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Abstract 
 

Propagation and transplanting techniques for native plant species: 

Living shorelines applications in Atlantic Canada  

  

By Carly C. Wrathall 

  

Natural shoreline management practices, such as living shorelines, are being explored for 

their use as an alternative to traditional armoring methods such as riprap. Literature 

surrounding living shorelines lacks coherence particularly in regards to what methods are 

available, which is leading coastal zone managers to rely on incomplete science when 

considering the living shoreline approach. One of the pivotal methods of living shoreline 

projects is the addition of vegetation (Spartina spp.) to the low and mid marsh intertidal 

zones. There are several methods to accomplish this including transplants, seeds and 

burying wrack material. The best success was found with transplants (both greenhouse 

grown and harvested from existing marshes) and seeding methods. Understanding how 

these vegetation addition methods function in Atlantic Canada will aid in the further 

development of living shorelines in in this area.  

         August 12, 2016 
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Chapter 1: Introduction and Literature Review 

1.1 Introduction 
 

Traditional shoreline protection practices within the coastal zone have included 

shoreline armoring such as riprap placement, revetments, breakwaters, groins and jetties 

(Gittman et al. 2015; Gianou, 2014; Gittman et al. 2014; Pilkey et al. 2012). These static 

structures work by deflecting wave energy, channeling water flow, and/or interrupting the 

flow of sediment. While these methods have worked in the past, it is increasingly proven 

that they are not able to keep up with the demands of climate change and sea level rise, 

such as increased wave action and coastal flooding, leading to further land loss, increased 

maintenance and replacement costs (RAE, 2015; Gianou, 2014; Gittman et al. 2014; 

Bilkovic and Mitchell, 2013; Jackson et al. 2013; Currin et al. 2009; MDE, 2008, Bozek 

and Burdick, 2005; Moschella et al. 2005; Rogers and Skrabal 2001; Shipman, 2001; Zelo 

et al. 2000). As well, these methods have well documented negative impacts such as 

increased scouring, wave energy deflection (which can lead to adjacent erosion), loss of 

ecosystem services and functions and degradation of intertidal habitats (RAE, 2015; 

Gianou, 2014; Gittman et al. 2014; Bilkovic and Mitchell, 2013; Jackson et al. 2013; Currin 

et al. 2009; MDE, 2008; Bozek and Burdick, 2005; Moschella et al. 2005; Rogers and 

Skrabal, 2001; Shipman, 2001; Zelo et al. 2000). Natural shoreline management provides 

alternative approaches to traditional shoreline engineering, and includes management 

practices such as living shorelines, which is the use of natural materials placed strategically 

to enhance natural ecosystem characteristics and provide benefits such as erosion and flood 
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mitigation (RAE, 2015; Gittman et al. 2015; Manis et al. 2015; Pilkey et al. 2015; NOAA, 

2014; Gianou, 2014; Currin et al. 2009). In addition, these techniques can provide a 

multitude of ecosystem services and functions such as habitat creation, fisheries support, 

and increased usability of the coast (Gittman et al. 2016; RAE, 2015; Gianou, 2014; 

NOAA, 2014; Currin et al. 2009; Armitage et al. 2006; Cooper et al. 2001). 

One of the most common methods identified when using the living shoreline 

approach is the addition of plant material to the coastal zone, which increases aquatic 

habitat for fish, birds and invertebrates, buffers wave energy and mitigates coastal erosion. 

The most common species of plants that are used in living shoreline projects are salt marsh 

and dune species, which can tolerate both high inundation and salinity levels, such as the 

Spartina spp. and Ammophila spp. (Porter et al. 2015, van Loon-Steensma and Slim, 2013;; 

Townend et al. 2010; Wilson et al. 2001; Meyer et al. 1997). Eastern North American salt 

marshes are dominated by Spartina species, perennial, rhizomatous grasses, commonly S. 

alterniflora, S. patens and S. pectinata, which are found in the low, mid and high marsh 

zones respectively (Konisky and Burdick, 2004; Fang et al. 2004; Anastasiou and Brooks, 

2003). These three species are dominant, but co-occur with other common salt marsh 

species including Juncus gerardii, Plantago maritima, Salicornia depressa and Sueda 

maritima (Mittelhauser et al. 2010). This research focused mainly on Spartina spp., due to 

their frequent use in living shoreline projects, hardiness, and adaptability within the coastal 

zone (Currin et al. 2009; MDE, 2008; Bruno, 2000).   

  Coastal ecosystems, including tidal salt marshes and dune systems, are described as 

the active, dynamic, transitional zone of the coast, that are able to geomorphologically shift 
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and change in response to natural and anthropogenic disturbances (Figure 1.1) (van Loon-

Steensma and Slim, 2013; Meyer et al. 1997; Townend et al. 2010). The coastal zone can 

be simply defined as the interface between land and sea, that includes shallow waters and 

low-lying shoreline ecosystems such as salt marshes and dunes (Mitra, 2011; Rochette, 

2010; CBCL Limited, 2009). Depending on the jurisdiction, the limitation of landward and 

seaward boundaries of the coastal zone can vary (Davidson-Arnott, 2010; CBCL Limited, 

2009). The coastal zone is under continued pressure from human impact (e.g., coastal 

development), climate change (e.g., increasing storm intensity, increasing temperatures, 

changing precipitation patterns) and sea-level rise (e.g., increasing coastal flooding and 

erosion), which puts this area at risk for increased loss of habitat, and leaves shorelines 

vulnerable to erosion and flooding (MEA, 2005; MDE, 2008; Gittman et al. 2015).  

Increased land loss due to erosion and coastal flooding is becoming an important 

issue for coastal zone managers (MDE, 2008). The coastal zone is highly valuable for many 

reasons including tourism, fisheries, transport and recreation (Patterson et al. 2014). 

However, human activities, such as coastal development, are degrading coastal ecosystems 

at an alarming rate, and further, climate change and sea-level rise (SLR) are threatening the 

integrity of coastal ecosystems (Dahl and Steadman, 2013; MEA 2005). Anthropogenic 

activities have led to the direct (e.g., infrastructure and coastal development) and indirect 

(e.g., erosion, climate change and sea level rise) loss of coastal habitat throughout the world 

(GBF, 2014; Houser, 2010; Townend et al. 2010; Ravens et al. 2009; Cooper et al. 2001; 

Wilson et al. 2001; Rozas and Minello 2001; Moy and Levin, 1991; Cranford et al. 1989). 
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living shorelines attempt to provide an alternative to engineered methods, and reclaim or 

restore some of these degraded areas. 

Atlantic Canada is no exception to this; loss of coastal habitat such as tidal salt 

marshes throughout the region is estimated to be between 60-80%, mainly as a consequence 

of anthropogenic activities such as agricultural dyking, infrastructure and coastal 

development over the last 400 years (van Proosdij et al. 2006; Hanson and Calkins, 1996). 

This degradation and destruction represents significant loss of critical coastal habitat, 

species and ecosystem services and functions (Temmerman et al. 2013; Feagin et al. 2009; 

Armitage et al. 2006; Wilson et al. 2001; Boorman and Ashton, 1997). In addition to the 

loss of habitat and ecological function, the increased presence of the built environment 

within the coastal zone has required ever increasing efforts and expenditures to protect 

vulnerable infrastructure (Cooper et al. 2001; Temmerman et al. 2013). Natural shoreline 

management strategies, such as living shorelines, have been identified as viable strategies 

to reduce current and future risks associated with human impact and climate change 

(including sea level rise, storm surge and erosion hazards), mitigate the damage to valuable 

coastal infrastructure and have the ability to reclaim some of this lost habitat (Temmerman 

et al. 2013; Wilson et al. 2001; Moy and Levin, 1991).   

The United States has been a leader in living shoreline innovation and 

implementation in North America. However, the majority of their shoreline management 

still falls under engineered approaches, and Gittman et al. (2014) estimate that 14% of 

shorelines in the United States have been hardened by engineered structures. It has been 

estimated that there have been over 200 successful living shorelines created in the United 
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States, many of which are found along the eastern seaboard, particularly in the states of 

Maryland, Delaware and Virginia (Fear and Bendell, 2011; Chesapeake Bay Trust, 2014). 

The practice has spread to other areas as well, such as the Gulf coast where Galveston Bay, 

Texas has completed several living shorelines employing a multitude of methods, and San 

Francisco Bay, California where they have had success with oyster reefs and similar 

methods (GBF, 2014; ESA PWA, 2012; NC, 2012).  
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                Figure 1.1 Example of a coastal ecosystem including the intertidal (MLW- mean low water and MHW-mean  

                high water)), dune (sand dune) and upland zones 
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1.2 Traditional engineering methods 
 

Traditionally, shoreline management has been approached by engineering hard 

structures, such as rip-rap, breakwaters, revetments, groins and jetties (Gittman et al. 2015; 

Gianou, 2014; Gittman et al. 2014; Pilkey et al. 2012). Riprap, breakwaters, and revetments 

provide protection from wave energy, by breaking and deflecting waves before they reach 

land. This mitigates erosion and slows the loss of valuable land and infrastructure. Groins 

and jetties alter the hydrological flow of the coast, which can be used to channel flow of 

water and sediment to and away from areas of concern (Shipman 2001, Zelo et al. 2000). 

These structures are common sites around many areas of the coast, and are still the main 

methods of shoreline management in many areas of the world (Miller et al. 2005, Gittman 

et al. 2015).  

However, while these methods work well under ideal circumstances such as low 

wave energy, there are significant negative impacts associated with them, that are providing 

the reasoning for needing alternatives such as living shorelines (Gittman et al. 2015; 

Gianou, 2014; Arkema et al. 2013). These engineered structures are susceptible to damage 

from storm events and wave impact, which are costly to maintain and replace when 

damaged (RAE, 2015; Gittman et al. 2015; Currin et al. 2009; Bozek and Burdick, 2005; 

Rogers and Skrabal, 2001). Structures such as groins and jetties can (unintentionally) alter 

sediment and current flow, which can starve beaches and marshes down stream of valuable 

sediment replenishment, leading to the degradation and loss of these systems (RAE, 2015; 

Ravens et al. 2009 Shipman, 2001; Currin et al. 2010; Zelo et al. 2000). Large structures 

such as riprap and revetments can deflect wave energy causing increased erosion of 
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adjacent properties, as well as increased scouring at the toe of these structures (Bilkovic 

and Mitchell, 2013). These static structures remove the ability of the coastal zone to move 

and adapt to changes and alter the coastal habitat that would exist naturally, and cause 

increased risk of invasive species, leading to further loss of coastal ecosystem services and 

functions (Bilkovic and Mitchell, 2013). Many of these structures also decrease the 

usability of the coast line, by replacing beaches and marshes with large structures not 

intended for human use. The cumulative negative effects of engineered structures tend to 

be underestimated, as research tends to favour a site-specific approach and ignore the 

impacts on the system as a whole (McDougal et al. 1987; Currin et al. 2009; RAE 2015).  

What is being missed with this site-specific approach is that increasing the amount of 

engineered structures in an area can mean more severe effects for the system as a whole 

(McDougal et al. 1987; Currin et al. 2009; RAE, 2015).  

1.3 Living shorelines in the coastal zone 
 

Practices of living shoreline creation, including salt marsh and dune restoration and 

creation, have been valued for their ability to reclaim lost habitat, and as alternatives to 

traditional shoreline armoring techniques for mitigation of shoreline erosion and coastal 

flooding, throughout the world including in the United States (Bromberg and Bertness, 

2005; Moy and Levin, 1991). Living shorelines, in short, attempt to provide shoreline 

stabilization, erosion and coastal flooding mitigation and enhance ecosystem services and 

functions, while minimizing the adverse effects found with engineered approaches and 

keeping the connectivity between land and sea (Gittman et al. 2015; Manis et al. 2015; 

Pilkey et al. 2015; RAE, 2015; NOAA, 2014; Gianou, 2014; Bilkovic and Mitchell, 2012; 



9 
 

Currin et al. 2009). This is done through the use of natural materials, such as vegetation, 

placed so as to have minimal interferences with coastal biogeomorphological processes 

(Manis et al. 2015; RAE, 2015; NOAA, 2014; GBF, 2014; Latta and Boyer, 2012.; Currin 

et al. 2009). These projects have been conducted under various names, including living 

shorelines and soft shoreline stabilizations since the late 1980’s (Gittman et al. 2016; 

Gianou, 2014; Patterson et al. 2014; Pilkey et al. 2012). The definition and applications of 

living shorelines are discussed extensively in Chapter 2.  

The addition of plant material and/or seeds to a shoreline or marsh surface has been 

shown to be an effective mechanism to enhance and stabilize coastal shorelines, through 

wave attenuation, compaction and solidification of soil (Bilkovic and Mitchell, 2013; Rozas 

and Minello, 2001; Meyer et al. 1997, Moy and Levin, 1991). Transplanting of plugs 

(independent plants grown from seed that have both established root mass and above 

ground biomass) and the use of seeds directly on the marsh surface, are common methods 

to the majority of living shoreline projects (Utomo et al. 2010, Rozas and Minello 2001, 

Moy and Levin 1999). Spartina alterniflora is a common species used in these projects as 

it has a large native geographical range (from Newfoundland to the Gulf of Mexico) and 

can tolerate both tidal inundation, and a range of salinity (Manis et al. 2015). Understanding 

which methods of vegetation addition will work in the unique climate in Atlantic Canada, 

will impact the success of potential living shoreline projects, as alternatives such as seeds 

and plug transplants from adjacent marshes may need to be used due to the lack of available 

suppliers of intertidal vegetation. 
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1.4 Thesis organization  
 

This research is motivated by the need to increase the coherence of living shoreline 

literature, in which there is a significant lack of peer-reviewed, comprehensive research 

regarding the different methods and monitoring protocols that exist. There is great potential 

for living shorelines to be used as an alternative to traditional engineered structures, 

however, without concrete guidance, protocols and documented results, it makes it difficult 

for coastal zone managers to rely on a method based on incomplete science. This research 

is also motivated by the lack of active planting of the intertidal zone in Canada, particularly 

in Nova Scotia that is crucial to living shoreline success (i.e., vegetation addition), 

identifying alternatives to purchasing Spartina spp. plugs from greenhouses, as they are not 

readily available in this area and a need to understand how these methods work in our 

unique climate.    

