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Abstract 

Predicting Unusual Surges in a Time Series 

By 

Weiran Sun 

Time-series data tend to enjoy regular fluctuations. Statisticians have developed a 
wide variety of techniques to predict future values of a temporal variable. Most of these 
approaches use prediction techniques; one example is the employment of auto regression 
and moving averages to predict future numerical values.  

Our project uses a data mining technique called classification to predict both the 
occurrence of surges in time-series, and the expected durations of those surge, as opposed 
to future values predicted using other techniques. Such surges can occur in a number of 
time series events, examples of which include demands for energy, weather forecasting, 
and variation in traffic volume. Our chosen technique can be employed to extract 
meaningful statistics and other useful characteristics of time series data.  

Classifier performance depends greatly on the characteristics of the data to be 
analyzed. Many algorithms are part of classification analysis. For this study, we chose for 
comparison the decision tree, support vector machines, and Adaboost. To validate the 
quality of algorithms for our given problem, we used precision and recall measures as 
comparators between different algorithms. The minimal accepted precision score was set 
as 60%, with 70% as the preferred such score, as such a result would be more robust. Our 
initial experiments yielded a precision score of 64%, and the best results attained a score 
of 77%. 

April, 2016 
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Chapter 1 

Introduction 

 

Time series data enjoy a natural temporal ordering and tend to produce regular 
fluctuations that can be of particular interest to the analyst. In statistics, many techniques 
may be used to predict future values in time series. Most of these techniques are 
prediction techniques, examples of which include regression analysis and time series 
analysis, and their respective various subcategories, such as ordinary least squares, 
logistic regression, autoregressive moving average models, and vector auto regression 
models. 

Our project uses a data mining technique called classification. The technique is used 
to predict unusual surges in time series. Classification can identify the category or 
categories to which a new observation belongs, or the basis through which a training set 
of data is known, specifically a set containing observations belonging to a specific 
category membership. With machine learning, classification is considered an instance of 
supervised learning. The technique can be employed to extract meaningful statistics and 
other useful characteristics of time series data. 

An algorithm that implements classification is known as a classifier. The classifier 
belongs to a branch of machine learning that focuses on the recognition of patterns and 
regularities in data. Classifier performance depends greatly on the characteristics of the 
data to be analyzed. Many algorithms may be found in classification analysis. In this 
study, decision tree, support vector machines, and Adaboost are the three algorithms 
chosen in this research for both comparison and analysis. 
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To validate the quality of algorithms for our given problem, we used precision and 

recall measures as comparators between different algorithms. The minimal accepted 
precision score was set as 60%, with 70% as the preferred such score, as such a result 
would be more robust. Our initial experiments determined a score of 64%, with the best 
result that of 77%. 

Two main objectives governed our research. First, we wanted to determine new and 
different experimental setups through which customized datasets could be classified. 
Second, we hoped to obtain, for each of the algorithms in a particular experimental setup, 
the best possible prediction precision score.  

To realize these two objectives, we formulated the following six-stage process. 

1. purge useless values, thus yielding a dataset that is accurate and therefore 
meaningful. 

2. determine, then calculate any surges in the selected patterns, in the process 
generating, for classification, a valid test dataset. 

3. determine, through the classification of the available algorithmic tools, whether 
the 

a) decision tree shows acceptable precision. 

b) SVMs show greater precision. 

c) size of dataset affects precision significantly. 

d) different time periods within dataset enjoy different the precision scores 
relative to each other. 
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e) boosting of Adaboost improves precision. 

4. determine further an ideal dataset size for classification for cases where the 
answers to 3(a–e) are affirmative. 

5. present an algorithm for each dataset to achieve the best possible precision score. 

6. suggest, based on the findings, innovative future research through which greater 
precision scores may further be achieved. 

1.1 Thesis structure 

The structure of this thesis is as follows. 

In Chapter 2 we provide a general introduction to (1) time series analysis and 
prediction, (2) auto regressive integrated moving average (ARIMA), (3) decision trees 
and Recursive Partitioning and Regression Trees (rpart), (4) support vector machines 
(SVMs), and (5) boosting of Adaboost. All five techniques were crucial components of 
this research.  

In Chapter 3 we define our time series data and experimental setup. We describe the 
input data in its entirety, and then represent the data through ARIMA. We also outline 
our calculations of surges in time series data and detect peak data points. At that point, 
we describe our subsequent collection of all the detected peak data points, and our 
combining them to obtain our dataset for classification. We then outline how, by using R 
programming with rpart and SVMs package, we set up valid experiments for 
classification and prediction. It was through this process that we obtained our initial 
results. 

In Chapter 4 we describe our findings for all established datasets. We define and 
describe experimental design and evaluation metrics, including classification, precision 
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and recall. We then compare performance, using these concepts and the results that were 
derived through the different classification algorithms. What is more, we examine 
differences in our results through the adjustment of specific small parameters we had 
established to determine the best possible precision scores. Furthermore, we scale the 
dataset size and thereby further obtain different and meaningful performance results. We 
then examine the improvement in accuracy, and select, based on set criteria, the ideal 
dataset size for our research. In the final section of this chapter, we add to our 
experiments, for advanced comparison, the results of the boosting technique Adaboost. 

In Chapter 5 we use time as the distinguishing feature of time series events. In 
previous experiments using a complete temporal day, we achieved excellent and 
encouraging precision results. We determined that, generally, time series events in 
different time periods will accordingly show different results. We perform further 
experiments by dividing the hours in a day into three periods, specifically, and as we 
classify them formally, morning time, noon time, and afternoon time. Upon doing so, we 
repeat our experiments for each respective time period, and thereby obtain precision 
scores for each one. We describe our finding that Adaboost can bring significant 
precision improvement, as determined through our investigation. 

Finally, in Chapter 6, we describe our conclusions. We provide our recommendations 
for specific algorithms dependant on different conditions and methods. We also consider 
further research based on our findings. Those findings, we argue, can improve research 
precision significantly.  

Appendix A provides the complete set of experiment results. We are publishing this 
data as a reference for both future research and project implementation. 
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Chapter 2 
Literature Review 
 

 In this chapter we provide certain general ideas, as well as background knowledge 
and research techniques, about time series analysis and prediction, auto regressive 
integrated moving average (ARIMA), decision trees (rpart), support vector machines 
(SVMs), and boosting through Adaboost, all of which are crucial to our research. We 
describe all techniques immediately below. The reader is referred to  1~26 for more 
detailed information about these ideas and techniques. 

 

2.1 Time series analysis 

A time series analysis uses a sequence of temporal data points created over 
specific chronological intervals. It is widely used in statistics, pattern analysis, finance, 
weather forecasting, traffic volume measurement, and many other areas of scientific 
research. It uses several specific means of data analysis to create meaningful statistics 
pertinent to an understanding the data. [1]  

Time series prediction uses previously-observed findings to predict future 
occurrences. Researchers have developed many of statistical models for time series 
prediction. These models can generate many alternative versions of raw data, and 
represent them for different specific reasons. Either simple or fully-formed models can be 
used to determine the possible future outcome of a time series, including an outcome in 
the immediate future. Several methods of prediction may be applied to these outcomes to 
achieve better results, examples of which include classification and regression analyses.
[2]  
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2.2 Autoregressive integrated moving average (ARIMA) 

The autoregressive integrated moving average (ARIMA) model is commonly 
used in statistics, particularly in time series analyses. It is a generalization of an 
autoregressive moving average model, and is usually used to predict future values in time 
series data. In certain cases with time series data, the data under scrutiny show instability. 
With these cases, the difference or average can be calculated and applied to reduce the 
instability. ARIMA models can efficiently represent time series data to produce a better 
understanding of that data. [3]  

 Two previous students of my supervisor, Pawan Lingras, had performed the data 
representation stage of our study. As I started my experiments on classification, the 
results of that earlier stage assisted my understanding of both the logic and purpose of 
this research.  

 In 1970, G. E. P. Box and David A. Pierce introduced a method of distribution of 
residual autocorrelations in auto regressive integrated moving average time series 
models. [4] According to their research, many ARIMA models can transform data to white 
noise—that is, an uncorrelated sequence of errors. Usually this sequence can be 
computed directly from the observations if the parameters are known exactly. But if the 
parameters are not known as such, the resulting sequence from computing are named as 
“residuals,” which are estimates of errors. 

 In this particular model, the errors contain zero autocorrelation. It is thus logical 
to examine the sample of autocorrelation function of the residuals—specifically, the 
adequacy of fit. The residuals of large samples from a correctly-fitted model are usually 
quite close to the true errors of the executed process. But care is still needed to explain 
and understand the serial correlations of the residuals. The residual autocorrelations can 
be represented as a singular linear transformation of the autocorrelations of the errors so 
that they can possess a singular normal distribution. 
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 Building on the earlier work of several authors [5][6] , given a discrete time 
series z୲, ݖ௧ିଵ, z୲ିଶ, ... and using B for the backward shift operator such that Bݖ௧ = ݖ௧ିଵ, 
the general autoregressive integrated moving average model of order (p, d, q) [7][8]  may be 
written 

ϕ(B) ∇ௗݖ௧ = ߠ(B) ܽ௧ 

where ϕ(B) = 1 - ߶ଵB - … - ߶௣ܤ௣ and ߠ(B) = 1 - ߠଵB - … - ߠ௣ܤ௣, ሼܽ௧ሽ is a sequence of 
independent normal deviates with common variance ߪୟమ , to be referred to as “white 
noise,” and where the roots of ϕ(B) = 0 and ߠ(B) = 0 lie outside the unit circle. If ݓ௧ = 
∇ௗݖ௧ = (1 − B)ௗݖ௧ is the d-th difference of the series ݖ௧, then ݓ௧ is the stationary, 
invertible, mixed autoregressive moving average process given by 

 = ௧ݓ
1 1

p q
i t i i t j t

i j
w a a   

                           

and permitting d > 0 allows the original series to be nonstationary. Now if the model 
were appropriate and the a’s for the particular sample series were calculated using the 
true parameter values, then these a’s would be uncorrelated random deviates, and their 
first m sample autocorrelations  1 2, , , 'mr r r r  , where m is small relative to n. It would 
for moderate or large n possess a multivariate normal distribution. Also it can readily be 
shown that the  kr  are uncorrelated with variances from which it follows in particular 
that the statistic would for large n be distributed as ݔଶ with m degrees of freedom, 

2 2
1

~m
k m

k
n r x

                                                          

 Furthermore, the authors discussed in some detail residual autocorrelations in 
time series models, and in particular covariance matrix, both for Auto-Regressive (AR) 
processes and for Moving Average (MA) processes and Auto-Regressive Integrated 
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Moving Average (ARIMA) processes. The authors also verified their concepts through 
Monte Carlo experiments for each type of processes. 

 In the Auto-Regressive Process, from the general AR process of order p , 

( ) t tB y a                                                            

Where B, ( )B , and  ta  are as in ϕ(B) ∇ௗݖ௧ = ߠ(B) ܽ௧, can also be expressed as a 
moving average of infinite order. Suppose then they have a series {y} where in general 
 ௧ can be the d-th difference (d=0,1,2, …) of the actual observations. Then forݖ௧= ∇ௗݕ
given values 1( , , )p       of the parameters they can define  

1 1( ) ( )t t t t p t p ta a y y y B y                        

and the corresponding autocorrelation 

2( ) t t k
k k

t

a ar r a   
                                             

Thus, in particular, 

1. ( )t ta a   

2. ( )t ta a    are the residuals when ( ) t tB y a   is fitted and least squares 
estimated   obtained; and  

3. ( )kr   and ( )kr   are respectively the residual. 

They have remarked earlier that if the fitted model is appropriate and the parameters   
are exacly known, then the calculated a’s would be uncorrelated normal deviates, their 
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serial correlations r would be approximately (0, (1/ ) )N n I , and thus 2
1
m

kn r  would 
possess a 2x  distribution with m degrees of freedom. If m is taken sufficiently large so 
that the elements after the m-th in the latent vectors of Q are essentially zero, then they 
finally obtain the distribution of  

2
1 ˆm

kn r                              

When estimates   are substituted for the true parameters   in the model, will still be 
distributed as 2x , only now with m-p rather than m degrees of freedom. 

The conclusion the researchers reached, as shown above, was that, to a mild 
approximation, the residuals from any moving average, including mixed auto-regressive 
moving average processes, will be the same as those from a suitably-chosen 
autoregressive process. More precisely: 

1. The residuals can immediately use the AR results for autoregressive integrated 
moving average process by considering the corresponding variance and 
covariance matrix of r̂ from the pure AR process of   

( ) ( ) ( )t t tB x B B x a                     

2. In particular, it follows, from the finding described immediately above, that 
the test for the adequacy of any ARIMA process is obtained by referring 

2
1 ˆm

kk r  to a 2x distribution with v degree of freedom, where 
v m p q   . 

When considering Box and Pierce’s research, I am able to comprehend better the 
function of ARIMA models in statistics. I have also gained greater appreciation of this 
crucial fact: the time series data can be more efficiently represented by ARIMA models 
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than other models. Though I did not, in the preparation of this study, design the data 
representation stage, I was nevertheless able to develop and use, through data 
representation, an effective understanding of the results. And this understanding in turn 
helped both to resolve possible problems, and validate the accuracy of results in each 
stage of my experiments. 

Afterwards, when I designed and performed experiments on classification stage, I 
chose the decision trees (rpart), support vector machines (SVMs) and Adaboost models to 
identify our strategies. 

 

2.3 Decision tree and rpart 

In statistics, the decision tree is a decision support tool that uses a tree-like graph 
or model of decisions and their possible consequences. Decision trees are widely used in 
data analysis to help identify strategies. 

In decision analysis, a decision tree is used as an analytical decision support tool, 
where the expected values of competing alternatives are calculated. 

In decision tree, each internal node represents a test on an attribute, each branch 
represents the outcome of the test, and each leaf node represents a class label. The paths 
from root to leaf represents classification rules. [9]  

A decision tree usually comprises three types of nodes: 

1. Decision nodes – represented by squares 
2. Chance nodes – represented by circles 
3. End nodes – represented by triangles 

A decision tree model should be a best-choice model if no recall is present under 
incomplete knowledge.  
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I chose R programming, which is an open source software environment for 

statistical computing. As the most widely used computing software among statisticians 
and data miners for data analysis [10][11] , it provides one or more decision tree algorithms 
with classification and regression tree package, for example rpart. 

To understand better decision tree algorithms and how to properly apply rpart 
package in R to identify strategies, I reviewed a lot of papers and articles. Below are two 
good examples with experiments described.  

David M. Magerman had introduced several decision tree models for parsing in 
statistics in 1995. [12] This initiative is an effective one that I explored through article. It 
has provided me, through study of his experiments, with many excellent research ideas. 
My understanding of how to achieve the greatest possible precision accuracy has 
improved correspondingly.  

In this paper, Magerman describes SPATTER, a statistical parser based on 
decision tree learning techniques. SPATTER constructs a complete parse for every 
sentence. It achieves accuracy rates far better than any parser described in earlier 
published research. Syntactic natural language parsers, in contrast, are usually 
inadequate for processing highly ambiguous and large vocabulary text. Magerman had 
executed effective experiments on the problems of syntactic natural language parsers. 
His work is based on three premises: 

1. Grammars are too complex and detailed to develop manually for most 
interesting domains. 

2. Parsing models must rely heavily on lexical and contextual 
information to analyze sentence accurately. 

3. Existing n-gram modeling techniques are inadequate for parsing 
models. 
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Magerman performed several experiments comparing SPATTER with many other 

parsers. SPATTER achieved the best results with 86% precision, 86% recall, and 1.3 
crossing brackets per sentence for sentences of 40 words or fewer, and 91% precision, 90 
recall, and 0.5 crossing brackets for sentences between 10 and 20 words in length. 

Magerman’s work addresses the problem of automatically discovering the 
disambiguation criteria for all the decisions made during the parsing process, given the 
set of possible features which can act as disambiguators. All decisions are pursued non-
deterministically according to the probability of each choice. These probabilities are 
estimated using statistical decision tree models. The probability of a complete parse tree 
(T) of a sentence (S) is the product of each decision ( id ) conditioned on all previous 
decisions: 

1 2( | ) ( | )
i

i i i i
d T

P T S P d d d d S 
   

 Each decision sequence constructs a unique parse. By combining a stack decoder 
search, it is possible to identify the highest probability parse for any sentence, using a 
reasonable amount of memory and time. 

  Magerman began to describe the decision tree modeling process by showing that 
decision tree models are equivalent to interpolated n-gram models. He then described the 
training and parsing procedures used in SPATTER. Finally, he presented results of 
experiments, comparing SPATTER with a grammarian’s rule-based statistical parser, 
along with more recent results. 

 In the decision tree modeling section of the research, he posed two questions: 

1. What is the word being tagged? 
2. What is the tag of the previous word? 
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For each question, he received two answers. The decision tree could then assign 

the tag f=determiner with probability. If not, decision tree might, at that point, ask a 
successor question. 

With a decision tree, each question asked the tree is represented by a tree node. 
The possible answers to this question are associated with branches from the node. Each 
node defines a probability distribution on the space of possible decisions. A node at 
where the decision tree stops asking questions is a leaf node. The leaf nodes represent the 
unique states in the decision-making problem which lead to the same leaf node have all 
the same probability distribution for the decision. See Figure 2.1. 

