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Abstract

R ep etitive Learning Control for R em ote Control System s

By Long Sheng

In this thesis, a Repetitive Learning Control (RLC) approach is proposed for a 

class of remote control nonlinear systems satisfying the global Lipschitz condition. 

The proposed approach is to deal with the remote tracking control problem when 

the environment is periodic over the infinite time domain. Since there exists a 

time delay, tracking a desired trajectory through a remote controller is not an easy 

task. A predictor is designed on the controller side to predict the future state of 

the nonlinear system based on the delayed measurements from the sensor. The 

convergence of the estimation error of the predictor is ensured. The gain design 

of the predictor applies linear matrix inequality - LMI techniques. The repetitive 

learning control law is designed based on the feedback error from the predicted 

state. The proof of the stability is based on a constructed Lyapunov function. 

By incorporating the predictor and the RLC controller, the system state tracks 

the desired trajectory independently of the influence of time delays. A numerical 

simulation example is shown to illustrate the effectiveness of the proposed approach.

July 23, 2006.
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Chapter 1

Introduction

1.1 B rief Background

Iterative learning control (ILC) is a relatively new technique for improving tracking 

response in systems that repeat a given task over and over again. A systematic 

design provided by ILC can improve tracking performance by iterations (each rep

etition sometimes being called a trial) in a fixed time interval. A diagram for ILC 

appears below in Fig.1.1.

As shown in Fig.1.1, the learning controller calculates the input value for the current 

trial based on information from the previous cycle. We call this process ”a learning 

process” .

Another way to improve the tracking performance from trial to trial is called repet

itive learning control (RLC). RLC and ILC are similar in nature. However, the

1
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C H A PT E R  1. IN T R O D U C T IO N

Figure 1.1. Block diagram of the ILC controlled system

difference is that ILC needs an initialization, i.e. the system should be started with 

the same initial condition at the beginning of each repetition, while for RLC the 

initial condition of current repetition is set to the terminal condition of the previous 

trial. Before going in to a more technical discussion of ILC, the background of ILC 

is provided including a brief history and an overview of possible connections with 

other areas in the control field.

In recent years, extensive research on Networked Control Systems (NCSs) has been 

under taken, due to the emergence of the field of communication. The basic defi

nition of a network is that it comprises an interconnection of three or more com

municating entities. A typical diagram of a network is shown in Fig. 1.2

Compared with conventional systems, NCS has its own advantage, such as low cost, 

reduced weight, system wiring and power requirements, simple installation, simple 

system diagnosis and maintenance, and higher reliability (Zhang et ai, 2001). A 

diagram of an NCS is given in Fig.1.3.

The control loops in the NCS are closed through a real-time communication channel

2
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C H A P T E R  1. IN T R O D U C T IO N
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Figure 1.2. Diagram of the network
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Figure 1.3. Block diagram of the NCS

which transmits signals from the sensors to the controller and from the controller 

to the actuator (Pan et al, 2004). However, an important issue occurs in NCSs 

which can make the analysis and control design more complicated than for classical 

feedback loops. This is the network-induced delay, which is composed of sensor-to- 

controller delay and controller-to-actuator delay. The network-induced time delay
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C H A PT E R  1. IN T R O D U C T IO N

normally occurs while exchanging data among devices connected to the shared 

medium. Such delays may degrade the performance or even destabilize a control 

system designed without considering the effects caused by the delay (Lozano et 

al, 2004) (Wu et al., 2004) (Yue et al, 2005).

In this thesis, a Repetitive Learning Control (RLC) approach is proposed for a 

class of remote control nonlinear systems satisfying the global Lipschitz condition. 

The proposed approach is to deal with the remote tracking control problem when 

the environment is periodic or repeatable over an infinite time domain. Since there 

exists time delays in two data transmission channels called controller to actuator 

channel and sensor to controller channel, which could make the whole control sys

tem unstable, tracking a desired trajectory through a remote controller is not an 

easy task. A predictor is designed to solve the problem caused by the time delay. 

Simulation results indicate that good performance has been achieved.

1.2 T hesis O utline

The thesis is divided into seven Chapters; 1. Introduction, 2. Background 

of ILC and RLC, 3. Learning Control for Network Related Application, 4. 

Predictor Design, 5. Repetitive Learning Controller Design, 6. Simulation 

Results, 7. Conclusions and future work.

Chapter 1 gives general ideas about ILC, RLC, NCS and the main work of this 

thesis. Chapter 2 gives a general introduction to ILC and RLC including the his-

4

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C H A P T E R  1. IN T R O D U C T IO N

tory and an example showing the applicability of ILC. In Chapter 3, the problem 

formulation and control design objective of RLC are discussed. The foundational 

RLC algorithm also has been provided. Another important aspect of this chapter 

concerns Networks. The background information is presented, then the protocols 

of Networks are introduced. Network delay and packet lost are also discussed. 

In Chapter 4, the predictor is designed for the nonlinear system, using LMI tech

niques. Chapter 5 first presents the error dynamics, and then develops a repetitive- 

learning-based algorithm; a Lyapunov-based stability analysis is utilized to prove 

the globally asymptotic tracking result. In Chapter 6, simulation results demon

strate the effectiveness of the proposed repetitive learning algorithm for an example 

remote control nonlinear system.

1.3 C ontributions

In this thesis, for a class of nonlinear systems controlled remotely, a repetitive learn

ing control approach is proposed. This approach is intended to deal with control 

problems when the environment is periodic or repeatable. The finite-time tracking 

problem can be solved without having to reposition the system at the beginning 

of each cycle. The nonlinear system satisfies the global Lipschitz condition. Due 

to the existence of time delays in the signal transmissions of both channels, the 

conventional RLC without any delay compensation does not work for the track

ing problem. A predictor is then designed to facilitate the RLC by predicting the

5
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C H A P T E R  1. IN T R O D U C T IO N

future state of the nonlinear system based on the delayed measurements. Linear 

matrix inequality (LMI) techniques and the Lyapunov method (Pan et a l , 20066) 

are used for the predictor design. In the presence of time delays, the system state 

tracks the desired trajectory asymptotically. The main contributions of this work 

fall in the following aspects: i) the proposed learning-based controller utilizes a 

simple modification of the standard repetitive update law to realize the tracking 

control tasks in the periodic environment; ii) a predictor is designed and well incor

porated on the controller side, so that the effects of time-delays in both channels 

can be eliminated by predicting the future state of the system; iii) the Lyapunov 

Kravoskii functional approach and LMI techniques are utilized to ensure the con

vergence of the estimation error; iv) a Constructive Lyapunov Functional is applied 

to guarantee the convergence of the tracking error, and v) zero tracking error can 

be achieved asymptotically in the existence of communication delays.

6
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Chapter 2 

Iterative Learning Control and 

R epetitive Learning Control

2.1 H istory  o f Learning C ontrol

The idea of using an iterative method to compensate for a repetitive error was 

suggested first in the late 70's. Machines, such as robotic arms in product lines, 

were invented to do the same tasks repeatedly. Some researchers found that using 

knowledge from previous iterations of the same tasks could effectively reduce the 

error the next time the same task was performed. In the ILC community it is now 

widely accepted that (Uchiyama, 1978) first introduced the ILC concept. However, 

because this publication was written in Japanese only, non-Japanese researchers 

were not aware of this publication when ILC research initially started in the USA

7
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C H A P T E R  2. IT E R A T IV E  LE A R N IN G  C ON TR O L A N D  R E P E T IT IV E  LE A R N IN G  C ON TR O L

and Western Europe. It is remarkable as well that a US patent on ’’Learning 

control of actuators in control systems” was granted earlier (Garden, 1971) based 

on work done in 1967 and accepted in 1971. The main idea of his work is to store 

a ’’command signal” in a computer memory and iteratively update the command 

signal using the error between the actual response and the desired response of 

the actuator. This is clearly an implementation of ILC, although the actual ILC 

updating equation is not explicitly formulated in the patent.

From an academic perspective, ILC did not start to become an active research 

area until 1984. In 1984 (Arimoto et al., 1984a), (Casalino and Bartolini, n.d.) 

and (Craig, 1984), respectively published papers to expound a method that could 

iteratively compensate for mode errors and disturbances by using the tracking 

error between the actual and desired system outputs. The name Iterative Learning 

Control was first introduced in (Arimoto et al., 19846).

The development of ILC stems originally from the robotics area, where repetitive 

motions show up naturally in many applications. Examples of contributions where 

ILC is applied in robotics are (Arimoto et al., 1984a), (Casalino and Bartolini, n.d.), 

(Arimoto et al., 1985), (Bondi et al, 1988), (Poloni and Ulivi, 1991), (Horowitz et 

al,  1991), (Horowitz, 1993), (Guglielmo and Sadegh, 1996), (Burdet et al, 1997), 

(Jiang et al, 1999) and (Lange and Hirzinger, 1999).

Examples of surveys on ILC are (Horowitz, 1993), (Moore, 1998), and (Bien and 

Xu, n.d.). (Moore, 1998) contains a very good overview of ILC research.

8
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C H A P T E R  2. IT E R A T IV E  LE A R NIN G C ON TR O L A N D  R E P E T IT IV E  L E A R N IN G  C O N TR O L

In the late 1990's and at the beginning of the 2000's, the focus for ILC research 

moved from being very focused on stability towards also considering design and 

performance. Examples in this direction are (Bien and Xu, n.d.), (Lee et al., 2000), 

and (Longman, 2000).

The classic formulation of the ILC problem uses an iterative procedure to find the 

input for a given system such that the output follows a given desired trajectory as 

accurately as possible. It is clear that if a description of the system is available, the 

optimal solution is to invert the description and use this to calculate the input that 

produces the desired output. This is a one-step procedure, which can be considered 

as a feed-forward control scheme. If the system representation, describing the 

mapping from input to output, is not completely known, then it is obvious that 

the inverse dynamics approach will never achieve perfect tracking. If it is assumed 

that the structure of the system is known, but the exact value of one or more 

of the parameters are unknown, adaptive control, which is another well known 

technique, might be applied. The adaptive control approach is very good since 

it will, theoretically, provide good performance for all input signals, during all 

working conditions.

When a particular reference trajectory and a system are given, iterative learning 

control can be applied as an alternative to the inverse dynamics and the adaptive 

control approaches. The input signal can be calculated by an iterative procedure, 

such that the output follows the desired reference trajectory as well as possible. 

This can be seen as an iterative search procedure which obviously has to converge

9
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C H A P T E R  2. IT E R A T IV E  L E A R N IN G  C O N TR O L  A N D  R E P E T IT IV E  L E A R N IN G  C O N TR O L

to give a successful result. Convergence, or stability as it will be referred to in this 

thesis, is an important research field for ILC. Recently, transient behavior and the 

design of ILC schemes that give a desired transient behavior have been focused on 

more and more. This means that practical aspects such as convergence speed and 

robust performance become more and more well-understood.