This thesis is divided into two main chapters, where Chapter 2 explores scientific 

and grey literature, and evaluates a set of common methods available for living shoreline 

applications within the coastal zone, including intertidal planting and the use of sills and 

other low-lying structural materials. This chapter pulls together a synthesis summary of 

what a living shoreline is through evaluating commonalities throughout literature and 

identify the present gaps within literature. One of the common living shoreline methods 

identified in Chapter 2, vegetation addition, is the focus of Chapter 3, which includes both 

a germination and vegetation addition experiment. In this chapter, common seed storage 

techniques are used on Spartina spp. to determine the best rates of germination. Followed 

by a vegetation addition experiment targeting S. alterniflora and S. patens, where four 
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methods of vegetation addition are used and the survival of the species is evaluated over a 

growing season. 

The research objectives are therefore summarized as: 

1) Critically review living shorelines methods in literature, including grey literature 

and non-peer reviewed literature such as technical or community reports and 

guidance documentsto provide a general understanding, for all practitioners, of 

common methods that may be applicable to living shoreline construction.  

2) Apply seed storage treatments to 3 common intertidal plant species to determine 

which produces the highest rates of germination. 

3) Determine the health index and survival rates of intertidal vegetation (S. alterniflora 

and S. patens) using four methods of vegetation addition, common to living 

shoreline projects. 
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Chapter 2: Synthesis Review of Living Shorelines 

Applications 

2.1 Introduction 
 

Previous methods of coastal protection and shoreline management around much of 

the world, have included man-made or engineered structures, often referred to as “hard” 

approaches, such as rock revetments (rip rap), sea walls, groins and jetties (Figure 2.1) 

(Gittman et al. 2015; Gianou, 2014; Gittman et al. 2014; Pilkey et al. 2012). While these 

engineered methods are familiar and have well developed methods in engineering 

literature, they are costly to maintain, susceptible to major damage from storm energy and 

wave impact, change or remove habitat, alter sediment flow, reduce usability of the shore 

and ultimately result in a decrease of ecosystem services and functions (RAE, 2015; 

Gianou, 2014; Gittman et al. 2014; Bilkovic and Mitchell, 2013; Jackson et al. 2013; Currin 

et al. 2009; MDE, 2008, Bozek and Burdick, 2005; Moschella et al. 2005; Rogers and 

Skrabal 2001; Shipman, 2001; Zelo et al. 2000). As well, the cumulative negative effects 

of hardened approaches tend to be underestimated as studies often ignore the whole system 

in favour of a site-specific approach, where more engineered structures generally mean 

more severe effects (McDougal et al. 1987; Currin et al. 2009; RAE, 2015).  

There is increasing evidence supporting the use of nature-based coastal defense, as 

enhancing natural ecosystems can mitigate erosion and coastal flooding, as well as increase 

desired ecosystem services and functions (Sutton-Grier et al. 2015, COPRI 2014). Natural 

shoreline management or “soft” approaches, namely living shorelines, offer an alternative 

to engineered shoreline protection and have the added benefit of habitat enhancement or 
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creation, increases usability of shorelines, improvement of water quality, and provide 

natural benefits for human enjoyment (Figure 2.2) (Gittman et al.  2016; RAE, 2015; 

Gianou, 2014; NOAA, 2014; Currin et al. 2009; Shipman, 2001). Bilkovic and Mitchell 

(2013) further discuss the potential ecological tradeoffs of using natural or naturalized 

shorelines, such as increased filtration capacity due to the increase of fauna and epifauna 

such as oysters, muscles, barnacles and clams. This living shoreline approach has been 

identified for the ability to enhance the natural resilience of shorelines to recover from 

disturbance, in particular during large storms and hurricanes, mostly due to the ability of 

coastal vegetation to recover from major disturbance such as storm surge and increased 

wave energy (Gittman et al. 2014).  

The term “living shoreline” has been increasingly popular among community 

groups and government organizations working with coastal and shoreline management, 

particularly along the Atlantic coast of the United States (Currin et al. 2009). To date, no 

precise definition of a living shoreline has been given in peer reviewed or grey literature, 

and the exact terminology can differ depending on location (Gittman et al. 2016; Gianou, 

2014; Patterson et al. 2014; Pilkey et al. 2012; Shipman, 2001). For example, living 

shorelines have also been called soft shoreline stabilization, bio-engineering, and green 

shorelines (RAE, 2015; Gianou, 2014; Patterson et al. 2014). It is also difficult to pinpoint 

exactly what a typical living shoreline resembles and which methods are used in 

constructing a living shoreline.  

The goal of the living shoreline approach is to provide soil stabilization, erosion 

mitigation, enhance ecosystem services and functions, and support a variety of flora and 
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fauna, using natural structures, or a mix of natural and hardened structures (hybrid living 

shorelines), while keeping the connectivity with land and sea (Gittman et al. 2015; Manis 

et al. 2015; Pilkey et al. 2015; RAE, 2015; NOAA, 2014; Gianou, 2014; Currin et al. 2009). 

Living shorelines employ natural materials such as vegetation and biodegradable mats, 

stones, fill and other structural materials, strategically placed so as not to disrupt the land-

water continuum of the natural ecosystem, and to have minimize interference with coastal, 

estuarine, or geomorphological processes, except in the event that that is the purpose (e.g., 

creating crescent beaches) (Manis et al. 2015; RAE, 2015; NOAA, 2014; GBF, 2014; Latta 

and Boyer, 2012; Currin Et al. 2009).  

Hybrid living shorelines, which use a mix of soft and hard approaches, are an 

alternative option for higher-energy systems such as those with a very large fetch, or strong 

currents (RAE, 2015; Sutton-Grier et al. 2015; Currin et al. 2009; MDE, 2008; NRC, 2007). 

This can includethe use of vegetation addition with engineered structures such as sills 

(Currin et al. 2009). These can still incur the negative impacts associated with engineered 

structures, such as wave energy deflection and scouring, but allow living shorelines to be 

used in areas where the wave energy may be too high to exist in a purely natural state 

(Gianou 2014). 

Living shorelines often create or restore a narrow strip of coastal habitat (e.g., dune, 

salt marsh, and submerged aquatic vegetation such as eel grass beds), which can be quite 

productive, and produce a significant amount of ecosystem services and functions (Sutton-

Grier et al. 2015, COPRI 2014, Wolanski et al. 2009; Silliman and Bortolus, 2003). 

However, some regulators have questioned how many ecosystem services and functions a 
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narrow strip of coastal habitat can truly provide when compared to natural shorelines 

(Gittman et al 2015; NOAA, 2014; GBF, 2014; Gianou, 2014; Currin et al. 2009; Minello 

et al. 1994). That is not to say that they cannot enhance these features, but rather living 

shorelines do not provide equivalent features, as a natural, intact, unaltered shoreline may.  

Currently, peer-reviewed scientific literature is just now emerging in the area of 

living shorelines, particularly around the individual methods that can be applied when 

constructing a living shoreline. This lack of peer reviewed data is forcing coastal zone 

managers to rely on incomplete science when constructing living shorelines (Feagin et al. 

2015; Sutton-Grier et al. 2010; Zelo et al. 2000). Even fewer studies have looked at the 

success of living shorelines in sustaining and maintaining ecosystem services and functions 

where only short-term (less than 3 years) benefits and impacts have been assessed (Gittman 

et al. 2015). However, there is a significant bank of grey literature available, including new 

documents from Restore America’s Estuaries (2015) and Miller et al. (2015) that focus on 

aspects of implementing living shorelines.   

This chapter outlines a variety of methods found to be common across living 

shoreline projects. It must be understood that potential living shoreline sites will require a 

site-specific design to meet the needs in that particular area/ecosystem, and therefore it is 

recommended to select the best methods to fit the needs of a particular site and desired 

outcome (RAE, 2015; Currin et al. 2009). This is by no means meant to be a complete list 

of methods, as the practices of living shorelines are evolving rapidly, but instead aims to 

provide an understanding of some of the more common methods successfully used by 

community groups, governments, industry and individuals.  
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Figure 2.1: Diagram showing the branches of shoreline management, and examples of methods under 

each branch 
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  Figure 2.2: Simplified living shoreline example, with examples of methods that can be used in each zone; MHW=mean high water, MLW= mean low water, SAV=  

 submerged aquatic vegetation 
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2.2 Examples of living shorelines methods  
 

Living shoreline methods tend to be very site specific (RAE, 2015; Currin et al. 

2009). Physical and geomorphological characteristics such as, sheltered or exposed climate 

(fetch), currents, water depth, sediment/substrate type, and existing vegetation community, 

play a significant role in determining which methods of living shorelines can be used at a 

particular site (RAE, 2015; GBF, 2014). One of the major issues encountered while 

researching how different groups construct living shorelines is the lack of quantitative data 

for physical and geomorphological parameters such as sediment type used for infill, length 

of sills, number of vegetation plugs used, and measurements of fetch. 

Common living shoreline practices include vegetation addition (planting or 

seeding) within the intertidal (and/or subtidal) and upland zones, adding low stone 

structures (sills) and infilling or grading back banks to reduce the steepness of slopes. If the 

area is medium-high wave energy, then it is recommended to use a wave breaking structure 

(hardened or biodegradable) to maximize the success of the project. However, again, it 

depends on the site, and the desired outcome(s) of the project (e.g., habitat creation or 

shoreline stabilization). Many of the common categories of living shoreline methods, found 

within the literature search, are outlined in the following sections and a summary table of 

various characteristics can be found in Appendix A. 

2.2.1 Initial decisions and preparation 
 

The initial decision that should be made is whether or not a living shoreline is 

appropriate to use at a particular site. In areas where there is minimal erosion, or no critical 



19 
 

land or infrastructure at immediate risk, simply not doing anything is often the preferred 

response (MDE, 2008, Zelo et al. 2000). However, if the initial goal(s) is to protect or create 

coastal habitat, doing nothing does not address those issues and can lead to the continued 

degradation of coastal ecosystems and infrastructure. The State of Maryland (USA) has a 

preferred approach to shoreline management that puts no action first, followed by living 

shorelines where they are applicable, and finally engineered practices as a last resort (MDE, 

2008) (Figure 2.3).  

 

 
           Figure 2.3: The preferred approach in Maryland, from no action, to living shorelines where they are applicable  

           to engineered approaches as a last resort 

 

 

The design phase should take a site-specific direction, but also include an 

understanding of how the living shoreline will impact adjacent prosperities (i.e., impact 

sediment flow or wave energy deflection) and the ecosystem as whole (MDE, 2008; NRPC, 

[No date]). Important characteristics to take into account for the design include; bank 

erosion rate, elevation, tidal flooding, shoreline orientation, wave energy, prevailing wind 

directions, wave direction, currents, existing vegetation community and soil type (RAE. 

2015; NOAA, 2014; MDE, 2008; NRPC, [No date]). Upland influences also cannot be 

ignored, and any potential influences from the upland (erosion, runoff, fresh water inputs) 

Preference 
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need to be addressed in the initial stages, as it can influence bank erosional rates and 

vegetation establishment (MDE, 2008). Materials to be considered for the design include, 

the need for (and availability of) vegetation, sediment for infilling, erosion control 

structures or fencing, and structural materials (GBF, 2014). This can be limited by budget 

and availability of materials, for example limited greenhouses that sell native intertidal 

vegetation. Wave energy or fetch (the distance wind can blow across water generating 

waves), is an important characteristic to take into consideration, as it is used as a proxy for 

determining wave energy (Table 1). A fetch of less than 1.6 km (medium wave energy) is 

what is recommended by the National Oceanic and Atmospheric Administration (NOAA) 

for a living shoreline with no engineered or structural supports (NOAA, 2014). For living 

shorelines with a fetch larger than 1.6km, it is usually recommended to use structural 

supports (Table 1). A description of structure materials can be found in subsections 2.2.5 

and 2.2.6. 

Before beginning any construction such as infilling or planting, the sites must first 

be prepared, cleared of debris such as dead plant material/trees (although some can be saved 

for use in the living shoreline), garbage, and any unwanted or crumbing hard structures 

such as old rip rap (NOAA, 2014). Other preparations that can be completed at this point 

include constructing drainage channels for upland runoff, and secure structures that are 

going to be kept on site (MDE, 2008). 
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Wave Energy Fetch Length 

Very Low 0.8km 

Low 0.8-1.6km 

Medium 1.6-8.0km 

High 8.0km-24.1km 

Very High >24.1km 
Table 1: Wave energy as determined by the fetch of a particular site. Using the longest fetch. (Modified) Hardaway et al. 

(1984). 

    

 

2.2.2 Beach nourishment and slope grading 

Beach nourishment 

 
Sand must be naturally occurring in a system in order for beaches to be continuously 

replenished without human interference (MDE, 2008). When this is not the case, beach 

nourishment (also commonly called: beach replenishment, enhancement, or feeding) can 

be used as a way of restoring sand to eroding beaches (Gianou, 2014; Patterson et al. 2014; 

Shipman, 2001). This is typically done by using dredged materials from the sea floor and 

spraying or shoveling the sediment onto the eroding beaches (Shipman, 2001; MDE, 2008). 

This can also be done with sediment brought in from other areas, or purchased (clean fill). 

However, it has been recommended by experts such as the Maryland Department of 

Environment, that sediments used should be natural to the area to decrease risks associated 

with bringing in foreign sediment (i.e., invasive species) (Shipman, 2001; MDE, 2008). 

