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Using Computer Vision Techniques on CT Scans to Measure Change in Ventricular 
Volume to Aid in Diagnosis of Hydrocephalus

Zhengyan Sun 
Date of submission: March 28, 2005

Abstract

Hydrocephalus causes the size of the cerebral ventricles to change. Current subjective 
assessment of ventricles by neuroradiologists and neurosurgeons has limited accuracy, 
because of the complex shape of the ventricular system.

To calculate the volume of the ventricles, an algorithm (CSV) which combined 
segmentation and volume calculation was developed. The ventricles of a CT scan of the 
head were segmented and their volumes were calculated. The segmentation method was 
tested on 15 clinical cases and the similarity index was above 0.7. The volume calculation 
algorithm was tested on both analytical and physical phantoms. The accuracy of the 
volume was controlled within an error of 5 %. Finally CSV was tested on 8 more clinical 
cases where the patient had been imaged on two occasions and the outcome diagnosis 
was known. A volume change of less than 5% in the normal cases and greater than 20% 
in the cases diagnosed with hydrocephalus was calculated. This shows our algorithm 
(CSV) is capable of distinguishing hydrocephalus.
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Chapter 1

Introduction

Hydrocephalus literally means “water head” or “water on the brain” . It is best defined 

as an excessive accumulation of cerebrospinal fluid (CSF) within the  brain and cranial 

cavity [36]. In almost every instance, under absorption of CSF, which is brought on 

by obstruction of the venous return, seems to be the cause of hydrocephalus. An 

obstruction of the CSF pathway is the true cause of hydrocephalus since it causes 

the whole ventricular system to be dilated. Hydrocephalus may be present at birth  

or develop in early infancy, but usually appears in childhood. Hydrocephalus in 

childhood has a significant mortality rate. The clinical approach to  hydrocephalus is 

early identification and treatm ent thus minimizing the disability which is a ttributed  

to the distension of the CFS spaces.

Hydrocephalus causes the shape and size of the cerebral ventricles to  change. Ac­

curate assessment of the volume of cerebral ventricles on computed tomographic (CT) 

images of the brain is an im portant and as yet unsolved problem in neuroradiology.

1
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Subtle changes in ventricular volume occur early in the development or progression 

of the disease. Current subjective assessment of ventricles by neuroradiologists and 

neurosurgeons has limited accuracy, because of the complex shape of the ventricular 

system. Differences in the angulation of slices from one study to the next, also makes 

direct visual comparison of serial imaging studies difficult. Our research is focused 

on calculating the volume of the ventricles. The goal of this thesis was to  develop a 

computer vision tool to aid the doctor in the diagnosis of hydrocephalus. This the­

sis investigates the use of computer vision techniques to  calculate and compare the 

volume of the  ventricles from a complete set of CT scan slices taken at two different 

times.

There are two main phases in this thesis: segmentation and volume calculation. 

Segmentation methods were applied to  extract the ventricle from the CT image of the 

head. Volume calculation methods were used to  calculate the volume of the ventricles 

once they were segmented from the whole set of data.

Many segmentation methods were investigated and an appropriate m ethod was 

selected for the application. Based on the characteristics of the CT images, thresh­

olding and region growing methods were choosen. Since sometimes the two sets of 

data taken a t two different times are slightly different because of a small change in 

the position of the pa tien t’s head, registration was necessary before segmentation. In 

order to increase the accuracy of the segmentation methods, methods to  reduce the 

partial volume effect were implemented. To verify the segmentation algorithms, 15 

sets of clinical CT scan images were tested and the similarity index was calculated

2
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to  be above 0.7. The volume calculation algorithm (CSV) was tested on an analyt­

ical phantom  and created physical phantoms and the accuracy of the volume was 

controlled within an error of 5%. Finally CSV was tested on 8 more clinical cases 

where the patient had been imaged on two occasions and the outcome diagnosis was 

known. CSV showed a volume change of less than  5% in the  normal cases and greater 

than  20% in the cases diagnosed with hydrocephalus. This shows th a t our algorithm 

(CSV) is capable of distinguishing between the normal and diseased cases th a t were 

tested.

This thesis is organized as follows. In chapter 2, the existing literature on seg­

mentation, partial volume effects, registration and volume calculation algorithms is 

surveyed. In chapter 3, the background theory of our algorithms is provided. Chap­

ter 4 describes the detailed methods used in these algorithms. Chapter 5 presents 

the results when the algorithms were tested on analytical phantoms, physical phan­

toms and clinical data. Chapter 6 gives our conclusions and Chapter 7 contains the 

suggestions for future work.

3
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Chapter 2

Background

As our m ethod of calculating the volume of the ventricles involves segmentation, 

registration, partial volume effect and volume calculation, the current literature on 

these techniques is first reviewed.

Since the application of these techniques to  the calculation of the volume of the 

ventricles to aid in the diagnosis of hydrocephalus is novel, none of the papers reviewed 

directly cover this topic. These papers give an indication of the current research on 

the component techniques.

2.1 Segm entation

Image segmentation is the partitioning of an image into meaningful regions based 

on some characteristic, such as the properties of the pixels. Image segmentation 

techniques can be classified as surface-based approaches, where the surface of an 

object is approximated using a stack of 2-D contours, or volume-based approaches

4
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where objects are represented as continuous 3-D volume. In the 3D approach, 2- 

D slices are stacked together and the missing data  between the slices are usually 

estim ated by interpolation. Then the 3D object of interest is isolated.

Image segmentation techniques can also be classified either as a statistical ap­

proach or structual approach. The statistical approach generates the probability dis­

tribution function of the image pixels or generates the param eters to  characterize the 

properties of the tone and texture [1], A structural approach might analyze the tone 

and tex ture in terms of their organization and relationship [2] . Region growing [18], 

wavelet transforms [18], [42], Markov random fields (MRF) [10] [17] [28] and Gaussian 

random fields (GRF) [14] [23] [43] are all examples of segmentation techniques which 

use a structual approach.

Since there are many types of segmentation methods, selecting a m ethod suitable 

for our application was the first challenge. Liew and Yan [29] discuss the trade off 

between 2D and 3D segmentation. The authors presented an adaptive spatial fuzzy 

clustering segmentation algorithm which can suppress the non-uniformity artifact in 

3-D MR images. The algorithm applies a dissimilarity index th a t considers the effect 

of neighboring pixels. If the neighborhood window is in a non-homogeneous region, 

the influence of the neighboring pixels on the center pixel is suppressed; otherwise, the 

center pixel is smoothed by its neighboring pixels during cluster centroid computation. 

The authors also included quantitative evaluation of the performance of the algorithm. 

They compute the misclassification ra te  (MCR) for the segmentation. The MCR is 

defined as the number of pixels misclassified by the algorithm divided by the to tal

5
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number of pixels in the image.

The easiest segmentation m ethod to  apply is thresholding. Thresholding involves 

segmenting out the  region of interest by selecting an appropriate gray level as a 

threshold. Kostis et al. [26] described 3-D methods for volumetric doubling-time 

estim ation in small pulmonary nodules of high-resolution CT images. Their method 

was initially based on mean and gradient-based thresholding techniques. Various 

measures were used to evaluate and improve the accuracy of nodule segmentation. 

The 3-D segmentation methods in their paper are model-based and implemented with 

techniques from mathem atical morphology. The segmentation methods they used 

were global thresholding and morphological opening. Global thresholding methods 

use a threshold which is determined from the whole image. Global thresholding was 

found not to  be sensitive enough for our application. Local thresholding, based on a 

region of interest, was found to  be more applicable.

Before applying any segmentation method, it is useful to  identify a region of inter­

est. This allows the segmentation m ethod to  be selected based on the characteristics 

of a smaller region of the image rather than  the entire image. In [3], Ashburner and 

Friston mentioned a way to identify the region of interest. Their method used voxel- 

based morphonmetry involving a voxel by voxel comparison of the gray m atter from 

two groups of subjects. The main idea of this method is to  normalize the images, 

segment the gray m atter from the normalized image, and then smooth the segmented 

images. Voxel-wise param etric statistical tests are used to  compare the smoothed 

images from the two groups. The images are first registered onto the same tem plate

6
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image by affine transformation. Then the normalized image is partioned into differ­

ent classes using a modified m ixture of model cluster analysis techniques. Finally the 

image is smoothed with a Gaussian kernel and a statistical analysis is done to identify 

the gray m atter and segment it out. To identify the region of interest a clustering 

method is used. However, the clustering m ethod was com putationally expensive.

A nother popular extraction m ethod is the Hough transform(HT). In Zheng et al. 

[44], the authors use the Hough transform  to solve the repeatability, occlusion and out- 

of-plane motion problems when extracting vertebrae from x-ray images of the back. 

They used Fourier descriptors to  describe the vertebral body shape within their HT 

algorithm. From these they can obtain affine transform  param eters, such as scale, 

rotation and center position. The m ethod has been applied to  a calibration model and 

to human lumbar spine motion images. The results show the algorithm works well 

for object extraction from poor quality images. For some digital videofluoroscopic 

(DVF) images, their method can achieve satisfactory results, bu t in some cases it 

failed. Moreover, the method only considered the vertebrae separately, so th a t the 

shape was simple enough to employ a look-up table for the Fourier descriptors. This 

method was not applicable to  our problem as the shape of the ventricles is too complex 

in three dimensions.

2.2 Registration

Registration is the process of matching features of interest from one image to another. 

There are several image registration applications: registration of the same subject

7
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with the same modality but at different times, registration of the same subject but 

different modalities, and registration of scans from different subjects. In this thesis, 

the registration method will only be applied to  images of the same subject with the 

same m odality (CT scan) but at different times. An example would be the CT scan 

image of the pa tien t’s head taken on two different clinic visits.

A number of registration methods have been developed: the thin plate splines 

algorithm [7], spline transform ation [41], the iterative closest point algorithm [39] 

or the balloons model [12], Other registration methods require mechanical models, 

either elastic [6], or fluid [11]. Finally, some registration procedures are voxel-based 

methods. Collins [13] estimates a locally affine transform ation th a t maximizes the 

cross correlation of the image gradient. Musse [31] proposes a method based on the 

minimization of the displaced frame difference.

A very common m ethod used in registration is the  affine transform which uses 

three variables: rotation, scale and translation. Finding these three param eters so 

th a t the registration result is optimized is a major problem. Jie and Anand [21] 

present a new information metric, p, for affine and multiple image registration. Given 

images X and Y, the metric p(X,Y) was defined as the sum of the conditional entropies 

H(X | Y) and H(Y | X). So for two images X and Y, p(X,Y) =  H(X | Y) +  H(Y | 

X). The definition of mutual information for two variables X and Y is MI(X,Y) =  

H(X) +  H(Y) - H(X,Y), where H(X) and H(Y) are marginal entropies and H(X,Y) is 

joint entropy. Then they found the relationship between the information metric and 

mutual information MI, p(X,Y) =  H(X,Y)- MI(X,Y), where p is the nonoverlapping

8
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regions and MI is the common region between the two images. They minimize p or 

maximize MI to  recover rotation and scale variables.

Excessive com putation tim e is a major problem in registration algorithms. Rohde 

et al. [34] worked out a way to  reduce the algorithm ’s running time. They used an 

approach to  identify the mis-registered region and then work on correctly registering 

only this region to  avoid useless computations. Moreover, to  make sure th a t the op­

tim ization process th a t produces the transformations is working properly, they also 

developed a new, precise m ethod to ensure th a t the Jacobian m atrix of the defor­

m ation field remains uniformly invertible. All these approaches together, were called 

the Adaptive Bases Registration Algorithm -  a new nonrigid registration algorithm. 

They have also implemented a method which is similar to  traditional ones in which 

there is no need to  identify the misregistered regions. Results show th a t the adaptive 

bases algorithm is about 3.5 times faster than  the traditional approach. For each reg­

istration, the adaptive bases registration algorithm is at least as accurate as measured 

by the final value of the cost function, as the traditional approach.

