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A COMMON FIXED-POINT THEOREM IN REFLEXIVE LOCALLY

UNIFORMLY CONVEX BANACH SPACES1

MICHAEL EDELSTEIN AND MO TAK KIANG

Abstract. Let X be a reflexive locally uniformly convex Banach space and G an

ultimately nonexpansive commutative semigroup of continuous self-maps of X. If

there exists a point x in X recurrent under G such that G(x) is bounded, then G has

a common fixed point in co(C(x)). If A" is a Hubert space then there is exactly one

such point in co(G(.x)).

I. Introduction. Let (X, d) be a metric space and G a family of mappings g:

X —> X forming a semigroup under composition. The notion of a G-closure point x

was introduced in [5] and defined by the condition: for some z G X, any e > 0, and

any / g G there is a g G G such that

(I) d(fg(z),x)<e.

In [4] we discussed fixed point properties of semigroups, termed ultimately nonexpan-

sive and defined by the condition that for every u, v g X and every a > 0 there is an

/ g G such that, for all g G G,

(II) d(fg(u),fg(v))^(l + a)d(u,v).

Among other things it was shown there that if A' is a reflexive locally uniformly

convex Banach space and G is an ultimately nonexpansive commutative semigroup

of continuous mappings g: X —> X, then the existence of a point x with a precom-

pact orbit G(x) = [g(x): g g G) guarantees a common fixed point.

It is the purpose of this paper to prove the stronger result, obtained by replacing

the hypothesis of precompactness by the assumption that there exist a G-closure

point whose orbit is bounded. The special case where G is generated by a single map

/was treated in [3], where it was shown that the generator/has a unique fixed point

in co{ f"(x): n = 1,2,...}. The case of a general semigroup G, which is the object of

this paper, is of added interest, as the G-closure property is, in general, weaker than

the corresponding one for a single map /. This fact is amply reflected in the more

elaborate arguments of Lemmas 1-5, which pave the way to the proof that the

restriction of G to co(G(x)) is an affine isometry (cf. §2). There seems to be no
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compelling reason to believe that the uniqueness part of [3] is valid in general,

although it does hold in the case where A' is a Hilbert space.

To simplify the presentation of our main result, we introduce the notion of

G-recurrence. Thus, a point x g X is said to be G-recurrent, or recurrent under G, if

for any e > 0 and any/ g G there is an A g G such that

(HI) d(ß(x),x)<e.

In [4, Proposition 1(a)] we pointed out that if G is an ultimately nonexpansive

commutative semigroup on any metric space, then x is G-recurrent if it is a G-closure

point. Clearly then, for semigroups such as those in this paper, the two notions are

equivalent.

2. Preliminaries.

Lemma 1. Let G be an ultimately nonexpansive commutative semigroup of continuous

mappings of a Banach space X into itself. Let z,ux,u2,...,unbe members of X. Then

to any positive integer k there is a gk in G with the property that, for any g in G and

each i = 1,2,...,«,

(i) l|gg*(«z)-^)ll<(i + iA)lk-^ll-

Proof. For a fixed i there exists a g{° in G such that (1) is satisfied, with g¿;)

replacing gk. Clearly then, (1) holds with gk = g^g^ • ■ • gkn).

Lemma 2. Let z,, z2 g X, g g G, where G is as in Lemma 1, and suppose that a

sequence [gk] c G exists such that, for all A G G,

(2) \\hgkg(zx) - hgkg(z2)\\< (I + l/k)\\zx - z2\\

and

(3) \\hgkg(zx) - hgkg(z2)\\ < (1 + lA)||g(z1) - g(z2)||

for k = 1,2-

Suppose further that sequences (hk), {h'k) c G exist such that hm/t_00A^girg(z()

= g(z¡) and\imk^xhkgkg(zi) = z,(i = 1,2). Then

lkUi)-^2)IHk-^ll.

Proof. Substituting h'k and hk for A in (2) and (3), respectively, we obtain two

inequalities from which the result follows. Indeed,

||g(zx) - g(z2)|| = Um \h'kgkg(zx) - h'kgkg(z2)\\ < (l + i)||z, - z2\\

and

Ik - *2II = ^m l|A*S**(*i) - kkgkg(z2)\\ < \l + ¿]||g(2i) - g(*2)ll>

whence, since k = 1,2,... is arbitrary, ||g(z,) - g(z2)|| < \\zx — z2|| and, simulta-

neously, ||Zl - ZX\\ < ||g(Z!) - g(z2)||.
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Lemma 3. Let X be a reflexive locally uniformly convex Banach space, and let G be

as in Lemma 1. Suppose that p, q, z g X and {gk} c G are such that

z = Xp+(l -X)q

for some X, 0 < X < 1, and

(5) \\ggk(p)-ggÁz)H(l + l/k)\\p-z\\,

llœ*(?)-SS*(z)ll<(l + t/k)\\q - 4

for all g g G.

Suppose further that a sequence {hk} c G exists such that {hkgk(p)} and

{hkSÁ<l)} both converge and limk^xhkgk(p) = p, \imk^ochkgk(q) = q. Then

{hkSk(z)} converges, andlimk^xhkgk(z) = z.

Proof. In (5) we may replace g by members of the sequence {hk} and observe

that, since the sequences (A^g^p)} and {hkgk(q)) are bounded, so is (hkgk(z)).

By reflexivity of X some subsequence (A^g^Xz)} converges weakly to, say, w G X.

Since norms are weakly lower semicontinuous, it follows from the above inequalities

that ||p - w|| < ||p - z\\ and \\q - w\\ < \\q - z\\. Hence,

\\p - q\\ = \\p - 4 + Ik - zll > \\p - HI + Ik - HI > \\p - ij.
clearly implying that ||p - w|| = \\p - z\\ and \\q - w\\ = \\q - z\\. Hence, w = z by

strict convexity of X; and because this is true for each weakly convergent subse-

quence of ( Akgk(z)}, it is also true that the entire sequence converges weakly to z.

