

Predicting Unusual Surges in a Time Series

By
Weiran Sun

A Thesis Submitted to

Saint Mary’s University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Master of Science in Applied Science

April, 2016, Halifax, Nova Scotia

Copyright Weiran Sun, 2016

Approved: Dr. Pawan Lingras
Supervisor
Department of Mathematics
and Computing Science

Approved: Dr. Virendra C. Bhavsar

External Examiner
University of New Brunswick

Approved: Dr. Hai Wang
Supervisory Committee Member
Department of Finance Info Systems
and Management Science

Approved: Dr. Xiaoou Zhang
Supervisory Committee Member
Department of Finance Info Systems
and Management Science

 Date: April, 2016

Abstract

Predicting Unusual Surges in a Time Series

By

Weiran Sun

Time-series data tend to enjoy regular fluctuations. Statisticians have developed a
wide variety of techniques to predict future values of a temporal variable. Most of these
approaches use prediction techniques; one example is the employment of auto regression
and moving averages to predict future numerical values.

Our project uses a data mining technique called classification to predict both the
occurrence of surges in time-series, and the expected durations of those surge, as opposed
to future values predicted using other techniques. Such surges can occur in a number of
time series events, examples of which include demands for energy, weather forecasting,
and variation in traffic volume. Our chosen technique can be employed to extract
meaningful statistics and other useful characteristics of time series data.

Classifier performance depends greatly on the characteristics of the data to be
analyzed. Many algorithms are part of classification analysis. For this study, we chose for
comparison the decision tree, support vector machines, and Adaboost. To validate the
quality of algorithms for our given problem, we used precision and recall measures as
comparators between different algorithms. The minimal accepted precision score was set
as 60%, with 70% as the preferred such score, as such a result would be more robust. Our
initial experiments yielded a precision score of 64%, and the best results attained a score
of 77%.

April, 2016

Table of Contents

Chapter 1 Introduction · 1
1.1 Thesis structure · 3

Chapter 2 Literature Review · 5
 2.1 Time series analysis · 5
 2.2 Auto regressive integrated moving average (ARIMA) · · · · · · · · · · 6
 2.3 Decision tree and rpart · 10
 2.4 Support vector machines (SVMs) · 19
 2.5 Boosting technique of Adaboost · 24
Chapter 3 Data and Experimental Setup · 29
 3.1 Description of raw data · 29
 3.2 Data representation · 31
 3.3 Surges calculation (peaks detection) · 34
 3.4 Dataset combination · 41
 3.5 Experimental setup for classification and prediction · · · · · · · · · · 42
Chapter 4 Modeling the Entire Day · 47
 4.1 Initial experiments · 48
 4.1.1 Initial rpart experiments · 48
 4.1.2 Initial SVMs experiments · 50
 4.1.3 Repeated experiments using large dataset · · · · · · · · · · · 53

 4.1.4 Summary of all initial experiments · · · · · · · · · · · · · · · 54
 4.2 Adaboost algorithm in R classification · · · · · · · · · · · · · · · · · · · 57
Chapter 5 Models Based on Time of Day · 62
 5.1 Divided daytime period experiments · 62
 5.1.1 Morning period experiments · 64
 5.1.2 Noon period experiments · 67
 5.1.3 Afternoon period experiments · · · · · · · · · · · · · · · · · · · 69
 5.2 Adaboost improvement in divided daytime periods experiments · · · 73
 5.2.1 Morning period experiments with Adaboost · · · · · · · · · 74
 5.2.2 Noon period experiments with Adaboost · · · · · · · · · · · 76
 5.2.3 Afternoon period experiments with Adaboost · · · · · · · · 77
Chapter 6 Conclusions and Future Research · 80

 6.1 Summary of our research · 80
 6.2 Conclusions · 81

 6.3 Recommendation and future study · 82
References · 84
Appendix A - Complete Set of Experimental Results · · · · · · · · · · · · · · · 88

Figures:

Figure 2.1: A sample of basic decision tree structure · 13
Figure 2.2: Example of a simple R program · 17
Figure 2.3: Optimally pruned tree for the stochastic digit recognition data · · · · · · · · 18
Figure 2.4: Example of the S-plus code · 18
Figure 2.5: Example of replicated dataset by setting.Random.seed · · · · · · · · · · · · · · 19
Figure 2.6: Maximum-margin hyperplane and margins for an SVM trained with samples
from two classes. Samples on the margin are called the support vectors · · · · · · · · · · 20
Figure 2.7: Sample of rpart(e1071) in R · 21
Figure 2.8: Sample of svm() and rpart() in R · 22
Figure 2.9: Sample results of svm() and rpart() · 22
Figure 2.10: Sample of svm() and rpart() in R and the results · · · · · · · · · · · · · · · · · 23
Figure 2.11: The problem of finding a maximum margin “hyper-plane” on reliable data
(left), data with outlier (middle) and with a mislabeled pattern (right) · · · · · · · · · · · 26
Figure 3.3: Sample of single raw data file content · 30
Figure 3.4: Sample of represented output .csv file · 32
Figure 3.5: Sample of represented output .stat file · 32
Figure 3.6: Sample of after-clustered .stat file · 33
Figure 3.7: Sample of time series patterns file · 33
Figure 3.8: Explanation of pattern specifications · 34
Figure 3.9: Example of a peak value found in pattern · 35
Figure 3.10: Example of peak value and non-peak values in pattern · · · · · · · · · · · · 36

Figure 3.11: Non-peak pattern example A · 37
Figure 3.12: Non-peak pattern example B · 37
Figure 3.13: Peak pattern example A · 38
Figure 3.14: Peak pattern example B · 39
Figure 3.15: Sample of output file with all peak patterns · 40
Figure 3.16: Sample of output file with all non-peak patterns · · · · · · · · · · · · · · · · · 40
Figure 3.17: Sample of final dataset content · 42
Figure 3.18: Sample of rpartBinaryClassify.R · 43
Figure 3.19: Repeat experiments with all final datasets in R program using rpart · · · · 43
Figure 3.20: Sample of svmClassify.R · 43
Figure 4.1: Precision comparison of all 22 initial experiments · · · · · · · · · · · · · · · · 55
Figure 4.2: Sample of R program with Adaboost package · · · · · · · · · · · · · · · · · · · 58
Figure 4.3: Accuracy comparison by Adaboost from different dataset size · · · · · · · · 61
Figure 5.1: Sample of a Python program to divided daytime into three time periods · · 63
Figure 5.2: Comparison of average precision between different daytime periods · · · · 72
Figure 5.3: Summary of 10 times Morning Experiments with Adaboost · · · · · · · · · · 75
Figure 5.4: Summary of 10 times Noon Experiments with Adaboost · · · · · · · · · · · · 77
Figure 5.5: Summary of 10 times Afternoon Experiments with Adaboost · · · · · · · · · 78
Figure 5.6: Overview of all Daytime Divided Experiments with Adaboost (average) · · 79

Tables:
Table 2.1: Performance of svm() and rpart() for classification (10 replications) · · · · · 22
Table 2.2: Performance of svm() and rpart() for regression (Mean Squared Error, 10
replications) · 23
Table 3.1: Overview of raw data · 29
Table 3.2: Specification of single raw data file · 30
Table 3.3: Explanation of single raw data file contents · 31
Table 3.4: Specification explanation of final dataset, ToClassifyFinal · · · · · · · · · · · 41
Table 3.5: Specification explanation of final dataset, uniqTotal-20-120-FinalBinary · · 44
Table 3.6: Expectation of experimental setup for future experiments · · · · · · · · · · · · 46
Table 4.1: Setup of initial rpart experiments · 48
Table 4.2: Result of initial Experiment 1 using rpart · 49
Table 4.3: Summary of rpart repeated experiments results · · · · · · · · · · · · · · · · · · · 50
Table 4.4: Setup of initial SVMs experiments · 50
Table 4.5: Result of initial Experiment 2 using Polynomial SVM · · · · · · · · · · · · · · 51
Table 4.6: Result of initial Experiment 3 using default SVM · · · · · · · · · · · · · · · · · 51
Table 4.7: Result of Initial Experiment 4 using Linear SVM · · · · · · · · · · · · · · · · · 52
Table 4.8: Result of Initial Experiment 5 using Radial SVM · · · · · · · · · · · · · · · · · 52
Table 4.9: Result of Initial Experiment 6 using Sigmoid SVM · · · · · · · · · · · · · · · · 53
Table 4.10: Setup of repeated experiments using large dataset · · · · · · · · · · · · · · · · 54
Table 4.11: Precision from different algorithms (rpart and SVMs) using large dataset · 54

Table 4.12: Precision Summary of all initial experiments · 54
Table 4.13: Overview of initial experiments with Adaboost boosting · · · · · · · · · · · · 57
Table 4.14: Result of initial Experiment 1 with adaboost (small dataset) · · · · · · · · · · 58
Table 4.15: Result of initial Experiment 2 with Adaboost (large dataset) · · · · · · · · · 59
Table 5.1: Experimental setup of Divided Daytime Periods experiments · · · · · · · · · 62
Table 5.2: Overview of Daytime Divided experiments specifications · · · · · · · · · · · · 64
Table 5.3: Result of Morning Period Experiment 1 using rpart · · · · · · · · · · · · · · · · 64
Table 5.4: Result of Morning Period Experiment 2 using Linear SVM · · · · · · · · · · · 65
Table 5.5: Result of Morning Period Experiment 3 using Polynomial SVM · · · · · · · 65
Table 5.6: Result of Morning Period Experiment 4 using Radial SVM · · · · · · · · · · · 66
Table 5.7: Result of Noon Period Experiment 1 using rpart · · · · · · · · · · · · · · · · · · 67
Table 5.8: Result of Noon Period Experiment 2 using Linear SVM · · · · · · · · · · · · · 67
Table 5.9: Result of Noon Period Experiment 3 using Polynomial SVM · · · · · · · · · 68
Table 5.10: Result of Noon Period Experiment 4 using Radial SVM · · · · · · · · · · · · 69
Table 5.11: Result of Afternoon Period Experiment 1 using rpart · · · · · · · · · · · · · · 69
Table 5.12: Result of Afternoon Period Experiment 2 using Linear SVM · · · · · · · · 70
Table 5.13: Result of Afternoon Period Experiment 3 using Polynomial SVM · · · · · 71
Table 5.14: Result of Afternoon Period Experiment 4 using Radial SVM · · · · · · · · 71
Table 5.15: Overview of Adaboost experiments in different periods · · · · · · · · · · · · 73
Table 5.16: Result of Morning Period Experiment 1 with Adaboost · · · · · · · · · · · · 74
Table 5.17: Result of Noon Period Experiment 1 with Adaboost · · · · · · · · · · · · · · · 76

Table 5.18: Result of Afternoon Period Experiment 1 with Adaboost · · · · · · · · · · · · 77

1

Chapter 1

Introduction

Time series data enjoy a natural temporal ordering and tend to produce regular
fluctuations that can be of particular interest to the analyst. In statistics, many techniques
may be used to predict future values in time series. Most of these techniques are
prediction techniques, examples of which include regression analysis and time series
analysis, and their respective various subcategories, such as ordinary least squares,
logistic regression, autoregressive moving average models, and vector auto regression
models.

Our project uses a data mining technique called classification. The technique is used
to predict unusual surges in time series. Classification can identify the category or
categories to which a new observation belongs, or the basis through which a training set
of data is known, specifically a set containing observations belonging to a specific
category membership. With machine learning, classification is considered an instance of
supervised learning. The technique can be employed to extract meaningful statistics and
other useful characteristics of time series data.

An algorithm that implements classification is known as a classifier. The classifier
belongs to a branch of machine learning that focuses on the recognition of patterns and
regularities in data. Classifier performance depends greatly on the characteristics of the
data to be analyzed. Many algorithms may be found in classification analysis. In this
study, decision tree, support vector machines, and Adaboost are the three algorithms
chosen in this research for both comparison and analysis.

2
To validate the quality of algorithms for our given problem, we used precision and

recall measures as comparators between different algorithms. The minimal accepted
precision score was set as 60%, with 70% as the preferred such score, as such a result
would be more robust. Our initial experiments determined a score of 64%, with the best
result that of 77%.

Two main objectives governed our research. First, we wanted to determine new and
different experimental setups through which customized datasets could be classified.
Second, we hoped to obtain, for each of the algorithms in a particular experimental setup,
the best possible prediction precision score.

To realize these two objectives, we formulated the following six-stage process.

1. purge useless values, thus yielding a dataset that is accurate and therefore
meaningful.

2. determine, then calculate any surges in the selected patterns, in the process
generating, for classification, a valid test dataset.

3. determine, through the classification of the available algorithmic tools, whether
the

a) decision tree shows acceptable precision.

b) SVMs show greater precision.

c) size of dataset affects precision significantly.

d) different time periods within dataset enjoy different the precision scores
relative to each other.

3
e) boosting of Adaboost improves precision.

4. determine further an ideal dataset size for classification for cases where the
answers to 3(a–e) are affirmative.

5. present an algorithm for each dataset to achieve the best possible precision score.

6. suggest, based on the findings, innovative future research through which greater
precision scores may further be achieved.

1.1 Thesis structure

The structure of this thesis is as follows.

In Chapter 2 we provide a general introduction to (1) time series analysis and
prediction, (2) auto regressive integrated moving average (ARIMA), (3) decision trees
and Recursive Partitioning and Regression Trees (rpart), (4) support vector machines
(SVMs), and (5) boosting of Adaboost. All five techniques were crucial components of
this research.

In Chapter 3 we define our time series data and experimental setup. We describe the
input data in its entirety, and then represent the data through ARIMA. We also outline
our calculations of surges in time series data and detect peak data points. At that point,
we describe our subsequent collection of all the detected peak data points, and our
combining them to obtain our dataset for classification. We then outline how, by using R
programming with rpart and SVMs package, we set up valid experiments for
classification and prediction. It was through this process that we obtained our initial
results.

In Chapter 4 we describe our findings for all established datasets. We define and
describe experimental design and evaluation metrics, including classification, precision

4
and recall. We then compare performance, using these concepts and the results that were
derived through the different classification algorithms. What is more, we examine
differences in our results through the adjustment of specific small parameters we had
established to determine the best possible precision scores. Furthermore, we scale the
dataset size and thereby further obtain different and meaningful performance results. We
then examine the improvement in accuracy, and select, based on set criteria, the ideal
dataset size for our research. In the final section of this chapter, we add to our
experiments, for advanced comparison, the results of the boosting technique Adaboost.

In Chapter 5 we use time as the distinguishing feature of time series events. In
previous experiments using a complete temporal day, we achieved excellent and
encouraging precision results. We determined that, generally, time series events in
different time periods will accordingly show different results. We perform further
experiments by dividing the hours in a day into three periods, specifically, and as we
classify them formally, morning time, noon time, and afternoon time. Upon doing so, we
repeat our experiments for each respective time period, and thereby obtain precision
scores for each one. We describe our finding that Adaboost can bring significant
precision improvement, as determined through our investigation.

Finally, in Chapter 6, we describe our conclusions. We provide our recommendations
for specific algorithms dependant on different conditions and methods. We also consider
further research based on our findings. Those findings, we argue, can improve research
precision significantly.

Appendix A provides the complete set of experiment results. We are publishing this
data as a reference for both future research and project implementation.

5
Chapter 2
Literature Review

 In this chapter we provide certain general ideas, as well as background knowledge
and research techniques, about time series analysis and prediction, auto regressive
integrated moving average (ARIMA), decision trees (rpart), support vector machines
(SVMs), and boosting through Adaboost, all of which are crucial to our research. We
describe all techniques immediately below. The reader is referred to  1~26 for more
detailed information about these ideas and techniques.

2.1 Time series analysis

A time series analysis uses a sequence of temporal data points created over
specific chronological intervals. It is widely used in statistics, pattern analysis, finance,
weather forecasting, traffic volume measurement, and many other areas of scientific
research. It uses several specific means of data analysis to create meaningful statistics
pertinent to an understanding the data. [1]

Time series prediction uses previously-observed findings to predict future
occurrences. Researchers have developed many of statistical models for time series
prediction. These models can generate many alternative versions of raw data, and
represent them for different specific reasons. Either simple or fully-formed models can be
used to determine the possible future outcome of a time series, including an outcome in
the immediate future. Several methods of prediction may be applied to these outcomes to
achieve better results, examples of which include classification and regression analyses.
[2]

6
2.2 Autoregressive integrated moving average (ARIMA)

The autoregressive integrated moving average (ARIMA) model is commonly
used in statistics, particularly in time series analyses. It is a generalization of an
autoregressive moving average model, and is usually used to predict future values in time
series data. In certain cases with time series data, the data under scrutiny show instability.
With these cases, the difference or average can be calculated and applied to reduce the
instability. ARIMA models can efficiently represent time series data to produce a better
understanding of that data. [3]

 Two previous students of my supervisor, Pawan Lingras, had performed the data
representation stage of our study. As I started my experiments on classification, the
results of that earlier stage assisted my understanding of both the logic and purpose of
this research.

 In 1970, G. E. P. Box and David A. Pierce introduced a method of distribution of
residual autocorrelations in auto regressive integrated moving average time series
models. [4] According to their research, many ARIMA models can transform data to white
noise—that is, an uncorrelated sequence of errors. Usually this sequence can be
computed directly from the observations if the parameters are known exactly. But if the
parameters are not known as such, the resulting sequence from computing are named as
“residuals,” which are estimates of errors.

 In this particular model, the errors contain zero autocorrelation. It is thus logical
to examine the sample of autocorrelation function of the residuals—specifically, the
adequacy of fit. The residuals of large samples from a correctly-fitted model are usually
quite close to the true errors of the executed process. But care is still needed to explain
and understand the serial correlations of the residuals. The residual autocorrelations can
be represented as a singular linear transformation of the autocorrelations of the errors so
that they can possess a singular normal distribution.

7
 Building on the earlier work of several authors [5][6] , given a discrete time
series z୲, ݖ௧ିଵ, z୲ିଶ, ... and using B for the backward shift operator such that Bݖ௧ = ݖ௧ିଵ,
the general autoregressive integrated moving average model of order (p, d, q) [7][8] may be
written

ϕ(B) ∇ௗݖ௧ = ߠ(B) ܽ௧

where ϕ(B) = 1 - ߶ଵB - … - ߶௣ܤ௣ and ߠ(B) = 1 - ߠଵB - … - ߠ௣ܤ௣, ሼܽ௧ሽ is a sequence of
independent normal deviates with common variance ߪୟమ , to be referred to as “white
noise,” and where the roots of ϕ(B) = 0 and ߠ(B) = 0 lie outside the unit circle. If ݓ௧ =
∇ௗݖ௧ = (1 − B)ௗݖ௧ is the d-th difference of the series ݖ௧, then ݓ௧ is the stationary,
invertible, mixed autoregressive moving average process given by

 = ௧ݓ
1 1

p q
i t i i t j t

i j
w a a   

  

and permitting d > 0 allows the original series to be nonstationary. Now if the model
were appropriate and the a’s for the particular sample series were calculated using the
true parameter values, then these a’s would be uncorrelated random deviates, and their
first m sample autocorrelations  1 2, , , 'mr r r r  , where m is small relative to n. It would
for moderate or large n possess a multivariate normal distribution. Also it can readily be
shown that the  kr are uncorrelated with variances from which it follows in particular
that the statistic would for large n be distributed as ݔଶ with m degrees of freedom,

2 2
1

~m
k m

k
n r x



 Furthermore, the authors discussed in some detail residual autocorrelations in
time series models, and in particular covariance matrix, both for Auto-Regressive (AR)
processes and for Moving Average (MA) processes and Auto-Regressive Integrated

8
Moving Average (ARIMA) processes. The authors also verified their concepts through
Monte Carlo experiments for each type of processes.