Besides affine registration, correlation transform ation is another popular method 

used to address the registration problem. Hipwell et al. [20] proposed a new method 

for aligning three-dimensional (3-D) magnetic resonance angiography (MRA) images 

with 2-D X-ray digital subtraction angiograms (DSA). This m ethod was developed 

from their previous algorithm to  register computed tomography volumes to X-ray 

images based on intensity m atching of digitally reconstructed radiographs (DRRs). 

To make the DSA and DRR more similar, they carried out some transformations

9
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on the  MRA images. The registrations were tested on images of a physical neuro­

vascular phantoms and images obtained during four neuro-vascular interventions. 

They examined performance measures when the algorithm produced DRRs using four 

different strategies. They concluded th a t the most accurate and robust registrations 

were obtained using the pattern  intensity, gradient difference, and gradient correlation 

similarity measures when the algorithm created DRRs from a binary segmentation of 

the MRA. This is an inter modal registration technique.

Once an algorithm is developed, it must be evaluated using objective measures. 

Livyatan et al. [30] discussed a way to  validate the registration method. The authors 

used a gradient-based m ethod for rigid registration of a patien t’s preoperative com­

puted tomography (CT) scan to  its intraoperative situation w ith a few fluoroscopic 

X-ray images obtained with a tracked C-arm. For validation, they overlay the bone 

edge contours directly onto the fluoroscopic X-ray images to show how far the bone 

model is away from the position it should be. This method is not applicable to  our 

application since it is difficult to isolate the edges of the ventricles.

2.3 Volume Calculation

The ultim ate goal of this thesis is to  calculate the change in the volume of the ven­

tricles. There are a number of ways to do this. One m ethod of doing this is to 

calculate the volume of the ventricles at different points in time. The volume calcula­

tion method which is accomplished after image segmentation is based on the following 

idea: First, calculate the area of ventricle in each slice, then m ultiply the area by the

10
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slice thickness. The next three papers use similar theory to  calculate the volume, but 

the m ethods are different.

A shtari et al. [4] developed a menu-driven semi-automated computer system to 

assess in-vivo brain morphometry using a 3-D MRI of the whole brain. The main steps 

for their algorithm were defined as follows. Find a starting edge point by searching 

along rays th a t em anate from a random starting point until a gradient exceeding a 

threshold is encountered. Then a path  along the boundary is traced to search for the 

next edge point. The process ends when the path  returns to  the starting edge point 

or the path  length exceeds a predetermined value. The area of the closed boundary 

is calculated by using a discrete version of Stokes theorem. Finally, the volume of the 

feature is calculated by multiplying the area of the feature by the slice thickness.

Alternatively, Brassow and Baum ann [8] calculate the volume of the ventricle in 

each slice and then add them  up. In order to measure the ventricular volume, they 

used the numerical prints of the CT on which the margin between brain tissue and 

ventricles was drawn. The curves of the ventricles were measured by a curve digitizer. 

A digital com puter was used to add the volume of the pixels in the region of interest 

in spite of the different magnification on the numerical print in the x- and y-axis. The 

volumes of all slices were added, taking the small amount of overlapping into account. 

The method can be useful in special cases to  detemine tum or size in the brain.

The volume calculation m ethod mentioned in the above two papers involved seg­

mentation. Rottenberg et al. [35] developed a volume estim ation m ethod (partial vol­

ume analysis, PVA) which does not use any segmentation, and compared this method

11
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with two other volume calculation methods which needed segmentation, computer­

ized planim etry and bi-level decomposition. In the computerized planimetry method, 

the edge of the ventricle was traced on the video screen by cursor, ventricle volume 

was determ ined by multiplying the area within each freehand contour by the slice 

thickness and summing over the to tal number of slices. In bi-level decomposition, 

the range of the ventricle pixel values was found. The volume is then equal to the 

effective voxel volume multiplied by the number of voxels with mean attenuation co­

efficients which fall within a range. Rottenberg et al. made an assumption in the 

th ird  m ethod (PVA) th a t the ventricular contents and the ventricular surroundings 

are homogeneous substances with mean attenuation coefficients A v and A s. The 

volume Vvs of a chosen region of interest which indicates the  ventricle and part of the 

surrounding tissue was assumed to have a mean alternative coefficient of A vs. The 

volume of the ventricles, V, was calculated by this formula:

Vi = Vvs(A vs  -  A s ) / ( A v  -  A s )  (2.1)

The accuracy of the volume was within 3% of the  true volume. Computerized planime­

try  and bi-level decomposition provide similar estimates of ventricle volume since they 

both involve similarly segmented images. In contrast, PVA provides a more accurate 

estimate of ventricular volume. However, PVA is a manual method and it appears to 

be more sensitive than  either of the other m ethods to changes in A s or A v.

12
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2.4 Partial Volume Effect

The partial volume effect (PVE) arises in volumetric images when more than  one 

tissue type is represented by a single voxel. In such cases, the voxel intensity depends 

not only on the imaging sequence and tissue properties, bu t also on the proportions of 

each tissue type present in the voxel. If the pixel is not included in the correct region, 

the shape and size of the region will be affected. Of course, finally, it will affect the 

to tal volume. There are various methods to  reduce the partial volume effect, some of 

which are reviewed below.

The partial-volume problem of the CT image was illustrated by Kostis et al. [26] 

using a quadrant of a unit circle sampled on a regular grid. Pixels were set if 50% of 

their area corresponded to  the interior of the circle. First, the quadrant was contained 

within a single pixel. Then, to define an appropriate sampling grid, the quadrant was 

divided, or supersampled, by a power of two. The degree of resampling of the image, 

or the supersampling ratio, was the number of divisions of the original number of 

pixels in the X and Y directions. W ith this model, they also discuss the accuracy 

of the area measurement of the circular segment. If the degree of subdivision of the 

sampling grid increased, the error of the circle area estimation decreased.

For virtual screening techniques, segmentation means the removal of unwanted 

material. The partial volume effect also makes this segmentation problem more com­

plicated, since this effect causes regions of noninterest and non-existing surfaces to 

show up. Lakare et al. [27] proposed a novel approach for segmentation and digital 

cleansing of endoscopic organs. This m ethod is fast and accurate. It also decreases
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the undesirable partial volume effect, while some other current approaches do not. 

For segmentation and digital cleaning, they use the peculiar characteristic exhibited 

by the  intersection of any two distinct-intensity regions. To detect these intersections 

they cast rays through the volume. They call these rays the segmentation rays as 

they assist in the segmentation. They then do reconstruction and classification with 

each intersection the ray detects. To improve the quality of the volume rendering, 

they further use volumetric contrast enhancement to reconstruct the surface lost by 

segmentation. They concluded th a t the algorithm was able to remove all the fluid 

and stool voxels accurately. Also their m ethod was able to  detect and remove stool 

deposits as th in  as one voxel thick ( about 0.7 mm) and able to  unearth all the mu­

cosa voxels lying below the fluid at the intersection of fluid with the colon wall. This 

algorithm is especially useful when there are partial volume effect concerns. This 

m ethod identifies the boundary pixels by using the segmentation rays, then groups 

this kind of pixel into one of the structures (or regions). This is a really good idea, 

but here another question appears, “Which region did these boundary pixels belong 

to?” In this paper, the authors just pu t these pixels into an arbitrary  region. This 

will increase the error.

In the above two methods, the partial volume effects are considered after the 

image has been reconstructed. In [32], Muzic et al. developed a m ethod th a t does 

not need image reconstruction. The method extends Huesman’s m ethod for scatter 

and spatial resolution effects while keeping the advantages of com putational efficiency. 

Moreover, the method provides an estim ate of the variance of the region of interest
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(ROI) radioactivity estimate which can be used to define weights in the kinetic data  

analysis to  ensure unbiased param eter estimates. They evaluate the m ethod using 

simulation and measured data. It shows th a t with an appropriate scatter and spatial 

resolution effects model, it is unbiased and has the ability to  quantify myocardial 

concentration with no more than  a 5% error. Thus this m ethod is computationally 

efficient and it provides estimates of ROI variance which are particularly useful in 

kinetic modeling analyses.

2.5 Conclusion

All of the above is the literature review for the techniques: segmentation, registration, 

partial volume effect, and volume calculation. These papers give good background 

for the techniques th a t were used to develop the volume calculation algorithm (CSV) 

of this thesis. The purpose of this algorithm (CSV) was to  use computer vision to 

aid in the diagnosis of hydrocephalus.
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Chapter 3

Theory

3.1 Characteristics of CT Images of the Human 

Head

Computerized tomography (CT) scans are a series of cross-sectional X-ray images of 

the body. The body is X-rayed from many directions and the  cross-sectional image 

is reconstructed by a computer. The com puter generates images of cross-sections 

(slices) of the body using tomographic principles. CT scans show details of the shape 

and location of soft tissues, as well as bones and blood. The da ta  in the reconstructed 

CT image is scaled so th a t it may be represented by image pixel values ranging from 

0 (representing black) to  255 (representing white).

The medical images used in this study were obtained from the Izaak Walton 

Killam (IWK) Health Center and are the images formed from CT scans of the various 

patients’ heads. Since each image is a cross-section of the head at a particular location
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Figure 3.1 removed due to copyright restrictions.
Figure pictures can be viewed at: 

http://oracle.crump.ucla.edu:8001/pet/pba/flgures-2.tcl?illustration_id=356&folder_id=44 
http://oracle.crump.ucla.edu:8001/pet/pba/figures-2.tcl?illustration_id=358&folder_id=44 
http://oracle.crump.ucla.edu:8001/pet/pba/figures-2.tcl?illustration_id=358&folder_id=44

Figure 3.1: The ventricles viewed from three different angles [47].

and the entire series of these images forms a complete head, each image contains a 

portion of the skull. Some images include cross-sections of the eyeballs or nose and 

some of them  include ears. A number of images in the  complete sequence contain 

cross-sections of the ventricles. Depending on the angle and location of the slice, the 

shape of these objects varies from slice to  slice.

3.1.1 Celebral Ventricles

The entire surface of the  central nervous system is bathed by a clear, colorless fluid 

called cerebrospinal fluid (CSF). Cerebrospinal fluid is the cushiony fluid th a t protects 

the brain and spine from traum a. The CSF is contained within a  system of fluid-filled 

cavities called ventricles. The ventricle has an uneven shape since it is a combination 

of three parts (Fig. 3.1): the lateral ventricles, the th ird  ventricle, and the fourth 

ventricle. The lateral ventricles are two curved openings (shaped like a horseshoe) 

located within the cerebrum, th a t provide a pathway for cerebrospinal fluid. The two 

lateral ventricles axe the  largest of all the ventricles in the brain, and one is on each 

side of the brain. In addition to  the two lateral ventricles, there is the  th ird  ventricle 

and the  fourth ventricle. The th ird  ventricle is a narrow, four-sided, irregularly shaped 

opening between the two hemispheres th a t provides a  pathway for cerebrospinal fluid.
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The fourth ventricle is a diamond shaped cavity located behind the pons and medulla 

oblongata. It forms the central canal of the spinal cord and protects the brain from 

traum a [46].

The reconstructed images of the skull have a gray scale range from 0-255 with the 

black background having an average gray value of zero and the white skull having 

an average gray value of 255. The tissue inside the skull surrounding the ventricle 

has an average gray value of approximately 120 while the ventricles themselves have 

gray values averaging approximately 60. Since the shape of the ventricles is complex 

and variable, segmentation methods which depend on object shape are difficult to 

implement. The gray level ranges of the background, skull, brain tissue, and ventricles 

are reasonably distinct thus making thresholding techniques applicable.

3.2 Segm entation

In the analysis of objects in images, it is im portant to  distinguish the objects of 

interest from the rest of the image. The techniques th a t are used to find the objects 

of interest are referred to  as segmentation techniques.