 

 
Figure 2.1: A sample of basic decision tree structure 

 

Under certain definition of n-gram model, an n-gram model can be represented by 
a decision tree model with n-1 questions. For instance, the part-of-speech tagging model 

1 2( | )i i i iP t w t t   can be interpreted as a 4-gram model, where 1H  is the variable denoting 
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the word being tagged, 2H  is the variable denoting the tag of previous word, and 3H  is 
the variable denoting the tag of the word two words back. An interpolated n-gram model 
can represent this model type.  

Once the model parameterization has been defined, the next stage is model 
estimation. The standard approach to model estimation is a two-step process. The first 
step is to count the number of occurrences of each n-gram from a training corpus. This 
process determines the empirical distribution: 

  1 2 1
1 2 1

1 2 1
( | ) n

n
n

Count h h h fP f h h h Count h h h



 



 

 The second step is the smoothing of the empirical distribution using a separate 
corpus. This step improves the empirical distribution by finding statistically unreliable 
parameter estimates, then adjusting them based on more reliable information. For 
example, a model 1 2 3( | )P f h h h  can be interpolated as follows: 

 
 
 
 
 
 
 

1 2 3 1 1 2 3 1 2 3

2 1 2 3 1 2

3 1 2 3 1 3

4 1 2 3 2 3

5 1 2 3 1

6 1 2 3 2

7 1 2 3 3

( | ) ( | )
( | )
( | )
( | )
( | )
( | )
( | )

P f h h h h h h P f h h h
h h h P f h h
h h h P f h h
h h h P f h h
h h h P f h
h h h P f h
h h h P f h



















 

By using leaf nodes of k, a decision tree can be defined as an interpolated n-gram 
model where the i  function is defined as: 
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  1 2
1 2

1
0

m
m

k k k
i k k k

if h h h is a leafh h h otherwise  


  

Comparing with the general decision tree algorithms, Magerman introduced his 
SPATTER parsing algorithm. The algorithm is based on interpreting parsing as a 
statistical pattern-recognition process. In SPATTER, a parse tree in encoded in terms of 
four elementary components: words, tags, labels and extensions. Each component has a 
fixed vocabulary. The word can take on any value of any word; the tag any value in the 
part-of-speech tag set; the label any value in non-terminal set; and the extension any of 
the following five values: (1) the first child, (2) the last child, (3) neither the first nor the 
last child, (4) an unary child, and (5) the root of the tree. 

Furthermore, the training algorithm is divided into two sets: approximately 90% 
for tree growing and 10% for tree smoothing. For each parsed sentence in the tree 
growing corpus, the correct stat sequence is traversed. The parsing procedure is a search 
for the highest probability parse tree. SPATTER’s search procedure uses a two-phase 
approach to identify the highest probability parse of a sentence. Experimentally, the 
search algorithm guarantees the highest probability parse is found for over 96% of the 
sentences parsed. Comparing with IBM Computer Manuals, [13]  the IBM parser achieved 
a 0-crossing-brackets score of 69%, and by using the same test set, SPATTER scored 
76%. Also, SPATTER showed advantages in comparison with another algorithm, Wall 
Street Journal. 

The conclusion that Magerman reached was clear: if a particular piece of 
information is necessary for solving a disambiguation problem, it must be made available 
to the disambiguation mechanism. The SPATTER parser illustrates how large amounts of 
contextual information can be incorporated into a statistical model for parsing by 
applying decision-tree learning algorithms to a large annotated corpus.  

Through Magerman’s work, I determined the structure of decision tree and how to 
design a decision tree model. I also learned how to establish a prototype experiment for 
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my study, and how to compare results of decision tree with other statistic models. 
Afterwards, I would need to apply R programming to the decision tree algorithm. The 
package that I chose was rpart. 

To learn to design and write an R program with rpart package I used the paper of 
“An Introduction to Recursive Partitioning Using the RPART Routines,” written by Terry 
M. Therneau and Elizabeth J. Atkinson, and published in 1997. [14]  

In the paper, the authors described whole processing in detail, including the 
concepts of building the tree, pruning the tree, missing data, further option, regression, 
Poisson regression, and plotting options through test cases. After experiments, Therneau 
and Atkinson achieved the final model to be subtree with the lowest estimate of risk. At 
each step, the authors demonstrated how to apply rpart package in R.  

Using rpart function in R to make initial model, the first argument of the function 
is a model formula, with the tilde (~) standing for “is modeled as.” The print function 
gives an abbreviated output, as for other S models. The plot and text command plot the 
tree. The plot is then labelled. 

 For example, the variables in the dataset are 
 pgtime  time to progression, or last follow-up free of progression 

pgstat   status at last follow-up (1=progressed, 0=censored) 
age   age at diagnosis 
eet   early endocrine therapy (1=no, 0=yes) 
ploidy   diploid/tetraploid/aneuploid DNA pattern 
g2   % of cells in G2 phase 
grade   tumor grade (1-4) 
gleason  Gleason grade (3-10) 

And the example of R program is shown in Figure 2.2. 
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> progstat <- factor(stagec$pgstat, levels=0:1, labels=c("No", "Prog")) 
> cfit <- rpart(progstat ∼ age + eet + g2 + grade + gleason + ploidy,  data=stagec, method=’class’) > print(cfit) node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 146 54 No ( 0.6301 0.3699 )     2) grade<2.5 61 9 No ( 0.8525 0.1475 ) *     3) grade>2.5 85 40 Prog ( 0.4706 0.5294 )         6) g2<13.2 40 17 No ( 0.5750 0.4250 )           12) ploidy:diploid,tetraploid 31 11 No ( 0.6452 0.3548 ) 24) g2>11.845 7 1 No ( 0.8571 0.1429 ) * 25) g2<11.845 24 10 No ( 0.5833 0.4167 )     50) g2<11.005 17 5 No ( 0.7059 0.2941 ) *     51) g2>11.005 7 2 Prog ( 0.2857 0.7143 ) *         13) ploidy:aneuploid 9 3 Prog ( 0.3333 0.6667 ) *     7) g2>13.2 45 17 Prog ( 0.3778 0.6222 )         14) g2>17.91 22 8 No ( 0.6364 0.3636 ) 28) age>62.5 15 4 No ( 0.7333 0.2667 ) * 29) age<62.5 7 3 Prog ( 0.4286 0.5714 ) *         15) g2<17.91 23 3 Prog ( 0.1304 0.8696 ) * > plot(cfit) > text(cfit) 

Figure 2.2: Example of a simple R program 

 

 Grades 1 and 2 are placed on the left, grades 3 and 4 are placed on the right. The 
tree is arranged so that the branches with the largest “average class” go to right. 

 This program provided an effective means through which to start written the 
initial R program and to collect initial results. I performed both tasks. I then reviewed the 
method of using rpart package in R for prune tree, as shown in Figure 2.3. 
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Figure 2.3: Optimally-pruned tree for the stochastic digit recognition data 

A sample of size 200 matrix was accordingly generated and the procedure applied using 
the Gini index to build the tree. [15]  Another example of the S-plus code to compute the 
simulated data and the fit are shown in Figure 2.4. 
> n <- 200 > y <- rep(0:9, length=200) > temp <- c(1,1,1,0,1,1,1, 0,0,1,0,0,1,0, 1,0,1,1,1,0,1, 1,0,1,1,0,1,1, 0,1,1,1,0,1,0, 1,1,0,1,0,1,1, 0,1,0,1,1,1,1, 1,0,1,0,0,1,0, 1,1,1,1,1,1,1, 1,1,1,1,0,1,0) > lights <- matrix(temp, 10, 7, byrow=T) # The true light pattern 0-9 > temp1 <- matrix(rbinom(n*7, 1, .9), n, 7) # Noisy lights > temp1 <- ifelse(lights[y+1, ]==1, temp1, 1-temp1) > temp2 <- matrix(rbinom(n*17, 1, .5), n, 17) #Random lights > x <- cbind(temp1, temp2) 

Figure 2.4: Example of the S-plus code 

The particular dataset of this example can be replicated by setting.Random.seed to 
c(21, 14, 49, 32, 43, 1, 32, 22, 36, 23, 28, 3) before the call to rbinom. The data then fit 
the model shown in Figure 2.5. 
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> temp3 <- rpart.control(xval=10, minbucket=2, minsplit=4, cp=0) 
> dfit <- rpart(y ∼ x, method=’class’, control=temp3) > printcp(dfit) Classification tree: 
rpart(formula = y ∼ x, method = "class", control = temp3) Variables actually used in tree construction: [1] x.1 x.10 x.12 x.13 x.15 x.19 x.2 x.20 x.22 x.3 x.4 x.5 x.6 x.7 x.8 Root node error: 180/200 = 0.9 CP  nsplit  rel error   xerror    xstd 1 0.1055556 0 1.00000 1.09444 0.0095501 2 0.0888889 2 0.79444 1.01667 0.0219110 3 0.0777778 3 0.70556 0.90556 0.0305075 4 0.0666667 5 0.55556 0.75000 0.0367990 5 0.0555556 8 0.36111 0.56111 0.0392817 6 0.0166667 9 0.30556 0.36111 0.0367990 7 0.0111111 11 0.27222 0.37778 0.0372181 8 0.0083333 12 0.26111 0.36111 0.0367990 9 0.0055556 16 0.22778 0.35556 0.0366498 10 0.0027778 27 0.16667 0.34444 0.0363369 11 0.0013889 31 0.15556 0.36667 0.0369434 12 0.0000000 35 0.15000 0.36667 0.0369434 > fit9 <- prune(dfit, cp=.02) > plot(fit9, branch=.3, compress=T) > text(fit9) 

Figure 2.5: Example of replicated dataset by setting.Random.seed 

 Examining Figure 2.5, we can see the best tree has 10 terminal nodes based on 
cross validation. The largest tree, with 35 terminal nodes, classifies correctly 85% of the 
observations.  

The best practice had yielded excellent examples for the writing of my R 
programming with rpart package. By setting up my experiments using R programming 
with rpart, I built my linear models and datasets successfully. I was then able to complete 
the classification step and thus attain my initial results. 

 

2.4 Support vector machines (SVMs) 

In additional to rpart, SVMs (support vector machines) are widely used in 
classification and regression analysis. SVMs can efficiently perform a non-linear 
classification using kernel trick, implicitly mapping their respective inputs into high-
dimensional feature spaces. SVMs are supervised learning models with associated 
learning algorithms that can both analyze data and recognize patterns. Once given a set of 
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training examples, each marked for belonging to one of two categories, an SVM training 
algorithm builds a model that assigns new examples into one category or the other, 
making this algorithm a non-probabilistic binary linear classifier. An SVM model is a 
representation of the examples as points in space, mapped so that the examples of the 
separate categories are divided by a clear gap that is as wide as possible. New examples 
are then plotted into that same space, and predicted as belonging to a category based on 
which side of the gap they fall. [16]  

 

 
Figure 2.6: Maximum-margin hyperplane and margins for an SVM trained with samples 

from two classes. Samples on the margin are called the support vectors. 

For linear models, both rpart and SVMs are effective tools to perform 
classification experiments. Furthermore, I can also use SVMs to explore non-linear 
classification results. After I understood the SVM concept and theory I used, as a good 
guidance and instruction, Support Vector Machines: The Interface to Libsvm in Package 
e1071 by David Meyer, [17]  a guide to learning SVMs in R programming. 
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The package e1071 offers an interface to libsvm featuring [18]  
 • C- and ν-classification 

• one-class-classification (novelty detection) 
• ǫ- and ν-regression 

and includes 
• linear, polynomial, radial basis function, and sigmoidal kernels 
• formula interface 
• k-fold cross validation 

 The R interface to libsvm in package e1071, svm(), was designed to be as 
intuitive as possible. The engine is programmed to be intelligent in mode selection. It 
does so using the dependent variable’s type (y): if y is a factor, the engine switches 
accordingly to classification mode. Otherwise, it runs as a regression machine: if y is 
omitted, the engine assumes a novelty detection task. 

 Magerman provides two examples of the practical use of svm(), along with 
respective comparisons to classification and regression trees as implemented in rpart(). 
Through the examples, the researchers cited by Magerman used the glass data from UCI 
Repository of Machine Learning Databases. [19]  The task is to predict the type of a glass 
on basis of its chemical analysis. 

 Classification 

 The researcher started the experiment through splitting the data into a training set 
and test set. 
> library(e1071) > library(rpart) > data(Glass, package="mlbench") > ## split data into a train and test set > index <- 1:nrow(Glass) > testindex <- sample(index, trunc(length(index)/3)) > testset <- Glass[testindex,] > trainset <- Glass[-testindex,] 

Figure 2.7: Sample of rpart(e1071) in R 
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Both for the SVM and rpart, fit the model was fit and the researchers tried to 

predict the test set values: 
> ## svm > svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1) > svm.pred <- predict(svm.model, testset[,-10]) > ## rpart > rpart.model <- rpart(Type ~ ., data = trainset) > rpart.pred <- predict(rpart.model, testset[,-10], type = "class") 

Figure 2.8: Sample of svm() and rpart() in R 

 

A cross-tabulation of the true versus the predicted values yielded the following 
result: 
> ## compute svm confusion matrix > table(pred = svm.pred, true = testset[,10])  true pred  1  2  3  5  6  7 1  16  4  1  0  0  0 2  8  20  1  4  3  2 3  2  1  2  0  0  0 5  0  0 0 1 0  0 6  0  0  0  0  1  0 7  0  0  0  0  0  5  > ## compute rpart confusion matrix > table(pred = rpart.pred, true = testset[,10])  true pred  1  2  3  5  6  7 1  17  5  0  0  0  0 2  7  17  1  0  2  1 3  2  1  3  0  0  0 5  0  2  0  5  2  0 6  0  0  0  0  0  0 7  0  0  0  0  0  6 

Figure 2.9: Sample results of svm() and rpart() 

 
 method Min. 1st Qu. Median Mean 3rd Qu. Max. 
Accuracy svm 0.56 0.61 0.52 0.64 0.66 0.69 

rpart 0.36 0.45 0.5 0.48 0.52 0.54 
Kappa svm 0.55 0.64 0.66 0.66 0.7 0.73 

rpart 0.4 0.5 0.53 0.54 0.59 0.63 
Table 2.1: Performance of svm() and rpart() for classification (10 replications) 
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Finally, the researchers compared the performance of the two methods and 

summarized the results of 10 replications. The SVMs produced better results. 

Non-linear -Regression: 

The regression capabilities of SVMs are demonstrated on the ozone data. 

 
> library(e1071) > library(rpart) > data(Ozone, package="mlbench") > ## split data into a train and test set > index <- 1:nrow(Ozone) > testindex <- sample(index, trunc(length(index)/3)) > testset <- na.omit(Ozone[testindex,-3])  > trainset <- na.omit(Ozone[-testindex,-3]) > ## svm > svm.model <- svm(V4 ~ ., data = trainset, cost = 1000, gamma = 0.0001) > svm.pred <- predict(svm.model, testset[,-3]) > crossprod(svm.pred - testset[,3]) / length(testindex) [,1] [1,]  12.02348 > ## rpart > rpart.model <- rpart(V4 ~ ., data = trainset) > rpart.pred <- predict(rpart.model, testset[,-3]) > crossprod(rpart.pred - testset[,3]) / length(testindex) [,1] [1,]  21.03352  

Figure 2.10: Sample of svm() and rpart() in R and the results 

 
 Min. 1st Qu. Median Mean 3rd Qu. Max. 
svm 8.08 10.87 11.39 11.61 11.99 15.61 
rpart 14.28 17.41 19.68 20.59 21.11 30.22 

Table 2.2: Performance of svm() and rpart() for regression (Mean Squared Error, 10 
replications) 

 Comparing the two methods by the mean squared error, svm() performs far better 
than does rpart(). 

 The researchers conducted further experiments (kernel, linear, polynomial, radial 
and sigmoid), each with new respective parameters and conditions. It was concluded that, 
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though SVMs have become a popular technique in flexible modeling, certain drawbacks 
still remain: SVMs scale rather badly with the data size because of the algorithm and 
kernel transformation. In addition, the correct choice of kernel parameters is crucial for 
obtaining good results. Finally, the current implementation is optimized for the radial 
basis function kernel only, which, in my case, clearly might be suboptimal for my own 
dataset. 

 Magerman’s work provided excellent instruction and guidance through which I 
learned to perform SVMs in R programing. I successfully obtained my classification 
results with SVMs and compared them with rpart. I then decided to execute the same 
tests through another boosting technique, specifically Adaboost. 

 2.5 Boosting technique of Adaboost 

Boosting is one of the most important developments among classification 
methods. Boosting applies a classification algorithm to reweighted versions of the 
training data, upon which it takes a weighted majority vote of the sequence of classifiers 
thus produced. [20]  For the two-class problem, boosting can be viewed as an 
approximation to additive modeling on the logistic scale. [21]  

The standard description in the two-class classification setting is not complex, as 
is shown below. 

There are training data    1 1, , , ,n nx y x y  with ix  a vector valued feature and 
1iy    or 1.  

1
cM

m mF x f  is defined where each  mf x is a classifier producing 

values plus or minus 1 and mc are constants; the corresponding prediction is sign   F x . 
Adaboost trains the classifiers f_m(x) on weighted versions of the training sample, giving 
higher weight to cases currently misclassified. [21]  This process is executed for a sequence 
of weighted samples, and the final classifier is then defined to be a linear combination of 
the classifiers from each stage. 
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Adaboost is part of the ada package in R programming. It is not difficult to apply 

the package and to collect results accordingly. For a better understanding of the package, 
I reviewed in detailed those cited articles on the package that are the most cited.  