 In the Auto-Regressive Process, from the general AR process of order p ,

() t tB y a 

Where B, ()B , and  ta are as in ϕ(B) ∇ௗݖ௧ = ߠ(B) ܽ௧, can also be expressed as a
moving average of infinite order. Suppose then they have a series {y} where in general
 ௧ can be the d-th difference (d=0,1,2, …) of the actual observations. Then forݖ௧= ∇ௗݕ
given values 1(, ,)p      of the parameters they can define

1 1() ()t t t t p t p ta a y y y B y            

and the corresponding autocorrelation

2() t t k
k k

t

a ar r a   


Thus, in particular,

1. ()t ta a 

2. ()t ta a   are the residuals when () t tB y a  is fitted and least squares
estimated  obtained; and

3. ()kr  and ()kr  are respectively the residual.

They have remarked earlier that if the fitted model is appropriate and the parameters 
are exacly known, then the calculated a’s would be uncorrelated normal deviates, their

9

serial correlations r would be approximately (0, (1/))N n I , and thus 2
1
m

kn r would
possess a 2x distribution with m degrees of freedom. If m is taken sufficiently large so
that the elements after the m-th in the latent vectors of Q are essentially zero, then they
finally obtain the distribution of

2
1 ˆm

kn r

When estimates  are substituted for the true parameters  in the model, will still be
distributed as 2x , only now with m-p rather than m degrees of freedom.

The conclusion the researchers reached, as shown above, was that, to a mild
approximation, the residuals from any moving average, including mixed auto-regressive
moving average processes, will be the same as those from a suitably-chosen
autoregressive process. More precisely:

1. The residuals can immediately use the AR results for autoregressive integrated
moving average process by considering the corresponding variance and
covariance matrix of r̂ from the pure AR process of

() () ()t t tB x B B x a  

2. In particular, it follows, from the finding described immediately above, that
the test for the adequacy of any ARIMA process is obtained by referring

2
1 ˆm

kk r to a 2x distribution with v degree of freedom, where
v m p q   .

When considering Box and Pierce’s research, I am able to comprehend better the
function of ARIMA models in statistics. I have also gained greater appreciation of this
crucial fact: the time series data can be more efficiently represented by ARIMA models

10
than other models. Though I did not, in the preparation of this study, design the data
representation stage, I was nevertheless able to develop and use, through data
representation, an effective understanding of the results. And this understanding in turn
helped both to resolve possible problems, and validate the accuracy of results in each
stage of my experiments.

Afterwards, when I designed and performed experiments on classification stage, I
chose the decision trees (rpart), support vector machines (SVMs) and Adaboost models to
identify our strategies.

2.3 Decision tree and rpart

In statistics, the decision tree is a decision support tool that uses a tree-like graph
or model of decisions and their possible consequences. Decision trees are widely used in
data analysis to help identify strategies.

In decision analysis, a decision tree is used as an analytical decision support tool,
where the expected values of competing alternatives are calculated.

In decision tree, each internal node represents a test on an attribute, each branch
represents the outcome of the test, and each leaf node represents a class label. The paths
from root to leaf represents classification rules. [9]

A decision tree usually comprises three types of nodes:

1. Decision nodes – represented by squares
2. Chance nodes – represented by circles
3. End nodes – represented by triangles

A decision tree model should be a best-choice model if no recall is present under
incomplete knowledge.

11
I chose R programming, which is an open source software environment for

statistical computing. As the most widely used computing software among statisticians
and data miners for data analysis [10][11] , it provides one or more decision tree algorithms
with classification and regression tree package, for example rpart.

To understand better decision tree algorithms and how to properly apply rpart
package in R to identify strategies, I reviewed a lot of papers and articles. Below are two
good examples with experiments described.

David M. Magerman had introduced several decision tree models for parsing in
statistics in 1995. [12] This initiative is an effective one that I explored through article. It
has provided me, through study of his experiments, with many excellent research ideas.
My understanding of how to achieve the greatest possible precision accuracy has
improved correspondingly.

In this paper, Magerman describes SPATTER, a statistical parser based on
decision tree learning techniques. SPATTER constructs a complete parse for every
sentence. It achieves accuracy rates far better than any parser described in earlier
published research. Syntactic natural language parsers, in contrast, are usually
inadequate for processing highly ambiguous and large vocabulary text. Magerman had
executed effective experiments on the problems of syntactic natural language parsers.
His work is based on three premises:

1. Grammars are too complex and detailed to develop manually for most
interesting domains.

2. Parsing models must rely heavily on lexical and contextual
information to analyze sentence accurately.

3. Existing n-gram modeling techniques are inadequate for parsing
models.

12
Magerman performed several experiments comparing SPATTER with many other

parsers. SPATTER achieved the best results with 86% precision, 86% recall, and 1.3
crossing brackets per sentence for sentences of 40 words or fewer, and 91% precision, 90
recall, and 0.5 crossing brackets for sentences between 10 and 20 words in length.

Magerman’s work addresses the problem of automatically discovering the
disambiguation criteria for all the decisions made during the parsing process, given the
set of possible features which can act as disambiguators. All decisions are pursued non-
deterministically according to the probability of each choice. These probabilities are
estimated using statistical decision tree models. The probability of a complete parse tree
(T) of a sentence (S) is the product of each decision (id) conditioned on all previous
decisions:

1 2(|) (|)
i

i i i i
d T

P T S P d d d d S 
 

 Each decision sequence constructs a unique parse. By combining a stack decoder
search, it is possible to identify the highest probability parse for any sentence, using a
reasonable amount of memory and time.

 Magerman began to describe the decision tree modeling process by showing that
decision tree models are equivalent to interpolated n-gram models. He then described the
training and parsing procedures used in SPATTER. Finally, he presented results of
experiments, comparing SPATTER with a grammarian’s rule-based statistical parser,
along with more recent results.

 In the decision tree modeling section of the research, he posed two questions:

1. What is the word being tagged?
2. What is the tag of the previous word?

13
For each question, he received two answers. The decision tree could then assign

the tag f=determiner with probability. If not, decision tree might, at that point, ask a
successor question.

With a decision tree, each question asked the tree is represented by a tree node.
The possible answers to this question are associated with branches from the node. Each
node defines a probability distribution on the space of possible decisions. A node at
where the decision tree stops asking questions is a leaf node. The leaf nodes represent the
unique states in the decision-making problem which lead to the same leaf node have all
the same probability distribution for the decision. See Figure 2.1.

Figure 2.1: A sample of basic decision tree structure

Under certain definition of n-gram model, an n-gram model can be represented by
a decision tree model with n-1 questions. For instance, the part-of-speech tagging model

1 2(|)i i i iP t w t t  can be interpreted as a 4-gram model, where 1H is the variable denoting

14
the word being tagged, 2H is the variable denoting the tag of previous word, and 3H is
the variable denoting the tag of the word two words back. An interpolated n-gram model
can represent this model type.

Once the model parameterization has been defined, the next stage is model
estimation. The standard approach to model estimation is a two-step process. The first
step is to count the number of occurrences of each n-gram from a training corpus. This
process determines the empirical distribution:

  1 2 1
1 2 1

1 2 1
(|) n

n
n

Count h h h fP f h h h Count h h h



 




 The second step is the smoothing of the empirical distribution using a separate
corpus. This step improves the empirical distribution by finding statistically unreliable
parameter estimates, then adjusting them based on more reliable information. For
example, a model 1 2 3(|)P f h h h can be interpolated as follows:

 
 
 
 
 
 
 

1 2 3 1 1 2 3 1 2 3

2 1 2 3 1 2

3 1 2 3 1 3

4 1 2 3 2 3

5 1 2 3 1

6 1 2 3 2

7 1 2 3 3

(|) (|)
(|)
(|)
(|)
(|)
(|)
(|)

P f h h h h h h P f h h h
h h h P f h h
h h h P f h h
h h h P f h h
h h h P f h
h h h P f h
h h h P f h



















By using leaf nodes of k, a decision tree can be defined as an interpolated n-gram
model where the i function is defined as:

15

  1 2
1 2

1
0

m
m

k k k
i k k k

if h h h is a leafh h h otherwise  




Comparing with the general decision tree algorithms, Magerman introduced his
SPATTER parsing algorithm. The algorithm is based on interpreting parsing as a
statistical pattern-recognition process. In SPATTER, a parse tree in encoded in terms of
four elementary components: words, tags, labels and extensions. Each component has a
fixed vocabulary. The word can take on any value of any word; the tag any value in the
part-of-speech tag set; the label any value in non-terminal set; and the extension any of
the following five values: (1) the first child, (2) the last child, (3) neither the first nor the
last child, (4) an unary child, and (5) the root of the tree.

Furthermore, the training algorithm is divided into two sets: approximately 90%
for tree growing and 10% for tree smoothing. For each parsed sentence in the tree
growing corpus, the correct stat sequence is traversed. The parsing procedure is a search
for the highest probability parse tree. SPATTER’s search procedure uses a two-phase
approach to identify the highest probability parse of a sentence. Experimentally, the
search algorithm guarantees the highest probability parse is found for over 96% of the
sentences parsed. Comparing with IBM Computer Manuals, [13] the IBM parser achieved
a 0-crossing-brackets score of 69%, and by using the same test set, SPATTER scored
76%. Also, SPATTER showed advantages in comparison with another algorithm, Wall
Street Journal.

The conclusion that Magerman reached was clear: if a particular piece of
information is necessary for solving a disambiguation problem, it must be made available
to the disambiguation mechanism. The SPATTER parser illustrates how large amounts of
contextual information can be incorporated into a statistical model for parsing by
applying decision-tree learning algorithms to a large annotated corpus.

Through Magerman’s work, I determined the structure of decision tree and how to
design a decision tree model. I also learned how to establish a prototype experiment for

16
my study, and how to compare results of decision tree with other statistic models.
Afterwards, I would need to apply R programming to the decision tree algorithm. The
package that I chose was rpart.

To learn to design and write an R program with rpart package I used the paper of
“An Introduction to Recursive Partitioning Using the RPART Routines,” written by Terry
M. Therneau and Elizabeth J. Atkinson, and published in 1997. [14]

In the paper, the authors described whole processing in detail, including the
concepts of building the tree, pruning the tree, missing data, further option, regression,
Poisson regression, and plotting options through test cases. After experiments, Therneau
and Atkinson achieved the final model to be subtree with the lowest estimate of risk. At
each step, the authors demonstrated how to apply rpart package in R.

Using rpart function in R to make initial model, the first argument of the function
is a model formula, with the tilde (~) standing for “is modeled as.” The print function
gives an abbreviated output, as for other S models. The plot and text command plot the
tree. The plot is then labelled.

 For example, the variables in the dataset are
 pgtime time to progression, or last follow-up free of progression

pgstat status at last follow-up (1=progressed, 0=censored)
age age at diagnosis
eet early endocrine therapy (1=no, 0=yes)
ploidy diploid/tetraploid/aneuploid DNA pattern
g2 % of cells in G2 phase
grade tumor grade (1-4)
gleason Gleason grade (3-10)

And the example of R program is shown in Figure 2.2.

17
> progstat <- factor(stagec$pgstat, levels=0:1, labels=c("No", "Prog"))
> cfit <- rpart(progstat ∼ age + eet + g2 + grade + gleason + ploidy, data=stagec, method=’class’) > print(cfit) node), split, n, loss, yval, (yprob) * denotes terminal node 1) root 146 54 No (0.6301 0.3699) 2) grade<2.5 61 9 No (0.8525 0.1475) * 3) grade>2.5 85 40 Prog (0.4706 0.5294) 6) g2<13.2 40 17 No (0.5750 0.4250) 12) ploidy:diploid,tetraploid 31 11 No (0.6452 0.3548) 24) g2>11.845 7 1 No (0.8571 0.1429) * 25) g2<11.845 24 10 No (0.5833 0.4167) 50) g2<11.005 17 5 No (0.7059 0.2941) * 51) g2>11.005 7 2 Prog (0.2857 0.7143) * 13) ploidy:aneuploid 9 3 Prog (0.3333 0.6667) * 7) g2>13.2 45 17 Prog (0.3778 0.6222) 14) g2>17.91 22 8 No (0.6364 0.3636) 28) age>62.5 15 4 No (0.7333 0.2667) * 29) age<62.5 7 3 Prog (0.4286 0.5714) * 15) g2<17.91 23 3 Prog (0.1304 0.8696) * > plot(cfit) > text(cfit)

Figure 2.2: Example of a simple R program

 Grades 1 and 2 are placed on the left, grades 3 and 4 are placed on the right. The
tree is arranged so that the branches with the largest “average class” go to right.

 This program provided an effective means through which to start written the
initial R program and to collect initial results. I performed both tasks. I then reviewed the
method of using rpart package in R for prune tree, as shown in Figure 2.3.

18

Figure 2.3: Optimally-pruned tree for the stochastic digit recognition data

A sample of size 200 matrix was accordingly generated and the procedure applied using
the Gini index to build the tree. [15] Another example of the S-plus code to compute the
simulated data and the fit are shown in Figure 2.4.
> n <- 200 > y <- rep(0:9, length=200) > temp <- c(1,1,1,0,1,1,1, 0,0,1,0,0,1,0, 1,0,1,1,1,0,1, 1,0,1,1,0,1,1, 0,1,1,1,0,1,0, 1,1,0,1,0,1,1, 0,1,0,1,1,1,1, 1,0,1,0,0,1,0, 1,1,1,1,1,1,1, 1,1,1,1,0,1,0) > lights <- matrix(temp, 10, 7, byrow=T) # The true light pattern 0-9 > temp1 <- matrix(rbinom(n*7, 1, .9), n, 7) # Noisy lights > temp1 <- ifelse(lights[y+1,]==1, temp1, 1-temp1) > temp2 <- matrix(rbinom(n*17, 1, .5), n, 17) #Random lights > x <- cbind(temp1, temp2)

Figure 2.4: Example of the S-plus code

The particular dataset of this example can be replicated by setting.Random.seed to
c(21, 14, 49, 32, 43, 1, 32, 22, 36, 23, 28, 3) before the call to rbinom. The data then fit
the model shown in Figure 2.5.

19
> temp3 <- rpart.control(xval=10, minbucket=2, minsplit=4, cp=0)
> dfit <- rpart(y ∼ x, method=’class’, control=temp3) > printcp(dfit) Classification tree:
rpart(formula = y ∼ x, method = "class", control = temp3) Variables actually used in tree construction: [1] x.1 x.10 x.12 x.13 x.15 x.19 x.2 x.20 x.22 x.3 x.4 x.5 x.6 x.7 x.8 Root node error: 180/200 = 0.9 CP nsplit rel error xerror xstd 1 0.1055556 0 1.00000 1.09444 0.0095501 2 0.0888889 2 0.79444 1.01667 0.0219110 3 0.0777778 3 0.70556 0.90556 0.0305075 4 0.0666667 5 0.55556 0.75000 0.0367990 5 0.0555556 8 0.36111 0.56111 0.0392817 6 0.0166667 9 0.30556 0.36111 0.0367990 7 0.0111111 11 0.27222 0.37778 0.0372181 8 0.0083333 12 0.26111 0.36111 0.0367990 9 0.0055556 16 0.22778 0.35556 0.0366498 10 0.0027778 27 0.16667 0.34444 0.0363369 11 0.0013889 31 0.15556 0.36667 0.0369434 12 0.0000000 35 0.15000 0.36667 0.0369434 > fit9 <- prune(dfit, cp=.02) > plot(fit9, branch=.3, compress=T) > text(fit9)

Figure 2.5: Example of replicated dataset by setting.Random.seed

 Examining Figure 2.5, we can see the best tree has 10 terminal nodes based on
cross validation. The largest tree, with 35 terminal nodes, classifies correctly 85% of the
observations.

The best practice had yielded excellent examples for the writing of my R
programming with rpart package. By setting up my experiments using R programming
with rpart, I built my linear models and datasets successfully. I was then able to complete
the classification step and thus attain my initial results.

2.4 Support vector machines (SVMs)

In additional to rpart, SVMs (support vector machines) are widely used in
classification and regression analysis. SVMs can efficiently perform a non-linear
classification using kernel trick, implicitly mapping their respective inputs into high-
dimensional feature spaces. SVMs are supervised learning models with associated
learning algorithms that can both analyze data and recognize patterns. Once given a set of

20
training examples, each marked for belonging to one of two categories, an SVM training
algorithm builds a model that assigns new examples into one category or the other,
making this algorithm a non-probabilistic binary linear classifier. An SVM model is a
representation of the examples as points in space, mapped so that the examples of the
separate categories are divided by a clear gap that is as wide as possible. New examples
are then plotted into that same space, and predicted as belonging to a category based on
which side of the gap they fall. [16]

Figure 2.6: Maximum-margin hyperplane and margins for an SVM trained with samples

from two classes. Samples on the margin are called the support vectors.

For linear models, both rpart and SVMs are effective tools to perform
classification experiments. Furthermore, I can also use SVMs to explore non-linear
classification results. After I understood the SVM concept and theory I used, as a good
guidance and instruction, Support Vector Machines: The Interface to Libsvm in Package
e1071 by David Meyer, [17] a guide to learning SVMs in R programming.

21
The package e1071 offers an interface to libsvm featuring [18]
 • C- and ν-classification

• one-class-classification (novelty detection)
• ǫ- and ν-regression

and includes
• linear, polynomial, radial basis function, and sigmoidal kernels
• formula interface
• k-fold cross validation

 The R interface to libsvm in package e1071, svm(), was designed to be as
intuitive as possible. The engine is programmed to be intelligent in mode selection. It
does so using the dependent variable’s type (y): if y is a factor, the engine switches
accordingly to classification mode. Otherwise, it runs as a regression machine: if y is
omitted, the engine assumes a novelty detection task.

 Magerman provides two examples of the practical use of svm(), along with
respective comparisons to classification and regression trees as implemented in rpart().
Through the examples, the researchers cited by Magerman used the glass data from UCI
Repository of Machine Learning Databases. [19] The task is to predict the type of a glass
on basis of its chemical analysis.