Segmentation methods can be divided into three groups. The first is based on 

global knowledge about an image or its parts. The knowledge is usually represented 

by a histogram of the gray level of image features. Examples of these methods are 

thresholding and clustering. The second is edge-based segmentation, using tools such 

as the Canny edge detector [38]. The th ird  is region-based segmentation, such as 

Region growing. Many different characteristics, such as brightness and texture, may
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be used in edge detection or region growing. Since the various edge and region-based 

algorithms have different natures, they may give different results and information.

The global knowledge-based segmentation is used to  determine which components 

of a data  set naturally belong together by drawing a histogram which depends on the 

gray-level, color or shapes included in the whole image.

Edge-based segmentation represents a large group of methods based on informa­

tion about edges in the image. It was one of the earliest segmentation approaches and 

still remains very im portant. Edge-based segmentations rely on edges found in an 

image by edge detecting operators. The image resulting from edge detection cannot 

be used alone as a segmentation result. Supplementary processing steps must follow 

to  combine edges into edge chains th a t correspond to the borders in the image. Then 

a region must be identified inside the edges.

The aim of the edge-based segmentation methods is to  find borders between re­

gions. The region-based segmentation methods construct regions directly. It is easy 

to construct regions from the borders, and also easy to detect the borders of the re­

gions. However, the segmentation results from edge-based methods and region-based 

methods usually are not exactly the same. Region growing techniques are generally 

better in noisy images, where borders are extremely difficult to  detect. Homogeneity 

is an im portant property of regions and is used as the main segmentation criterion 

in region growing, where the basic idea is to  divide an image into zones of maximum 

homogeneity. The criteria for homogeneity can be based on gray-level, color, texture, 

shape and/or model [37].
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3.2.1 Segmentation by Thresholding

Gray-level thresholding is the simplest segmentation process. Many objects or image 

regions are characterized by a constant average x-ray absorption level which trans­

lates to  a distinct average pixel value. From this average value a brightness level or 

threshold can be determined to  segment objects from the background. Thresholding 

is com putationally inexpensive and fast. It is the oldest segmentation method and 

is widely used in simple applications [37]. Global and local thresholding are two ba­

sic ideas of thresholding. Global thresholding takes a threshold which is determined 

from the whole image. Local thresholding takes a threshold from a region of interest. 

Global thresholding was not sensitive enough for our application. Local thresholding, 

based on a region of interest, was found to be more applicable and was used in this 

thesis. Local thresholding techniques, which make decisions based on local pixel in­

formation, are effective when the intensity levels of the objects fall squarely outside 

the range of levels in the background. The characteristic of the head image described 

in section 3.1 contains four distinct gray levels: the background color which is zero, 

the average skull value of approximately 255, the average gray value of the ventri­

cle of approximately 60 and the average gray value of the remaining brain tissue of 

approximately 120. Thus using the thresholding m ethod is reasonable.

The technique is based upon a simple concept. A param eter, T, called the bright­

ness threshold, is chosen and applied to  the images as follows:

i f  Po(x,y) > T, Pt (x ,y )  = 1; else Pt (x ,y )  = 0. (3.1)
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where P0(x ,y)  is the original image intensity at the position (x,y) and Pt (x,y)  is the 

thresholded pixel value at the same position. This version of the algorithm assumes 

th a t there are only two different gray level regions and th a t we are interested in light 

objects on a dark background.

The principal difficulty with thresholding methods is selecting a threshold tha t 

will provide consistent results. If an image contains very distinct gray level regions, 

the threshold is easy to  choose, bu t if the gray levels of the features are much closer 

in value, the threshold is more difficult to select. Also if the average gray level of 

the feature changes from image to  image it becomes difficult to  select a universal 

threshold. W hen the gray levels of the features cannot be separated, thresholding 

methods always segment out the features which are not of interest. There are various 

ways to  get a threshold. One m ethod is to  build a histogram of all the pixel values 

and find the range of the gray values in the region of interest. Alternatively a patch 

of the region of interest may be selected and the average gray value of the patch used 

as the threshold.

Another issue when using thresholding is the sensitivity of the  threshold. Since 

the m ethod must be tested on hundreds of slices, the threshold selected from one slice 

should also be valid for other slices. If the segmentation technique is too sensitive to 

the threshold, the results will not be reliable and the m ethod would be impractical. To 

test the sensitivity of the thresholding m ethod the threshold was increased/decreased 

for each slice to see if the to tal number of pixels segmented changed. If the to tal 

number of pixels changed at a new threshold, the program stopped and the sensitivity
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was calculated.

S T  = | Tnew — Torg | /T ors. (3-2)

where S T  represents the sensitivity of the thresholding, Tnew is the new threshold 

and Torg is the original threshold. The larger the calculated sensitivity, the better the 

thresholding techniques performs.

3.2.2 Segmentation by Region Growing

Region growing is an approach to image segmentation in which neighboring pixels 

are examined and added to a region class if no edges are detected. This process is 

iterated for each boundary pixel in the region. If adjacent regions are found, a region- 

merging algorithm is used in which weak edges are dissolved and strong edges are left 

in tact. Region growing offers several advantages over conventional segmentation 

techniques. Unlike gradient and Laplacian methods, the borders of regions found by 

Region growing are perfectly th in  and connected (since the algorithm only adds single 

pixels to the exterior of a region). The algorithm is also very stable with respect to 

noise. The region will never contain too much of the background, as long as the 

param eters are defined correctly. In our algorithm, the param eters are mean and 

standard deviation (see section 4.2.2). O ther techniques th a t produce connected 

edges, like boundary tracking, are very unstable [18].

However, there are several disadvantages to  region growing. First and foremost, 

it is very expensive computationally (processing power and memory usage). It also 

is complex to implement the algorithms efficiently.
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Figure 3.2: Pixel at 1,2,3. ..8 are 8-connected pixels o f pixel p.

The idea of region growing is to  s ta rt with a pixel (seed) or a set of pixels (seeds) 

which belongs to the object of interest, and then to  iteratively check and decide for 

each neighboring pixel whether it belongs to the same object or not. Two criteria must 

be met for a pixel to be annexed to a region: (1) the absolute gray-level difference 

between any pixel and the seed has to  be less than  a threshold. (2) the pixel (p) has to  

be 8-connected (Fig. 3.2) to a t least one pixel in th a t region. Eight connected refers 

to  the following situation. A pixel p a t coordinate (x,y) has eight horizontal, vertical 

and diagonal neighbors whose coordinates are given by (x + l,y ), (x-l,y), (x ,y+ l), 

(x,y-l), (x + l,y + l) , (x + l,y -l) , (x -l,y -l), (x -l,y + l) . This set of pixels is called the 

8-connected pixels of p. The threshold was the average gray value of the region of 

interest, a patch which was selected by the user manually.

3.2.3 Segmentation by Manual Method

Currently, in order to diagnose a case of hydrocephalus, a radiologist visually evaluates 

the CT scans of the head and combines the information gained from th a t with clinical 

evidence. Thus a manual segmentation technique was taken as the current standard
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for the purpose of comparison in this thesis. Therefore, to  evaluate the thresholding 

and region growing methods, a manual segmentation technique was developed to 

allow comparison of these techniques with the visual evaluation completed by the 

radiologist.

The manual method has one main drawback. In the manual method, the ventricle 

edge is highlighted by a radiologist and the edge is extracted. The size of the area 

outlined by the edge affects the size of the ventricle. How much area the edge will 

include totally depends on the visual skill of the radiologist. External factors from 

human vision can affect the results. For example the size of the image, the distance 

between the radiologist’s eyes and the image, and the angle of sight of the radiologist 

etc., all affect the radiologist’s judgements. T hat is the reason our algorithm (CSV) 

was developed since CSV segments out the ventricles depending on the pixel value, 

not subjective judgement. However, to  validate our segmentation technique it is 

valuable to  compare the autom ated techniques to the manual techniques.

3.2.4 Canny Edge Detector

The Canny edge detection operator was developed by John F. Canny in 1986 and 

uses a multiple stage algorithm to  detect a wide range of edges. Most importantly, 

Canny also produced a com putational theory of edge detection explaining why the 

technique works. Canny’s aim was to  discover the optimal edge detection algorithm.

The Canny algorithm includes three stages. First, for noise reduction, the raw 

image is convolved with a gaussian mask. The output appears as a slightly blurred
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version of the original. Therefore a single noisy pixel has little effect on the gaussian 

smoothed image. The second step is to find the intensity gradient of the image and 

trace the edges through the image. An edge in an image may point in a variety of 

directions, so the  Canny algorithm uses four masks to  detect horizontal, vertical and 

diagonal edges. The results of convolving the original image with each of these masks 

are stored. For each pixel, the largest result at th a t pixel is marked, and the direction 

of the edge determined. From the original image, a map of intensity gradients at 

each point in the image was created, including the direction of the intensity gradient. 

Finally, the edges are traced through the image. The higher intensity gradients are 

more likely to be edges. Since there is not an exact value at which a given intensity 

gradient switches from not being an edge into being an edge, Canny uses thresholding 

with hysteresis. Thresholding with hysteresis requires two thresholds - high and low. 

Making the assumption th a t im portant edges should be in continuous lines through 

the image allows us to follow a faint section of a given line, bu t avoid identifying a few 

noisy pixels th a t do not comprise a line. Therefore the algorithm begins by applying a 

high threshold. This marks out the edges th a t are most likely genuine. Starting from 

these, using the  directional information derived earlier, edges can be traced through 

the image. While tracing a line, the algorithm applies the lower threshold, which 

allows faint sections of the lines to  be included. Once this process is complete, the 

resulting image is a binary image where each pixel is marked as either an edge pixel 

or a non-edge pixel.

The Canny algorithm contains a number of adjustable param eters which can affect
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the com putation tim e and effectiveness of the algorithm. The first is the size of the 

gaussian filter. Smaller filters cause less blurring, and allow detection of small, sharp 

lines. Larger filters cause more blurring, smearing out the value of a given pixel over 

a larger area of the image. This is more useful for detecting larger, smoother edges. 

The second is the thresholds. The use of two thresholds allows more flexibility than 

in a single-threshold approach, bu t the general problems of thresholding still apply. 

A threshold set too high can miss im portant information. A threshold set too low 

will falsely identify irrelevant information as im portant. It is difficult to give a generic 

threshold th a t works well on all images. No tried  and proven approach to this problem 

yet exists. However, the Canny algorithm is adaptable to  various environments. Its 

param eters allow it to  recognize edges of differing characteristics depending on the 

particular requirements of a given im plementation [38],

3.3 R egistration

Image registration is a fundamental task  in image processing used to  match two or 

more images taken, for example, at different times, from different sensors, or from 

different viewpoints of the same patient. A good example of the requirement for 

registration is drawn from in radiotherapy treatm ent. Here the use of MRI and CT 

combined would be beneficial, as the former is better suited for delineation of tum our 

tissue, while the la tter is needed for accurate com putation of the anatomic structures. 

Registration is required to  map the physical structures from one modality to  the other. 

In the hydrocephalus application examined in this thesis, registration is required to
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relate C T images of the same patient taken at different times with slight variations 

in the point of view.

Registration mappings may be classified as rigid or non-rigid, where rigid map­

pings are those th a t preserve all distances. Because of the rigidity of bone and the 

relative rigidity of anatomy tha t is attached to  bone, and in particular the contents 

of the skull, rigid mappings are of special im portance to  this thesis. Rigid mappings 

may be specified in term s of a translation and a rotation.

Image registration establishes spatial correspondence between a tem plate image 

I tmp and reference image R. The process of registration establishes -which point on 

tem plate image / tmp corresponds to  a particular point on the reference image R. 

The task  of image registration is to  find the correspondence function F such th a t 

R  — F ( I tmp) without, or at least with minor, human interaction.