2.1 .1  F un d am entals o f  Itera tiv e  Learning C ontrol

Before we discuss the fundamentals of Iterative Learning Control (ILC), the 

classical feedback control will be reviewed. Also, the major differences between 

classical feedback control and ILC will be discussed. As a starting point in classical 

feedback control, a model which describes the dynamical behaviour of a given 

system is given as following:

x(t) = Ax(t) + Bu(t),  x(0) =  x0
(2 .1)

y(t) = Cx( t ) +  Du(t),

where A,B,C and D are matrices of appropriate dimensions, u{t) is the input vari

able, x(t) is the state variable, xq is the initial state, y(t) is the output variable. 

We assume that D =  0 because it is extremely rare in physical systems that the 

input u(t) would affect directly and instantaneously the output y(t).

The design of a controller for the dynamical system (2.1) is typically divided into 

two different design problems, i) The first design problem is to find a control law 

that manipulates the input variable u(t) so that the system automatically holds the

10
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C H A P T E R  2. IT E R A T IV E  LE A R NIN G C O N TR O L  A N D  R E P E T IT IV E  LE A R N IN G  C O N TR O L

output y(t) at a constant value, even when unknown disturbances try  to move y(t) 

away from this constant set point, ii) The second design problem is a tracking 

problem; the objective is to make the output y(t) follow a given reference signal 

yd(t) by manipulating the input variable u(t). The designs for these two types of 

control systems have been accomplished successfully in both classical and modern 

control theory by using feedback control: the idea is to measure the output y(t) 

of the system, and based on the difference between the reference signal yd(t) and 

the output signal y(t), the control input u(t) is changed according to some given 

rule so that the difference between yd(t) and y(t) is reduced. The crucial point 

in the design is then to find a control algorithm that will keep the tracking error 

e(t) = yd(t) — y(t) as small as possible. In order to solve this design problem, a lot 

of work has been done. Nowadays there exist many different algorithms, such as 

PID-control, adaptive control and robust control. These design methods have been 

used with great success in practical applications, including oil refineries, jumbo 

jets and washing machines, which clearly demonstrates the importance of feedback 

control in a modern society.

Iterative Learning Control (ILC) has its own special problem definition; the control 

system design of ILC is more flexible than feedback control systems. In ILC the 

dynamical model is exactly the same as in (2.1), but the system (2.1) is defined 

only over a finite time-interval t  G [0,T]. Furthermore, a desired trajectory yd t)  is 

given and the system (2.1) has to track this trajectory as accurately as possible, so 

tha t this problem can be treated as a tracking problem over a finite time-interval.

11
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C H A P T E R  2. IT E R A T IV E  LE A R NIN G C O N TR O L  A N D  R E P E T IT IV E  L E A R N IN G  C O N TR O L

The differences between ILC and standard feedback control are these: when the 

system (2.1) has reached the final time t =  T, the final state x(T) of the system 

in (2.1) is reset to the original x0, after which the system is supposed to track the 

same reference trajectory signal yd(t).

An illustrative example which presents the ILC control problem is a welding robot 

arm in car manufacturing. The task for the robot manipulator involves following 

a given geometric trajectory and welding at specific points along the trajectory. 

After the robot has finished welding the first car, the robot is reset to the starting 

point of the trajectory and a new car of exactly of the same dimensions as the 

previous car is delivered for welding. The robot carries out the same trajectory 

tracking and welding task.

In the past, the control scheme for this kind of robot was set up once, at the every 

beginning. This meant that the control action u(t) was once only, in the form of 

a fixed feedback control, which resulted in a control action u(t) =  U f i x ( t ) .  The 

problem, however, is that the controller will produce the same input U f i x ( t ) during 

every iteration, so that if the corresponding output function yfiX(t) is not equal 

to y d { t )  for each t  G [0,T], the resulting nonzero tracking error efix(t) is repeated 

during each iteration. It was suggested in (Arimoto et al., 1984a) that one could use 

the information from the previous iterations to come up with a new input function 

Uk, where k is the iteration number, so that the tracking error will go to zero 

as the number of iterations increased. In summary the experience from previous 

iterations or repetitions is used such that the ILC system will gradually learn the

12
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C H A PT E R  2. IT E R A T IV E  L E A R N IN G  C O N TR O L  A N D  R E P E T IT IV E  L E A R N IN G  C O N TR O L

control action that will result in perfect tracking performance. Therefore in the 

robot example the robot manipulator would learn the control action by itself that 

gives perfect tracking performance, resulting in an autonomous system capable of 

manufacturing high quality products.

2.1 .2  F un d am enta ls o f  R e p e tit iv e  L earning C ontrol

In Repetitive Learning Control (RLC), the starting point is also the plant model 

in (2.1), which is defined, as in standard feedback control, over the infinite-time 

interval t  £ [0, oo). Furthermore, the system output y(t) is supposed to track a T- 

periodic reference signal yd(t), i.e. y(i{t) =  ya(t + T),  other information is assumed 

to be not available for control algorithm design. There are a lot of important 

applications of RLC, which can be found in robotics (Kaneko and Horowitz, 1997), 

motors (Kobayashi et al., 1999), hard-disc control (Smith et al, 1999),rotating 

mechanisms (Fung et al, 2000) and PWM converters (Zhou and Wang, 2001). 

Repetitive control has also been applied to active vibration and noise cancellation 

problems, which is a very active research topic in the control community.

Actually the RLC problem setting is very similar to the ILC case, the only difference 

being that the ILC needs an initialization , i.e., the system should be started 

with the same initial condition at the beginning of each repetition, while RLC is 

supposed to track the periodical reference trajectory, i.e., the initial condition of 

current repetition is set to the terminal condition of the previous repetition. As 

the reference signal or the desired trajectory is periodic, which means the reference

13
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C H A PT E R  2. IT E R A T IV E  L E A R N IN G  C O N TR O L  A N D  R E P E T IT IV E  L E A R N IN G  C O N TR O L

signal is the same for each period, one can use information from previous periods 

to modify the input u(t) so that eventually the system will learn the input signal 

that gives the desired periodic behavior.

2.2 A  Form al D efin ition  o f Iterative Learning C on

trol

In order to give a precise mathematical definition of the ILC problem, we first give 

the following standard continuous time-varying linear state-space model defined 

over a finite time domain t  G [0,T\:

x(t) = Ax(t)  +  Bu(t) ,x (  0) =  xo
(2 ,2)

V ( i )  =  Cx(t),

where x(t) G R n is the system state, y(t) G R m is the system output, u(t) G R rn is 

the system input. The operators A, B  and C  are matrices of appropriate dimen

sions. In order to avoid technical difficulties in analysis, it is typically assumed 

that matrices are continuous with respect to time t. Furthermore, a reference sig

nal yd(t) is given and the task is to construct a control law which can decide the 

input u(t) so that the output y(t) would track yd(t) as accurately as possible. The 

same as we discuss before, the system in (2.2) is supposed to follow the reference 

signal in a repetitive form, i.e. after the system has reached the final time point 

t  — T, the state of the system is reset to the initial condition x 0 and the system 

is supposed to track the same reference signal ydif) again. Assuming that u^{t) is

14
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the input applied at trial k £ N  and e^[t) =  — Vk{t) is the resulting tracking

error, a control law can be constructed as follows:

^ f c + l 0 0  f  ( 6 f c+ l ( ' )  > Cfc( ' ) ) • ' ' ! s ( ' ) ) ( ’)) 1 ( ' ) > ' • • >  r ( ' ) ) )  ( 2 - 3 )

so that limfc >00 Uk =  u and lim*, >00 e*, =  0 in a suitable topology. In addition,

it is required that Uk+i(t) is a function of e ^ i ( s )  for s < t. Note that in the 

problem definition it is assumed that there exists an input u* which gives perfect 

tracking. If this is not the case, the problem can be modified in the following 

manner: the algorithm should converge to a fixed point u* where u* is the solution 

of the problem

u* = argmin 1 1 — Gu\\ . (2-4)

where // is set of possible inputs, G is the transform of the system model in the 

input-output form and || • || is a suitable norm.

Selecting a suitable norm space is important for the convergence analysis. Conver

gence is naturally the most important requirement for an ILC algorithm. However, 

additional requirements also have been suggested, the most common ones are i) 

Convergence should be achieved with a minimal amount of information about the 

plant; i) Convergence should be achieved even if there is uncertainty in the plant 

model, in)  Convergence should be achieved even if the resetting is not perfect. 

Note that the first additional requirement is not always sensible. This is due to 

the fact that for example in robotics either accurate models are available from the
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robot manufacturer, or they can be obtained rather easily by using modern identi

fication techniques, and it would be unwise to discard this information about the 

plant model in the ILC algorithm design.

2.3 Linear ILC updating  law

In this section some different approaches to updating the signal Uk(t) in the linear 

ILC algorithms will be discussed. The class of linear ILC updating formulas can be 

categorized in two groups according to how the information from previous iterations 

is utilized. The two groups are: First order ILC and High order ILC algorithms.

First order ILC

An ILC updating formula that only uses measurements from the previous iteration 

is called a first order ILC. Several first order ILC algorithms have been suggested 

in literature. The most common of the suggested algorithms, e.g., (Arimoto et 

al,  1984a), (Hara et al., 1988), (Bien and Xu, n.d.), are given by

uk+i(t) =  Q{q)(uk{t) +  R(g)ek(t)). (2.5)

where Q(q) and R(q) are considered to be linear transfer operators or simply 

discrete filters. Usually the ILC is considered to be implemented in continuous 

time. The use of the Q-filter is suggested in (Hara et al, 1988) and (Tomizuka et 

al,  1989). In many of the references, the Q-filter is chosen as a constant equal to 

1. An even more general form of the first order ILC updating formula, is given by
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the following equation:

U/j-j-i Qkî k d~ Rk&k) • (̂ -®)

where the matrices Qk and Rk can be realizations of iteration as well as time 

variable filters.

High order ILC

When the ILC updating formula uses measurements from more than the previous 

iteration it is called a high order ILC. Although most contributions on ILC have 

been on the first order case, the idea of utilizing the measurements from more than 

the previous iteration has been covered in some articles. In (Liang and Looze, 1993) 

two dimensional transforms are used to analyze the behavior of the system in both 

the time and the iteration directions. In the paper by (Arimoto, 1991) the errors 

from previous iterations are used in an indirect way. (Chen et al, 1998) have also 

investigated the use of high order ILC.

