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Wavelet-Based Image Registration and Segmentation Framework for the Quantitative

Evaluation of Hydrocephalus

by Fan Luo

Abstract

Hydrocephalus, a condition of increased fluid in the brain, is traditionally diagnosed 
by a visual assessment of CT scans. This thesis developed a quantitative measure of the 
change in ventricular volume over time. The framework includes: adaptive registration 
based on mutual information and wavelet multiresolution analysis, adaptive segmentation 
with a novel feature extraction method based on Dual-Tree Complex Wavelet Transform 
(DT-CWT) coefficients, and a volume calculation. The framework, when tested on 
physical phantoms had volume calculation accuracy of 1.0%. When tested on 8 clinical 
cases, the results reflected and predicted the diagnosis of the doctors, with less than 5% 
calculated volume change for cases where the diagnosis indicated the patient was stable, 
and more than 20% calculated volume change for cases for which hydrocephalus had 
been diagnosed. The outcome illustrated that the framework has good potential for 
development as a tool to aid in the diagnosis of hydrocephalus.
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Chapter 1

Introduction

Hydrocephalus means “water brain” . It is the result of excessive accumulation of fluid 

around the brain. Traditionally, hydrocephalus has been described as a condition 

characterized by increased intracranial pressure (ICP), increased cerebrospinal fluid 

(CSF) volume, and dilatation of the CSF spaces known as cerebral ventricles [35]. 

This condition usually appears in childhood, however, the condition can occur as a 

result of obstruction to  normal CSF flow at any age. The clinical approach consists of 

early identification of the  condition, followed by shunting of CSF to relieve intracranial 

pressure.

The prominent feature of hydrocephalus is the significant volume change of the 

ventricular system. This volume change can be seen in radiological images. Tradi

tionally, estimation of the size of the ventricular system is done visually by doctors. 

But visual assessment has limited accuracy since the shape of the ventricular system 

is very complex. Moreover, differences in the orientations of slices from one study

1
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to  the next makes direct visual comparison of serial imaging studies difficult. This 

problem is refered to  as the displacement problem. In this thesis, computer vision 

techniques were used to calculate the change in the volume of the ventricles with the 

goal of providing doctors with a tool to  aid in the diagnosis of hydrocephalus.

There are four main techniques discussed in the thesis: wavelet-based analysis, im

age registration, image segmentation, and volume calculation. Considerable research 

has been done in these four areas. Wavelet multiresolution decomposition was used 

to  make the registration process easier at different scales. Wavelet coefficients were 

applied to  extract different features from the different textures. M utual information- 

based registration was introduced to  solve the displacement problem between two 

scans th a t were taken at different times. Morphological watershed segmentation was 

modified to  autom atically segment the CT images into several different homogenous 

regions. A volume calculation algorithm was applied to  compute the ventricular vol

ume using a stack of 2D images.

This thesis is organized in the following manner. In Chapter 2, a brief litera

ture review is given on the following topics: wavelet applications in medical image 

processing, m utual information registration, image segmentation methods, and vol

ume calculation algorithms. Chapter 3 gives the background theory on which the 

project and algorithms are based. Chapter 4 is a detailed description of the experi

mental methods. Experimental results are given in Chapter 5 with both  da ta  tables 

and some result images. In Chapter 6, some conclusions based on the experimental 

results are drawn. Future work is introduced in the last chapter.

2
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Chapter 2

Background

Generally, four main kinds of computer vision techniques were used in the thesis: 

wavelet multiresolution analysis, image registration, image segmentation, and volume 

calculation. There has been much research work done in these fields. The following 

sections will briefly review the literature.

2.1 W avelet Application

From the 1980’s to  the present, wavelet techniques have grown rapidly and found 

many applications in medical image processing. Because of its multiresolution char

acteristics, wavelet decomposition is very helpful for analyzing small areas (details) in 

an image. Wavelets have many applications in medical image processing. Basically, 

they can be applied to  denoising [18] [20] [33], enhancement [18] [45] [8], and feature 

extraction [1] [34]. In this thesis, feature extraction based on wavelet coefficients and 

wavelet multiresolution analysis is a key component of the registration and segmen-

3
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ta tion  algorithms.

Many researchers have made significant progress using wavelets for feature ex

traction. Saxena et al. [34] used two kinds of wavelets to extract small features from 

electrocardiogram (ECG) signals. One is the quadratic spline wavelet (QSWT) and 

the other is Daubechies six-coefficient (DU6) wavelet. The use of a QSW T provides 

a fixed correlation between the ECG characteristic points and the modulus maxima 

lines. DU6 has smooth features, so it is more suitable to  detecting wave fiducials.

Common wavelet transforms can represent an image in three different directions, 

horizontal, vertical, and diagonal. For some applications, three selective directions are 

good enough for extracting features from an image or a texture. However, for some 

applications, such as texture classification and image retrieval, the common wavelet 

transform  does not work very well. Furthermore, the common wavelet transform 

causes aliasing and exhibits shift variance [23]. As a result, many modified wavelet 

transforms have been introduced. The most famous examples are the complex wavelet 

transform, the tree-structured wavelet transform, and the dual-tree complex wavelet 

transform (DT-CW T). Kingsbury [23] introduced the complex wavelet transform  to 

effectively solve the two problems of aliasing and shift variance. The complex wavelet 

transform filters have complex coefficients and generate complex output samples. 

Since the output sample rates are unchanged from the discrete wavelet transform, but 

each sample contains a real and imaginary part, a redundancy of 2 : 1 is introduced in 

one dimension and 4:1 in two dimensions. The results show th a t the complex wavelet 

transform  is approximately shift invariant and has better selective directions than  the

4
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dicrete wavelet transform. For example, a 2-D complex wavelet transform  produces 

six bandpass subimages of complex coefficients a t each level th a t are strongly oriented 

at angles of ±15°, ±45°, and ±75°.

For many applications, it is im portant th a t the transform be perfectly invertible. 

Unfortunately, it is very difficult to  design an inverse transform  based on complex 

filters. Moreover, the inefficient com putation and redundancy are two disadvantages 

of the complex wavelet transform. Therefore, Kingsbury [24] designed the dual-tree 

complex wavelet transform  (DT-CW T) which added perfect reconstruction, limited 

redundancy and efficient order-N com putation to  the other attractive properties of 

complex wavelets: shift invariance and good directional selectivity. Similar to the 2-D 

complex wavelet transform, the 2-D DT-CW T is approximately shift invariant and has 

six bandpass subimages at each level. The DT-CW T has been shown to be suitable 

for feature extraction. Hill et al. [16] and O ’Callaghan et al. [30] used DT-CW T 

coefficients to  construct the texture gradient map for the watershed segmentation 

algorithm. Their results showed th a t the DT-CW T coefficients represent the tex tu re’s 

features well and improve the results of the watershed method.

2.2 Registration

Image registration is the process of estimating an optimal transform ation between 

two images. In this thesis, registration is used to  compensate for the displacement of 

the human head from one CT scan to  a second scan of the same patient taken at a 

different time. The displacement problem creates difficulty when trying to  compare

5
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the two sets of resulting images since the human head will not be in exactly the 

same position at the two scanning times. Generally, registration can be divided into 

two categories: rigid-body registration and non-rigid body registration. Rigid-body 

registration uses an affine transformation. Non-rigid body registration is based on a 

deformable model transformation. In this thesis, since the skull in the images is a 

rigid body and we are interested in how it has turned from one set of images to the 

next, only rigid body registration was considered. A deformable model transform ation 

would distort the results.

Many studies have been performed on image registration. One of the approaches 

used is feature-based registration, in which significant regions, lines, or points are 

chosen as the landmarks. In Sun’s work [39], the eyeballs were picked as the landmarks 

in the two images. Then the size of the two eyeballs and the distance between the 

nose and eyeball centers were measured. A geometric m ethod was then used to 

compute the angle between these two pairs of eyeballs. Feature-based registration 

has the disadvantages of being linear and dependant on the user’s manual choice of 

landmarks. Because of these disadvantages, mutual information (MI) registration was 

introduced both  by Collignon [7] and by Viola and. Wells [44],

M utual information measures the m utual dependence of one imge on another 

or the information in image 1 th a t is shared by image 2. The larger the m utual 

information, the more two images look alike. Therefore, the global maximum of 

the m utual information function is used as the criterion for optimum registration. 

Since MI is based on Shannon Entropy estimation, it is an autom atic, intensity-based

6
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measure which does not need any landmarks or features defined. It does not assume 

a linear relationship among the gray values in the images. Research has shown th a t 

m utual information is suitable for medical image registration [27] and displacement 

correction [22],

Sometimes, m utual information used on its own, results in misregistration [38] be

cause of the influence of the local maxima. So, normalized m utual information (N M I ) 

[38] and entropy correlation coefficients (ECC) [251 are proposed by researchers. Ac

cording to  the outcome, N M I  and ECC can reduce the influence of local maximum 

somewhat. However, it is still not easy to  find the global maxima in the MI func

tion. Therefore, some researchers incorporate the dependence of the gray values on 

neighboring voxels, in other words, the spatial information, and in particular, gradi

ent spatial information. This m ethod improves the registration results significantly. 

Pluim et al. [32] proposed a modified mutual information function which considers 

the gradient information of the image. This method multiplies the mutual informa

tion with a gradient term  th a t is based on both  the magnitude and orientation of 

the gradients. The results show th a t the MI function is much smoother than  before 

gradients were incorporated. Some multiresolution methods, such as spline pyramids 

[41] and the 2-level multiresolution hierarchy [26], are also suggested to  improve the 

performance of mutual information.

The registration measure defines an n-dimensional functional transform ation with 

n  degrees of freedom. The optimization of this function is assumed to  correspond to 

the transform ation th a t correctly registers the images. Two optimization methods are

7
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popularly used in image registration: the simplex method and Powell’s routine. If the 

relationship is linear, Powell’s routine [11], which can optimize each transform ation 

param eter in tu rn  and does not require function derivatives to  be calculated, can 

perform well with an acceptable optimization time. However, it is sensitive to  local 

optima in the registration function. On the other hand, if the relationship is non

linear, it is better to  use the simplex method [28] which considers all degrees of freedom 

simultaneously. The simplex method is not known for its speed of convergence.

In this thesis, the displacement problem in CT images might be caused by more 

than  one param eter at a time. In other words, all the param eters used for optimization 

might be nonlinear for the registration function. In order to  handle this probable 

situation, the  simplex method was chosen, even though it is very time-consuming.

2.3 Segm entation

Image segmentation is the process of separating out m utually exclusive homogeneous 

regions of interest. For example, in this thesis, the images include mainly four parts: 

the background, the skull, the soft tissues inside the skull, and the ventricles. Differ

ent parts have different textures and the texture inside each part is considered to  be 

homogeneous. The goal of the segmentation algorithm is to  distinguish the  different 

textures. There are many segmentation techniques, for example, histogram thresh

olding, region-growing, morphological watersheds, and techniques based on statistical 

approaches and wavelet coefficients.

8
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2.3.1 Thresholding

Thresholding is the simplest segmentation algorithm and is implemented by selecting 

appropriate gray levels as thresholds. If a pixel lies above the  threshold it will be 

marked as foreground, otherwise, it is marked as background. Usually, the threshold 

is selected by analyzing the histogram of the image. Cheriet et al. [6] presented a 

general recursive approach to  thresholding which is based on discriminant analysis for 

image segmentation by extending O tsu’s m ethod |31]. Cheriet’s approach segments 

the brightest homogeneous object from a given image at each recursion, leaving the 

darkest homogeneous object. The thresholding operation is regarded as the parti

tioning of pixels of an image into two classes: object and background. The conclusion 

shows th a t the m ethod gives good results when the target object is the darkest object 

in a given image. However, when the target object is not darkest, the m ethod fails 

to  segment properly.

2.3.2 R egion growing

Region growing is another popular segmentation algorithm [39]. It takes one or more 

seed pixels, and grows the regions around them  based upon a certain homogeneity 

criterion. If the adjoining pixels are similar to the seeds, the pixels are merged within 

a single region. The process continues until all the pixels in the image are assigned 

to  one or more regions. For a project similar to  ours, Sun [39] used region growing 

with two criteria to segment the ventricles. Her method starts with a seed pixel which 

belongs to  the ventricle, and then iteratively checks to  decide if each neighboring pixel

9
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belongs to  the ventricle or not. For a pixel to be included in the region, the absolute 

gray-level difference between the pixel and the seed has to  be less than  a threshold, 

and the pixel has to  be 8-connected to  at least one pixel in th a t region.