 Classification

 The researcher started the experiment through splitting the data into a training set
and test set.
> library(e1071) > library(rpart) > data(Glass, package="mlbench") > ## split data into a train and test set > index <- 1:nrow(Glass) > testindex <- sample(index, trunc(length(index)/3)) > testset <- Glass[testindex,] > trainset <- Glass[-testindex,]

Figure 2.7: Sample of rpart(e1071) in R

22
Both for the SVM and rpart, fit the model was fit and the researchers tried to

predict the test set values:
> ## svm > svm.model <- svm(Type ~ ., data = trainset, cost = 100, gamma = 1) > svm.pred <- predict(svm.model, testset[,-10]) > ## rpart > rpart.model <- rpart(Type ~ ., data = trainset) > rpart.pred <- predict(rpart.model, testset[,-10], type = "class")

Figure 2.8: Sample of svm() and rpart() in R

A cross-tabulation of the true versus the predicted values yielded the following
result:
> ## compute svm confusion matrix > table(pred = svm.pred, true = testset[,10]) true pred 1 2 3 5 6 7 1 16 4 1 0 0 0 2 8 20 1 4 3 2 3 2 1 2 0 0 0 5 0 0 0 1 0 0 6 0 0 0 0 1 0 7 0 0 0 0 0 5 > ## compute rpart confusion matrix > table(pred = rpart.pred, true = testset[,10]) true pred 1 2 3 5 6 7 1 17 5 0 0 0 0 2 7 17 1 0 2 1 3 2 1 3 0 0 0 5 0 2 0 5 2 0 6 0 0 0 0 0 0 7 0 0 0 0 0 6

Figure 2.9: Sample results of svm() and rpart()

 method Min. 1st Qu. Median Mean 3rd Qu. Max.
Accuracy svm 0.56 0.61 0.52 0.64 0.66 0.69

rpart 0.36 0.45 0.5 0.48 0.52 0.54
Kappa svm 0.55 0.64 0.66 0.66 0.7 0.73

rpart 0.4 0.5 0.53 0.54 0.59 0.63
Table 2.1: Performance of svm() and rpart() for classification (10 replications)

23
Finally, the researchers compared the performance of the two methods and

summarized the results of 10 replications. The SVMs produced better results.

Non-linear -Regression:

The regression capabilities of SVMs are demonstrated on the ozone data.

> library(e1071) > library(rpart) > data(Ozone, package="mlbench") > ## split data into a train and test set > index <- 1:nrow(Ozone) > testindex <- sample(index, trunc(length(index)/3)) > testset <- na.omit(Ozone[testindex,-3]) > trainset <- na.omit(Ozone[-testindex,-3]) > ## svm > svm.model <- svm(V4 ~ ., data = trainset, cost = 1000, gamma = 0.0001) > svm.pred <- predict(svm.model, testset[,-3]) > crossprod(svm.pred - testset[,3]) / length(testindex) [,1] [1,] 12.02348 > ## rpart > rpart.model <- rpart(V4 ~ ., data = trainset) > rpart.pred <- predict(rpart.model, testset[,-3]) > crossprod(rpart.pred - testset[,3]) / length(testindex) [,1] [1,] 21.03352

Figure 2.10: Sample of svm() and rpart() in R and the results

 Min. 1st Qu. Median Mean 3rd Qu. Max.
svm 8.08 10.87 11.39 11.61 11.99 15.61
rpart 14.28 17.41 19.68 20.59 21.11 30.22

Table 2.2: Performance of svm() and rpart() for regression (Mean Squared Error, 10
replications)

 Comparing the two methods by the mean squared error, svm() performs far better
than does rpart().

 The researchers conducted further experiments (kernel, linear, polynomial, radial
and sigmoid), each with new respective parameters and conditions. It was concluded that,

24
though SVMs have become a popular technique in flexible modeling, certain drawbacks
still remain: SVMs scale rather badly with the data size because of the algorithm and
kernel transformation. In addition, the correct choice of kernel parameters is crucial for
obtaining good results. Finally, the current implementation is optimized for the radial
basis function kernel only, which, in my case, clearly might be suboptimal for my own
dataset.

 Magerman’s work provided excellent instruction and guidance through which I
learned to perform SVMs in R programing. I successfully obtained my classification
results with SVMs and compared them with rpart. I then decided to execute the same
tests through another boosting technique, specifically Adaboost.

 2.5 Boosting technique of Adaboost

Boosting is one of the most important developments among classification
methods. Boosting applies a classification algorithm to reweighted versions of the
training data, upon which it takes a weighted majority vote of the sequence of classifiers
thus produced. [20] For the two-class problem, boosting can be viewed as an
approximation to additive modeling on the logistic scale. [21]

The standard description in the two-class classification setting is not complex, as
is shown below.

There are training data    1 1, , , ,n nx y x y with ix a vector valued feature and
1iy   or 1.  

1
cM

m mF x f is defined where each  mf x is a classifier producing

values plus or minus 1 and mc are constants; the corresponding prediction is sign   F x .
Adaboost trains the classifiers f_m(x) on weighted versions of the training sample, giving
higher weight to cases currently misclassified. [21] This process is executed for a sequence
of weighted samples, and the final classifier is then defined to be a linear combination of
the classifiers from each stage.

25
Adaboost is part of the ada package in R programming. It is not difficult to apply

the package and to collect results accordingly. For a better understanding of the package,
I reviewed in detailed those cited articles on the package that are the most cited.

In 2001, G. Ratsch, T. Onoda and K.-R. Muller published an article to introduce
the soft margins for Adaboost. [22] The margin distribution of Adaboost is central to the
understanding that Adaboost does overfit in the low-nose regime for higher noise levels.
The authors found that Adaboost achieves a hard margin distribution that is highly
similar to that of Support Vectors. (A hard margin is a sub-optimal strategy in the noisy
case.) The authors proposed several regularization methods and generalizations of the
original Adaboost algorithm to achieve a soft marge. The experiments they had
previously performed demonstrated that the proposed regularized Adaboost-type
algorithms were useful, and yielded competitive results for noisy data.

First of all, Ratsch et al. analyzed the learning process of Adaboost through
algorithm, error function, annealing process and asymptotic analysis. But, as it pertained
more directly to my own research, I paid particular attention to the third and the fourth
sections of the paper. These sections pertained to hard margin and overfitting, and
improvements using a soft margin, respectively.

In the section of hard margin and overfitting, Ratsch et al. describe why the ATA
is not noise robust, and the reasons it exhibits suboptimal generalization ability in the
presence of noise. In the binary classification case, they define the margin for an input-
output pair (,)i i iz x y as  ,iz c . The margin ()c of a classifier is defined as the smallest
margin of a pattern over the training set,  1,...,() min ,ii lc z c  . Their main result is a
bound on the generalization error  ~ 0z DP z    depending on the VC-dimension d of the
base hypotheses class and on the margin distribution on the training set. By given the
equation with probability at least 1 

26

       2
~ ~Z 2

log /10 log 1/z D z
d l dP z P z l    

                   

is satisfied, where 0  and l denotes the number of patterns. It was stated that the
reason for the success of Adaboost, compared to other ensemble learning methods, is the
maximization of the margin. Adaboost maximizes the margin of those patterns which are
the most difficult. By increasing the minimum margin of a few patterns, the margin of the
rest of the other patterns is accordingly reduced.

Through their experiments, Ratsch et al. demonstrated that, as the margin
increases, the generalization performance becomes accordingly better on those datasets
with almost no noise. However, the authors also observed that Adaboost overfits on noisy
data. To discuss the generally bad performance of hard margin classifiers, they analyzed
the top example.

Figure 2.11: The problem of finding a maximum margin “hyper-plane” on reliable data

(left), data with outlier (middle) and with a mislabeled pattern (right). The solid line shows the
resulting decision line, whereas the dashed line marks the margin area. In the middle and on the

left the original decision line is plotted with dots. The hard margin implies noise sensitivity,
because only one pattern can spoil the whole estimation of the decision line

27
If more and more complexity can be generated through the combination of many

hypotheses, the overfitting problem becomes even more distinct. Then all training
patterns can be classified correctly. In Figure 2.11 (right) we can see that the decision
surface is rather rough and provides only bad generalization. It is required that the
smallest margin should be maximized. The authors then introduce several possibilities to
mistrust parts of the data, which leads to the soft margin concept.

As well as their experiments on hard margin, Ratsch et al. demonstrate how to use
the soft margin idea for ATAs. First, they compare margin with influence of a pattern.
From their experiment, all training patterns will get a margin  iz larger than or equal
to 1-2 after asymptotically many iterations The margin  of a classifier (instance) is
defined as the smallest margin of a pattern over the training set. They can see the G(b) is
minimized as  is maximized, where

 ,iz c  for all 1, ,i l 

After many iterations, these inequalities are satisfied for  that is larger or equal
than the margin. If  > 0, then all patterns are classified according to their possibly
wrong labels. Any modification that improves Adaboost on noisy data, the authors
reason, must not force all margins beyond 0. Ratsch et al. then remove unreliable patterns
and obtain

 ,iz c 

Finally Ratsch et al. determine that the smallest soft margin can simply be
maximized. They define  based on the influence of a pattern on the combined
hypotheses rh

   
1

t
t i r r i

r
z c w z


 

28
which is the average weight of a pattern computed during the ATA learning process.
Interestingly, in the noise case a high overlap occurs between patterns with high influence
and mislabeled patterns. As a result, the authors execute trade-offs between margin and
influence.

After the algorithm has been created, Ratsch et al. demonstrate how to use linear
programming to maximize the smallest margin for a given ensemble and proposed LP-
Adaboost. [23] This LP-Adaboost algorithm achieves a larger hard margin than does the
original Adaboost algorithm. The authors also defined a soft margin for a pattern which is
technically equivalent to the introduction of slack variables i , and they reached the
algorithm REGLP -Adaboost. [22] This modification allows that certain patterns enjoy
smaller margins than . This modified algorithm is still related to the LP-SVM approach.
[24] In further research, Ratsch et al. extend the REGLP -Adboost algorithm to quadratic
programming by using SVMs. [25] [26] This later research provides more details about the
connection between SVMs and Adaboost.

Through the repetition of several related experiments,The paper reaches the
conclusion that Adaboost performs a constrained gradient descent in an error function,
one that optimizes the margin. The authors conclude that ATAs and hard margin
classifiers are in general noise sensitive and prone to overfit. In the experiments on noisy
data, the proposed regularized versions of Adaboost showed a more robust behavior than
did the original Adaboost. The authors recommended a further analysis of the relation
between Adaboost and SVMs from the margin perspective, with a particular focus on the
question of what good margin distributions should look like.

That paper proved beneficial to me, as it demonstrated how to use the boosting
technique of Adaboost in my experiments correctly, and how to understand the technique
in comparison with the SVMs. Ratsch et al. also helped me understand the results from
my experiments with particular clarity.

29
Chapter 3
Data and Experimental Setup

In this chapter we define our time series data and experimental setup. We describe
the input data completely and then represent the input data by using the ARIMA (auto
regressive integrated moving average) technique. We calculate surges in time series data
and detect peak data points. After we collect all the detected peak data points, we
combine them to obtain our dataset for classification. We set up experiments for
classification and prediction by using R programming with decision tree package (rpart)
and the support vector machines (SVMs) package. Finally, we obtain our initial results
through experiments.

3.1 Description of raw data

We received raw data from our partner. Our partner had recorded data from time
series events into files every day within a 6-month period.

Total size of raw data 14GB
Number of files 229
Total number of instruments 356,983,971
Date duration 6 months
Time duration per day 6 hours 45 minutes
Log interval 2-3 sec
Log starting time 09:15 AM
Log ending Time 04:00 PM
Type of files ASCII text

Table 3.1: Overview of raw data

30
 As shown in Table 3.1, we possessed a total 14 GB raw data which had 229 files
with ASCII text format. The total number of instruments in these files was 356,983,971.
These data derived from 6-month recorded log files, which between them enjoyed 2-3
seconds interval time. The log started recording at 9:15 AM and ended at 4:00 PM. The
total recording time duration per day was 6 hours and 45 minutes.

File name 3_1_eq
Size 212.64 MB
Instruments 846,696 lines
Fields 71

Table 3.2: Specification of single raw data file

 Table 3.2 was a sample of single raw data file specification. The size of the file
was 212.64MB with 846,696 lines of instruments and 71 fields. Figure 3.3 describes the
content sample of single raw data file, 3_1_eq.
log_time|book_type|trading_status|volume_traded_today|last_traded_price|net_change_indicator|net_price_change_from_closing_price|last_trade_quantity|last_trade_time|average_trade_price|auction_number|auction_status|initiator_type|initiator_price|initiator_quantity|auction_price|auction_quantity|q1|p1|no1|bb1|q2|p2|no2|bb2|q3|p3|no3|bb3|q4|p4|no4|bb4|q5|p5|no5|bb5|q6|p6|no6|bb6|q7|p7|no7|bb7|q8|p8|no8|bb8|q9|p9|no9|bb9|q10|p10|no10|bb10|bb_total_buy_flag|bb_total_sell_flag|total_buy_quantity|total_sell_quantity|_reserved1|sell|buy|last_trade_less|last_trade_more|_reserved2|closing_price|open_price|high_price|low_price 2011-08-01 09:15:02|1|2|0|819||0|500|996421925|0|0|0|0|0|0|0|0|200|828|1|0|200|823|1|0|50|822|1|0|2500|821|2|0|300|820|2|0|350|836|2|0|300|846|1|0|50|858|1|0|50|860|1|0|100|869|1|0|0|0|20555.000000|2375.000000|0|0|0|0|0|0|819|0|0|0 2011-08-01 09:15:04|1|2|1000|836|+|41|100|996657304|832|0|0|0|0|0|0|0|200|828|1|0|200|823|1|0|1350|822|4|0|2500|821|2|0|1600|820|5|0|250|836|1|0|300|846|1|0|150|848|1|0|50|858|1|0|1100|859|2|0|0|0|26938.000000|7555.000000|0|0|0|0|1|0|819|832|836|832 … … 2012-01-31 15:54:37|1|2|5960484|316||0|100|1012492288|304|0|0|0|0|0|0|0|12635|316|5|0.000000|0.000000|0|0|0|0|0|0|316|299|318|292

Figure 3.3: Sample of single raw data file content

In 3_1_eq, the table includes a caption line which explains the meaning of each
column starting from “log_time” to “low_price”The data value lines start after headers
and are each divided by “|” into columns which each match the format of head line. For

31
example, a data line in 3_1_eq starting with 2011-08-01 09:15:04 and ending with
832|836|832 can be easily explained and shown in Table 3.3.

log_time 2011-08-01 09:15:04
book_type 1
trading_status 2
volume_traded_today 1000
last_traded_price 836
net_change_indicator + (it means increase)
net_price_change_from_closing_price 41
last_trade_quantity 100
last_trade_time 996657304
average_trade_price 832
total_buy_quantity 26938.00000
total_sell_quantity 7555.00000
closing_price 819
open_price 832
high_price 836
low_price 832

Table 3.3: Explanation of single raw data file contents

3.2 Data representation

 The raw data files needed to be prepared by purging useless values so that
meaningful information could thus be discovered. We then sorted these raw values by the
divisions of time, price, and volume, upon which we formed new patterns for clustering.
Afterwards, we created time series patterns before surges could be calculated.

Vinod Reddy Gandra, a previous student of my thesis supervisor, had written a
program tool using AWK and Shell-script. The function of this tool was to extract the
required data from original input files. The required fields in each file were timestamps,
last traded price, and trading volume.

32
Specific data ticks then emerged as part of this process. These ticks were removed

since they did not contribute to actual trading. And certain ticks from 09:15 to 09:30 AM
were also removed for this reason.

By running this program, we generated new .csv files for each _eq files. The file
format of .csv files is given by date, time, observations numbers, prices, and volumes
traded. An output sample file of 3_1_eq.csv is shown in Figure 3.4.
2011-08-01, 2554,819,836,828,836,838,838,849,841,840,840,840,838,841,822,840,829,828,839,839,835,839,839,840,840,840,844,840,840,840,838,839,839,838,829,835,835,834,834, … …, 2000,200,233,8,1750,500,200,9,1000,2000,455,1306,500,3000,1306,2186,695,5000,100

Figure 3.4: Sample of represented output .csv file

Vinod also wrote an R program to create the statistics of the prices in a day. For
each line of instruments in each day, the quintiles of the prices (0, 5, 15, 50, 85, 95, 100
percentile values) and standard deviation of the prices are calculated. Along with this
quantities and standard deviation of the 100 tick returns divided by opening price of 100
tick window are also calculated. After calculating the above values, the statistics of the
prices are divided by the opening price of the day. Each .csv file generate a .stat file.
Figure 3.5 is a sample of output file, 3_1_eq.stat.
 2011-08-01, 3_1_eq,2554,817.489819890368,805,808,808,820,826,832,849,8.41128993679112,809,0,0,0,0.00123609394313968,0.00371241290795746,0.00732600732600733,0.0195360195360195,0.00245472070637384 … … 2012-01-31, 3_1_eq,4568,302.242338003503,292,294,295,301,311,316,318,7.07726960705159,316,0,0,0,0.00337837837837838,0.0099009900990099,0.0167224080267559,0.033112582781457,0.00542903043206755

Figure 3.5: Sample of represented output .stat file

We considered each line of instruments on a day as an object. We clustered these

objects based on the statistics we created in the last step. After clustering we stored the

33
results in .v file and we determined the cluster membership of each object. We analyzed
the clustering results, then created a single output file of TotalData.stat, as shown in
Figure 3.6:

2011-08-01, 3_1_eq,2554,0.984721742599751,0.988391513069067,0.988391513069067,1.00307059494633,1.01041013588496,1.01774967682359,1.03854504281638,0.0102891678062965,0.989614769892172,0,0,0,0.00123609394313968,0.00371241290795746,0.00732600732600733,0.0195360195360195,0.00245472070637384 … … 2012-01-31, Z_2_eq,3849,0.986685447684433,0.990257518894875,0.991051312497196,0.996210970912279,1.01367443016333,1.01724650137377,1.0339161670225,0.0097481569022516,1.0339161670225,0,0,0.000400064025610244,0.00199600798403194,0.0054979581048326,0.00785,0.0146418678274634,0.00278037528675298
 Figure 3.6: Sample of after-clustered .stat file

The final step before proceeding was to create time series patterns. Another

previous student, Shuhbangi Aggarwal, wrote a Python program to divide the .stat file
into time series patterns. We create *patterns files. For example, 15Patterns meant
patterns were divided by intervals of 15 seconds. The sample output file of
3_1_eq_15Pattern is shown as Figure 3.7:

"Date"|"open price"|"avgp0"|"avgp1"|"avgp2"|"avgp3"|"avgp4"|"avgp5"|"avgp6"|"avgp7" |"avgp8"|"avgp9"|"avgp10"|"avgp11"|"avgp12"|"avgp13"|"avgp14"|"avgp15"| … … "vt0"|"vt1"|"vt2"|"vt3"|"vt4"|"vt5"|"vt6"|"vt7"|"vt8"|"vt9"|"vt10"|"vt11"|"vt12"|"vt13"|"vt14"|"vt15"| … … "2011-08-01" |835|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|1.0|0.99880239521|0.998802 39521|0.99880239521|0.99880239521|0.99880239521|0.997604790419|0.997604790419|0.997604790419|0.997604790419|0.997604790419| … … |11900|40127|7437|31937|15315|7004|0|5955|1306|500|0|0|0|0|0|0|0|0|0|3000|6000|0|0|0|0|0|0|0|695|0|0|5000|100|0
Figure 3.7: Sample of time series patterns file

34
3.3 Surges calculation (peaks detection)

We segmented patterns by initial interval time tick (t), which was a small time
interval, such as 15 seconds.

