi h =  there are two term s dom inating the

error. T he location of a  maxim um  defect a t 0.50 is consistent with the  theoretical 

analysis, shown earlier in th is chapter. In Figure 5.14, we consider a sm aller value of
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N sub >10

Figure 5.10; Location of maximum defect on each subinterval for six test problems with 

Nsub =  10 for the old 6th order method, toi — 10“ ®.
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Figure 5.11; Location of maximum defect on each subinterval for six test problems with

Nsub =  100 for the old 6th order method, toi =  10“ ®.
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N sub "1 0

Figure 5.12: Location of maximum defect on each subinterval for six test problems with 

Nsub =  10 for the new 6th order method, toi =  10~®.

Figure 5.13: Location of maximum defect on each subinterval for six test problems with

Nsub =  100 for the new 6th order method, toi =  10~®.
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N sub  -3 0 0

Figure 5.14: Location of maximum defect on each subinterval for six test problems with 

Nsub =  300 for the new 6th order method, toi =  10“ .̂

h and can see th a t the second term , whose m aximum defect was a t 0.8, is no longer 

as significant.

These experim ents raise an  im portan t point. Even when h is not small enough for 

one term  to  dom inate, only a  small num ber of term s contribute significantly to  the 

error, each contributing  its own defect m axim um  location. Thus a  more robust defect 

estim ation stra tegy  is to  conduct a  small num ber of additional defect samples a t the 

points corresponding to  th e  locations of m axim um  defects of the other contributing 

term s. This is the  basis for w hat we call ” safe-guarded stric t defect control” .

In fact for this case we would be happier w ith an in terpolant for which a  single 

term  dom inates the  error for h values th a t do not need to  be as small as the ones 

we see in th e  experim ents reported  here. A strategy  which is likely to  produce a 

more satisfactory  in terpolant would base the in terpolant on a  CM IRK scheme which 

could have all bu t one of the  order conditions for 7 th  order satisfied. We employed
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an equivalent s tra tegy  for the 4 th  order case. This is left for future work.

A sym ptotically Correct D efects on Non-uniform  M eshes

In the  previous experim ents in th is section, we considered only uniform meshes. In 

this experim ent we tested  the  new 4th  order continous m ethod in a standard  com

p u ta tion  in which M IRKD C employs a sequence of non-uniform  meshes to obtain  a 

numerical solution to  w ithin the user tolerance. We solved T P l  w ith the new 4th  

order m ethod, w ith a  tolerance of 10“ ®, and the initial num ber of subintervals equal 

to  10. We are interested in the ’’solution profile” , which is given by a sequence of 

ordered pairs (Nsub, NI), where Nsub is the num ber of subintervals and NI is the 

num ber of Newton iterations M IRKDC uses to  find the solution to the discretized 

boundary  value O D E system. For this problem, the  solution profile is (10,6), (40, 

2), (156,1), (205,1). Figures 5.15 - 5.18 show the relative locations of the m aximum 

defects w ithin each subinterval. These results show th a t the  location of maxim um  

defect is a t approxim ately 0.54, even when the to ta l num ber of subintervals is only 

40.

5.4 .2  C om parison  o f  R elaxed  D efect C ontrol, S tr ict D efect

C ontrol and Safe-G uarded  S tr ict D efect C ontrol

As m entioned earlier, we added a new option called def  ect.control  to the M IRKDC 

param eter list. If defect-control  = 0, M IRKDC will choose ’relaxed defect control’ 

(standard  tw o-point sam pling). If de f e e t  ̂ control =  1, M IRKDC will choose ’safe-
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N o n -u n ifo rm  s a m p lin g  of T P 6  w ith m e th o d » 4 (n ew ),
to I> 1 e -9 , N s u b - 1 0  in MIRKEXDS.5

Figure 5.15: Locations of maximum defects for TP6, uniform mesh, Nsub =  10, method 

order 4.