In 2001, G. Ratsch, T. Onoda and K.-R. Muller published an article to introduce 
the soft margins for Adaboost. [22]  The margin distribution of Adaboost is central to the 
understanding that Adaboost does overfit in the low-nose regime for higher noise levels. 
The authors found that Adaboost achieves a hard margin distribution that is highly 
similar to that of Support Vectors. (A hard margin is a sub-optimal strategy in the noisy 
case.) The authors proposed several regularization methods and generalizations of the 
original Adaboost algorithm to achieve a soft marge. The experiments they had 
previously performed demonstrated that the proposed regularized Adaboost-type 
algorithms were useful, and yielded competitive results for noisy data. 

First of all, Ratsch et al. analyzed the learning process of Adaboost through 
algorithm, error function, annealing process and asymptotic analysis. But, as it pertained 
more directly to my own research, I paid particular attention to the third and the fourth 
sections of the paper. These sections pertained to hard margin and overfitting, and 
improvements using a soft margin, respectively.  

In the section of hard margin and overfitting, Ratsch et al. describe why the ATA 
is not noise robust, and the reasons it exhibits suboptimal generalization ability in the 
presence of noise. In the binary classification case, they define the margin for an input-
output pair ( , )i i iz x y  as  ,iz c . The margin ( )c of a classifier is defined as the smallest 
margin of a pattern over the training set,  1,...,( ) min ,ii lc z c  . Their main result is a 
bound on the generalization error  ~ 0z DP z     depending on the VC-dimension d of the 
base hypotheses class and on the margin distribution on the training set. By given the 
equation with probability at least 1   
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       2
~ ~Z 2

log /10 log 1/z D z
d l dP z P z l    

                     

is satisfied, where 0   and l  denotes the number of patterns. It was stated that the 
reason for the success of Adaboost, compared to other ensemble learning methods, is the 
maximization of the margin. Adaboost maximizes the margin of those patterns which are 
the most difficult. By increasing the minimum margin of a few patterns, the margin of the 
rest of the other patterns is accordingly reduced. 

Through their experiments, Ratsch et al. demonstrated that, as the margin 
increases, the generalization performance becomes accordingly better on those datasets 
with almost no noise. However, the authors also observed that Adaboost overfits on noisy 
data. To discuss the generally bad performance of hard margin classifiers, they analyzed 
the top example. 

 
Figure 2.11: The problem of finding a maximum margin “hyper-plane” on reliable data 

(left), data with outlier (middle) and with a mislabeled pattern (right). The solid line shows the 
resulting decision line, whereas the dashed line marks the margin area. In the middle and on the 

left the original decision line is plotted with dots. The hard margin implies noise sensitivity, 
because only one pattern can spoil the whole estimation of the decision line 
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If more and more complexity can be generated through the combination of many 

hypotheses, the overfitting problem becomes even more distinct. Then all training 
patterns can be classified correctly. In Figure 2.11 (right) we can see that the decision 
surface is rather rough and provides only bad generalization. It is required that the 
smallest margin should be maximized. The authors then introduce several possibilities to 
mistrust parts of the data, which leads to the soft margin concept. 

As well as their experiments on hard margin, Ratsch et al. demonstrate how to use 
the soft margin idea for ATAs. First, they compare margin with influence of a pattern. 
From their experiment, all training patterns will get a margin  iz  larger than or equal 
to 1-2  after asymptotically many iterations The margin   of a classifier (instance) is 
defined as the smallest margin of a pattern over the training set. They can see the G(b) is 
minimized as   is maximized, where  

 ,iz c    for all 1, ,i l   

After many iterations, these inequalities are satisfied for   that is larger or equal 
than the margin. If   > 0, then all patterns are classified according to their possibly 
wrong labels. Any modification that improves Adaboost on noisy data, the authors 
reason, must not force all margins beyond 0. Ratsch et al. then remove unreliable patterns 
and obtain 

 ,iz c   

Finally Ratsch et al. determine that the smallest soft margin can simply be 
maximized. They define   based on the influence of a pattern on the combined 
hypotheses rh  

   
1

t
t i r r i

r
z c w z


   
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which is the average weight of a pattern computed during the ATA learning process. 
Interestingly, in the noise case a high overlap occurs between patterns with high influence 
and mislabeled patterns. As a result, the authors execute trade-offs between margin and 
influence. 

After the algorithm has been created, Ratsch et al. demonstrate how to use linear 
programming to maximize the smallest margin for a given ensemble and proposed LP-
Adaboost. [23]  This LP-Adaboost algorithm achieves a larger hard margin than does the 
original Adaboost algorithm. The authors also defined a soft margin for a pattern which is 
technically equivalent to the introduction of slack variables i , and they reached the 
algorithm REGLP -Adaboost. [22]  This modification allows that certain patterns enjoy 
smaller margins than . This modified algorithm is still related to the LP-SVM approach.
[24]  In further research, Ratsch et al. extend the REGLP -Adboost algorithm to quadratic 
programming by using SVMs. [25] [26]  This later research provides more details about the 
connection between SVMs and Adaboost. 

Through the repetition of several related experiments,The paper reaches the 
conclusion that Adaboost performs a constrained gradient descent in an error function, 
one that optimizes the margin. The authors conclude that ATAs and hard margin 
classifiers are in general noise sensitive and prone to overfit. In the experiments on noisy 
data, the proposed regularized versions of Adaboost showed a more robust behavior than 
did the original Adaboost. The authors recommended a further analysis of the relation 
between Adaboost and SVMs from the margin perspective, with a particular focus on the 
question of what good margin distributions should look like. 

That paper proved beneficial to me, as it demonstrated how to use the boosting 
technique of Adaboost in my experiments correctly, and how to understand the technique 
in comparison with the SVMs. Ratsch et al. also helped me understand the results from 
my experiments with particular clarity. 
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Chapter 3 
Data and Experimental Setup 
 

In this chapter we define our time series data and experimental setup. We describe 
the input data completely and then represent the input data by using the ARIMA (auto 
regressive integrated moving average) technique. We calculate surges in time series data 
and detect peak data points. After we collect all the detected peak data points, we 
combine them to obtain our dataset for classification. We set up experiments for 
classification and prediction by using R programming with decision tree package (rpart) 
and the support vector machines (SVMs) package. Finally, we obtain our initial results 
through experiments.  

 

3.1 Description of raw data 

We received raw data from our partner. Our partner had recorded data from time 
series events into files every day within a 6-month period. 

Total size of raw data 14GB 
Number of files 229 
Total number of instruments 356,983,971 
Date duration 6 months 
Time duration per day 6 hours 45 minutes 
Log interval 2-3 sec 
Log starting time 09:15 AM 
Log ending Time 04:00 PM 
Type of files ASCII text 

Table 3.1: Overview of raw data 
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 As shown in Table 3.1, we possessed a total 14 GB raw data which had 229 files 
with ASCII text format. The total number of instruments in these files was 356,983,971. 
These data derived from 6-month recorded log files, which between them enjoyed 2-3 
seconds interval time. The log started recording at 9:15 AM and ended at 4:00 PM. The 
total recording time duration per day was 6 hours and 45 minutes. 

File name 3_1_eq 
Size 212.64 MB 
Instruments 846,696 lines 
Fields 71 

Table 3.2: Specification of single raw data file 

 Table 3.2 was a sample of single raw data file specification. The size of the file 
was 212.64MB with 846,696 lines of instruments and 71 fields. Figure 3.3 describes the 
content sample of single raw data file, 3_1_eq. 
log_time|book_type|trading_status|volume_traded_today|last_traded_price|net_change_indicator|net_price_change_from_closing_price|last_trade_quantity|last_trade_time|average_trade_price|auction_number|auction_status|initiator_type|initiator_price|initiator_quantity|auction_price|auction_quantity|q1|p1|no1|bb1|q2|p2|no2|bb2|q3|p3|no3|bb3|q4|p4|no4|bb4|q5|p5|no5|bb5|q6|p6|no6|bb6|q7|p7|no7|bb7|q8|p8|no8|bb8|q9|p9|no9|bb9|q10|p10|no10|bb10|bb_total_buy_flag|bb_total_sell_flag|total_buy_quantity|total_sell_quantity|_reserved1|sell|buy|last_trade_less|last_trade_more|_reserved2|closing_price|open_price|high_price|low_price 2011-08-01 09:15:02|1|2|0|819||0|500|996421925|0|0|0|0|0|0|0|0|200|828|1|0|200|823|1|0|50|822|1|0|2500|821|2|0|300|820|2|0|350|836|2|0|300|846|1|0|50|858|1|0|50|860|1|0|100|869|1|0|0|0|20555.000000|2375.000000|0|0|0|0|0|0|819|0|0|0 2011-08-01 09:15:04|1|2|1000|836|+|41|100|996657304|832|0|0|0|0|0|0|0|200|828|1|0|200|823|1|0|1350|822|4|0|2500|821|2|0|1600|820|5|0|250|836|1|0|300|846|1|0|150|848|1|0|50|858|1|0|1100|859|2|0|0|0|26938.000000|7555.000000|0|0|0|0|1|0|819|832|836|832 … … 2012-01-31 15:54:37|1|2|5960484|316||0|100|1012492288|304|0|0|0|0|0|0|0|12635|316|5|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0.000000|0.000000|0|0|0|0|0|0|316|299|318|292 

Figure 3.3: Sample of single raw data file content 

In 3_1_eq, the table includes a caption line which explains the meaning of each 
column starting from “log_time” to “low_price”The data value lines start after headers 
and are each divided by “|” into columns which each match the format of head line. For 
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example, a data line in 3_1_eq starting with 2011-08-01 09:15:04 and ending with 
832|836|832 can be easily explained and shown in Table 3.3. 

log_time 2011-08-01 09:15:04 
book_type 1 
trading_status 2 
volume_traded_today 1000 
last_traded_price 836 
net_change_indicator + (it means increase) 
net_price_change_from_closing_price 41 
last_trade_quantity 100 
last_trade_time 996657304 
average_trade_price 832 
total_buy_quantity 26938.00000 
total_sell_quantity 7555.00000 
closing_price 819 
open_price 832 
high_price 836 
low_price 832 

Table 3.3: Explanation of single raw data file contents 

 

3.2 Data representation 

 The raw data files needed to be prepared by purging useless values so that 
meaningful information could thus be discovered. We then sorted these raw values by the 
divisions of time, price, and volume, upon which we formed new patterns for clustering. 
Afterwards, we created time series patterns before surges could be calculated. 

Vinod Reddy Gandra, a previous student of my thesis supervisor, had written a 
program tool using AWK and Shell-script. The function of this tool was to extract the 
required data from original input files. The required fields in each file were timestamps, 
last traded price, and trading volume.  
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Specific data ticks then emerged as part of this process. These ticks were removed 

since they did not contribute to actual trading. And certain ticks from 09:15 to 09:30 AM 
were also removed for this reason. 

By running this program, we generated new .csv files for each _eq files. The file 
format of .csv files is given by date, time, observations numbers, prices, and volumes 
traded. An output sample file of 3_1_eq.csv is shown in Figure 3.4. 
2011-08-01, 2554,819,836,828,836,838,838,849,841,840,840,840,838,841,822,840,829,828,839,839,835,839,839,840,840,840,844,840,840,840,838,839,839,838,829,835,835,834,834, … …, 2000,200,233,8,1750,500,200,9,1000,2000,455,1306,500,3000,1306,2186,695,5000,100 

Figure 3.4: Sample of represented output .csv file 

 

Vinod also wrote an R program to create the statistics of the prices in a day. For 
each line of instruments in each day, the quintiles of the prices (0, 5, 15, 50, 85, 95, 100 
percentile values) and standard deviation of the prices are calculated. Along with this 
quantities and standard deviation of the 100 tick returns divided by opening price of 100 
tick window are also calculated. After calculating the above values, the statistics of the 
prices are divided by the opening price of the day. Each .csv file generate a .stat file. 
Figure 3.5 is a sample of output file, 3_1_eq.stat. 
 2011-08-01, 3_1_eq,2554,817.489819890368,805,808,808,820,826,832,849,8.41128993679112,809,0,0,0,0.00123609394313968,0.00371241290795746,0.00732600732600733,0.0195360195360195,0.00245472070637384 … … 2012-01-31, 3_1_eq,4568,302.242338003503,292,294,295,301,311,316,318,7.07726960705159,316,0,0,0,0.00337837837837838,0.0099009900990099,0.0167224080267559,0.033112582781457,0.00542903043206755 

Figure 3.5: Sample of represented output .stat file 

 
We considered each line of instruments on a day as an object. We clustered these 

objects based on the statistics we created in the last step. After clustering we stored the 
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results in .v file and we determined the cluster membership of each object. We analyzed 
the clustering results, then created a single output file of TotalData.stat, as shown in 
Figure 3.6: 

 
 

2011-08-01, 3_1_eq,2554,0.984721742599751,0.988391513069067,0.988391513069067,1.00307059494633,1.01041013588496,1.01774967682359,1.03854504281638,0.0102891678062965,0.989614769892172,0,0,0,0.00123609394313968,0.00371241290795746,0.00732600732600733,0.0195360195360195,0.00245472070637384 … … 2012-01-31, Z_2_eq,3849,0.986685447684433,0.990257518894875,0.991051312497196,0.996210970912279,1.01367443016333,1.01724650137377,1.0339161670225,0.0097481569022516,1.0339161670225,0,0,0.000400064025610244,0.00199600798403194,0.0054979581048326,0.00785,0.0146418678274634,0.00278037528675298 
 Figure 3.6: Sample of after-clustered .stat file 

 
The final step before proceeding was to create time series patterns. Another 

previous student, Shuhbangi Aggarwal, wrote a Python program to divide the .stat file 
into time series patterns. We create *patterns files. For example, 15Patterns meant 
patterns were divided by intervals of 15 seconds. The sample output file of 
3_1_eq_15Pattern is shown as Figure 3.7: 

 
 

"Date"|"open price"|"avgp0"|"avgp1"|"avgp2"|"avgp3"|"avgp4"|"avgp5"|"avgp6"|"avgp7" |"avgp8"|"avgp9"|"avgp10"|"avgp11"|"avgp12"|"avgp13"|"avgp14"|"avgp15"| … … "vt0"|"vt1"|"vt2"|"vt3"|"vt4"|"vt5"|"vt6"|"vt7"|"vt8"|"vt9"|"vt10"|"vt11"|"vt12"|"vt13"|"vt14"|"vt15"| … … "2011-08-01" |835|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|0.99880239521|0.998802 39521|0.99880239521|0.99880239521|0.99880239521|0.997604790419|0.997604790419|0.997604790419|0.997604790419|0.997604790419| … …  |11900|40127|7437|31937|15315|7004|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|5955|1306|500|0|0|0|0|0|0|0|0|0|3000|6000|0|0|0|0|0|0|0|695|0|0|5000|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|100|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0 
Figure 3.7: Sample of time series patterns file 

 
 



34 
3.3 Surges calculation (peaks detection) 

We segmented patterns by initial interval time tick (t), which was a small time 
interval, such as 15 seconds. 

 
 Figure 3.8: Explanation of pattern specifications. ଴ܶ is a look back value. ଵܶ is a starting value. 

ଵܶ to ହܶ is a look up range. ଴ܶ to ହܶ is a window (k) 

 We examined the starting value ଵܶ by checking the look up range. If the pattern 
increases, we obtained the first highest value before it decreases. To calculate the 
percentage of change, we started with the highest value, subtracted the starting value, 
then divided by the starting value. If this result was greater than a customized threshold 
value 0.01 or 1% (݈), we called this high value a peak (surge) value, and this pattern a 
peak pattern.  

 For example, in Figure 3.8, the starting value ( ଵܶ) is 8, and the look up range is 
from ଵܶ to ହܶ . Before pattern shifts down we can find the highest value is 6 ( ଷܶ). We then 
calculate the surge: 
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 య்ି భ்
భ்  = ଺ି଼

଼  = - 0.25   <  0.1           Peak Detection = False 

So ଷܶ is a non-peak value. The pattern proceeding from ଵܶ to ହܶ is thus not a peak 
pattern. 

 
Figure 3.9: Example of a peak value found in pattern 

In Figure 3.9, we move calculations onto the pattern which starts at ଶܶ and moves 
to ଺ܶ. In this pattern, the starting value ( ଶܶ) is 5 and the highest value is 9 ( ଺ܶ). Then the 
surge is: 

ల்ି మ்
మ்  = ଽିହ

ହ  = 0.8   >  0.1                 Peak Detection = True 

 

଺ܶ is thus a peak value. The pattern that starts at ଶܶ and moves to ଺ܶ is a peak 
pattern. 
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Figure 3.10: Example of peak value and non-peak values in pattern 

 

If we look at the pattern in Figure 3.10, which starts at ଷܶ and moves ଻ܶ, we note 
that, though both of ଺ܶ and ଻ܶ are highest values, only ଺ܶ is the peak value, with ଻ܶ a 
non-peak value. Owing to our algorithm, we count only the first highest value as a peak 
value. But the pattern which moves from ଷܶ to ଻ܶ is still a peak pattern because it has a 
peak value ଺ܶ. 

We can provide several examples of patterns through which can show us how to 
identify a pattern if it is a peak pattern. 
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Figure 3.11: Non-peak pattern exmaple A 

 In Figure 3.11, the overall pattern continually shifts down and peak value is not 
detected in this particular pattern. 