Other characteristics that should be taken into account when pursuing this method include, 

the need for structures such as groins to retain sediment, destruction and replacing of 

existing vegetation communities, and the grain size of sediment used, which is important 

as larger sediment may erode slower if erosional rates are low (MDE, 2008).  
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While armoring can starve a beach of sediment by interrupting the flow of sediment, 

it is important to understand that beach nourishment can address the symptoms without 

actually dealing with the underlying cause of erosion on the beach (Shipman, 2001; MDE, 

2008). This means, for example, if you have a beach that is starved of sediment from an 

existing groin, adding sediment is only a temporary fix, as the beach is still not being 

replenished naturally and will continue to erode and need to be replenished repeatedly. 

Therefore, beach nourishment is often seen as a temporary fix (Shipman, 2001; MDE, 

2008). This method can also be used in combination with salt marsh or dune restoration for 

increased habitat enhancement. There are some negative ecological effects to this method 

as well. This can include burying existing vegetation communities, and as with any mass 

addition of sediment, this can lead to increased suspended sediment content which has a 

negative impact on benthic communities (Shipman, 2001). However, there are ways to 

avoid, or mitigate impacts of suspended sediment such as using containment structures such 

as construction booms and other containment structures such as erosion fencing (GBF, 

2014). 

Burying bulkheads and other hard structures (e.g., rip rap) is also an option and can 

be done as part of beach nourishment, or separately (Zelo et al. 2000). This is commonly 

done when removing a structure will be very expensive, and a more cost effective option is 

to bury the structure, re-grade the beach, and plant vegetation (Zelo et al. 2000). Given 

enough time, established vegetation can solidify soils, and sediments and help to build 

protective dunes (Feagin et al. 2015). 
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Infilling and Slope Grading 

 
The purpose of infilling or grading slopes is to mitigate erosion, and/or create 

platforms for plants and other structures to be placed (Figure 2.4). This is done through 

creating a gentle slope, which decreases erosion through reducing wave impact at the toe, 

and allows vegetation to establish by providing a more favourable environment to plant 

into (NOAA, 2014; MDE, 2008; GBF, 2014). The Maryland Department of Environment 

(2008) recommends a 3:1-5:1 slope for upland cliffs that are to be graded, and also 

recommends that grading should be combined with other methods such as planting, to 

increase success, as simply grading alone will not protect against further erosion (MDE, 

2008). Adding ditches and channels to cliffs when grading, to drain runoff, can also help 

mitigate erosion from upland water sources such as storm water runoff (MDE, 2008). 

Potential runoff impacts from upland sources must be addressed or there may be an 

increased risk of damage or burial to the areas below (e.g., intertidal zone) (MDE, 2008). 

Infilling within the intertidal zone often uses dredged material from on site, or 

‘clean’ (uncontaminated) fill that is purchased (NOAA, 2014; Shipman, 2001). The most 

common slope used when infilling the intertidal zone is 10:1 (GBF, 2014; Hardaway et al. 

2010; MDE 2008) (Figure 2.4). Sand is usually the main constituent of infill, and it is 

recommended by the Maryland Department of Environment that particle size not be less 

than 0.149 um (or fine sand), or there is an increased risk of erosion and fine sediments can 

make the water more turbid (MDE, 2008; Shipman, 2001). Using structural materials, 

biodegradable mats, erosion fencing or construction booms to capture and hold in sediment 

is also an option to reduce turbidity in water (GBF, 2014; NOAA, 2014). Leftover fill may 
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be pushed into the water to create a larger marsh platform, or removed from site. Materials 

such as burlap or other biodegradable sacks such as coir fiber, can also be used to create 

marsh platforms, when adding free sediment is not appropriate (Malizzi, 2013; Rozas and 

Minello, 2001). These are stacked on top of each other and vegetation is often planted on 

the top layer to aid in compacting sediment (Figure 2.5).  

 

 

 

 

 

 

 

 

 
Figure 2.4: Showing a 10:1 slope on an infilled shoreline 
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      Figure 2.5: Showing between mean low water (MLW) and mean high water (MHW) using burlap 

                      sacks  to build a marsh platform 

 

2.2.3 Vegetation addition: intertidal planting and submerged aquatic 

vegetation 
 

Vegetation addition through means of planting or seeding is one of the most 

common methods used in living shorelines projects, as vegetation provides a wide variety 

of benefits including dissipating wave energy, compacting soils and increasing habitat 

(Feagin et al. 2015). When deciding to add vegetation in a living shoreline, soil type, 

erosional rates, tidal range, inundation period, fresh water inputs, and plant type are all 

important characteristics to evaluate prior to planting in order to ensure success and 

minimize the risks of dislodgement, stress and mortality. 

Plant selection is very important, and should mimic existing habitat (MDE 2008). 

Varied (shallow and deep) and dense root systems help to solidify soils, and plants should 

be selected based on type of environment and availability. Plants used need to be able to 

withstand short-term stressors such as flooding and burial by sediment deposition and long-

term stressors such as sea level rise (NOAA, 2014; Feagin et al 2015; Maun, 1994; Feagin 

et al. 2009; Manis et al. 2015). As well, preference should be given to native vegetation in 

order to increase the chances of survival and minimize issues with invasive species (e.g., 

commonly in Nova Scotia, Rosa multiflora is used in landscaping and is invasive) (MDE, 
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2008; HRM, 2015). As an example, a short list of Nova Scotia native vegetation suitable 

for living shoreline projects is shown in Appendix B (Mittelhauser et al. 2010, Boland 

2012). This list is a mix of species that are able to survive on or near shorelines (i.e., a mix 

of intertidal and upland vegetation) and able to grow varied root systems that can stabilize 

soils and capture sediment. Included in Appendix B is also a list of common invasive 

species to avoid.  Choosing plants that are ecosystem engineers such as S. alterniflora, that 

are adapted to accrete (capture) sediment, act as soil modifiers to promote cohesion of 

sediments, alter hydrodynamics though attenuating waves and have a good ability to 

recover and reproduce, can aid in the success of the living shoreline, and are very 

commonly used (Feagin et al. 2015; Currin et al. 2009; MDE, 2008; Bruno, 2000) 

The methods of transplanting vary depending on the size of the project and the 

desired outcome. Spartina alterniflora (and S. patens in higher marsh areas) is commonly 

used in living shoreline projects because of the ability to create strong sods, and mitigate 

wave energy, where some studies suggest that S. alterniflora can reduce wave height by 

90% within 20m from the shore (Knutson et al. 1982; Currin et al. 2009; NOAA, 2014; 

MDE, 2008). This species also has a large (native) geographical range (from 

Newfoundland, Canada to the Gulf of Mexico coast) (Manis et al. 2015; MDE, 2008). Due 

to its frequency of use in living shoreline projects, S. alterniflora is used as the main 

example in the planting methods below.  

Plugs of the desired species are planted into preexisting or created marsh platforms 

or sand flats. However, when this is not possible, there are other methods, such as planting 

into sand bags, or burlap sacks, which create a temporary platform until vegetation 
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establishes and consolidate soils (Figure 2.5) (Malizzi, 2013; Rozas and Minello, 2001). 

Plugs tend to be planted in multiple rows along the surface, and eventually the vegetation 

spreads rhizomatously and grows in between the rows (Figure 2.6). Using planting methods 

such as the steaking method outlined in Figure 2.7, which can be used for both intertidal 

and subtidal plugs, is an example of how to plant plugs when sediment conditions may not 

be favourable or plants risk being scoured out (e.g., high wave energy) (Latta and Boyer, 

2012). 

Prior to planting, it is important to consider how the plugs are gown, handled, and 

the methods you use to plant the plugs, to avoid damage and increase the chances of 

survival. Methods to increase success include growing plants to a reasonable size, not 

allowing roots to dry out, proper handling of plant tissue and roots to avoid injury, and the 

amount of time required to properly condition plants (acclimatization) prior to 

transplantation (Anastasiou and Brooks, 2003). How long transplant plugs should be grown 

(or how long they should grow before being transplanted from adjacent marshes), varies in 

literature. For example, Fang et al. (2004) maintained their germinated seedlings for 12 

weeks, and Manis et al. (2015) allowed 6 months of growth for rhizome cultivars of S. 

alterniflora prior to transplantation.  

Spartina alterniflora plugs are planted in an elevational range that allows for the 

plugs to be submerged in water at high-tide (MHW) (Figure 2.8). The exact spacing will 

depend on the site size, as well as the availability of plugs and it is important to remember 

that the plugs at the front (closest to the subtidal zone) will face the harshest conditions and 

therefore planting more in that area will increase success As you move from the tidal 
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minimum (MLW), spacing increases from 20cm to as far as 3m, depending on the size of 

the site, and the availability of plugs (GBF, 2014; Bergen et al. 2000). Further, Bergen et 

al. (2000) found that plugs planted on a salt marsh remediation site, spaced 30cm apart, had 

the best rhizome spread. Timing of planting is also important, as starting after winter allows 

the whole growing season for plants to establish, as well as the benefits of lower tides to 

decrease stress on young seedlings (GBF, 2014; NOAA, 2014). Transplants (and seeds) 

can be planted at any point during the year, however spring is recommended as it allows a 

full growing season to occur (GBF, 2014; NOAA, 2014). Another consideration is the 

elevation within the tidal frame that you are planting intertidal vegetation, as certain species 

can only survive within certain elevational zones. For example, S. alterniflora survives, 

due to lack of competition, best in the low marsh zone where inundation periods are highest, 

and S. patens survives better in the mid-high marsh zones where inundation is less intense 

(Porter et al. 2015; Stammermann and Piasecki, 2012; Konisky and Burdick, 2004; Bergen 

et al. 2000). Planting these species within the wrong zones can lead to decreased plant 

health and survival (MDE, 2008).  

Seeding is also another option for adding vegetation to a surface. This is done 

though the direct placement of seeds (burying them, or just placing them on the surface), 

aerial seeding (dropping seed from a drone, helicopter or balloon), and burial of wrack 

material, the dead plant mats that wash up on the shores in coastal areas (Minchinton, 2013; 

Utomo et al. 2010; Fang et al. 2004). This can present problems in intertidal areas as seeds 

can be washed away, even when buried. Wrack material can hold abundant amounts of 

seeds, however, it is difficult to determine the type of seeds available in the wrack, and 
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literature suggests that the seeds are predominately from the high marsh and upland 

transitional zones (Glogowski, 2013; Minchinton, 2013; Leck, 2003). This can cause 

issues, for example, when you bury wrack in the low marsh, and the majority of seeds are 

higher marsh/upland species that likely cannot survive in the low marsh. 

Planting submerged aquatic vegetation (SAV) such as Zostera marina (Eel grass) 

is another way to mitigate wave energy, stabilize sediment below the intertidal zone and 

provide habitat (NOAA, 2014; Latta and Boyer, 2012; Rozas and Minello, 2001). Literature 

surrounding the use of SAV in living shoreline projects is very limited, however it is a 

viable method of wave attenuation (Latta and Boyer, 2012). Planting plugs (independent, 

live plants with existing roots and above ground biomass) using the staking method can be 

used for submerged aquatic vegetation (SAV), Figure 2.7 shows how this method can be 

used in both the intertidal and subtidal zones (ESA PWA, 2012). Spacing of 25 plants 

within 1.5x1.5 m quadrats for SAV is recommend from projects in San Francisco Bay (ESA 

PWA 2012). Seeding can also be used with SAV, where seeds are placed in floating sacks 

and allowed to disperse as they float on waves (ESA PWA 2012).  
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                           Figure 2.6: Rows of Spartina patens plugs transplanted into an eroding sand bar in Maryland,  

                           USA 

 
 

 

 

 

 
            Figure 2.7: A method of vegetation addition for plugs in the intertidal and subtidal zones, here call           

                            the staking method and shown using submerged aquatic vegetation (e.g., Zostera marina) and  

                            Spartina alterniflora plugs 
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                                     Figure 2.8: A scenario showing plug spacing indicating as you move  

                                                     from the end of the intertidal zone, to the upland transitional zone,  

                                                     spacing increases 
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2.2.4 Vegetation addition: upland planting 
 

It is important to remember that upland planting within the terrestrial zone can also 

be used as a component of a living shoreline to mitigate issues from upland influences, this 

area is above the coastal zone, but can have impacts for areas below such as fresh water 

inputs, storm water runoff, soil slumping and erosion. Upland vegetation serves several 

purposes such as capturing run off, stabilizing the slope crest, and securing soil on the cliff 

face (NOAA, 2014). This uses general landscaping practices for planting upland 

vegetation, and newer methods such as rain gardens, buffer zones and channels, can be 

used to capture and remove runoff (Davis, 2009). Plant selection for upland planting is 

again important, as plants with varied, dense root masses work best at anchoring soils, as 

well in coastal areas, need to be salt tolerant (MDE, 2008; NRPC, [No date]). Lawn grasses, 

which are often used in conjunction with hardened structures such as riprap, do not provide 

the same level of erosion mitigation, as the root systems are very shallow and the do not 

provide equivalent storm water or runoff filtration (GBF, 2014; NRC, 2007; Watts, 1987). 

A list of potential plants for use in living shoreline projects is shown in Appendix B, which 

is by no means a complete list, but a starting point for native plant selection for living 

shoreline projects. Aside from traditional landscaping methods, live staking of Salix spp. 

(willow spp.), Alnus spp. (alder spp.) and Cornus stolonifera (Red-osier dogwood) is 

another method of vegetation addition to a slope crest or face (Zelo et al. 2000; NRPC [no 

date]). This is where branches are removed, and placed into the ground directly, and are 

able to grow roots from these cuttings (NRPC [no date]). However, the use of appropriate 

techniques is extremely important, and some studies such as Zelo et al. (2000) have found 



33 
 

50-70% mortality of stakes with bad technique. The size, species and elevation are all 

important characteristics to evaluate when using live staking. For example, it is not 

advisable to stake Salix spp (willow). into areas of the toe that are inundated with tidal 

water frequently, as willows will not be able to tolerate that much saline water.  