 Figure 3.8: Explanation of pattern specifications. ଴ܶ is a look back value. ଵܶ is a starting value.

ଵܶ to ହܶ is a look up range. ଴ܶ to ହܶ is a window (k)

 We examined the starting value ଵܶ by checking the look up range. If the pattern
increases, we obtained the first highest value before it decreases. To calculate the
percentage of change, we started with the highest value, subtracted the starting value,
then divided by the starting value. If this result was greater than a customized threshold
value 0.01 or 1% (݈), we called this high value a peak (surge) value, and this pattern a
peak pattern.

 For example, in Figure 3.8, the starting value (ଵܶ) is 8, and the look up range is
from ଵܶ to ହܶ . Before pattern shifts down we can find the highest value is 6 (ଷܶ). We then
calculate the surge:

35

 య்ି భ்
భ் = ଺ି଼

଼ = - 0.25 < 0.1 Peak Detection = False

So ଷܶ is a non-peak value. The pattern proceeding from ଵܶ to ହܶ is thus not a peak
pattern.

Figure 3.9: Example of a peak value found in pattern

In Figure 3.9, we move calculations onto the pattern which starts at ଶܶ and moves
to ଺ܶ. In this pattern, the starting value (ଶܶ) is 5 and the highest value is 9 (଺ܶ). Then the
surge is:

ల்ି మ்
మ் = ଽିହ

ହ = 0.8 > 0.1 Peak Detection = True

଺ܶ is thus a peak value. The pattern that starts at ଶܶ and moves to ଺ܶ is a peak
pattern.

36

Figure 3.10: Example of peak value and non-peak values in pattern

If we look at the pattern in Figure 3.10, which starts at ଷܶ and moves ଻ܶ, we note
that, though both of ଺ܶ and ଻ܶ are highest values, only ଺ܶ is the peak value, with ଻ܶ a
non-peak value. Owing to our algorithm, we count only the first highest value as a peak
value. But the pattern which moves from ଷܶ to ଻ܶ is still a peak pattern because it has a
peak value ଺ܶ.

We can provide several examples of patterns through which can show us how to
identify a pattern if it is a peak pattern.

37

Figure 3.11: Non-peak pattern exmaple A

 In Figure 3.11, the overall pattern continually shifts down and peak value is not
detected in this particular pattern.

Figure 3.12: Non-peak pattern example B

38
 In Figure 3.12, the highest value is ଷܶ.

 య்ି భ்
భ் = ହିହ

ହ = 0 < 0.1 Peak Detection = False

So ଶܶ is a non-peak value. The pattern is not a peak pattern.

Figure 3.13: Peak pattern example A

In Figure 3.13, the highest value is ସܶ.

 ర்ି భ்
భ் = ଽିଵ

ଵ = 8 > 0.1 Peak Detection = True

So ସܶ is a peak value. The pattern is a peak pattern.

39

Figure 3.14: Peak patern example B

In Figure 3.14, the highest values are ଷܶ and ହܶ. ଷܶ is the first highest value.

 య்ି భ்
భ் = ଽି଼

଼ = 0.125 > 0.1 Peak Detection = True

So ଷܶ is a peak value, but ହܶ is not a peak value. The pattern is a peak pattern.

We repeat the peak calculations until we determine all the peak patterns present. We
then catalog all the patterns which do not have peak values to level ݈଴, and we give 0 to
this level ݈଴. We name level ݈଴ as threshold value. Similarly, we set ݈ଵ=1 if surge is (1%-
2%), ݈ଶ=2 (2%-3%) … ݈௡=n.

We created a new dataset with all peak patterns by printing pattern name, date, time,
value strings at look back range, and threshold value. We also created another dataset,
this one containing all non-peak patterns. We then used a combination of these patterns,
both in classification and for predicting future surges.

40
To validate this surge calculation, I wrote a Python program, specifically

PeakDetection.py. The program could calculate the surges and pick up peaks from the
15secPettern files. It could then print output results into a csv file, ToClassifyYES.csv,
with peak pattern names, date, time, value strings and threshold value (݈). Figure 3.15 is a
sample of the output file ToClassifyYES.csv.
“3_1_eq”,”2011-09-09”, 11,0,0,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.0,1.0,1.020408163,1 "3_1_eq","2011-09-09", 12,24,15,1.01360544218,1.17449664382,1 … … "Z_2_eq","2012-01-25", 14,51,0,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.00875364735,1.00875364735,1.00875364735,1.00875364735,1.03305785187,1

Figure 3.15: Sample of output file with all peak patterns

The PeakDetection.py also outputted non-peak patterns into another .csv file,
ToClassifyNO.csv, with non-peak pattern names, data, time, value strings, and threshold
value. A sample of output file, ToClassifyNO.csv, is shown in Figure 3.16. As is
indicated, the results were similar.
"3_1_eq","2011-08-01", 15,45,15,0.979640718563,0.0,0 "3_1_eq","2011-08-02", 15,45,15,0.977584059776,0.0,0 … … "Z_2_eq","2012-01-31", 15,45,15,1.00837654567,0.0,0

Figure 3.16: Sample of output file with all non-peak patterns

41
3.4 Dataset combination

We had in total 1,707 peak patterns and 885,743 non-peak patterns. Finally we
prepared a dataset (ToClassifyFinal, csv formatted) by combining peak patterns
(ToClassifyYES.csv) and non-peak patterns (ToClassifyNO.csv) for classification and
prediction. In our initial experiment, we combined 1,707 peak patterns and 1,707 non-
peak patterns, all of which were randomly picked from ToClassifyNO.csv to our test and
training dataset. The total numbers of values in dataset is 3,414. In later experiments, we
repeated this step, generating another 10 datasets by randomly picking 1,707 non-peak
patterns from ToClassifyNO.csv (ToClassifyFinal_01.csv, ToclassifyFinal_02.csv, … ,
ToClassifyFinal_10.csv). We compared results from different combinations. Table 3.4 is
an explanation of the final dataset.

Dataset file name ToClassifyFinal
Size 1.1 MB
Fields 27
Field #1 Pattern name
Field #2 Date
Field #3 - #5 Time
Field #6 - #25 Look back value

strings
Field #26 Peak Value
Field #27 Threshold value
Instruments 3414 lines
Peak patterns 1707 lines
Non-Peak patterns 1707 lines
Peak/Non-Peak combination 50%, 50%

Table 3.4: Specification explanation of final dataset, ToClassifyFinal

42
A sample of final dataset, ToClassifyFinal, is shown in Figure 3.17.

3_1_eq","2011-09-09", 11,0,0,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.00170068027,1.0,1.0,1.020408163,1 "3_1_eq","2011-09-09", 12,24,15,1.01360544218,1.17449664382,1 … … "Z_2_eq","2012-01-25", 14,51,0,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.00791996665,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.008336807,1.00875364735,1.00875364735,1.00875364735,1.00875364735,1.03305785187,1 3_1_eq","2011-08-01", 15,45,15,0.979640718563,0.0,0 "3_1_eq","2011-08-02", 15,45,15,0.977584059776,0.0,0 "Z_2_eq","2012-01-31", 15,45,15,1.00837654567,0.0,0
Figure 3.17: Sample of final dataset content

3.5 Experimental setup for classification and prediction

In our initial experiment, we used binary classification and decision tree for
prediction. There are only two classes in binary classification. We set ݈଴ to class 0 (c0),
݈ଵ … ݈௡ to class 1 (c1). We determined 1,707 peak patterns in class 1 and 1,707 non-peak
patterns in class 0.

Through the R programming language we established our classifier program using
decision tree model (rpart). Rpart, described earlier, is a linear classification method in
data mining for multivariable analysis. It picks patterns randomly from dataset, classifies
them, then makes predictions.

43
By means of my own R program, we loaded ToClassifyFinal into

rpartBinaryClassify.R. Only “look back value strings” (Field #6 - #25) and “Threshold
value” (Field #27) are selected for calculation. A sample of rpartBinaryClassify.R, is
shown in Figure3.18.
require(rpart) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal", ignore.case=TRUE) … … dat <- subset(classfile, select=c(6:27)) fit <-rpart(V27~V6+V7+V8+V9+V10+V11+V12+V13+V14+V15+V16+V17+V18+V19+V20+V21+V22+V23+V24+V25,data=dat,method="class",control=rpart.control(minsplit=1)) summary(fit) pred=predict(fit,newdata=dat,type="class") ptable=table(dat$V27,pred) ptable … …

Figure 3.18: Sample of rpartBinaryClassify.R,

We loaded all others datasets and repeated our experiments.
filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_01", ignore.case=TRUE) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_02", ignore.case=TRUE) filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_03", ignore.case=TRUE) … … filenames <- list.files(path=getwd(), pattern="ToClassifyFinal_10", ignore.case=TRUE)

Figure 3.19: Repeat experiments with all final datasets in R program using rpart

Besides rpart experiments, I also experimented by switching to SVMs (support
vector machines) package in R with linear model, polynomial model, radial model and
sigmoid model. A sample of svmClassify.R is shown in Figure 3.20.
linearModel <- svm(datatrain,classtrain,type='C',kernel='linear') linearPred <- predict(linearModel,datatrain) table(t(classtrain),linearPred) polynomialModel2 <-svm(datatrain,classtrain,type='C',kernel='polynomial',degree='2') polynomialPred2 <- predict(polynomialModel2,datatrain) table(t(classtrain),polynomialPred2) radialModel <- svm(datatrain,classtrain,type='C',kernel='radial') radialPred <- predict(radialModel,datatrain) table(t(classtrain),radialPred) sigmoidModel <- svm(datatrain,classtrain,type='C',kernel='sigmoid') sigmoidPred <- predict(sigmoidModel,datatrain) table(t(classtrain),sigmoidPred)

Figure 3.20: Sample of svmClassify.R

44
We created a dataset by combining more peak patterns and non-peak patterns.

Then we converted the result into a unique binary dataset. In this dataset, we set the
threshold value as greater than 0. We then obtained 18,807 peak patterns in class 1 and
18,807 non-peak patterns in class 0. The total size of this unique binary dataset is
11,993,024 bytes (11.44MB). We used this dataset to repeat our experiments and analyze
the different results. We explain this dataset in Table 3.5:

Dataset file name uniqTotal-20-120-FinalBinary
Size 11.44 MB
Fields 27
Field #1 Pattern name
Field #2 Date
Field #3 - #5 Time
Field #6 - #25 Look back value strings
Field #26 Peak Value
Field #27 Threshold value
Instruments 37614 lines
Peak patterns 18807 lines
Non-Peak patterns 18807 lines
Peak/Non-Peak combination 50%, 50%

Table 3.5: Specification explanation of final dataset, uniqTotal-20-120-FinalBinary

The initial experiments yielded, through different models, almost 100 sets of
results. We also adjusted the interval time range, look back time range, duration range,
threshold value, time and date.

We raised interval time ticks from 15 to 30 to 60 seconds. We created
30secPattern and 60secPattern files for repeated experiments. The original look back time

45
range was 5 minutes. We tried different range setups of 7, 10, 12 and 15 minutes,
respectively. The duration range in our initial experiment was set to 15 minutes. We
repeated experiments by using longer duration times of 20, 30, 45, 60, 90 and 120
minutes, respectively.

We were interested in changing the threshold value and thus determining different
binary results. The default value was 1%. We changed it to 2, 3, … , 9%, respectively,
and measured each set of findings accordingly.

In addition to the threshold values of ݈଴ to ݈௡, we tried different combinations by
setting different classes. For example, we combined ݈଴ and ݈ଵ to class 0 (c0), ݈ଶ … ݈௡ to
class 1 (c1), or combined ݈଴ … ݈ହ to class 0 (c0), ݈଺ … ݈௡ to class 1 (c1).

We expected to obtain different results from dividing time of day to morning,
noon and afternoon. I determined the time range for morning to from 9:30 AM to 12 PM,
time range for noon to be from 12 PM to 2 PM, and time range for afternoon to be from
2:00 to 4:30 PM.

Furthermore, we considered individual weekdays as separate datasets, i.e.,
Monday, Tuesday, Wednesday, Thursday, and Friday. We wanted to determine if the
different weekdays would produce different results.

Through these combinations, we wanted to find out the best possible results. We
believed our doing so would encourage us to proceed, in the future, with more
meaningful research in this area.

46

Parameters Values Numbers of
combinations

Interval time tick 15 seconds, 30 seconds, 6o seconds 3
Look back time range 5 minutes, 7 minutes, 10 minutes, 12

minutes, 15 minutes 5

Duration range
15 minutes, 20 minutes, 30 minutes,
45 minutes, 60 minutes, 90 minutes,
12 minutes

7
Threshold value 1%, 2%, 3%, 4%...9%+ 9
Class combination ݈଴ - ݈ଽ More than 9
Daytime divided

Morning 9:30 AM - 12 PM
Noon 12 PM - 2 PM
Afternoon 2 PM - 4:30 PM

3
Individual Weekday Monday - Friday 5
Initial experiments 100
Total expected times
of experiments 12,757,500

Table 3.6: Expectation of experimental setup for future experiments

 As the findings shown in Table 3.6 indicate, our experiments can be repeated as
many as 12,757,500 times. This feature contributed to the accuracy of our findings. Also,
we could now determine the result with the highest precision. We performed our
experiments in a large data computing environment using a super computer system.
Thanks to the support from ACENET, which provided a powerful super computer
system. The super computer system names Mahone. It is a parallel cluster at Saint Mary’s
University well suited to MPI work. The total number of nodes is 134 which has 536
CPU cores. Each node has 64 GB RAM and 2 CPU cores. It runs on Red Hat Enterprise
Linux. The environment and system saved a considerable amount of time during the
experiments.

47
Chapter 4
Modeling the Entire Day

In this chapter we describe the results of our experiments for the entire datasets.
We explain experimental design and evaluation metrics, including classification,
precision and recall. Using these notions, we compare performance based on the results
among different classification algorithms. We also examine the difference by adjusting
small parameters in the experiments we had set up. We do this to determine the best
possible precision. Furthermore, we scale the dataset size and obtain different
performance findings as a result. We look at the improvement in accuracy, and work to
determine the best proper dataset size for our research. In the last section of this chapter,
we describe the results of Adaboost to our existing experiments for advanced
comparison. Readers are referred to  27, 28, 29, 30 31and for more information about these
basic notions and techniques.

In general, clustering tries to group a set of objects and, through this process,
determine whether a relationship between the objects exists.  27  28 Classification tries to
model which predefined class a new object belongs to. In the context of machine
learning, classification is supervised learning and clustering is unsupervised learning.  29

In classification techniques, precision (also called positive predictive value) is the
fraction of retrieved instances that are relevant to the user’s search, whereas recall (also
known as sensitivity) is the fraction of relevant instances that are retrieved. Both precision
and recall are therefore based on an understanding and measure of relevance.  30

In simple terms, high recall means that an algorithm returned most of the results
relevant to the user, whereas high precision means that an algorithm returned

48
substantially more results relevant to the user than irrelevant. The definitions may be
expressed as:

Recall = (relevant values / total values) %

Precision = (relevant values / predicted values) %

 The minimal accepted precision score for our research we set as 60%, with the
aim for more robust results as 70% precision or higher. Higher precision was our primary
objective and higher recall was our secondary objective.

4.1 Initial experiments

4.1.1 Initial rpart experiments

Classification Binary
Module Decision Tree (rpart)

Parameters Values
Interval time tick 15 seconds
Look back time range 5 minutes
Duration range 15 minutes
Threshold value >=1% (0.01)

Table 4.1: Setup of initial rpart experiments

 In the initial rpart experiments, we considered different threshold values as
classes. If threshold values were greater than 1%, we classified them as class 1. If
threshold values were less than 1%, we classified them as class 0. We thus had 2 classes
and could then apply binary classification to initial rpart experiments. Table 4.1 shows
the detail setup of our initial rpart experiments. We started our experiments with decision

49
tree model rpart in R programming under Linux environment. The initial result we
obtained from Experiment 1 are provided in Table 4.2.

Initial Experiment 1 using rpart

Prediction Table
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1269 825 58 21 12 5 2 0
Positive 438 661 77 28 7 7 2 2

Table 4.2: Result of initial Experiment 1 using rpart

 From Table 4.2, we have two classes of True (peak patterns) and False (non-peak
patterns). Each of these classes contains 1,707 lines of values.

Here, we can easily obtain prediction and relevant values.

Prediction = 438 + 661 + 77 + 28 + 7 + 7 + 2 + 2 = 1222

All the false values and negative values we ignored, as our method required. We
thus obtained our relevant values:

 Relevant values = 1222 - 438 = 784

 Finally, we obtained the recall and precision scores of our initial experiment:

Recall = 784 / 3414 = 22.96%

 Precision = 784 / 1222 = 64.16%

We repeated this experiment 10 times using the same decision tree (rpart) model.
In the end, we achieved an average recall score of 25.01% and an average precision of

50
65.58%. The summary of these repeated experiments results is shown in Table 4.3. See
Experiments 1-11 in Appendix A for details.

Module Decision Tree (rpart)
Repeat Times 10
Average Recall 25.01%
Average Precision 65.58%

Table 4.3: Summary of rpart repeated experiments results

4.1.2 Initial SVMs experiments
Classification Binary
Module SVMs (Polynomial, default,

Linear, Radial, Sigmoid)
Parameters Values
Interval time tick 15 seconds
Look back time range 5 minutes
Duration range 15 minutes
Threshold value >=1% (0.01)

Table 4.4: Setup of initial SVMs experiments

 After initial rpart experiments, we considered using different kernels. Support
vector machines (SVMs), as described in subchapter 2.4 of this thesis, are supervised
learning models with associated learning algorithms that analyze data and recognize
patterns, and are often used for classification and regression analysis.  25

 As shown in Table 4.4, we were, at this stage of the research, still using binary
classification mode. We used 15 seconds interval time lapses; along with 5 minutes look
back time ranges, and 15 minutes duration range.

51
We selected different SVMs kernels with Default, Polynomial, Linear, Radial and

Sigmoid, and then applied each kernel to our experiments. We started experiments using
the Polynomial SVM first. We then obtained results from all remaining SVMs kernels in
initial experiments and repeated experiments.

Initial Experiment 2 using Polynomial SVM

Prediction Table
(Polynomial SVM)

Class
False True

Count
Negative 1694 1663
Positive 13 44

Table 4.5: Result of initial Experiment 2 using Polynomial SVM

From the Table 4.5 we can easily obtain prediction and relevant values.