 
Figure 3.12: Non-peak pattern example B 
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 In Figure 3.12, the highest value is ଷܶ.   

 య்ି భ்
భ்  = ହିହ

ହ  =  0   <  0.1           Peak Detection = False 

So ଶܶ is a non-peak value. The pattern is not a peak pattern. 

 
Figure 3.13: Peak pattern example A 

 

In Figure 3.13, the highest value is ସܶ.  

 ర்ି భ்
భ்  = ଽିଵ

ଵ  =  8   >  0.1           Peak Detection = True 

So ସܶ is a peak value. The pattern is a peak pattern. 
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Figure 3.14: Peak patern example B 

 

In Figure 3.14, the highest values are ଷܶ and ହܶ. ଷܶ is the first highest value. 

 య்ି భ்
భ்  = ଽି଼

଼  =  0.125   >  0.1           Peak Detection = True 

So ଷܶ is a peak value, but ହܶ is not a peak value. The pattern is a peak pattern.  

We repeat the peak calculations until we determine all the peak patterns present. We 
then catalog all the patterns which do not have peak values to level ݈଴, and we give 0 to 
this level ݈଴. We name level ݈଴ as threshold value. Similarly, we set ݈ଵ=1 if surge is (1%-
2%), ݈ଶ=2 (2%-3%) … ݈௡=n. 

We created a new dataset with all peak patterns by printing pattern name, date, time, 
value strings at look back range, and threshold value. We also created another dataset, 
this one containing all non-peak patterns. We then used a combination of these patterns, 
both in classification and for predicting future surges. 
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To validate this surge calculation, I wrote a Python program, specifically 

PeakDetection.py. The program could calculate the surges and pick up peaks from the 
15secPettern files. It could then print output results into a csv file, ToClassifyYES.csv, 
with peak pattern names, date, time, value strings and threshold value (݈). Figure 3.15 is a 
sample of the output file ToClassifyYES.csv. 
“3_1_eq”,”2011-09-09”, 11,0,0,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.0,1.0,1.020408163,1 "3_1_eq","2011-09-09", 12,24,15,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.17449664382,1 … … "Z_2_eq","2012-01-25", 14,51,0,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.00875364735,1.00875364735,1.00875364735,1.00875364735,1.03305785187,1 

Figure 3.15: Sample of output file with all peak patterns 

The PeakDetection.py also outputted non-peak patterns into another .csv file, 
ToClassifyNO.csv, with non-peak pattern names, data, time, value strings, and threshold 
value. A sample of output file, ToClassifyNO.csv, is shown in Figure 3.16. As is 
indicated, the results were similar.  
"3_1_eq","2011-08-01", 15,45,15,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.0,0 "3_1_eq","2011-08-02", 15,45,15,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.0,0 … … "Z_2_eq","2012-01-31", 15,45,15,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,0.0,0 

Figure 3.16: Sample of output file with all non-peak patterns 
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3.4 Dataset combination 

We had in total 1,707 peak patterns and 885,743 non-peak patterns. Finally we 
prepared a dataset (ToClassifyFinal, csv formatted) by combining peak patterns 
(ToClassifyYES.csv) and non-peak patterns (ToClassifyNO.csv) for classification and 
prediction. In our initial experiment, we combined 1,707 peak patterns and 1,707 non-
peak patterns, all of which were randomly picked from ToClassifyNO.csv to our test and 
training dataset. The total numbers of values in dataset is 3,414. In later experiments, we 
repeated this step, generating another 10 datasets by randomly picking 1,707 non-peak 
patterns from ToClassifyNO.csv (ToClassifyFinal_01.csv, ToclassifyFinal_02.csv, … , 
ToClassifyFinal_10.csv). We compared results from different combinations. Table 3.4 is 
an explanation of the final dataset. 

 
Dataset file name ToClassifyFinal 
Size 1.1 MB 
Fields 27 
Field #1 Pattern name 
Field #2 Date 
Field #3 - #5 Time 
Field #6 - #25 Look back value 

strings 
Field #26 Peak Value 
Field #27 Threshold value 
Instruments 3414 lines 
Peak patterns 1707 lines 
Non-Peak patterns 1707 lines 
Peak/Non-Peak combination 50%, 50% 

Table 3.4: Specification explanation of final dataset, ToClassifyFinal 
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A sample of final dataset, ToClassifyFinal, is shown in Figure 3.17. 

3_1_eq","2011-09-09", 11,0,0,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.0,1.0,1.020408163,1 "3_1_eq","2011-09-09", 12,24,15,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.01360544218,1.17449664382,1 … … "Z_2_eq","2012-01-25", 14,51,0,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.00875364735,1.00875364735,1.00875364735,1.00875364735,1.03305785187,1 3_1_eq","2011-08-01", 15,45,15,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.979640718563,0.0,0 "3_1_eq","2011-08-02", 15,45,15,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.977584059776,0.0,0 "Z_2_eq","2012-01-31", 15,45,15,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,1.00837654567,0.0,0 
Figure 3.17: Sample of final dataset content  

 

3.5 Experimental setup for classification and prediction 

In our initial experiment, we used binary classification and decision tree for 
prediction. There are only two classes in binary classification. We set ݈଴ to class 0 (c0), 
݈ଵ … ݈௡ to class 1 (c1). We determined 1,707 peak patterns in class 1 and 1,707 non-peak 
patterns in class 0. 

Through the R programming language we established our classifier program using 
decision tree model (rpart). Rpart, described earlier, is a linear classification method in 
data mining for multivariable analysis. It picks patterns randomly from dataset, classifies 
them, then makes predictions.  
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By means of my own R program, we loaded ToClassifyFinal into 

rpartBinaryClassify.R. Only “look back value strings” (Field #6 - #25) and “Threshold 
value” (Field #27) are selected for calculation. A sample of rpartBinaryClassify.R, is 
shown in Figure3.18. 
require(rpart) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal", ignore.case=TRUE) … … dat <- subset(classfile, select=c(6:27)) fit <-rpart(V27~V6+V7+V8+V9+V10+V11+V12+V13+V14+V15+V16+V17+V18+V19+V20+V21+V22+V23+V24+V25,data=dat,method="class",control=rpart.control(minsplit=1)) summary(fit) pred=predict(fit,newdata=dat,type="class") ptable=table(dat$V27,pred) ptable … … 

Figure 3.18: Sample of rpartBinaryClassify.R, 

We loaded all others datasets and repeated our experiments. 
filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_01", ignore.case=TRUE) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_02", ignore.case=TRUE) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_03", ignore.case=TRUE) … … filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_10", ignore.case=TRUE) 

Figure 3.19: Repeat experiments with all final datasets in R program using rpart 

Besides rpart experiments, I also experimented by switching to SVMs (support 
vector machines) package in R with linear model, polynomial model, radial model and 
sigmoid model. A sample of svmClassify.R is shown in Figure 3.20. 
linearModel <- svm(datatrain,classtrain,type='C',kernel='linear') linearPred <- predict(linearModel,datatrain) table(t(classtrain),linearPred) polynomialModel2 <-svm(datatrain,classtrain,type='C',kernel='polynomial',degree='2') polynomialPred2 <- predict(polynomialModel2,datatrain) table(t(classtrain),polynomialPred2) radialModel <- svm(datatrain,classtrain,type='C',kernel='radial') radialPred <- predict(radialModel,datatrain) table(t(classtrain),radialPred) sigmoidModel <- svm(datatrain,classtrain,type='C',kernel='sigmoid') sigmoidPred <- predict(sigmoidModel,datatrain) table(t(classtrain),sigmoidPred) 

Figure 3.20: Sample of svmClassify.R 
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We created a dataset by combining more peak patterns and non-peak patterns. 

Then we converted the result into a unique binary dataset. In this dataset, we set the 
threshold value as greater than 0. We then obtained 18,807 peak patterns in class 1 and 
18,807 non-peak patterns in class 0. The total size of this unique binary dataset is 
11,993,024 bytes (11.44MB). We used this dataset to repeat our experiments and analyze 
the different results. We explain this dataset in Table 3.5: 

 
Dataset file name uniqTotal-20-120-FinalBinary 
Size 11.44 MB 
Fields 27 
Field #1 Pattern name 
Field #2 Date 
Field #3 - #5 Time 
Field #6 - #25 Look back value strings 
Field #26 Peak Value 
Field #27 Threshold value 
Instruments 37614 lines 
Peak patterns 18807 lines 
Non-Peak patterns 18807  lines 
Peak/Non-Peak combination 50%, 50% 

Table 3.5: Specification explanation of final dataset, uniqTotal-20-120-FinalBinary 

 

The initial experiments yielded, through different models, almost 100 sets of 
results. We also adjusted the interval time range, look back time range, duration range, 
threshold value, time and date.  

We raised interval time ticks from 15 to 30 to 60 seconds. We created 
30secPattern and 60secPattern files for repeated experiments. The original look back time 
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range was 5 minutes. We tried different range setups of 7, 10, 12 and 15 minutes, 
respectively. The duration range in our initial experiment was set to 15 minutes. We 
repeated experiments by using longer duration times of 20, 30, 45, 60, 90 and 120 
minutes, respectively.  

We were interested in changing the threshold value and thus determining different 
binary results. The default value was 1%. We changed it to 2, 3, … , 9%, respectively, 
and measured each set of findings accordingly.  

In addition to the threshold values of ݈଴ to ݈௡, we tried different combinations by 
setting different classes. For example, we combined ݈଴ and ݈ଵ to class 0 (c0), ݈ଶ … ݈௡ to 
class 1 (c1), or combined ݈଴ … ݈ହ to class 0 (c0), ݈଺ … ݈௡ to class 1 (c1). 

We expected to obtain different results from dividing time of day to morning, 
noon and afternoon. I determined the time range for morning to from 9:30 AM to 12 PM, 
time range for noon to be from 12 PM to 2 PM, and time range for afternoon to be from 
2:00 to 4:30 PM. 

Furthermore, we considered individual weekdays as separate datasets, i.e., 
Monday, Tuesday, Wednesday, Thursday, and Friday. We wanted to determine if the 
different weekdays would produce different results. 

Through these combinations, we wanted to find out the best possible results. We 
believed our doing so would encourage us to proceed, in the future, with more 
meaningful research in this area. 
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Parameters Values Numbers of 
combinations 

Interval time tick 15 seconds, 30 seconds, 6o seconds 3 
Look back time range 5 minutes, 7 minutes, 10 minutes, 12 

minutes, 15 minutes 5 

Duration range 
15 minutes, 20 minutes, 30 minutes, 
45 minutes, 60 minutes, 90 minutes, 
12 minutes 

7 
Threshold value 1%, 2%, 3%, 4%...9%+ 9 
Class combination ݈଴ - ݈ଽ More than 9 
Daytime divided 

Morning     9:30 AM - 12 PM 
Noon       12 PM - 2 PM 
Afternoon    2 PM - 4:30 PM 

3 
Individual Weekday Monday - Friday 5 
Initial experiments 100 
Total expected times 
of experiments 12,757,500 

Table 3.6: Expectation of experimental setup for future experiments 

 

 As the findings shown in Table 3.6 indicate, our experiments can be repeated as 
many as 12,757,500 times. This feature contributed to the accuracy of our findings. Also, 
we could now determine the result with the highest precision. We performed our 
experiments in a large data computing environment using a super computer system. 
Thanks to the support from ACENET, which provided a powerful super computer 
system. The super computer system names Mahone. It is a parallel cluster at Saint Mary’s 
University well suited to MPI work. The total number of nodes is 134 which has 536 
CPU cores. Each node has 64 GB RAM and 2 CPU cores. It runs on Red Hat Enterprise 
Linux. The environment and system saved a considerable amount of time during the 
experiments. 
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Chapter 4 
Modeling the Entire Day 
 

In this chapter we describe the results of our experiments for the entire datasets. 
We explain experimental design and evaluation metrics, including classification, 
precision and recall. Using these notions, we compare performance based on the results 
among different classification algorithms. We also examine the difference by adjusting 
small parameters in the experiments we had set up. We do this to determine the best 
possible precision. Furthermore, we scale the dataset size and obtain different 
performance findings as a result. We look at the improvement in accuracy, and work to 
determine the best proper dataset size for our research. In the last section of this chapter, 
we describe the results of Adaboost to our existing experiments for advanced 
comparison. Readers are referred to  27, 28, 29, 30  31and  for more information about these 
basic notions and techniques. 

In general, clustering tries to group a set of objects and, through this process, 
determine whether a relationship between the objects exists.  27  28  Classification tries to 
model which predefined class a new object belongs to. In the context of machine 
learning, classification is supervised learning and clustering is unsupervised learning.  29  

In classification techniques, precision (also called positive predictive value) is the 
fraction of retrieved instances that are relevant to the user’s search, whereas recall (also 
known as sensitivity) is the fraction of relevant instances that are retrieved. Both precision 
and recall are therefore based on an understanding and measure of relevance.  30  

In simple terms, high recall means that an algorithm returned most of the results 
relevant to the user, whereas high precision means that an algorithm returned 
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substantially more results relevant to the user than irrelevant. The definitions may be 
expressed as: 

Recall = (relevant values / total values) % 

Precision = (relevant values / predicted values) % 

  The minimal accepted precision score for our research we set as 60%, with the 
aim for more robust results as 70% precision or higher. Higher precision was our primary 
objective and higher recall was our secondary objective. 

 

4.1 Initial experiments 

4.1.1 Initial rpart experiments 

 
Classification Binary 
Module Decision Tree (rpart) 
 
Parameters Values 
Interval time tick 15 seconds 
Look back time range 5 minutes 
Duration range 15 minutes 
Threshold value >=1% (0.01) 

Table 4.1: Setup of initial rpart experiments 

 In the initial rpart experiments, we considered different threshold values as 
classes. If threshold values were greater than 1%, we classified them as class 1. If 
threshold values were less than 1%, we classified them as class 0. We thus had 2 classes 
and could then apply binary classification to initial rpart experiments. Table 4.1 shows 
the detail setup of our initial rpart experiments. We started our experiments with decision 
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tree model rpart in R programming under Linux environment. The initial result we 
obtained from Experiment 1 are provided in Table 4.2. 

 

Initial Experiment 1 using rpart 

Prediction Table 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1269 825 58 21 12 5 2 0 
Positive 438 661 77 28 7 7 2 2 

Table 4.2: Result of initial Experiment 1 using rpart 

 From Table 4.2, we have two classes of True (peak patterns) and False (non-peak 
patterns). Each of these classes contains 1,707 lines of values. 

Here, we can easily obtain prediction and relevant values. 

Prediction = 438 + 661 + 77 + 28 + 7 + 7 + 2 + 2 = 1222 

All the false values and negative values we ignored, as our method required. We 
thus obtained our relevant values: 

  Relevant values = 1222 - 438 = 784 

 Finally, we obtained the recall and precision scores of our initial experiment: 

Recall = 784 / 3414 = 22.96% 

  Precision = 784 / 1222 = 64.16% 

We repeated this experiment 10 times using the same decision tree (rpart) model. 
In the end, we achieved an average recall score of 25.01% and an average precision of 
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65.58%. The summary of these repeated experiments results is shown in Table 4.3. See 
Experiments 1-11 in Appendix A for details. 

 

 
Module Decision Tree (rpart) 
Repeat Times 10 
Average Recall 25.01% 
Average Precision 65.58% 

Table 4.3: Summary of rpart repeated experiments results 

 

4.1.2 Initial SVMs experiments 
Classification Binary 
Module SVMs (Polynomial, default, 

Linear, Radial, Sigmoid ) 
Parameters Values 
Interval time tick 15 seconds 
Look back time range 5 minutes 
Duration range 15 minutes 
Threshold value >=1% (0.01) 

Table 4.4: Setup of initial SVMs experiments 

 After initial rpart experiments, we considered using different kernels. Support 
vector machines (SVMs), as described in subchapter 2.4 of this thesis, are supervised 
learning models with associated learning algorithms that analyze data and recognize 
patterns, and are often used for classification and regression analysis.  25  

 As shown in Table 4.4, we were, at this stage of the research, still using binary 
classification mode. We used 15 seconds interval time lapses; along with 5 minutes look 
back time ranges, and 15 minutes duration range.  
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We selected different SVMs kernels with Default, Polynomial, Linear, Radial and 

Sigmoid, and then applied each kernel to our experiments. We started experiments using 
the Polynomial SVM first. We then obtained results from all remaining SVMs kernels in 
initial experiments and repeated experiments. 

 

Initial Experiment 2 using Polynomial SVM 

Prediction Table 
(Polynomial SVM) 

Class 
False True 

Count 
Negative 1694 1663 
Positive 13 44 

Table 4.5: Result of initial Experiment 2 using Polynomial SVM 

From the Table 4.5 we can easily obtain prediction and relevant values. 