There are two kinds of variations in head position: in-plane position change (2D) 

and out-of-plane, or across the slices, position change (3D). W hen the same patient 

has a CT scan taken at two different times, it is possible th a t the head is not set at 

exactly the same position in both scans. It might be moved to  the right or left a little 

bit or it might have turned a little for the second scan. These kinds of changes are 

in-plane, or 2D. If the patien t’s head position is changed up or down between scans, 

tha t causes a 3D position change. W hen these position changes exist, the CT scans 

which have been taken at two different times appear different. The volume of the 

ventricle calculated from these two series of images cannot be accurately compared. 

Therefore, it is necessary to register the image, R ,  which was taken at time two, tm2,
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back to  the image, A, which was taken a t tim e one, tm l .

Affine transformations are a very common registration m ethod and were used 

with the 2D position change. For 3D position change an interpolation m ethod was 

developed to  obtain a new slice from previous and later slices. These methods are 

discussed in detail in the next sections.

3.3.1 Affine Transform: for in-plane movement (2D)

A generic medical image registration scheme may consist of the selection of the image 

features th a t will be used during the matching process, the definition of a measure 

of match (MOM) th a t quantifies the spatial matching between the reference and the 

transformed image, and the application of an optimization technique th a t determines 

the independent param eters of the transform ation model according to  MOM. In our 

method, an affine transform was used to  map one image to  another. The param eters of 

the transform were optimized by minimizing the standard deviation of the difference 

image created from the reference image and the registered image.

The affine transform ation can be decomposed into a linear transform ation and a 

simple translation. Assume there are two images A and A, and the intensity value 

of each pixel in each image has an independent random variable. To register image 

I 2 to  image A, the affine transform  is determined as a combination of rotation and
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translation. The translation matrix, T r, is defined as

T r  =

1 0 se

0 1 t e

0 0 1

(3.3)

where se and t e are the translation distances in x and y directions respectively. The 

rotation matrix, R(9), is defined as:

m  =

cos(9e) —sin(9e) 0

sin(6e) cos(9e) 0

0 0 1

(3.4)

where 6e is the rotation angle. The combination of the above two matrices is the 

affine transform ation, A T :

A T  =

cos(9e) —sin(9e) se

sin{9e) cos(6e) t e

0 0 1

(3.5)

Correlation was used to estim ate the translation param eters (se and t e) and edge 

detection and geometry were used to  estimate the angle between edges as the rotation 

angle (9e). The param eters were then optimized by minimizing the standard deviation 

of the error image over a range of values around the original param eter estimate.
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Translation Parameter Estimates (se and te)

The principal use of correlation is for matching. Let f ( x ,  y ) be an image containing 

an object or region of interest, h(x ,y) .  Usually the object or image region h(x ,y)  

is called a tem plate. If there is a m atch between the image and the template, the 

correlation of the two functions will be maximum at the location where h finds a 

correspondence in / .  In our case, the image I 2 was selected as the tem plate image 

h (x ,y ) and the image h  was used as the f ( x , y ) .  Then the correlation method was 

used to  find the translation param eters. The details of this method are given in 

section 4.3.1.

The correlation between two signals is a standard approach to  feature detection 

as well as a component of more sophisticated techniques. Correlation can be imple­

mented in either the spatial domain or the frequency domain.

The correlation of two functions f ( x ,  y) and h(x, y), both  of size M  * N ,  is defined

as:
M —1 N - 1

f ( x ,  y) O h(x, y) = (1/MAT) ^  f* (m > n )h (x  + m ,V + n)\ (3.6)
m = 0 n = 0

where /*  is the complex conjugate of / .  Initially the correlation was implemented in 

the spatial domain on the CT scan images, but since the images involved in the cor­

relation were too large for com putational efficiency (981 *900 pixels), the correlation 

was implemented in the frequency domain.

Let F (u ,v )  and H (u ,v )  denote the Fourier transforms of f ( x , y ) and h(x ,y ) ,  

respectively. The correlation theorem states th a t spatial correlation, f ( x , y ) o h (x ,y ) ,
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and th e  frequency domain product, F *(u ,v )H (u ,v ) ,  constitute a Fourier transform 

pair [18]. This result, formally stated  is:

f ( x ,  y ) o h(x, y) = F ~ l {F*{u, v)H (u, v)) (3.7)

This states th a t correlation in the spatial domain can be obtained by taking the 

inverse Fourier transform of the product F *(u ,v )H (u ,v ) ,  where F* is the complex 

conjugate of F. It is assumed th a t all functions have been properly extended by zero 

padding. Zero padding means extending the image to  a size th a t is a power of 2 by 

adding pixels of value zero.

R o ta t io n  A n g le  E s tim a te  9e

In order to  find the rotation angle estim ate 9e, the angle between the two upper 

edges of the skull must be found. Since the upper edge of the skull (Fig. 4.4) is 

approximately a straight line, its slope with respect to  the horizontal is used as the 

rotation angle of the head. Once the slopes of the upper edges for the two images, I i  

and I 2 , are determined, then the difference angle 9e between the two upper edges can 

be determined. This value is the estimate of the rotation angle, 9e. This is the angle 

the skull has ro tated  between the image taken at t m l  and tm2.

O p tim ize  th e  P a ra m e te r s

After estimates for the translation and rotation param eters are obtained (se, t e, 9e), 

the values are optimized over a range of values given by 0e ±10%, se ±10% and t e
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Figure 3.3: The theory of how to interpolate the slices.

±10%. The optimization is implemented by minimizing the standard deviation of 

the image created by taking the difference between the reference image, I i  and the 

registered image, I 2 ■ The final values s, t and 6 are the results of this optimization.

3.3.2 Interpolation: for out-of-plane movement(3D)

Consider the image plane to be the X-Y plane and the Z-axis to  be perpendicular to 

the image plane. Any change in position between the two images in the X-Y or image 

plane is referred to as 2D movement. An example of this type of movement is the 

head turning to  the right. Any change in position out of this plane is considered to 

be 3D movement. There are two types of 3D movement of concern, the head tilting 

towards the shoulder and the head nodding. A correction for the movement of the 

head towards the shoulder was implemented in this thesis while a correction for what 

is known as a nod was not. Since each slice is taken in the X and Y direction, if 

2D movement exists, the pixels still stay in the X and Y plane. W hen 3D movement
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exists, the pixel in any particular slice, eg. slice 2, may move to either adjacent slice, 

eg. slice 1 or slice 3 (Fig. 3.3). The interpolation method was developed to  obtain 

the new pixels for slice 2 from slice 1 or slice 3.

Once the rotation angle is calculated, the displacement caused by the change in 

position can be calculated. Using equation 4.4, the number of slices required for the 

interpolation can be calculated. The details are described in section 4.3.2.

3.4 Partial Volume Effect

One major and common problem th a t appears when segmentation is implemented is 

the partial volume effect. W hen the x-ray passes through the center of an object, 

the backprojected pixel value represents the density of one substance. W hen the x- 

ray passes along the edge of an object, the backprojected pixel value represents the 

combination of the density values of the different substances and the edge. This is 

called partial volume effect.

When the partial volume effect exists, pixels at the boundary between structures 

contain a m ixture of material, and consequently have an intensity th a t is intermediate 

between the intensity values of the structures. It is hard to determine which structure 

the boundary pixels belong to  since part of the pixel belongs to one m aterial and part 

belongs to another. If the boundary pixel is segmented with the wrong material 

then the volume calculated from the segmentation will contain an error. Therefore, 

minimizing the partial volume effect helps to  increase the accuracy of the final volume 

calculation. The boundary of the ventricle in Fig. 3.4a is blurred because the pixels
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Figure 3.4: Images with partial volume effect. From left to right (a-b),all images are 
size 981 *900: a. high partial volume effect; b. low partial volume effect.

in th a t area represent both the ventricle and the surrounding tissue.

In order to  reduce the partial volume effect, it is im portant to  place the boundary 

pixels in the correct region. To decide to  which region the boundary pixels belong, the 

average gray level of the boundary pixels and the average gray level of surrounding 

regions are evaluated as follows. First, segment the original image using two different 

thresholds. Using the first threshold, the segmented region, region 1, does not include 

the boundary pixels (Fig. 3.5a) and using the second threshold, the segmented region, 

region2, does include the boundary pixels (Fig. 3.5b). To decide which boundary 

pixels (Fig. 3.5c) belong to which region, the procedure is as follows:

1. Calculate the  average gray value of region 1, avg 1, and the average gray value 

of region 2, avg2.

2. Calculate the average gray value of these two regions, avg.

avg = (avgl +  avg2)/2; (3-8)
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Figure 3.5: Bounday pixels contain partial volume effect. From left to right (a-c), all 
images are size 981 *900: a. the segmented region of interest which does not contain 
boundary pixels; b. the segmented region of interest which does contain boundary 
pixels; c. the boundary pixels.

3. If avg 1 is less than  avg2, check the gray value of each boundary pixel. If the 

boundary pixel value is less than  avg , the boundary pixel belongs to  region 1, 

otherwise it belongs to  region 2.

This m ethod is based on the idea th a t the gray level of the boundary pixel is dependent 

on the ratio of the volumes of the two substances represented by the pixel. Thus if 

the threshold is selected as the average of the mean gray levels for each substance, the 

pixel will be assigned to  the region with a mean value closest to  its own. This means 

the pixel is assigned to  the region whose substance has the greatest representation in 

it.

3.5 Volume Calculation

After segmentation, each segmented image is a binary image th a t only contains ven­

tricles (in white) and background (in black). In order to  complete the volume cal­

culation, two variables need to  be extracted from the DICOM im age’s header, pixel
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spacing, Ps and slice thickness, Sthic■ First, the area of each ventricle pixel is obtained 

from the pixel spacing. The area of each pixel is then multiplied by the number of 

ventricle pixels, N p, existing in one slice. Since the slice has a finite thickness, the 

area of the ventricle, A ven, in the slice is multiplied by the slice thickness to  achieve 

the volume of ventricle in each slice.

A ven = Np * Ps * Ps * Smc- (3.9)

Ps is the pixel spacing which corresponds to  the width and length of a pixel. S thic is 

slice thickness which is the height of a pixel.

As the ventricle exists in a number of different slices, all the individual slice 

volumes m ust be summed to  get the volume of the whole ventricle.

n

Vtot = J ^ A i .  (n = N totsUce) (3.10)
i= 0

Vtot is the to ta l volume of the ventricle. NtotsUce is the to ta l number of slices.

3.6 M easures of Success

For any algorithm implemented or developed, a measure of success of the method is 

required. The similarity index, S, was used to  measure the success of the various 

segmentation algorithms. To verify the success of the volume calculation algorithm, 

two methods were used. The algorithm was run on an analytical phantom  and the
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results compared to  the analytical volume. Also a set of physical models was built 

and placed in the CT scanner and the volume calculated using the algorithm. These 

results were compared to the known physical volumes.

3.6.1 Similarity Index, S

The evaluation of the three segmentation methods was achieved by calculating the 

similarity index. The similarity index, S, between two measurements, is defined as 

the ratio of twice the common area to  the sum of the individual areas [24]. Since 

the slice thickness is constant, only the area of the segmented ventricle is considered 

when calculating the similarity index.

where A l  and A 2 are the number of pixels in the  set segmented using methods 1 and 

2 respectively. Because the similarity index is the ratio of twice the common area of 

the segmentation to the sum of the sizes of the individual areas, it is sensitive to  both 

size and location. The similarity index S  > 0.7 indicates excellent agreement [24]. 

After the index of similarity is calculated for each slice, the average similarity index 

of each case is calculated using this formula:

5  =  2* | A l f ) A 2  | / ( |  A l  | +  | A2 |) (3.11)

N

Savg = J2Si /N;  (N = Ntotslice) (3.12)
4 = 1
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Figure 3.6: Analytical Phantom.

where Savg is the average similarity index of each case. Si is the  similarity index of 

slice i  and N totsUce is the to tal number of slices in one case.

3.6.2 Measures of Success for the Volume Calculation

The success of the volume calculation was measured using both an analytical phantom 

and created physical models.