Prediction = 13 + 44 = 57

Relevant values = 44

 Recall = 44 / 3414 = 1.29%

 Precision = 44 / 57 = 77.19%

Initial Experiment 3 using default SVM

Prediction Table
(Default SVM)

Class
False True

Count
Negative 862 546
Positive 845 1161

Table 4.6: Result of initial Experiment 3 using default SVM

52
Prediction = 845 + 1161 = 2006

Relevant values = 1161

 Recall = 1161 / 3414 = 34.01%

 Precision = 1161 / 2006 = 57.88%

Initial Experiment 4 using Linear SVM

Prediction Table
(Linear SVM)

Class
False True

Count
Negative 1100 963
Positive 607 744

Table 4.7: Result of Initial Experiment 4 using Linear SVM

Prediction = 607 + 744 = 1351

Relevant values = 744

 Recall = 744 / 3414 = 21.79%

 Precision = 744 / 1351 = 55.07%

Initial Experiment 5 using Radial SVM

Prediction Table
(Radial SVM)

Class
False True

Count
Negative 862 546
Positive 845 1161

Table 4.8: Result of Initial Experiment 5 using Radial SVM

53
Prediction = 845 + 1161 = 2006

Relevant values = 1161

 Recall = 1161 / 3414 = 34.01%

 Precision = 1161 / 2006 = 57.88%

Initial Experiment 6 using Sigmoid SVM

 At the Experiment 6, we tried the last listed kernel of SVMs, the Sigmoid. We
obtained the results in Table 4.9.

Prediction Table
(Sigmoid SVM)

Class
False True

Count
Negative 982 729
Positive 725 978

Table 4.9: Result of Initial Experiment 6 using Sigmoid SVM

Prediction = 725 + 978 = 1703

Relevant values = 978

 Recall = 978 / 3414 = 28.65%

 Precision = 978 / 1703 = 57.43%

4.1.3 Repeated experiments using large dataset

 After initial experiments, we repeated our experiments by using large a dataset,
one which contained a total 37,614 patterns with combination of 50% peak patterns and

54
50% non-peak patterns. The setup of these repeated experiments is shown in Table 4.10.
See Experiments 12-16 in Appendix A for details.

Classification Binary
Module rpart, SVMs
Peak patterns 18807 lines
Non-Peak patterns 18807 lines
Peak/Non-Peak combination 50%,50%
Total patterns 37614 lines
Threshold value >0

Table 4.10: Setup of repeated experiments using large dataset

We still used binary classification and applied rpart and SVMs algorithms to our
repeated experiments. Thus we obtained provided in Table 4.11.

Module Radial SVM Linear SVM Polynomial SVM Sigmoid SVM rpart
Precision 59.70% 53.51% 72.71% 58.99% 65.34%

Table 4.11: Precision from different algorithms (rpart and SVMs) using large dataset

From Table 4.11 we see the Polynomial SVM achieved the best precision score,
which was 72.71%, and the Linear SVM achieved the worst precision score, which was
53.51%.

4.1.4 Summary of all initial experiments

Experiment 22 times
Best Precision 77.19% (Experiment 2)
Worst Precision 53.51% (Experiment 20 in Appendix A)
Average Precision 63.64%
Technique Module rpart, SVMs (Radial, Polynomial, Sigmoid)

Table 4.12: Precision Summary of all initial experiments

55
 Table 4.12 shows that we performed 22 experiments with different experimental
setups by using rpart and SVMs (Radial, Polynomial, and Sigmoid). We obtained an
average precision score of 64.64%. The best precision score that we achieved was
77.19% and the worst was 53.51%.

Figure 4.1: Precision comparison of all 22 initial experiments

56
 From Figure 4.1, we can easily see the best precision score was 77.19%, which
was obtained in Experiment 2. The worst precision score was 53.51% which was
obtained in Experiment 20 in Appendix A. Though that figure fell below our target
precision of 60%, it was still greater than 50%.

In Experiment 2, where we obtained the best precision of 77.19%, we used
technique module of Polynomial SVM and the dataset is made of 3,414 patterns
including 1,707 peak patterns and 1,707 non-peak patterns. When we used bigger dataset
which contains 37,614 patterns including 18,807 peak patterns and 18,807 non-peak
patterns in Experiment 20 in Appendix A and repeated calculation, we also obtain a
precision of 72.71%. These results explain that the precision from Polynomial SVM
better than those from other algorithms whether the size of dataset is big or small.

Experiment 20 is shown in Appendix A. Here we obtained the worst precision
score, that of 53.51%. We used linear kernel of SVMs, and the bigger dataset, which
contained 37,614 patterns. When, in Experiment 4, we tried the small dataset of 3,714
patterns, the precision score was still low, specifically 55.07%. These results explain that
the precision from linear kernel of SVMs is worse than those from other algorithms,
regardless of whether the size of dataset is big or small.

 Furthermore, we find that the precision scores from rpart experiments are usually
greater than 60%. We also find that the precision scores from SVMs experiments are
usually less than 60%, but are still greater than 50%.

 Comparing rpart with Polynomial SVM, which are the best two algorithms from
our experiments, the better algorithm is Polynomial SVM, which can achieve a precision
score of 70%.

 Besides these findings, we also find that precision scores are obtained, under the
linear variation, by changing the size of dataset. The bigger the dataset chosen, the worse
the precision score that is obtained. Similarly, the smaller dataset chosen, the better the
precision score that is obtained.

57
 4.2 Adaboost algorithm in R classification

We also bring a new package of R which is Adaboost (Adaptive Boosting) into
our existing experiments and observe the improvements.

Boosting is one of the most important developments in classification
methodology. Adaboost is a machine learning meta-algorithm. It can be used in
conjunction with many other types of learning algorithms to improve their performance.
 22 We applied this algorithm to our existing experiments with different datasets. We
obtained different precision results with better accuracy. Table 4.13 provides an overview
of Adaboost initial experiments.

Dataset Detail patterns Total Expected
Experiments

Initial Small
Dataset

1707 peak patterns
1707 non-peak patterns 3414 patterns 10

Initial Large
Dataset

18807 peak patterns
18807 non-peak patterns 37614 patterns 10

Table 4.13: Overview of initial experiments with Adaboost boosting

We chose two sizes of datasets in initial Adaboost experiments. The first dataset
was smaller relative to the second. It had 3,414 patterns in total, with 50% peak patterns
and 50% non-peak patterns. The larger dataset had 37,614 patterns in total with 50% peak
patterns and 50% non-peak patterns. For each of the two datasets we performed 10 kinds
of experiment.

I wrote an R program with Adaboost package to execute boosting to our
experiments. Figure 4.2 is a sample of adaboost.R.

58
(R >= 2.15.0) require(rpart) require(adabag) dat <- data(sample_dataset) l <- length(dat[,1]) sub <- sample(1:l,2*l/3) dat.rpart <- rpart(Class~.,data=dat[sub,],maxdepth=3) dat.rpart.pred <- predict(dat.rpart,newdata=dat[-sub,],type="class") tb <-table(dat.rpart.pred,$Class[-sub]) error.rpart <- 1-(sum(diag(tb))/sum(tb)) tb error.rpart dat.adaboost <- boosting(Class ~.,data=dat[sub,],mfinal=10, coeflearn=" Freund ", boos=TRUE, control=rpart.control(maxdepth=3)) dat.adaboost.pred <- predict.boosting(dat.adaboost,newdata=dat[-sub,]) dat.adaboost.pred$confusion dat.adaboost.pred$error

Figure 4.2: Sample of R program with Adaboost package

In Adaboost boosting, the algorithm executes rpart function first and learns from
the training. Adaboost has been proven to converge individual weak learners to a strong
learner, as long as the performance of each individual learner is slightly better than
random guessing.

We show our initial experiments with Adaboost performance in Experiment 1 and
Experiment 2 by using different sizes of datasets.

Initial Experiment 1 with small dataset

Prediction Table
rpart

Class
Precision

Error 0.3866432

False True
Count

Negative 352 230 61.69% Positive 213 343

Adaboost
Class

Precision False True
Count

Negative 373 248 62.86% Positive 192 325
Table 4.14: Result of initial Experiment 1 with Adaboost (small dataset)

59
 In Table 4.14, we present three sections. The top section is a prediction table with
rpart. The second section is a prediction table displaying Adaboost benefits. The third
section, placed at the right of table, is an error. This error is an average error. Adaboost
uses erroevol (obeject, newdata) to calculate the error evolution of an Adaboost classifier
for a data frame as the ensemble size grows. The object must be the output of one of the
functions boosting. The newdata could be the same data frame used in object or a new
one. Errorevol can be useful to see how fast boosting reduce the error of the ensemble. In
addition, it can detect the presence of overfitting and, therefore, the convenience of
pruning the ensemble using predict.boosting.

From regular rpart performance, we can see a positive patterns of 556 score, and
relevant patterns score of 343. We obtain a precision score of 61.69%.

 With the performance of Adaboost, the number of positive patterns is 517, and the
number of relevant patterns is 325, scores which are both less than the scores of regular
rpart. But the precision score we obtain in Adaboost is 62.86% which is greater than that
of regular rpart.

These results prove that Adaboost commands the ability to improve the accuracy
of precision in small datasets.

Initial Experiment 2 with large dataset

Prediction Table
rpart

Class
Precision

Error 0.3532461

False True
Count

Negative 4269 2488 65.21% Positive 2011 3770

Adaboost
Class

Precision False True
Count

Negative 4425 2574 66.51% Positive 1855 3684
Table 4.15: Result of initial Experiment 2 with Adaboost (large dataset)

60
From regular rpart, we can obtain positive patterns total of 5,781, and relevant

patterns total of 3,770. We obtain a precision score of 65.21%.

 With Adaboost, the number of positive patterns was 5,539, and the number of
relevant patterns was 3,684, both of which fell at less than regular rpart. But the precision
score we obtained was 66.51%, which was still greater score than that of regular rpart.

These results also prove that Adaboost commands the ability to improve the
accuracy of precision in a large dataset.

 As a result of Experiments 1 and 2, we conclude that, when using a small dataset,
as we did in 1, Adaboost helped us improve accuracy of precision by 1.17%. And when
we use a large dataset, as we did in 2, Adaboost, helped us improve accuracy of precision
by 1.30%.

We obtained a better precision accuracy when we used a large dataset. This fact
works to explain the influence and definition of Adaboost. Adaboost is an adaptive
learning algorithm, and as such it is sensitive to noisy data. When the sample dataset is
sufficiently large, the final model can be a better, more effective learner, in that the
precision accuracy will be improved considerably.  31

 By adjusting the size of the datasets, we can observe easily the improvement in
precision accuracy obtained through Adaboost boosting. Figure 4.3 provides an overview
comparison.

61

Figure 4.3: Accuracy comparison by Adaboost from different dataset size

62
Chapter 5
Models Based on Time of Day

In this chapter we use time as the distinguishing feature of time series events. In
previous experiments using the entire twenty-four hour day, we achieved both excellent
and encouraging precision results. Generally, time series events in different time periods
will show different findings. We performed further experiments by dividing the periods
in a day to three, specifically morning, noon, and afternoon. We then repeated our
experiments for particular time periods and obtained precision results for each period. We
determined that Adaboost can bring significant precision improvement for our
experiments.

5.1 Divided daytime period experiments

 In this section, our experiments were set to a 15 seconds interval, a 5 minute look
back time range, and a 15 minute duration range. Threshold value was set to 0.01 (1%).
Different daytime periods were Morning (9:30 AM to noon), Noon (noon to 2:00 PM), and
Afternoon (2 to 4:30 PM). Table 5.1 provides the details of how the experiment was set
up.

Parameters Values
Interval time tick 15 seconds
Look back time range 5 minutes
Duration range 15 minutes
Threshold value >=1% (0.01)
Divided daytime period

Morning 9:30 AM - 12 PM
Noon 12 PM - 2 PM
Afternoon 2 PM - 4:30 PM

Table 5.1: Experimental setup of Divided Daytime Periods experiments

63
 First, we used a large dataset, one which contained 18,807 peak patterns. I wrote a
Python program of DaytimeDivided.py that could divide the dataset into three small
datasets, each with different respective daytime periods. After calculation, the morning
dataset contained 11,277 peak patterns, the noon 4,395, and the afternoon 3,135. Figure
5.1 provides a sample of DaytimeDivide.py.
for row in f.readlines(): result = list(ast.literal_eval(row)) if int(result[2]) < 12: fp = csv.writer(open('Morning', 'a'), lineterminator='\n', quoting=csv.QUOTE_NONNUMERIC) fp.writerow(result) else: if int(result[2]) < 14: fp = csv.writer(open('Noon', 'a'), lineterminator='\n', quoting=csv.QUOTE_NONNUMERIC) fp.writerow(result) else: fp = csv.writer(open('Afternoon', 'a'), lineterminator='\n', quoting=csv.QUOTE_NONNUMERIC) fp.writerow(result)

Figure 5.1: Sample of a Python program to divided daytime into three time periods

I also wrote Python programs, called GroupOthers.py, MorningOthers.py,
NoonOthers.py and AfternoonOthers.py, to divide non-peak patterns into morning, noon
and afternoon datasets, and randomly picked 11,277 non-peak morning patterns, 4,395
non-peak noon patterns and 3,135 non-peak afternoon patterns.

Finally I created for classification three binary datasets, specifically
MorningFinal, NoonFinal and AfternoonFinal. For greater accuracy in my results, I
generated another 27 additional datasets, randomly selecting non-peak patterns for
comparison. I provide an overview of the experiment specifications in Table 5.2. The
experimental setup was identical to those setups described immediately above.

64

Dataset Detail patterns Total Size Expected
Experiments

MorningFinal
(1-10)

11277 peak patterns
11277 non-peak patterns

22554
patterns 3.2MB 40

NoonFinal
(1-10)

4395 peak patterns
4395 non-peak patterns

8790
patterns 1.4MB 40

AfternoonFinal
(1-10)

3135 peak patterns
3135 non-peak patterns

6270
patterns 0.9MB 40

Table 5.2: Overview of Daytime Divided experiments specifications

 We used these new datasets to repeat our experiments using rpart and SVMs
(linear, polynomial, and radial). We compared the average precisions from 10-times runs
for each module.

5.1.1 Morning period experiments

Experiment 1 using rpart

Prediction
Table (rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8584 3525 361 75 23 19 6 2 9 2 7
Positive 2693 5974 943 200 76 34 7 5 1 0 8

Table 5.3: Result of Morning Period Experiment 1 using rpart

Prediction = 9941

Relevant values = 7248

 Recall = 32.14%

 Precision = 72.91%

65
We repeated this experiment 10 times. The average precision score of rpart from

Morning Experiments was 73.11%. (See Experiments 17-25 in Appendix A for details.)

Experiment 2 using Linear SVM

Prediction Table
(Linear SVM)

Class
False True

Count
Negative 4722 2108
Positive 6555 9169

Table 5.4: Result of Morning Period Experiment 2 using Linear SVM

 Prediction = 15724

 Relevant values = 9169

Recall = 40.65%

 Precision = 58.31%

We repeated this experiment 10 times. The average precision score of Linear
SVM from Morning Experiments was 57.94%. (See Experiments 26-34 in Appendix A
for details.)

Experiment 3 using Polynomial SVM

Prediction Table
(Polynomial SVM)

Class
False True

Count
Negative 11068 10987
Positive 209 290

Table 5.5: Result of Morning Period Experiment 3 using Polynomial SVM

66
 Prediction = 290

 Relevant values = 499

Recall = 1.29%

 Precision = 58.12%

We repeated this experiment 10 times and the average precision of Polynomial
SVM from Morning Experiments was 60.60%. (See Experiments 35-43 in Appendix A
for details.)

Experiment 4 using Radial SVM

Prediction Table
(Radial SVM)

Class
False True

Count
Negative 6226 2452
Positive 5051 8825

Table 5.6: Result of Morning Period Experiment 4 using Radial SVM

 Prediction = 13876

 Relevant values = 8825

Recall = 39.13%

 Precision = 63.60%

We repeated this experiment 10 times. The average precision score of Radial
SVM from Morning Experiments was 63.69%. (See Experiments 44-52 in Appendix A
for details.)

67
5.1.2 Noon period experiments

Experiment 1 using rpart

Prediction
Table (rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3869 2986 213 66 30 17 0 1 0
Positive 526 846 145 50 17 6 7 9 2

Table 5.7: Result of Noon Period Experiment 1 using rpart

Prediction = 1608

Relevant values = 1082

 Recall = 12.31%

 Precision = 67.29%

We repeated this experiment 10 times. The average precision score of rpart from
Noon Experiments was 62.75%. (See Experiments 53-61 in Appendix A for details.)

Experiment 2 using Linear SVM

Prediction Table
(Linear SVM)

Class
False True

Count
Negative 723 228
Positive 3672 4167

Table 5.8: Result of Noon Period Experiment 2 using Linear SVM

68
 Prediction = 7839

 Relevant values = 4167

Recall = 47.41%

Precision = 53.16%

We repeated this experiment 10 times. The average precision score of Linear
SVM from Noon Experiments was 53.68%. (See Experiments 62-70 in Appendix A for
details.)

Experiment 3 using Polynomial SVM

Prediction Table
(Polynomial SVM)

Class
False True

Count
Negative 4149 3863
Positive 246 532

Table 5.9: Result of Noon Period Experiment 3 using Polynomial SVM

 Prediction = 778

 Relevant values = 532

Recall = 6.05%

Precision = 68.38%

We repeated this experiment 10 times. The average precision score of Polynomial
SVM from Noon Experiments was 67.41%. (See Experiments 71-79 in Appendix A for
details.)

69
Experiment 4 using Radial SVM

Prediction Table
(Radial SVM)

Class
False True

Count
Negative 2796 2059
Positive 1599 2336

Table 5.10: Result of Noon Period Experiment 4 using Radial SVM

 Prediction = 3935

 Relevant values = 2336

Recall = 26.58%

Precision = 59.36%

We repeated this experiment 10 times. The average precision score of Radial
SVM from Noon Experiments was 58.89%. (See Experiments 80-88 in Appendix A for
details.)

5.1.3 Afternoon period experiments

Experiment 1 using rpart

Prediction
Table (rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2058 1310 113 31 11 2 0 1 1 1 2
Positive 1077 1328 202 71 17 4 12 12 7 7 3

Table 5.11: Result of Afternoon Period Experiment 1 using rpart

70
Prediction = 2740

Relevant values = 1663

Recall = 26.52%

Precision = 60.69%

We repeated this experiment 10 times. The average precision score of rpart from
Afternoon Experiments was 61.03%. (See Experiments 89-97 in Appendix A for details.)

Experiment 2 using Linear SVM

Prediction Table
(Linear SVM)

Class
False True

Count
Negative 1090 721
Positive 2045 2414

Table 5.12: Result of Afternoon Period Experiment 2 using Linear SVM

 Prediction = 4459

 Relevant values = 2414

Recall = 38.50%

Precision = 54.14%

We repeated this experiment 10 times. The average precision score of Linear
SVM from Afternoon Experiments was 54.74%. (See Experiments 98-106 in Appendix
A for details.)

71
Experiment 3 using Polynomial SVM

Prediction Table
(Polynomial SVM)

Class
False True

Count
Negative 3059 2964
Positive 76 171

Table 5.13: Result of Afternoon Period Experiment 3 using Polynomial SVM

 Prediction = 76

 Relevant values = 171

Recall = 2.73%

Precision = 69.23%

We repeated this experiment 10 times. The average precision score of Polynomial
SVM from Afternoon Experiments was 71.02%. (See Experiments 107-115 in Appendix
A for details.)