Prediction = 13 + 44 = 57 

Relevant values = 44 

  Recall = 44 / 3414 = 1.29% 

  Precision = 44 / 57 = 77.19% 

 

Initial Experiment 3 using default SVM 

Prediction Table 
(Default SVM) 

Class 
False True 

Count 
Negative 862 546 
Positive 845 1161 

Table 4.6: Result of initial Experiment 3 using default SVM 
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Prediction = 845 + 1161 = 2006 

Relevant values = 1161 

  Recall = 1161 / 3414 = 34.01% 

  Precision = 1161 / 2006 = 57.88% 

Initial Experiment 4 using Linear SVM 

Prediction Table 
(Linear SVM) 

Class 
False True 

Count 
Negative 1100 963 
Positive 607 744 

Table 4.7: Result of Initial Experiment 4 using Linear SVM 

Prediction = 607 + 744 = 1351 

Relevant values = 744 

  Recall = 744 / 3414 = 21.79% 

  Precision = 744 / 1351 = 55.07% 

 

Initial Experiment 5 using Radial SVM 

Prediction Table 
(Radial SVM) 

Class 
False True 

Count 
Negative 862 546 
Positive 845 1161 

Table 4.8: Result of Initial Experiment 5 using Radial SVM 
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Prediction = 845 + 1161 = 2006 

Relevant values = 1161 

  Recall = 1161 / 3414 = 34.01% 

  Precision = 1161 / 2006 = 57.88% 

 

Initial Experiment 6 using Sigmoid SVM 

 At the Experiment 6, we tried the last listed kernel of SVMs, the Sigmoid. We 
obtained the results in Table 4.9. 

Prediction Table 
(Sigmoid SVM) 

Class 
False True 

Count 
Negative 982 729 
Positive 725 978 

Table 4.9: Result of Initial Experiment 6 using Sigmoid SVM 

Prediction = 725 + 978 = 1703 

Relevant values = 978 

  Recall = 978 / 3414 = 28.65% 

  Precision = 978 / 1703 = 57.43% 

 

4.1.3 Repeated experiments using large dataset 

 After initial experiments, we repeated our experiments by using large a dataset, 
one which contained a total 37,614 patterns with combination of 50% peak patterns and 
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50% non-peak patterns. The setup of these repeated experiments is shown in Table 4.10. 
See Experiments 12-16 in Appendix A for details. 

Classification Binary 
Module rpart, SVMs 
Peak patterns 18807 lines 
Non-Peak patterns 18807 lines 
Peak/Non-Peak combination 50%,50% 
Total patterns 37614 lines 
Threshold value >0 

Table 4.10: Setup of repeated experiments using large dataset  

We still used binary classification and applied rpart and SVMs algorithms to our 
repeated experiments. Thus we obtained provided in Table 4.11. 

Module Radial SVM Linear SVM Polynomial SVM Sigmoid SVM rpart 
Precision 59.70% 53.51% 72.71% 58.99% 65.34% 

Table 4.11: Precision from different algorithms (rpart and SVMs) using large dataset 

From Table 4.11 we see the Polynomial SVM achieved the best precision score, 
which was 72.71%, and the Linear SVM achieved the worst precision score, which was 
53.51%.  

 

4.1.4 Summary of all initial experiments 

 
Experiment  22 times 
Best Precision 77.19% (Experiment 2) 
Worst Precision 53.51% (Experiment 20 in Appendix A) 
Average Precision 63.64% 
Technique Module rpart, SVMs (Radial, Polynomial, Sigmoid) 

Table 4.12: Precision Summary of all initial experiments  
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 Table 4.12 shows that we performed 22 experiments with different experimental 
setups by using rpart and SVMs (Radial, Polynomial, and Sigmoid). We obtained an 
average precision score of 64.64%. The best precision score that we achieved was 
77.19% and the worst was 53.51%. 

 

 
Figure 4.1: Precision comparison of all 22 initial experiments 
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 From Figure 4.1, we can easily see the best precision score was 77.19%, which 
was obtained in Experiment 2. The worst precision score was 53.51% which was 
obtained in Experiment 20 in Appendix A. Though that figure fell below our target 
precision of 60%, it was still greater than 50%.  

In Experiment 2, where we obtained the best precision of 77.19%, we used 
technique module of Polynomial SVM and the dataset is made of 3,414 patterns 
including 1,707 peak patterns and 1,707 non-peak patterns. When we used bigger dataset 
which contains 37,614 patterns including 18,807 peak patterns and 18,807 non-peak 
patterns in Experiment 20 in Appendix A and repeated calculation, we also obtain a 
precision of 72.71%. These results explain that the precision from Polynomial SVM 
better than those from other algorithms whether the size of dataset is big or small. 

Experiment 20 is shown in Appendix A. Here we obtained the worst precision 
score, that of 53.51%. We used linear kernel of SVMs, and the bigger dataset, which 
contained 37,614 patterns. When, in Experiment 4, we tried the small dataset of 3,714 
patterns, the precision score was still low, specifically 55.07%. These results explain that 
the precision from linear kernel of SVMs is worse than those from other algorithms, 
regardless of whether the size of dataset is big or small. 

 Furthermore, we find that the precision scores from rpart experiments are usually 
greater than 60%. We also find that the precision scores from SVMs experiments are 
usually less than 60%, but are still greater than 50%.  

 Comparing rpart with Polynomial SVM, which are the best two algorithms from 
our experiments, the better algorithm is Polynomial SVM, which can achieve a precision 
score of 70%. 

 Besides these findings, we also find that precision scores are obtained, under the 
linear variation, by changing the size of dataset. The bigger the dataset chosen, the worse 
the precision score that is obtained. Similarly, the smaller dataset chosen, the better the 
precision score that is obtained. 
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 4.2 Adaboost algorithm in R classification 

 

We also bring a new package of R which is Adaboost (Adaptive Boosting) into 
our existing experiments and observe the improvements. 

Boosting is one of the most important developments in classification 
methodology. Adaboost is a machine learning meta-algorithm. It can be used in 
conjunction with many other types of learning algorithms to improve their performance. 
 22  We applied this algorithm to our existing experiments with different datasets. We 
obtained different precision results with better accuracy. Table 4.13 provides an overview 
of Adaboost initial experiments. 

 

Dataset Detail patterns Total Expected 
Experiments 

Initial Small 
Dataset 

1707 peak patterns 
1707 non-peak patterns 3414 patterns 10 

Initial Large 
Dataset 

18807 peak patterns 
18807 non-peak patterns 37614 patterns 10 

Table 4.13: Overview of initial experiments with Adaboost boosting 

We chose two sizes of datasets in initial Adaboost experiments. The first dataset 
was smaller relative to the second. It had 3,414 patterns in total, with 50% peak patterns 
and 50% non-peak patterns. The larger dataset had 37,614 patterns in total with 50% peak 
patterns and 50% non-peak patterns. For each of the two datasets we performed 10 kinds 
of experiment. 

I wrote an R program with Adaboost package to execute boosting to our 
experiments. Figure 4.2 is a sample of adaboost.R. 
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(R >= 2.15.0) require(rpart) require(adabag) dat <- data(sample_dataset) l <- length(dat[,1]) sub <- sample(1:l,2*l/3) dat.rpart <- rpart(Class~.,data=dat[sub, ],maxdepth=3) dat.rpart.pred <- predict(dat.rpart,newdata=dat[-sub, ],type="class") tb <-table(dat.rpart.pred,$Class[-sub]) error.rpart <- 1-(sum(diag(tb))/sum(tb)) tb error.rpart dat.adaboost <- boosting(Class ~.,data=dat[sub, ],mfinal=10, coeflearn=" Freund ",  boos=TRUE, control=rpart.control(maxdepth=3)) dat.adaboost.pred <- predict.boosting(dat.adaboost,newdata=dat[-sub, ]) dat.adaboost.pred$confusion dat.adaboost.pred$error 

Figure 4.2: Sample of R program with Adaboost package 

In Adaboost boosting, the algorithm executes rpart function first and learns from 
the training. Adaboost has been proven to converge individual weak learners to a strong 
learner,  as long as the performance of each individual learner is slightly better than 
random guessing. 

We show our initial experiments with Adaboost performance in Experiment 1 and 
Experiment 2 by using different sizes of datasets. 

 

Initial Experiment 1 with small dataset 

Prediction Table 
rpart 

Class 
Precision 

Error 0.3866432 

False True 
Count 

Negative 352 230 61.69% Positive 213 343 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 373 248 62.86% Positive 192 325 
Table 4.14: Result of initial Experiment 1 with Adaboost (small dataset) 
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 In Table 4.14, we present three sections. The top section is a prediction table with 
rpart. The second section is a prediction table displaying Adaboost benefits. The third 
section, placed at the right of table, is an error. This error is an average error. Adaboost 
uses erroevol (obeject, newdata) to calculate the error evolution of an Adaboost classifier 
for a data frame as the ensemble size grows. The object must be the output of one of the 
functions boosting. The newdata could be the same data frame used in object or a new 
one. Errorevol can be useful to see how fast boosting reduce the error of the ensemble. In 
addition, it can detect the presence of overfitting and, therefore, the convenience of 
pruning the ensemble using predict.boosting. 

From regular rpart performance, we can see a positive patterns of 556 score, and 
relevant patterns score of 343. We obtain a precision score of 61.69%.  

 With the performance of Adaboost, the number of positive patterns is 517, and the 
number of relevant patterns is 325, scores which are both less than the scores of regular 
rpart. But the precision score we obtain in Adaboost is 62.86% which is greater than that 
of regular rpart.  

These results prove that Adaboost commands the ability to improve the accuracy 
of precision in small datasets. 

Initial Experiment 2 with large dataset 

Prediction Table 
rpart 

Class 
Precision 

Error 0.3532461 

False True 
Count 

Negative 4269 2488 65.21% Positive 2011 3770 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 4425 2574 66.51% Positive 1855 3684 
Table 4.15: Result of initial Experiment 2 with Adaboost (large dataset) 
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From regular rpart, we can obtain positive patterns total of 5,781, and relevant 

patterns total of 3,770. We obtain a precision score of 65.21%.  

 With Adaboost, the number of positive patterns was 5,539, and the number of 
relevant patterns was 3,684, both of which fell at less than regular rpart. But the precision 
score we obtained was 66.51%, which was still greater score than that of regular rpart.  

These results also prove that Adaboost commands the ability to improve the 
accuracy of precision in a large dataset. 

 As a result of Experiments 1 and 2, we conclude that, when using a small dataset, 
as we did in 1, Adaboost helped us improve accuracy of precision by 1.17%. And when 
we use a large dataset, as we did in 2, Adaboost, helped us improve accuracy of precision 
by 1.30%.  

We obtained a better precision accuracy when we used a large dataset. This fact 
works to explain the influence and definition of Adaboost. Adaboost is an adaptive 
learning algorithm, and as such it is sensitive to noisy data. When the sample dataset is 
sufficiently large, the final model can be a better, more effective learner, in that the 
precision accuracy will be improved considerably.  31  

 By adjusting the size of the datasets, we can observe easily the improvement in 
precision accuracy obtained through Adaboost boosting. Figure 4.3 provides an overview 
comparison.  
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Figure 4.3: Accuracy comparison by Adaboost from different dataset size 
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Chapter 5 
Models Based on Time of Day 
 

In this chapter we use time as the distinguishing feature of time series events. In 
previous experiments using the entire twenty-four hour day, we achieved both excellent 
and encouraging precision results. Generally, time series events in different time periods 
will show different findings. We performed further experiments by dividing the periods 
in a day to three, specifically morning, noon, and afternoon. We then repeated our 
experiments for particular time periods and obtained precision results for each period. We 
determined that Adaboost can bring significant precision improvement for our 
experiments. 

5.1 Divided daytime period experiments 

 In this section, our experiments were set to a 15 seconds interval, a 5 minute look 
back time range, and a 15 minute duration range. Threshold value was set to 0.01 (1%). 
Different daytime periods were Morning (9:30 AM to noon), Noon (noon to 2:00 PM), and 
Afternoon (2 to 4:30 PM). Table 5.1 provides the details of how the experiment was set 
up. 

Parameters Values 
Interval time tick 15 seconds 
Look back time range 5 minutes 
Duration range 15 minutes 
Threshold value >=1% (0.01) 
Divided daytime period 

Morning 9:30 AM - 12 PM 
Noon 12 PM - 2 PM 
Afternoon 2 PM - 4:30 PM 

Table 5.1: Experimental setup of Divided Daytime Periods experiments 
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 First, we used a large dataset, one which contained 18,807 peak patterns. I wrote a 
Python program of DaytimeDivided.py that could divide the dataset into three small 
datasets, each with different respective daytime periods. After calculation, the morning 
dataset contained 11,277 peak patterns, the noon 4,395, and the afternoon 3,135. Figure 
5.1 provides a sample of DaytimeDivide.py. 
for row in f.readlines(): result = list(ast.literal_eval(row))     if  int(result[2]) < 12: fp = csv.writer(open('Morning', 'a'), lineterminator='\n', quoting=csv.QUOTE_NONNUMERIC)         fp.writerow(result)     else:       if int(result[2]) < 14:             fp = csv.writer(open('Noon', 'a'), lineterminator='\n',  quoting=csv.QUOTE_NONNUMERIC)              fp.writerow(result)          else:             fp = csv.writer(open('Afternoon', 'a'), lineterminator='\n',  quoting=csv.QUOTE_NONNUMERIC)              fp.writerow(result) 

Figure 5.1: Sample of a Python program to divided daytime into three time periods 

 

I also wrote Python programs, called GroupOthers.py, MorningOthers.py, 
NoonOthers.py and AfternoonOthers.py, to divide non-peak patterns into morning, noon 
and afternoon datasets, and randomly picked 11,277 non-peak morning patterns, 4,395 
non-peak noon patterns and 3,135 non-peak afternoon patterns.  

Finally I created for classification three binary datasets, specifically 
MorningFinal, NoonFinal and AfternoonFinal. For greater accuracy in my results, I 
generated another 27 additional datasets, randomly selecting non-peak patterns for 
comparison. I provide an overview of the experiment specifications in Table 5.2. The 
experimental setup was identical to those setups described immediately above. 
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Dataset Detail patterns Total Size Expected 
Experiments 

MorningFinal 
(1-10) 

11277 peak patterns 
11277 non-peak patterns 

22554 
patterns 3.2MB 40 

NoonFinal       
(1-10) 

4395 peak patterns 
4395 non-peak patterns 

8790 
patterns 1.4MB 40 

AfternoonFinal 
(1-10) 

3135 peak patterns 
3135 non-peak patterns 

6270 
patterns 0.9MB 40 

Table 5.2: Overview of Daytime Divided experiments specifications 

 We used these new datasets to repeat our experiments using rpart and SVMs 
(linear, polynomial, and radial). We compared the average precisions from 10-times runs 
for each module.  

 
5.1.1 Morning period experiments 
 
Experiment 1 using rpart 

Prediction 
Table (rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8584 3525 361 75 23 19 6 2 9 2 7 
Positive 2693 5974 943 200 76 34 7 5 1 0 8 

Table 5.3: Result of Morning Period Experiment 1 using rpart 

Prediction = 9941 

Relevant values = 7248 

  Recall = 32.14% 

  Precision = 72.91% 
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We repeated this experiment 10 times. The average precision score of rpart from 

Morning Experiments was 73.11%. (See Experiments 17-25 in Appendix A for details.) 

 

Experiment 2 using Linear SVM 

Prediction Table 
(Linear SVM) 

Class 
False True 

Count 
Negative 4722 2108 
Positive 6555 9169 

Table 5.4: Result of Morning Period Experiment 2 using Linear SVM 

  Prediction = 15724 

  Relevant values = 9169 

Recall = 40.65% 

  Precision = 58.31% 

We repeated this experiment 10 times. The average precision score of Linear 
SVM from Morning Experiments was 57.94%. (See Experiments 26-34 in Appendix A 
for details.) 

 

Experiment 3 using Polynomial SVM 

Prediction Table 
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11068 10987 
Positive 209 290 

Table 5.5: Result of Morning Period Experiment 3 using Polynomial SVM 
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  Prediction = 290 

  Relevant values = 499 

Recall = 1.29% 

  Precision = 58.12% 

We repeated this experiment 10 times and the average precision of Polynomial 
SVM from Morning Experiments was 60.60%. (See Experiments 35-43 in Appendix A 
for details.) 

 

Experiment 4 using Radial SVM 

Prediction Table 
(Radial SVM) 

Class 
False True 

Count 
Negative 6226 2452 
Positive 5051 8825 

Table 5.6: Result of Morning Period Experiment 4 using Radial SVM 

  Prediction = 13876 

  Relevant values = 8825 

Recall = 39.13% 

  Precision = 63.60% 

We repeated this experiment 10 times. The average precision score of Radial 
SVM from Morning Experiments was 63.69%. (See Experiments 44-52 in Appendix A 
for details.) 
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5.1.2 Noon period experiments 

 

Experiment 1 using rpart 

Prediction 
Table (rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3869 2986 213 66 30 17 0 1 0 
Positive 526 846 145 50 17 6 7 9 2 

Table 5.7: Result of Noon Period Experiment 1 using rpart 

Prediction = 1608  

Relevant values = 1082 

  Recall = 12.31% 

  Precision = 67.29% 

We repeated this experiment 10 times. The average precision score of rpart from 
Noon Experiments was 62.75%. (See Experiments 53-61 in Appendix A for details.) 

 

Experiment 2 using Linear SVM 

Prediction Table 
(Linear SVM) 

Class 
False True 

Count 
Negative 723 228 
Positive 3672 4167 

Table 5.8: Result of Noon Period Experiment 2 using Linear SVM 
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  Prediction = 7839 

  Relevant values = 4167 

Recall = 47.41% 

Precision = 53.16% 

We repeated this experiment 10 times. The average precision score of Linear 
SVM from Noon Experiments was 53.68%. (See Experiments 62-70 in Appendix A for 
details.) 