2.4 N onlinear ILC

Most of the work in the area of ILC has been done on linear ILC updating for

mulations. The linear ILC mapping can be a general mapping from the reference 

signal, the previous measurements, and the previous control signals. In this very 

general framework not so many results are available. There are, however, some 

results in the survey on ILC by (Moore, 1993) and in a recent book edited by (Bien
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and Xu, n.d.). Moore used a chapter in his paper to discuss the use of Artificial 

Neural Networks (ANN) in ILC. This can be seen as a kind of nonlinear black-box 

identification approach, in this approach not only the control signal changes over 

the iterations but the ILC algorithm changes as well. Another possible approach 

that leads to an overall nonlinear ILC combines a system identification and model 

based design procedure for the ILC algorithm. This is discussed in (Norrlof, 2000).

2.5 A  Form al D efin ition  o f R ep etitiv e  Learning  

C ontrol

Before we discuss the formal definition of RLC, as offered previously for the ILC, 

a linear time-invariant continuous-time model is given

x(t) = Ax ( t ) +  Bu(t) ,x (  0) =  x 0
(2.7)

y(t) = Cx(t)

In this equation the state x(-) E R n, output y(-) E R m, input «(•) E R m. Both 

system are defined over an infinite-time interval t  E [0, oo). A, B  and C  are matrices 

of appropriate dimensions. Nonlinear models could be also considered, however, 

linear model can keep the analysis fairly simple, here linear model has been used 

for the reason above.

Here the control design problem of RLC is to design a feedback controller so that 

output of the system in (2.7) would track a T-periodic reference signal yd(t), i.e.,
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Vd(t) =  Vd{t + T),  so that

lim e(t) = 0. (2-8)t—+ OO

where e(t) = y^[t) — y(t). In addition, in the RLC control law it is possible to 

use the information from previous periods, i.e., the RLC algorithm is given in the 

following form:

u(t) = f{u{t  — T) ,u ( t  — 2 T ) , . . .  ,u(t  — mT),  e(t), e(t — T ) , . . . ,  e(t — n T )) (2.9)

Additional requirements could be that: i) Convergence should be achieved even

if there is uncertainty in T. ii) Convergence should be achieved in the presence 

of model uncertainty in (2.7).

It is noted that sometimes, especially in servo systems, it is very common that the 

reference signal (or called desired trajectory) is not periodic with respect to time 

t, but, rather, with respect to the angular position of the servo system, e.g., it is 

shown in (Mahawan and Luo, 2000), under suitable assumptions this problem also 

can be solved with modified RLC, where the independent variable is no longer time 

t but the angular position of the servo system.
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2.6 C onvergence A nalysis for Iterative P rocess

As we discussed in the previous section, the basic idea of ILC and RLC is to 

use the repetitive nature of the problem definition to make the system learn the 

input function that results in perfect tracking. During this process, a new axis is 

introduced: namely the iteration axis k. This results in two-dimensional system, 

where the independent variables are the finite time axis t G [0, T] and the infinite 

iteration axis k € N.  As a first observation towards convergence and stability 

analysis, note that due to the finite nature of the time axis, the output of a finite

dimensional linear time-varying system can not become unbounded in finite time. 

Hence, compared with the classical feedback control, the properties of the ILC 

system along the time-axis do not play a major role in convergence analysis. On 

the other hand the iteration axis is infinite. Therefore different with the case in 

the finite time axis, the output of a finite-dimensional linear time-varying system 

can either converge or diverge, depending on the chosen learning mechanism. In 

order to show how can the convergence or stability be approached mathematically, 

the following example are given:

Consider the following ILC algorithm

where K  is a learning gain, t G [0, T] and the input-output plant model is given as 

follows:

uk+1(t) = uk(t) +  K e k(t), (2 .10)

Vk+lif) — Guk+i{t) + z0(t). (2 .11)
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In order to analyze the convergence properties of the algorithm, it is necessary 

to find how the tracking error ek(t) =  Vd.it) — yk{t) evolves as a function of the 

iteration round k. In order to find this evolution equation, substitute the control 

algorithm (2.10) into the plant model (2.11), we have:

Then we multiply (2.12) with —1 and after that add yd(t) on both sides of the 

equation. This results in

yd(t) -  G uk+i(t) -  z 0(t) =  yd(t) -  G uk(t) -  z 0(t) -  G K e k(t). (2.13)

Using the process model (2.11) and the definition of the tracking error ek(t) this 

equation can be written equivalently as:

or in more compact form: ek+\(t)  =  Lek(t), where L  =  ( /  — G K ) .  Hence L  is the 

operator that maps ek(-) to efc+i(-), and thus it is assumed that its mathematical 

properties somehow define whether or not the algorithm converges. If the operator 

is designed so that | |/  — GK\\ < 1.

Many of the learning control schemes in the literature require a condition of this 

from to achieve convergence with zero error. The solution will make the norm 

of previous error is smaller than that of the final error. In this example, L  is 

the learning operator that maps the tracking error from the previous trial to the

yk+i(t)  =  G uk+i(t) +  zo(t) =  G uk(t) +  zq (i) +  G K e k{t). (2 .12)

ek+1(t) =  (I  -  G K ) e k(t). (2.14)
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current trial. In fact most of the existing ILC algorithms in the literature result in 

the general error evolution equation:

ek+1(t) = Lek(t),k = 0 ,1 ,. . .  (2.15)

It is important to analyze the conditions under which this kind of iterative process 

converges. Two different conditions are given for convergence in following sections. 

The first condition is a norm or a contraction mapping condition for the learning 

operator L, which guarantees that the tracking error converges to zero in the infi

nite time domain. Furthermore, if this norm condition is met, the tracking error 

asymptotically decreases as the number of iterations increases. This is sometimes 

very important in practical applications. The second one is called Lyapunov-based 

analysis. Lyapunov direct method has been used to analysis the stability of the 

system. It involves two steps: find a suitable scalar function, called a Lyapunov 

function, and then evaluate the property of its first-order time derivative along 

the trajectory of the system. The basic approach is to choose an energy-like func

tion, which is mathematically defined as a positive-difinite function, such that the 

defined energy keeps dissipating which is mathematically reformulated as the neg

ative property on the time derivative of the energy-like function. This reasoning is 

intuitively straightforward, and the method is applicable to all linear and nonlinear 

systems, known or uncertain.
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2.6 .1  C on traction  m app in g  co n d ition

Let xq be an arbitrary element of a norm space x  with a metric d and let T  be an 

operator T.  Consider now the iteration

x k+i = T x k,k  = Q , l ,2 , . . .  (2.16)

The sequence x k will converge in the norm to a unique fixed point in y  if the two 

following conditions hold: i) The norm space x  is complete, i i) The operator

T  is a contraction mapping, i.e. there exists 0 <  a < 1 so that

d(Tx,Ty)  < ad(x ,y ) ,Vx ,y  £ x  (2.17)

The related proof process is standard and can be found from (Pugh 2002). Note 

that the result is exactly the same for the modified iteration

£fc+i = T x k + b. (2.18)

In other words the convergence depends purely on T  and the completeness of y.

However, the fixed point where the iteration converges to is different and is given

by the equation

Xoo = (I — T)~1b. (2.19)

due the uniqueness of l imk- fOCx k — x<x- Because this condition is only a suffi

cient condition, a violation of these conditions does not necessarily imply that the 

iteration would diverge.
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Now it is assumed that the metric space x  is in fact a complete norm space, i.e. x  is 

complete and the space is equipped with a norm || • || : x  ~~* R+ where R + is defined 

to be the set of non-negative real numbers. In this case the metric d(x,y)  becomes 

d(x, y) =  ||x —y\\ for an arbitrary x, y  G x- In addition the operator T  is assumed to 

be a linear and bounded space, i.e. T ( a x ) = a T ( x ) and T ( x i + x 2) =  T ( x 1) + T ( x 2) 

for linearity, and there exists M  e  R, M  > 0 so that for an arbitrary x  G x. it holds 

that 11To;11 < M ||x || for boundedness. In this case we have

d (T x ,T y ) =  \\Tx — Ty\\ = \ \T (x -y ) \ \  < a\\x -  y\\. (2.20)

Furthermore, it is standard result for bounded linear operator that ||Tx|| <  ||Tj| ||x|| 

where ||T|| is the operator norm. Hence the following estimate holds

\ \Tx-Ty\\  =  \\T(z — y)|| <  | |T | | | | i  - y\\. (2.21)

and comparing this estimate with (2.17) it is clear that if

Ill’ll <  1. (2 .22)

then the sequence Xk+i — Txk  converges. In the ILC literature it was assumed that 

the sequence of tracking errors satisfies e}.+ { =  Le^ where L is a again the learning 

operator. If L  is now a contraction mapping, then

||efc+i|| =  ||Lefc|| <  ||L ||||efc|| <  ||efc||. (2.23)

if efc 7̂  0. Based on this estimate a learning operator that is a contraction mapping 

results in a sequence of tracking errors where the norm of each tracking error is
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smaller than the norm of the tracking error from the previous iteration. From a 

more mathematical point of view, it is said that the algorithm results in monotonic 

convergence, and this is a very desirable property for an ILC algorithm.

2.6 .2  L yap u nov-based  m eth o d

The Lyapunov based method often can be used to analyze the convergence prop

erties of linear and nonlinear systems. A Lyapunov function candidate is called a 

Lyapunov function for a given system if the time derivative of the candidate along 

the trajectory of the system has a certain type of dissipative property. The use 

of energy-related function approaches in ILC, such as Lyapunov functions, is often 

exploited in the literature. Different stability results can be established, depending 

on the properties of the time derivative of the Lyapunov function candidate. Here, 

we state the following fundamental theorem on Lyapunov stability and asymptotic 

stability.

Theorem  2.1. Let V  be a Lyapunov function candidate as defined in appendix 

definition (.3) in some neighborhood of the origin denoted by 0  C R n. Suppose the 

time derivative of V  has the property that, for  all (x, t) £ Q,

v (x ( t ) , t )  < - 73(||x(t)||), (2.24)

where 73 is continuous and nonnegative with 70 (0) =  0. Then, the system has the 

following stability property: i) either globally or locally uniformly Lyapunov

stable «/7 3 (||x(t)|| is positive semidefinite, ii) either globally or locally uniformly
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asymptotically stable i f  7 3 (||x(t)|| is positive definite, in )  either globally or 

locally exponentially stable if  73(||a;(t)|| >  X V (x ,t)  for  some constant A > 0 or if  

7i(||a:(i)|| =  A;||o;||2/o r i  =  1,2,3 and for  positive constants i v ) either globally 

or locally exponentially stable with finite convergence time * /7 3 (||£(t)|| > AV p(x ,t)  

for  constants A > 0 and 0 < p  <  1.

The definition of the Lyapunov function candidate and the above fundamental 

theorem reveal the basics of the Lyapunov direct method. Indeed, looking into 

the recent advances in control theories and applications, most progress was made 

in state space with the Lyapunov direct method. It would be very meaningful to 

look into these control methods, henceforth derive the energy function based ILC 

(EF-based ILC).By incorporating EF-based ILC, it may be possible to prove the 

asymptotic eliminate of the tracking error.