Experiment 4 using Radial SVM

Prediction Table
(Radial SVM)

Class
False True

Count
Negative 1984 1446
Positive 1151 1689

Table 5.14: Result of Afternoon Period Experiment 4 using Radial SVM

 Prediction = 1151

 Relevant values = 1689

72
Recall = 26.94%

Precision = 59.47%

We repeated this experiment 10 times. The average precision score of Radial
SVM from Afternoon Experiments was 59.28%. (See Experiments 116-124 in Appendix
A for details.)

We generated a comparison graphic for simple overview of average precision
between different daytime periods. The graphic is shown in Figure 5.2.

Figure 5.2: Comparison of average precision between different daytime periods

 In Figure 5.2, we show good precision scores, ones which are greater than 60% in
Morning time experiments, though not in the Noon and Afternoon time experiments. The
rpart module, which achieved a precision score of 73.11%, proved the best classification
technique algorithm.

73
In fact, persons usually do trading in the morning, rather than at noon or in the

afternoon. This fact is why the Morning dataset contained more patterns, almost 3 times
more than that of Noon and 4 times more than that of Afternoon. Also, the average
precision score from morning period proved much better than did the other two. It would
be a profitable idea to study the precision scores of different days in a week because
persons usually do more trading on Monday and Friday than they do on the remaining
weekdays. We will validate our supposition in future research.

 We also studied Polynomial SVM. When we used this SVM kernel to predict
future values, without exception the experiments returned good precision scores, all of
which were greater than 60%. The scores for Afternoon time experiments were the best
whereas the scores for Morning time experiments were the worst.

 Comparing rpart with Polynomial SVM, we conclude Polynomial SVM proved
the better classification technique algorithm for our experiments. We arrive at this
conclusion because Polynomial SVM always has the best precision—greater than 60%.

5.2 Adaboost improvement in divided daytime periods experiments

ataset Detail patterns Total Expected
Experiments

MorningFinal
(1-10)

11277 peak patterns,
11277 non-peak patterns

22554
patterns 10

NoonFinal
(1-10)

4395 peak patterns, 4395
non-peak patterns

8790
patterns 10

AfternoonFinal
(1-10)

3135 peak patterns, 3135
non-peak patterns

6270
patterns 10

Table 5.15: Overview of Adaboost experiments in different periods

74
As part of our experiments, we observed performance from Adaboost in different

time periods. The datasets were the same as those we used in the previous divided
daytime period experiments with regular rpart. I applied Adaboost to datasets for
different time periods, and observed the results for experiments run 10 times for each
dataset. I then compared the average results from same dataset between different time
periods.

5.2.1 Morning period experiments with Adaboost

Experiment 1 with Adaboost

rpart
Class

Precision

Error 0.5806065

False True
Count

Negative 2904 1424 63.83% Positive 810 2374

Adaboost
Class

Precision False True
Count

Negative 2695 1664 67.68% Positive 1019 2134
Table 5.16: Result of Morning Period Experiment 1 with Adaboost

From Table 5.16, we can observe 3,184 positive patterns, and 2,374 relevant
patterns, with regular rpart. We then obtained a precision score of 63.83%.

With Adaboost, the number of positive patterns was 3,153, and the number of
relevant pattern is 2,134. The precision score we obtain was 67.68%, a score which was

75
greater than that of regular rpart. These results proved that Adaboost commands the
ability to improve precision in small datasets.

We repeated this experiment 10 times. The average precision score for Morning
experiments, using rpart, was 71.89% and the precision of Adaboost was 71.20%. (See
Experiments 125-133 in Appendix A for details.) Figure 5.3 provides a summary of these
Morning experiment results.

Figure 5.3: Summary of 10 times Morning Experiments with Adaboost

76
5.2.2 Noon period experiments with Adaboost

Experiment 1 with Adaboost

Pred Table
rpart

Class
Precision

Error 0.4419795

False True
Count

Negative 1241 1081 64.14% Positive 218 390

Adaboost
Class

Precision False True
Count

Negative 1253 1089 64.97% Positive 206 382
Table 5.17: Result of Noon Period Experiment 1 with Adaboost

From Table 5.17, we can observe 608 positive patterns, and 390 relevant patterns,
with regular rpart. We then obtain a precision score of 64.14%.

 With Adaboost, the number of positive patterns was 588, and the number of
relevant patterns was 382 which were both less than regular rpart. But the precision score
we obtained was 64.97% which was greater than that of regular rpart.

These results proved that Adaboost has ability to improve the accuracy of
precision in small datasets.

We repeated this experiment by 10 times. The average precision score for Noon
experiments, using rpart, was 62.26% and the precision score of Adaboost was 60.64%.
(See Experiments 134-142 in Appendix A for details.) Figure 5.4 provides a summary of
these Noon experiment results.

77

Figure 5.4: Summary of 10 times Noon Experiments with Adaboost

5.2.3 Afternoon period experiments with Adaboost

Experiment 1 with Adaboost

Pred Table
rpart

Class
Precision

Error 0.5736842

False True
Count

Negative 685 506 60.85% Positive 352 547

Adaboost
Class

Precision False True
Count

Negative 669 530 58.70% Positive 368 523
Table 5.18: Result of Afternoon Period Experiment 1 with Adaboost

78
From Table 5.18, we can observe 899 positive patterns, and 547 relevant patterns

with regular rpart. We then obtain a precision score of 60.85%.

 With Adaboost, the number of positive patterns was 891, and the number of
relevant patterns was 523, both of which were lower than regular rpart. The precision
score we obtained was 58.70%, which was also lower than regular rpart.

These results proved that Adaboost provides the ability to improve precision in
small datasets.

We repeated this experiment 10 times. The average precision score of rpart for
Afternoon experiments was 59.63% and the precision score of Adaboost was 57.56%.
(See Experiments 143-151 in Appendix A for details.) Figure 5.5 provides a summary of
these Afternoon experiments results.

Figure 5.5: Summary of 10 times Afternoon Experiments with Adaboost

79

Figure 5.6: Overview of all Daytime Divided Experiments with Adaboost (average)

 Based in the findings shown in Figure 5.6, we can conclude that Adaboost does
indeed improve the accuracy of precision. Where we had previously achieved the average
precision score of 59.63% with Afternoon time experiments, Adaboost improved the
precision score by 2.07%. Where we had previously achieved the average precision score
of 62.26% with Noon time experiments, Adaboost improved the precision score by
1.62%. Where we had previously achieved the average precision score of 71.89% with
Morning experiments, Adaboost improved the precision score by 0.69%.

80
Chapter 6
Conclusions and Future Research

 Our project used a data mining technique called classification. The technique was
used to predict unusual surges in time series. It also determined the expected duration of
the surge. This technique can be used to extract meaningful statistics as well as other
characteristics of time-series data.

Classifier performance depends greatly on the characteristics of the data to be
analyzed. To validate the quality of algorithms for our given problem, we used precision
and recall measures as comparators between different algorithms. The minimal accepted
precision was set to 60%, with 70% as the preferred such score, as such a result would be
more robust.

 6.1 Summary of our research

The raw dataset was a record of time series values, one which included
356,983,971 lines of instruments. It recorded 6 months of data in 229 files. The file size
was 14 GB. Useless values needed to be purged from the raw dataset. This task was
performed so that meaningful information could be determined. Subsequently, we sorted
these raw values by time, price, and volume. We then created new patterns for clustering.

We calculated and determined the respective surges in these patterns by setting a
standard interval time tick. The components of the surge pattern were calculated to be
either true or false. We prepared them for binary classification as an initial experiment.
Training and test datasets were then built prior to classification. The dataset comprised
3,414 lines of instruments with 27 fields.

81
We began with a binary classification because it uses only two classes for

classification. We chose the decision tree algorithm rpart to do the binary classification.
This was our first experiment. We used 15 seconds as interval time tick, 5 minutes as
look back time range, 15 minutes as duration range. We also used 1% as the standard
threshold in experimental setup. When we had successfully completed the initial
experiment, we switched to support vector machines (SVMs) kernels to repeat the
experiment.

Once we had reached a precision score of 64% in our initial experiment, we then
aimed to achieving 70%. After we used different kernels and algorithms of classification
to optimize our experiments, we attained even better precision scores, ones which were
greater than 70%.

In further experiments, we divided time of day into three time periods,
specifically morning, noon, and afternoon. We repeated our experiments to determine
different precision scores. We also applied the Adaboost technique datasets for the
morning dataset, an application which could provide a fixed precision with better
accuracy. At the end of study, we had executed almost 200 experiments using different
experiment setups and parameters.

6.2 Conclusions

We reached the following conclusions.

1) The Polynomial SVM was the best classification technique algorithm for our
experiment because the Polynomial SVM produced a good precision score, one which
was greater than 60%. The Polynomial SVM also produced a meaningful recall score,
one which was lower than 10%. Rpart proved slightly less effective relative to
Polynomial SVM, and as such is our second choice as classification technique algorithm.

82
2) On average, Adaboost provided 2% increase in accuracy for each experiment.

Considering the importance of accuracy in real world stock trading, we think Adaboost
greatly improves the precision.

3) From the experiments on designated time periods, we know the average
precision in morning time is much better than that the other two periods, specifically
noon time and afternoon time. In fact, people usually do trading in the morning rather
than during noon and in the afternoon. Our finding can be explained as such. It is a
compelling finding that we will think about for the future experiments, and consider the
study of different weekdays as a compelling possible research project.

4) We can obtain better precision of predictions by simply decreasing the value of
threshold. Such a shift in threshold value cannot affect precision to any particular extent.

5) In addition, the bigger datasets—which, significantly contain more patterns
than do smaller datasets—usually show us lower precision scores. Those scores are
below 60%. If we increase the interval time tick value from 15 seconds to 60 seconds, the
resulting precision scores did not reveal a particular difference relative to each other. The
results also suggested that, if we increase the value of the look back time range, the
resulting precision scores would enjoy a minor rise. If we increase the duration value
from 15 minutes to 2 hours, we would obtain high precision scores, but we cannot obtain
as many prediction ranges as we would like. So our findings in this regard may not hold
particular usefulness.

6.3 Recommendation and future study

 Based on our findings, we recommend Polynomial kernel of SVMs in R, or rpart
with Adaboost, as the best algorithm of classification. It can provide both high precision
and acceptable recall. Both precision and recall were stable in many repeated
experiments.

83
Furthermore, the adjustment of the values of interval time tick, look back range

and duration, depends only on the particular purpose of the user. If the user requires high
precision without particular times of prediction, that person could increase these values to
large volume. Otherwise, we would recommend, based on our findings, that the user keep
the values as small as possible, the result of which would provide a sufficient quantity of
predictions with acceptable precision. That precision would be greater than 60% and as
high as 70%.

In the future study, we will examine the performance of different weekdays.
Comparing results from Monday, Tuesday, Wednesday, Thursday and Friday, we will
determine the best precision for each particular day in hour, minutes, and seconds.
Currently, we are trying a limited number of algorithms of SVMs, decision tree models,
and other classification tools. Our next goal is to obtain as high a precision score as 80%.

84
References

1) D. Zissis, E.K. Xidias, D. Lekkas. (2015). Real-time vessel behavior prediction.

Evolving Systems: pp. 1-12.
2) M. Imdadullah. (2013). Time Series Analysis and Forecasting. Available:

http://itfeature.com/time-series-analysis-and-forecasting/time-series-analysis-
forecasting. Last accessed: 2015.

3) R.J. Hyndman, G. Athanasopoulos. (2013). Stationarity and Differencing. In:
Forecasting: principles and practice. OTexts. pp. 213-222.

4) G.E.P. Box, D.A. Pierce. (1970). Distribution of Residual Autocorrelations in
Autoregressive-Integrated Moving Average Time Series Models. Journal of the
American Statistical Association. 65(332), pp. 1509-1526.

5) H. Wold, P. Whittle. (1938). A Study in the Analysis of Stationary Time Series.
Stockholm: Almqvist and Wiksell. 102(2), pp. 295-298.

6) G.U. Yule. (1927). On a Method of Investigating Periodicities in Disturbed Series,
with Special Reference to Wolfer's Sunspot Numbers. Philosophical Transactions.
226(A), pp. 267-298.

7) G.E.P. Box, G.M. Jenkins, D.W. Bacon. (1968). Models for Forecasting Seasonal and
Non-seasonal Time Series. In: Spectral Analysis of Time Series. New York: Wiley.
pp. 271-331.

8) G.E.P. Box, G.M. Jenkins. (1970). Time Series Analysis Forecasting and Control.
Operational Research Quarterly. 22(2), pp. 199-201.

9) J.R. Quinlan. (1987). Simplifying Decision Trees. International Journal of Man-
Machine Studies. 27(3), pp. 221-234.

10) J. Fox, R. Andersen. (2005). Using the R Statistical Computing Environment to Teach
Social Statistics Courses. Department of Sociology, McMaster University. pp. 2-4.

11) A. Vance. (2009). Data Analysts Captivated by R's Power. New York Times.
Available: http://www.nytimes.com/2009/01/07/technology/business-

85
computing/07program.html?partner=permalink&exprod=permalink. Last accessed:
2015.

12) D.M. Magerman. (1995). Statistical Decision-Tree Models for Parsing. ACL '95
Proceedings of the 33rd Annual Meeting on Association for Computational
Linguistics. pp. 276-283.

13) E.W. Black, R. Garside, G.N. Leech. (1993). Statistically-driven Computer
Grammars of English: The IBM/Lancaster Approach. Atlanta, GA: Rodopi. 20(3),
pp. 498-500.

14) T.M. Therneau, E.J. Atkinson. (1997). An Introduction to Recursive Partitioning
Using the RPART Routines. Mayo Clinic. pp. 3-32.

15) L. Breiman, J. Friedman, C.J. Stone, R.A. Olshen. (1984). Classification and
Regression Trees (Wadsworth Statistics/Probability). Belmont, CA: Wadsworth. pp.
315-323.

16) W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Blannery. (2007). Support Vector
Machines. In: Numerical Recipes: The Art of Scientific Computing (3rd edition). New
York: Cambridge University Press. 16(5), pp. 883-898.

17) D. Meyer. (2001). Support Vector Machines - The Interface to libsvm in package
e1071. R-News: The Newsletter of the R Project. 1(3), pp. 23-26.

18) C.C. Chang, C.J. Lin. (2001). LIBSVM - A Library for Support Vector
Machines. Available: https://www.csie.ntu.edu.tw/~cjlin/libsvm/. Last accessed:
2015.

19) University of California, Irvine. (2007). UCI Machine Learning Repository.
Available: http://mlr.cs.umass.edu/ml/datasets.html. Last accessed: 2015.

20) Y. Freund, R.E. Schapire. (1997). A Decision-theoretic Generalization of On-line
Learning and An Application to Boosting. Journal of Computer and System Sciences
(Elsevier). 55(1), pp. 119-139.

21) J. Friedman, T. Hastie, R. Tibshirani. (2000). Additive Logistic Regression: A
Statistical View of Boosting. The Annals of Statistics. 28(2), pp. 337-407.

22) G. Ratsch, T. Onoda, K.R. Muller. (2001). Soft Margins for AdaBoost. Machine
Learning. 42(3), pp. 287-320.

86
23) A.J. Grove, D. Schuurmans. (1998). Boosting in the Limit: Maximizing the Margin of

Learned Ensembles. Proceedings of the Fifteenth National Conference on Artificial
Intelligence. Menlo Park, CA, USA: AAAI-98 Proceedings. pp. 692-699.

24) B. Scholkopf, A.J. Smola, R.C. Williamson, P.L. Bartlett. (2000). New Support
Vector Algorithms. Neural Computation. 12(5), pp. 1207-1245.

25) C. Cortes, V. Vapnik. (1995). Support Vector Networks. Machine Learning. 20(3),
pp. 273–297.

26) O.L. Mangasarian. (1965). Linear and Nonlinear Separation of Patterns by Linear
Programming. Operations Research. 13(3), pp. 444-452.

27) K. Bailey. (1994). Numerical Taxonomy and Cluster Analysis. Typologies and
Taxonomies. 102(3), pp. 34-63.

28) R.C. Tryon. (1939). The Analyses: Purposes, Procedures, and Order of Operations.
In: Cluster Analysis: Correlation Profile and Orthometric (Factor) Analysis for the
Isolation of Unities in Mind and Personality. Edwards Brothers. 1(2), pp. 39-108.

29) E. Alpaydin. (2010). Examples of Machine Learning Applications. In: Introduction to
Machine Learning (2nd edition). Cambridge, MA: MIT Press. pp. 4-13.

30) D. Altman, J.M. Bland. (1994). Diagnostic tests 2: Predictive values. British Medical
Journal. 309(6947), pp. 102.

31) Y. Freund, R.E. Schapire. (1999). A Short Introduction to Boosting. Journal of
Japanese Society for Artificial Intelligence. 14(5), pp. 771-780.

32) E.J. Keogh, M.J. Pazzani. (1998). An Enhanced Representation of Time Series Which
Allow Fast and Accurate Classification, Clustering and Relevance
Feedback. Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining. AAAI Press. pp. 239-241.

33) D. Eads, D. Hill, S. Davis, S. Perkins, J. Ma, R. Porter, J. Theiler. (2002). Genetic
Algorithms and Support Vector Machines for Time Series
Classification. Applications and Science of Neural Networks, Fuzzy Systems, and
Evolutionary Computation. 4787(4), pp. 74-85.

34) R.O. Duda, P.E. Hart. (1973). Part II: SCENE ANALYSIS. In: Pattern Classification
and Scene Analysis. New York, NY: John Wiley and Sons. pp. 262-456.

87
35) N. Cristianini, J. Shawe-Taylor. (2000). Support Vector Machines. In: An

Introduction to Support Vector Machines and Other Kernel-based Learning Methods.
Cambridge, England: Cambridge University Press. pp. 93-122.

36) O. Barzilay, V.L. Brailovsky. (1999). On Domain Knowledge and Feature Selection
Using a Support Vector Machines. Pattern Recognition Letters. 20(5), pp. 475-484.

37) C. Burgess. (1998). A Tutorial on Support Vector Machines for Pattern
Recognition. Data Mining and Knowledge Discovery. 2(2), pp. 121-167.

38) V. Vapnik. (1999). An Overview of Statistical Learning Theory. Neural Networks.
10(5), pp. 988-999.

39) A.N. Refenes, M. Azema-Barac, L. Chen, S.A. Karoussos. (1993). Currency
Exchange Rate Prediction and Neural Network Design Strategies. Neural Computing
and Applications. 1(1), pp. 46-58.

88
Appendix A
Complete Set of Experimental Results

Please be noticed that the experimental setup for each experiment is referred to exact
previous experiments where appendix experiment was mentioned.