 

2.2.5 Bio-logs, sills and other low-lying structures 
 

Low-lying structures can be used to dampen wave energy, aid vegetation 

establishment, and to help sediment to accrete (NOAA, 2014). These can be accomplished 

using bio-degradable materials such as coir (coconut fiber) or burlap, or more resilient 

materials such as stone. These structures are used in higher energy systems, where added 

protection is needed for vegetation and soils (MDE, 2008). Using structures to create hybrid 

living shorelines are very common, as sills have comprised almost half of all living 

shoreline projects completed in the U.S. (Chesapeake Bay Trust, 2014; Fear and Bendell, 

2011). These structures should not impede water flow or movement of fish or fowl, and 

this can be addressed by adding gaps or staggering placement (MDE, 2008).  Debris 

materials, such as sticks or logs, can be used in a similar way to protect against wave energy 

and capture sediment (Zelo et al. 2000). Offshore structures such as oyster balls and reefs 

can help to break waves before they reach the shore, and can also be used to create habitat 

for oysters, muscles, and barnacles (Currin et al. 2009).   
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Bio-logs 

 
 

Bio-logs, or coir logs, are made of biodegradable fabrics such as burlap or coconut 

fiber (coir) and are meant as temporary structures that biodegrade over time (in 

approximately 5 years) (GBF, 2014; NOAA, 2014; Pilkey et al. 2012). These structures are 

best suited in low to medium energy environments (less then 5km of fetch) and can be 

placed parallel to the shore to act as a wave break or stabilize the toe of a cliff (GBF, 2014; 

NOAA, 2014). They are often filled with soil or sand, and transplants of appropriate 

vegetation can be planted into the tops, as shown in Figure 2.9, which will allow roots to 

further secure the bio-logs to the ground (Gianou, 2014; GBF, 2014). The logs need to be 

secured into place, wood or bamboo stakes are a good option as opposed to rebar, as they 

are natural material and will biodegrade over time as well (Figure 2.9).  

 

 

  
                           Figure 2.9: A common use of bio-logs in the intertidal, transitional and upland zones,  

                           with and without the addition of plant material 
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Sills 

 
Sills are commonly used throughout living shoreline projects in the United States, 

where over half of constructed living shorelines included sills (Gittman et al. 2015; Fear 

and Bendell, 2011; COPRI 2014). These low-lying stone structures are placed parallel to 

the shoreline in medium to high-energy systems, and can be continuous or gapped 

(segmented) structures that allow water and organisms to flow freely through (NOAA, 

2014; Bilkovic and Mitchell, 2013; Currin et al. 2009; MDE, 2008) (Figure 2.10). Sills may 

have a net positive ecological benefit (as opposed to using only traditional hardened 

structures like stone revetments or riprap), as they have a smaller ecological foot print then 

traditional structures, are able to be colonized by filter feeding epifauna and can allow for 

higher abundances of fishes and biomass (Gittman et al. 2016; Bilkovic and Mitchell, 2013; 

van Loon-Steensma and Slim, 2013).  Sills are constructed of stones stacked on top of each 

other, in a line or pyramid shape, and are held together with rebar or wire (GBF, 2014) 

(Figure 2.11). It is recommended that the sills do not crest more than 30 cm above MHW, 

and the structure should not be placed directly on the marsh (MDE, 2008).  Biodegradable 

fabrics can be used under sills and other structures to minimize sediment displacement and 

sinking (NOAA, 2014; MDE, 2008). Sills are most commonly used in conjunction with 

marsh planting to protect existing marsh vegetation and further capture and secure 

sediments behind sills (Currin et al. 2009).  
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Figure 2.10: A) A continuous still showing the wave energy striking the sill instead of the foreshore marsh or dune. B) 

segmented sill showing wave energy striking the sill, but also allowing water (and some wave energy) to flow through 

to the shore, and areas where there would be scouring and sediment deposits. 
 

 

 
Figure 2.11: Showing the construction of a gapped sill using stacked rocks, and rebar placed through the sill and into 

the ground for support 
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Debris 

 
Debris material is placed along shorelines, similar to bio-logs or sills, and is secured 

in place using wooden stakes, bamboo or rebar (Gianou, 2014; Zelo et al. 2000). The debris 

can be bundled up, fastened and placed in areas of the shore where extra protection is 

needed, for example, along the toe of a cliff, or on terraces on the cliff face (Zelo et al. 

2000). Using debris typically composed of sticks, trees, Salix spp., Alnus spp. and man-

made materials such as tires, act as a wave brake, help retain sediment (especially on sandy 

beaches), compact soils and disperse wave energy (Zelo et al. 2000; Gianou, 2014). Debris 

may also carry live plant material (e.g., Salix spp., Alnus spp.), rhizomes and seeds, which 

may aid in vegetating surfaces where they are placed, as sediments build up and conditions 

become more favourable (Zelo et al. 2000; Gianou, 2014).  

 

Oyster Reefs 

 
Oyster reefs and domes provide a wave break similar to other structures such as 

sills and breakwaters, but can also add an element of habitat creation for epifauna such as 

oysters (Manis et al. 2015; GBF, 2014; Pilkey et al. 2012; Currin et al. 2009). These 

methods have been implemented in Nova Scotia in 2012 to mitigate wave energy and create 

habitat (Clean Foundation [No Date]). Oyster structures can be used in medium-high 

energy systems where more significant wave energy dissipation is needed (NOAA, 2014; 

Currin et al. 2009). The level of wave attenuation can be significant when paired with other 

living shoreline methods such as vegetation addition (Manis et al. 2015). These structures 

are installed below the MHW line, with the top cresting above the water (Latta and Boyer, 
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2012; Pilkey et al. 2012).  There are many options when considering using oysters as a 

structural material. For example, oyster shells (or crushed oyster shells) can be mixed with 

cement and rocks to create breakwaters or riprap (Figure 2.12.A) (GBF, 2014; Latta and 

Boyer, 2012; NC, 2012). When constructing cement oyster reefs, 80% sediment from the 

area and 20% oysters, is what is recommended from the San Francisco Bay project (Latta 

and Boyer, 2012). Using dome shaped structures (oyster balls) is also common, and work 

in the same way as a reef (Figure 2.12.B). Reef balls are hollow and allow the recruitment 

of oysters and other epifauna such as barnacles and muscles (Latta and Boyer, 2012, 2012; 

Pilkey et al. 2012).  In another example, Manis et al. (2015) used a mesh mat with adult 

oysters attached vertically, which are placed in the low-mid intertidal zone (Figure 2.12.C). 

These structures should be placed on biodegradable fabrics, such as coir or permanent mats 

to reduce settlement into substrate (Latta and Boyer, 2012; Manis et al. 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

 

 

 

 

 

 

  
       Figure 2.12: A) An oyster reef ball showing oyster attachment in dark blue B) a living sill with oyster habitat 

       C) mats of oysters with no rock material used 
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2.2.6 Large structures: breakwaters, rip rap and other offshore structures 

Higher wave energy systems often require larger, more engineered offshore 

structures to dissipate wave energy, help to mitigate erosion of existing or newly created 

shorelines, and help protect habitat (GBF, 2014). When constructing offshore structures, 

the following should be taken into account: substrate type, e.g., do you need to use a mat 

underneath; construction material, e.g., concrete can be affected by high salinities; shape 

(e.g., higher energy should use pyramid shape so it does not fall over) and height (waves 

can crest, or not, cresting allows for water movement over sills, but still dampens wave 

energy) (GBF, 2014). 

Caution needs to be used to ensure that structures allow for the flow of birds, benthic 

and nekton communities into and out of intertidal habitat (Gittman et al. 2016). Structures 

such as groins and jetties can be used in conjunction with living shoreline methods such as 

beach nourishment, where they are used to capture sediment, but should only be used when 

sediment budget and flow are taken into account, as to minimize sediment starvation of 

other adjacent areas (Gianou, 2014). It is strongly recommended to seek consultation with 

a qualified engineering and hydrological professionals prior to building any “engineered” 

structures, as they are much more complicated to build and can catastrophically fail if not 

constructed correctly. 

2.3 Monitoring and maintenance 
 

There is minimal literature on the monitoring and maintenance for living shoreline 

projects. Completed living shoreline sites need monitoring and maintenance in ordered to 
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determine success and as well to evaluate different techniques applied. Depending on what 

the desired outcome of the living shoreline site is (e.g., erosion control or habitat creation) 

this will determine the methods and length of monitoring. Monitoring for a minimum of 3 

years will ensure that vegetation is established, and benthic communities are thriving 

according to Gittman et al. (2016). Gianou (2014) recommends monitoring every 8 years 

for projects that have been dominated by erosion control. Based mainly on salt marsh 

restoration literature, depending on the scope of the project, site and design, monitoring can 

include different activities such as monitoring vegetation health and type, bird or fish 

species presence and sediment deposition (Bowron et al. 2013, Neckles et al. 2002). 

Maintenance can include activities such as debris removal, replanting vegetation, adding 

additional fill material and ensuring structural materials remain in place (NOAA, 2014; 

Pilkey et al. 2012; MDE, 2008).  

 

2.4 Conclusions 

 Living shorelines are proving to be a competitive alternative to traditional 

engineered approaches to shoreline management. Discussed in this chapter are some of the 

more common methods that can be applied when constructing a living shoreline, but again, 

it is not a complete list. The methods are evolving as more groups implement the living 

shoreline approach, and tailor the techniques to their specific site. With this increase in 

popularity, an increase in living shoreline publications is already being observed, with 

several major publications being released in recent years. The methods discussed here, 
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while not a complete list, should provide a snapshot of what is available to coastal zone 

managers, and practitioners when considering the living shoreline approach.   

There are difficulties facing living shoreline practitioners in Atlantic Canada, and 

we face an uphill battle. In the United States, areas that have had the most success with 

living shorelines practices have included areas of sheltered bays such as Chesapeake Bay 

and San Francisco Bay, where wave energy and currents are reduced (Chesapeake Bay 

Trust, 2014; ESA PWA 2012; Latta and Boyer 2012). Nova Scotia and New Brunswick, 

for example, while do have their share of sheltered coasts, also hold significant coastline 

that directly face large water bodies such as the Atlantic Ocean, Bay of Fundy and 

Northumberland Straight. These areas would be significantly more challenging to work in, 

due to the environmental (e.g., proximity to direct hits from storms, increased erosion from 

wave and wind energy) and hydrological (e.g., strong currents and high wave energy) 

conditions present. Areas such as the Bay of Fundy, will be particularly difficult to 

construct living shorelines in, as it is a hyper-tidal system with tides ranging up to 16m and 

extremely strong currents in areas such as the Minas Passage, as a result this area would 

likely need large structural materials to support living shorelines (Archer, 2012; O’laughlin 

et al. 2014). As well, we face significant winter ice conditions may make newly establishing 

living shoreline projects vulnerable to damage and degradation (e.g., upheaval, vegetation 

removal, sediment removal/deposition) (Argow et al. 2009; Greene, 2009). However, 

projects in New England, which face similar ice conditions, have had success with methods 

such as planting intertidal vegetation (Ewanchuk and Bertness 2003).   
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However, the major hurdle we are facing in Atlantic Canada is navigating the 

regulatory and legislative framework for both provincial and federal approvals is something 

not discussed in this chapter. This is a major hurdle to completing living shoreline projects 

in Atlantic Canada. To date, the living shoreline projects in Nova Scotia, completed by 

groups such as the Ecology Action Centre and ACAP Cape Breton, have entirely worked 

in the terrestrial zone due to this. Until this framework is laid out, it may be difficult to 

construct living shorelines within the coastal zone as working within the intertidal zone is 

federal jurisdiction (Department of Fisheries and Oceans), land access is the responsibility 

of either private land owners, municipalities, provincial or federal departments such as 

Environment or Natural Resources, or Parks Canada. There is currently no process for 

practitioners to receive permits or permissions from any of these groups.  

There are limitations associated with living shorelines. Firstly, is their ability to be 

constructed in higher energy systems without the use of structural materials (sills, 

breakwaters, oyster reefs), which are costly and difficult to construct (MDE, 2008). While 

living shoreline sites are incredibly adaptable for medium-higher energy sites, there are 

exceptions where hardened structures are likely more useful as vegetation may be unable 

to establish without additional protection in high-energy environments (Bruno 2000). 

However, it is important to reiterate that they can be used in conjunction with living 

shorelines as hybrid living shorelines. Hybrid living shorelines, such as a marsh-sill 

combination, may still incur some negative impacts such as a possible reduction in 

bioturbation, the disturbance and mixing of sediments, and (undetermined) impacts on 

certain nutrient cycles and oxygenation of the area (Bilkovic and Mitchell, 2013) Few 
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studies have focused on the use of hardened structures in living shorelines (i.e., sills) 

(Bilkovic and Mitchell, 2013). However, there are still more positive impacts of using a 

hybrid living shoreline as opposed to traditional engineered structures.  

A major hurdle to living shorelines, however, is the lack of quantitative data on how 

to properly construct living shorelines. This gap within literature should be a concern to 

practitioners interested in constructing living shorelines, as they are required to rely on 

incomplete science, and not fully understanding the difficulties and limitations of using 

certain methods.  There has been minimal peer-reviewed studies comparing the benefits of 

living shorelines, in terms of ecosystem services and functions, as compared to hardened 

shorelines or natural (unaltered) shorelines. As well, data surrounding the success of living 

shoreline projects is almost non-existent, and while some methods such as planting 

intertidal vegetation can be inferred from salt marsh restoration literature, the success of 

methods such as, the use of bio-logs or debris, are not well documented.  
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Chapter 3: Storage, Germination, and Field 

Establishment of Spartina Species for Living 

Shorelines 

3.1 Introduction 

One of the prevailing techniques used in living shoreline projectsis the addition of 

plant material to a marsh surface, sand flat or intertidal zone (Fang et al. 2004; Rozas and 

Minello, 2001; Minello, 2000). The initial step to growing transplant plugs for use in these 

projects is to understand the best methods to both store and germinate seeds of the targeted 

species, of which there are many biological and environmental variables that may impact 

success. Having the ability to keep seeds in long-term storage allows for access to large 

quantities of viable seeds for larger projects, including use for both the direct placement of 

seeds and growing viable seedlings (plugs) (Esley-Quirk et al. 2008; Fang et al. 2004). How 

these species are stored has the potential to impact germination rates, and there is variability 

within the literature on the best method to store seeds. As well, there is genetic variability 

in different geographical populations which may impact germination rates, seed and 

seedling characteristics (Fang et al. 2004; Chung et al. 2004, Esley-Quirk et al. 2008). Fang 

et al. (2004) suggests that Spartina spp. seed germination is highly variable and can be 

dependent on the geographic population that seeds were collected from. 