Chang and Li [5] proposed a region-growing framework for image segmentation. 

This process is guided by regional feature analysis and no param eter tuning or a 

priori knowledge about the image is required. The algorithm is known as the Fast 

Adaptive Segmentation (FAS) algorithm. The focus of this study is on investigating 

how different merge criteria affect the quality of the segmentation and the processing 

time. The experiment showed th a t the algorithm automatically computes segmenta

tion thresholds based on local feature analysis. The main limitations of this algorithm 

were the limited applicability of the adaptive homogeneity tests on very small regions 

and the order dependency of its segmentation results. The order dependency refers 

to  the fact th a t different seeds cause different region-growing results.

2.3.3 C lustering

A cluster is a group of similar data. Clustering analysis performs effectively for 

image segmentation. It allows the partitioning of image da ta  into meaningful regions. 

Generally, clustering is commonly used in unsupervised segmentation. The difficulties 

of cluster analysis are related to how many clusters are best and how to  determine 

the validity of the clusters.

Frigui and Krishnapuram  [12] described a m ethod called Robust Competitive Ag

glomeration (RCA) to  solve three major issues associated with conventional partition
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clustering. The three issues were sensitivity to  initialization, difficulty in determining 

the number of clusters, and sensitivity to  noise. RCA starts with a large number of 

clusters to  reduce the sensitivity to  initialization and determines the actual number 

of clusters by a process of competitive agglomeration. The results showed th a t RCA 

can provide robust estimates of the number of clusters even when the clusters vary 

significantly in size and shape, and data  are noise contaminated. RCA is not suitable 

for our project since the histogram of a region can not be estim ated accurately if 

the region is very small. The reason is th a t histogram estim ation is a distribution 

estimation method. A very small sample size might not result in accurate histogram 

estimation.

Ng [29] presented an extension to  the conventional k-means clustering algorithms 

by modifying the splitting rule in order to  control the number of the clusters. The 

author developed an approach th a t allows the use of a k-mean paradigm to  efficiently 

cluster da ta  sets with a fixed number of elements in each cluster by adding suitable 

constraints.

2.3.4 M orphological w atershed

The morphological watershed algorithm is a very powerful autom atic segmentation 

method. It treats a 2-D image as a 3-D model. The x  — y spatial coordinates and the 

intensity of the pixels form the three coordinates of the model. Usually, the input for 

the watershed is the gradient map of the original image. The morphological watershed 

algorithm performs well when the gradient map is very clear. However, the watershed

11
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method is very sensitive to  noise. This causes an over-segmentation problem which 

is the main drawback of the watershed algorithm. Some researchers proposed several 

ways to  overcome this problem. Soille [37] introduced the morphological H-minima 

transform, which modifies the gradient surface, suppressing shallow minima.

Another well-known suppression m ethod is the waterfall m ethod proposed by 

Beucher [3]. It considers the boundary of a region and then sets the whole region as 

the minimum value of the region’s boundary. Most of the time, local minima sup

pression is not enough. The image is still oversegmented. Since the input for the 

watershed is the gradient information of the original image, some pre-processing can 

be done before the image is passed to  the watershed algorithm. Shafarenko et al. 

[36] used a modified gradient map as the input for the watershed algorithm in ran

domly textured color images. This modified gradient provided both  a color similarity 

measure and a basis for applying the watershed transform. After the watershed trans

form, a merge process with a term ination criterion based on graph theory is used to 

get the final segmented images. The author concluded th a t this m ethod is suitable 

for the autom atic processing of granite or any other blob-like image, because it can 

be fully autom atic and it does not require any fine tuning of parameters.

G rau et al. [14] presented an improved watershed transform th a t enables the intro

duction of prior information in its calculation. Besides the over segmentation problem, 

the watershed transform  still has other drawbacks: poor detection of significant areas 

with low contrast boundaries, and poor detection of thin structures. The proposed 

improvement combines a set of lower-cost functions, one for each of the objects to  be

12
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detected in the image. In practical applications, a lot of prior information about the 

absolute or relative intensities of the objects is available. These lower-cost functions 

are calculated from the probability values for each voxel and each class. For applica

tions where atlases are available, another improvement was presented [14], using the 

atlas to  generate markers for the watershed transform. The outcome exhibits con

vincing accuracy for the two applications on which it was tested and the results also 

suggest the algorithm could be used in many different medical image segmentation 

problems.

2.3.5 W avelet coefficients

Wavelets are useful for multiresolution analysis. Moreover, wavelet coefficients are 

very helpful for image segmentation and texture classification. Many researchers used 

wavelet coefficients to do feature extraction. Hill et al. [16] used a novel marker- 

location algorithm to locate significant homogeneous textured or non-textured re

gions. Then, a marker-driven watershed transform  was used to  properly segment 

the identified regions. In this method, the term  “texture gradient” was introduced. 

In order to  integrate an adaptive scheme with the texture feature extraction pro

cess, the authors developed the Non-Decimated Complex Wavelet Packet Transform 

(NDXW PT). The magnitudes of the coefficients of each complex subband were used to 

characterize the texture content. Moreover, the authors compared the new marker- 

location m ethod and traditional methods of marker extraction such as large-scale 

low-pass filtering [4] or scale-space morphological filtering [17]. These traditional
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methods often move or remove salient, small-scale gradient elements th a t can be vital 

for effective segmentation. The conclusion was reached th a t the combined algorithm 

produced effective texture- and intensity-based segmentation for the application of 

content-based image retrieval.

O ’Callaghan and Bull [30] proposed a two-stage method, which is capable of pro

cessing both textured and non-textured objects in a meaningful fashion for general 

image segmentation. Instead of using NDXW PT to  extract the tex ture’s features, the 

authors used the Dual-Tree Complex Wavelet Transform (DT-CW T) to do texture- 

feature extraction. Compared to  NDXW PT, DT-CW T has its own new features: 

1) the com putational complexity is greatly reduced since DT-CW T is a decimated, 

rather than  non-decimated, wavelet; 2) orientation-adaptive median filtering is ap

plied to  post-processed texture features; 3) a gradient-basin depth criterion is used 

to  control watershed over-segmentation; 4) finally, spectral clustering, based on the 

novel weighted-mean-cut algorithm, provides a powerful way to  incorporate the max

imum amount of information about image statistics into the final segmentation. The 

experimental results indicated th a t this proposed method is suitable for both  textured 

and non-textured image segmentation.

2.4 Volume calculation

The final goal of the thesis is to  measure the changes in ventricular volume. Basically, 

there are two ways to  achieve this goal: 1) calculate the area of the ventricle in each 

slice, then multiply the area by the thickness of the slice, and, add all the slices which
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include the ventricular volume together; 2) construct a 3D model using the whole 

stack of images, then segment the ventricles in 3D space, and finally, compute the 

segmented p a r t’s volume in 3D space.

Sun [39] used the first m ethod to  compute the ventricular volume in her thesis. 

First of all, segmentation was applied to  each image th a t includes the ventricles in one 

stack. Then, the volume of each slice was computed. At the last step, all the slices 

including the ventricles were added together to  get the volume. She also proposed a 

method to  reduce the partial-volume effect when calculating the volume. First, choose 

a region which is exactly inside of the ventricle and then choose another region which 

exactly includes the whole ventricle. An adaptive threshold was calculated from these 

two regions and used to  decide if a pixel was a ventricle pixel or a boundary pixel. 

In this thesis, Sun’s volume calculation method was used because the segmentation 

algorithm was based on 2D images.

2.5 Summary

This chapter is a brief literature review of the techniques used in this thesis: wavelet 

multiresolution analysis, medical image registration, image segmentation, and volume 

calculation. In this thesis, a framework is proposed to  calculate the volume change 

of the ventricular system in CT images. Some adaptive algorithms are proposed 

to  solve particular problems. A mutual information-based registration algorithm is 

modified by combining it with multiresolution analysis to  correct 3D displacement 

of the human head between two scans. This adaptive registration has a smoother
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m utual information function during optimization than  pure m utual information does. 

A modified watershed segmentation and a novel feature extraction m ethod based on 

D T-CW T coefficients is introduced to  segment the ventricular system with minimal 

user interaction. This segmentation is not only based on pixel intensity measures, 

bu t also on texture measures.
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Chapter 3

Theory

Computer vision techniques have been applied to  medical-image processing in recent 

years [13]. In this chapter, the theory behind the computer vision techniques used in 

this thesis is given. These techniques are: 1) wavelet analysis; 2) image registration; 

3) image segmentation; 4) the Kolmogorov-Smirnov test; and 5) volume calculation. 

These techniques form the fundamental basis of the project. The goal of the project is 

to  calculate the volume change of the ventricular system given two sets of CT images 

taken a t different times.

3.1 W avelet Analysis

3.1.1 M ultiresolution A nalysis

The wavelet transform  (WT) is a mathem atical transformation, much like the Fourier 

Transform (FT) [13]. They both  transform  a signal from one domain to  another
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domain. In digital image processing, the FT  is a transform ation between space and 

frequency domains and the W T is the transform ation between space and the wavelet 

domain. Unlike the FT, the W T is more suitable for analyzing “small areas” and 

provides a good analysis of the original signal a t different resolutions. It constitutes 

a tool to  decompose, analyze, and synthesize functions, with an emphasis on space- 

wavelet localization [13]. For j ,  k  <G Z,  a simple wavelet decomposition of a function 

/  of space v can be w ritten as the expansion:

j,k&Z

In Equation (3.1), the functions Vt*, are the wavelets. They are generated by scaling 

and translating the “m other” function 0 , in the following way:

The scale factor a and the translation factor b affect the shape of the children wavelets. 

According to  the definition of wavelets, the continuous wavelet transform  [13] is:

(3.1)

ipj,k(v) = 2 2 'ip(2 3v -  k). (3.2)

Usually, 0  can be expressed by the equation:

(3.3)

CWT*(T,8) =  Vt {r , s )
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As seen in Equation (3.4), the transformed signal is a function of two variables, r  

and s, the translation and scale parameters, respectively. ip(v) is the transforming

functions can be used as a basic function to  generate children wavelets by scaling and 

translating it. They are derived from one main function, or the “m other wavelet” . 

The wavelet transform  is used to transform  the signal f ( v ) to  its wavelet domain. 

The original signal f { v )  can be reconstructed by using the same wavelet. The inverse 

wavelet transform  [13] is defined as:

Wavelet analysis is a multiresolution analysis. Multiresolution refers to  the rep

resentation of a signal at several different resolutions. The most common multireso

lution wavelet decomposition is shown in Figure 3.1.

In Figure 3.1a, an image is decomposed into four sub-images. In the four sub

images, subband I\ is the low-resolution approximation of the original image and the 

other three subbands Di represent directional detail information. Figure 3.1b shows 

the multiresolution analysis applied to  a sample image.

An im portant imaging technique with ties to  multiresolution analysis is subband 

coding. In subband coding, an image is decomposed into a set of band-limited com

ponents, called subbands, which can be reassembled to  reconstruct the original image 

w ithout error by using the set of band-limited components. Since the bandw idth of 

the resulting subbands is smaller than  th a t of the original image, the subbands can

function, and is called the “m other wavelet” . The term  “m other” implies th a t the

(3.5)
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D [ D *

h d ;

Figure 3.1: Wavelet multiresolution decomposition. From left to  right (a-b): a. Mul
tiresolution description: R is the low resolution; D*, D\ ,  D*y: Subbands in the hor
izontal, vertical, diagonal direction, respectively; b. Multiresolution analysis on a 
medical image

be down-sampled without loss of information. Reconstruction of the original image is 

accomplished by up-sampling, filtering, and summing the individual subbands. The 

decomposition algorithm is given by Figure 3.2.

In Figure 3.2, L L  refers to  the low resolution image and H H , H L , L H  are the 

wavelet subbands which include the detail information along different directions of 

the image.

Usually, more than  one level of decomposition is used to  obtain the desired lower 

resolution. Multilevel decomposition might be needed to  decompose the original 

image more than  one level. The multilevel wavelet decomposition is an extension of 

1-level decomposition.