TP6 with melhod=4(new), lo l» le -9 , Nsub=40 in MIRKDC5.5

^  0.6

N sub =40

Figure 5.16: Locations of maximum defects for TP6, nonuniform mesh, Nsub =  40, method 

order 4.
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N o n -u n ifo rm  s a m p iin g  of T P 6  w itti m e th o d » 4 { n e w ), to l-1 ® -9 , N s u b - 1 5 6  in M IR K D C 5.5

^  0.6

Nsub =156

Figure 5.17: Locations of maximum defects for TP6, nonuniform mesh, Nsub =  156, 

method order 4.

Non-uniform  sam pling of T P6 with m ethod>4(new), tol>1o-9, N sub-205  in MtRKOCS.S

^ 0.6

N sub =205
160 180 200

Figure 5.18: Locations of maximum defects for TP6, nonuniform mesh, Nsub =  205, 

method order 4.
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guarded stric t defect contro l’.

Suppose th a t Soid{t) is the defect estim ate com puted by using two-point sam pling 

and the continuous solution Uoid{i) based on the CM IRK scheme described in section 

4.4. It is generally the case th a t Soid{t) will underestim ate the true  m aximum defect. 

Suppose th a t Snew{t) is the  defect estim ate com puted by using one-point sam pling and 

the continuous solution Unew{t) based on the  CM IRK scheme described in section 5.3. 

We will usually get a correct estim ate of the m axim um  defect, when h is sufficiently 

small. If Unew{t) is significantly more accurate than  Uoid{t), then we have

\y{t) -  Uoid{t)\ =  and

!%/(() -

w ith

In the above, t = U + 6h  which implies 9 =  Then,

and aa in (5.4):

and we have

which implies \ônew\ < |hoZd|-

On the  other hand, if is not significantly more accurate than  Uddit) (which

is the usual case), then  we will norm ally have \Snew{t)\ > \Sotd{t)\ since S^ewit) is a
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be tte r estim ate of the  m aximum defect th an  6oid{t). Since it will

usually take more subintervals and a  finer mesh to  satisfy the defect tolerance.

T h a t is, one gets a be tte r solution in the sense th a t the corresponding defect is 

more likely to  satisfy the user tolerance, bu t the cost of obtaining this solution is 

greater, (a) because the new m ethod will require more subintervals, and (b) because 

the new m ethod will employ more stages per step. In this section we consider a test 

which exam ines the  accuracy of the  defect reported  by M IRKDC using (i) the original 

two-point sam pling and (ii) the new one-point sampling. The results for (i) and (ii) 

are given in Table 5.6. We employ an initial uniform mesh of 100 subintervals.

O rder 4 O rder 6

Nsub NI Def. Est. Nsub NI Def. Est.

original 100 1 8.5 * 10-» 100 1 2 6 * 1 0 - ^

237 1 9.3 * 10-10 125 1 2.4 * 10-1»

new 100 1 3.0 * 10-» 100 1 6.0* 10-11

202 1 7.0 * 10-10 196 1 9.4* 10-1»

Table 5.6: Comparison of MIRKDC execution sequences for T P l, e= 0.04; toi =  10 

method =  4; toi =  10“ ^̂ , method =  6; NI: the number of full Newton Iterations.

From Table 5.6, we see th a t, for the  m ethods of order 4, the new scheme w ith 

one-point sam pling leads to  smaller defect estim ates, using fewer mesh points. This 

is an unusual result. The original m ethod underestim ates the maximum defect. The 

new m ethod gives the correct m axim um  defect. However the estim ate from the  new
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m ethod is sm aller th an  the estim ate given by the original m ethod. This happens 

because, as m entioned above, the  new m ethod employs a  more accurate in terpolant 

leading to  a defect which has a  true m aximum th a t is in fact smaller th an  the  true 

maxim um  defect for the  original m ethod. On the other hand, for the 6 th  order 

m ethods, the  original scheme w ith two-point sampling appears to  do better. However, 

it is underestim ating the  true  m aximum defect and is thus returning a solution which 

may have a  larger defect th an  th a t of the new m ethod.

We also conducted some CPU  tim e testing for the three different defect control 

strategies, ’relaxed defect control’, ’stric t defect control’, and ’safe-guarded stric t 

defect contro l’. For ’relaxed defect control’ we use two sample points per subinterval. 