A nalytica l P h an tom

The analytical phantom  shown in Fig. 3.6 contains ellipsoids w ith densities intended 

to represent those of the human head and is a standard used to  test algorithms to  be 

used on CT images of the  skull [22].

There are ten ellipsoids in the Analytical Phantom . Their param eters are listed 

in Table 3.1. The volume of each ellipsoid is calculated by finding the area in each 

slice and then applying equation 3.10. This result was compared with the analytical
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Ellipsoid Coordinates of 
the Center (x,y,z)

Axis Lengths 
(A,B,C)

Rotation 
Angle (deg)

Gray
Level

a (0 ,0 ,0 ) (0.69,0.92,0.9) 0 2 . 0

b (0 ,0 ,0 ) (0.6624,0.874,0.88) 0 -0.98
c (-0.22,0,-0.25) (0.41,0.16,0.21) 108 -0 . 0 2

d (0.22,0,-0.25) (0.31,0.11,0.22) 72 -0 . 0 2

e (0,0.1,-0.25) (0.046,0.046,0.046) 0 0 . 0 2

f (0,0.1,-0.25) (0.046,0.046,0.046) 0 0 . 0 2

g (-0.8,-0.65,-0.25) (0.046,0.023,0.02) 0 0 . 0 1

h (0.06,-0.065,-0.25) (0.046,0.023,0.02) 90 0 . 0 1

i (0.06,-0.105,0.625) (0.56,0.04,0.1) 90 0 . 0 2

j (0,0.1,-0.625) (0.056,0.056,0.1) 0 -0 . 0 2

Table 3.1: Summary o f parameters for the 3D Analytical Phantom [22].

volume of an ellipsoid given by equation 3.13.

Vet = 4 :/2 > * ir* A /2 * B /2 * C /2  (3.13)

The percent error, E rr, was obtained using

E rr  = (Vet -  Vtot)/V el * 100%. (3.14)

where Vei is the volume of the ellipsoid and Vtot is the to ta l volume of the ventricle 

which was defined in equation 3.10.

P hysica l P h an tom  M od el

A student from Dalhousie created physical models of the ventricles using agar and ice 

to test the volume calculation algorithm. Two types of physical models were made, 

simple models and complex models [15][16].
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Figure 3.7: Physical Phantom Models. From left to right (a-c): a. simple model; b. 
complex model; c. ventricular system model [16].

The simple models consisted of a cylindrical agar brain which contained a cylin­

drical fluid-filled space within it (Fig. 3.7a). The reason for choosing agar and water 

was th a t their densities closely modeled the densities of the brain and the CSF re­

spectively [4]. The simple models were scanned in the CT scanner at the IWK and 

the algorithm CSV was executed on the resulting CT image sets. The calculated 

result was compared with the measured quantity of melted ice. When creating the 

models, air bubbles existed in the agar. Initially, the air was removed from the simple 

model. Later models included the air in order to  assess the algorithm ’s capabilities 

for dealing with air bubbles, as air is sometimes an issue in clinical scans.

The complex models consisted of a cylindrical agar “brain” which contained a 

complex fluid-filled space within it which approached the complexity of the structure 

of the human ventricular system (Fig. 3.7b). A known quantity of water was poured 

into the ventriclar system. For this thesis, the ventricular system from the complex 

models was segmented out of each slice and the volume was calculated by the volume 

calculation algorithm,VCAS. Measured results and calculated results were compared 

and percent error was calculated using equation 3.14.
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Chapter 4

Experim ental M ethods

4.1 Clinical Test D ata

The clinical test images were received from the Izaak Walton Killam (IWK) Health 

Center and were in DICOM format. DICOM stands for The Digital Imaging and 

Communications in Medicine. It is a standard for the exchange and management of 

medical images and related information. Medical images are acquired using different 

modalities such as CT scan devices, magnetic resonance devices or ultrasound devices. 

A single DICOM file contains a header as well as all of the image pixel data. The 

header stores information about the patient, as well as all the technical param eters 

th a t are set when acquiring the scan. Patient da ta  is removed when the images are 

anonymized for a research study. Image pixel d a ta  can contain information in three 

dimensions [45]. There are 296 tags included in the header. Examples of technical 

data are the type of scan, the angle of scan, the field of view (FOV), and the distance
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from the source to  the detector etc. Field of view, which includes the pixel spacing, 

pixel thickness, and image size was used in our volume calculation algorithm.

DICOM is the standard image format for receiving scans from a hospital. The 

image da ta  which was in DICOM format was downloaded from the hard drive of the 

CT workstation onto a CD disk by the technician at IWK. All patient identifica­

tion was removed. The anonymized data  then was transferred to  the Departm ent of 

M athem atics and Computer Science at Saint M ary’s University where the image con­

version, algorithm development, and testing were carried out. The DICOM images 

were converted to  JPEG  images using software called DICOMWORKS. The JPEG  

images were then converted to  the GIF format and the remaining processing was 

done using software which we developed for use with the image processing package 

CVLAB [19]. The software was all w ritten in the C language.

Image data  received from the IWK Health Center consisted of 23 clinical cases and 

da ta  from 16 physical phantom models. Of the 23 clinical cases, fifteen were patients 

th a t had had only one CT head scan carried out. The remaining eight cases were 

patients th a t had had CT scans of their head taken on at least two different occasions. 

Each scan consisted of approximately 20 slices. The scans were anonymized but the 

hydrocephalus diagnosis was documented. Of 16 physical phantom  models, 11 cases 

were scanned at two different angles, 0 and 20 degrees, and 5 cases scanned at four 

different angles, 0 , 5, 1 0 , and 15 degrees. Of the 1 1  cases, 6  cases were simple models 

without air, 2 cases were simple models w ith air, and 3 cases were complex models. 

Currently, the common slice thickness used for clinical cases of this nature is either 3
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mm or 7 mm. As such, slice thickness of 3 mm and 7 mm were used for the physical 

phantom  cases.

4.2 Segm entation

A complete CT scan of the human head taken for the purpose of diagnosing hy­

drocephalus consists of approximately twenty cross-sectional slices. To calculate the 

volume of ventricles, the ventricles from each slice are segmented and the area of 

ventricle calculated in each slice. Since each slice has a thickness, the volume of the 

ventricle in each slice can be calculated. Then all the volumes are added together. 

An accurate segmentation m ethod contributes to  an accurate volume calculation. To 

determine the best segmentation method, a number of methods were investigated, 

such as thresholding [33] [37], region growing [18], the Canny edge detector [9], and 

clustering [29]. These algorithms were tested on a subset of the  clinical images. From 

the results of these tests it was concluded th a t thresholding and Region growing were 

the best suited algorithms for our purpose. These two segmenting methods were used 

to segment the ventricles from the brain for the rest of the images. This thesis doc­

uments the results when these two techniques were applied to  our test set of images. 

To verify the two segmentation methods, the outcome of each of these techniques 

was compared to  th a t of a manual segmentation and the success was measured by 

calculating the similarity index (S ).

A total of 15 cases were tested. Ten cases were known to  have normal ventricles 

and five were known cases of hydrocephalus. The number of slices in each case ranged
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from 20 to  23. The image size was 981 *900 pixels. The distance between slices was 3 

mm or 7 mm as documented. All this information was extracted from the associated 

DICOM tags.

4.2.1 Segmentation by Thresholding

Our thresholding m ethod uses the following algorithm:

1. Get a random sized rectangular patch from the region of interest (completely 

inside the ventricle), and calculate the mean, m , and the standard deviation, 

std. The patch was obtained manually using the mouse to  delineate the patch 

and a G etR eg ionO f In te re s t function in CVLAB [19] to  capture it.

2 . Set Pt(x, y) =  255; if (m  — std) < P0(x, y) < (m  + std)] else Pt(x, y) = 0.

3. In the previous step, some non-ventricle regions will also be segmented out if 

they have a grey-level similar to  th a t of the ventricle. To isolate the ventricle, 

we use a priori knowledge of the position of the ventricle to  limit the extent of 

the region searched for the ventricle.

4.2.2 Segmentation by Region Growing

Our Region growing algorithm works as follows:

1. Get a patch of the region of interest in the same manner as given in Section 

4.2.1 and calculate the mean value, m , and standard  deviation, std, of this 

patch.
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2. To find the seed or starting  pixel, the algorithm checks each pixel in the image 

of size M*N. The search is started at position (0, 0) and continues until a pixel 

w ith a gray value equal to  m  is found or the search reaches the pixel in position 

(M, N). The position of this seed is saved in a vector, V. V  is used to store the 

positions of all the pixels found to be included in the region.

3. For each value in V, the algorithm checks the four neighboring pixels. If the 

difference between the gray level of these neighboring pixels and m  is less than 

std, the position of the neighboring pixel is put into V.

4. Each time a new pixel position is added to  V, the mean and standard deviation 

of the pixel values referenced by V  are recalculated.

5. Steps 3 and 4 are repeated until the size of V  does not change.

4.2.3 Segmentation by Manual Method

All of the test images were segmented using a manual m ethod in order to  give a 

basis of comparison for the thresholding and region growing methods. The manual 

segmentation was supervised by a radiologist.

The steps of the algorithm are described as follows:

1. The radiologist drew the edge of the ventricle on each image slice using Paint 

software and using the color black (gray value = 0 ).

2. The drawn edge was segmented using a threshold of 0. Each pixel of the modified 

image was checked. If the gray value of the pixel equalled 0, its gray value was
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Figure 4.1: Result images o f thresholding, region growing and manual method. From 
left to right, top to bottom (a-d), all images are size 981*900 pixels: a. original image;
b. segmented ventricle using region growing algorithm; c. segmented ventricle using 
manual method; d. segmented ventricle using thresholding method.

changed to  255, otherwise it was changed to  0.

3. The segmented edge was closed and a region filling algorithm was applied to 

form a solid region.

Fig. 4.1 shows an example of the results of thresholding, region growing, and 

manual techniques after they have been applied to  a single slice.
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Picture Dimension W idth High threshold Low threshold
Fig. 5.3 a 3 3 50
Fig. 5.3 b 15 3 60

50
60

100
280

Table 4.1: Param eters for the Canny Edge Detector.

4.2.4 Canny Edge Detection Algorithm

A nother m ethod of autom ated segmentation th a t was tested on the ventricles was the 

Canny edge detection algorithm. The results of this method, an example of which is 

shown in Fig. 5.3, were not as good as the results from the thresholding and region 

growing methods.

In the  Canny edge detection algorithm, the original image was first smoothed with 

a Gaussian filter of dimension and width as defined in Table 4.1. Then using the 

Sobel operator the gradient magnitude and direction were com puted at each pixel 

of the smoothed image. Gradient direction is used to  th in  edges by suppressing any 

pixel response th a t is not higher than  the two neighboring pixels along the direction 

of the gradient. Once the gradient magnitudes are thinned, high magnitude contours 

are tracked. In the final phase, continuous contour segments are sequentially followed. 

Contour following is initiated only on edge pixels where the gradient magnitude meets 

a high threshold, 7^; once started, a contour may be followed through pixels whose 

gradient magnitude meets a lower threshold, 7).

The high and low thresholds, Th and 7] respectively, were determ ined as follows: 

First, the image was smoothed with a Gaussian filter, the Sobel gradient operator 

was convolved with the smoothed image (Fig. 4.2a). Next, a patch (Fig. 4.2b) of
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Figure 4.2: Process images o f Canny edge detector. From left to right (a-d): a. 
original image, image size 981 *900 pixels; b. a patch of non-ventricle brain tissue, 
image size 40*60 pixels; c. a patch of ventricle edge, image size 10*15 pixels; d. a 
patch inside ventricle, image size 50*75 pixels.

the non-ventricle part of the head was selected. The average gray value of this patch 

was used as the high threshold T^. Similarly, the average gray level values of a patch 

(Fig. 4.2c) on the edge of the ventricle (Fig. 4.2d) was used as the lower threshold 

Tt.