The reconstruction of the medical image is exactly the inverse of the decomposi

tion. So, the 2D reconstruction algorithm is illustrated in Figure 3.3.
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H1(z)

H1(z) • 0 HO(z)
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X[n]

HO(z)
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Figure 3.2: 2D Wavelet Decomposition. X[n]: the original signal; H0(z) ,
i?l(z):lowpass, highpass filter; J, 2 : downsampling by a factor of 2 .

h H

I.H

H 1 (z )

Figure 3.3: 2D Wavelet Reconstruction. LL: lower resolution; H L,  LH,  HH:  wavelet 
subbands; |  2 : upsampling by a factor of 2 .
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3.1.2 W avelets in Texture Classification

In addition to  the use in multiresolution analysis, wavelet coefficients are helpful for 

texture classification. Texture classification means to  cluster different textures based 

on their different features. Good texture representation leads to  good classification 

results. Because of the multiresolution characteristic of wavelets, the images are an

alyzed a t more than  than  a single scale. Moreover, wavelets also provide orientation 

information for textures. T hat is why wavelet transforms are found useful to  extract 

new features. The common m ethod for using wavelet coefficients to  do feature extrac

tion is energy-based [34], In this method, the energies of the wavelet coefficients at 

each scale are calculated for each subband. Then, the  mean value and the standard 

deviation of the energies at each scale and each subband are derived from the image 

as the components of texture features. Therefore, a texture signature of an image 

is given by a feature vector which includes the mean values and standard deviations 

of the wavelet coefficient energies a t each scale for each subband. Then a distance 

measure, such as the normalized Euclidean distance, is chosen to  measure similarity 

between the signatures. This common energy-based method can extract features at 

more than  one scale and serval orientations. However, it suffers from some drawbacks 

which means modifications were necessary for this project. This texture classification 

technique assumed the whole image was a homogenous texture and th a t the image 

size was a power of two, but in our case, an image has many textures and the tex

tures are in irregular shapes. Therefore, it is very hard to use wavelet coefficients to 

classify the different textures using the common energy-based method. As discussed
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in Chapter 4, a new feature extraction method is proposed to  classify the different 

textures in a single image based on the preliminary segmentation results from the 

watershed algorithm and the Dual-Tree Complex Wavelet Transform coefficients.

3.1.3 D ual-Tree C om plex W avelet Transform

Although wavelet decomposition provides a good way to  represent the features of 

the signal, it suffers from two main problems which ham per its use for many image 

analysis and reconstruction tasks. One problem is the lack of shift invariance and 

the other is the poor directional selectivity for diagonal features [23]. The lack of 

shift invariance means th a t small spatial shifts can cause major variations in the 

distribution of energy between wavelet transform  coefficients at different scales. This 

problem causes energy variations a t different scales when using the wavelet coefficients 

to  extract the energy feature from the image at the current resolution [24]. So, the 

same features might have significant differences due to  small shifts of the signal.

The poor directional selectivity for diagonal features is caused because wavelet 

filters are separable and have real coefficients. In common wavelet decompositions, 

there is only one subband th a t represents diagonal image features for each scale. 

These diagonal features might consist of several sub-diagonal features, such as ±15° 

features, ±45° features, and ±75° features. If a texture has strong 15 degree features 

and 75 degree features, common wavelet decomposition will combine them  rather 

than separate these two strong directional features.

Kingsbury [24] proposed a new wavelet-transform, called the Dual-Tree Complex

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wavelet Transform (DT-CW T), to  overcome these two main problems (shift vari

ance and poor directional select sensitivity). The DT-CW T is the feature extraction 

m ethod used in this thesis. DT-CW T is based on the Complex Wavelet Transform. 

The structure of the Complex Wavelet Transform is the same as th a t of the Wavelet 

Transform, except th a t the filters in the Complex Wavelet Transform have complex 

coefficients and generate complex output samples. The output sampling rates are 

unchanged from the wavelet transform. Because of the unchanged output sampling 

rates and the fact th a t each sample contains a real and imaginary part, a redundancy 

of 2 : 1 is introduced in one dimension and 4 : 1 in two dimensions. If suitable filters 

for the Complex Wavelet Transform are designed, the magnitudes of their step re

sponses are approximately shift invariant, bu t the phases vary rapidly. Furthermore, 

the Complex Wavelet Transform provides a good and true directional selectivity since 

all the filters and outputs are complex coefficients. For each scale level, more sub

bands can be generated by the Complex Wavelet Transform than  by the Wavelet 

Transform. For example, a 2-D Complex Wavelet Transform produces six bandpass 

subbands of complex coefficients at each level, which are strongly oriented at angles 

of ±15°, ±45°, and ±75° [24],

3.2 Registration

Registration is the process of finding an optimal transform ation to  m atch the infor

mation in one image to  th a t in another image. The purpose of registration in this 

thesis is to  minimize the effect of the displacement problem [39]. Displacement of the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



human head from one CT scan to  the next is an occurrence which is hard to avoid. 

The displacement problem makes it difficult to  compare two sets of CT images which 

are taken of the same patient but at different times.

M utual information has been applied to  medical image registration because it pro

vides a measure of how similar two images are. In the mutual information registration 

discussed in this thesis, floating image refers to  an image in scan 2 which was taken 

at time t2. Reference image refers to  an image in scan 1 which was taken a t tim e iq. 

Registered image refers to  the image obtained by registering the floating image to  the 

reference image.

Pure m utual information usually does not perform well enough for this appli

cation because of the substantial noise and the complex movement of the scanned 

organs in the  image. So other techniques, such as interpolation and gradient infor

mation, are combined with pure m utual information to  improve the performance of 

mutual-information registration. Interpolation is used when rotating and translating 

an image. Gradient information can be combined with pure m utual information to 

get a better measurement [32], The following subsections introduce the background 

of mutual information, image interpolation, and gradient information.

3.2.1 M utual Inform ation

M utual information is calculated by using Shannon entropy [27]. The definition of 

Shannon entropy (H)  is:
N - 1

H  = - ^ p i l o g p i  (3.6)
i —0
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where pi is the probability of a given symbol. In this respect, the measure is viewed 

as a measure of uncertainty. The mathem atical representation of the mutual infor

mation, / ,  in term s of the entropy, H,  between two images A  and B  is given by 

[27]:

I ( A , B )  = H (A )  + H ( B ) - H ( A , B )  (3.7)

where H (A)  and H (B )  are the Shannon entropy for image A  and image B,  respec

tively. H ( A , B )  is the joint entropy between A  and B.  It denotes the probability 

distribution of the image intensities shown in both  the images A  and B.  The re

quired entropies H(A),  H (B) ,  and H ( A , B ) ,  can be computed by estim ating the 

probability distribution of the image intensities [27]:

H (A ) =  - ^ P a ^ O g P a  
a

H (B ) = - J 2 pblogpb
b

H ( A , B )  = - ^ 2 p aib\ogpa>b. (3.8)
a , b

In practical calculations, the marginal distributions (H(A)  and H ( B )) are ob

tained by summing over the rows and the columns, respectively, of the joint entropy 

histogram, so only the joint histogram needs to  be constructed.

M utual information has some useful properties [27] such as:

(i) I ( A , B ) =  I ( B , A ) .  M utual information is symmetric; otherwise it would not

be m utual information. However, this symmetry is an approximation since imple-

mentational aspects of a registration method, such as interpolation and number of
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samples, can result in differences in outcome when registering A  to  B  or B  to  A.

(ii) I (A ,  A) — H(A).  The m utual information between image A  and itself equals 

Shannon Entropy of image A.

(iii) I ( A , B )  < H (A )  and I ( A , B )  < H{B) .  The mutual information between two 

images A  and B  can not be greater than  the information of image A  and image B  

themselves.

(iv) I (A ,  B)  >  0. The uncertainly about A  cannot be increased by learning about

B.

Now, the registration criterion is easily obtained by using the properties of mutual 

information. Assume A  and B  are two images which are related by the registration 

transform ation T  w ith param eter vector a,  such th a t pixel P  in A  w ith intensity a 

corresponds to  pixel T (P )  in B  w ith intensity b. Using properties (ii) and (iii) above, 

it can be found th a t when the m utual information value is maximum, image A  and 

image B  are the most similar [27]. Therefore, the mutual information registration 

criterion requires th a t for the images to  be geometrically aligned by the transform ation 

T(a)  for which /(A , B)  is maximal:

a* =  arg max I  (A, B)  (3-9)

where a* is a param eter vector which is the optimal param eter vector obtained in 

equation (3.9). However, the optimal param eter vector a* can differ from the perfect 

param eter vector. Assuming the perfect transform ation param eter vector is a p, then, 

the misregistration is \ap — a*\. In order to  reduce the misregistration rate, I ( A , B )
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should vary smoothly as a function of the misregistration. This requires pa, pb, and 

pa], to  change smoothly when a  is varied [27].

A rough m utual information function will cause overlap between two images. 

Overlap refers to  the problem th a t with increasing misregistration, the m utual in

formation measure may actually increase. This can occur when the relative areas of 

object and background even out and the sum of the marginal entropies increases faster 

than  the joint entropy. Studholme [38] found th a t normalized m utual information is 

less sensitive to  change in the overlap between the images. Therefore, N M I ( A ,  B)  is 

used in this thesis:

N M I { A , B )  = H{Â HJ )B ) . (3.10)

3.2.2 Im age Interpolation

Image interpolation is the process of determining the values of the image function at 

positions th a t lie between its samples. It assumes th a t there is a continuous func

tion through the discrete input samples. The considered values can be in arbitrary 

positions between the input samples. The image quality highly depends on the in

terpolation m ethod used for processing. The interpolation techniques are divided 

into two categories, deterministic and statistical interpolation techniques [13]. Since 

statistical interpolation is usually inefficient, deterministic interpolation was applied 

in this thesis. Deterministic interpolations assume certain variability between the 

sample points, such as linearity in the case of linear interpolation. Two popular de-
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» >  j *

g 4 *  1 *g3
g = gt since g1 is the 

nearest neighbor

Figure 3.4: Nearest neighbor interpolation

terministic interpolation methods are discussed and the methods are compaxed with 

each other based on the interpolation results.

Nearest Neighbor Interpolation

Nearest neighbor interpolation is the simplest method of interpolation. I t finds the 

nearest sample point to  the desired point and then assigns the desired point with 

the nearest sample point value. It is also called replicated interpolation. The two- 

dimensional nearest neighbor interpolation is an extension of the one-dimensional 

nearest neighbor interpolation. Figure 3.4 gives a good demonstration of the 2D 

nearest neighbor interpolation.

Linear Interpolation

Linear interpolation is another common deterministic interpolation method. It as

sumes a linear relationship between all the input samples. Linear interpolation cal

culates the desired values based on a linear relationship rather than  simply repli-
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g3
u is t te  distance between g and tine g2-g3 
v Is the distance between g and line g1-g2

Figure 3.5: Bilinear interpolation

eating the nearest input samples as nearest neighbour interpolation does. The one

dimensional linear interpolation of pixel grey level, g(x)  a t position x  is given by:

.  .  X \  — X  X  ~~ Xn
9(x ) =   -----— 9o +    — 9i (3.11)

X \  —  X q X \  —  X q

where g0 and g\ are two pixel gray levels a t positions x Q, and Xi, respectively. Bilinear 

interpolation is two ID  linear interpolations along the x  axis and the y  axis, respec

tively. It considers four neighbor pixels and can interpolate any pixel value inside 

of the rectangle which is formed by these four neighboring pixels. This is shown in 

Figure 3.5.

Using the distances u  and v as defined in Figure 3.5, the function fbilinear0  is
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Figure 3.6: Interpolation comparison. From left to  right (a-c): a. Original image (64 
x 64); b. Nearest neighbor interpolation (128 x 128); c. Bilinear interpolation (128 
x 128)

defined as [13]:

9  fbilinear ( 9 h  9 2 1 9 i i  9 i )

=  g\ * u  * (1 — v) +  g2 * (1 — u) * (1 — v)

+gs * (1 — u) * v +  (74 * u * v. (3-12)

These two deterministic interpolations have their own advantages and disadvan

tages. Nearest neighbor interpolation is the simplest of the two methods but it pro

duces jagged edges in the image. Linear interpolation produces smoother results than 

nearest neighbor, however, it blurs the image. Figure 3.6 compares the two interpo

lations’ results by resampling an image to  double its size. Linear interpolation was 

used in both  the registration and segmentation algorithms. In registration, linear 

interpolation was applied to  the inside of th e slices and between slices.
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3.2.3 Gradient Inform ation

The gradient is commonly used as the measure of slope. It represents the inclination 

of a surface along a given direction. In mathematics, gradient refers to  the first 

derivatives of a function. The general m athem atical formula for the gradient in 2D is 

[13]:

C* dF'G* X
(3.13)S/F  =

Gx

G„ §£
d y

where Gx and Gy are the gradients along the x  and y  directions, respectively. Then, 

the magnitude y /  and the phase y p  of y F  are given by:

V / V -fj

[Gl + Gl]

( d F  ,d F  
y p  =  tan  7

\ d y / - Vdx )
(3.14)

Using Equations (3.14), the gradients in an image can be computed. First, the com

ponent of the gradient along the x  axis is calculated followed by the component along 

the y  axis. Finally, the magnitude and the phase, which form the gradient infor

m ation of the image, are obtained. Gradient information is helpful for some further 

image processing, such as edge detection and the morphological watershed algorithm. 