For ’stric t defect contro l’ we use 1-point sam pling per subinterval. For ’safe-guarded 

stric t defect contro l’, we first check the subinterval size h\ if it is less than  the threshold 

value we use 1-point sampling, otherwise we sample a t three points. The CPU  tim e 

each case for m ethods of order 4 and 6, respectively, is shown in Tables 5.7 and 5.8. 

From Table 5.7, we can observe th a t ’stric t defect control’ and ’safe-guarded stric t 

defect contro l’ b o th  work faster th an  ’relaxed defect control’ when the m ethods are of 

order 4. Table 5.8 shows us th a t for the m ethods of order 6, ’relaxed defect contro l’ 

works faster when h is bigger, and th a t ’stric t defect control’ and ’safe-guarded stric t 

defect contro l’ are faster when h is smaller.
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In itial Nsub 10 50 100 150

Relaxed defect control 0.33 0.42 0.29 0.39

S trict defect control 0.33 0.38 0.26 0.33

Safe-guarded stric t defect control 0.33 R36 0.26 0.33

Table 5.7: CPU time (seconds) for defect control strategies for various initial Nsub values; 

method =  4, toi =  10“ ®, for T P l, e =  0.04.

Initial Nsub 10 50 100 300 500 1000

Relaxed defect control R06 R07 0T8 R52 0.85 1.73

S tric t defect control 0.16 0.17 0.19 0.49 0.85 1.69

Safe-guarded stric t defect control 0.17 0T8 0.19 0.52 0.88 1.65

Table 5.8: CPU time (seconds) for defect control strategies for various initial Nsub values; 

method =  6, toi =  10“ ®, for T P l, e =  0.04.

Comparison of Solution Profiles for Defect Control Strategies

In this subsection, we study  the  solution profiles for a  standard  com putation w ith 

M IRKD C w ith the  ’defect_control’ strategies described earlier. We will experim en

tally  determ ine the true  m axim um  defect value on each subinterval. The initial num 

ber of subintervals is 10. The m ethods are of orders 4 and 6. The tolerance is 10“ ® 

and the te st problem  is T P l  w ith e =  0.04. In the first experim ent (E X l), we use 

the  original continuous scheme from section 4.4 and then find the true  m aximum 

defect on each subinterval, which M IRKDC will then  employ instead of the estim ate 

norm ally obtained from two-point sampling. The idea is to see how much of a  dif
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ference it makes to  provide M IRKD C w ith the true  m aximum defect ra ther th a n  the 

underestim ated m axim um  defect provided by tw o-point sampling.

The second experim ent (EX2) uses the original relaxed defect control strategy. 

The th ird  experim ent (EX3) uses safe-guarded stric t defect control. All results are 

given in Table 5.9.

From the  results of E X l and EX2 on m ethod order 4, we see th a t there is not much 

difference between the com putation  using the true m aximum defects and th a t using 

relaxed defect control. O n the other hand, we see from EX3 th a t the more accurate 

in terpolant associated w ith  the  safe-guarded stric t defect control gives smaller defects 

and  pays for itself, since it uses fewer subintervals to  obtain  the  final solution.

For the 6 th  order case, there is again not much difference between the use of the 

original m ethod w ith the  tw o-point sam pling estim ate of the  m aximum defect and 

w ith  the correct m axim um  defect. The use of the asym ptotically correct defect re

quires more subintervals and a  larger com putation because the  underlying in terpolant 

is not substantially  more accurate th an  the  original and the corresponding improved 

estim ate of the m axim um  defect is therefore larger, implying th a t a  finer mesh having 

more subintervals is required.

We also com pared the  solution profiles of the m ethod of order 2 w ith relaxed defect 

control and  safe-guarded stric t defect control. The in terpolant of m ethod order 2 is 

the  same for b o th  defect control strategies. The test problem is T P l;  tolerance == 

10“ ^, the initial Nsub is 10, and e =  0.04. The results are shown in Table 5.10. 