4.3 R egistration

4.3.1 Affine Transform: for in-plane position change

As mentioned in section 3.3.1, three param eters, translation distances (s and t ) and 

rotation angle (0) need to  be obtained for the affine transform.

Translation P aram eter

To get an estim ate of the translation param eter, correlation between the image I \  

and I 2 was used to  find the shifted distance. An example is shown in Fig. 4.3a of
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the image I x and in Fig. 4.3b of the image / 2. Fig. 4.3c is the segmented ventricle 

from Fig. 4.3b after it has been zero padded. The size of Fig. 4.3c and I x are 981 

*900 pixels before zero padding. Then images in Fig. 4.3a (also zero padded before 

the  transform ation) and Fig. 4.3c were each transformed by Fourier transform and 

the mean value was subtracted. Finally the transformed images were correlated using 

equation 3.7. The Fig. 4.3d is the result of the correlation shown in the spatial 

domain. Since no distinct peak could be found this method was abandoned. Instead 

the Fourier transform ed image of I 2  was correlated with the Fourier transformed 

image of I x and a distinct peak was determined as shown in Fig. 4.3e. W hen an 

image is correlated with a translated  version of itself, the peak appears offset from 

the center by the amount of the translation. Thus the translation param eters s and 

t can be determined by this offset in the X and Y directions respectively.

R o ta tio n  A ngle

The rotation angle was obtained by the following steps:

1. Using the Sobel operator, segment out the edge of the images I x and / 2  respec­

tively.

2. Using the manual G etR egionO f In te re s t function in CVLAB [19], isolate the 

upper edges of the skull from the remaining edges in the segmented images.

3. Find the left most and right most points of each upper edge, and calculate the 

slope of each upper edge by using these two points. A function for CVLAB was 

w ritten to  implement this.
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Figure 4.3: Result images after correlation. From left to right and top to bottom (a-e), 
the size o f images a,b,d,e are 981*900 pixels, and 1024*1024 pixies fo r image c: a. 
image a t tm l;  b. image a ttm 2; c. the ventricle segmented from  b; d. the result image 
of correlation o f b and c; e. the result image of correlation o f a and b.
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Figure 4.4: Result image after rotation. Left to right (a-b), all image size are 981*900 
pixies: a. the edge of Fig. 4.3a; b. the edge of Fig. 4.3b.

4. Using the slopes from step 3, obtain the angle between two upper edges. This 

is the rotation angle. Function A ng leB T lines  was w ritten to  implement this.

O p tim ize th e  A ffine Transform

The param eters for the affine transform  were optimized as follows. For each value 

between 8e ± 1 0 %, se ± 1 0 % and t e ± 1 0 %, the standard deviation (std) of the difference 

of the original image and the registered image was calculated. The values of 9, s and 

t which resulted in the minimum standard  deviation of the difference image, were 

selected as the final param eters for the affine transform.

4.3.2 Interpolation: for out-of-plane position change

Even if all the physical machine settings are the same for two CT scans of the same 

patient taken at two different times, it is possible for the resulting images to still be 

quite different. One reason for this is a slight change in the position of the patien t’s 

head in each scan. This causes the existence of a tilted  angle in the CT images and
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slice 1 e

slice 2 0
slice 3

slice 4

Figure 4.5: The interpolation o f out-of-plane movement: ab is the slice taken at time
tm 2; slice 1,slice 2,slice 3 and slice 4 are taken at time tm l.

also affects the ventricle volume calculation. In order to  reduce the effect of this 

problem, the images 12 were registered to  the images I\.

The eyeball was selected as the landm ark for the two sets of images I \  and / 2. 

For images I \  and / 2, the first slice in which two eyeballs appear was found. The size 

of the two eye balls (i?i and / ? 2  respectively) in one slice and as well as the distance 

between the nose and eyeball center, oc, were measured. A program was developed 

to  calculate the  distance between any two points. The user was required to  choose 

two points, one was the center point of the eyeball and the other was an edge point of 

the eyeball. Then the program automatically calculated the size of the eyeball. From 

these three values, R \, f? 2  and oc, the angle of head tilt was calculated.

Steps :

1. Calculate the radius of small eyeball, (Z?i), radius of large eyeball (R 2 ) and the 

distance between the nose and the large eyeball center(oc) (Fig. 4.5).

2. Calculate the angle (agl) of the head tilt at each tim e period by this formula:

cosa  =  R1/R2] (4.1)

sin/3 =  R2 * sq rt(l — cosa * cosa)/oc; (4-2)
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agl =  arctan(sin(3/sqrt(l — sin/3 * sinfl)); (4.3)

3. Do the above steps for images id and / 2  respectively and obtain the tilt angle 

(<p) between these two images.

4. Calculate the length of line be using the line oc and <p (Fig. 4.5). Then obtain 

the number of slices needed to  interpolate by the following equation:

Ninter = be/ Sthic, (4.4)

where Ninter is the number of slices need for the interpolation and Sthic is the 

slice thickness.

5. The slice ab can be obtained by interpolating between previous and later slices: 

slice ob can be obtained from slice 1  and slice 2 , slice oa can be achieved from 

slice 3 and slice 4 (Fig. 4.5). For example, the pixels in position along the 

slice oe of the generated new slice were obtained from slice 2  and the pixels in 

position along the slice eb were obtained from slice 3 and so on.

4.4 Partial Volume Effect

The method developed to reduce the partial volume effect uses a combination of the 

thresholding m ethod and the region growing method. It autom atically segments out 

all the ventricle pixels which include the partial volume effect and then includes them
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in the appropriate region depending on the average pixel value of the boundary pixels 

and the  surrounding region pixels.

The main method includes the following steps:

1. Segment out the ventricle (Fig. 4.6a) by the thresholding m ethod using thresh­

old, Ti, and save the positions of these pixels in vector Vi. The threshold Tx 

is the average pixel value of a region totally inside the ventricle. This region is 

obtained manually using the GetRegionO  f  In te re s t  function.

2. Segment out the ventricle (Fig. 4.6b) using the thresholding method again, this 

tim e using threshold, T2 . Save the position of these pixels in vector V2 . The 

threshold T2 is the average pixel value of a region which includes the whole ven­

tricle. This region is also obtained manually using the G etR egionO f In te res t 

function and includes the whole ventricle and part of the surrounding tissue.

3. Check the four neighboring pixels of each pixel in Vx. Push the neighboring 

pixel into V\ if it is also in V2 .

4. Do step 3 again for the new element in V\ until the size of V\ does not change. 

Fig. 4.6c shows an example of the resulting image after this region growing 

has been completed.

5. To obtain the boundary pixels which cause the partial volume effect, the image 

obtained from step 1 (Fig. 4.6a) is subtracted from the image obtained in step 

4 (Fig. 4.6c). In order to decide which region these boundary pixels belong to, 

check the boundary pixel value. If the pixel value is less than  90=(60+120)/2,
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Figure 4.6: Patial Volume Effect Correction. Left to right (a-c), all image size are 
981*900 pixels: a. and b. are images segmented by thresholding method by two 
different thresholds; c. the image after region growing.

the pixel belongs to the ventricle, otherwise it does not. 1 2 0  is the average 

pixel value for tissue inside the skull and surrounding the ventricle and 60 is 

the average pixel value for the ventricle as given in section 3.1.1.

A second m ethod of reducing the partial volume effect was briefly tested and 

subsequently not used as it was found to  be ineffective. This m ethod used a Gaussian 

filter to smooth the image before thresholding. Then the original image and the 

smoothed image were subtracted to obtain the pixels affected by the partial volume 

effect.

4.5 Volume Calculation

4.5.1 Volume Calculation Across Slices (VCAS)

Once the segmented images without parital volume effect have been obtained, the 

next step is to  calculate the volume of the ventricles. The process of the ventricle 

volume estimation goes as follows:
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1. Count the number of white pixels of each slice, N p. After segmentation, the 

image is binary.

2. Calculate the area of white pixels for each slice according to  equation 3.9.

3. Add up all the slices using equation 3.10.

To verify the accuracy of the volume calculation method, the method was tested 

on bo th  an analytical phantom  and physical models.

4.5.2 Analytical Phantom

In the analytical phantom, each ellipsoid has three different axis: A, B  and C. In 

order to obtain the length of the axis in mm, the per unit values given in Table 3.1 

were scaled using the following formula:

L-new — Larg * Ps * A , (t'5)

L new is the new length of the axis in mm after scaling. L org is the original length. Ps 

is the pixel spacing and N  is the image size. Since the pixel spacing of the clinical 

images was 0.410156 mm, an assumption was made th a t the pixel spacing of the 

ellipsoid was equal to  0.410156 mm and the size of the image was 512 *512 pixels. 

The actual volume of each ellipsoid was calculated according to  the standard volume 

formula (equation 3.13).

To test our volume calculation algorithm, the whole ellipsoid was divided into a 

number of slices perpendicular to  the B  axis. Three slice thicknesses were tested: 3
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mm, 7 mm and 10mm. For each slice thickness, the ellipsoid volume was estim ated 

using the  VCAS algorithm and the results were compared with the actual volume of 

the  ellipsoid calculated using equation 3.13. The percent error was also calculated.

4.5.3 Physical Phantom

Physical phantom models [15] [16] were created and the volume calculation algorithm 

was tested  on these models and a percentage error was calculated. An undergraduate 

student from Dalhousie, created 8  simple models at 2 angles, 3 complex models at 

2 angles and 5 complex models at 4 angles for us to  test the volume calculation 

algorithm. The 8  simple models consisted of 6  simple models w ithout air and 2 simple 

models with air, since in real images it is possible th a t small air pockets will exist. The 

reason for creating the complex model was th a t the structure of the complex model 

was much closer to  the shape of the ventricle and thus more thoroughly challenged 

the algorithm.

Each set of simple models was scanned four independent times, twice using slice 

thickness and spacing of 3 mm x 3 mm for 2 different scan angles (0 and 20 degrees), 

and twice using 7 mm x 7 mm for 2 different scan angles (0 and 20 degrees). In order 

to assess the algorithm ’s reliability and the potential for eliminating the problem of 

comparisons between varying head scanning angles, 4 different angles (0, 5, 10, 15 

degrees) were each used for another 5 complex models.

From a clinical point of view, there is inevitably some air in the ventricles. Ideally, 

this air should not be excluded from the measured ventricular volume. T hat was the
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Figure 4.7: Segmented images fo r  Physical Phantom. From left to right, top to bottom 
(a-d), all image size are 981*900 pixels: a. the original image; b. segemented water;
c. segmented air; d. result image obtained by adding b and c together.

reason the simple air models were created and the air was segmented out. In the 

simple air models, since the grey level for the air is equal to  zero, to  segment out air 

it was just necessary to set the threshold equal to  zero.

i f  P0(x, y) =  0, S e t Pt (x ,y )  =  255; else Pt (x ,y ) = 0.

The air is assumed to exist in the ventricle so the final ventricle volume was 

calculated using the to tal of the two segmented areas. An example is shown in Fig. 

4.7. After the volume of the physical phantom  was calculated by the VC AS algorithm,
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it was compared to the known actual volume and the percentage error was calculated.

4.6 Combination of All Algorithms: CSV

In previous chapters, segmentation, partial volume effect and volume calculation were 

discussed. We know the segmentation m ethod was used to  extract the ventricle from 

the CT image and the volume calculation method was applied to the segmented 

images to  achieve the volume of the ventricle. The partial volume effect method was 

used to  reduce the segmentation error to  obtain a more accurate segmentation of 

the image. All these methods were introduced seperately. Now it is a good time to 

link them  all together into a single m ethod referred to as CSV, for “Combination of 

Segmentation and Volume” . It works as follows:

1. If the image I 2 was translated or ro tated  with respect to image 11 , register I 2 

to  ii-

2. Segment the registered image using the thresholding method. The threshold 

was the average value of a patch taken from inside the ventricle. All pixel 

positions were saved in a vector V\.