The use of Lyapunov based approaches in analyzing dynamic stability has been 

discussed on many occasions in the literatures. In (Xu and Qu, 1998), the authors 

utilize a Lyapunov-based approach to illustrate how an ILC can be combined with 

a variable structure controller to handle a broad class of nonlinear systems. In 

(Ham et al., 2000), Lyapunov-based techniques are utilized to develop an ILC that 

is combined with a robust control design to achieve global uniformly ultimately 

bounded link position tracking for robot manipulators. The applicability of this 

design was extended to a broader class of nonlinear systems by (Ham et al., 2001). 

In (Dixon et a l ,  2002), a learning-based feedforward term is generated from a 

straightforward Lyapunov-like stability analysis, the control designer can utilize
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other Lyapunov-based design techniques to develop combined control schemes that 

utilize learning-based feedforward terms to compensate for periodic dynamics and 

other Lyapunov-based approaches to compensate for nonperiodic dynamics.

In (Jiang et al., 1995), the authors presents a repetitive learning control scheme and 

an adaptive repetitive control scheme for a class of nonlinear uncertain systems. 

The Lyapunov direct method is used to construct a sliding mode and a stabiliz

ing feedback controller for nonlinear uncertain systems where the upper bound of 

the uncertainties is known. The repetitive controller is designed using the idea of 

driving the state on to a sliding manifold. Asymptotic stability of an uncertain 

system under mild assumptions is guaranteed with the proposed repetitive learn

ing control. When the upper bound of the uncertainty is uncertain, an adaptively 

adjusted gain in the feedback controller ensures uniform boundedness of the sys

tem. The performance of this system is enhanced by learning control incorporating 

a forgetting factor. It is shown that the overall system is uniformly ultimately 

bounded without the knowledge of the size of modelling uncertainties and input 

disturbances.

In (Sun and Ge, 2004), the authors consider adaptive RLC for trajectory tracking of 

servo mechanisms, a special case of robotic manipulators. Lyapunov-like function 

has been used, through the introduction of this novel Lyapunov-like function, the 

proposed adaptive learning control only requires the system to start from where it 

stopped at the last cycle, and avoids the strict requirement for initial repositioning 

for each new cycles. Good performance of the system was attained, and the iterative
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trajectories were proven to follow the entire profile of the desired trajectory.
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Chapter 3

Learning Control for a Network  

R elated Application

3.1 P rob lem  defin ition

As was explained in the introduction, as a starting point in continuous-time Repet

itive learning control (RLC) it is assumed that a SISO model of the plant exists 

with a;(0) — xq, t  E [0, oo),

x( t) =  Ax(t ) +  Bu( t )
(3.1)

y(t) = Cx( t ) +  Du(t).

Furthermore, A, B, C  and D are finite-dimensional matrices of appropriate dimen

sions. From now on it is assumed that D  =  0, because in practice it is very rare to 

find a system where the input function u(t) has an immediate effect on the output
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variable y(t). Furthermore, a reference signal yd.it) is given, and it is known that 

ijd(t) =  yd(t +  T)  for a given T.  The control design objective is to find a feedback 

controller tha t makes the system in (3.1) to track the reference signal as accurately 

as possible, i.e., lim^oo e(t) = 0, e(t) =  yd(t) — y(t), under the assumption that 

the reference signal yd(t) is T-periodic. Note that the only difference between RLC 

and ILC problem focus on resetting: in ILC the state of the system is reset at the 

end of each period (iteration), whereas in RLC the state at the end of the previous

period is the initial condition for the next period. In order to start the analysis of

RLC systems, note that in the ILC framework a necessary condition for asymptotic 

convergence is that a controller

M u (t ) =  Ne(t),  (3.2)

where M  and N  are suitable operators, has to have an initial model or the reference 

signal inside the operator M.  Because yd(T) is T-periodic in RLC, in (Yamamoto, 

1993) it was suggested that one possible RLC algorithm could be

u(t) =  u(t — T) + e(t). (3.3)

3.2 N etw orks

Communication networks were introduced in digital control systems in the 1970's. 

At that time the driving force was the car industry. The motives for introducing 

communication networks were reduced cost for cabling, modularization of systems, 

and flexibility in system setup. Since then, several types of communication net-
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works have been developed. Communication protocols can be divided into field- 

buses, e.g., FIP and PROFIBUS, automotive buses, e.g., CAN, machine buses, 

e.g., 155313 and the IEC train communication network, general purpose networks, 

e.g.,IEEE LAN’s and ATM-LAN and a number of research protocol, e.g., TTP. 

Fieldbuses are intended for real-time control applications, but in some applications 

other networks may have to be used for control. For instance, if another network 

already is used for other functions it could be cost effective to use this network for 

control too. The fieldbuses are usually only made for connection of low-level de

vices. If high-level function, for instance, a work station, is to be connected, other 

networks may be more suitable. There is vast number of communication protocols 

and fieldbuses.

F o u n d a tio n  F ie ld b u s

The Foundation Fieldbus was developed by the organization Feildbus Foundation, 

a not for profit organization with over 100 member companies, including several 

major international automation companies. Foundation Fieldbus is released for 

two speeds, 31.25kbit/s,  and 1 Mbit/s.  A faster bus with bus speed 2.5Mbit/s,  

is announced. The low speed bus, 31.25Kbit /s ,  is intended for replacement of 

traditional 4 — 20mA analog signals, without chaning the wiring. Each bus can be 

built. Using a hierarchical network structure more devices can be connected.

Access to the bus is controlled by a centralized bus scheduler called the Link Active 

Scheduler (LAS). During configuration of the fieldbus all devices on the bus will 

inform the LAS which data it needs, and at which times the data is needed. During
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runtime the LAS will tell the devices to broadcast data simultaneously. Spare time 

is reserved in the schedule for unscheduled messages. A system global clock is also 

distributed on the fieldbus. The distributed clock will allow connected devices to 

know the time within 1 ms.

F a cto ry  In s tr u m e n ta tio n  P r o to c o l (F IP )

FIP was developed by a group of French, German and Italian companies. FIP uses 

a twisted pair conductor and the transmission speeds are from 31.25Kbit /s  up 

to 2.5Mbit/s ,  depending on the spatial dimension of the bus. For a transmission 

speed of 1Mbit/s  the maximum length of the bus is 500 m. The maximum number 

of nodes in a FIP network is 256.

In a FlP-network one node acts as bus arbitrator. The bus arbitrator cyclically 

polls all nodes in the network to broadcast its data on the network. The inactive 

nodes listen to the communication and recognize when data of interest to the node 

is sent. The FlP-network can be seen as a distributed database, where the database 

is updated periodically.

P r o c e ss  fie ld b u s (P R O F IB U S )

PROFIBUS was developed by a group of German companies and is now a German 

standard. A screened twisted pair is used as conductor. The transfer speed can 

be from 9.6Kbit/s  to 500Kbit/s.  The maximum length of the bus is 1200 m. Up 

to 127 stations can be connected to the network. PROFIBUS messages can be up 

to 256 bytes long. PROFIBUS is a token-passing network. The nodes are divided
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into active and passive nodes. The node which holds the token has the permission 

to send data on the network. The token is passed around in the network between 

the active nodes. Active nodes can transmit when they hold the token. Pasive 

nodes need to be addressed by an active node to be allowed to send data on the 

network.

C o n tro ller  a rea  n etw o rk  (C A N )

CAN was developed by the German company Bosch for the automation industry. 

CAN was one of the first fieldbuses and is now in use in cars from several manu

factures. CAN is defined in the ISO standards 11898 and 11519 — 1. The transfer 

speed on the bus can be programmed. The transfer speed can be 1 Mbit /s  if the bus 

is no longer than 50 m, and 500Kbit /s  if the bus is longer than 50 m. If the cable 

quality is low, as it can be in mass produced cars, the maximum transfer speed may 

be lower. There is no limit on the number of nodes. A node can start transmitting 

at any time if the bus is silent. If several nodes are trying to transmit, then an 

arbitration starts. The node trying to send the message with highest priority gets 

the right to use the bus. CAN-controllers can usually be programmed to cause an 

interrupt when a message is sent. This feature makes back-propagation of the size 

of the delay from controller to the actuator.

E th e r n e t

Ethernet is one of the most used local area network (LAN) technologies. It trans

mits data with the speeds 10Mbit /s  or 100Mbit/s.  Ethernet is not intended for
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real-time communications. However, the large number of installed Ethernets will 

make it attractive for use in real-time control systems. There is no central bus 

controller, instead Ethernet uses a bus access method called C S M A / C D ,  which 

means Carrier Sence Multiple Access with Collision Detection. This means that 

before sending to the network the station listens to the channel, and when the 

channel appears to be idle, then transmission starts. If several stations start send

ing to the bus, the collision is detected, and the colliding stations back off, and try 

a retransmission after a random wait. An almost unlimited number of stations is 

limited by the six bytes address. The first three bytes are used as a vendor ID, 

and the last three bytes are defined by the vendor, so every Ethernet interface has 

a unique address. An Ethernet frame, or packet, is between 64 and roughly 1500 

bytes in length.

3.3 N etw ork  Induced D elay  and Packet Loss

Network delays have different characteristics depending on the network hardware 

and software. The simplest mode of the network delay is to model it as being 

constant for all transfers in the communication network. This can be a good model 

even if the network has varying delays. Continuous-time network control systems 

(NCS) with time-delays are infinite dimensional systems. A finite dimensional 

description of the control loop can be formulated by sampling of the continuous-
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time process. Let the control system model be

x(t) = Ax ( t ) +  Bu( t ) +  v(t), (3-4)

where x(t) G R n, u(t) G R m and v(t) G R n. A  and B  are matrices of appropriate

sizes, u(t) is the controlled input and v(t) is disturbance with zero mean and

incremental covariance R v. The introduction of communication networks makes the 

analysis and control design more complicated than classical feedback loops. Two 

main issues occur in NCS. The first is the network-induced delays, called sensor-to- 

controller delay and controller-to-actuator delay, that occur while exchanging data 

among devices connected to the shared medium. Such delays, either constant or 

time varying, may destabilize the system, or degrade the performance of control 

systems designed without considering the delays. The second is that some packets 

not only suffer transmission delay but, even worse, can be lost in the transmission 

channel.