The physical and environmental variables that may impact germination rates (in a 

controlled setting such as a greenhouse) can include (but not limited to); the need for 

stratification, use of saline or fresh water when storing and germinating (as a potential 

stratification process needed to break dormancy), soil type, and length of time to germinate 
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(Deng et al. 2009; Chung et al. 2004; Bruno, 2000; Cordazzo, 2001; Callaway and Josselyn, 

1992). Storage of seeds wet or dry has been studied quite extensively throughout Spartina 

spp. literature, and studies such as Chung et al. (2004), Bruno (2000), and Callaway and 

Josselyn (1992) have shown that Spartina sp. germinate significantly better when stored 

wet. This would simulated natural germination conditions for many halophytic species, 

which spend a significant amount of time wet. Testing the success of germination between 

the three dominant native Spartina species (Spartina alterniflora, S. patens, S. pectinata) 

will allow us to determine what species are viable for growing plugs or direct seeding, and 

which are better suited as transplants from existing marshes. This is particularly important 

in Atlantic Canada where currently there are no suppliers of halophytic vegetation. 

Understanding how these plugs and seeding methods function in our unique climate will 

aid in the further development of living shoreline projects. 

Natural re-colonization of a marsh, mud or sand flat can be very low when 

compared to the addition of vegetative material through methods such as direct seeding and 

transplanting vegetation (Bergen et al. 2000) Bergen et al. (2000) suggests that S. 

alterniflora has difficulty recolonizing on restored and remediated tidal flats where they 

are susceptible to high levels of erosion and predation. A common method of vegetation 

addition used in many natural shoreline management projects, such as active restoration, 

creation and living shorelines, is the addition of plant material through a variety of methods 

such as direct placement of seeds and transplants (plugs). This added plant material helps 

to facilitate plant community development, consolidate soils and enhance ecosystem 

services and functions such as, buffering from wave energy and storm surge (Bergen et al. 



47 
 

2000; Bruno, 2000). Added plant material typically includes transplants that are grown 

from seed (plugs) or transplanted from adjacent areas, directly seeding surfaces, and 

burying wrack material, which is normally full of abundant and varied seeds and propagules 

(Glogowski, 2013; Utomo et al. 2010; Minchinton, 2006; Fang et al. 2004; Anastasiou and 

Brooks, 2003; Leck 2003; Huckle et al. 2002; Rozas and, 2001; Minello, 2000).  

Eastern North American salt marshes are dominated by Spartina species, 

commonly S. alterniflora, S. patens and S. pectinata (Konisky and Burdick 2004, 

Anastasiou and Brooks 2003, Fang et al. 2004). These three species are dominant, but co-

occur with other common salt marsh species including Juncus gerardii, Plantago maritima, 

Salicornia depressa and Sueda maritima (Mittelhauser et al. 2010). In a natural 

environment, Spartina spp. are known to follow elevation and salinity gradients, where S. 

alterniflora is found in the harsh low marsh and able to withstand higher inundation 

periods, salinities and wave conditions and act as an ecosystem engineer adapted to grow 

in a variety of substrates; and S. patens is found dominantly in the middle (or high) marsh 

zone as sediment, inundation and wave condition become more favorable for establishment 

(Porter et al. 2015; Konsky and Burdick, 2004; Bruno, 2000). Spartina pectinata is 

generally found in extreme high marsh and upland or brackish transitional zones (Porter et 

al. 2015; Gedye et al. 2012; Kim et al. 2012). However, these species can have considerable 

overlap with in the zones (Porter et al. 2015). For example, Spartina patens can be found 

in both the mid-marsh along with S. Alterniflora in low marsh transition zone or with J. 

gerardii in a high marsh transition zone. (Porter et al. 2015, Anastasiou and Brooks 2003, 

Wilson et al. 2001, Callaway and Josselyn 1992, Bertness 1999, Cranford et al.1989,).  
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More specifically, Spartina alterniflora is an erect grass that grows in single stands 

and acts as pioneering species on eastern North American salt marshes, where it can modify 

habitats to facilitate the development of salt marsh plant communities (Stammerman and 

Piasecki, 2012; Gedan and Bertness, 2009; Konsikey and Burdick 2004; Huckel et al. 2002; 

Bruno, 2000; Wilson et al. 2007). Spartina patens, a finer hay like grass, has historical 

importance from use on Acadian dykelands, such as use for sod when building dykes, as 

well as harvesting for hay (Bleakney et al. 2004). Spartina pectinata is an erect grass that 

is the tallest of the three species and grows in single stands similar to S. alterniflora (Gedya 

et al. 2012). Spartina alterniflora and S. pectinata have both been explored for their use in 

carbon sequestration and as biofuel crops, as they produce large amounts of biomass 

(Gedye et al. 2012; Boorman and Ashton, 1997; Moy and Levin 1991). The flowering times 

and seed production of the three species vary both annually and geographically, with most 

populations flowering in the late fall (Fang et al. 2004; Anastasiou and Brooks, 2003; 

Wilson et al. 2001).  

Transplantation of live plants is a common method to add vegetation to the coastal 

zone. These can be grown from seed into plugs, if the facilities to do so are available, or 

transplanted directly from adjacent marshes (Konsky and Burdick, 2004; Anastasiou and 

Brooks, 2003). Using transplants from surrounding areas (termed adjacent transplants), 

allows for transplants to be used when there are no nursery plants available (Konsky and 

Burdick, 2004). Anastasiou and Brooks (2003) suggests using plants from within a 160 km 

radius to promote genetic homogeneity, and also to assure that the plugs are not accustomed 

to a different set of environmental conditions. While this is an efficient way to add 
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vegetation, the seedlings can be susceptible to transplant shock, up-rooting and removal 

from wave action and damage from human impacts such as trampling (MDE, 2008; 

Anastasiou and Brooks, 2003; Bruno, 2000).  Seed placement (direct seeding), is another 

method of adding vegetation, where seeds are placed on the surface, or buried, and allowed 

to germinate (Utomo et al. 2010; Fang et al. 2004). Seeding can prove to be problematic as 

tidal energy may remove seeds as the tides ebb and flow, and newly germinated seedlings 

are susceptible to high rates of mortality and removal. 

3.2 Research objectives and hypotheses 
 
This research focuses on Nova Scotia due to the availability of study sites, however still 

has implications for other areas in Atlantic Canada. The project evaluates the different 

techniques of storage and germination of Spartina spp. seeds for plugs and direct seeding, 

to be used in natural shoreline management projects such living shorelines or active 

restoration projects . As well, this project will evaluate which methods of vegetation 

addition show the highest rates of survival on two field sites (Eastern Passage and 

Lawrencetown Lake) over a growing season, until the time of peak biomass, where we 

expect a reduction in growth (Cranford et al. 1984). 

The following objectives were identified: 

1. Determine the best method(s) to store (frozen or cold) quantities of S. alterniflora, 

S. patens and S. pectinata seeds to produce the highest germination rates. 

2. Determine the best method (transplants, seeding and wrack burial) to establish 

vegetation growth along shorelines. 
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3. Determine if a S. patens community can be established at the Eastern Passage- S. 

patens study site, due to the lack of S. patens community at that site. 

4. Determine if elevation gradients (relative to sea level) play a major role in survival 

of seedlings and plugs. 

 

The following hypotheses were evaluated: 

1. Freezing seeds and germinating in salt water will increase germination rates of the 

three species because it simulates natural environmental conditions (winter 

conditions and saline water) for these species. 

2. Plugs (both grown plugs and transplants used from the sites) of S. alterniflora and 

S. patens at both sites will perform better than direct seeding and wrack 

germination. 

3. Survival of plugs and seedlings will be highest in the elevational zones where they 

are found in the natural environment. 

4. Physical (elevation, fetch, seed source) and biological (interspecific competition) 

will be limiting factors on the survival rates S. patens transplants and seedlings at 

the Eastern Passage- S. patens site.  

3.3 Methods 

3.3.1 Storage trials 
 
Seed collection   

  To capture genetic and phenotypic differences in populations, I collected seeds on 

both the Atlantic and Bay of Fundy coasts in Nova Scotia, Canada, between Oct 1st and Oct 
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20th, 2014. Rainbow Haven Beach and Conrad’s Beach contain two salt marshes that lie on 

the Atlantic Ocean (Figure 3.1). Both sites were observed to be dominated by S. 

alterniflora, with smaller populations of S. patens and S. pectinata, as well as other 

halophytes such as Limolium nashii and Salicornia depressa. On the Bay of Fundy coast, 

Windsor salt marsh and Cogmagun salt marsh were used for collection (Figure 3.2). 

Windsor salt marsh was observed to be dominated by populations of S. alterniflora and S. 

patens, as well as small patches of S. pectinata. Cogmagun salt marsh lies on the Cogmagun 

river, and is dominated by S. alterniflora, S. patens, Juncus gerardii and Carex paleacea. 

I targeted three common salt marsh species for collection, S. alterniflora, S. patens 

and S. pectinata. Seed heads were checked regularly from early September until the time 

of collection in October, to determine when seed sets were ready for collection as this can 

vary year from year, and geographically as well (Fang et al. 2004; Callaway and Josselyn, 

1992; Mobberley, 1956). To collect the seeds, I cut the seed heads off the stalks on site and 

placed them in pre-labeled bags. Upon returning to the Ecology of Plants in Communities 

Laboratory at Saint Mary’s University, seeds were washed in tap water to remove sediment 

and sprayed with a 5% concentration of Safer’s Defender Garden fungicide (USA), to 

reduce mold (Fang et al. 2004; Li et al. 2010). Seeds were stored damp (approximately 10 

ml of water) in a standard refrigerator at 3-4oC until sorting and counting took place 

approximately 4 days later (Fang et al. 2004), approximately 1500 seeds of each species 

were collected in this process. 

 



52 
 

 

Figure 3.1: Seed collection sites along the Atlantic and Bay of Fundy Coasts, Nova Scotia, Canada 
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     Figure 3.2: Seed collection site at Rainbow Haven, Spartina alterniflora pictured 

 

 

 

Storage treatments and germination   

  I used two storage treatments for each species, storage cold in a refrigerator at 3-

4oC, and frozen in a (standard) freezer at -8oC. For each species 640 individual seeds were 

counted out, half of these went into frozen storage, and half into cold storage for 2.5 months 

to simulate winter conditions. Once the 2.5 months had passed, seeds removed from storage 

and allowed to thaw for 12 hours before being placed into germination treatments; salt (1% 

NaCl) and fresh (tap) water (Fang et al. 2004).  

 

Seeds were placed into 4 treatments for germination: 

 Frozen seeds germinated in tap water  

 Frozen seeds germinated in salt (1%) water  

 Cold seeds germinated in tap water  

 Cold seeds germinated in salt (1%) water  
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For each of the four treatments, 20 seeds from each species were placed into separate 

petri dishes, lined with two layers of Whatman (90 um) filter paper, and 8 replicates were 

used for each treatment. Seeds were placed into the growth chamber at Saint Mary’s 

University (25oC, 40% relative humidity) until germination began (Elsey-Quirk et al. 2008; 

Cordazzo, 2001) (Figure 3.3.A). Seeds remained in the growth chamber for 35 days from 

March 8th- April 11th, 2015.  Once radicles reached 3 cm and coleoptiles reached 0.5 cm I 

removed the seeds and stored them in the greenhouse where they were kept alive until 

eventual transplantation in spring 2015 (Li et al. 2010; Bruno, 2000) (Figure 3.3.B and 

Figure 3.3.C). I placed seedlings into pots with a mixture of 60% potting soil and 40% sand 

and watered daily (Figure 3.3.D). Unfortunately, due to inadequate greenhouse facilities, 

95% the seedlings did not survive until planting could occur.  
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Figure 3.3: Germination of Spartina spp. A) replicates of petri dishes in the growth chamber at Saint Mary’s University; 

B) germinating Spartina alterniflora 10 days after going into the growth chamber C) Germinating Spartina pectinata 10 

days after going into the growth chamber D) Spartina alterniflora growing in the greenhouse at Saint Mary’s University, 

approximately 1 month after germination 
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3.3.2 Field experiments 

Site descriptions 

Eastern Shore, Nova Scotia 

 
Both study sites, McCormack’s Beach and Lawrencetown Lake, are located on the 

eastern shore of Nova Scotia, Canada (Figure 3.4) with a tidal range of approximately 2m 

(Manson, 1999). The eastern shore faces the Atlantic Ocean, and is composed of glacial 

deposited till in the form of drumlins, which are readily eroding and supplying a portion of 

sediment to the shorelines of the area (Barnes and Piper, 1978; Wang and Piper, 1982). The 

eastern shore has also been found to be vulnerable to aspects of climate change and sea 

level rise (Carter et al. 1990; Manson, 1999). Salt marshes are a common features along the 

coast of Nova Scotia and are typically dominated by Spartina Spp. including S. alterniflora, 

S. patens and S. pectinata with a growing season from approximately May- September 

(Porter et al. 2015; Cranford et al. 1989). Not withstanding the dominance of Spartina spp. 