Experiment 1

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1365 892 68 25 13 5 2 0
Positive 342 594 67 24 6 7 2 2

Table ApdxA.1: Result of Experiment 1

Prediction = 342 + 594 + 67 +24 +6 + 7 + 2 + 2 = 1044

 Relevant values = 1044 - 342 = 702

 Recall = 702 / 3414 = 20.56%

 Precision = 702 / 1044 = 67.24%

89
Experiment 2

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1319 788 47 18 9 4 1 0
Positive 388 698 88 31 10 8 3 2

Table ApdxA.2: Result of Experiment 2

Prediction = 388 + 698 + 88 + 31 + 10 + 8 + 3 + 2 = 1228

 Relevant values = 1228 - 388 = 840

 Recall = 840 / 3414 = 24.60%

 Precision = 840 / 1228 = 68.40%

Experiment 3

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1272 825 58 21 12 5 2 0
Positive 435 661 77 28 7 7 2 2

Table ApdxA.3: Result of Experiment 3

Prediction = 435 + 661 + 77 + 28 + 7 + 7 + 2 + 2 = 1219

 Relevant values = 1219 - 435 = 784

 Recall = 784 / 3414 = 22.96%

 Precision = 784 / 1219 = 64.32%

90
Experiment 4

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1276 774 46 18 9 4 1 0
Positive 431 712 89 31 10 8 3 2

Table ApdxA.4: Result of Experiment 4

Prediction = 431 + 712 + 89 + 31 + 10 + 8 + 3 + 2 = 1286

 Relevant values = 1286 - 431 = 855

 Recall = 855 / 3414 = 25.04%

 Precision = 855 / 1286 = 66.49%

Experiment 5

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1252 762 45 18 9 4 1 0
Positive 455 724 90 31 10 8 3 2

Table ApdxA.5: Result of Experiment 5

Prediction = 455 + 724 + 90 + 31 + 10 + 8 + 3 + 2 = 1323

 Relevant values = 1323 – 455 = 868

 Recall = 868 / 3414 = 25.42%

 Precision = 868 / 1323 = 65.61%

91
Experiment 6

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1329 864 59 21 13 5 2 0
Positive 378 622 76 28 6 7 2 2

Table ApdxA.6: Result of Experiment 6

Prediction = 378 + 622 + 76 + 28 + 6 + 7 + 2 + 2 = 1121

 Relevant values = 1121 – 378 = 743

 Recall = 743 / 3414 = 21.76%

 Precision = 743 / 1121 = 66.28%

Experiment 7

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1202 695 43 15 9 3 1 0
Positive 505 791 92 34 10 9 3 2

Table ApdxA.7: Result of Experiment 7

Prediction = 505 + 791 + 92 + 34 + 10 + 9 + 3 + 2 = 1446

 Relevant values = 1446 – 505 = 941

 Recall = 941 / 3414 = 27.56%

 Precision = 941 / 1446 = 65.08%

92
Experiment 8

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1186 737 45 17 8 4 1 0
Positive 521 749 90 32 11 8 3 2

Table ApdxA.8: Result of Experiment 8

Prediction = 521 + 749 + 90 + 32 + 11 + 8 + 3 + 2 = 1416

 Relevant values = 1416 - 521 = 895

 Recall = 895 / 3414 = 26.22%

 Precision = 895 / 1416 = 63.21%

Experiment 9

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1140 643 41 15 8 3 1 0
Positive 567 843 94 34 11 9 3 2

Table ApdxA.9: Result of Experiment 9

Prediction = 567 + 843 + 94 + 34 + 11 + 9 + 3 + 2 = 1563

Relevant values = 1563 – 567 = 996

 Recall = 996 / 3414 = 29.17%

 Precision = 996 / 1563 = 63.72%

93
Experiment 10

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7
Count

Negative 1302 793 47 18 11 4 1 0
Positive 405 693 88 31 8 8 3 2

Table ApdxA.10: Result of Experiment 10

Prediction = 405 + 693 + 88 + 31 + 8 + 8 + 3 + 2 = 1238

Relevant values = 1238 – 405 = 833

 Recall = 833 / 3414 = 24.40%

 Precision = 833 / 1238 = 67.29%

Experiment 11

Prediction
(Binary rpart)

Class
False True

Count
Negative 1175 771
Positive 532 936

Table ApdxA.11: Result of Experiment 11

Prediction = 532 + 936 = 1468

Relevant values = 936

 Recall = 936 / 3414 = 27.42%

 Precision = 936 / 1468 = 63.76%

94
Experiment 12

 Prediction
(Default/Radial

SVM)
Class

False True
Count

Negative 10036 5813
Positive 8771 12994

Table ApdxA.12: Result of Experiment 12

Prediction = 8771 + 12994 = 21765

Relevant values = 12994

 Recall = 12994 / 37614 = 34.55%

 Precision = 978 / 1703 = 59.70%

Experiment 13

Prediction
(Linear SVM)

Class
False True

Count
Negative 4936 2843
Positive 13871 15964

Table ApdxA.13: Result of Experiment 13

Prediction = 13871 + 15964 = 29835

Relevant values = 15964

 Recall = 15964 / 37614 = 42.44%

 Precision = 15964 / 29835 = 53.51%

95
Experiment 14

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 18673 18450
Positive 134 357

Table ApdxA.14: Result of Experiment 14

Prediction = 134 + 357 = 491

Relevant values = 357

 Recall = 357 / 37614 = 0.95%

 Precision = 357 / 491 = 72.71%

Experiment 15

 Prediction
(Sigmoid SVM)

Class
False True

Count
Negative 11095 7715
Positive 7712 11092

Table ApdxA.15: Result of Experiment 15

Prediction = 7712 + 11092 = 18804

Relevant values = 11092

 Recall = 11092 / 37614 = 29.49%

 Precision = 11092 / 18804 = 58.99%

96
Experiment 16

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 13313 742
8 714 179 64 33 7 3 12 3 9

Positive 5494 854
1

126
3 314 110 49 25 27 8 7 11

Table ApdxA.16: Result of Experiment 16

 Prediction = 5494 + 8541 + 1263 + 314 + 110 + 49 + 25 + 27 + 8 + 7 + 11=15849

Relevant values = 15849 – 5494 = 10355

 Recall = 10355 / 37614 = 27.53%

 Precision = 10355 / 15849 = 65.34%

Morning Period

(rpart)

Experiment 17

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8783 3814 389 80 25 19 6 2 9 2 7
Positive 2494 5685 915 195 74 34 7 5 1 0 8

Table ApdxA.17: Result of Experiment 17

97

Prediction = 9418

Relevant values = 6924

 Recall = 30.70%

 Precision = 73.52%

Experiment 18

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8485 3448 360 74 22 18 4 2 9 2 7
Positive 2792 6051 944 201 77 35 9 5 1 0 8

Table ApdxA.18: Result of Experiment 18

Prediction = 10123

Relevant values = 7331

 Recall = 32.50%

 Precision = 72.42%

98
Experiment 19

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8719 3725 378 80 25 19 6 2 9 2 7
Positive 2558 5774 926 195 74 34 7 5 1 0 8

Table ApdxA.19: Result of Experiment 19

Prediction = 9582

Relevant values = 7024

 Recall = 31.14%

 Precision = 73.30%

Experiment 20

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8861 3793 383 80 25 19 6 2 9 2 7
Positive 2416 5706 921 195 74 34 7 5 1 0 8

Table ApdxA.20: Result of Experiment 20

Prediction = 9367

Relevant values = 6951

 Recall = 30.82%

 Precision = 74.21%

99
Experiment 21

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8617 3524 361 75 23 19 6 2 9 2 7
Positive 2660 5975 943 200 76 34 7 5 1 0 8

Table ApdxA.21: Result of Experiment 21

Prediction = 9909

Relevant values = 7249

 Recall = 32.14%

 Precision = 73.16%

Experiment 22

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8777 3796 389 80 25 19 6 2 9 2 7
Positive 2500 5703 915 195 74 34 7 5 1 0 8

Table ApdxA.22: Result of Experiment 22

Prediction = 9442

Relevant values = 6942

 Recall = 30.78%

 Precision = 73.52%

100
Experiment 23

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8656 3605 368 78 23 19 6 2 9 2 7
Positive 2621 5894 936 197 76 34 7 5 1 0 8

Table ApdxA.23: Result of Experiment 23

Prediction = 9779

Relevant values = 7158

 Recall = 31.74%

 Precision = 7248 / 9941 = 73.18%

Experiment 24

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8569 3533 362 75 23 19 6 2 9 2 7
Positive 2708 5966 942 200 76 34 7 5 1 0 8

Table ApdxA.24: Result of Experiment 24

Prediction = 9947

Relevant values = 7239

 Recall = 32.10%

 Precision = 72.78%

101
Experiment 25

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 8457 3476 361 75 23 19 6 2 9 2 7
Positive 2820 6023 943 200 76 34 7 5 1 0 8

Table ApdxA.25: Result of Experiment 25

Prediction = 10117

Relevant values = 7297

 Recall = 32.35%

 Precision = 72.13%

(Linear SVM)

Experiment 26

Prediction
(Linear SVM)

Class
False True

Count
Negative 4551 2097
Positive 6726 9180

Table ApdxA.26: Result of Experiment 26

Recall = 40.70%

 Precision =57.71%

102
Experiment 27

Prediction
(Linear SVM)

Class
False True

Count
Negative 4754 2135
Positive 6523 9142

Table ApdxA.27: Result of Experiment 27

Recall = 40.53%

 Precision = 58.36%

Experiment 28

Prediction
(Linear SVM)

Class
False True

Count
Negative 4736 2133
Positive 6541 9144

Table ApdxA.28: Result of Experiment 28

Recall = 40.54%

 Precision = 58.30%

103
Experiment 29

Prediction
(Linear SVM)

Class
False True

Count
Negative 4522 2066
Positive 6755 9211

Table ApdxA.29: Result of Experiment 29

Recall = 40.84%

 Precision = 57.69%

Experiment 30

Prediction
(Linear SVM)

Class
False True

Count
Negative 4602 2114
Positive 6675 9163

Table ApdxA.30: Result of Experiment 30

Recall = 40.63%

 Precision = 57.85%

104
Experiment 31

Prediction
(Linear SVM)

Class
False True

Count
Negative 4503 2102
Positive 6774 9165

Table ApdxA.31: Result of Experiment 31

Recall = 40.64%

 Precision = 57.50%

Experiment 32

Prediction
 (Linear SVM)

Class
False True

Count
Negative 4636 2107
Positive 6641 9170

Table ApdxA.32: Result of Experiment 32

Recall = 40.66%

 Precision = 58.00%

105
Experiment 33

Prediction
(Linear SVM)

Class
False True

Count
Negative 4603 2110
Positive 6674 9167

Table ApdxA.33: Result of Experiment 33

Recall = 40.64%

 Precision = 57.87%

Experiment 34

Prediction
(Linear SVM)

Class
False True

Count
Negative 4559 2063
Positive 6718 9214

Table ApdxA.34: Result of Experiment 34

Recall = 40.85%

 Precision = 57.83%

106
(Polynomial SVM)

Experiment 35

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11084 10966
Positive 193 311

Table ApdxA.35: Result of Experiment 35

Recall = 1.38%

 Precision = 61.71%

Experiment 36

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11062 10987
Positive 215 290

Table ApdxA.36: Result of Experiment 36

Recall = 1.29%

 Precision = 57.43%

107
Experiment 37

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11128 11031
Positive 149 246

Table ApdxA.37: Result of Experiment 37

Recall = 1.09%

 Precision = 62.28%

Experiment 38

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11206 11120
Positive 71 157

Table ApdxA.38: Result of Experiment 38

Recall = 0.70%

 Precision = 68.86%

108
Experiment 39

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11033 10951
Positive 244 326

Table ApdxA.39: Result of Experiment 39

Recall = 1.44%

 Precision = 57.19%

Experiment 40

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11070 10990
Positive 207 287

Table ApdxA.40: Result of Experiment 40

Recall = 1.27%

 Precision = 58.10%

109
Experiment 41

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11080 10983
Positive 197 294

Table ApdxA.41: Result of Experiment 41

Recall = 1.30%

 Precision = 59.88%

Experiment 42

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11104 11012
Positive 173 265

Table ApdxA.42: Result of Experiment 42

Recall = 1.18%

 Precision = 60.50%

110
Experiment 43

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 11103 10994
Positive 174 283

Table ApdxA.43: Result of Experiment 43

Recall = 1.25%

 Precision = 61.93%

(Radial SVM)

Experiment 44

Prediction
(Radial SVM)

Class
False True

Count
Negative 6204 2438
Positive 5073 8839

Table ApdxA.44: Result of Experiment 44

Recall = 39.19%

 Precision = 63.54%

111
Experiment 45

Prediction
 (Radial SVM)

Class
False True

Count
Negative 6265 2462
Positive 5012 8815

Table ApdxA.45: Result of Experiment 45

Recall = 39.08%

 Precision = 63.75%

Experiment 46

Prediction
(Radial SVM)

Class
False True

Count
Negative 6315 2528
Positive 4962 8749

Table ApdxA.46: Result of Experiment 46

Recall = 38.79%

 Precision = 63.81%

112
Experiment 47

Prediction
(Radial SVM)

Class
False True

Count
Negative 6248 2531
Positive 5029 8746

Table ApdxA.47: Result of Experiment 47

Recall = 38.78%

 Precision = 63.49%

Experiment 48

Prediction
(Radial SVM)

Class
False True

Count
Negative 6298 2418
Positive 4979 8859

Table ApdxA.48: Result of Experiment 48

Recall = 39.28%

 Precision = 64.02%

113
Experiment 49

Prediction
(Radial SVM)

Class
False True

Count
Negative 6150 2406
Positive 5127 8871

Table ApdxA.49: Result of Experiment 49;

Recall = 39.23%

 Precision = 63.37%

Experiment 50

Prediction
(Radial SVM)

Class
False True

Count
Negative 6310 2430
Positive 4967 8847

Table ApdxA.50: Result of Experiment 50

Recall = 39.23%

 Precision = 64.04%

114
Experiment 51

Prediction
(Radial SVM)

Class
False True

Count
Negative 6303 2467
Positive 4974 8810

Table ApdxA.51: Result of Experiment 51

Recall = 39.06%

 Precision = 63.91%

Experiment 52

Prediction
(Radial SVM)

Class
False True

Count
Negative 6164 2418
Positive 5113 8859

Table ApdxA.52: Result of Experiment 52

Recall = 39.28%

 Precision = 63.41%

115
Noon Period

(rpart)

Experiment 53

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3832 2962 208 64 30 15 0 1 0
Positive 563 870 150 52 17 8 7 9 2

Table ApdxA.53: Result of Experiment 53

Prediction = 1678

Relevant values = 1115

 Recall = 12.68%

 Precision = 66.45%

Experiment 54

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3331 2440 159 55 27 14 0 1 0
Positive 1064 1392 199 61 20 9 7 9 2

Table ApdxA.54: Result of Experiment 54

Prediction = 2763

Relevant values = 1699

116
 Recall = 19.33%

 Precision = 61.49%

Experiment 55

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3306 2439 160 58 27 14 0 1 0
Positive 1089 1393 198 58 20 9 7 9 2

Table ApdxA.55: Result of Experiment 55

Prediction = 2785

Relevant values = 1696

 Recall = 19.29%

 Precision = 60.90%

Experiment 56

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3354 2479 169 55 27 14 0 1 0
Positive 1041 1353 189 61 20 9 7 9 2

Table ApdxA.56: Result of Experiment 56

Prediction = 2691

117
Relevant values = 1650

 Recall = 18.77%

 Precision = 61.32%

Experiment 57

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 2597 1684 104 41 21 7 0 1 0
Positive 1798 2148 254 75 26 16 7 9 2

Table ApdxA.57: Result of Experiment 57

Prediction = 4335

Relevant values = 2537

 Recall = 28.86%

 Precision = 58.52%

Experiment 58

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3409 2519 176 57 28 14 0 1 0
Positive 986 1313 182 59 19 9 7 9 2

Table ApdxA.58: Result of Experiment 58

118
Prediction = 2586

Relevant values = 1600

 Recall = 18.20%

 Precision = 61.87%

Experiment 59

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3946 3061 224 70 30 17 0 1 0
Positive 449 771 134 46 17 6 7 9 2

Table ApdxA.59: Result of Experiment 59

Prediction = 1441

Relevant values = 992

 Recall = 11.29%

 Precision = 68.84%

119
Experiment 60

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 3478 2571 182 60 28 14 0 1 0
Positive 917 1261 176 56 19 9 7 9 2

Table ApdxA.60: Result of Experiment 60

Prediction = 2456

Relevant values = 1539

 Recall = 17.51%

 Precision = 62.66%

Experiment 61

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8
Count

Negative 2650 1783 121 43 22 7 0 1 0
Positive 1745 2049 237 73 25 16 7 9 2

Table ApdxA.61: Result of Experiment 61

Prediction = 4163

Relevant values =2418

 Recall = 27.51%

 Precision = 58.08%

120
(Linear SVM)

Experiment 62

Prediction
(Linear SVM)

Class
False True

Count
Negative 864 250
Positive 3531 4145

Table ApdxA.62: Result of Experiment 62

Recall = 47.16%

Precision = 54.00%

Experiment 63

Prediction
(Linear SVM)

Class
False True

Count
Negative 815 240
Positive 3580 4155

Table ApdxA.63: Result of Experiment 63

Recall = 47.27%

Precision = 53.72%

121
Experiment 64

Prediction
(Linear SVM)

Class
False True

Count
Negative 855 249
Positive 3540 4146

Table ApdxA.64: Result of Experiment 64

Recall = 47.17%

Precision = 53.94%

Experiment 65

Prediction
(Linear SVM)

Class
False True

Count
Negative 854 245
Positive 3541 4150

Table ApdxA.65: Result of Experiment 65

Recall = 47.21%

Precision = 53.96%

122
Experiment 66

Prediction
(Linear SVM)

Class
False True

Count
Negative 827 257
Positive 3568 4138

Table ApdxA.66: Result of Experiment 66

Recall = 47.08%

Precision = 53.70%

Experiment 67

Prediction
(Linear SVM)

Class
False True

Count
Negative 754 233
Positive 3641 4162

Table ApdxA.67: Result of Experiment 67

Recall = 47.35%

Precision = 53.34%

123
Experiment 68

Prediction
(Linear SVM)

Class
False True

Count
Negative 785 237
Positive 3610 4158

Table ApdxA.68: Result of Experiment 68

Recall = 47.30%

Precision = 53.53%

Experiment 69

Prediction
(Linear SVM)

Class
False True

Count
Negative 840 242
Positive 3555 4153

Table ApdxA.69: Result of Experiment 69

Recall = 47.25%

Precision = 53.88%

124
Experiment 70

Prediction
(Linear SVM)

Class
False True

Count
Negative 799 243
Positive 3596 4152

Table ApdxA.70: Result of Experiment 70

Recall = 47.24%

Precision = 53.59%

(Polynomial SVM)