N etw o r k  In d u ce d  D e la y

Before we analysis the effect caused by the time delays and design a control law 

which can be used to reduce the effect and achieve the control objective, the general 

measure of the time delays should be known first. Fig.3.1 presents the distribution 

of the time delays when using UDP protocol in transmission. It can be seen that 

t  takes several values in the interval [0.15,0.17]. Usually the distributions can be 

explained in two directions: i ) S en sor  to  C o n tro ller  D e la y  When the

message is to be sent the bus can be idle or a message can be under transmission.
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Figure 3.1. The measured time delays when using UDP protocol in transmission

The probability for bus idle depends on the period of the load process. If the bus is 

busy we will get a nonzero r. The delay r  will be uniformly distributed from zero 

to the time it takes to send a message. ii) Controller to  A ctuator D elay  

The delay from controller to actuator can only take two values when we have one 

load process. The reason for this is that if there were a message waiting when the 

message was sent from the sensor, the transmission of the waiting message starts 

before the message to the actuator is ready for transmission. In this case, the delay 

until the transmission starts will be the time to transmit the load message. If there 

is no waiting message the message to the actuator will be sent immediately after 

some computation time in the controller node. For the case when the network 

induced delay r  is time-invariant and known, i.e., r  =  tq where r 0 is a constant, 

the controller design problem of NCSs has been investigated in (Park et al, 2002) 

(Kim et al., 2003). In our work the delay r  is assumed to be a constant.
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Effects o f Packets Loss

Packet loss occurs when the network is busy and under heavy load. We take the 

case of Sensor to Controller Delay as an example to discuss the effect of packets 

loss. Assuming an iterative learning control system is performing via a network 

and there is one packet lost at time t. In this case, the actuator side will not receive 

this packet. On the actuator side, since it is event driven, the packet sent at the 

time before t from the controller side will continue to be applied in the system until 

the next packet arrives. This can cause a system distortion because the actuator 

still use the input signal which actually comes from the previous time.

3.4 O bjective

When a system performs a given task repeatedly, iterative learning control (ILC) 

offers a systematic design that can improve tracking performance by iterations in 

a fixed time interval. The literature regarding ILC has been reviewed many times 

by researchers, and the idea of ILC is clearly applicable to the task of improving 

control performance from run to run. Some surveys can be found in (Moore et 

al., 1992) (Horowitz, 1993) (Moore, 1998). Another way to improve the track

ing performance of periodic systems is called repetitive learning control (RLC). It 

should be pointed out that the repetitive learning control, (Sadegh et al., 1990) for 

example, and ILC are similar in nature. However, the difference is that the ILC 

needs an initialization , i.e., the system should be started with the same initial
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condition at the beginning of each repetition, while RLC is supposed to track the 

periodical reference trajectory, i.e., the initial condition of current repetition is set 

to the terminal condition of the previous repetition (Dixon et al., 2002) (Wang et 

al,  2005). One of the advantages of RLC is that the system is not required to 

have the exact same initial condition after each learning trial; we have only the 

less restrictive requirement that the desired trajectory of the system be periodic. 

Some of the learning control research for nonlinear systems with time delays were 

performed in (Chen et al, 1998) (Song et al, 2001), but they did not consider 

compensating the effects caused by time delays. For nonlinear systems with input 

delay, (Pan et al,  2006a) proposed a sampled-data pervious cycle based learning 

control approach to deal with control problems when the environment is periodic 

over iterations in a finite interval. For the application of the repetitive learning 

control in nonlinear NCSs, to achieve tracking control tasks, no results have been 

available in the literature yet, which also motivates the proposed study of this 

thesis.

In summary, the objective of this project is to apply repetitive learning control to 

nonlinear NCSs to make the real system output track the periodic desired trajectory 

as closely as possible. The effect caused by the network-induced delays will be 

reduced so as to be as small as possible.

38

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C H A PT E R  3. LE A R N IN G  C O N TR O L  FOR A N E T W O R K  R E L A TE D  A P P L IC A T IO N

3.5 P rob lem  Form ulation

In an NCS with a continuous and nonlinear plant will be studied in this thesis. 

The plant contains two parts, which are called the ’’linear part” and ’’nonlinear 

part” . A repetitive learning control approach is proposed for the remote control 

nonlinear system satisfying the global Lipschitz condition. The proposed approach 

deals with the remote tracking control problem when the environment is periodic or 

repeatable over the infinite time domain. The network induced delay r  is assumed 

to be a constant, and is used in the predictor design.

Consider a class of nonlinear systems with input time delay,

x r ( t )  =  £ +  / p(x , t )  +  bpU p ( t  — r ) ,  p  = 1. • • • ,n , (3.5)

where x p is the state variable, f p (•) is a known nonlinear function, a pi and bp 

are known constants, and u p  is the control input variable, Vp, j  =  1, • • • ,n. The 

nonlinear system in (3.5) can be rewritten in the state space form as follows:

U l ( t )

1

H
*

1—
I

1

1

e

i

on n

®nl ' ' ‘ &r

an(f) f i (x ,  t )

+ +

x n(t) /n(x, t) 0 • • • bn un (t)

The equation in (3.6) can be written as:

x(f) =  Ax(f) +  f(x, t ) +  Bu( t  — r), (3.7)

where x(t) =  [xi, ■ ■ ■, x n]T € 9ft" is the state vector, u(f — r)  £ K" is the in

put vector and r  is the constant time delay from the controller to the actuator
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channel, t  € [iT, (i + 1)T] is the finite time for the \th periodic operation of the

system and T is the known period, i denotes the ith repetitive operation of the

nonlinear system. f(x, t) is a known function which is piecewise continuous in t. 

an ' ' '  a\n

A  = j : and B = diag(bi, ■ ■ ■, bn) are known matrices. The con-

a>n i ■' ■ ann
stant time delay r  is assumed to be known throughout this paper. In the following 

part, all discussions are based on the system dynamics in (3.7).

u ( t - T )
Actuator Nonline;

Systerr
 1  x(^) Sensor j‘

T ransm ission Channel

u(t) Repetitive
Learning

Controllei ■

u{t) X( / )

Figure 3.2. Block diagram of the controlled system

The block diagram of the control system in (3.7) is illustrated as in Fig.3.2. The 

sensor, actuator and the nonlinear system are remotely controlled by repetitive 

learning controller that interchanges measured output and control signals through 

a communication channel. Because network induced delays exist at both trans

mission channels, in order to reduce the effect caused by the delays, a predictor is

40

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



C H A P T E R  3. LE A R N IN G  C O N TR O L  FOR A N E T W O R K  R E L A TE D  A P P L IC A T IO N

designed on the controller side to provide the controller with the measured state 

information which can be treated as the estimation of the nonlinear system state. 

The controller will calculate the input value based on the information from both 

the predictor and the sensor.

The objective of the controlled system is to track the desired trajectory x d(t). The 

desired trajectory can be realized by the following dynamics of the form:

± d(t) = A xd +  f  (xd, t) +  B u d(t -  r ), (3.8)

where A, B and f  are as same as in (3.7). It means that x^(t) is realizable with a 

unique input bounded as ||ud(-)|| <  j3ud, where (3ud is a positive constant. Through

out this paper, the following assumptions hold.

A ssu m p tio n  3 .1 . The system  (3.7) is causal. Furthermore, for  a given bounded 

desired output x d, there exists a unique bounded input ufj, such that when u (t) =  

u d(t), the system has a unique bounded state x a ( t ), t  £ [iT , (i + 1)T].

A ssu m p tio n  3 .2 . The function f (x , t) is globally uniformly Lipschitz on the finite 

period [ iT , ( i+ l )T ]  as,

II f ( x i , t )  -  f ( x 2,f) ||<  If II Xi -  x 2 II, (3.9)

where If is a known constant.

A ssu m p tio n  3 .3 . The known function  f(-) has the following property,

| | f ( x ( t - t 0) , i - t 0) — f(x (t> ,t)|| <  c / | | x ( t - t 0) - x ( t ) | | ,  (3.10)

where Cf is a known constant.
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A ssum ption 3.4. The elements bi of the B  matrix, i =  1 , • • ■, n, are nonzero 

constants.

Lemma 3.1. Jensen Inequality (Gu et al., 2003) For any constant matrix E  G 

7Znxn, E  =  E T > 0, vector function  u; : [0, r] —> 7Zn such that the integrations 

concerned are well defined, then,

T / ujt (s)Euj(s)ds  >  / u)(s)ds
J o  {.Jo

E u>(s)ds
U o

(3.11)

In the following chapter, predictor design is first addressed since it plays an impor

tant role.

3.6 A pp lication  L im itations

Similarly to the work done by other researchers, the application in this project has 

its own limitations. These limitations are as follows. i) The application of 

repetitive learning control in this project can be only applied to periodic systems. 

i i) The network induced delay was assumed to be constant and known, while 

in real networks the time delays may be time-varying or distributed in a stable 

interval. Hi) The nonlinear system studied has limited forms, e.g., the known 

matrix B  is diagonal and the learning gain K  is designed to be diagonal too. The 

elimination or reduction of these limitations will be the main tasks of the future 

works.
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Chapter 4

Predictor Design

As discussed in Chapter 3, the controller design needs the instantly measured 

state information, we proposed a predictor in order to facilitate the controller de

sign based on the delayed signal from the sensor. Then predictor-based repetitive 

controller is designed to eliminate the effects caused by time delays at both trans

mission channels.

4.1 P red ictor D esign

Based on the delayed state signal available at the controller side, e.g. x(f — r), the 

predictor is designed to predict the state signal x(i +  r ) . We presents the predictor 

algorithm as follows:

x(i) =  Ax +  f (x, t) + Bu(t)  +  L[x(f — 2 r)  — x(£ — r )], (4.1)
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where x(i) € is the predictor state vector, f(-),A , and B  are the same as in 

(3.7). L is the predictor gain to be designed. x( t  — r)  is the measuered state of the 

nonlinear system transm itted from the sensor side. Prom (4.1), by the translation 

of r , we have

x.(t — t ) = Ax( t  — r)  +  f (x(t  — t) ,  t — r )  +  Bu( t  — r)  +  L[x(t — 3 r) — x( t  — 2r)],(4.2)

Denote x(t) =  x(t — r)  — x(t). Comparing (4.2) with (3.7), the error dynamics is 

as

x(t) =  Ax(t) +  f(t) +  Lx(t — 2t), (4.3)

where f (t) = f (x(t — r ) , t  — r) — f (x , t). In the following theorem, L  is designed 

according to the linear matrix inequality derived based on the Lyapunov Kravoskii 

method.