Nova Scotia salt marshes tend to be diverse and hold a range of populations of halophytes 

and brackish species (Porter et al. 2015). Despite the apparent abundance of salt marshes, 

they have been, and continue to be, at risk from human impact (e.g., coastal development) 

and climate change (increased coastal flooding, erosion, warming waters, and increased 

invasive species). It has been estimated that Nova Scotia has lost 60% of their coastal salt 

marshes (van Proosdij et al. 2006; Hanson and Calkins, 1996).   
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Figure 3.4: Study sites, Eastern Passage (Spartina alterniflora and Spartina patens sites) and Lawrencetown, 

        Eastern Shore, Nova Scotia, Canada 
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Eastern Passage (McCormack’s Beach), Nova Scotia 

 
McCormack’s Beach in Eastern Passage is a depositional drift aligned beach, with 

a large sand flat marsh, that lies in the Halifax Harbor, in the southwestern-most portion of 

the Eastern shore (Manson, 1999; Emerson and Grant, 1991). Lying to the West-south-west 

of the study site are two islands composed of eroding drumlins; Lawlor Island is composed 

of 3 drumlins, and McNab’s Island is composed of 10 drumlins (Manson, 1999). However, 

Manson (1999) showed that the beach may have formed from sand eroded from adjacent 

Barrie Beach, after it was artificially lowered, and not from the eroding drumlins of the two 

islands. There are existing salt marsh and dune communities at the site, as well as a large 

submerged aquatic vegetation (SAV) and epifauna community (Barrell and Grant, 2015). 

Spartina alterniflora is observed to be dominant in the tidal low marsh area, with patches 

of Sueda maritima, and Raphanus raphanistrum in the mid marsh zone. In the dune habitat 

Ammophila spp. dominates, with a mix of Lathyrus japonicus and Rose sp. There is no S. 

patens community on this marsh. This area has a relatively small fetch (average fetch is 

approximately 800m) due to Lawlor and McNab’s islands cutting off the fetch, and 

normally very protected against wave energy except in North-west winds (Emerson and 

Grant, 1991). Human impact at this site is observed to be very high, where people frequent 

it for recreational use (Figure 3.9). McCormack’s beach is a public access beach with a 

popular boardwalk, picnic area and clam digging sections, and the area of Fisherman’s 

Cove (adjacent to the site) is a thriving fishing community. As well, the area has been 

subject to sewage outflows, which is a continual ongoing problem when sewage treatment 

plants bypass processes during heavy rain events (Auld, 2009).  
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There are two experiment sites at McCormack’s beach which, for the field trials, 

have been designated Eastern Passage- S. alterniflora plots and Eastern Passage- S. patens 

plots (Figure 3.5). The Eastern Passage- S. alterniflora plots are low marsh and dominated 

by only S. alterniflora and the Eastern Passage- S. patens plots are located in a mid-high 

marsh area with a mix of S. alterniflora and high marsh/upland species (there is no S. patens 

present at the site). This was done so that both S. alterniflora and S. patens could be used 

at this site.  The average fetch at this site is 0.9km (low wave energy), except in the 

northwest direction where the fetch is much longer at 8.7km (high wave energy). Both 

study sites are located behind existing vegetation to further reduce any exposure to wave 

energy, and therefore minimizing the adverse impact of wave energyat both sites within 

McCormack’s Beach. However, there is an evident current when the tide ebbs and flows 

that lies to one side of the plots (Figure 3.5)  
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                Figure 3.5: Eastern passage showing the location of both the Spartina alterniflora and Spartina 

                patens plots. Pictured here is also the extent of the existing vegetation 
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Lawrencetown Lake, Lawrencetown, Nova Scotia 

Located along Route 207 (Marine Drive) in Lawrencetown, Halifax County, this 

study site lies on the South-west end of Lawrencetown Lake (Figure 3.4).  The site is part 

of a large tidal salt marsh system that extends around most of the edges of Lawrencetown 

Lake. Located to the west of the site is a large drumlin and quarry (Bowron et al. 2013). 

Adjacent to the study site is a previous salt marsh restoration project completed by Nova 

Scotia Department of Transportation and Infrastructure Renewal (NSTIR) and CB 

Wetlands & Environmental Specialists (CBWES Inc.) in 2007 (Bowron et al. 2013). To the 

south of the site lies Lawrencetown Beach, a sandy dune system that faces the Atlantic 

Ocean and Route 207. Vegetation in the area follows the typical salt marsh species 

zonation, and is dominated by species such as, S. alterniflora, S. patens, J. gerardii, Carex 

paleacea and a mix of upland species including Rose spp., Raphanus raphanistrum, and 

Daucus carota (Bowron et al. 2013). The soils at this site were observed to be more fibrous 

and composed of peat, in contrast to the sandy sediment found at Eastern Passage.  Despite 

being located directly adjacent to a heavily used trail system, human impact at this site is 

significantly less than at McCormack’s Beach at Eastern Passage, as accessibility is 

difficult due to large boulders and minimal exposed shoreline. There would be some direct 

freshwater influence from this trail system, as it sits at a higher elevation and rainwater 

would run off onto the marsh surface below.  

            The site was divided into 5 small microsites all of which lie along a narrow, exposed 

shoreline (Figure 3.8), and are dominated by only S. alterniflora. Elevational profiles could 

not be created for this site as measurements were not taken in lines, asat the Eastern Passage 
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sites, because the vegetation community at Lawrencetown was very disjointed. Average 

fetch was also much larger at Lawrencetown Lake then at Eastern Passage at approximately 

1.8 km placing it into the high wave energy zone (Table 1). 

 

 

 

 
      Figure 3.6: Lawrencetown Lake, showing the existing culvert and plot location (at high tide) 

 

 

 

Treatments 

 
To add vegetation to each of the sites, a mix of four treatment types were used: plug 

transplants, adjacent transplants (collected locally at both sites), seeds and wrack material. 

A mixture of Atlantic and Bay of Fundy S. alterniflora transplants were initially expected 

to be used, however at the time of planting, only transplants grown from Atlantic seeds 

were large enough to use.  Using the staking method outlined in Latta and Boyer (2012), 

seedlings were attached to wooden skewer sticks at the base of the stem using paper twist 

ties (Figure 2.7). The skewer sticks were placed in the ground along with the root mass to 

anchor the seedling. For direct seeding and burial of wrack material, a hole was dug, 20 cm 

Existing Marsh 
Culvert 

Plots 
 

Trail 



63 
 

deep for seeds, and 30 cm for wrack material, seeds and wrack were placed in the hole, and 

sediment replaced on top. 

3.3.3 Site Setup 

Eastern Passage 

 
There were two microsites at Eastern passage, the Eastern Passage- S. alterniflora 

site, and the Eastern Passage- S. patens site (Figure 3.5). A 20 by 20 cm quadrat was used 

at both the Eastern Passage S. alterniflora and S. patens sites. The quadrat was placed in 

unvegetated areas, and a wooden dowel was used to mark the location. A designated 

treatment was assigned to each plot. This was done using a randomized design for the 4 

treatments. A total of 20 plots were used at the Eastern Passage- S. alterniflora plots (Figure 

3.9). At the Eastern Passage- S. patens plots, the same method was used for 10 plots (Figure 

3.10). 

The type of treatment for each plot at Eastern Passage- S. alterniflora site is shown 

in Figure 3.11. There were four treatments applied to the plots: greenhouse grown plug 

transplants (plug transplants), adjacent transplants, seeds and wrack burial. The type of 

treatment for each plots at Eastern Passage- S. patens plots is shown in Figure 3.12, where 

there were two treatments applied to the plots: plug transplants and seed placement. 

Transplant (plug and adjacent) plots had 9 plants per quadrat spaced in rows of three. Seed 

plots had approximately 200 pre-weighed seeds per plot buried 5 cm below surface, with 

the sediment packed down loosely. Wrack plots had enough wrack material to fill each 

quadrat buried 10 cm below the surface with sediment loosely packed on top. 
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       Figure 3.7: The 19 Eastern Passage- S. alterniflora plots also showing human impact at site (foot prints) 
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       Figure 3.8: The 10 quadrats (5 transplant, 5 seed) at the Eastern Passage- S. patens site 
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Figure 3.9: Layout of the Eastern Passage- S. alterniflora treatment plots. P= transplant plugs, A=    

                adjacent plugs, S=seeds and W= wrack. There are n=19 plots at this site 

 

 

 

 

 
            Figure 3.10: Layout of the Eastern Passage S. patens treatment plots. P= transplant  

            plugs and S=seeds There are n=10 plots at this site 
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Lawrencetown Lake 

 
Lawrencetown lake was sectioned into 5 microsites spaced approximate 0.5m apart. 

A 1x1 m quadrat was sectioned into 20 by 20 cm squares , and placed on the surface in 

unvegetated areas, this was done as opposed to parallel rows due to the limited space at this 

site, and this was seen as the most efficient way to layout the plots. The plots were placed 

to get a range of elevation and tidal inundation periods (low marsh, to almost subtidal). 

Each square was designated a treatment of transplants (adjacent or plug), seeds or wrack 

material. Each of the five quadrats consists of between 19-25 plots (Figure 3.13). 

Consideration was taken not to have two of the same treatments next to each other (ESA 

PWA, 2012). The type of treatment for each quadrat at Lawrencetown Lake can be found 

in Figure 3.13. 
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Figure 3.11: Showing all the microsites for Lawrencetown Lake. One large square is representative of a 1x1m  

quadrat, each of the smaller squares are 20cm plots within the quadrats, and there was approximately 5m between 

each plot.. P= transplant plugs, A= adjacent plugs, S=seeds and W= wrack. There are n=109 plots at this site 
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3.3.4 Monitoring 
 

Eastern Passage was planted on May 14th, 2015 and Lawrencetown lake was planted 

later in the month on May 28th, 2016. The sites were monitored from May until September, 

every week for the first 2 months to detect any rapid changes in plant health, for the 

remaining time, sites were monitored every 2 weeks. During monitoring I recorded height, 

number of stems, plant health and other site observations. Height was measured on each 

plant, from the base of the plant, to the tip of tallest leaf. Plant heath was assessed using the 

method outlined in Anastasiou and Brooks (2003), where each plant was given a rating 

based on physical appearance (% of green vs brown or yellow stems), and new growth 

observed (plant height, number of stems). A plant was considered dead when there was no 

growth and green observed (plant was entirely yellow), for two consecutive monitoring 

events. Site characteristics such as sediment deposits, wildlife and aquatic species present, 

evaluation of existing vegetation, and human impact and activities were recorded during 

each visit. An elevational surveying was completed at both sites using a Leica Geosystem 

TCR 705, which measures in 5 arc-seconds, and distances to 2 mm + 2 parts per million, 

to calculate mean elevation as well as slope for each of the individual plots. Each plot was 

surveyed at the top and bottom of the quadrat, and at Lawrencetown Lake, the top, middle 

and bottom of each quadrat was measured as the quadrats were much larger. Fetch is used 

as a proxy for wave energy (Table 1), where the longer the fetch the higher the wave energy 

(Hardaway et al. 1984). Average fetch was measured using the Measure Tool in ArcGIS 

10.1, where 10 measurements were taken at each site and the average of those 10 

measurements were taken (Hardaway et al 1984). A note was made for Eastern Passage, 
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where one distance of fetch (in the north west direction) was significantly longer than other 

directions, and this was stated separately as this would be considered to be the longest fetch 

(Hardaway et al 1984). 

3.3.5 Statistical methods 

To understand if the treatment varied between species an ANOVA was used to 

compare the treatments between species, and due to the data not being normally distributed 

due to the large number of zeros present, a non-parabolic Kruskal-Wallis test was run for 

further analysis. Physical attributes affecting the survival of plants in the field were 

analyzed using 1-way ANOVA for each of the plots, with elevation as a fixed factor, and 

health index as the dependent variable. To understand if elevation had an impact on the 

survival of treatments used in the field trials, a least-squares regression analysis was 

performed. All statistics were run on MYSTAT 13.1 and Microsoft Excel 2016. 

 

3.4 Results 

3.4.1 Storage trials and germination of Spartina species 
 

When broken down per treatment in the Bay of Fundy population, fresh/cold clearly 

had the highest germination, and the other three treatments yielded relatively low 

germination (Figure 3.14.A). Both the salt/cold and fresh/cold treatments yielded the 

highest germination rates for the Atlantic population, whereas the two frozen treatments 

yielded very low germination rates for all three species (Figure 3.14.B). Spartina patens 

had the highest percentage of germination for both populations, with 73.6% from the Bay 
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of Fundy population and 50% from the Atlantic population germinating within the given 

time period (Figure 3.14). Spartina alterniflora had the lowest total germination with just 

6% germinating from the Bay of Fundy population and 31.6% germinating from the 

Atlantic population (Figure 3.14). As well, for S. alterniflora, the two frozen treatments 

yielded no germination for the Bay of Fundy population, as well, the fresh/frozen treatment 

from the Atlantic population also produced no germination. Spartina pectinata had 34.4% 

germination from the Bay of Fundy population and 46.8% germination from the Atlantic 

population with the best success with the fresh/cold treatment (Figure 3.14). The total 

germination per day is shown in Appendix H. Figures showing the rates of germination for 

each treatment over that period of time can be found in Appendix C. The average time for 

germinating seeds from the Bay of Fundy and Atlantic populations was approximately 15 

days. However, generally the Atlantic population peaked later, with the majority of 

germination for all three species around March 28th (day 23). 

An ANOVA was performed to test the null hypothesis that treatments did not differ 

within a species; p= >0.001 for all species and therefore I rejected the null hypothesis of no 

treatment differences. For the germination data, all species were found to be non-normal 

based on the Shapiro-Wilk and Anderson-Darling (p= 0 for all species). Transformation 

was attempted, of which a SQRT(x) transformation appeared to have the best outcome on 

the observed histograms. However, even after transformation, data were still not normally 

distributed (p= 0.00) for all species. This is likely due to the large number of zeros (non-

germinated seeds) still present in the data. Since data were not normal, a Kruskal-Wallis 

test was performed for further analysis and the null hypothesis was rejected (p= <0.002) 
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for the all of the species of both populations, except for the S. patens Bay of Fundy 

population (p= 0.098). This indicated that the treatments did differ significantly within a 

species, except for S. patens of the Bay of Fundy population. 

 

 
              Figure 3.12: Percent germination per treatment of each of the three species (means ± SE) in A) the Bay of  

              Fundy population and B) the Atlantic populations 
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3.4.2 Field trials Eastern Passage- S. alterniflora plots 

Average health index of all plots 

 
The general trend of the greenhouse grown plugs was an overall decline in health 

index over the growing season (Figure 3.15.A). There was complete mortality in 3 plots 

where all 9 plants where dead, or removed by wave energy or other hydrological forces, by 

the end of monitoring (Appendix D).  In the remaining plots the trend was still a decline in 

health index over the growing season, but plants were still alive at the end of monitoring. 