 

Experiment 3 using Polynomial SVM 

Prediction Table 
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4149 3863 
Positive 246 532 

Table 5.9: Result of Noon Period Experiment 3 using Polynomial SVM 

  Prediction = 778 

  Relevant values = 532 

Recall = 6.05% 

Precision = 68.38% 

We repeated this experiment 10 times. The average precision score of Polynomial 
SVM from Noon Experiments was 67.41%. (See Experiments 71-79 in Appendix A for 
details.) 
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Experiment 4 using Radial SVM 

Prediction Table 
(Radial SVM) 

Class 
False True 

Count 
Negative 2796 2059 
Positive 1599 2336 

Table 5.10: Result of Noon Period Experiment 4 using Radial SVM 

  Prediction = 3935 

  Relevant values = 2336 

Recall = 26.58% 

Precision = 59.36% 

We repeated this experiment 10 times. The average precision score of Radial 
SVM from Noon Experiments was 58.89%. (See Experiments 80-88 in Appendix A for 
details.) 

 

5.1.3 Afternoon period experiments  

 

Experiment 1 using rpart 

Prediction 
Table (rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2058 1310 113 31 11 2 0 1 1 1 2 
Positive 1077 1328 202 71 17 4 12 12 7 7 3 

Table 5.11: Result of Afternoon Period Experiment 1 using rpart 
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Prediction = 2740   

Relevant values = 1663 

Recall = 26.52% 

Precision = 60.69% 

We repeated this experiment 10 times. The average precision score of rpart from 
Afternoon Experiments was 61.03%. (See Experiments 89-97 in Appendix A for details.) 

 

Experiment 2 using Linear SVM 

Prediction Table 
(Linear SVM) 

Class 
False True 

Count 
Negative 1090 721 
Positive 2045 2414 

Table 5.12: Result of Afternoon Period Experiment 2 using Linear SVM 

  Prediction = 4459 

  Relevant values = 2414 

Recall = 38.50% 

Precision = 54.14% 

We repeated this experiment 10 times. The average precision score of Linear 
SVM from Afternoon Experiments was 54.74%. (See Experiments 98-106 in Appendix 
A for details.) 
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Experiment 3 using Polynomial SVM 

Prediction Table 
(Polynomial SVM) 

Class 
False True 

Count 
Negative 3059 2964 
Positive 76 171 

Table 5.13: Result of Afternoon Period Experiment 3 using Polynomial SVM 

  Prediction = 76 

  Relevant values = 171 

Recall = 2.73% 

Precision = 69.23% 

We repeated this experiment 10 times. The average precision score of Polynomial 
SVM from Afternoon Experiments was 71.02%. (See Experiments 107-115 in Appendix 
A for details.) 

 

Experiment 4 using Radial SVM 

Prediction Table 
(Radial SVM) 

Class 
False True 

Count 
Negative 1984 1446 
Positive 1151 1689 

Table 5.14: Result of Afternoon Period Experiment 4 using Radial SVM 

  Prediction = 1151 

  Relevant values = 1689 
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Recall = 26.94% 

Precision = 59.47% 

We repeated this experiment 10 times. The average precision score of Radial 
SVM from Afternoon Experiments was 59.28%. (See Experiments 116-124 in Appendix 
A for details.) 

We generated a comparison graphic for simple overview of average precision 
between different daytime periods. The graphic is shown in Figure 5.2. 

 
Figure 5.2: Comparison of average precision between different daytime periods 

 In Figure 5.2, we show good precision scores, ones which are greater than 60% in 
Morning time experiments, though not in the Noon and Afternoon time experiments. The 
rpart module, which achieved a precision score of 73.11%, proved the best classification 
technique algorithm. 



73 
In fact, persons usually do trading in the morning, rather than at noon or in the 

afternoon. This fact is why the Morning dataset contained more patterns, almost 3 times 
more than that of Noon and 4 times more than that of Afternoon. Also, the average 
precision score from morning period proved much better than did the other two. It would 
be a profitable idea to study the precision scores of different days in a week because 
persons usually do more trading on Monday and Friday than they do on the remaining 
weekdays. We will validate our supposition in future research. 

 We also studied Polynomial SVM. When we used this SVM kernel to predict 
future values, without exception the experiments returned good precision scores, all of 
which were greater than 60%. The scores for Afternoon time experiments were the best 
whereas the scores for Morning time experiments were the worst.  

 Comparing rpart with Polynomial SVM, we conclude Polynomial SVM proved 
the better classification technique algorithm for our experiments. We arrive at this 
conclusion because Polynomial SVM always has the best precision—greater than 60%. 

 

5.2 Adaboost improvement in divided daytime periods experiments 

 

ataset Detail patterns Total Expected 
Experiments 

MorningFinal 
(1-10) 

11277 peak patterns, 
11277 non-peak patterns 

22554 
patterns 10 

NoonFinal       
(1-10) 

4395 peak patterns, 4395 
non-peak patterns 

8790 
patterns 10 

AfternoonFinal 
(1-10) 

3135 peak patterns, 3135 
non-peak patterns 

6270 
patterns 10 

Table 5.15: Overview of Adaboost experiments in different periods 
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As part of our experiments, we observed performance from Adaboost in different 

time periods. The datasets were the same as those we used in the previous divided 
daytime period experiments with regular rpart. I applied Adaboost to datasets for 
different time periods, and observed the results for experiments run 10 times for each 
dataset. I then compared the average results from same dataset between different time 
periods. 

 

5.2.1 Morning period experiments with Adaboost 

 

Experiment 1 with Adaboost 

rpart 
Class 

Precision 

Error 0.5806065 

False True 
Count 

Negative 2904 1424 63.83% Positive 810 2374 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2695 1664 67.68% Positive 1019 2134 
Table 5.16: Result of Morning Period Experiment 1 with Adaboost  

 

From Table 5.16, we can observe 3,184 positive patterns, and 2,374 relevant 
patterns, with regular rpart. We then obtained a precision score of 63.83%.  

With Adaboost, the number of positive patterns was 3,153, and the number of 
relevant pattern is 2,134. The precision score we obtain was 67.68%, a score which was 
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greater than that of regular rpart. These results proved that Adaboost commands the 
ability to improve precision in small datasets. 

We repeated this experiment 10 times. The average precision score for Morning 
experiments, using rpart, was 71.89% and the precision of Adaboost was 71.20%. (See 
Experiments 125-133 in Appendix A for details.) Figure 5.3 provides a summary of these 
Morning experiment results. 

 

 
Figure 5.3: Summary of 10 times Morning Experiments with Adaboost 
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5.2.2 Noon period experiments with Adaboost 

 

Experiment 1 with Adaboost 

Pred Table 
rpart 

Class 
Precision 

Error 0.4419795 

False True 
Count 

Negative 1241 1081 64.14% Positive 218 390 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1253 1089 64.97% Positive 206 382 
Table 5.17: Result of Noon Period Experiment 1 with Adaboost 

From Table 5.17, we can observe 608 positive patterns, and 390 relevant patterns, 
with regular rpart. We then obtain a precision score of 64.14%.  

 With Adaboost, the number of positive patterns was 588, and the number of 
relevant patterns was 382 which were both less than regular rpart. But the precision score 
we obtained was 64.97% which was greater than that of regular rpart.  

These results proved that Adaboost has ability to improve the accuracy of 
precision in small datasets. 

We repeated this experiment by 10 times. The average precision score for Noon 
experiments, using rpart, was 62.26% and the precision score of Adaboost was 60.64%. 
(See Experiments 134-142 in Appendix A for details.) Figure 5.4 provides a summary of 
these Noon experiment results. 
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Figure 5.4: Summary of 10 times Noon Experiments with Adaboost 

 

5.2.3 Afternoon period experiments with Adaboost 

Experiment 1 with Adaboost 

Pred Table 
rpart 

Class 
Precision 

Error 0.5736842 

False True 
Count 

Negative 685 506 60.85% Positive 352 547 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 669 530 58.70% Positive 368 523 
Table 5.18: Result of Afternoon Period Experiment 1 with Adaboost 
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From Table 5.18, we can observe 899 positive patterns, and 547 relevant patterns 

with regular rpart. We then obtain a precision score of 60.85%.  

 With Adaboost, the number of positive patterns was 891, and the number of 
relevant patterns was 523, both of which were lower than regular rpart. The precision 
score we obtained was 58.70%, which was also lower than regular rpart.  

These results proved that Adaboost provides the ability to improve precision in 
small datasets. 

We repeated this experiment 10 times. The average precision score of rpart for 
Afternoon experiments was 59.63% and the precision score of Adaboost was 57.56%. 
(See Experiments 143-151 in Appendix A for details.) Figure 5.5 provides a summary of 
these Afternoon experiments results. 

 
Figure 5.5: Summary of 10 times Afternoon Experiments with Adaboost 
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Figure 5.6: Overview of all Daytime Divided Experiments with Adaboost (average) 

 

 Based in the findings shown in Figure 5.6, we can conclude that Adaboost does 
indeed improve the accuracy of precision. Where we had previously achieved the average 
precision score of 59.63% with Afternoon time experiments, Adaboost improved the 
precision score by 2.07%. Where we had previously achieved the average precision score 
of 62.26% with Noon time experiments, Adaboost improved the precision score by 
1.62%. Where we had previously achieved the average precision score of 71.89% with 
Morning experiments, Adaboost improved the precision score by 0.69%.  
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Chapter 6 
Conclusions and Future Research 
 
 Our project used a data mining technique called classification. The technique was 
used to predict unusual surges in time series. It also determined the expected duration of 
the surge. This technique can be used to extract meaningful statistics as well as other 
characteristics of time-series data.  

Classifier performance depends greatly on the characteristics of the data to be 
analyzed. To validate the quality of algorithms for our given problem, we used precision 
and recall measures as comparators between different algorithms. The minimal accepted 
precision was set to 60%, with 70% as the preferred such score, as such a result would be 
more robust.  

 

 6.1 Summary of our research 

The raw dataset was a record of time series values, one which included 
356,983,971 lines of instruments. It recorded 6 months of data in 229 files. The file size 
was 14 GB. Useless values needed to be purged from the raw dataset. This task was 
performed so that meaningful information could be determined. Subsequently, we sorted 
these raw values by time, price, and volume. We then created new patterns for clustering. 

We calculated and determined the respective surges in these patterns by setting a 
standard interval time tick. The components of the surge pattern were calculated to be 
either true or false. We prepared them for binary classification as an initial experiment. 
Training and test datasets were then built prior to classification. The dataset comprised 
3,414 lines of instruments with 27 fields. 
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We began with a binary classification because it uses only two classes for 

classification. We chose the decision tree algorithm rpart to do the binary classification. 
This was our first experiment. We used 15 seconds as interval time tick, 5 minutes as 
look back time range, 15 minutes as duration range. We also used 1% as the standard 
threshold in experimental setup. When we had successfully completed the initial 
experiment, we switched to support vector machines (SVMs) kernels to repeat the 
experiment. 

Once we had reached a precision score of 64% in our initial experiment, we then 
aimed to achieving 70%. After we used different kernels and algorithms of classification 
to optimize our experiments, we attained even better precision scores, ones which were 
greater than 70%. 

In further experiments, we divided time of day into three time periods, 
specifically morning, noon, and afternoon. We repeated our experiments to determine 
different precision scores. We also applied the Adaboost technique datasets for the 
morning dataset, an application which could provide a fixed precision with better 
accuracy. At the end of study, we had executed almost 200 experiments using different 
experiment setups and parameters.  

 

6.2 Conclusions 

We reached the following conclusions.  

1) The Polynomial SVM was the best classification technique algorithm for our 
experiment because the Polynomial SVM produced a good precision score, one which 
was greater than 60%. The Polynomial SVM also produced a meaningful recall score, 
one which was lower than 10%. Rpart proved slightly less effective relative to 
Polynomial SVM, and as such is our second choice as classification technique algorithm. 
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2) On average, Adaboost provided 2% increase in accuracy for each experiment. 

Considering the importance of accuracy in real world stock trading, we think Adaboost 
greatly improves the precision. 

3) From the experiments on designated time periods, we know the average 
precision in morning time is much better than that the other two periods, specifically 
noon time and afternoon time. In fact, people usually do trading in the morning rather 
than during noon and in the afternoon. Our finding can be explained as such. It is a 
compelling finding that we will think about for the future experiments, and consider the 
study of different weekdays as a compelling possible research project.  

4) We can obtain better precision of predictions by simply decreasing the value of 
threshold. Such a shift in threshold value cannot affect precision to any particular extent. 

5) In addition, the bigger datasets—which, significantly contain more patterns 
than do smaller datasets—usually show us lower precision scores. Those scores are 
below 60%. If we increase the interval time tick value from 15 seconds to 60 seconds, the 
resulting precision scores did not reveal a particular difference relative to each other. The 
results also suggested that, if we increase the value of the look back time range, the 
resulting precision scores would enjoy a minor rise. If we increase the duration value 
from 15 minutes to 2 hours, we would obtain high precision scores, but we cannot obtain 
as many prediction ranges as we would like. So our findings in this regard may not hold 
particular usefulness. 

 

6.3 Recommendation and future study 

 Based on our findings, we recommend Polynomial kernel of SVMs in R, or rpart 
with Adaboost, as the best algorithm of classification. It can provide both high precision 
and  acceptable recall. Both precision and recall were stable in many repeated 
experiments.  
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Furthermore, the adjustment of the values of interval time tick, look back range 

and duration, depends only on the particular purpose of the user. If the user requires high 
precision without particular times of prediction, that person could increase these values to 
large volume. Otherwise, we would recommend, based on our findings, that the user keep 
the values as small as possible, the result of which would provide a sufficient quantity of 
predictions with acceptable precision. That precision would be greater than 60% and as 
high as 70%. 

In the future study, we will examine the performance of different weekdays. 
Comparing results from Monday, Tuesday, Wednesday, Thursday and Friday, we will 
determine the best precision for each particular day in hour, minutes, and seconds. 
Currently, we are trying a limited number of algorithms of SVMs, decision tree models, 
and other classification tools. Our next goal is to obtain as high a precision score as 80%. 
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Appendix A 
Complete Set of Experimental Results 
 
Please be noticed that the experimental setup for each experiment is referred to exact 
previous experiments where appendix experiment was mentioned. 

 

Experiment 1 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1365 892 68 25 13 5 2 0 
Positive 342 594 67 24 6 7 2 2 

Table ApdxA.1: Result of Experiment 1 

Prediction = 342 + 594 + 67 +24 +6 + 7 + 2 + 2 = 1044 

 Relevant values = 1044 - 342 = 702 

 Recall = 702 / 3414 = 20.56% 

 Precision = 702 / 1044 = 67.24% 
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Experiment 2 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1319 788 47 18 9 4 1 0 
Positive 388 698 88 31 10 8 3 2 

Table ApdxA.2: Result of Experiment 2 

Prediction = 388 + 698 + 88 + 31 + 10 + 8 + 3 + 2 = 1228 

 Relevant values = 1228 - 388 = 840 

 Recall = 840 / 3414 = 24.60% 

 Precision = 840 / 1228 = 68.40% 

 

Experiment 3 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1272 825 58 21 12 5 2 0 
Positive 435 661 77 28 7 7 2 2 

Table ApdxA.3: Result of Experiment 3 

Prediction = 435 + 661 + 77 + 28 + 7 + 7 + 2 + 2 = 1219 

 Relevant values = 1219 - 435 = 784 

 Recall = 784 / 3414 = 22.96% 

 Precision = 784 / 1219 = 64.32% 
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Experiment 4 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1276 774 46 18 9 4 1 0 
Positive 431 712 89 31 10 8 3 2 

Table ApdxA.4: Result of Experiment 4 

Prediction = 431 + 712 + 89 + 31 + 10 + 8 + 3 + 2 = 1286 

 Relevant values = 1286 - 431 = 855 

 Recall = 855 / 3414 = 25.04% 

 Precision = 855 / 1286 = 66.49% 

 

Experiment 5 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1252 762 45 18 9 4 1 0 
Positive 455 724 90 31 10 8 3 2 

Table ApdxA.5: Result of Experiment 5 

Prediction = 455 + 724 + 90 + 31 + 10 + 8 + 3 + 2 = 1323 

 Relevant values = 1323 – 455 = 868 

 Recall = 868 / 3414 = 25.42% 

 Precision = 868 / 1323 = 65.61% 
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Experiment 6 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1329 864 59 21 13 5 2 0 
Positive 378 622 76 28 6 7 2 2 

Table ApdxA.6: Result of Experiment 6 

Prediction = 378 + 622 + 76 + 28 + 6 + 7 + 2 + 2 = 1121 

 Relevant values = 1121 – 378 = 743 

 Recall = 743 / 3414 = 21.76% 

 Precision = 743 / 1121 = 66.28% 

 

Experiment 7 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1202 695 43 15 9 3 1 0 
Positive 505 791 92 34 10 9 3 2 

Table ApdxA.7: Result of Experiment 7 

Prediction = 505 + 791 + 92 + 34 + 10 + 9 + 3 + 2 = 1446 

 Relevant values = 1446 – 505 = 941 

 Recall = 941 / 3414 = 27.56% 

 Precision = 941 / 1446 = 65.08% 
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Experiment 8 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1186 737 45 17 8 4 1 0 
Positive 521 749 90 32 11 8 3 2 