3. Segment the registered image using the thresholding m ethod again. This time 

the threshold is the average value of the  region including the ventricle. Save 

all pixel positions in a vector V2 . In this situation, the boundary pixels of the 

ventricle and noise pixels are all included in the segmented region.

4. Use the Region growing algorithm, for each pixel in Vi check its four neighboring

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pixels, if the four neighboring pixels also appear in V2 , pu t these pixels into V3 . 

T he vector V3  contains all the boundary pixels of the ventricle without any noise 

pixels.

5. Check each boundary pixel whose position was saved in V3 . In the image Ii, if 

the gray value of the boundary pixel was less than  the average value (avg) of 

the  average value of ventricle (avg 1 ) and the average value of grey brain tissue 

(avg2) (equation 3.8), put these boundary pixel positions into Vi. Finally, the 

pixels in V\ belong only to the segmented ventricle and the partial volume effect 

has been minimized.

6 . Count the number of pixels in each segmented slice image and calculate the 

volume of the ventricle in each slice by multiplying the number of pixels by the 

pixel area and slice thickness (equation 3.9).

7. Finally, obtain the to tal volume by adding all sub-volumes up (equation 3.10).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Experim ental R esults

5.1 R esults for Segm entation

To measure how well the results of the two methods, thresholding and region growing, 

correspond to the manual method, the similarity index was calculated as mentioned 

in section 3.6.1. A to tal of 15 cases were tested  and all the results are listed in Table

5.1. Ten of these cases were known to  have normal ventricles and five cases were 

known to have been diagnosed with hydrocephalus. Each case consisted of twenty 

to twenty-three slices. Some of these slices included part of the ventricle and some 

did not. The slice thickness in the clinical data  was different for each case, some 

cases were 3.00 mm, some were 7.00 mm. The clinical images were changed to binary 

images (background in black and ventricle in white) after the segmentation.

Then the similarity index was calculated for three pairs of methods: thresholding 

and manual methods, region growing and manual methods, and thresholding and
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Case number Similarity Index 
of Threshoding 

vs Manual

Similarity Index 
of RegionGrowing 

vs Manual

Similarity Index 
of Thresholding 

vs RegionGrowing
1 0.83 0.82 0.92

2(hy) 0.78 0.78 0.90
3 0.75 0.74 0.85
4 0.84 0.73 0.80
5 0.83 0.81 0.88

6(hy) 0.76 0.78 0.78
7 0.77 0.78 0.97

8(hy) 0.81 0.83 0.98
9(hy) 0.78 0.80 0.94

10 0.80 0.81 0.96
11 0.77 0.77 0.82
12 0.74 0.75 0.79

13(hy) 0.82 0.80 0.91
14 0.79 0.79 0.83
15 0.78 0.76 0.79

Overall Avg 0.79 0.78 0.87

Table 5.1: Similarity Index fo r  15 Clinical Cases.

region growing. The similarity index of these 15 cases were all above 0.7, which 

indicates an appropriate segmentation was achieved. The results also show th a t the 

segmentation algorithm works equally well on both hydrocephalus cases and non­

hydrocephalus cases.

5.1.1 Thresholding

First, the images were segmented out by using thresholding and manual method. 

Then the results from the thresholding m ethod were compared to  the results of the 

manual method by calculating the similarity index. In the  Fig. 5.1a, each point 

represents the average similarity index for each cases. The range of the average
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similarity index for each case was from 0.74 to 0.84 as listed in second column of the 

Table 5.1.

5.1.2 Region growing

Similarly the similarity index resulting from the comparision of the region growing and 

the manual methods was calculated for each slice in each case. In Fig. 5.1b, each 

point represents the average similarity index for each case. The average similarity 

index for each case varied from 0.73 to  0.83 as listed in th ird  column of the Table

5.1.

5.1.3 Thresholding and Region Growing

After the comparisons between the thresholding and manual methods, and region 

growing and manual methods were completed, the results of the thresholding and 

region growing methods also were compared by calculating the similarity index. Fig. 

5.1c shows the range of the similarity index was from 0.78 to  0.98 as listed in fourth 

column of the Table 5.1.

Excellent results were obtained with both the region growing and the thresholding 

methods. All the calculated similarity indices were greater than  0.7. Specifically, in 

Fig. 5. Id, the average similarity index between the threshold and manual m ethod for 

the fifteen measured cases was 0.79. The average similarity index between the region 

growing and manual methods was 0.78 and the average similarity index between 

thresholding and region growing of 15 cases was 0.87. These values indicate the
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thresholding and region growing methods give highly consistent results.

In some cases, the reason for the lower similarity index is the partial volume 

effect. Since a similarity index equal to  or greater than  0.7 indicates a good match

[24], our similarity index values which fall in the range of 0.73 to  0.98 indicate th a t 

the thresholding and region growing m ethods are reliable for segmenting the ventricle 

from CT scan image.

5.1.4 Sensitivity of the Thresholding

The sensitivity of the threshold was calculated for each slice and the average sensitivity 

for each case is equal to ±  10.67% (Fig. 5.2). This means th a t if the threshold used for 

the segmentation is varied by ±  10.67%, the to tal number of pixels segmented won’t 

change. Although the difference between the average gray value of the ventricle 

and the average gray value of the surrounding tissue is large, the parital volume 

effect makes it difficult to  pick the threshold. So a sensitivity equal to ±  10.67% is 

acceptable. The higher the sensitivity, the more robust the thresholding.

5.2 R esults for Canny Edge D etector

The output of the Canny edge detector was a very rough edge around the ventricles 

and many other edges in the image (see Fig. 5.3). The resulting output was very 

noisy. This made it very difficult to segment the ventricles. The Canny edge detection 

algorithm was abandoned. The reason the Canny edge detection failed on CT images 

of the head was tha t this algorithm not only involves the gray value of the edge
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Figure 5.1: Graphs of the sim ilarity index fo r  15 clinical cases. From top to bottom
(a-d): a. manual vs threshold; b. manual vs region growing ; c. Threshold vs Region 
growing: d. average similarity index of three methods.
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Figure 5.2: Threshold sensitivity.

5.

Figure 5.3: Results fo r  Canny Edge Detector. From left to right (a,b), all images are 
size 981 *900 pixels: a. image segmented by canny edge detector with Gaussian filter 
dimension=3, width=3, high threshold=50, low threshold=100; b. image segmented by 
canny edge detector with Gaussian filter dimension=15, width=3, high threshold=60, 
low threshold=280.
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bu t also involves the texture of the edge. The edge between the ventricles and the 

surrounding tissues is not distinct enough to  get a good segmentation based on edge 

information alone. Fig. 4.2d shows the texture of the  edge clearly. In order to

extract more edge segments, the dimension of the Gaussian filter was increased, but 

when the dimension increased, the noise also increased. Segmentation based on the 

tex ture was not explored in this thesis, bu t it is a potential topic for future research.

5.3 R esults for R egistration

The registration algorithms were tested on the eight clincal cases th a t included two 

scans taken a t different times but of the same patient. We call these double cases. 

Five of these cases were known to  have normal ventricles and three cases were known 

to have hydrocephalus. The volumes of these eight registered and segmented cases 

were calculated and listed in Table 5.7. The results of the  registration techniques 

are illustrated by the examples given in Fig. 5.4 and Fig. 5.5.

5.3.1 Results for Affine transform (2D)

Fig. 5.4a and Fig. 5.4b are the images for the same patient taken at two different 

times. Fig. 5.4c is the results image after the optimized affine transform  has been 

applied. The skull in Fig. 5.4b was shifted -32 pixel positions along the x axis, -9 

pixel positions along the y axis and rotated  3 degree with respect to Fig. 5.4a. So 

the range of translation distance in the x direction used for optimization was -35 to 

-29 pixel positions and in the y direction was -10 to -8 pixel positions. The range for
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Figure 5.4: Results o f Affine Transform,. From left to right and top to bottom (a-d), 
all image sizes are 981 *900 pixels: a. the image at tm l; b. the image at tm2; c. the 
registered image o f b; d. the difference image o f a. and c.

the rotation angle was 2 to 4 degrees. The optimized value for s and t were -31 pixel 

positions and -9 pixel positions respectively. Image I 2 was registered according to 

each value of se, each value of te and each value of 0e. The difference between I\  and 

the registered image was obtained and the standard  deviation of this difference image 

was calculated each time. W hen the standard  deviation was minimal, the values of 

se, t e and 0e were taken as optimal. Fig. 5.4d is the difference of Fig. 5.4a and Fig. 

5.4c. The standard  deviation of Fig. 5.4 d is 24.56 which is minimal.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.5: Result after interpolation. From left to right (a-c), all image sizes are 
981*900 pixels: a. image taken at time tm l;  b. image taken at time tm2; c. image 
after interpolation.

5.3.2 Results for Interpolation (3D)

The image in Fig. 5.5a was R  and the image in Fig. 5.5b was F- The eyeballs in 

the two images show th a t the position of the p a tien t’s head was shifted between the 

scans. Using the eyeball sizes in each image, the difference angle between these two 

images can be calculated (see Section 4.3.2). W hen the difference angle has been 

obtained, the head in Fig. 5.5b can be transformed back to  the same position as 

the head in Fig. 5.5a. The head in Fig. 5.5c is the result after the interpolation 

algorithm has been applied. Judging from the eyeballs in Fig. 5.5a and Fig. 5.5c, 

the shift in angle has been corrected.

5.4 R esults for Volume Calculation

5.4.1 Analytical Phantom

As discussed in Section 4.5.2 and 3.6.2, the volume calculation algorithm (VCAS) 

was tested on an analytical phantom  (Fig. 3.6). The analytical phantom  is a model of
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Length of ActualVolume SliceThickness Calculated Error
three axis (mm3) (mm) Volume (mm3) %

A=0.69 2.77E6 3 2.79E6 0.69
B=0.92 7 2.77E6 0.14
C=0.9 10 2.76E6 0.39

A=0.6624 2.47E6 3 2.48E6 0.44
B=0.874 7 2.46E6 0.24
C=0.88 10 2.48E6 0.35
A=0.41 6.68E4 3 6.72E4 0.61
B=0.16 7 6.63E4 0.77
C=0.21 10 6.71E4 0.50
A=0.31 3.64E4 3 3.60E4 0.77
B=0.11 7 3.67E4 0.92
C=0.22 10 3.66E4 0.81

A=0.046 471.99 3 479.75 1.60
B=0.046 7 465.88 1.30
C=0.046 10 467.21 1.00
A=0.56 10.86E3 3 10.78E3 0.74
B=0.04 7 10.81E3 0.30

o II o 10 10.93E3 0.65
A=0.056 1520.66 3 1557.21 2.40
B=0.056 7 1501.59 1.30

C=0.1 10 1498.77 1.40
A=0.046 102.61 3 99.72 2.80
B=0.023 7 104.61 1.95
C—0.02 10 100.84 1.70

A=0.046 471.99 3 479.75 1.60
B=0.046 7 465.88 1.30
C=0.046 10 467.21 1.00
A=0.046 102.61 3 99.72 2.80
B=0.023 7 104.61 1.95
C=0.02 10 100.84 1.70

Avg 1.14

Table 5.2: Calculated volume of analytical phantom.
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the  head commonly used in medical image analysis. The volume calculation algorithm 

was first tested on the analytical phantom.

Table 5.2 contains the volume calculation results for the ten ellipsoids in the 

phantom . The table consists of length of three axis, actual analytical volume of the 

ellipsoid, slice thickness, calculated volume by VCAS algorithm and percent error 

between the analytical volume and the volume obtained from the VCAS algorithm. 

The percent error is in the range of 0.14% to  2.8%, which is consistently less than 

3%. A 5% error is considered acceptable in the literature [4] [5] [8].

5.4.2 Physical Phantoms

As discussed in section 4.5.3, the volume calculation algorithm (VCAS) was tested 

on a set of physical models with measured volumes.