In digital image processing, the gradient map is usually obtained by applying some 

gradient operators to  the images in the spatial domain. Two main gradient operators, 

Sobel and Gaussian, are introduced. Both these two operators are popular in image
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Figure 3.7: Sobelmask. From left to right (a-c): a. Gradient along a; axis; b. Gradient 
along y  axis

processing and were used in this thesis.

Sobel Gradient Operator

The Sobel operator performs a 2-D spatial gradient measurement on an image and so 

emphasizes regions of high spatial gradient th a t correspond to  edges [13]. Typically it 

is used to  find the approximate absolute gradient magnitude a t each point in an input 

grayscale image. A pair of convolution masks of the Sobel operator is shown in Figure 

3.7. The pair of masks were used in the registration algorithm to  accurately detect 

the gradient information of each pixel. The smallest mask size 3 x 3  was chosen.

The masks are designed to  respond maximally to  edges running vertically and 

horizontally relative to  the pixel grid, one mask for each of the two perpendicular 

orientations. In the processing, the masks are passed over the input image separately, 

to  produce separate measurements of the gradient components in each orientation,
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Figure 3.8: Sobel gradient. From left to  right (a-d): a. Original image; b. Gradient 
along x  axis; c. Gradient along y  axis; d. Gradient magnitude of the image

Gx and Gy (see Figure 3.7). The gradient components can then be combined to  find 

the magnitude (Equation(3.2.3)) and orientation (Equation(3.14)) of the gradient at 

each point. The result of applying the Sobel operator to an example image is shown 

in Figure 3.8.

In this thesis, the Sobel gradient operator was used in the registration algorithm 

since pixel gray levels were the values of interests when computing the mutual infor

mation between two images.

Gaussian Gradient Operator

The Gaussian gradient operator is another operator and is based on the derivative 

of the Gaussian function. It is designed to  smooth an image and suppress the noise 

before detecting the gradients [13]. The operator effectively convolves the image with 

a Gaussian kernel of width a, the standard deviation, and then takes the first order 

derivative of the function. The operator, \ / F  can be defined:

x j F  = g'(x,y)  = G'a( x , y ) * f ( x , y ) (3.15)
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where

g(x, y) =  Ga(x, y) * f ( x ,  y) (3.16)

and

n  , \ 1 (  x 2 + y2\
G’ (x ' v) = 7 ^ e x t V ^ ) -

G'a(x,y)  is the first order derivative of Ga(x,y) .  The Gaussian kernel of any size is 

obtained by approximating the continuous expression of the Gaussian given above. 

However, the sum (or average) of all elements of the kernel has to  be zero so th a t 

the convolution result of a homogeneous region is always zero. Compared to  the 

Sobel gradient operator, the Gaussian gradient operator smoothes the image first 

and then finds the gradient information based on the smoothed image. In this thesis, 

the Gaussian gradient operator was applied in the segmentation algorithm with the 

standard deviation a — 2.0. It was appropriate for th a t application because it was 

necessary to  suppress the gradient information inside a region with homogeneous 

texture and only detect the edges of the texture regions. Figure 3.9 shows an example 

of applying the Gaussian operator to  an image. The Sobel operator is applied to  the 

same image for comparison.
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Figure 3.9: Comparison between Gaussian gradient and Sobel gradient results. From 
left to right (a-c): a. Original image; b. Gaussian gradient with a — 5 ; c. Sobel 
gradient with mask size 3 x 3

3.3 Segm entation

3.3.1 D enoising

Usually, the raw image da ta  is unsuitable for segmentation because the data  includes 

noise th a t might significantly affect the segmentation results. Some pre-processing 

steps have to  be applied before segmentation. Denoising is one of the most im portant 

steps during the segmentation process. Two common denoising filters were used in 

this thesis: the Gaussian filter and the median filter.

Gaussian Filtering

The Gaussian lowpass filter (GLPF) is one of the most popular smoothing filters. 

The GLPF can be defined in both  the spatial and frequency domains. The formula 

of the GLPF in the frequency domain [13] is:
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Figure 3.10: Gaussian lowpass filter. From left to  right (a-b): a. 3D visualization of 
Gaussian Lowpass Filter; b. Gaussian Lowpass Filter displayed as an image

where D(/x, u) is the distance from the origin of the Fourier transform  and a  is a 

measure of the spread of the Gaussian curve, p  and v are the 2D coordinates in 

the frequency domain. The shape of the Gaussian is determined by the value of 

a, and a  is also referred to  as the cutoff frequency. Different a  will cause different 

distributions of Gaussian lowpass filter and hence different smoothing results. Figure 

3.10 is a visualization of the Gaussian lowpass filter in the frequency domain.

The Gaussian lowpass filter has a good denoising effect, bu t as the cutoff frequency 

cr is decreased, the image becomes blurred. A tradeoff can make the signal-to-noise 

ratio (SNR) as large as possible. Figure 3.11 shows the denoising results with different 

cutoff frequencies.

M edian filter

The median filter is another prevalent smoothing filter which not only smoothes the 

image data  but also has good edge preservation. Its performance is particularly good
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Figure 3.11: GLPF denoising. From left to  right (a-c): a. Original Image; b. De
noising with a  =  15 in frequency domain; c. Denoising with a  =  60 in frequency 
domain

for removing shot noise [13]. However, in this project, the median filter is used to  get 

rid of the detail information inside a texture region while keeping the edges between 

different textures regions. Median filtering is applied in the spatial domain. Once a 

suitable mask size is determined, the mask is passed over the image and all the pixels 

which are covered by the mask are selected. Then all the selected pixels’ gray values 

are sorted into ascending order. Now, the median value of this list is output as the 

pixel gray value. The effect of median filtering is shown in Figure 3.12. The median 

filter performs better a t preserving the edges in the images than  the GLPF (Figure 

3.11) does.

3.3.2 M athem atical M orphology  

Com m on m orphological operations

M athem atical morphology is the study of form and structure. In digital image pro

cessing, morphology uses set theory from mathem atics to process images. Generally,
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Figure 3.12: Median Denoising. From left to right (a-c): a. Original Image; b.
Denoising with 5 x 5  mask; c. Denoising with 15 x 15 mask

morphological operations are performed on binary images (images w ith only two grey 

levels). However, many morphological operations are modified to  apply to  grey-level 

images. There are many morphological operations, such as dilation, erosion, open

ing, closing, and watershed. The theory of erosion and watershed will be given more 

weight since these two morphological operations were applied in this thesis.

F irst of all, a short summary of set theory will be introduced since the theory is 

the fundamental basis for morphological operations [13].

1. If you have two sets, Si  and S 2 , their union is the set of all the elements th a t 

belong to  Si and all the elements th a t belong to  S 2. W hen processing two binary 

images, this can be implemented by merging the images with a logical OR.

2. The intersection of two sets is the set of elements th a t belong to  both  S i  and 

S 2, bu t none of the elements belong to  Si  only or S 2 only. W hen processing two 

binary images, this can be implemented by merging the images with a logical A N D .

3. The difference of Si  and S 2 {Si — S 2) is the set of elements in Si  th a t are not 

in S2.
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4. The complement of a set Si  is the set of elements th a t are not in S\.  W hen 

processing binary images, this can be implemented by using a logical N O T .

5. Two sets, Si  and S 2 , are disjoint if they have no common elements.

Morphology simply applies these rules to  images. Because two sets Si  and S?

are usually compared, morphological operations have two common components: a 

structuring element (SE) and a window element (WE). The structuring element, 

which is a m atrix consisting of only 0 ’s and l ’s, and can have any arbitrary  shape 

and size, is used to  probe the input images. The pixels with values of 1 define the 

adjacent neighborhood. The window element includes the image pixel and its adjacent 

neighbors as defined by the structuring element when the structuring element is passed 

over the image as a mask.

Dilation is defined as the set of all points where the union of the structuring 

element and the image is non-empty [13]. In the implementation, the structuring 

element is passed over the image. For each source pixel, if any of the pixels in the 

SE are ” 1” and line up with a source pixel which is also ” 1” , the output pixel is ” 1” . 

The effect of dilation is to  increase an object’s geometric area.

Erosion is defined as the compliment of the dilation of the compliment of the image 

with SE [13]. The m athem atical description of the relationship between erosion and 

dilation is:

MErosion(S i , S E )  =  (MDiiation ( S i , S E ) )  (3.18)

Compared to  dilation, erosion has the effect of decreasing the object’s geometric area.
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Figure 3.13: Erosion and Dilation. From left to right (a-c): a. Original Image; b.
Erosion effect; c. Dilation effect

Figure 3.14: Opening and Closing. From left to  right (a-c): a. Original binary Image; 
b. Opening effect; c. Closing effect

The following two images in Figure 3.13 show an image after erosion and dilation.

Dilation and erosion form the basis of morphological image processing. The open

ing and closing operations are defined based on dilation and erosion. The opening 

operation is the dilation of the erosion of the image. It tends to  smooth outward 

bumps, break narrow sections and eliminate thin protrusions. On the other hand, 

the closing operation is the erosion of the dilation of the image. It tends to  eliminate 

small holes and remove inward bumps. Figure 3.14 shows the effect of the opening 

and closing operations on a binary image.
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M orphological watershed transform

The morphological watershed transform  was proposed by Digabel and Lantuejoul [13] 

and later improved by Beucher and Lantuejoul [3|. It can be classified as a region- 

based segmentation approach. The intuitive idea underlying this m ethod comes from 

geography: it is th a t of a landscape or topographic relief which is flooded by wa

ter. W atersheds are the divide lines of the domains of attraction of rain falling over 

the region [13]. The concept of watersheds is based on visualizing an image in 3- 

dimensions: two spatial coordinates and the gray levels. So, an image is visualized 

as a mountain. Now, the water is starting to  flood the whole m ountain from the 

catchment basins. In this ’’m ountain” , three types of points are considered: a) points 

belonging to  a regional minimum; b) points th a t have already been flooded; c) points 

at which water would be equally likely to  fall to  more than  one such minimum [13]. 

The points satisfying condition (c) are term ed divide lines or watershed lines. The 

principle objective of the watershed segmentation algorithm is to  find the watershed 

lines in an image. The general idea is simple: water floods from the lowest catchment 

basins, which refer to  the lowest gray levels in an image. Each catchment basin is 

given an individual label. Then, water is allowed to  flood from catchment basins at 

a flooding rate. Now, there are two situations th a t could happen: (1) two catchment 

basins could have the same label or two catchment basins could have different labels. 

If two catchment basins which have the same label are going to  merge, these two 

regions will become one region and keep the same label. If two catchment basins 

which have different labels are going to  merge, a dam has to be built to  prevent the
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Figure 3.15: W atershed process [13]. From left to  right (a-d): a. Topographic view; b. 
First stage of flooding; c. Middle stage of flooding; d. Final watershed (segmentation)

merging of these two regions. In practical image processing, the gray level of the dam 

is usually the maximum gray value plus 1. The flooding will eventually reach a stage 

when only the tops of the dams are visible above the water line. The boundaries 

of these dams correspond to  the boundaries in the image extracted by a watershed 

segmentation algorithm. The flooding process shows clearly in Figure 3.15.

The algorithm definition of watershed based on immersion was given by Vincent 

and Soille [42]. The algorithm is implemented by using the following steps.
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1. Sort the gray levels in the image in ascending order and s ta rt to  flood from the 

lowest gray level.

2. Mark the flooded pixels as the catchment basin. Check if two regions are going 

to  merge together. If the labels of these two regions are different, m ark the pixels 

between these two regions as watershed (or dam) pixels. Otherwise, merge these two 

regions in the next step.

3. Flood pixels with the higher gray levels. Continue to  do step 2.

4. The process stops when the flooding reaches the highest gray level in the image. 

Now, all the pixels in the image are marked with region labels or watershed labels.