4.2 C onvergence A nalysis

Theorem  4.1. Consider the estimation error dynamics (4.3), for  a given time de-

P u  P 12
lay r ,  if  there exist symmetric positive definite matrices S  >  0, P  =

P\2 P22

>

Qn 0 R 11 0
0 , Q  = >  0, R  =

0 Q 22 1
CMO

1

> 0, matrices L, Mj, Ni, i =  1,..., 5, 

with appropriate dimensions and a scalar e >  0 such that the following inequality
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holds

H  M  

M t  - z l
< 0 ,

with

r, M f , M j, M5t ]t , and

#11 * * * *

h 21 #22 * * *

H  = #31 #32 #33 * *

h 41 #42 #43 #44 *

#51 #52 #53 #54 #55

(4.4)

(4.5)

#11 = Q11 +  #12

#21 - # lT2 + ^

#22 = s  -  m 2l  -

#31 = #11 +  #3 -

#32 = —#3 ~F iWj

#33 = Q22 +  M3

#41 = #22 +  #4 -

#42 = -#22 -  #

#43 = M4 +  #22,

#44 = #11 
2r  ’

#51 #5 -  #iT -

1T  71 j T

' T  n/rT
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H52 =  - m 5l - n 5 -

# 5 3 =  M 5 - N ? ,

# 5 4

1II

# 5 5 =  W,
2  r

then the system (4.3) is asymptotically stable, e.g. x(t) tends to zero asymptotically.

Proof. Consider the following Lyapunov Krasovskii functional candidate:

V  = xT(f)Pn x(t) +  2xT(t)Fi2[ f  x(s)ds] + [ f  x(s)ds]T P22 [ [  x(s)ds
J  t —2r J t —2r J t ~ 2 r

+  [  [ x T ( s )  +  XT(s)]T Q Jt-2r

x(s)

i ( s )

f  fJ —2r Jt+e
+ XJ» x  (s)]T  R

x ( s )

x ( s )

dsdO,

where

P  =
P li P12

p^ P22
> 0 Q =

Qu  0

0 Q22

> 0  R  =
R n  0 

0 R 22

With appropriate dimensions, the following two zero equations hold:

$1 =  2 { x (t) w  +  x  (t -  2 t ) N 2 +  X (t)N3

+{L 2 T
:(s)ds]TN4 + [ / x(s)ds]TN 5} • [ x ( £ )

' t —2r
rt

x(s)ds — x( t  — 2  r ) ]  =  0 ,
' t —2r

$2 =  2{xT(t)Mi +  x T(t — 2t ) M 2 +  x  (t ) M s  +

46
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[ f  x(s)ds]TM4 +  [ f  x(s)ds]T M 5}
Jt—2 t  Jt—2 t

•{x(f) -  Ax(t)  — [/ — /] — Lx(i -  2r)}  =  0. (4.9)

Then the derivative of the Lyapunov function candidate is as follows,

V  = V/  +  $1 +  $2 =  x T(t)Pn x(t) +  x T(t)Pn x(t)  +  2x.T(t)P12[ /  x(s)ds
J  t —2r

+2xT(f)-Pi2[x(t) -  x( t  — 2t)] +  [x(f) -  x(£ -  2t)]t P22 [  x(s)ds
J t—2r

+[ f  x(s)ds]TP22[x(f) -  x (i -  2r)] +  [xT(i) i T(t)]T Q.
J  t— 2 t

x(t)

x(f)

'[ x T(t — 2r)  xT(t — 2r)  F *3
x(f — 2 r) 

x(£ — 2t )

x(£) f t x(s)
+ 2 t [ x T(f) x T(f) ]T-ft ~  /  [ X T ( s )  X T ( s )  ]T - ^ ds

x ( t ) J t—2r x(s)

+2zTiV[x(f) — / x(s)ds — x( t  — 2r)] +  2zTM[x(£) — Ax(£) — f(t)
J  t—2r

-Lx.(t — 2 r)],

(4.10)

where

z -  [ x t (£ )  x t ( £ - 2 t )  x T (£ )  [ / / _ 2 t  x ( s ) d s ] T  [ / / _ 2 t  x ( s ) d s ] T ]T

N  = [NT N'T N T N T  N T V  > M =  [M T M T M T M l  M T f  •

Furthermore, we have

—2zTM f <  £ ~ 1( z t M ) ( M t z )  + efTf  < £^1{zTM M Tz) +  £CjxT (t)x(t) . (4-11)
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U s i n g  ( 4 . 1 0 ) ,  ( 4 . 1 1 )  a n d  t h e  J e n s e n  i n e q u a l i t y  i n  ( 3 . 1 1 ) ,

V  <  x T ( t ) P n x ( t )  +  x T ( t ) P n x ( t )  +  2 x T ( t ) P 1 2 [ f  x ( s ) o f s ]
J  t —2r

+ 2 x T ( t ) P i 2 [ x ( t )  -  x ( t  -  2 t ) \  +  [ x ( f )  -  x ( t  -  2 r ) ] T P 22 [  x ( s ) d s
J  t —2r

x ( £ )  

x ( £ )

+  { J t 2 x ( s ) d s ] T P 2 2 [ x ( t ) - x ( t - 2 r ) ] +  i T ( t ) ] r  <2

[ x r (£ — 2 t ) x T (£  — 2 r )  ]T (2

x ( t  — 2  r )  

x ( t  — 2 t )

+ 2 t [  x T ( t )  x T ( i )  }T R

x ( £ )

x ( i )

[  [ X r ( s )  X T ( s )  ]T -R

1 
1 

1
 

1

+ 2 Z T i V [ x ( £ )  — f  5 t ( s ) d s  — x ( f  — 2 r ) ]  +  2 z T M [ x ( f )  — A x ( t )  +  L x ( £  — 2  r ) ]
J t - 2 r

+ £ - 1( z t M M t z )  +  £ C 2f x T ( t ) ± ( t )

~ T  = X ( £ ) P n x ( £ )  +  x T ( i ) P n x ( i )  +  2 x T ( £ ) P i 2 [ f  x ( s ) < i s ]
J  t —2r

+ 2 x T ( £ ) P i 2 [ x ( i )  -  x ( t  -  2 r ) ]  +  [ x ( t )  -  x ( £  -  2t)]t P22 f  x ( s ) d s
J  t —2r

x ( £ )
+  [ /  x ( s ) d s ]  P 2 2 [ x ( i ) - x ( £ - 2 r ) ] +  [ i T (£ )  x  ( t ) ] T  Q

t —2r
X (*)

[ x r (£ — 2 r )  x r ( t  — 2 r )  ]T Q

x ( £  — 2 r )  

x ( f  — 2 r )

+ 2 r [  x T ( t )  i T ( t )  ]T i i

1 
1 

1 

1 
1

— [  [ x T ( s )  x T ( s )  ]T - ^
J t - 2 r

1 
1 

! 
1

ds

+ 2 Z T i V [ x ( £ )  — f  5 t ( s ) d s  — x ( t — 2 r ) ]  +  2 z T M [ x ( t )  — A x ( t )  — L x ( £  — 2 r ) ]
J  t —2r

+ £ ~ 1( z t  M M t z )  +  s C 2i t T  ( t ) S t ( t )  +  x T ( i  — 2 r ) S ' x ( £  — 2 r )
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—x T(i — 2 r )S x ( t  — 2 r)
pt

< xT(t)P nx(t) +  x T(t)Pn x(t) +  2xT(i)Pi2[ /  x(s)ds]
' t —2 r

+ 2xT(t)P12[x(t) — x(£ — 2r)] +  [x(t) — x(£ — 2r)]TP22 f  5t(s)ds
J  t —2r

rt 

U-2r
+  [ I ±(s)ds]TP22[x(t) -  x(t -  2r)] +  [xT(t) i ’J (i)]T <5

x(f)

x(t)

-xT(t -  2r)(2 n x (t -  2r)  +  2r  £ T(i)]r
x(i)

x(t)

1
2r

/ x(s)<P 
J t - 2 r

R 5c(s)ds
.Jt—2r

+ 2zTAr[x(t) — /  x(s)ds — x (t — 2r)] +  2zTM[x(t) — Ak(t) — Lx(t — 2t )\
J  t —2r

+e~1(zt M M t z) +  eCj'k7'(t)x(t) + x T(f — 2 r )S ’x( t  — 2 r)

—x T(t — 2r)P x (t — 2r)

< —xT(t — 2r)<Sx(i — 2r) +  zTH z  +  e~1(zTM M Tz), (4-12)

where S  is a symmetric definite matrix and H is as shown in (4.5). The inequality 

(4.12) is equivalent to

V  <  —xT(f — 2r)SSt(t — 2r) +  : z. (4.13)
H  M

M t - e l

If there exist symmetric positive definite matrices S  > 0, P  >  0, Q > 0, R  > 0, 

matrices L, Mi, Ni:i =  1, ...5, with appropriate dimensions and a scalar e >  0 such 

that the inequality (4.4) holds, then from (4.13) we have

V  < —5tT(t — 2r)S’k( t  — 2r)  <  0. (4.14)

Since S is a positive symmetric definite matrix, from the Lyapunov stability theory,
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the system (4.3) is asymptotically stable. □

In the steady state, the predictor can estimate the future state of the nonlinear 

system, e.g. x(i) =  0 =$■ x (i — r)  =  x(t). Hence the output of the predictor is as 

x(t) =  x ( t+ r) , which can be used to design a repetitive learning controller to realize 

the control objective. However, if we design a predictor to achieve x(i) =  x(f) of 

the the current time stamp instead of the future information, then the controller 

will not be able to compensate the influence of the time delay r  in the channel 

from the controller to the actuator.

The LMI condition in (4.5) is non-convex and hence the following theorem is pro

posed to be the equivalent sufficient condition as in Theorem 1.

T h eo rem  4.2. For given scalars 0i; i = 1, • • •, 5, and a given time delay constant

P i 1 P 12
t ,  i f  there exist symmetric positive definite matrices S, P

PL P v

> 0 ,

Q 11 0

1
Oin;

t

Q  = > 0, R  =
0 Q 22 0 R 22

> 0, matrices Y ,  Ni, i = 1, • • •, 5,

nonsingular matrix X  with appropriate dimensions and constant e > 0 such that 

the following inequality holds,

# 1 1 * * * * * *
# 2 1 # 2 2 * * * * *

# 3 1 # 3 2 # 3 3 * * * *

# 4 1 # 4 2 # 4 3 # 4 4 * * *

# 5 1 # 5 2 # 5 3 # 5 4 # 5 5 * *

Oil 021 031 04,1 6*51 -el 0

£ C f X T 0 0 0 0 0 —el

< 0, (4.15)
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where

#11 = Q11 +  #12 +  P\2  +  t R u +  t R

#21 = P12 +  #2 -  02A X t  -  N ?  -

#22 = S - e 2Y -  o2y t  - n 2 -  N j  -

#31 = #11 +  #3 -  93A X T + 91X,

#32 = - N 3 + 02X -  93Y,

#33 = Q22 +  93X  +  93X t  +  2 t  # 22,

#41 = #22 +  # 4 -  9aA X t ,

# 4 2 = - # 22 -  # 4  -  04Y,

# 4 3 = 9ax t + # r 2 ,

# 4 4 =
#11 
2 r  ’

# 5 1 = # 5  -  i V f  -  M * T ,

# 5 2 = - 0 5F  -  # 5  -

# 5 3 = -  # 3T,

# 5 4 = - # 4T,

# 5 5 =

"T a v aT

then matrices L and S  in Theorem 1 is obtained as

L = Y X ~t , S  = X ~ l S X ~ T. (4.16)

As a result, the error dynamics (4.3) is asymptotically stable, e.g. 5c(t) tends to 

zero asymptotically.
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P roof: In order to transform the nonconvex LMI in (4.5) into a solvable LMI, 

(4.5) could be represented as the following form by schur complement,

H u  -  £CfI * * * * * *

H u # 2 2 * * * * *

HZ1 # 3 2 # 3 3 * * * *

# 4 1 # 4 2 C
O # 4 4 * * *

H u # 5 2 # 5 3 # 5 4 # 5 5 * *

M x m 2 m 3 m 4 m 5 - e l 0

ecf X T 0 0 0 0 0 - e l

we assume that we have some relations in Mi s, i =  1, ■ • -, 5. One possibility 

is that Mi = 6iM0 where M0 is nonsingular and 9.t is known and given. Define 

X  = M q 1, W  = diag(X, X , X , X , X , I, I)  and Y  =  L X T. Then by pre-multiplying 

the inequality in (4.17) by W  and post-multiplying by W T, we can obtain the 

inequality (4.15). Note that the inequality in (4.15) is only a sufficient condition 

for the solvability of (4.5) based on the derivation.