Now the vectors

[(1 - l/k)\\p - z\\Y\hkgk(p) - hkgk(z))        (k = 1,2,...)

are all of norm < 1 and form a sequence which converges weakly to

(p-z)[||p-z||]-1

on the unit sphere. By a known property of locally uniformly convex Banach spaces

(cf. [1, p. 32]), the same sequence converges in norm. Hence,

,lim (hkgk(p)-hkgk(z))=p-z    and     lim hkgk(z) = z,
k —* oo k —* oo

as claimed.

Lemma 4. Let X and G be as in Lemma 2. Suppose x G X is recurrent under G, and

let ux, u2 G G(x). Then the restriction of each member g of G to the line segment

[zz,, u->] is an affine isometry.

Proof. Let zx, z2 be points on the line segment [«,, zz2]. Since all isometries in a

strictly convex Banach space are affine, it suffices to show that ||g(z,) - g(z2)|| =

\\zx - z2\\. To this end let {gk ) c G be a sequence with the property that

\\hgkg(u) - hgkg(v)\\< (I + l/k)\\u - v\\

and

\\hgkg(u) - hgkg(v)\\ < (1 + 1/A)||g(u) - g(v)\\
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for all A g G, all k = 1,2,..., and all u, v in the set {ux, u2, zx, z2, g(ux), g(u2),

g(zx), g(z2)). Let (hk) be a sequence in G with the property that \imk^00hkgkg(x)

= x. Then, by the continuity of members of G, HiTtk_oahkgkg(uj) = u¡, i = 1,2. By

Lemma 3, limk_x Akgkg(zi) = z;, i = 1,2. Next, set h'k = A^g. Then

lim h'kgkg(u,) = g(u¡)    and    lim h'kgkg(z¡) = g(z¡)
k—*tx>

for z = 1,2. Lemma 2 applies to the effect that ||g(z,) - g(z2)|| = \\zx - z2\\.

Lemma 5. Let X be a reflexive locally uniformly convex Banach space and G an

ultimately nonexpansive commutative semigroup of continuous mappings of X into

itself. If x G X is recurrent under G, then the restriction of each g G G to co(G(x)) is

an affine isometry.

Proof. Let n > 2 be a positive integer and suppose thatz,, z2 g co{zzx, zz2,. .. , zz,,},

z\ # z2. For n = 2, ||g(zj) — g(z2)|| = ||z, — z2|| by Lemma 4. Suppose this is true

for zx, z2 G co( tZj, zz2,..., zzm} with m < n — 1. Let px, p2 be extreme points of the

line segment / n co(zzj, u2,...,«„}, where / is the straight line through z, and z2.

Choose {gk.} c G so as to satisfy the two inequalities of Lemma 2. Further, let {hk}

and [h'k) be as in the proof of Lemma 4; that is, nmk^oahkgkg(x) = x and

lim h'kgkg(x) = g(x). Nowpj, p2 are each convex combinations of m of the points

of {ux, u2,. ,.,un), with m < n — 1, and g is affine on the convex hull of such sets.

Suppose px = EjlrA^zz, and p2 = £r=iA7M, for suitable A',, A'/, with 0 < A'„ A'/ < 1

and E-LiX', = 1 = E^A'/. We then obtain

m m

g(Pi) = E A',g(«,)    and   g(p2) = £ A'/g(M/).
;=1 /=1

Hence,

m m

lim hkgkg(px) = £   lim A',.A¿g¿g(M,) = E^,«, =/>i,
A' —« oo ¡ _ i k —> oo ; _ -i

and, similarly, lim h'kgkg(px) = g(px); likewise,

}im hkgkS(Pi)= P2   and     lim h'kgkg(p2) = g(p2).
«—•oo K —* 00

By Lemma 3 the above equations remain valid with zx, z2 replacing px, p2. By

Lemma 2, ||g(z,) - g(z2)|| = ||z, - z2||, and, again by strict convexity of X, g is

affine. Hence, g is affine on co(G(x)) and, by continuity, g is also affine on

co(G(x)).

Theorem. Let X be a reflexive locally uniformly convex Banach space and G an

ultimately nonexpansive commutative semigroup of continuous self-maps of X. If an

x g X exists such that G(x) is bounded and x is a recurrent point under G, then

coG(x) contains a point £ such that G(£) = {£}. If, in addition, X is a Hubert space,

then | is unique with the above property; i.e., ifr¡ # £ belongs to coG(x) then g(r¡) =£ rj

for some g g G.
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Proof. By Lemma 5, G|coG(x), the semigroup consisting of restrictions of

members of G to co G(x), is composed of affine isometries. By the Markov-Kakutani

Theorem [2] there exists a common fixed point. To prove the assertion about

uniqueness, assume tj # £ is another common fixed point in coG(x) and let / be the

straight line joining £ and tj. Let g be the affine isometry on the affine hull of / n

(coG(jc)}, which is determined by g g G. Then, for every a g /, \\g(x) - g(a)\\ =

\\x — a\\. In particular, ||g(x) - g(f )ll = II* ~~ f ll> where f is the point of / nearest to

x. Because x — f is perpendicular to / in an inner product space, we have (x — £,

£ — tj) =0, and because all distances are preserved under g and / is pointwise fixed,

f is also the nearest point of / to g(x) = g(x). It follows that (g(x) - Ç, £ — tj) = 0

for all g g G and, as an easy consequence, / fl {co(G(x))} is a singleton. Thus,

coG(x) cannot contain {£, tj), and the proof is complete.
.
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