Direct application of the watershed algorithm causes an over-segmentation prob

lem due to  noise and other local irregularities of the gradient [13]. As shown in Figure 

3.16, over-segmentation has a significant effect on the outcome of the watershed algo

rithm. In this case, a lot of segmented regions exist in the image. There are several 

ways to  deal with this problem, such as marker-based watershed and H-minima sup

pression. Marker-based watershed requires the user to  specify some markers in the 

image. This increases the user interaction. So, H-minima suppression was applied in 

this project. H-minima suppression modifies the gradient surface, suppressing shallow 

minima by setting a threshold. For example, when the gradient m ap of an image is 

obtained, a threshold is assigned to  determine all the gray levels below this thresh

old as the catchment basins. This, very much like the watershed transform, can be 

imagined as an immersion process: minima are filled with a specified depth of water.
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Figure 3.16: Over-segmentation problem in watershed algorithm

3.4 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test (KS-test) is used to  determine if two datasets differ 

significantly. The KS-test has the advantage of making no assumption about the 

distribution of the data  [43] and compares two samples without any parameters. For 

each potential value x, the KS test compares the proportion of X I  values less than 

x  with proportion of X 2 values less than  x, where X I  and X 2 are two observered 

samples. The KS-test was used in this thesis to  compare the distance between two 

adjacent regions in an image. If two regions have similar probability distributions, 

the KS test will return a value close to  1 , otherwise, it will return a  value close to  0. 

An existing function in M atlab was used to  implement the KS-test. The function’s 

name in M atlab Statistical Toolbox is ks tes t2(sami)sam2), where sam i and sam2 

are two sam ples w ith  finite size. The return value tells whether there is a significant 

difference between sami  and sam 2.
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3.5 Volume calculation

After segmentation of the ventricular system, a volume calculation algorithm was 

applied to  get the volume of the ventricular system. There are two very im portant 

variables for computation: pixel spacing Ps and slice thickness Sickness■ First of all, 

the area of the ventricle in one image is obtained. Then, the area is multiplied by the 

slice thickness to  get the volume of the ventricles in a single image. Finally, all the 

volumes from the slices which contain the ventricles are added together. If A; is the 

area of the ventricles in the current image and V* is the volume of the ith  slice, then:

where N pixei is the number of white pixels in the ith  slice. The to ta l volume V  is:

Aj Ps * Ps * Npixei (3.19)

1thickness (3.20)

Nslice

v = E v‘ (3.21)

where N siice is the to ta l number of slices which contain the ventricles.
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Chapter 4 

Framework D esign and 

Im plem entation

In Chapter 3, the fundamental theories used in this thesis were reviewed: wavelet 

theory, m utual information registration methods, morphological operations, the mor

phological watershed algorithm, the KS-Test, and the volume calculation algorithm. 

In this Chapter, a framework based on these theories is presented. This framework 

provides a quantitive way to  measure the volume change of the  ventricular system 

using CT images. Three aspects are discussed:adaptive registration, adaptive seg

mentation, and volume calculation. The “adaptive registration” section presents a 

modified m ethod for image registration th a t combines wavelet multiresolution analysis 

and m utual information. A novel feature extraction method based on the DT-CW T 

coefficients is introduced in the “adaptive segmentation” section and the last section 

describes the method used for volume calculation. Fig 4.1 shows the whole progress
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of the framework.

4.1 A daptive registration

4.1.1 Incorporating Gradient Inform ation

As mentioned in Chapter 3, the goal of m utual information registration is to  find the 

global maximum when optimizing the param eters which form the affine transform a

tion. A mutual information function could be obtained using a variety of different 

param eter sets. The smoother the function is, the easier it is to  find the global max

imum. Unfortunately, the m utual information function is very rough. Usually using 

just mutual information is not enough because a random reshuffling of the image 

voxels (identical for both  images) yields the same mutual information value as for 

the original image. This means th a t there are a lot of local maxima which cause 

misregistration, and then, displacement correction fails. According to  Pluim et al. 

[32], gradient information can be combined with mutual information to  reduce the 

local maxima during the m utual information calculation. The m ethod is to  multiply 

the m utual information with a gradient term. The gradient term  is based on both 

the m agnitude and the orientation of the gradient.

Because linear interpolation is used between slices, a 2D gradient vector can be 

used to  represent the gradient information for each pixel. Then, the gradient vectors 

are computed in the floating image and the corresponding points are found in the 

registered image, by geometric transform ation of the reference image. The two partial
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derivatives th a t together form the gradient vector are calculated by convolving the 

image with the appropriate first derivatives of a Gaussian kernel of scale a. So, the 

angle a{a)  between the gradient vectors is defined by:

/ \ S7x ia ) •  V ^ V )  ( a t \a(a)  =  arccos ---- ■■ .  (4.1)
I V z (< x ) ||

where \ / x {a )  and xjx'(a)  denote the gradient vectors in the floating images and reg

istered images, respectively. | | is the magnitude of a vector and • is the convolution. 

After getting the angle a(a)  of two corresponding pixels, a weighting function f weight 

is used to  compute the weight of each pair of corresponding pixels.

cos(2a ) +  1
f w e i g h t ( ( X ^  —  „ • (4-2)

According to  the Equation (4.2), if the angle is 0° or 180°, the weighting function 

will have the largest value. In other words, this pixel is a significant pixel which 

should have a significant effect on the mutual information calculation. Because only 

strong gradients th a t appear in both images are considered, the angle function is 

multiplied by the minimum of the gradient magnitudes. The gradient term  is then 

computed by summing all the resulting products for all pixels. Therefore, the mutual 

information becomes:

Inew{A, B)  =  G(A, B ) I (A ,  B)  (4.3)
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with

G ( A , B ) =  £  f w e i g h t ( a x ,x>(<r)) min(| V  x(°)\ ,  I V  a;'( 0‘)l)- (4-4)
(x,x'G(ADB))

Similarly, the new normalized m utual information (NMI) is defined as

N M I n ew ( A , B )  =  G ( A ,  B ) N M I ( A ,  B ). (4.5)

4.1.2 Voxel-based Interpolation

The displacement of the human head is not only in-plane, bu t also out-of-plane. W hen 

the same patient has a CT scan taken at two different times, it is possible th a t the 

patient might tu rn  a little at the second scanning. This is in-plane movement. It

is also likely th a t the patient might have a slight nodding action or tilt the head to

the side. These are out-of-plane movements because they are across the slices. Since 

there are both  2D (in-plane) and 3D (out-of-plane) movements, the whole stack of 

images has to  be used for registration. Then, a 3D model can be constructed. Now, 

a pixel in 2D space becomes a voxel in 3D space because it has volume in 3D space. 

Since the slice thickness is greater than  the pixel spacing, interpolation has to  be used 

between slices as well as between pixels inside of the slice. Voxel-based interpolation 

is used to  map 2D pixel images to 3D voxel images. The size and shape of one voxel 

is very im portant for the desired results. A cube with pixel spacing as its length is 

used as one voxel. The choice of the cube avoids deformation problems during the 

affine transformation. Trilinear interpolation is used both inter-pixel and inter-slice. 

Trilinear interpolation is linear interpolation along the x  axis, the y  axis, and
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the z  axis, respectively. Moreover, partial volume interpolation is used to  accurately 

compute the joint histogram using the m ethod described by Maes [25]. Instead of in

terpolating new intensity values in the registered image, the contribution of the image 

intensity to  the joint histogram, h, is used as a weight, uii. The interpolation value 

which corresponds to  x in the reference image is not used, bu t rather the four neigh

boring pixels yi in the reference image, are used. The mathem atical representation 

is:

h(F(x) ,  R (Vi)) = h(F(x) ,  R (Vi)) + uji (4.6)

where F(x)  and R.(yi) are the gray values in the floating image and the reference 

image, respectively. The u>i refers to  the weight of these four neighbor pixels. W ith

out interpolating new intensity values, partial volume interpolation reduces the local 

maxima significantly.

4.1.3 O ptim ization

In order to  find the global maximum of the m utual information function, an opti

mization method has to  be used. There are two im portant properties of the mutual 

information function th a t might influence the choice of optimization method. One is 

the local maxima. We have already mentioned some ways to  reduce the local max

ima. The other is the range of the optimum. There are six param eters of the affine 

transform ation (3 for 3D rotational angles and 3 for 3D translations) to  be optimized 

simultaneously. These six param eters are not independent since the displacement 

might be caused simultaneously by translation and rotation. Thus the  inverse down-
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hill simplex m ethod is used in this thesis. Although it is time-consuming, the simplex 

m ethod does not require derivatives and can optimize n param eters simultaneously 

[28],

A simplex is defined as a figure of N + l  vertices in the N-dimensional search space. 

In this case, the vertices are made up from the six transform ation param eters (3 for 

rotation and 3 for translation) and all seven vertices have random  initial values. On 

each iteration, these vertices are used to  compute the value of the m utual information. 

Then, the simplex m ethod compares these values of mutual information and expands, 

contracts, or reflects the  vertices. W hen the distance between each pair of vertices is 

smaller than  a tolerance, the search process stops. The param eters used for the final 

iteration are selected as the calculated 3D displacement of the human head.

4.1.4 Incorporating W avelet M ultiresolution

Even though some work had been done to  reduce the number of local maxima, it 

was still a problem during the displacement correction. So, wavelet multiresolution 

decomposition was also incorporated with the m utual information.

The optimization is performed initially a t a lower resolution so only a fraction of 

the voxels in the image are used to  construct the joint histograms. At the lower res

olution, detail information is removed, the m utual information function is smoother, 

and the local maxima are significantly suppressed. Thus it is easy for the simplex 

method to  find the global maximum. After the global maximum is found at the 

current resolution, the resolution level is increased and initialization is based on the
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previously found maximum. Therefore, a combination of m utual information and 

multiresolution analysis improves the chance of finding the global maxima in the 

m utual information function.

4.2 A daptive segm entation

The segmentation algorithm is one of the most im portant parts in the algorithm 

framework. The ultim ate goal is to  measure the volume of the ventricular system 

and then to  calculate if there is any significant change in volume in the time between 

the two CT scans. An accurate segmentation algorithm contributes to  an accurate 

volume calculation.

In this thesis, an adaptive segmentation based on texture measures and the water

shed algorithm is proposed. User interaction is kept to  a minimum. In the traditional 

segmentation framework, a single “best” segmentation is obtained for the  classifica

tion. The “best” segmentation results refer to  the acceptable segmented outcome 

based on the human visual model. It is usually very hard to  get the “best” results. 

The classification m ethod refers to  the clustering algorithms which are used to  merge 

homogenous or non-homogenous regions. However, the adaptive segmentation used 

in this thesis is not built on the traditional segmentation framework, but rather on 

a wrapper-based segmentation framework [10]. Compared to  the traditional segmen

tation framework, the wrapper-based framework provides a closed-loop to  evaluate 

the results of segmentation. This closed-loop will not only adapt the param eters of 

the feature extraction algorithm, bu t will also actually direct the final segmentation
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Figure 4.2: Comparison. From left to  right (a-b): a. Traditional segmentation; b. 
W rapper-based segmentation

based on the underlying shape characteristics of the object of interest. The difference 

between the traditional framework and wrapper-based framework is shown in Figure 

4.2.

4.2.1 Texture Gradient

The whole structure of this adaptive algorithm is based on watershed segmentation. 

The theory of watershed was already introduced in Chapter 3. As mentioned in the 

watershed theory, the input to  the watershed is the gradient information of the original 

image. Usually, this gradient information is calculated based on the intensities of each 

pixel. This simple watershed segmentation causes serious over-segmentation problems 

[13].
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Texture boundaries have been used for the effective partitioning of images [16]. 

Texture is im portant because, in theory, different textures contain information th a t 

can be used to  identify different tissues. Therefore, if the gradient between textures 

can be detected and used as the input of the  watershed algorithm, images can be 

segmented into several homogenous texture regions. Hill [16] introduced this gradient 

as the texture gradient.

Dual-tree com plex wavelet transform  representation

In this thesis, the texture gradient is derived from the Dual-Tree Complex Wavelet 

Transform (DT-CW T) coefficients [23] as dicussed in Chapter 3.1.3. DT-CW T cal

culates the complex wavelet transform of a signal using two separate discrete wavelet 

transform decompositions (tree a and tree b). It retains the useful properties of scale 

and orientation sensitivity and is approximately shift invariant, while also providing 

a representation with reduced redundancy. For each scale level, six subbands which 

are oriented at ±15°, ±45°, and ±75° are produced. In other words, the detail infor

mation of the original image is represented along six different orientations. The block 

diagram for the DT-CW T is shown in Figure 4.3. In this thesis, D i tg(x ,y )  is used 

to  represent the subband image with orientation angle 9 at scale level i and spatial 

co-ordinates x-y.  An example of subimages after DT-CW T has been applied is given 

in Figure 4.4.
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Figure 4.3: 2D D T-CW T filtering. g[n] and h[n\: the lowpass and highpass filters 
which include complex filtering coefficients; index 0  and 1 : tree a and tree b.