The final results of these tested  models were organized in four tables. Table 5.3 

shows the results of the  six simple models. The results of the 2 simple air models were 

summarized in Table 5.4 and Table 5.5 contains the results of the three complex 

models. The tables (Table 5.3, Table 5.5) for the models w ithout air have four 

columns. The first column is the actual measured volume for the  model, the second 

column gives the slice param eters which are slice thickness and slice spacing, the third 

column is the volume calculated by the volume calculation algorithm (VCAS) and the 

last column is the percent error of the calculated volume based on the actual volume.

The overall average percent error for the set of simple models was 2.52% and the 

overall average percent error for the 3 mm x 3 mm images was 2.71% and was 2.33%
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Simple model actual 
volume (ml)

Slice param eters [slice thickness 
(mm) x slice spacing (mm)]

Calculated volume 
(ml)

Error
%

11.5 3x3 11.2 2.61
7x7 12.0 4.35

3x3 a t 20 degree 10.9 5.22
7x7 at 20 degree 11.8 2.61

average 11.5 3.70
16.5 3x3 15.9 3.60

7x7 16.1 2.40
3x3 at 20 degree 16.4 0.60
7x7 a t 20 degree 16.7 1.09

average 16.3 1.92
25.5 3x3 25.9 1.57

7x7 25.8 1.18
3x3 at 20 degree 25.0 1.96
7x7 at 20 degree 26.0 1.96

average 25.7 1.67
32.5 3x3 31.5 3.00

7x7 32.0 1.50
3x3 a t 20 degree 33.4 2.70
7x7 a t 20 degree 33.3 2.46

average 32.5 2.42
58.0 3x3 56.3 2.86

7x7 56.3 2.93
3x3 a t 20 degree 60.0 3.45
7x7 a t 20 degree 59.0 1.72

average 57.9 2.70
60.0 3x3 59.2 1.33

7x7 58.5 2.50
3x3 at 20 degree 62.2 3.67
7x7 at 20 degree 62.0 3.33

average 60.5 2.69
Overall 

Avg Error
2.52

Table 5.3: The calculated ventricular volumes of the simple models compared to the 
actual simple model volumes based on images for various slice parameters [16].
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Simple 
model: 

volume of 
water (ml)

Slice param eters 
[slice thickness 

(mm)x slice 
spacing(mm)]

Calculated 
volume 
of water 

(ml)

Error
%

Estim ated 
volume of 

of air 
(ml)

Calculated 
volume of 

air 
(ml)

Error
%

55.0 3x3 53.7 2.36 5 4.80 4.00
7x7 54.5 0.91 5.10 2.00

3x3 at 20 degree 55.3 0.55 4.89 2.20
7x7 at 20 degree 54.3 1.27 5.20 4.00

average 54.5 1.27 3.05
76.0 3x3 75.1 1.18 2 1.91 4.50

7x7 73.6 3.16 2.01 0.50
3x3 at 20 degree 77.9 2.50 1.94 3.00
7x7 at 20 degree 74.0 2.63 2.10 5.00

average 75.2 2.37 2.00 3.25
Overall 1.82 3.15

Avg Error

Table 5.4: The calculated volumes of both water and air fo r  the simple models based on 
various slice parameters compared to the actual water volumes and estimated actual 
air volumes [16].

Complex model actual 
volume (ml)

Slice param eters [slice thickness 
(mm) x slice spacing (mm)]

Calculated volume 
(ml)

Error
%

61 3x3 61.1 0.23
7x7 62.7 2.79

3x3 at 20 degree 59.0 3.28
7x7 at 20 degree 58.6 3.93

average 60.4 2.56
63 3x3 61.4 2.54

7x7 64.8 2.86
3x3 at 20 degree 62.3 1.10
7x7 at 20 degree 65.0 3.17

average 63.4 2.42
69.8 3x3 71.6 2.58

7x7 72.0 3.15
3x3 at 20 degree 72.7 4.15
7x7 a t 20 degree 69.5 0.43

average 71.5 2.58
Overall 

Avg Error
2.52

Table 5.5: The calculated ventricular volumes of the complex models based on images 
with various slice parameters compared to the actual ventricular volumes [16].
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for the  7 mm x 7 mm images. These percent errors show th a t the slice thickness does 

not significantly affect the volume calculation.

T he overall average percent error for calculations of water volume for the simple 

air models was 1.82%, and the overall average percent error for calculations of air 

volume for the simple air models was 3.15%.

The overall average percent error for the complex models was 2.52%. The accu­

racy of the ventricular volumes calculated by the volume calculation algorithm was 

controlled within 5.2%. Although 5.2% is above 5%, this error rate was also well 

within the accepted values for error rates documented in the literature, which range 

between 4% and 16% [40].

All of the above physical models were scanned at two different angles: zero and 

twenty degrees. To check if changing the scan angle effects the results or not, five 

complex models were scanned at four different angles: 0 degrees, 5 degrees, 10 degrees 

and 15 degrees. The results are given in Table 5.6.

The overall average error of these five cases was 2.62% which is within 5%. From 

this it can be concluded th a t the changes in the  scan angle of up to 20 degrees, or 

the clinically relevant range, does not affect the  volume calculation.

5.4.3 Clinical Double Cases

A to tal of eight clinical double cases were tested and five were known to have normal 

ventricles and three were known to have hydrocephalus. The results are given in Table 

5.7. In this table, there are six columns: case name, ventricle volume at tim e tm l,
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Actual Volume Angle Calculated volume Error
(ml3) (degree) (ml3) %
102 0 104.1 2.07

5 104.8 2.79
10 103.4 1.37
15 105.2 3.12

average 2.34
112 0 115.6 3.19

5 113.8 1.65
10 115.2 2.89
15 115.6 3.18

average 2.73
130 0 134.8 3.69

5 135.0 3.86
10 135.6 4.33
15 134.9 3.78

average 3.92
101 0 103.7 2.70

5 103.4 2.33
10 104.6 3.54
15 102.0 1.00

average 2.39
88 0 90.2 2.49

5 89.9 2.24
10 89.3 1.43
15 87.4 0.73

average 1.72
Overall 2.62

Avg Error

Table 5.6: Volume of complex physical models taken at four different angles [15].
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case name Ventricle 
volume at 
tm l (mm3)

ventricle 
volume at 
tm 2(m m 3)

Old
Error

%

New ventricle 
volume at 

tm 2 (mm3)

Error
%

4j 5.20 5.19 0.16 5.16 0.78
2j(hy) 94.16 178.65 89.73 127.84 35.80

5j 26.95 31.21 15.78 27.98 3.83
BH 6.14 8.18 33.37 6.47 5.41
KC 6.96 7.37 5.83 7.15 2.76

KF(hy) 59.73 92.04 54.09 74.52 24.77
TG T(hy) 7.23 13.53 87.11 9.88 36.56

CM 10.19 12.85 26.08 10.70 4.97

Table 5.7: Results o f volume calculation for eight clinical double cases.

ventricle volume at time tm2, old error, new ventricle volume at tim e tm 2  and error. 

In order to illustrate the significance of registering the images, two extra columns 

have been added to Table 5.7. Column 3 gives the result of calculating the volumes 

w ithout registering the images and column 4 gives the percentage difference between 

the volumes at tm l and tm 2  calculated in this manner. Column 5 gives the ventricle 

volume using the complete algorithm including registration, CSV.

Table 5.7 shows th a t before the images were registered the difference in ventricle 

volume calculated at tm l  and tm 2  was tremendously large. After the interpolation 

across the slices, the difference of the normal ventricle volumes at tm l  and tm 2  is 

less than 5.5%. This is consistent with the error of the volume calculation methods 

for the created physical models. In cases where hydrocephalus was diagnosed, the 

change in volume was greater than  20%. This indicates th a t the algorithm (CSV) 

would be a valuable aid in diagnosing hydrocephalus.
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Case volume of 
ventricle (mm3)

volume of 
skull (mm3)

Ratio
(%)

1 20444.3 4417350 0.46
2(hy) 32523.4 6670420 0.49

3 24239.2 6124920 0.40
4 22085.6 6861690 0.32
5 22573.5 7214850 0.31

6(hy) 34588.9 7567210 0.46
7 20203.5 6346060 0.32

8(hy) 29714.3 6413705 0.46
9(hy) 28232.7 5957040 0.47

10 27213.2 6124920 0.44
11 22158.3 6891720 0.32
12 24335.5 7014520 0.35

13(hy) 34588.9 7567210 0.46
14 23220.5 6562060 0.35
15 26729.5 6486150 0.41

Table 5.8: Ratio of ventricle to skull for 15 clinical cases.

5.4.4 Ratio of Ventricle to Skull

Besides using the volume calculation algorithm to  estim ate the ventricle volume 

change due to  the hydrocephalus, the ratio of ventricle volume to  skull volume was 

also calculated. As can be seen from the results listed in Table 5.8 this ratio was not 

a good indication of disease. Both the ventricle and the skull enlarge in some hydro­

cephalus cases so th a t the change in ratio was minimal (Table 5.8). Therefore, it was 

determined th a t this measure was not a good aid in the diagnosis of hydrocephalus.
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Chapter 6

Conclusion

In this thesis, we have developed a m ethod to  estim ate the volume of the celebral 

ventricles to  aid in the diagnosis of hydrocephalus. This m ethod can be divided into 

two main steps: segmentation and volume calculation. To make the segmentation 

algorithm work better, registration and partial volume effect algorithms were devel­

oped. The sensitivity of thresholding and the similarity index were calculated to 

verify the segmentation method. In order to  test the volume calculation algorithm, 

an analytical phantom  and physical phantom s with known volumes were used and 

percent error was calculated.

The range of the similarity index for our 15 clinical cases was 0.7 to 0.92 which 

was a good result. T hat shows th a t the segmentation m ethod worked well. For the 

volume calculation method, the percent error of the ventricle volumes of the analytical 

phantom and the calculated ventricle volumes was in the range from 0.14% to 2.8%, 

which are very good results since 5% error rate was taken as acceptable [4] [5] [8]. The
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percent error of the ventricle volume of the created model and the calculated ventricle 

volume varied from 0.23% to 5.2%. This also shows the volume calculation algorithm 

(CSV) gives results within an acceptable range.

W hen the patient has hydrocephalus, the ventricles become enlarged. By auto­

m atically calculating and comparing the volume of the ventricles at different times, 

our algorithm can aid in the diagnosis of hydrocephalus. In normal cases, the change 

in the calculated volume of the ventricle was less than  5%. In the clinical cases ex­

amined, when hydrocephalus was present, the change in the calculated volume of the 

ventricles was greater than  20%. Our algorithm was tested on eight clinical double 

cases. Therefore an CSV algorithm shows good potential as an aid in the diagnosis 

of hydrocephalus.
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Chapter 7

Future Work

Some possible further work following from this thesis includes:

• The segmentation methods th a t we used are based on the gray values since 

the objects in brain have distinct gray values. However as Fig. 4.2d shows, 

the ventricles and surrounding tissue have distinct textures. Future work could 

include the investigation of segmentation based on texture.

•  The idea of our algorithm is to  do segmentation in 2D and then calculate the 3D 

volume. An alternative approach would be to  create a model of the whole head 

in 3D from one set of slices, and then do segmentation and volume calculation 

in 3D.

• For the 3D interpolation, one kind of head displacement (head to  shoulder) was 

corrected in this thesis. Another type of head displacement, the nod, was not 

addressed in this thesis since there were no easily identifiable features th a t could

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



be used as landmarks to calculate the tilt angle. This also is a potential topic 

for future work.

•  The FOV was obtained from the DICOM header manually. In future devel­

opments this information could be automatically extracted from the header. 

Similarly the image formats were changed to allow easy manipulation. Future 

developments could use the DICOM image data directly.

• The thresholding and region growing algorithms depend on the manual selection 

of a region of interest. Future research could investigate m ethod to select the 

region of interest w ithout manual interruption.

• The eyeballs were used as landmarks for the interpolation algorithm. Future 

research could investigate methods, such as the Hough transform, to locate the 

eyeball centers and determine the eyeball size.
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