Table ApdxA.8: Result of Experiment 8 

Prediction = 521 + 749 + 90 + 32 + 11 + 8 + 3 + 2 = 1416 

 Relevant values = 1416 - 521 = 895 

 Recall = 895 / 3414 = 26.22% 

 Precision = 895 / 1416 = 63.21% 

 

Experiment 9 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1140 643 41 15 8 3 1 0 
Positive 567 843 94 34 11 9 3 2 

Table ApdxA.9: Result of Experiment 9 

Prediction = 567 + 843 + 94 + 34 + 11 + 9 + 3 + 2 = 1563 

Relevant values = 1563 – 567 = 996 

 Recall = 996 / 3414 = 29.17% 

 Precision = 996 / 1563 = 63.72% 
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Experiment 10 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 
Count 

Negative 1302 793 47 18 11 4 1 0 
Positive 405 693 88 31 8 8 3 2 

Table ApdxA.10: Result of Experiment 10 

Prediction = 405 + 693 + 88 + 31 + 8 + 8 + 3 + 2 = 1238 

Relevant values = 1238 – 405 = 833 

 Recall = 833 / 3414 = 24.40% 

 Precision = 833 / 1238 = 67.29% 

 

Experiment 11 

Prediction 
(Binary rpart) 

Class 
False True 

Count 
Negative 1175 771 
Positive 532 936 

Table ApdxA.11: Result of Experiment 11 

Prediction = 532 + 936 = 1468 

Relevant values = 936 

 Recall = 936 / 3414 = 27.42% 

 Precision = 936 / 1468 = 63.76% 
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Experiment 12 

 Prediction 
(Default/Radial 

SVM) 
Class 

False True 
Count 

Negative 10036 5813 
Positive 8771 12994 

Table ApdxA.12: Result of Experiment 12 

Prediction = 8771 + 12994 = 21765 

Relevant values = 12994 

 Recall = 12994 / 37614 = 34.55% 

 Precision = 978 / 1703 = 59.70% 

 

Experiment 13 

Prediction 
(Linear SVM) 

Class 
False True 

Count 
Negative 4936 2843 
Positive 13871 15964 

Table ApdxA.13: Result of Experiment 13 

Prediction = 13871 + 15964 = 29835 

Relevant values = 15964 

 Recall = 15964 / 37614 = 42.44% 

 Precision = 15964 / 29835 = 53.51% 
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Experiment 14 

Prediction 
(Polynomial SVM) 

Class 
False True 

Count 
Negative 18673 18450 
Positive 134 357 

Table ApdxA.14: Result of Experiment 14 

Prediction = 134 + 357 = 491 

Relevant values = 357 

 Recall = 357 / 37614 = 0.95% 

 Precision = 357 / 491 = 72.71% 

 

Experiment 15 

 Prediction 
(Sigmoid SVM) 

Class 
False True 

Count 
Negative 11095 7715 
Positive 7712 11092 

Table ApdxA.15: Result of Experiment 15 

Prediction = 7712 + 11092 = 18804 

Relevant values = 11092 

 Recall = 11092 / 37614 = 29.49% 

 Precision = 11092 / 18804 = 58.99% 
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Experiment 16 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 13313 742
8 714 179 64 33 7 3 12 3 9 

Positive 5494 854
1 

126
3 314 110 49 25 27 8 7 11 

Table ApdxA.16: Result of Experiment 16 

 Prediction = 5494 + 8541 + 1263 + 314 + 110 + 49 + 25 + 27 + 8 + 7 + 11=15849 

Relevant values = 15849 – 5494 = 10355 

 Recall = 10355 / 37614 = 27.53% 

 Precision = 10355 / 15849 = 65.34% 

 

Morning Period 

(rpart) 

 

Experiment 17 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8783 3814 389 80 25 19 6 2 9 2 7 
Positive 2494 5685 915 195 74 34 7 5 1 0 8 

Table ApdxA.17: Result of Experiment 17 
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Prediction = 9418   

Relevant values = 6924 

 Recall = 30.70% 

 Precision = 73.52% 

 

Experiment 18 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8485 3448 360 74 22 18 4 2 9 2 7 
Positive 2792 6051 944 201 77 35 9 5 1 0 8 

Table ApdxA.18: Result of Experiment 18 

Prediction = 10123  

Relevant values = 7331 

 Recall = 32.50% 

 Precision = 72.42% 
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Experiment 19 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8719 3725 378 80 25 19 6 2 9 2 7 
Positive 2558 5774 926 195 74 34 7 5 1 0 8 

Table ApdxA.19: Result of Experiment 19 

Prediction = 9582   

Relevant values = 7024 

 Recall = 31.14% 

 Precision = 73.30% 

 

Experiment 20 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8861 3793 383 80 25 19 6 2 9 2 7 
Positive 2416 5706 921 195 74 34 7 5 1 0 8 

Table ApdxA.20: Result of Experiment 20 

Prediction = 9367 

Relevant values = 6951 

 Recall = 30.82% 

 Precision = 74.21% 
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Experiment 21 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8617 3524 361 75 23 19 6 2 9 2 7 
Positive 2660 5975 943 200 76 34 7 5 1 0 8 

Table ApdxA.21: Result of Experiment 21 

Prediction = 9909   

Relevant values = 7249 

 Recall = 32.14% 

 Precision = 73.16% 

 

Experiment 22 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8777 3796 389 80 25 19 6 2 9 2 7 
Positive 2500 5703 915 195 74 34 7 5 1 0 8 

Table ApdxA.22: Result of Experiment 22 

Prediction = 9442 

Relevant values = 6942 

 Recall = 30.78% 

 Precision = 73.52% 
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Experiment 23 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8656 3605 368 78 23 19 6 2 9 2 7 
Positive 2621 5894 936 197 76 34 7 5 1 0 8 

Table ApdxA.23: Result of Experiment 23 

Prediction = 9779 

Relevant values = 7158 

 Recall = 31.74% 

 Precision = 7248 / 9941 = 73.18% 

 

Experiment 24 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8569 3533 362 75 23 19 6 2 9 2 7 
Positive 2708 5966 942 200 76 34 7 5 1 0 8 

Table ApdxA.24: Result of Experiment 24 

Prediction = 9947 

Relevant values = 7239 

 Recall = 32.10% 

 Precision = 72.78% 
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Experiment 25 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 8457 3476 361 75 23 19 6 2 9 2 7 
Positive 2820 6023 943 200 76 34 7 5 1 0 8 

Table ApdxA.25: Result of Experiment 25 

Prediction = 10117 

Relevant values = 7297 

 Recall = 32.35% 

 Precision = 72.13% 

 

(Linear SVM) 

Experiment 26 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4551 2097 
Positive 6726 9180 

Table ApdxA.26: Result of Experiment 26 

Recall = 40.70% 

 Precision =57.71% 
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Experiment 27 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4754 2135 
Positive 6523 9142 

Table ApdxA.27: Result of Experiment 27 

Recall = 40.53% 

 Precision = 58.36% 

 

Experiment 28 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4736 2133 
Positive 6541 9144 

Table ApdxA.28: Result of Experiment 28 

Recall = 40.54% 

 Precision = 58.30% 
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Experiment 29 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4522 2066 
Positive 6755 9211 

Table ApdxA.29: Result of Experiment 29 

Recall = 40.84% 

 Precision = 57.69% 

 

Experiment 30 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4602 2114 
Positive 6675 9163 

Table ApdxA.30: Result of Experiment 30 

Recall = 40.63% 

 Precision = 57.85% 
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Experiment 31 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4503 2102 
Positive 6774 9165 

Table ApdxA.31: Result of Experiment 31 

Recall = 40.64% 

 Precision = 57.50% 

 

Experiment 32 

Prediction 
 (Linear SVM) 

Class 
False True 

Count 
Negative 4636 2107 
Positive 6641 9170 

Table ApdxA.32: Result of Experiment 32 

Recall = 40.66% 

 Precision = 58.00% 
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Experiment 33 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4603 2110 
Positive 6674 9167 

Table ApdxA.33: Result of Experiment 33 

Recall = 40.64% 

 Precision = 57.87% 

 

Experiment 34 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 4559 2063 
Positive 6718 9214 

Table ApdxA.34: Result of Experiment 34 

Recall = 40.85% 

 Precision = 57.83% 
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(Polynomial SVM) 

Experiment 35 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11084 10966 
Positive 193 311 

Table ApdxA.35: Result of Experiment 35 

Recall = 1.38% 

 Precision = 61.71% 

 

Experiment 36 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11062 10987 
Positive 215 290 

Table ApdxA.36: Result of Experiment 36 

Recall = 1.29% 

 Precision = 57.43% 
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Experiment 37 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11128 11031 
Positive 149 246 

Table ApdxA.37: Result of Experiment 37 

Recall = 1.09% 

 Precision = 62.28% 

 

Experiment 38 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11206 11120 
Positive 71 157 

Table ApdxA.38: Result of Experiment 38 

Recall = 0.70% 

 Precision = 68.86% 
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Experiment 39 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11033 10951 
Positive 244 326 

Table ApdxA.39: Result of Experiment 39 

Recall = 1.44% 

 Precision = 57.19% 

 

Experiment 40 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11070 10990 
Positive 207 287 

Table ApdxA.40: Result of Experiment 40 

Recall = 1.27% 

 Precision = 58.10% 
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Experiment 41 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11080 10983 
Positive 197 294 

Table ApdxA.41: Result of Experiment 41 

Recall = 1.30% 

 Precision = 59.88% 

 

 

Experiment 42 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11104 11012 
Positive 173 265 

Table ApdxA.42: Result of Experiment 42 

Recall = 1.18% 

 Precision = 60.50% 
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Experiment 43 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 11103 10994 
Positive 174 283 

Table ApdxA.43: Result of Experiment 43 

Recall = 1.25% 

 Precision = 61.93% 

 

(Radial SVM) 

Experiment 44 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6204 2438 
Positive 5073 8839 

Table ApdxA.44: Result of Experiment 44 

Recall = 39.19% 

 Precision = 63.54% 
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Experiment 45 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 6265 2462 
Positive 5012 8815 

Table ApdxA.45: Result of Experiment 45 

Recall = 39.08% 

 Precision = 63.75% 

 

 

Experiment 46 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6315 2528 
Positive 4962 8749 

Table ApdxA.46: Result of Experiment 46 

Recall = 38.79% 

 Precision = 63.81% 

 



112 
Experiment 47 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6248 2531 
Positive 5029 8746 

Table ApdxA.47: Result of Experiment 47 

Recall = 38.78% 

 Precision = 63.49% 

 

Experiment 48 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6298 2418 
Positive 4979 8859 

Table ApdxA.48: Result of Experiment 48 

Recall = 39.28% 

 Precision = 64.02% 
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Experiment 49 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6150 2406 
Positive 5127 8871 

Table ApdxA.49: Result of Experiment 49; 

Recall = 39.23% 

 Precision = 63.37% 

 

Experiment 50 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6310 2430 
Positive 4967 8847 

Table ApdxA.50: Result of Experiment 50 

Recall = 39.23% 

 Precision = 64.04% 
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Experiment 51 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6303 2467 
Positive 4974 8810 

Table ApdxA.51: Result of Experiment 51 

Recall = 39.06% 

 Precision = 63.91% 

 

Experiment 52 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 6164 2418 
Positive 5113 8859 

Table ApdxA.52: Result of Experiment 52 

Recall = 39.28% 

 Precision = 63.41% 
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Noon Period 

(rpart) 

Experiment 53 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3832 2962 208 64 30 15 0 1 0 
Positive 563 870 150 52 17 8 7 9 2 

Table ApdxA.53: Result of Experiment 53 

Prediction = 1678       

Relevant values = 1115 

 Recall = 12.68% 

 Precision = 66.45% 

 

Experiment 54 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3331 2440 159 55 27 14 0 1 0 
Positive 1064 1392 199 61 20 9 7 9 2 

Table ApdxA.54: Result of Experiment 54 

Prediction = 2763   

Relevant values = 1699 
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 Recall = 19.33% 

 Precision = 61.49% 

 

Experiment 55 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3306 2439 160 58 27 14 0 1 0 
Positive 1089 1393 198 58 20 9 7 9 2 

Table ApdxA.55: Result of Experiment 55 

Prediction = 2785   

Relevant values = 1696 

 Recall = 19.29% 

 Precision = 60.90% 

 

Experiment 56 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3354 2479 169 55 27 14 0 1 0 
Positive 1041 1353 189 61 20 9 7 9 2 

Table ApdxA.56: Result of Experiment 56 

Prediction = 2691  
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Relevant values = 1650 

 Recall = 18.77% 

 Precision = 61.32% 

 

Experiment 57 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 2597 1684 104 41 21 7 0 1 0 
Positive 1798 2148 254 75 26 16 7 9 2 

Table ApdxA.57: Result of Experiment 57 

Prediction = 4335  

Relevant values = 2537 

 Recall = 28.86% 

 Precision = 58.52% 

 

Experiment 58 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3409 2519 176 57 28 14 0 1 0 
Positive 986 1313 182 59 19 9 7 9 2 

Table ApdxA.58: Result of Experiment 58 
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Prediction = 2586   

Relevant values = 1600 

 Recall = 18.20% 

 Precision = 61.87% 

 

Experiment 59 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3946 3061 224 70 30 17 0 1 0 
Positive 449 771 134 46 17 6 7 9 2 

Table ApdxA.59: Result of Experiment 59 

Prediction = 1441  

Relevant values = 992 

 Recall = 11.29% 

 Precision = 68.84% 
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Experiment 60 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 3478 2571 182 60 28 14 0 1 0 
Positive 917 1261 176 56 19 9 7 9 2 

Table ApdxA.60: Result of Experiment 60 

Prediction = 2456  

Relevant values = 1539 

 Recall = 17.51% 

 Precision = 62.66% 

 

Experiment 61 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 
Count 

Negative 2650 1783 121 43 22 7 0 1 0 
Positive 1745 2049 237 73 25 16 7 9 2 

Table ApdxA.61: Result of Experiment 61 

Prediction = 4163  

Relevant values =2418 

 Recall = 27.51% 

 Precision = 58.08% 
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(Linear SVM) 

Experiment 62 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 864 250 
Positive 3531 4145 

Table ApdxA.62: Result of Experiment 62 

Recall = 47.16% 

Precision = 54.00% 

 

Experiment 63 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 815 240 
Positive 3580 4155 

Table ApdxA.63: Result of Experiment 63 

Recall = 47.27% 

Precision = 53.72% 
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Experiment 64 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 855 249 
Positive 3540 4146 

Table ApdxA.64: Result of Experiment 64 

Recall = 47.17% 

Precision = 53.94% 

 
Experiment 65 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 854 245 
Positive 3541 4150 

Table ApdxA.65: Result of Experiment 65 

Recall = 47.21% 

Precision = 53.96% 
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Experiment 66 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 827 257 
Positive 3568 4138 

Table ApdxA.66: Result of Experiment 66 

Recall = 47.08% 

Precision = 53.70% 

 
Experiment 67 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 754 233 
Positive 3641 4162 

Table ApdxA.67: Result of Experiment 67 

Recall = 47.35% 

Precision = 53.34% 
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Experiment 68 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 785 237 
Positive 3610 4158 

Table ApdxA.68: Result of Experiment 68 

Recall = 47.30% 

Precision = 53.53% 

 
Experiment 69 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 840 242 
Positive 3555 4153 

Table ApdxA.69: Result of Experiment 69 

Recall = 47.25% 

Precision = 53.88% 
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Experiment 70 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 799 243 
Positive 3596 4152 

Table ApdxA.70: Result of Experiment 70 

Recall = 47.24% 

Precision = 53.59% 

 

(Polynomial SVM) 

Experiment 71 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4173 3919 
Positive 222 476 

Table ApdxA.71: Result of Experiment 71 

Recall = 5.42% 

Precision = 68.19% 
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Experiment 72 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4157 3929 
Positive 238 466 

Table ApdxA.72: Result of Experiment 72 

Recall = 5.30% 

Precision = 66.19% 

 

Experiment 73 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4250 4099 
Positive 145 296 

Table ApdxA.73: Result of Experiment 73 

Recall = 3.37% 

Precision = 67.12% 
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Experiment 74 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4312 4211 
Positive 83 184 

Table ApdxA.74: Result of Experiment 74 

Recall = 2.09% 

Precision = 68.91% 

 

Experiment 75 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4201 4038 
Positive 194 357 

Table ApdxA.75: Result of Experiment 75 

Recall = 4.06% 

Precision = 64.79% 
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Experiment 76 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4149 3884 
Positive 246 511 

Table ApdxA.76: Result of Experiment 76 

Recall = 5.81% 

Precision = 67.50% 

 

Experiment 77 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4195 3957 
Positive 200 438 

Table ApdxA.77: Result of Experiment 77 

Recall = 4.98% 

Precision = 68.65% 
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Experiment 78 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4150 3886 
Positive 245 509 

Table ApdxA.78: Result of Experiment 78 

Recall = 5.79% 

Precision = 67.51% 

 

Experiment 79 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 4298 4199 
Positive 97 196 

Table ApdxA.79: Result of Experiment 79 

Recall = 2.23% 

Precision = 66.89% 
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(Radial SVM) 

Experiment 80 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2790 2171 
Positive 1605 2224 

Table ApdxA.80: Result of Experiment 80 

Recall = 25.30% 

Precision = 58.08% 

 

Experiment 81 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2770 2051 
Positive 1625 2344 

Table ApdxA.81: Result of Experiment 81 

Recall = 26.67% 

Precision = 59.06% 
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Experiment 82 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2768 2104 
Positive 1627 2291 