Figure 4.4: 2D DT-CW T example. From left to  right (a-c): a) Original image; b) -75 
subband at scale level 1; c) -15 subband at scale level 1
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Figure 4.5: Problem using original DT-CW T coefficients. From left to  right (a-d): 
a) Raw subband (—75° at scale level 1); b) Gradient of (a); c) Normal 2D median 
filtered subband; d) Gradient of (c)

Directional M edian Filtering

In this project, the features of \Ditg(x,y)\  are not suitable for texture gradient calcu

lation. According to  [30], “the pitfall here though, is th a t the wavelet basis functions 

respond not only to  extend patches of texture with a particular scale and orientation, 

but also to  fines and step edges a t th a t orientation across several scales” . However, 

the features \Di}e(x,y)\  can be used as the basis to  extract texture gradient  from 

the image. Figure 4.5 illustrates this problem, showing the response of the first level 

wavelet subband oriented at —75°.

After being passed to  a normal 2D median filter which uses a 2D mask, double 

edges appear in the gradient magnitude image (Figure 4.5). If this image were to  be 

passed to  a watershed algorithm in its current form, a spurious narrow region would 

be grown along the boundary. Since the median filter is well known as a nonlinear 

edge-preserving smoothing or noise removal filter, directional median filtering is pro

posed by O ’Callaghan [30] to  solve the problem. The idea was developed because 

DT-CW T coefficients have six subbands a t different orientations. A 2D normal me-
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dian filter causes the smoothing effect on the subimage in all directions even though 

the subimage only includes detail information in a particular direction. Directional 

median filtering refers to  adaptation to  the orientation selected by each subband. 

Thus, bo th  scale and orientation adaptation are employed in the  median filtering.

The m athem atical description of this median filtering on a particular subband 

with orientational angle 6 at scale level i is introduced as:

Si,e{x, y ) =  fMedFilteUMedFilt^K) ( I t / ) | ) )  (4.7)

Equation (4.7) gives a clear procedure for applying two ID median filterings on the 

subbands. The first median filter neighborhood extends in a line normal to  the 

subband orientation. The second median filter is parallel to  the subband orientation. 

The normal median filter is used to  remove the step response (double edge effect) 

of the subbands and the parallel median filter is used to  remove the noise of the 

subbands. Figure 4.6 shows the outcome of separable median filtering.

In practice, the size of the median filter is related to  the extent of the filter bank 

impulse response a t th a t level [30] and is chosen as (7 +  2i), where i is the current 

level of the DT-CW T.

Interpolation

After directional median filtering, the new subbands Si j ( x , y )  are now suitable for 

gradient extraction. Because of the nonlinear noise removal, the gradient of the new 

subbands no longer suffer from double edging around the intensity-step artifacts. The
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Figure 4.6: Separable median filtering. 1) The Original image. 2) The outcome after 
directional median filtering (—75° subband a t scale level 1)

Gaussian derivative function is applied as the gradient operator. Using the Gaussian 

derivative function not only estimates the gradient information of the image, but also 

mitigates the noise amplification. So, the texture gradient Gleg (x ,y )  oriented a t 9 at 

scale level i of each subband is given by:

G%(x,  y) = yJ(Sifi{ x ,y )*G 'x)* + {Sifi{x ,y ) * G y)* (4.8)

where G'x and G'y are the partial derivatives of the Gaussian in the x  and y  directions 

respectively and * denotes convolution.

Since the input of the watershed algorithm is a single gradient map, all the different 

subbands need to  be 

Gtex(x,y) .  According
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combined together to  get a single texture-gradient function, 

to  [30], a simple weighted sum of magnitudes can be used to
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do the combination. So:

G‘“ (z. V) = E  »)) (4.9)

where

max.
(4.10)

(4.11)

and iVj is the number of pixels in the subband image a t level i. In Equation 4.9, finterp 

is the simple linear interpolation function, zero insertion, since different subbands 

at different scale levels have different image sizes. When adding all the subbands 

together, we have to  interpolate them  and make sure they all have the same size as 

the original image.

4.2.2 M odulated  Gradient

The m odulated gradient is calculated by applying the morphological erosion operation 

on the images. This erosion is a modified m ethod which is based on the DT-CW T 

subbands after directional median filtering, Sit$(x,y).  In [16], the texture activity was 

introduced to obtain the m odulated gradient. The purpose is to  suppress the  intensity 

gradient in textured areas but leave it unmodified in smooth regions. The measure 

of texture activ ity  is described by

f  A c tiv i ty  (x, y)  =  eRhalf{
&tex (x >y) p'j

(4.12)

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where R h a i f i C) is half-wave rectification to suppress negative exponents and given by:

According to  Equation (4.12), the activity measure is determined by two pre

defined parameters: a  and (3. O ’Callaghan’s [30] results showed th a t a  =  2 and 

(3 = 7 should be applicable to  any 8-bit grayscale image. The texture energy, E tex, is 

computed from the up-sampled subband features which are related to  Sitg(x ,y ) .  So

where, f interp is the same interpolation function as in Equation 4.9, Si/j refers to 

Equation 4.7, and e# is the morphological erosion with B  as the set of pixels in the 

structuring element. In this case the structuring element, B,  is a square neighborhood 

of nine pixels, or the smallest approximately isotropic neighborhood. The erosion 

defined on grayscale images is:

4.2.3 M odified Gradient for W atershed

Now, texture gradient and m odulated gradient are combined to obtain a final gradi

ent, G w a t e r s h e d ( x , y ) ,  capturing all perceptual edges in the image. It is given by the

R h a l f (  C)
0 when (  < 0

(4.13)

Etex — E (4.14)

[ea(/)](aO =  min f ( x  +  b). (4.15)
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Figure 4.7: Modified gradient. From left to right (a to d): a) Original image; b)
Modulated gradient; c) Texture gradient; d) Modified gradient

following equation:

G - , — (*, V) -  . (4.16)
J A c tiv i ty  (■£ > y )  X 00 J LOf

where lot is the median value of the texture gradient, while loj is defined to  be four 

times the median intensity gradient and sjG(x,  y) is the gradient of the original image. 

Figure 4.7 gives a good illustration of this process.

As mentioned in Chapter 3, the main drawback of the watershed algorithm is over

segmentation. Although the over-segmentation problem still exists even when the 

modified gradient is used, the result is much better than  with the normal watershed 

algorithm. A post-processing technique called local minima suppression could be used 

to  improve the segmentation results. The H-minima transform  is used in this thesis. 

It modifies the gradient surface, suppressing shallow minima. Fig 4.8 compares the 

watershed segmentation computed with and without this modification.

This concludes the discussion of the first stage of the adaptive segmentation algo

rithm. Its flow chart is illustrated in Fig 4.9.
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Figure 4.8: Local minima suppression. From left to right (a-b): a) without H-minima;
b) with H-minima

4.2.4 Feature Extraction

All the methods in the previous section are gradient modifications and they are only 

a partial solution to  the watershed over-segmentation problem in real medical images. 

There are inevitably some regions which should be merged together to  form complete 

textures. A texture classification method is required to improve the performance of 

the segmentation algorithm.

A novel texture classification method is proposed, in this thesis. Traditional texture 

classification is usually based on a single pixel value classification or fixed window-size 

classfication [13]. Both of these two methods trea t a “small” area as the texture and 

try  to  extract the texture features. For example, in a single pixel value classification, 

one pixel is treated as a texture. The method uses the intensities of pixels to  cluster 

the image into several different regions. Since a texture contains more than  one gray 

level, different regions will overlap with each other. Fixed window-size classification 

performs better than  the single pixel classification because a  window is used to  specify
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a region which is used for feature extraction. W hen the window is inside of a texture, 

it could represent some characteristics of the current texture. But if the window 

crosses several textures, the features extracted from this window cannot accurately 

reflect the textures. Furthermore, the choice of the window size is an essential factor 

for the final classification results. If the window size is greater, the window might 

contain other textures and lead to inaccurate classification. If the window size is very 

small, the feature extraction method does not work very well since a very small sample 

size may not provide a good estimation of a feature of a texture. Therefore, a flexible 

window or region which includes sufficient and homogeous texture information should 

be used for classification. Because of the irregular boundaries of textures, it is usually 

very hard to  find such a window or region. Fortunately, the adaptive segmentation 

algorithm provides a lot of regions which include sufficient and homogenous texture 

information. Since different textures have different characteristics, if the texture 

features are extracted from each region, different textures can be distinguished from 

each other based on the “distance” between them. Due to  the approxim ate shift 

invariance and selective sensitivity of the DT-CW T, a new feature extraction method 

based on DT-CW T coefficients is proposed. This forms the second stage of the 

segmentation algorithm.

As discussed in Chapter 3, DT-CW T decomposes an image into seven subband 

images at each scale level. According to  the theory of wavelet decomposition, only one 

subband image, which is filtered by the lowpass filter, is the low frequency approxi

mation of the image. The other six subbands of the image are the detail information,
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Figure 4.10: Reconstructed texture map. 4 scale level reconstruction with image size 
512 x 512

and include a lot of texture information. For example, for scale level 4, one approxi

mation subband image and 24 detail subbands can be obtained. Unlike other complex 

wavelets, DT-CW T allows perfect reconstruction.

A black image (pixel values of zero) with the same size as the approximation 

subband image was substituted for the approximation subband. Then, the inverse 

DT-CW T was applied to  reconstruct a new image. This new image includes most 

of the texture information, while the approxim ate information is eliminated. The 

result of this reconstruction is referred to  as a texture map and an example is given 

in Figure 4.10.

After the reconstruction of the texture map, the original image and the texture 

map are used as the  inputs to  the second stage. Since the  preliminary results seg-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



mented the image into several homogeneous regions, the distances between adjacent 

regions were com puted and a distance m atrix  was built. In order to  estim ate the  simi

larity between two samples, the Kolmogorov-Smirnov test (KS-test) from M atlab was 

used. Passing the texture map and the original image to the KS-test, two similarity 

matrices were obtained: S l ks for the texture map and S2 ks for the original image. 

Now, the final similarity map S ks for the merge process is given by the equation:

S ks = S 2 ks x e ^ - 1) (4.17)

This equation was chosen so th a t the original image information would have the 

dominant effect when measuring the difference between regions and the texture in

formation will be an accessory factor. The merge process is simply based on the 

final similarity m atrix S ks. Two regions which have the maximum value in S ks are 

merged a t this step. After merging, the labels for each region are updated and the 

new segmented image is used as the input of the second stage.

The second stage contains a loop as shown in Figure 4.11. First, the similarity 

map is calculated; then, the closest regions are merged; finally, the segmentation 

image is updated, and so on. A term ination criterion is required to  make the loop 

stop a t the “best” segmentation step. The term ination criterion used in the thesis 

was simple. W hen the maximum value in S ks equals the minimum value in S ks, it 

means th a t there are no two regions which are close and the program should stop. It 

was determined empirically th a t this term ination criterion was suitable for most of 

the images tested. The process was refined to  allow the physician to  have some user

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



interaction to  identify the ventricles if required. The whole flow chart of the second 

stage is shown in Figure 4.11.

To summarize, an image was roughly segmented at the first stage, then a texture 

classification stage was applied to  optimize the outcome of the segmentation until a 

term ination criterion was achieved. One example of the final segmentation results 

is shown in Figure 4.12. This figure also gives a comparison between the standard 

watershed and the adaptive watershed segmentation results.

4.3 Volume calculation

The volume calculation algorithm is applied after segmenting the ventricles from the 

CT images as detailed in Section 3.5.
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Figure 4.11: Second stage of segmentation
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Figure 4.12: Final results. From left to  right (a-b): a) Final segmentation result of the 
standard watershed algorithm; b) Final result of our adaptive watershed algorithm.
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Chapter 5

Experim ental R esults

The algorithms were tested on both  physical phantoms and clinical data. The fol

lowing sections summarize and discuss the results. As mentioned in Chapter 4, the 

clinical diagnosis was known for all the test cases. In the following tables summarizing 

the results, the diagnostic comments refer to  the following: 

no hy: the patient was diagnosed as healthy. 

hydrocephalus: the patient was diagnosed with hydrocephalus. 

hy:stable: the patient has hydrocephalus but the hydrocephalus was stable be

tween the two different scans.

hy .-treated: the patient was diagnosed with hydrocephalus and was trea ted  between 

scans.
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5.1 Experim ental D atasets

All the datasets were provided by the IWK Health Center in DICOM (Digital Imag

ing and Communication in Medicine) format. DICOM format consists of a group of 

specifications for messaging and communication between imaging machines. A com

plete DICOM file includes a header as well as the image data. The header stores 

all the information about the image data, for instance, the information about the 

patient, the technical param eters, and the image data. Three pieces of information 

im portant to  the project were extracted from the header: the field of view (FOV), 

the slice thickness, and the image size. These values are used when calculating the 

volume of the ventricular system.