Experiment 71

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4173 3919
Positive 222 476

Table ApdxA.71: Result of Experiment 71

Recall = 5.42%

Precision = 68.19%

125
Experiment 72

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4157 3929
Positive 238 466

Table ApdxA.72: Result of Experiment 72

Recall = 5.30%

Precision = 66.19%

Experiment 73

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4250 4099
Positive 145 296

Table ApdxA.73: Result of Experiment 73

Recall = 3.37%

Precision = 67.12%

126
Experiment 74

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4312 4211
Positive 83 184

Table ApdxA.74: Result of Experiment 74

Recall = 2.09%

Precision = 68.91%

Experiment 75

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4201 4038
Positive 194 357

Table ApdxA.75: Result of Experiment 75

Recall = 4.06%

Precision = 64.79%

127
Experiment 76

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4149 3884
Positive 246 511

Table ApdxA.76: Result of Experiment 76

Recall = 5.81%

Precision = 67.50%

Experiment 77

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4195 3957
Positive 200 438

Table ApdxA.77: Result of Experiment 77

Recall = 4.98%

Precision = 68.65%

128
Experiment 78

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4150 3886
Positive 245 509

Table ApdxA.78: Result of Experiment 78

Recall = 5.79%

Precision = 67.51%

Experiment 79

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 4298 4199
Positive 97 196

Table ApdxA.79: Result of Experiment 79

Recall = 2.23%

Precision = 66.89%

129
(Radial SVM)

Experiment 80

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2790 2171
Positive 1605 2224

Table ApdxA.80: Result of Experiment 80

Recall = 25.30%

Precision = 58.08%

Experiment 81

Prediction
(Radial SVM)

Class
False True

Count
Negative 2770 2051
Positive 1625 2344

Table ApdxA.81: Result of Experiment 81

Recall = 26.67%

Precision = 59.06%

130
Experiment 82

Prediction
(Radial SVM)

Class
False True

Count
Negative 2768 2104
Positive 1627 2291

Table ApdxA.82: Result of Experiment 82

Recall = 26.06%

Precision = 58.47%

Experiment 83

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2806 2148
Positive 1589 2247

Table ApdxA.83: Result of Experiment 83

Recall = 25.56%

Precision = 58.58%

131
Experiment 84

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2785 2056
Positive 1610 2339

Table ApdxA.84: Result of Experiment 84

Recall = 26.61%

Precision = 59.23%

Experiment 85

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2834 2133
Positive 1561 2262

Table ApdxA.85: Result of Experiment 85

Recall = 25.73%

Precision = 59.17%

132
Experiment 86

Prediction
(Radial SVM)

Class
False True

Count
Negative 2840 2185
Positive 1555 2210

Table ApdxA.86: Result of Experiment 86

Recall = 25.14%

Precision = 58.70%

Experiment 87

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2828 2135
Positive 1567 2260

Table ApdxA.87: Result of Experiment 87

Recall = 25.71%

Precision = 59.05%

133
Experiment 88

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2770 2038
Positive 1625 2357

Table ApdxA.88: Result of Experiment 88

Recall = 26.81%

Precision = 59.19%

Afternoon Period

(rpart)

Experiment 89

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2090 1319 115 33 12 2 0 1 1 1 2
Positive 1045 1319 200 69 16 4 12 12 7 7 3

Table ApdxA.89: Result of Experiment 89

Prediction = 2694

Relevant values = 1649

134
Recall = 26.30%

Precision = 61.67%

Experiment 90

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2178 1383 125 34 14 2 1 1 2 1 5
Positive 957 1255 190 68 14 4 11 12 6 7 0

Table ApdxA.90: Result of Experiment 90

Prediction = 2524

Relevant values = 1567

Recall = 24.99%

Precision = 62.08%

Experiment 91

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2236 1437 128 36 15 3 1 1 2 1 5
Positive 899 1201 187 66 13 3 11 12 6 7 0

Table ApdxA.91: Result of Experiment 91

135
Prediction = 2405

Relevant values = 1506

Recall = 24.02%

Precision = 62.62%

Experiment 92

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2051 1317 115 31 11 2 0 1 1 1 2
Positive 1084 1321 200 71 17 4 12 12 7 7 3

Table ApdxA.92: Result of Experiment 92

Prediction = 2738

Relevant values = 1654

Recall = 26.38%

Precision = 60.41%

136
Experiment 93

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2251 1456 128 36 15 3 1 1 2 1 5
Positive 884 1182 187 66 13 3 11 12 6 7 0

Table ApdxA.93: Result of Experiment 93

Prediction = 2371

Relevant values = 1487

Recall = 23.72%

Precision = 62.72%

Experiment 94

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 1999 1312 113 31 11 2 0 1 1 1 2
Positive 1136 1326 202 71 17 4 12 12 7 7 3

Table ApdxA.94: Result of Experiment 94

Prediction = 2797

Relevant values = 1661

Recall = 26.49%

Precision = 59.39%

137
Experiment 95

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 1981 1298 113 31 10 1 0 1 1 1 2
Positive 1154 1340 202 71 18 5 12 12 7 7 3

Table ApdxA.95: Result of Experiment 95

Prediction = 2831

Relevant values = 1677

Recall = 26.75%

Precision = 59.24%

Experiment 96

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2255 1523 136 44 15 3 2 5 4 1 5
Positive 880 1115 179 58 13 3 10 8 4 7 0

Table ApdxA.96: Result of Experiment 96

Prediction = 2277

Relevant values = 1397

Recall = 22.28%

Precision = 61.35%

138
Experiment 97

Prediction
(rpart)

Class
False True

0 1 2 3 4 5 6 7 8 9 10
Count

Negative 2033 1312 113 31 11 2 0 1 1 1 2
Positive 1102 1326 202 71 17 4 12 12 7 7 3

Table ApdxA.97: Result of Experiment 97

Prediction = 2763

Relevant values = 1661

Recall = 26.49%

Precision = 60.12%

(Linear SVM)

Experiment 98

Prediction
(Linear SVM)

Class
False True

Count
Negative 1297 810
Positive 1838 2325

Table ApdxA.98: Result of Experiment 98

Recall = 37.08%

Precision = 55.85%

139
Experiment 99

Prediction
(Linear SVM)

Class
False True

Count
Negative 1290 833
Positive 1845 2302

Table ApdxA.99: Result of Experiment 99

Recall = 36.71%

Precision = 55.51%

Experiment 100

Prediction
(Linear SVM)

Class
False True

Count
Negative 933 609
Positive 2202 2526

Table ApdxA.100: Result of Experiment 100

Recall = 40.29%

Precision = 53.43%

140
Experiment 101

Prediction
 (Linear SVM)

Class
False True

Count
Negative 1396 913
Positive 1739 2222

Table ApdxA.101: Result of Experiment 101

Recall = 35.44%

Precision = 56.10%

Experiment 102

Prediction
(Linear SVM)

Class
False True

Count
Negative 1348 860
Positive 1787 2275

Table ApdxA.102: Result of Experiment 102

Recall = 36.28%

Precision = 56.01%

141
Experiment 103

Prediction
(Linear SVM)

Class
False True

Count
Negative 504 335
Positive 2631 2800

Table ApdxA.103: Result of Experiment 103

Recall = 44.66%

Precision = 51.56%

Experiment 104

Prediction
(Linear SVM)

Class
False True

Count
Negative 1226 853
Positive 1909 2282

Table ApdxA.104: Result of Experiment 104

Recall = 36.40%

Precision = 54.45%

142
Experiment 105

Prediction
 (Linear SVM)

Class
False True

Count
Negative 1077 694
Positive 2058 2441

Table ApdxA.105: Result of Experiment 105

Recall = 38.93%

Precision = 54.26%

Experiment 106

Prediction
(Linear SVM)

Class
False True

Count
Negative 1338 837
Positive 1797 2298

Table ApdxA.106: Result of Experiment 106

Recall = 36.65%

Precision = 56.12%

143
(Polynomial SVM)

Experiment 107

Prediction

 (Polynomial
SVM)

Class
False True

Count
Negative 3050 2944
Positive 85 191

Table ApdxA.107: Result of Experiment 107

Recall = 3.05%

Precision = 69.20%

Experiment 108

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 3100 3014
Positive 35 121

Table ApdxA.108: Result of Experiment 108

Recall = 1.93%

Precision = 77.56%

144
Experiment 109

Prediction

 (Polynomial
SVM)

Class
False True

Count
Negative 3039 2936
Positive 96 199

Table ApdxA.109: Result of Experiment 109

Recall = 3.17%

Precision = 67.46%

Experiment 110

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 3054 2957
Positive 81 178

Table ApdxA.110: Result of Experiment 110

Recall = 2.84%

Precision = 68.73%

145
Experiment 111

Prediction

 (Polynomial
SVM)

Class
False True

Count
Negative 3049 2941
Positive 86 194

Table ApdxA.111: Result of Experiment 111

Recall = 3.09%

Precision = 69.29%

Experiment 112

Prediction

 (Polynomial
SVM)

Class
False True

Count
Negative 3095 3006
Positive 40 129

Table ApdxA.112: Result of Experiment 112

Recall = 2.06%

Precision = 76.33%

146
Experiment 113

Prediction

 (Polynomial
SVM)

Class
False True

Count
Negative 3074 2980
Positive 61 155

Table ApdxA.113: Result of Experiment 113

Recall = 2.47%

Precision = 71.76%

Experiment 114

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 3047 2929
Positive 88 206

Table ApdxA.114: Result of Experiment 114

Recall = 4.15%

Precision = 70.07%

147
Experiment 115

Prediction
(Polynomial SVM)

Class
False True

Count
Negative 3058 2950
Positive 77 185

Table ApdxA.115: Result of Experiment 115

Recall = 2.95%

Precision = 70.61%

(Radial SVM)

Experiment 116

Prediction
 (Radial SVM)

Class
False True

Count
Negative 2036 1448
Positive 1099 1687

Table ApdxA.116: Result of Experiment 116

Recall = 26.90%

Precision = 60.55%

148
Experiment 117

Prediction
 (Radial SVM)

Class
False True

Count
Negative 1841 1332
Positive 1294 1803

Table ApdxA.117: Result of Experiment 117

Recall = 28.76%

Precision = 58.22%

Experiment 118

Prediction
(Radial SVM)

Class
False True

Count
Negative 1973 1443
Positive 1162 1692

Table ApdxA.118: Result of Experiment 118

Recall = 26.99%

Precision = 59.29%

149
Experiment 119

Prediction
(Radial SVM)

Class
False True

Count
Negative 2016 1454
Positive 1119 1681

Table ApdxA.119: Result of Experiment 119

Recall = 26.81%

Precision = 60.04%

Experiment 120

Prediction
 (Radial SVM)

Class
False True

Count
Negative 1996 1446
Positive 1139 1689

Table ApdxA.120: Result of Experiment 120

Recall = 26.94%

Precision = 59.72%

150
Experiment 121

Prediction
 (Radial SVM)

Class
False True

Count
Negative 1824 1336
Positive 1311 1799

Table ApdxA.121: Result of Experiment 121

Recall = 28.69%

Precision = 57.85%

Experiment 122

Prediction
(Radial SVM)

Class
False True

Count
Negative 1922 1435
Positive 1213 1700

Table ApdxA.122: Result of Experiment 122

Recall = 27.11%

Precision = 58.36%

151
Experiment 123

Prediction
(Radial SVM)

Class
False True

Count
Negative 2068 1563
Positive 1067 1572

Table ApdxA.123: Result of Experiment 123

Recall = 25.07%

Precision = 59.57%

Experiment 124

Prediction
(Radial SVM)

Class
False True

Count
Negative 2012 1468
Positive 1123 1667

Table ApdxA.124: Result of Experiment 124

Recall = 26.59%

Precision = 59.75%

152
Adaboost

Morning Period

Experiment 125

Pred Table
rpart

Class
Precision

Error 0.3167066

False True
Count

Negative 2867 1515 72.38% Positive 864 2264

Adaboost
Class

Precision False True
Count

Negative 2845 1487 72.12% Positive 886 2292
Table ApdxA.125: Result of Experiment 125

Experiment 126

Pred Table
rpart

Class
Precision

Error 0.2962224

False True
Count

Negative 2865 1299 72.65% Positive 916 2433

Adaboost
Class

Precision False True
Count

Negative 3058 1499 75.52% Positive 723 2233
Table ApdxA.126: Result of Experiment 126

153
Experiment 127

Pred Table
rpart

Class
Precision

Error 0.5780793

False True
Count

Negative 2860 1347 71.98% Positive 926 2379

Adaboost
Class

Precision False True
Count

Negative 2668 1672 64.75% Positive 1118 2054
Table ApdxA.127: Result of Experiment 127

Experiment 128

Pred Table
rpart

Class
Precision

Error 0.3030061

False True
Count

Negative 2927 1485 75.01% Positive 775 2326

Adaboost
Class

Precision False True
Count

Negative 2963 1534 75.50% Positive 739 2277
Table ApdxA.128: Result of Experiment 128

154
Experiment 129

Pred Table
rpart

Class
Precision

Error 0.2995478

False True
Count

Negative 2894 1286 71.78% Positive 941 2393

Adaboost
Class

Precision False True
Count

Negative 2876 1289 71.36% Positive 959 2390
Table ApdxA.129: Result of Experiment 129

Experiment 130

Pred Table
rpart

Class
Precision

Error 0.2909018

False True
Count

Negative 3063 1584 75.68% Positive 697 2169

Adaboost
Class

Precision False True
Count

Negative 2737 1159 71.72% Positive 1023 2594
Table ApdxA.130: Result of Experiment 130

155
Experiment 131

Pred Table
rpart

Class
Precision

Error 0.2974195

False True
Count

Negative 2862 1390 72.84% Positive 885 2373

Adaboost
Class

Precision False True
Count

Negative 2774 1255 72.05% Positive 973 2508
Table ApdxA.131: Result of Experiment 131

Experiment 132

Pred Table
rpart

Class
Precision

Error 0.2950253

False True
Count

Negative 2856 1305 72.14% Positive 934 2419

Adaboost
Class

Precision False True
Count

Negative 2779 1203 71.38% Positive 1011 2521
Table ApdxA.132: Result of Experiment 132

156
Experiment 133

Pred Table
rpart

Class
Precision

Error 0.3008779

False True
Count

Negative 2914 1431 70.64% Positive 960 2310

Adaboost
Class

Precision False True
Count

Negative 2652 1137 69.89% Positive 1122 2604
Table ApdxA.133: Result of Experiment 133

Noon Period

Experiment 134

Pred Table
rpart

Class
Precision

Error 0.4515358

False True
Count

Negative 1046 885 58.16% Positive 418 581

Adaboost
Class

Precision False True
Count

Negative 1066 925 57.61% Positive 398 541
Table ApdxA.134: Result of Experiment 134

157
Experiment 135

Pred Table
rpart

Class
Precision

Error 0.4399317

False True
Count

Negative 1051 861 58.35% Positive 424 594

Adaboost
Class

Precision False True
Count

Negative 1052 866 58.20% Positive 423 589
Table ApdxA.135: Result of Experiment 135

Experiment 136

Pred Table
rpart

Class
Precision

Error 0.4464164

False True
Count

Negative 1065 909 58.58% Positive 396 560

Adaboost
Class

Precision False True
Count

Negative 1161 1008 60.58% Positive 300 461
Table ApdxA.136: Result of Experiment 136

158
Experiment 137

Pred Table
rpart

Class
Precision

Error 0.4392491

False True
Count

Negative 1288 1110 66.73% Positive 177 355

Adaboost
Class

Precision False True
Count

Negative 1102 924 59.85% Positive 363 541
Table ApdxA.137: Result of Experiment 137

Experiment 138

Pred Table
rpart

Class
Precision

Error 0.4320819

False True
Count

Negative 978 756 59.45% Positive 485 711

Adaboost
Class

Precision False True
Count

Negative 1115 918 61.20% Positive 348 549
Table ApdxA.138: Result of Experiment 138

159
Experiment 139

Pred Table
rpart

Class
Precision

Error 0.4276451

False True
Count

Negative 1241 1053 65.57% Positive 219 417

Adaboost
Class

Precision False True
Count

Negative 1103 896 61.65% Positive 357 574
Table ApdxA.139: Result of Experiment 139

Experiment 140

Pred Table
rpart

Class
Precision

Error 0.4416382

False True
Count

Negative 1297 1142 67.62% Positive 159 332

Adaboost
Class

Precision False True
Count

Negative 1278 1116 66.79% Positive 178 358
Table ApdxA.140: Result of Experiment 140

160
Experiment 141

Pred Table
rpart

Class
Precision

Error 0.4508532

False True
Count

Negative 1131 989 59.51% Positive 328 482

Adaboost
Class

Precision False True
Count

Negative 1121 983 59.08% Positive 338 488
Table ApdxA.141: Result of Experiment 141

Experiment 142

Pred Table
rpart

Class
Precision

Error 0.4279863

False True
Count

Negative 1271 1090 64.50% Positive 202 367

Adaboost
Class

Precision False True
Count

Negative 794 575 56.50% Positive 679 882
Table ApdxA.142: Result of Experiment 142

161
Afternoon Period

Experiment 143

Pred Table
rpart

Class
Precision

Error 0.577512

False True
Count

Negative 686 493 63.55% Positive 331 577

Adaboost
Class

Precision False True
Count

Negative 731 597 62.32% Positive 286 473
Table ApdxA.143: Result of Experiment 143

Experiment 144

Pred Table
rpart

Class
Precision

Error 0.5732057

False True
Count

Negative 693 492 60.31% Positive 358 544

Adaboost
Class

Precision False True
Count

Negative 658 499 57.74% Positive 393 537
Table ApdxA.144: Result of Experiment 144

162
Experiment 145

Pred Table
rpart

Class
Precision

Error 0.5488038

False True
Count

Negative 661 526 58.76% Positive 372 530

Adaboost
Class

Precision False True
Count

Negative 694 604 57.14% Positive 339 452
Table ApdxA.145: Result of Experiment 145

Experiment 146

Pred Table
rpart

Class
Precision

Error 0.5550239

False True
Count

Negative 662 525 58.60% Positive 373 528

Adaboost
Class

Precision False True
Count

Negative 705 600 57.85% Positive 330 453
Table ApdxA.146: Result of Experiment 146

163
Experiment 147

Pred Table
rpart

Class
Precision

Error 0.5779904

False True
Count

Negative 763 590 61.68% Positive 282 454

Adaboost
Class

Precision False True
Count

Negative 694 531 59.38% Positive 351 513
Table ApdxA.147: Result of Experiment 147

Experiment 148
Pred Table

rpart
Class

Precision

Error 0.5645933

False True
Count

Negative 650 490 57.70% Positive 401 547

Adaboost
Class

Precision False True
Count

Negative 614 473 56.34% Positive 437 564
Table ApdxA.148: Result of Experiment 148

164
Experiment 149

Pred Table
rpart

Class
Precision

Error 0.5583732

False True
Count

Negative 662 494 57.83% Positive 393 539

Adaboost
Class

Precision False True
Count

Negative 645 513 55.91% Positive 410 520
Table ApdxA.149: Result of Experiment 149

Experiment 150

Pred Table
rpart

Class
Precision

Error 0.5578947

False True
Count

Negative 679 501 57.82% Positive 383 525

Adaboost
Class

Precision False True
Count

Negative 723 585 56.54% Positive 339 441
Table ApdxA.150: Result of Experiment 150

165
Experiment 151

Pred Table
rpart

Class
Precision

Error 0.5736842

False True
Count

Negative 684 473 59.18% Positive 380 551

Adaboost
Class

Precision False True
Count

Negative 680 507 57.38% Positive 384 517
Table ApdxA.151: Result of Experiment 151