In the next Chapter, the problem of the repetitive learning controller design will 

be discussed, the stability analysis using Lyapunov direct method will also be 

presented.
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Chapter 5

R epetitive Learning Controller 

D esign

In this chapter, a repetitive learning controller is designed to achieve the control 

objective, the stability has been analyzed using Lyapunov direct method.

Notation: ||x|| is the norm defined as || • || =  V xTx, where x  is a vector.

5.1 R ep etitiv e  Learning C ontroller D esign

The repetitive learning controller is designed for the periodic control task of the 

nonlinear system (3.7) as follows:

u(t) =  u(f — T) +  Ke(t),  (5.1)
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where u(t) is the current new control input, u (t—T)  is the known control input from 

the previous cycle, K  is the repetitive learning gain, and e(t) =  x d( t+ r ) — x(f) is the 

current cycle error, obtained by comparing the desired output and the predicted 

state signal. Here the current tracking error is used for the repetitive learning 

scheme, u (t — T)  then can be written as:

u(t — t ) = u(t — T  — r)  +  K e(t  — r). (5.2)

If the error e(t — r)  tends to zero when t tends to infinite, the system state x(i) 

will track the desired output trajectory x d(t) perfectly. The convergence property 

of the closed-loop learning system is analyzed in the following theorem.

5.2 S tab ility  A nalysis

T h eo rem  5 .1 . Consider the system (3.7) with the predictor (4.2) and under the 

repetitive learning control law in (5.1), it satisfies that

lim e(t — r)  =  0. (5.3)t—>00

Since limt^ 00x(t) =  0, and e(t) = x<*(i) — x(t) =  e(t — r) +  x(i) — >• 0, we have 

lim^oo e(t) =  0.

Proof. Translating (3.8) by time delay r ,

+ t ) =  Axd(t +  t ) +  f (xd(t + r ) , t  + r) + B u d(t), (5.4)
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The current tracking error of the estimated state e(t) is represented as

e(t) = x d(t +  r)  - x ( f ) .  (5.5)

Consider the predictor in (4.1), the error dynamics can be represented as

e(t) = k d(t +  r)  -  x (t)

=  Ax.d(t +  t ) +  f(x d(t +  r ) , t  +  r)  +  B u d(t) -  {Ax(t)  +  f(x ,t)  +  Bu(t)  

+L[x(f -  2r)  -  x(f -  r)]}

=  A x d(t + r ) +  f (xd(t +  r ) , t  + t ) +  B u d(t) -  Ax(f) -  f(x ,t)  -  £?u(t)

—L[x(f — 2 r) — x(t — t)]

=  A[xd(t +  t ) -  x(t)] +  f(x d(f +  r ) , f  T r )  -  f(x (f),t) +  £ [u d(f) -  u(t)]

—L[x(t — 2r) — x(t — r)]

=  Ae(t) +  f (xd(t +  t ) ,  t +  r)  -  f  (x(t), t) +  B[ud(t) -  u (t)]

—Lx(t — r). (5-6)

From the error dynamics in (5.6) and the repetitive learning control law in (5.1),

u ( t - T ) - u d(t) =  [BTB]~1B T [Ae(t) +  f(x d(t + r ) , t  + r) -  f(x (t),t)

-B i f e ( i )  -  e(i) -  Lx(t -  t )]. (5.7)

Shifting (5.7) with the time delay r , the equation in (5.7) can be represented as

u  ( t - T - r ) -  u  d(t - r )  =  [BT B]~l B T [Ae(t -  r)  +  / ( x d(t), t)

—f( x ( t  — r ) , t  — t ) — B K e ( t  — r)

—e(t — t ) — Lx(t — 2r)]. (5-8)
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Define the Lyapunov function candidate as follows:

J =  f  ||u(s -  r) -  u d(s -  r)\\2ds + V. (5.9)
J t - T

Differentiating J  with respect to time t, using equations (5.2), (5.8) and u d(t — T  —

r ) =  Ud(t — r ),we have

j  =  \\u(t — r )  -  u d(t -  r ) | | 2 -  | |u ( t  — T  — r )  -  u d(t -  T  -  r ) | | 2 +  V

=  [u(t -  t ) -  u d(t -  r ) ]T [u(t -  r )  -  u d(t -  r)]

- [ u  (t - T  - t ) -  u  d(t - T  -  r)]T[u(t -  T  -  r) -  u  d{t — T  — t )\ + V

= [u(t - T  - t ) -  u d(t -  t )  +  K e(t  -  r)]T [u(t -  T  -  t ) -  u d(t -  t )

+ K e(t -  r)] -  [u (t - T  - t )  -  u  d(t -  T  -  r)]T[u(t -  T  -  r) 

- u d( t - T - r ) ]  + V  

= [u(t -  T  -  t )  -  u d(t -  t )  +  K e(t  -  7-)]r [u(t -  T  -  r)  -  u d(t -  r) 

+ K e(t -  r)] -  [u(t -  T  -  r )  -  u d(t -  r)]T[u(t -  T  -  r)

- u d(t -  r)] +  V

= [u(i -  T  -  t ) -  u d(t -  r)]T[u(t -  T  -  t ) -  u d(t -  r)  +  K e(t  -  r)]

+ [Ke(t -  t )]T[u(f -  T  - t )  -  u d(t -  t )  +  K e(t -  r)]

- [ u  (t - T - t ) -  u  d(t -  r)]T [u(t - T - t ) -  u  d(t -  r)] +  V. (5.10)

From (5.10) we have

j  =  [ u ( t - T  -  t ) - u d(t -  r)]T[ u ( t - T  -  t )  -  u d(t -  t )  + K e( t  -  t )

- u  (t -  T  -  r)  +  u  d(t -  r)] +  [Ke(t -  r)]T [u(t - T - t ) -  u  d(t -  r) 

+ K e(t — t)] +  V
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= [u(t - T - t ) -  u d ( t  -  r  ) ] T [ K e ( t  -  r ) }  +  [ K e ( t  -  r)]T[u(f - T - t )

- u d ( t  - r )  +  K e ( t  - t )]  +  V  

=  [ K e ( t  -  t  )]T{[u(t - T - t ) -  u  d ( t  -  r ) ]  +  [u ( t  - T - t ) -  u  d ( t  -  t )

+ K e ( t  — r ) ] }  +  V

=  2  e T ( t  — T ) K T [ u ( t  — T  — t ) — u  d ( t  — r)] +  e T ( t  — t ) K t  K e ( t  — t ) +  V  

=  2 e T ( t  -  T ) K T [ B T B ] ~ 1B T [ A e ( t  -  r )  +  f { x d ( t ) , t )  ~  f ( * ( t  -  r ) , t  -  r )  

— B K e ( t  — r ) — e ( t  — r )  — L x ( t  — 2  r ) ]  +  e T ( t  — t ) K t K e ( t  — t ) +  V  

=  2 e T ( t  -  T ) K T [ B T B } - 1B T A e ( t  -  t ) +  2 e T ( t  -  t ) K t [ B t B ] ~ 1B T  

[ f M t ) , t )  ~  / ( x ( i  -  r ) ,  t  -  r ) ]  -  e T ( t  -  t ) K t K e ( t  -  t )

— 2  e T ( t  — t ) K t [ B t  B ] ~ 1 B T e ( t  — r )  — 2 e T ( t  — T ) K T [ B T B ] ~ 1 B T L 5 t ( t  — 2 r )  

+V. (5.11)

Consider Assumption 3, (5.11) becomes the following inequality

j  <  2 e T ( t - T ) K T [ B T B ] - 1 B T A e { t - T )  +  2 c f \ \ K T [ B T B ] - 1 B T \ \ \ \ e ( t - T ) \ \ 2 

— e T ( t  — t ) K t  K e ( t  — r )  — 2 e T ( t  — t ) K t [ B t  B ] ~ 1B T e ( t  — t )

- 2 e T ( t  -  T ) K T [ B T B } ~ 1B T L ± ( t  - 2 t )  +  V  

=  — e T ( t  -  t ) { K t K  -  2  K t [ B t B ] - 1 B t A  -  2 c f \ \ K T [ B T  B ] ~ 1 B T \ \ I } e { t  -  r )  

—2 e T ( t  — T ) K T [ B T B ] ~ 1B T e ( t  — t ) — 2  e T ( t  — T ) K T [ B T B ] ~ 1 B T L x ( t  — 2  r) 

+V. (5.12)

Note that the following equation holds,

2 e T ( t  -  t ) K t [ B t B ] _ 1 B T L x ( t  -  2 r )
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= [x ( i  — 2 r )  +  e(t — t)]t K t [Bt B\ 1 B t  L[5t(t — 2t) + e(t — t)\ 

- i T(t -  2T)K T[BTB }-1B TLx(t -  2r)

- e T(t -  r ) K T[BTB ]-1B TLe(t -  r).

Substitute (4.14) and (5.13) into (5.12), we have

j  <  - e T( t - r ) { K TK - 2 K T[BTB ]-1B TA - 2 c f \\KT [BTB ]-1B T \\I

- K T [BTB ]-1B TL}e(t -  r )  +  x T(t -  2 t )K t [Bt B]~1B TLx{t -  2r)

— [x(t — 2  r )  +  e(t — t ) ] t  K t  [Bt  B\~l B T L[x(t — 2  r )  +  e(t — r ) ]  

—2eT(t -  r ) i i f r [ B T B ] “ 1B T 4 ( i  -  r )  +  V"

< —eT(t -  t ) { K t K  -  2K T[BTB}~lB TA -  2cf \\KT[BTB)~1B T \\I 

- K T[BTB ]-1B TL}e(t  -  r )  -  5cT(t -  2 r ) [ S  -  K T [BTB]~l B TL]±{t

— [5c(t  — 2  r )  +  e(t — r)]T K T [BT B]-1 B T L[5c(t — 2 r )  +  e(t — r ) ]

- 2 eT(t -  t ) K t [BTB]~l B Te(t -  r).