DICOM is the standard image format used in the medical system. The image 

data  in DICOM format were burned onto a CD disk by a technician at the IWK. For 

confidentiality reasons, all the information about the patient was removed. Then, 

the anonymized data  was used by the Departm ent of M athematics and Computing 

Science at Saint M ary’s University where the image processing, algorithm design and 

algorithm validation were carried out. All algorithm development for this project 

was done in CVLAB [15], which is an image processing toolkit under Linux, and 

MATLAB. Since CVLAB does not support the  DICOM format image, DICOM reader 

and viewer functions were developed for CVLAB. All the code was w ritten either in 

the C language or using *.m files in M atlab.

The clinical da ta  sets provided by the IWK Health Center were from cases th a t 

had previously been diagnosed and whose outcomes were known. The cases were
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selected by a radiologist to  reflect a range of likely clinical scenerios. The image data  

included 17 clinical cases and 5 cases from physical phantom  models. All the image 

data was used to  validate the algorithms developed for this project. Of the 17 clinical 

cases, eight cases were patients th a t had only one CT head scan carried out. Eight 

cases were patients th a t had CT scans of their head taken on a t least two different 

occasions. One case had multiple scans. Each scan consisted of approximately 20 

slices. For all the clinical cases, the hydrocephalus diagnosis was documented. For 

the eight cases with only one CT scan, a manual segmentation was also provided by 

the IWK. This manual segmentation was completed by a radiologist, Dr. Schmidt. 

This manual segmentation was used to  validate the segmentation algorithm. The 

slice thickness for each case was identified and was 3mm, 5mm, or 7mm.

The five physical phantom  models were built by Evans [9] a t Dalhousie University, 

for the purpose of testing the volume calculation algorithm. The complex models 

consisted of a cylindrical agar “brain” and a complex fluid-filled space within it. 

The complex fluid-filled space was created from ice and its structure approached the 

complexity of the structure of the human ventricular system [39]. The choice of the 

agar and ice/w ater combination was based on several facts [9], The density of the 

agar approximates the density of the tissue in the human brain and the density of 

ice and water approach th a t of the cerebral spinal fluid. The actual volume of the 

ventricles in the phantoms were known quantities since the volume of the water used 

to  make the ice ventricles was measured. The physical phantoms were scanned in the 

same CT scanner th a t was used to  collect the clinical data  and similar settings were
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used. Each phantom  was given a complete CT scan a t each of four different scanning 

angles, 0, 5,10, and 15 degrees. The slice thickness was either 3mm or 7mm and was 

identified for each case.

5.2 R esults for Registration

The registration algorithm was tested on eight clinical cases th a t included two scans 

of the same patient but taken at different times. The clinical outcome of these cases 

was known. For three of the cases, the patients were diagnosed with hydrocephalus 

and the remaining cases were diagnosed as no hydrocephalus. The results of the 

registration algorithm are illustrated by the example given in Figure 5.1.

Figure 5.1: Registration results. From left to  right (a to c): a) Reference image at 
time ti; b) Floating image a t tim e t2] c) Registered image

In Figure 5.1, there is an obvious 3D movement between Figure 5.1a and Figure 

5.1b. For example, the appearance of the eyeballs shows th a t there is a nodding 

movement and the whole skull has rotated. After registration, the eyeballs can be 

seen in the registered image and the position of the nose is corrected. Thus the 3D
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displacement has been corrected. This is validation based on visual measurement.

A quantitative measure was also used to  validate the registration algorithm. The 

measure is the Improvement Rate (IR ). IR is a measure of the change in the difference 

between the initial image and subsequent image, giving an indication of how close 

the registered image is to the initial image, expressed as a percentage. The definition 

of IR is given in Equation (5.3).

Dref—float{%)y) — \P'ref{x, y)  Ffioat ( x , y ) \  (5-1)

D r e f —regfai'y ')  | - ^ r e / ( ® j  2 / )  '  ^regip^i V)  I ( ^ ' 2 )

j j j  _  I D ref - f l o a t ( % , y ) — Zx, y  D ref - r e g { % , y) . .

~  ' ^ y D r e f - f l o a t y )  ' 1 j

where Ffioat refers to  the floating image a t time, t2, Fref  refers to  the reference image 

at time ti, and Freg refers to  the registered image. IR gives a more specific measure 

of how the registration algorithm aligns the images. Table 5.1 lists the IR  results of 

the eight clinical cases.

Case name IR Diagnosis
p l 70.86% no hy
p 2 2 0 .20% hydrocephalus
p3 64.18% no hy
p4 47.23% no hy
p8 63.81% no hy
p5 62.49% no hy
p6 63.29% hy:stable
p7 55.72% hy: treated

Average IR 55.97%

Table 5.1: IR results of registration algorithm 
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As seen in Table 5.1, the average IR of all the cases is 55.97%. For the three 

abnormal cases, IR  varies from 20.20% to  63.29%. Case p2 has an IR  of only 20.20%. 

In this case there is significant skull deformation caused by the hydrocephalus. The 

registered image, although aligned, is still dissimilar from the initial image. How

ever, a 20.20% improvement after registration was still obtained. The rigid body 

registration algorithm shows a significant improvement in all cases. Moreover, the 

registration algorithm extended the work of Sun’s thesis [39]. Sun’s m ethod did not 

allow for compensation of the nodding component of the movement. However, this 

nodding movement correction was achieved by using the adaptive registration algo

rithm  in this thesis.

5.3 R esults for Segm entation

The segmentation algorithm was validated using the similarity index. The similarity 

index, S, is given by the following equation:

where A \  and A 2 are the number of ventricle pixels in the images segmented using 

adaptive segmentation and manual segmentation respectively. According to  [21], a 

similarity index S' >  0.7 indicates excellent agreement. The average similarity index
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S avg of each case is computed using the formula:

=  £  §  <6-5>
2 = 1

where Si is the similarity index of slice i and N  is the to tal number of slices.

A to tal of eight cases were tested and the similarity index results between the 

adaptive segmentation and manual segmentation are listed in Table 5.2. Of all of the 

cases tested, six of them  had normal ventricles and other two cases were known to 

have been diagnosed with hydrocephalus. Each case includes twenty to  twenty-three 

slices and the thickness of the slice varied from case to  case. Some cases had a slice 

thickness of 3.00mm and some had a slice thickness of 7.00mm. After segmenta

tion, the segmented images were changed to  binary images (background in black and 

ventricle in white) in order to  apply the similarity index.

Case name Similarity index Diagnosis
psl 76.80% no hy
ps2 77.08% no hy
ps3 72.00% no hy
ps4 72.37% no hy
ps5 72.42% no hy
ps6 74.93% hydrocephalus
ps7 80.20% no hy
ps8 74.60% hydrocephalus

Average similarity 75.06%
Similarity std 2 .8 6 %

Table 5.2: Similarity results between adaptive segmentation and manual segmentation

In Table 5.2, the similarity index of all the cases was above 70%, which indicates 

th a t an appropriate segmentation was achieved [21]. In Figure 5.2, each point repre-
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sents the average similarity index for each case. The range of the average similarity 

index for each case was from 72.00% to  80.20% and the average similarity of all the 

cases is 75.06%. Moreover, the standard  deviation of the similarity d a ta  is only 2.86% 

which means the segmentation algorithm is stable for different cases. It doesn’t  vary 

significantly from one case to  another.

similarity measure

0 .8 5

0.720033 0. 802similarity

similarity

Figure 5.2: Graph of the similarity index results

5.4 R esults for Volume Calculation

The purpose of this project is to  develop a framework, using computer vision tech

niques, to  help doctors diagnose hydrocephalus by measuring the volume of the ven

tricular system. The volume calculation algorithm, including the segmentation al

gorithm, was tested on physical phantoms to  assess the algorithmic error. Then the 

complete framework including registration, segmentation, and volume calculation was 

tested on clinical cases.
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Figure 5.3: Physical phantoms. From left to right (a-b): a. phantom model; b. 
phantom slice

5.4.1 Physical Phantom s

The volume calculation algorithm [39] was tested on a set of physical models with 

measured volumes [9]. Five physical complex models (Fig 5.3) were used to validate 

the volume calculation algorithm including the segmentation algorithm. Each model, 

included both 3m m  and 7m m  slices in one case and was scanned a t four different 

angles: 0 degrees, 5 degrees, 10 degrees, and 15 degrees. For each of these 5 complex 

models, Table 5.3 gives the known volume as well as the volume calculated by the 

algorithm. The first column is the actual volume of the 5 models; the second column 

gives the scanning angle in degrees; the third column lists the volume values computed 

by the volume algorithm including the adaptive segmentation algorithm; The fourth 

column documents the error as a  percentage difference between the actual volume 

and the calculated volume.
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A ctual volume Scanning Calculated volume Error
(cm3) angle in degrees (cm3) (%)

102 0 105.27 +3.21%
5 103.93 +1.89%
10 104.85 +2.79%
15 105.97 +3.90%

average 105.00 +2.95%
std 0.85

112 0 111.19 -0.73%
5 110.31 -1.51%

10 106.70 -4.73%
15 111.56 -0.39%

average 109.94 -1.84%
std 2.22

130 0 132.73 + 2 .10%
5 133.54 +2.73%

10 134.79 +3.68%
15 132.90 +2.23%

average 133.49 +2.23%
std 0.93

101 0 99.97 - 1 .0 2%
5 101.71 +0.70%

10 103.09 +2.07%
15 103.61 +2.59%

average 102.09 +  1.09%
std 1.63

88 0 86.10 -2.16%
5 86.19 -2.06%

10 89.43 +1.63%
15 90.02 +2.29%

average 87.94 +0.43%
std 2.08

Overall 0.97%
average error

Table 5.3: Volume calculation results on physical phantoms (Actual volumes are from 
precision complex model cases [9])
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In Table 5.3, the absolute values of all the errors are below 5% which is an ac

ceptable range [40]. The signs in this table represent the direction of the estimation 

of the actual volume. A positive error means over-estimation of the actual volume. 

On the other hand, a negative error refers to  the under-estimation of the actual vol

ume. The overall average error is 0.97% which shows good estimation results between 

the volume calculation algorithm and the actual physical volume. The range of the 

standard deviations is from 0.85cm3 to  2.22cm3 which is reasonable compared with 

volumes of the complex models.

5.4.2 C linical Cases

A to tal of 9 clinical cases with serial examinations which had been already diagnosed 

and whose follow up outcomes were also known, were used to  validate the algorithm 

framework. The cases are divided into four groups: no hydrocephalus cases with 

no hy diagnosis comment, hydrocephalus cases with hydrocephalus comment, stable 

hydrocephalus cases with hy:stable comment, and treated  hydrocephalus cases with 

the comment hy .-treated in the last column. The three cases, p9_0,p9_l,p9_2, are 

cases which follow the progress of a patient with more than  two scans. For the cases 

diagnosed as no hydrocephalus, the ventricles were initially of regular size and did not 

exhibit any noticeable change in size between the two scans. The three hydrocephalus 

cases represent three typical situations. In case p2, the ventricle significantly increased 

its size during the tim e between scans. In case p6, the ventricular system is abnormally 

large but exhibits only a small change between the two scans. So, pQ is a stable

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hydrocephalus case. In case p7, the patient had a seriously enlarged ventricle a t scan 

time t\ . However, with careful treatm ent, the ventricle decreased significantly by the 

time of the second scan.

The cases labeled p9_0,p9_l,p9_2 are cases which follow the progress of a patient 

with more than  two scans and were taken over a period of two years. Initially, the 

patient had serious hydrocephalus. After 1 year, the patient got worse as indicated 

by the large increases in ventricle size. Then, the patient was treated  successfully for 

hydrocephalus and the ventricle size decreased significantly. These p9 cases illustrate

the the progress of the hydrocephalus.