Table ApdxA.82: Result of Experiment 82 

Recall = 26.06% 

Precision = 58.47% 

 

Experiment 83 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2806 2148 
Positive 1589 2247 

Table ApdxA.83: Result of Experiment 83 

Recall = 25.56% 

Precision = 58.58% 
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Experiment 84 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2785 2056 
Positive 1610 2339 

Table ApdxA.84: Result of Experiment 84 

Recall = 26.61% 

Precision = 59.23% 

 

Experiment 85 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2834 2133 
Positive 1561 2262 

Table ApdxA.85: Result of Experiment 85 

Recall = 25.73% 

Precision = 59.17% 
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Experiment 86 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2840 2185 
Positive 1555 2210 

Table ApdxA.86: Result of Experiment 86 

Recall = 25.14% 

Precision = 58.70% 

 

 

Experiment 87 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2828 2135 
Positive 1567 2260 

Table ApdxA.87: Result of Experiment 87 

Recall = 25.71% 

Precision = 59.05% 

 



133 
Experiment 88 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2770 2038 
Positive 1625 2357 

Table ApdxA.88: Result of Experiment 88 

Recall = 26.81% 

Precision = 59.19% 

 

Afternoon Period 

(rpart) 

 

Experiment 89 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2090 1319 115 33 12 2 0 1 1 1 2 
Positive 1045 1319 200 69 16 4 12 12 7 7 3 

Table ApdxA.89: Result of Experiment 89 

Prediction = 2694   

Relevant values = 1649 
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Recall = 26.30% 

Precision = 61.67% 

 

Experiment 90 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2178 1383 125 34 14 2 1 1 2 1 5 
Positive 957 1255 190 68 14 4 11 12 6 7 0 

Table ApdxA.90: Result of Experiment 90 

 

Prediction = 2524   

Relevant values = 1567 

Recall = 24.99% 

Precision = 62.08% 

 

Experiment 91 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2236 1437 128 36 15 3 1 1 2 1 5 
Positive 899 1201 187 66 13 3 11 12 6 7 0 

Table ApdxA.91: Result of Experiment 91 
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Prediction = 2405  

Relevant values = 1506 

Recall = 24.02% 

Precision = 62.62% 

 

Experiment 92 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2051 1317 115 31 11 2 0 1 1 1 2 
Positive 1084 1321 200 71 17 4 12 12 7 7 3 

Table ApdxA.92: Result of Experiment 92 

Prediction = 2738  

Relevant values = 1654 

Recall = 26.38% 

Precision = 60.41% 
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Experiment 93 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2251 1456 128 36 15 3 1 1 2 1 5 
Positive 884 1182 187 66 13 3 11 12 6 7 0 

Table ApdxA.93: Result of Experiment 93 

Prediction = 2371  

Relevant values = 1487 

Recall = 23.72% 

Precision = 62.72% 

 

Experiment 94 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 1999 1312 113 31 11 2 0 1 1 1 2 
Positive 1136 1326 202 71 17 4 12 12 7 7 3 

Table ApdxA.94: Result of Experiment 94 

Prediction = 2797  

Relevant values = 1661 

Recall = 26.49% 

Precision = 59.39% 
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Experiment 95 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 1981 1298 113 31 10 1 0 1 1 1 2 
Positive 1154 1340 202 71 18 5 12 12 7 7 3 

Table ApdxA.95: Result of Experiment 95 

Prediction = 2831  

Relevant values = 1677 

Recall = 26.75% 

Precision = 59.24% 

 

Experiment 96 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2255 1523 136 44 15 3 2 5 4 1 5 
Positive 880 1115 179 58 13 3 10 8 4 7 0 

Table ApdxA.96: Result of Experiment 96 

Prediction = 2277  

Relevant values = 1397 

Recall = 22.28% 

Precision = 61.35% 
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Experiment 97 

Prediction 
(rpart) 

Class 
False True 

0 1 2 3 4 5 6 7 8 9 10 
Count 

Negative 2033 1312 113 31 11 2 0 1 1 1 2 
Positive 1102 1326 202 71 17 4 12 12 7 7 3 

Table ApdxA.97: Result of Experiment 97 

Prediction = 2763  

Relevant values = 1661 

Recall = 26.49% 

Precision = 60.12% 

 

(Linear SVM) 

Experiment 98 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 1297 810 
Positive 1838 2325 

Table ApdxA.98: Result of Experiment 98 

Recall = 37.08% 

Precision = 55.85% 
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Experiment 99 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 1290 833 
Positive 1845 2302 

Table ApdxA.99: Result of Experiment 99 

Recall = 36.71% 

Precision = 55.51% 

 

Experiment 100 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 933 609 
Positive 2202 2526 

Table ApdxA.100: Result of Experiment 100 

Recall = 40.29% 

Precision = 53.43% 
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Experiment 101 

 

Prediction 
 (Linear SVM) 

Class 
False True 

Count 
Negative 1396 913 
Positive 1739 2222 

Table ApdxA.101: Result of Experiment 101 

Recall = 35.44% 

Precision = 56.10% 

 

Experiment 102 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 1348 860 
Positive 1787 2275 

Table ApdxA.102: Result of Experiment 102 

Recall = 36.28% 

Precision = 56.01% 
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Experiment 103 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 504 335 
Positive 2631 2800 

Table ApdxA.103: Result of Experiment 103 

Recall = 44.66% 

Precision = 51.56% 

 

Experiment 104 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 1226 853 
Positive 1909 2282 

Table ApdxA.104: Result of Experiment 104 

Recall = 36.40% 

Precision = 54.45% 
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Experiment 105 

 

Prediction 
 (Linear SVM) 

Class 
False True 

Count 
Negative 1077 694 
Positive 2058 2441 

Table ApdxA.105: Result of Experiment 105 

Recall = 38.93% 

Precision = 54.26% 

 

Experiment 106 

 

Prediction  
(Linear SVM) 

Class 
False True 

Count 
Negative 1338 837 
Positive 1797 2298 

Table ApdxA.106: Result of Experiment 106 

Recall = 36.65% 

Precision = 56.12% 
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(Polynomial SVM) 

Experiment 107 

 
Prediction 

 (Polynomial 
SVM) 

Class 
False True 

Count 
Negative 3050 2944 
Positive 85 191 

Table ApdxA.107: Result of Experiment 107 

Recall = 3.05% 

Precision = 69.20% 

 

Experiment 108 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 3100 3014 
Positive 35 121 

Table ApdxA.108: Result of Experiment 108 

Recall = 1.93% 

Precision = 77.56% 
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Experiment 109 

 
Prediction 

 (Polynomial 
SVM) 

Class 
False True 

Count 
Negative 3039 2936 
Positive 96 199 

Table ApdxA.109: Result of Experiment 109 

Recall = 3.17% 

Precision = 67.46% 

 

Experiment 110 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 3054 2957 
Positive 81 178 

Table ApdxA.110: Result of Experiment 110 

Recall = 2.84% 

Precision = 68.73% 
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Experiment 111 

 
Prediction 

 (Polynomial 
SVM) 

Class 
False True 

Count 
Negative 3049 2941 
Positive 86 194 

Table ApdxA.111: Result of Experiment 111 

Recall = 3.09% 

Precision = 69.29% 

 

Experiment 112 

 
Prediction 

 (Polynomial 
SVM) 

Class 
False True 

Count 
Negative 3095 3006 
Positive 40 129 

Table ApdxA.112: Result of Experiment 112 

Recall = 2.06% 

Precision = 76.33% 

 

 



146 
Experiment 113 

 
Prediction 

 (Polynomial 
SVM) 

Class 
False True 

Count 
Negative 3074 2980 
Positive 61 155 

Table ApdxA.113: Result of Experiment 113 

Recall = 2.47% 

Precision = 71.76% 

 

 

Experiment 114 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 3047 2929 
Positive 88 206 

Table ApdxA.114: Result of Experiment 114 

Recall = 4.15% 

Precision = 70.07% 
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Experiment 115 

 

Prediction  
(Polynomial SVM) 

Class 
False True 

Count 
Negative 3058 2950 
Positive 77 185 

Table ApdxA.115: Result of Experiment 115 

Recall = 2.95% 

Precision = 70.61% 

 

(Radial SVM) 

Experiment 116 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 2036 1448 
Positive 1099 1687 

Table ApdxA.116: Result of Experiment 116 

Recall = 26.90% 

Precision = 60.55% 
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Experiment 117 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 1841 1332 
Positive 1294 1803 

Table ApdxA.117: Result of Experiment 117 

Recall = 28.76% 

Precision = 58.22% 

 

Experiment 118 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 1973 1443 
Positive 1162 1692 

Table ApdxA.118: Result of Experiment 118 

Recall = 26.99% 

Precision = 59.29% 
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Experiment 119 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2016 1454 
Positive 1119 1681 

Table ApdxA.119: Result of Experiment 119 

Recall = 26.81% 

Precision = 60.04% 

 

Experiment 120 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 1996 1446 
Positive 1139 1689 

Table ApdxA.120: Result of Experiment 120 

Recall = 26.94% 

Precision = 59.72% 
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Experiment 121 

 

Prediction 
 (Radial SVM) 

Class 
False True 

Count 
Negative 1824 1336 
Positive 1311 1799 

Table ApdxA.121: Result of Experiment 121 

Recall = 28.69% 

Precision = 57.85% 

 

Experiment 122 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 1922 1435 
Positive 1213 1700 

Table ApdxA.122: Result of Experiment 122 

Recall = 27.11% 

Precision = 58.36% 
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Experiment 123 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2068 1563 
Positive 1067 1572 

Table ApdxA.123: Result of Experiment 123 

Recall = 25.07% 

Precision = 59.57% 

 

Experiment 124 

 

Prediction  
(Radial SVM) 

Class 
False True 

Count 
Negative 2012 1468 
Positive 1123 1667 

Table ApdxA.124: Result of Experiment 124 

Recall = 26.59% 

Precision = 59.75% 
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Adaboost 

Morning Period 

 

Experiment 125 

Pred Table 
rpart 

Class 
Precision 

Error 0.3167066 

False True 
Count 

Negative 2867 1515 72.38% Positive 864 2264 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2845 1487 72.12% Positive 886 2292 
Table ApdxA.125: Result of Experiment 125 

 

Experiment 126 

Pred Table 
rpart 

Class 
Precision 

Error 0.2962224 

False True 
Count 

Negative 2865 1299 72.65% Positive 916 2433 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 3058 1499 75.52% Positive 723 2233 
Table ApdxA.126: Result of Experiment 126 
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Experiment 127 

Pred Table 
rpart 

Class 
Precision 

Error 0.5780793 

False True 
Count 

Negative 2860 1347 71.98% Positive 926 2379 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2668 1672 64.75% Positive 1118 2054 
Table ApdxA.127: Result of Experiment 127 

 

Experiment 128 

Pred Table 
rpart 

Class 
Precision 

 
 

Error 0.3030061 

False True 
Count 

Negative 2927 1485 75.01% Positive 775 2326 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2963 1534 75.50% Positive 739 2277 
Table ApdxA.128: Result of Experiment 128 
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Experiment 129 

Pred Table 
rpart 

Class 
Precision 

Error 0.2995478 

False True 
Count 

Negative 2894 1286 71.78% Positive 941 2393 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2876 1289 71.36% Positive 959 2390 
Table ApdxA.129: Result of Experiment 129 

 

Experiment 130 

Pred Table 
rpart 

Class 
Precision 

Error 0.2909018 

False True 
Count 

Negative 3063 1584 75.68% Positive 697 2169 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2737 1159 71.72% Positive 1023 2594 
Table ApdxA.130: Result of Experiment 130 
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Experiment 131 

Pred Table 
rpart 

Class 
Precision 

Error 0.2974195 

False True 
Count 

Negative 2862 1390 72.84% Positive 885 2373 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2774 1255 72.05% Positive 973 2508 
Table ApdxA.131: Result of Experiment 131 

 

Experiment 132 

Pred Table 
rpart 

Class 
Precision 

Error 0.2950253 

False True 
Count 

Negative 2856 1305 72.14% Positive 934 2419 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2779 1203 71.38% Positive 1011 2521 
Table ApdxA.132: Result of Experiment 132 
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Experiment 133 

Pred Table 
rpart 

Class 
Precision 

Error 0.3008779 

False True 
Count 

Negative 2914 1431 70.64% Positive 960 2310 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 2652 1137 69.89% Positive 1122 2604 
Table ApdxA.133: Result of Experiment 133 

 

Noon Period 

Experiment 134 

Pred Table 
rpart 

Class 
Precision 

Error 0.4515358 

False True 
Count 

Negative 1046 885 58.16% Positive 418 581 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1066 925 57.61% Positive 398 541 
Table ApdxA.134: Result of Experiment 134 
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Experiment 135 

Pred Table 
rpart 

Class 
Precision 

Error 0.4399317 

False True 
Count 

Negative 1051 861 58.35% Positive 424 594 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1052 866 58.20% Positive 423 589 
Table ApdxA.135: Result of Experiment 135 

 

Experiment 136 

Pred Table 
rpart 

Class 
Precision 

Error 0.4464164 

False True 
Count 

Negative 1065 909 58.58% Positive 396 560 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1161 1008 60.58% Positive 300 461 
Table ApdxA.136: Result of Experiment 136 
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Experiment 137 

Pred Table 
rpart 

Class 
Precision 

Error 0.4392491 

False True 
Count 

Negative 1288 1110 66.73% Positive 177 355 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1102 924 59.85% Positive 363 541 
Table ApdxA.137: Result of Experiment 137 

 

Experiment 138 

Pred Table 
rpart 

Class 
Precision 

Error 0.4320819 

False True 
Count 

Negative 978 756 59.45% Positive 485 711 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1115 918 61.20% Positive 348 549 
Table ApdxA.138: Result of Experiment 138 
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Experiment 139 

Pred Table 
rpart 

Class 
Precision 

Error 0.4276451 

False True 
Count 

Negative 1241 1053 65.57% Positive 219 417 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1103 896 61.65% Positive 357 574 
Table ApdxA.139: Result of Experiment 139 

 

Experiment 140 

Pred Table 
rpart 

Class 
Precision 

Error 0.4416382 

False True 
Count 

Negative 1297 1142 67.62% Positive 159 332 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1278 1116 66.79% Positive 178 358 
Table ApdxA.140: Result of Experiment 140 
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Experiment 141 

Pred Table 
rpart 

Class 
Precision 

Error 0.4508532 

False True 
Count 

Negative 1131 989 59.51% Positive 328 482 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 1121 983 59.08% Positive 338 488 
Table ApdxA.141: Result of Experiment 141 

 

Experiment 142 

Pred Table 
rpart 

Class 
Precision 

Error 0.4279863 

False True 
Count 

Negative 1271 1090 64.50% Positive 202 367 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 794 575 56.50% Positive 679 882 
Table ApdxA.142: Result of Experiment 142 
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Afternoon Period 

Experiment 143 

Pred Table 
rpart 

Class 
Precision 

Error 0.577512 

False True 
Count 

Negative 686 493 63.55% Positive 331 577 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 731 597 62.32% Positive 286 473 
Table ApdxA.143: Result of Experiment 143 

 

Experiment 144 

Pred Table 
rpart 

Class 
Precision 

Error 0.5732057 

False True 
Count 

Negative 693 492 60.31% Positive 358 544 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 658 499 57.74% Positive 393 537 
Table ApdxA.144: Result of Experiment 144 
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Experiment 145 

Pred Table 
rpart 

Class 
Precision 

Error 0.5488038 

False True 
Count 

Negative 661 526 58.76% Positive 372 530 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 694 604 57.14% Positive 339 452 
Table ApdxA.145: Result of Experiment 145 

 

Experiment 146 

Pred Table 
rpart 

Class 
Precision 

Error 0.5550239 

False True 
Count 

Negative 662 525 58.60% Positive 373 528 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 705 600 57.85% Positive 330 453 
Table ApdxA.146: Result of Experiment 146 
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Experiment 147 

Pred Table 
rpart 

Class 
Precision 

Error 0.5779904 

False True 
Count 

Negative 763 590 61.68% Positive 282 454 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 694 531 59.38% Positive 351 513 
Table ApdxA.147: Result of Experiment 147 

 

 

Experiment 148 
Pred Table 

rpart 
Class 

Precision 

Error 0.5645933 

False True 
Count 

Negative 650 490 57.70% Positive 401 547 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 614 473 56.34% Positive 437 564 
Table ApdxA.148: Result of Experiment 148 
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Experiment 149 

Pred Table 
rpart 

Class 
Precision 

Error 0.5583732 

False True 
Count 

Negative 662 494 57.83% Positive 393 539 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 645 513 55.91% Positive 410 520 
Table ApdxA.149: Result of Experiment 149 

 

Experiment 150 

Pred Table 
rpart 

Class 
Precision 

Error 0.5578947 

False True 
Count 

Negative 679 501 57.82% Positive 383 525 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 723 585 56.54% Positive 339 441 
Table ApdxA.150: Result of Experiment 150 
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Experiment 151 

Pred Table 
rpart 

Class 
Precision 

Error 0.5736842 

False True 
Count 

Negative 684 473 59.18% Positive 380 551 
 

Adaboost 
Class 

Precision False True 
Count 

Negative 680 507 57.38% Positive 384 517 
Table ApdxA.151: Result of Experiment 151 

 

 

 