A heavy sediment deposit was observed on July 13th and major trampling was observed on 

June 5th, both of these events correlate with a major decline in several plots (ID # 1, 5, 1B 

and 1C) (Appendix G). 

In the adjacent transplant plots, an overall decline was observed from May 21st- 

June 15th (Figure 3.15.B). All adjacent transplants were dead by June 15th. Plot 12 shows a 

positive health index at July 13th, but it is likely that this was encroaching growth from 

existing vegetation on the site (Appendix D). 

In the seed plots, plot 15 had roughly 130 seedlings germinate between 3 plots (ID 

# 6, 15 and 16), and in plot 16 approximately 28 germinated (Figure 3.15.C. Appendix G). 

However, decline followed shortly after, which again corresponds to the sediment deposit 

on July 13th. No germination was observed in plots 2 or 9 (Appendix D and G).  

The wrack plots presented minimal germination across the plots, and one plot had 

no germination (Figure 3.15.D). Germination was much later in the growing season, where 

germination happened after July 27th. One plot (ID # 13) had germination earlier in the 
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growing season (June 5th), health peaked until June 15th, and then began rapid decline until 

death before August 11th (Appendix D and G). 
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                Figure 3.13: The average health indices at the Eastern Passage- S. alterniflora plots over the monitoring            

                season for A) plug transplant plots; B) adjacent transplant plots; C) seed plots; D) wrack plots 
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Elevation for all plots 

 
All of the plots at the Eastern Passage- S. alterniflora site ranged between 0.92 m 

and 0.97 m above sea level (relative to CGVD28 vertical datum), with zero representing 

sea level (Appendix E). There was minimal variation between each of the plots (p=0.98). 

Existing S. alterniflora vegetation at the site ranged from 0.85 m to 0.98 m (Figure 3.6). 

The elevations of the existing plots were significantly different than the treatment plots 

(p=0.000). The slope of each plot is also shown in Appendix E, along with the elevation of 

the top and bottom, and average elevation of each plot.  

 

 
        Figure 3.14: The elevation in meters (CGVD28) of existing vegetation (relative to sea-level at 0m) at the  

        Eastern Passage- S. Alterniflora site. The two separate lines represent two lines run parallel through                             

        existing vegetation to collect elevation data 
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                Figure 3.15: The elevation in meters (CGVD28) of existing vegetation (relative to sea-level at 0m) 

                at the Eastern Passage- S. patens site 

 

 

      

Elevation- health index regressions for all plots 

 
A least squares regression for each of the treatments, was completed for health 

index and elevation. However, no regressions were run for wrack plots as only minimal 

germination occurred. The health index and elevation for the plug transplants are weakly 

negatively correlated (r2=0.132, p=0.001), indicating that elevation may have a slight 

influence on health index for these plots (Figure 3.16.A). The health index and elevation 

for adjacent transplants are not correlated (r2=0.037, p=0.128), indicating that elevation is 

likely does not have an effect on health index of the adjacent transplants (Figure 3.16.B). 

The health index and elevation for seed plots (S. alterniflora) are strongly negatively 

correlated (r2=0.704, p = 0.009), indicating that elevation had an effect on the health of 

seedlings germinated in the seed plots (Figure 3.16.C). 
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                                        Figure 3.16: Regression graphs from the linear regression analysis for  

                                        A) plug transplants; B) adjacent transplants; and C) seeds; at the Eastern 

                                        Passage- S. alterniflora sites. No regression analysis was performed on  

                                        the wrack plots as there was minimal germination. LCL= Lower control  

                                       limit, UCL=upper control limit, LPL= lower prediction limit, UPL =  

                                       upper predication limit 
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3.4.3 Field Trials: Eastern Passage- S. Patens Plots 
 

Average health index for all plots 

 
The trend of health indices for plug transplant plots over the growing season was 

generally positive until decline began towards the end of the growing season (peak 

biomass) (Figure 3.17.A). Plot 1 was the only plot to see an overall decline in health index 

over the growing season (Appendix D & G). Two plots (ID #7 and 9) both had an overall 

increase in health index and plots 3 and 5 had relatively flat, but high, health indexes over 

the entire growing season (Appendix D &G ). 

The general trend of the data for the seed plots was a relative increase in health 

index over the growing season (Figure 3.17.B) until the point of peak biomass where the 

plants in started to decline in most of the plots. Two plots (ID # 6 and 10), had consistently 

high health indices even towards the end of the growing season (Appendix D & G). At the 

end of the monitoring season (Sept 8th, 2015), all plots were still considered to be “alive” 

but declining. 

Observation of the plots one year later (June 2016) indicates that the S. patens pugs 

and seedlings did survive the winter and continue to grow one year later (Figure 3.22)!  
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                 Figure 3.17: The average health indices at the Eastern Passage- S. patens plots over the monitoring  

                 season for A) plug transplant plots and; B) seed plots 
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Elevation for all plots 

 
Elevation of the Eastern Passage- S. patens plots were higher within the tidal range 

than the Eastern Passage- S. alterniflora plots (p=0.000). Elevation ranges from 1.15 m to 

1.16 m (CGVD28) as opposed to below 1 m in the Eastern Passage- S. alterniflora plots. 

There is also minimal variation of elevations between the various plots (p=0.875). 

Individual graphs for the slope of each plot are found in Appendix E. Existing high marsh 

vegetation at the site ranged from 1.09 m-1.37 m (Figure 3.7). The elevation of the existing 

vegetation plots were similar to the elevations of the treatment plots (p=0.744). 

Elevation- health index regressions for all plots 

 
The health index and elevation for plug transplants were very weakly negatively 

correlated (r2=0.173, p=0.045) indicating that elevation may not be the largest influence on 

the health index of the plug transplants at this site (Figure 3.18.A). The health index and 

elevation for seed plots are not correlated (r2=0.013, p = 0.009), indicating that elevation 

does not have an effect on the health of seedlings germinated in the seed plots (Figure 

3.18.B). 
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                                                    Figure 3.18: Regression graphs from the linear regression  

                                                    analysis for A) plug transplants and; B) seeds; at the Eastern  

                                                    Passage- S. patens sites. LCL= Lower control  limit, UCL 

                                                   =upper control limit, LPL= lower prediction limit, UPL =  

                                                    upper predication limit 
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3.4.4 Field trials Lawrencetown Lake plots 

Average health index for all plots 

 
The general trend of the plug transplants was an overall decline in health index over 

the growing season for all plots within each of the quadrats (Figure 3.19.A, Appendix G). 

There was complete mortality in quadrat 3 and 5, at the end of the growing season 

(Appendix D).  In quadrats 1, 2, 4 and the trend was still a major decline in health index 

over the growing season, but plug transplants were still alive at the end of monitoring, 

although the health indices were very low (> or = to a health index of 1) (Appendix D). 

Over the growing season, the trend of adjacent transplants was generally a decline 

in health index, however, this was a much smaller decline then seen in the plug transplants 

at this site (Figure 3.19.B). Quadrat 1 and 2 saw a small decline over the growing season, 

quadrats 4 and 5 saw a slightly more rapid decline, and quadrat 3 saw an increase in health 

index over the growing season. Only Quadrat 5 presented germination of wrack material, 

which was at the end of the growing season and may have been encroaching vegetation 

(Figure 3.19.C). No seed plots germinated at the site. 
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                Figure 3.19: The average health indices at the Lawrencetown Lake plots over the monitoring season  

                for A) plug transplant plots; B) adjacent transplant plots; C) wrack plots 
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Elevation for all plots 

 
The Lawrencetown plots had the lowest elevations of all three sites at 0.40m to 

0.49m above sea level (CGVD28) as compared to between 0.90m and 1.20m in both the 

Eastern Passage sites. Average elevation and slope for each of the quadrats is shown in 

Appendix E. There was a minimal difference in elevation between each of the quadrats 

(p=0.992).  Existing S. alterniflora vegetation at the site ranged from 0.44m to 0.55m, 

which are significantly higher (elevation) than the treatment plots (p=0.029) (Appendix E). 

Elevation- health index regressions for all plots 

 
A regression (least squares) was completed for health index and elevation on plug 

transplants and adjacent transplants. No regressions were run for seed plots as no 

germination occurred, as well as wrack plots as only two seedlings germinated across all 5 

quadrats. The health index and elevation for the plug transplants were not correlated 

(r2=0.006, p=0.362), and the health index and elevation for adjacent transplants are also not 

correlated (r2=0.000, p=0.99) indicating that elevation does not have an effect on health 

index of either types of transplants 

3.5 Discussion and Conclusions 

3.5.1 Storage treatments 

Overall, the Bay of Fundy populations yielded lower rates of germination then the 

Atlantic population, except for S. patens, which has higher rates in the Bay of Fundy 

population (Figure 3.14). The differences in germination rates may be attributed to genetic 

differences in the two populations, which was not examined in this project as a possible 
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variable.  Plant traits do tend to be very variable, where flowering, seed production and 

growth tend to vary year to year and geographically as well (Fang et al. 2004; Mobberley, 

1956). The seeds had a germination period of approximately 28 days for all species, with 

average peak germination (the point with the highest germination) around day 15. This is 

important to note when planning a planting project that would involve growing plugs, as 

this amount of time to germinate should be taken into account. 

The fresh/cold and salt/cold treatments yielded the highest germination. In 

comparison, freezing the seeds yielded very low germination rates. It was initially 

hypothesized that freezing would mimic natural environmental conditions (winter) which 

may provide a sort of stratification process (where seeds need to be store cold and wet to 

break the dormancy period), however it appears to cause a decrease in viability, especially 

in the case of S. alterniflora where I had zero germination in the freezing treatments. If any 

form of stratification is needed for the seeds, clearly storing the seeds cold for a period of 

time provides favourable conditions. 

Given the low germination rates of S. alterniflora observed in this study, the species 

likely does not colonize new marsh areas dominantly by seeds, which corresponds to what 

is found in literature, suggesting that S. alterniflora tends to spread and colonize more by 

rhizomes rather than seeds (Thompson, 1991; Hubbard, 1969). Studies such as Utomo et 

al. (2010) had better success with germination S. alterniflora (in both salt and fresh water) 

with a germination rate of 82% +/- 9% and as well agree that the cold stratification (in a 

refrigerator at 2-3oC) is an integral step in germination of this species. In contrast, Callaway 

and Josselyn (1992) had lower results of germination (in a field study), with 5-30% 
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germination in salt water and 25-75% germination in fresh water. For growing plugs, it is 

still possible to use seeds of S. alterniflora, although lower germination rates greatly 

increases the amount of seeds needed. Spartina patens and S. pectinata on the other hand 

had higher rates of germination and may be more likely to colonize and germinate via seeds 

then S. alterniflora, although rhizomes are still the dominant way both species colonize 

(Kim et al. 2012). Spartina patens seeds had high germination rates in both populations 

and when the observed growth rate was much quicker for both above and below ground 

biomass compared to S. alterniflora. Approximately 40 S. patens seedlings were kept alive 

in plug trays (not used in the field experiment) for the growing season (Figure 3.20), and 

what was observed by the mid growing season was that they had significant above ground 

biomass and very large, densely packed root masses, which is characteristic for S. patens 

growing naturally (Anastasiou and Brooks, 2004). Spartina pectinata seedlings were also 

kept alive in plug trays for the growing season, and grew to approximately 70 cm tall, with 

significant belowground biomass as well, and two seedlings flowered in September (Figure 

3.21). 
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                Figure 3.20: Spartina patens after spending the growing season in plug trays on the green roof at  

                Saint Mary’s University (Pictured here in early November, 2015) 
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Figure 3.21: Spartina pectinata flowering on a green roof at Saint Mary’s University in early  

                October, 2015 

 

 

 

 

 

 

 



90 
 

3.5.2 Recommendations for storage and germination 

Based on the results of this project, it is not recommended to freeze seeds as a 

method of storage. As convenient for seed inventories and large seeding projects as it would 

be to freeze seeds, it appears that this causes a significant reduction in germination success 

over all species, particularly in the case of S. alterniflora which is a common species used 

in shoreline management and restoration projects (NOAA 2014; Currin et al. 2009; 

Knutson et al. 1982). It appears as though storing the seeds cold and wet (between 2-5oC) 

produces the highest germination rates for all of the species. Long-term storage is 

questionable regardless, as studies such as Morring et al. (1971) and Sayce (1988) indicate 

that Spartina spp. seeds are likely only viable for 1 year. Although this was not tested with 

the seeds in this experiment, as they were germinated 5.5 months after collection. There are 

seed viability tests available that can be used for testing long-stored seeds before beginning 

germination, including using tetrazolium chloride, a redox indicator that stains seeds red 

when they are producing metabolic reactions, (Elsey-Quirk et al. 2005). It appears as 

though storage has more of an impact on seed germination than the type of water (fresh or 

saline) seeds are germinated in, which corresponds to what was found in literature (Utomo 

et al. 2010; Callaway and Josselyn, 1992). 

3.5.3 Field trials: Spartina Spp. plots at Eastern Passage and Lawrencetown 

Lake 

Transplants 

 
Initially it was planned to use the germinated seeds, collect height and health data 

in the greenhouse, and have mature seedlings to transplant in the spring, once temperatures 



91 
 

had stabilized above the frost point. Unfortunately, due to the long spring where frost was 

still possible into early-mid May, coupled with an unforeseen complication keeping the 

seedlings warm in the greenhouse, the seedlings died approximately mid-late April 

(Appendix F). New seeds were germinated immediately and used for the field experiment. 

Due to the late spring, new transplants had a shorter time to acclimatize prior to 

transplantation. Appendix F shows cooler than normal temperatures lasted into May, 

meaning that placing the greenhouse plug transplants outside, or transplanting them, risked 

damage, stress and death from frost. This short acclimatization period may have added to 

stress during transplantation, and may account for some of the rapid health index declines 

shown within the first 2-3 weeks of transplanting, at both the Eastern Passage- S. 

alterniflora and Lawrencetown Lake sites. 