Case
name

Ventricle 
at tm l
(cm3)

Ventricle 
at tm 2 
(cm3)

Difference
in

volume
(%)

Volume at 
tm 2 after 

registration 
(cm3)

Difference in 
volume after 
registration 

(%)

Diagnosis
comments

P i 4.41 4.66 +5.62 4.25 -3.62 no hy
p 2 71.68 169.83 +136.93 114.07 +59.14 hydrocephalus
p3 23.41 24.32 +3.91 23.85 +1.89 no hy
p4 4.42 5.63 +27.31 4.42 +0.05 no hy
p5 6.67 7.51 +12.63 6.65 -0.30 no hy
p6 29.78 30.11 + 1.11 30.78 +3.37 hy:stable
P7 24.11 14.86 -38.35 17.43 -27.71 hy:treated
p8 10.61 12.61 +18.82 10.27 -3.16 no hy

p9_0 50.05 83.38 +66.60 70.63 +41.13 hydrocephalus
p9_l 83.38 76.90 -7.76 79.82 -4.27 hy:stable
p9_2 76.90 11.06 -85.62 15.94 -79.28 hy:treated

Table 5.4: Volume calculation results on clinical cases

Table 5.4 summarizes the data  collected for each case. In this table, the first 

column is the name of each case; the second column represents the volume values 

of scan 1 which was taken at time tp, the th ird  column contains the volume values 

of scan 2 which was taken at time tp, the forth column computes the difference in
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Case
name

Difference 
in volume

(%)

Difference 
in volume 

after registration (%)

Diagnosis
comments

P i +5.62 -3.62 no hy
p3 +3.91 +1.89 no hy
p4 +27.31 +0.05 no hy
p5 +12.63 -0.30 no hy
p 6 + 1.11 +3.37 hy: stable
p 8 +18.82 -3.16 no hy

p9_l -7.76 -4.27 hy:stable
Average of magnitude 11.02 2.38

Std of magnitude 9.29 1.67

Table 5.5: Volume calculation results on clinical cases whose absolute values of the 
“Difference in volume after registration” are below 5%

Case
name

Difference 
in volume 

(%)

Difference 
in volume 

after registration (%)

Diagnosis
comments

p 2 +136.93 +59.14 hydrocephalus
p7 -38.35 -27.71 hy:treated

p9_0 +66.60 +41.13 hydrocephalus
p9_2 -85.62 -79.28 hy:treated

Average of magnitude 81.88 51.82
Std of magnitude 41.52 22.38

Table 5.6: Volume calculation results on clinical cases whose absolute values of the 
“Difference in volume after registration” are above 5%
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volume between tim e t \  and time t2\ the fifth column contains the volume values of 

scan 2 after scan 2 was registered to  scan 1. The difference in volume between time 

t\  and tim e t 2 after registration is in the sixth column and the last column shows the 

diagnosic comments on each case. The formula to  compute the difference in volume 

is defined

j-y   ^ 2  ^tl /r £\
D v o lu m e  — W /

vh

where vtl and vt2 are the volumes a t tim e t-L and time t2, respectively. In Equation 

(5.6), D voiume is a signed number and might be positive or negative. The signs 

represent the direction of the volume change. For example, if D voiume is positive, it 

means the volume increases during the  time. On the other hand, the  volume decreases 

between two scans when D voiume is a negative number. In current clinical situations, 

doctors have the most difficulty diagnosing cases where the ventricular volume change 

in the range of 5%. Thus for this thesis, 5% was chosen as the dividing line between 

stable and diseased cases. Therefore, if the absolute value of the change is below 5%, 

there is no significant change of the volume.

From Table 5.4, some conclusions can be drawn:

1) For the “no h y” and “hy:stable” cases, the absolute values of some “differ

ences in volume” are above 5% before the images are registered. According to  the 

known diagnosis, the volume should not have changed significantly. However, the 

registration algorithm improves the results. After registration all the values for the 

no hydrocephalus or stable cases fall within the range ±5%.

2) For the no hydrocephalus cases, all the differences in volume after registration
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vary from —4.27% to  3.37% and hence have absolute values th a t are below 5%. This 

means th a t there is no significant changes in the volume between scan 1 and scan 2 . 

Thus the da ta  output from the algorithm and the doctors’ diagnosis are consistent.

3) For the three hydrocephalus cases, the algorithm output also correctly reflects 

the features of each case. For example, in case p2, the change in volume of +59.14% 

and the fact th a t the volume at tim e t 2 is larger than  th a t a t tim e t \  indicates tha t 

this patien t’s ventricle size increased dramatically during the tim e between scans. In 

case p6, although the patient has hydrocephalus, the condition is stable and there 

is no significant change between scans. So, the +3.37% calculated change in volume 

probably reflects mainly algorithm accuracy. The patient did not get better and did 

not get worse. In case p7, the —27.71% change in volume again illustrates th a t there 

was a big change in the patien t’s condition between scan 1 and scan 2. The smaller 

volume value a t t 2 and the sign of the number —27.71% indicate th a t the ventricle size 

decreased during the tim e period. This reflects the fact th a t the pa tien t’s condition 

improved between the two scans. This is consistent with the clinical knowledge th a t 

the patien t’s condition was treated.

4) For the special cases labeled p9, p9_0 means the first stage of the process, 

p9A  is the middle stage of the process and p9J2 is the final stage of the process. In 

p9_0, with a high volume change of +41.13% and larger values a t time t 2 (70.63cm3), 

the algorithm predicts th a t the patient got worse from tim e t i  to  tim e t 2. At the 

middle stage (p9A),  the ventricle size decreased slightly (—4.27%), bu t the patient 

still has serious hydrocephalus. The patient was diagnosed as stable during this time

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



period. At the final stage, a volume change of —79.28% to 15.94cm3 a t time give a 

good indication th a t the patient is recovering from the hydrocephalus which is again 

consistent with the clinical diagnosis.

Table 5.4 gives a good summary of the clinical cases used to validate the framework 

in this thesis. To analyze the standard deviation of the results, the  th ird  and the last 

column of Table 5.4 are isolated and formed into two tables, Table 5.5 and Table 

5.6. Table 5.5 has all the cases where the absolute value of the “difference in volume 

after registration” column is below 5% and Table 5.6 has all the cases where the 

absolute values are above 5%. Since we are interested in the magnitude of the change 

in volume, when the mean and the standard deviation were calculated for these two 

tables, absolute values were used. The standard deviation in Table 5.5 (1.67%) is 

much lower than  th a t in Table 5.6 (22.38%). Therefore, for no hy and hy:stable 

cases, the algorithm is stable and varies rarely. On the other hand, for hydrocephalus 

and hy:treated cases, a much higher standard deviation is obtained which is consistent 

with the significant changes of the ventricular system during the process. Figure 5.4 

graphically illustrates the results of all the clinical cases. In Figure 5.4, two clusters 

(all the blue dots) are clearly identified. One has a mean a t 2.38 (the left red line) 

and the other has a mean a t 51.82 (the right red line). For each red fine, there 

are two green lines, one on each side of it. These two green lines give the range of 

the cluster values. For example, the cluster with the mean value 2.38 has the value 

range [0.71,4.05] and the other cluster with the mean value 51.82 has the value range 

[29.44, 74.20]. After considering these two ranges, 5% (shown as black line in Figure
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5.4) was empirically selected as the dividing line between these two clusters.

 l / 1

-10

M eenl a  2.38 I I Mean2 =51.82

10
%S line

20 30 40 50
Difference In volume (%)

60 70

Figure 5.4: Graph of the clinical case results

In addition to  the graph results of the clinical cases, the diagnostic performance of 

the set of clinical cases is discussed. In considering the diagnostic performance, there 

are four im portant concepts: true positive(TP), true negative(TN), false positive(FP), 

false negative(FN). In this thesis, T P  refers to  the number of cases which are diagnosed 

as hydrocephalus and the algorithm output also suggests a hydrocephalus diagnosis. 

TN is the number of the cases which are diagnosed as non-hydrocephalus and the 

algorithm also also suggests a non-hydrocephalus diagnosis. W hen the cases are non

hydrocephalus but the algorithm suggests a hydrocephalus diagnosis, it is FP. FN is 

the situation where the algorithm predicts a non-hydrocephalus diagnosis but the true 

diagnosis is hyrdrocephalus. According to  these concepts, a diagnosis performance 

m atrix is computed in Table 5.7. In Table 5.7, for both all the positive and negative 

examples, our algorithms give the correct predicted results.
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Predicted
positive

Predicted
negative

Positive
examples

6 (TP) 0 (FN) 6

Negative
examples

0 (FP) 5 (TN) 5

6 5 11

Table 5.7: Diagnostic performance analysis

Compared with existing similar systems, such as a visual measurement, Sze’s 

estimation [40], and Sun’s framework [39], the framework proposed in this thesis has 

its own robustness and efficiency. Compared to  a visual measurement, the framework 

in this thesis uses a quantitative and more accurate method to  measure the volume 

change of the ventricular system and thus reduces the chance of misdiagnosis caused 

by fatigue of the eyes.

Sze developed a volume calculation m ethod but partial volume effects presented a 

serious drawback, fn the m ethod presented in this thesis, the image registration step 

reduces the partial volume effect and improves the accuracy of the results.

Sun’s framework uses feature-based registration, region growing segmentation, and 

volume calculation. However, it only partially solved the displacement problem, and 

the region growing segmentation requires more user interactions than  the proposed 

system. On the other hand, the framework in this thesis solved the displacement 

problem successfully w ithout any user interactions. Moreover, the watershed-based 

segmentation algorithm provides acceptable segmentation results with minimal user 

interactions.

fn conclusion, the algorithm predicted the doctor’s diagnosis in all the cases th a t
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were tested. Therefore, the adaptive registration, adaptive segmentation, and volume 

calculation algorithm in the framework are reasonable and the results of the project 

are acceptable.
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Chapter 6

Conclusions and Future Work

In this thesis, a framework was implemented to  measure the volume of the ventric

ular system to  aid in the diagnosis of hydrocephalus. This framework consists of 

four im portant algorithms: wavelet analysis, a modified registration algorithm using 

a combination of the wavelet multiresolution pyramid and m utual information, an 

adaptive watershed segmentation with a novel feature extraction method based on 

the DT-CW T coefficients, and a volume calculation algorithm. In order to  verify 

the assessment of the success of the algorithms used, an improvement rate  (IR) was 

proposed to  validate the registration algorithm and a similarity index used to test 

the segmentation algorithm. Finally, physical complex phantom  models with known 

volumes and clinical cases with known diagnoses were used to  validate the volume 

calculation algorithm.

The average IR  of the  no hydrocephalus cases is 55.97% which provides a good 

indication of how the registration algorithm compensated for both  in-plane and out-
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of-plane displacement between scans. The range of the similarity index for the 8 cases 

was 72.00% to  80.20% and the average similarity index of all the cases was 75.06% 

which was above 70.00% and fell into the acceptable range. This shows th a t the 

segmentation m ethod worked well. For the volume calculation m ethod on physical 

models, all the percent error rates were below 5% and the average percent error rate 

was 0.97%. These results are good since a 5% error rate was taken as acceptable [40]. 

For the volume calculation m ethod on clinical models, the da ta  reflect the correct 

diagnosis for each case, including the no hydrocephalus cases, hydrocephalus cases 

and special cases. Furthermore, graphical illustration and the diagnostic performance 

evaluation of all the clinical cases shows the success of our framework.

Some possible future work following from this thesis includes:

1. The adaptive segmentation algorithm does not have an accurate term ination 

criterion. Future work could investigate the term ination criterion.

2. The process used in this project segmented the ventricles in 2D first and then 

computed the volume in 3D. An alternate method would do the registration, seg

mentation, and volume calculation in 3D. As such, interpolation techniques between 

slices could be a potential topic for future research.

3. Although user interaction is minimized, the user still has to  select the region of 

the ventricular system. Using the different textures found in the ventricles and other 

soft tissues, pattern  recognition could be applied to  help doctors find the correct 

textures quickly and accurately.

4. For the rigid body registration algorithm, 3D displacement was corrected in
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this thesis. However, when there is a huge deformation in the ventricles in the scanned 

image, rigid body registration fails to  find the most likely results. An alternative in 

this case is to  autom atically choose a landmark, such as the skull, then to  optimize a 

region of interest th a t would be common to  the two scans.

5. The diagnostic comments of all the test cases were known and documented. 

More cases with unknown diagnosis (or blind cases) need to  be tested in the future 

to  get an accurate measure of diagnosis performance.

6 . Although our results have good potential for indicating the changes between 

two scans, more clinical da ta  should be tested to  validate the algorithms (registration, 

segmentation and volume calculation). In particular, more clinical da ta  can be used to 

obtain the dividing line between stable and diseased cases using statistical methods. 

Also, clinical trails needs to  be carried out.

7. A graphic user interface (GUI) could be implemented to  facilitate the interac

tion of the users.

8 . The registration algorithm runs quite slowly. Future work should include 

evaluation of more efficient implementations.
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