If we select K such that

D x = K TK - 2 K T [BTB ]- lB TA - 2 c f \\KT [BTB ]-1B T \ \ I - K T{BTB ) - 1l  

D2 = K t [Bt B}~1B t L >  0 

D3 = S  — K t [Bt B ]-1 b t l  > 0 

Da =  K t [Bt B}~1B t  > 0,

and Da is positive symmetric definite. Then (5.14) becomes

j  <  —eT(t — r)Dxe(t — r) — 2eT(t — r )D 4e(t — r ) .
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Because the following equation holds

2 eT(t — r)D 4e(t — r) =  eT(t — r )D 4e(t — r)  +  e(i — t )t  D4e(t — r)

=  d[eT(s — r)D 4e(s — r)]/ds. (5.16)

Then substituting (5.16) into (5.15), integrating on both sides of (5.15) yields

Jds < — f ^ e T(s — r)D ie(s  — r)ds — f £ l  ■ d[eT(s — r)H 4e(s — r)]. (5-17)

Then (5.17) becomes

J ( t ) — J(T) < — f ^ e T(s — r)D ie(s  — r)ds  — eT(s — r)D 4e(s — r) |^ . (5.18) 

From (5.18) we have

min(A(H1)) f  ||e(s — r)\\2ds < f  eT(s — r)D ie(s  — r)ds  
J t  J t

< J(T)  +  eT(T — r)D 4e(T  — r). (5.19)

Based on Barbalat’s Lemma (Narendra and Annaswamy, 1989), we have

lim e (t  — r) =  0. (5.20)t—*OQ

□

R em a rk  5 .1 . As shown in the proof of Theorem 5.1, the learning gain K  is de

signed based on the following condition:

D 1 = K t K  -  2K t [Bt B]~1B t A  -  2cf \\KT[BTB }-1B T \\I -  K T[BTB]~1B TL > 0, 

D 2 = K t [Bt B ]-1B t L > 0,

D3 = S  -  K T [BTB]~1B TL > 0,

D4 = K t [Bt B)~1B t  > 0, 

and D4 is a symmetric matrix.
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In the next Chapter, simulation results will be shown to demonstrate the effective

ness of the proposed approach.
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Chapter 6

Sim ulation R esults

Consider the following nonlinear system which is controlled through some network:

Xl(t) - 6  3 Xl (t)
= +

£2 00 3 - 9 x 2(t)

0

— sin(xi(t))

with x(0) =  [0.5, 0.5]T. The desired trajectory is given as

+
1 0 

0 1
u ( t - r ) , ( 6 .1 )

Xdl(t) 2 sin

Xd2{t) 3 cos 11

The predictor is designed as follows

Xi (t) - 6  3 x x (t)
+

0
+

1 0
u

x 2(t) 3 - 9 x2(t) — sin(xi(t)) 0 1 (6.3)

+L x(t -  r), 

where

L = Y X - t  =

(6 .2)

- - - - - T - -

1.5234 0.0062 0.4206 0.1450 4.4143 -2.2988

0.0062 1.5172 0.145 0.2756 -2.2988 6.7173
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Figure 6.1. The profiles of the maximum estimation error versus time: (a) x \  ( t  — 

t )  v s  x i ( t ) ;  (b) x 2 ( t  — t )  v s  x 2 { t ) \  (c) e \ { t )  =  x x { t  -  r)  -  xi(t); (d)

e 2 { t )  = x 2 ( t - r ) -  x 2 ( t )

is the solution from (4.16) in Theorem 4.2, x(f — r)  =  x(t — 2r) — x (t — r) and 

x(0) =  [1,1]T. X  and Y  are matrices defined in Theorem 4.2, the values of X  and 

Y  are obtained by using the LMI toolbox of MATLAB.

In this simulation, the input time delay r  is 0.2 seconds, and the sampling time Ts 

is 0.005 seconds. The repetitive learning controller can be designed as in (5.1); it
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Figure 6.2. The evolution of a;d(i) and x(t): (a) xdi(t) vs xi(t); (b) Xd2(t) vs

x 2(t)] (c) xdl(t) -  (d) xd2(t) -  x 2(t)

is as follows

Z d i ( * +  t ) - x i ( t )

Xdnit + r) - x 2(t)
u  (t) =  u  ( t - T )  + K (6.4)

where the control gain K  is designed to satisfy the condition in Theorem 5.1. In

1.5 0
this simulation, the control gain is K  =

in Remark 1. Note that S  =

0 1.5

20.2006 -2.3767

-39.3153 41.0466

which satisfies the conditions
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Figure 6.5. The evolution of the maximum tracking error e(t) versus repetition 

number

The profiles of the estimation error in Fig.6.1 show that the predictor’s output 

converges to the system state. Fig.6.1.(a) and Fig.6.1.(b) show the profiles of the 

predicted state and the real nonlinear system state. It is straightforward to observe 

that the states x(i) and x(t +  r)  are identical after a very short time which means 

that the predictor can predict accurately for the nonlinear system. As shown in 

Fig.6.1.(c) and Fig.6.1.(d), the difference between x(t) and x ( t+ r )  starts becoming 

zero in less than one second. This good performance is due to an appropriate design 

of L.

The evolutions of the desired trajectory x d(f) and the system state x(t) are shown 

in Fig.6.2. It is obvious that the system output converges to the desired trajectory. 

The system output starts tracking the desired system output perfectly in a short
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time. From the results, the original control objective has been achieved. The good 

performance shown by the system is due to the proper design of the learning gain 

K.

The evolution of the maximum estimation error x(t) is shown in Fig.6.3. From 

the figure, it is clear that the trend of x(t) converges to zero asymptotically as the 

number of repetitions increases, which further illustrates the results in Theorem

4.1.

The evolution of the maximum learning error e(t) is shown in Fig.6.4. From the 

figure, it is clear that the trend of e(t) converges to zero asymptotically as the 

number of repetitions increases, which further illustrates the results in Theorem

5.1.

Fig.6.5 shows the tracking error between the nonlinear system and the desired 

trajectory. As shown in the figure, the trend of the tracking error converges to zero 

asymptotically as the number of repetitions increases. This result demonstrates 

the efficiencies of the controller and the predictor designed in this paper to achieve 

the control objective.
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Chapter 7

Conclusions and Future Work

This thesis mainly dealt with periodic tracking control problems for nonlinear re

mote control systems while there are transmission delays in the two communication 

channels: from the controller to the actuator and from the sensor to the controller. 

Since there exist time delays, the effect of the delays could cause the system to be 

unstable. In order to solve the problem caused by time delays, in Chapter 4 a pre

dictor is designed on the controller side, to predict the future state of the nonlinear 

system based on the delayed measurements from the sensor. The convergence of 

the estimation error of the predictor is ensured. The gain design of the predic

tor applies linear matrix inequality - LMI techniques developed by the Lyapunov 

Kravoskii method for time delay systems. In Chapter 5 the repetitive learning 

control law is designed, based on the feedback error from the predicted state. The 

proof of the stability is based on a constructed Lyapunov function related to the 

Lyapunov Kravoskii functional used for the proof of the predictor’s convergence.
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The techniques are applied to a simulated example, in which the tracking error 

converges to zero asymptotically due to the proper design of the predictor and the 

controller. Note that the Lyapunov method and LMI techniques play important 

roles in ensuring the convergence and performance of the resultant closed-loop 

system.

Future work will be focusing on the exploration of the application of the learning 

control theories to a more general networked control environment.

This work carried out in this thesis has generated several problems for future work. 

i) More complicated situations with respect to the time delay r  will be considered 

in the application of learning control theories to networked control environments, 

in order to consider more realistically properties of real network induced delays. 

The effect caused by the packet loss will also be considered, i i) Other common 

models of system plants will be studied. New learning control algorithms will be 

required to make the systems get good performance, in) A real hardware-based 

remote control environment will be set up. The theorems proved in our research 

will be applied to the real environment, so that the results show us whether the 

theorems can provide us with good performance in practice.
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A ppendix Definitions

D efinition .1. A continuous function 7 : R + —>• R + is a class K  function 2/ 7 ( 0 )  =  

0 and if  it is strictly increasing. It is said to belong to class K i f  7 (p) —> 00 as 

p —> 00.

D efinition .2. T function V: R n x  R  R + is called locally positive definite if 

there exists a class K  function 71: R + —> i?+ such that, for some neighborhood 

of the origin C i?n,7i(||rr(t)||) <  V(x(t ) , t ) ,  V(x,t) G O x R +. Function V  

is said to be locally decrescent i f  there exists a class K  function 72: R + —» R + 

such that, for some neighborhood of the origin Cl C R n, V(x( t ) , t )  < 72(||^(^)||), 

\/(x,t) E ri x R +. The word ”locally” is replaced by global ifCl = R n. Function V  

is radially unbounded i/7 1  is a class Koo function.

Definition .3. A function V  : R n x R  —> R + is a Lyapunov function candidate 

if  it is continuously differentiable and if  i) For concluding stability, V(x,  t ) is 

positive definite, ii) For concluding uniform asymptotic stability or exponential 

stability or uniform boundedness or uniform ultimate boundedness, V(x,t) is positive 

definite and decrescent. Hi) For concluding global stability, V(x,  t ) is globally 

positive definite and radially unbounded, iv ) For concluding global and uniform 

asymptotic stability or global exponential stability or global uniform boundedness or 

global uniform ultimate boundedness, V(x, t )  is globally positive definite, globally 

decrescent, radially unbounded.

D efinitions about norm Consider a matrix mapping L : R n —» R n. The space of 

R n can be equipped with several different norms. The most frequently used norms
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are l\ — norm, l2 — norm  and l00 — norm  defined, respectively, by the equations

l lw|!i =  E ? . i  M

Ikfc = vSE ~K F (-1)

H a l l o o  =  m a x j g /

where I  is the index-set I  = 1, 2, . . . ,  n, v E R n and arbitrary, and v =  [vi,v2, ■ ■., n]T. 

The corresponding operator norms for L  become

| |T | | i  =  m a x jG/  E I L i l ^ l

\\L\\2 = crmax(L) (-2)

Halloo =  maxie7 E "=  1 \L ij\-

where crmax(L) is the largest singular value of L. Note tha t frequently ||T||oo 7= 

||L ||2 7̂  ||L ||i, and consequently it has to be always made clear which particular 

norm is being used to measure the convergence properties of the algorithm.
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