Two observations can be made. One is th a t when bo th  defect control strategies use
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the  same mesh points, the  defect obtained from safe-guarded stric t defect control 

is bigger th an  the one from relaxed defect control. This shows th a t safe-guarded 

s tric t defect control does a b e tte r  job of estim ating the  m aximum defect th an  does 

relaxed defect control. A nother observation is th a t safe-guarded stric t defect control 

forces M IRKD C to  use more mesh points. Because safe-guarded stric t defect control 

returns a bigger defect, more mesh points are needed to  provide a finer partition  of 

the  problem  interval in order to  get a solution whose m axim um  defect is less th an  the 

user tolerance.

5.5 C onclusions

In this chapter we see th a t while relaxed defect control can be faster, it does not 

control the  defect as well as the  o ther strategies. O n the o ther hand, safe-guarded 

stric t defect control costs more per subinterval bu t can give us an asym ptotically 

correct defect and the cost over the  whole com putation is about the same as for 

relaxed defect control.
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Order 6O rder 4

(N sub,NI) Def. Est. (N sub,NI) Def. Est.

( 10, 6) ( 10, 6 )E X l

- 1 0(40,2)

— 9

, - 1 0

(10, 6) ( 10, 6 )EX2

,-1 0(40,2)

,-1 0

(10, 6 )EX3

(40,2) (40,1)

,-1 0

1 - 1 0

Table 5.9: Comparison of defect control strategies; T P l with e =  0.04, toi =  10“ ®; EXl: 

exact maximum defect - original interpolant; EX2: relaxed defect control - original inter

p o lan t; E X 3: sa fe -g u a rd ed  s tr ic t  d efec t con tro l - n ew  in terp o lan t.
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O rder 2

Nsub Def. Est.

relaxed defect control 10 1.3 * 10-1

20 4.7* 10-2

80 1.8* 10-3

211 1.6* 10-4

290 6.9 * 10-3

safe-guarded stric t defect control 10 1.5 * 10-1

20 5.4 * 10-2

80 2.4 * 10-3

230 1.9* 10-4

327 7.3* 10-3

Table 5.10: Comparison of relaxed defect control and safe-guarded strict defect control for 

T P l, e =  0.04, toi =  10~'^, method =  2.
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Chapter 6

Conclusions and Future Work

6.1 C onclusions

In this thesis, we have discussed six new features which have been added to  the  new 

version of M IRKDC. Based on a  com putational derivative approxim ation, we have 

provided an option in which M IRKD C can com pute approxim ate Jacobian m atrices. 

This can be very convenient when the BVODE system  is com plicated. We have added 

the  capability for analytic derivative assessment, which can allow M IRKDC to  make 

sure th a t the  Jacobian  m atrix  subroutines supplied by the user are correct.

We have added an option for problem  sensitivity (conditioning) assessment, which 

allows M IRK D C to  provide an estim ate for the conditioning constant. If the estim ated 

conditioning constant is large, then  this is an  indication th a t the problem  is ill- 

conditioned. Thus, when M IRKDC retu rns a solution and a larger conditioning 

constant estim ate, the user should be wary of the accuracy of the solution.
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We introduced a  new CM IRK formula for order 4, and dem onstrated  th a t it leads 

to  significant im provements in the perform ance of M IRKDC. We also designed and 

analyzed new defect control strategies. O ur analysis shows th a t relaxed defect control 

sometimes works faster, bu t it cannot control the defect as well. On the o ther hand, 

safe-guarded stric t defect control gives a  be tte r control of the defect bu t costs more 

on each subinterval, although not more overall.

We also perform ed some prelim inary investigation for the com putation of a  global 

error estim ate. O ur approach yielded a  good estim ate bu t the costs are too high. 

However, the results do provide a  good baseline for future research.

6.2 Future W ork

Some possible further work following from this thesis includes:

•  Reducing the  cost of com puting the  estim ate of k . In the new version of 

M IRKDC, the  com putation  of the  estim ate of k  is done for each new m atrix  

th a t is constructed  during the  com putation of the numerical solution. We might 

only com pute the  estim ate of k  after an acceptable solution has been obtained.

•  A dding an im proved in terpolant of order 6 which gives an  asym ptotically correct 

defect, and is also more accurate th a n  the standard  6th order interpolant.

•  Further investigation of low cost global error estim ation strategies.
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