Spartina alterniflora plug transplants were very small and had little root mass at the 

time of transplantation. Studies such as Fang et al. (2004) maintained their germinated 

seedlings for 12 weeks, and Manis et al. (2015) allowed 6 months of growth for rhizome 

cuttings (used for propagation) of S. alterniflora. However, Anastasiou and Brooks (2003) 

purchased seedlings grown in a nursery and transplanted them only 30 days after they had 

germinated. The S. alterniflora seedlings used for transplants at Eastern Passage had 

approximately 6 weeks to germinate and acclimatize, and 8 weeks for Lawrencetown. 

While the plug transplants survived better at Lawrencetown Lake, the transplants were still 

young and fragile, and coupled with high wave energy, still had a rapid decline in health 

index. While living shoreline literature has almost no studies evaluating the success of 

vegetation addition methods (such as transplants and seeding), many of the same methods 
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are used in active restoration and remediation projects. Studies such as Bergen et al. (2000) 

had stronger success with their transplants, with 99% survival within the first month. They 

attribute this to the healthy rhizomes present, and even found rhizome spread of about 15cm  

after 1 year. In contrast, Utomo et al. (2010) discuss the loss of transplants on a marsh, 

when used for mitigating erosion, stating that the loss can be as high as 44km/year, and 

certain sites are much more suited for seeding as this has better success of establishment. 

The conditions at the Eastern Passage- S. patens site were favorable for the 

establishment of plug transplants. These transplants not only established, they thrived with 

a high health index throughout the growing season. The health indices for the transplant 

plots indicate that this was within the proper elevational and salinity range for S. patens to 

flourish (with minimal environmental disturbance such as wave energy). Anastasiou and 

Brooks (2003) has shown that S. patens is particularly susceptible to transplant shock 

within the first 30 days after transplantation, where health would decline rapidly, 

sometimes to the point of mortality. However, they did find that after the 30-day point, the 

seedlings health and growth rates rebounded, but didn’t fully stabilize until between 126-

301 days after transplanting). Overall this study still had mortality rates as high as 40% 

depending on the treatment used (pH and elevation) (Anastasiou and Brooks 2003).  This 

was not the case for the plug transplants used in this study, as there was no initial decline 

in health and relatively stable health indices throughout the growing season, further 

indicating that the conditions were favorable for S. patens establishment. Spartina spp. 

should peak vegetation and have a natural cycle (mortality dynamics) of reduction in grown 

around the end of July-August (Cranford et al. 1989). I did see this with some of the plug 
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transplants of S. patens, where we saw a decline in health index after July 27th. This was an 

expected natural occurrence, and likely not due to stress from any environmental (or 

human) factors). Upon revisiting the study site the following spring (early June 2016), the 

S. patens plugs and seedlings had survived and established at the site (Figure 3.22). 

The adjacent transplants of S. alterniflora at the Eastern Passage-S. alterniflora site 

had very little (and in some cases almost no) root mass attached, as compared to the 

adjacent transplants at Lawrencetown, and this likely led to the mortality of the adjacent 

transplants at this site. Huckle et al. (2002) used adjacently collected transplants and had 

very good success with survival, except in the case of intraspecific competition. 

Intraspecific competition was not as much of a factor at either Eastern Passage or 

Lawrencetown, as the majority were in areas used for plots were bare and not colonized by 

vegetation. The adjacent transplants at Lawrencetown Lake had a much larger root mass 

attached and had a higher survival rate. 

Human disturbance likely played a large role in the decline and mortality of the 

transplant plots at the Eastern Passage- S. alterniflora site, due to the amount of trampling 

found at the site (Figure 3.9). Human traffic on sites can have a major impact and in ways 

not always predicted (MDE, 2008). For example, Toft et al. (2013) found that during 

summer months, human traffic increased in their created lower marsh zone because the low 

tide left a large portion open for foot traffic. This is also the case for Eastern Passage, as it 

is a public access beach and foot traffic increases during the summer months. This creates 

a case for public education and understanding of these projects and may decrease and 

potential damage caused.   
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High wave energy (fetch is used as a proxy in this study), sediment deposits and 

currents likely also played a role in the decline and mortality of the transplant plots at both 

the Eastern Passage- S. alterniflora and Lawrencetown Lake sites. Bruno (2000) found that 

the most common form of mortality for S. alterniflora was through burial or dislodgement 

during high-energy events. There was a heavy sediment deposit at the Eastern Passage- S. 

alterniflora site on July 13th, which did correspond to a decline in health for most of the 

plots (Appendix D). Fetch likely did not play a role in health index decline or mortality at 

Eastern Passage- S. patens, as the plots were well nestled in behind existing S. alterniflora, 

which also acts as a facilitator for further community development reducing wave energy 

and trapping sediment (Bruno, 2000). However, at Lawrencetown Lake, it is more likely 

that fetch was the dominant factor in the decline of health of the transplants as the fetch is 

considered to be in the medium energy zone. This is discussed further in the subsection 

regarding elevation and survival rates for Lawrencetown Lake. 
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                                Figure 3.22: Showing the survival of S. patens at the Eastern Passage- S. patens 

                                site 1-year post transplanting 

 

 

 

 

 

Seeding 

 
The conditions at the Eastern Passage- S. patens seed plots, were favourable enough 

to have a significant number of seedlings not only germinate, but thrive. The increasing 

trend of the health indices post germination for the seed plots suggests that this was within 

the proper elevational range for S. patens to flourish. This survival rate is a very good 
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indication that S. patens at Eastern Passage is seed source limited, and with a supply of 

seeds, we would likely see S. patens growth on the sand flat. Seeds at the Eastern Passage- 

S. alterniflora plots germinated, but then quickly declined in health and perished. This 

could be due to several factors including human impact (trampling) or sediment deposition, 

as the decline followed the heavy sediment deposition of July 13th. Factors such as currents 

and elevation may have also played a role. The plots are close to the top edge of a creek 

(Figure 3.5), which when the tide ebbs and flows, creates a strong current that may have 

damaged small, vulnerable seedlings. At Lawrencetown Lake, none of the seedlings 

germinated, and the reason for this is attributed to scouring from wave energy (Figure 3.23). 

After burying the seeds and revisiting the site the next day, the seed plots within the 

quadrats appeared to be completely scoured out. This is likely due to the type of soil 

material at the site, which was not idea for planting into as it was extremely organic and 

bound by roots and peat, as well as the higher wave energy.  
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             Figure 3.23: Scouring of seed plots at Lawrencetown Lake from high wave energy (1-week post  

             construction) 

 

 

Wrack material 

 
There was one occurrence of wrack material germinating in quadrat 5 at 

Lawrencetown Lake, however, this is likely encroaching vegetation, as it appeared to 

originate from a rhizome outside the quadrat. Wrack material also germinated in two plots 

at the Eastern Passage- S. alterniflora site, however, it quickly declined in health and died 

following germination. Based on literature determining the seed variability of wrack 

material, it is likely that the wrack material contained a higher abundance of mid to high 

marsh and brackish species, and due to the elevation at which the wrack was buried (low 

marsh), these seeds could not survive those inundation periods, or salinities (Glogowski, 
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2013; Minchinton, 2006). Therefore, wrack material was not a successful method of adding 

plant material to the low-marsh intertidal zone at either site. Wrack material has had good 

success in germinating in greenhouse experiments (where it is buried to determine seed 

composition), and typically contains an abundant variety of seeds, therefore may have 

potential use in higher-marsh zones (Glogowski, 2013;  Minchinton, 2013; Leck, 2003). 

 

3.5.4 Elevation and survival at Eastern Passage 

The Eastern Passage- S. alterniflora existing vegetation was significantly lower 

than the treatment plots, with a mean elevational difference of 0.051m. The regression 

analysis preformed on plug transplants for health index and elevation does indicate a very 

slight potential influence of elevation on the health index. This indicates that the elevations 

were likely high enough for establishment, and other factors likely played a role in health 

decline. There was also encroaching vegetation into the plots (i.e., from existing 

vegetation), which was able to survive, however, these rhizomes may be more hearty and 

able to survive the stress as compared to the fragile, young seedlings. There are other factors 

aside from elevation that can play a role in the survival of Spartina spp. including fetch, 

acidity of soils, redox potential and availably of nutrients for uptake (Anastasiou and 

Brooks, 2003). However, given there is an existing S. alterniflora community established 

here this species should be able to grow, and it is likely that current velocities and/or human 

impact played a larger role in the decline of health.    

  The health of adjacent transplants were very weakly correlated with elevation, 

which is not surprising as their rapid decline and mortality was due to the fact that the 
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transplants had little to no root mass attached. The seed plots health indices were strongly 

correlated with elevation, which indicates that elevation played a role in the health index 

decline. This is likely due to the plots being too low for newly germinated (very weak) 

seedlings to establish, although we cannot rule out other factors such as sediment deposits 

and human impact (trampling). No correlations were run for the wrack material as there 

was minimal germination. 

At the Eastern Passage- S. patens plots both transplant and seeding plots were very 

weakly correlated, indicating that elevation may have a small impact on health indices. 

However, it is likely that because elevations were within the range for S. patens to thrive, 

that the regression analysis does not tell us much about the relationship. Spartina patens 

survived and thrived because the elevations were within the range for this plant to be 

competitive and establish. This site was also more protected from both wave energy and 

human impact as it is located in amongst existing vegetation (Figure 3.24). As of June 2016, 

one-year post planting, both the transplant and seedling plots at this site are continuing to 

thrive.  
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Figure 3.24: Plug transplant and seed plots at the Eastern Passage- S. patens  

                site growing in amongst the existing vegetation 

 

 

 

3.5.5 Elevation and survival at Lawrencetown Lake 

The elevation of existing vegetation at Lawrencetown lake were significantly lower 

than the treatment plots and some of the plots were deliberately placed at elevations that 

were suspected to be too low to for S. alterniflora to be able to survive. However, the 

treatment plots with the lowest elevations do not necessarily have the worst health indices. 

For example, plot 3 has the lowest health index, but the highest elevation (Appendix E). 

This likely indicates that elevation may not be the primary driver of plant survival at the 

site. As well, there was only a mean elevational difference of 0.04 m between the existing 

vegetation measured and the plots. 
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Both plug and adjacent transplants did not show a strong correlation with elevation 

indicating that another factor may have impacted the health index. The most likely cause 

for this is physical, as soil characteristics are adequate enough for (existing) vegetation 

establishment at the site. Fetch likely plays a large role in this site. The average fetch is 

longer than 1.6 m which according to Hardaway et al. (1984) puts it in the medium wave 

energy zone (Table 1). A site like this would require added structural protection (also called 

hybrid approaches) to increase survival by reducing wave energy. As mentioned in chapter 

2, these methods can include biodegradable or permanent structures such as bio-logs, low-

lying sills, or off-shore structures such as oyster balls or reefs (GBF, 2014; NC, 2012). 

3.5.6 Recommendations for intertidal planting 

Based on of the results of this experiment, serious consideration needs to be taken 

in to account for not only the size of the above ground portion (biomass) of the plant, but 

also the size of the below ground root mass. This was indicated in both the plug and adjacent 

transplants. The greenhouse-grown plug transplants were not allowed enough time to grow 

to an acceptable size before being transplanted into the field sites. This was due to the 

original seedling mortality, and the limited time to germinate and grow new seedlings, 

while maintaining enough time in the growing season to allow the plants to establish. This 

meant that the plants had very weak and fragile above ground biomass, and very small root 

mass that was delicate and easily damaged when planting. Serious consideration also needs 

to be taken into account for the method used when planting these species (Anastasiou and 

Brooks, 2003). Improper planting methods can damage delicate root mass and lead to a 

decline in health or mortality 
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The adjacent transplants from Eastern Passage had very little root mass attached to 

them, and likely died as a result of this. It is not understood currently if this small root mass 

was a result of the genetics or more likely, the sediment composition at Eastern Passage. 

As a contrast the adjacent transplants from Lawrencetown Lake has a significant amount 

of root mass attached to the plant, and very hearty above ground biomass. These plants 

were more hardy then the plug transplants, but should be handled with the same care to 

ensure minimal damage. It also should be explored if structural materials, such as sills or 

breakwaters are needed in order to mitigate wave energy.  

Seeds tend to be more readily available for both growing plugs, and directly seeding 

surfaces, then suppliers of plugs, particularly in Atlantic Canada. Seeding methods also 

allows for large areas to be covered very quickly. Seeding may be difficult to use in certain 

areas as tidal ebb and flow and wave energy can easily remove seeds and soil composition 

can determine the ease of burial. For example, Eastern Passage has a sandy soil, and burial 

works at this site because the sediment holds down the seeds so they remain buried. 

Whereas Lawrencetown has a highly organic soil (coupled with high wave energy) that is 

easily scoured out and does not work well for burial, as seen with the seeding plots. All of 

this need to be taken into consideration when using seeds. As well, if planting or seeding 

was to be completed at Lawrencetown Lake, living shoreline methods us as adding fill or 

using a structural component (e.g., a sill) would need to be used in conjunction to decrease 

wave energy and minimize scouring (NOAA, 2014; Shipman, 2001). 

Wrack material holds a significant seed bank, may contain viable seeds for planting. 

However, it should not be relied on as a method of adding vegetation material to the mid 
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to low intertidal zone, as while there was germination of seeds from the wrack material, it 

is very likely that the species that germinated could not survive in the low marsh.. Where 

this does have potential is in the transitional upland, or freshwater dominated areas, where 

species such as Typha spp. and Juncus spp. can survive (Glogowski, 2013). 
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Chapter 4: Summary 
 

Shoreline management practices are beginning to shifting away from traditional 

engineered structures, such as rip rap and bulk heads, and evolving to include the use of 

natural ecosystem components. This is accomplished through the increased use of natural 

shoreline management practices such as living shorelines, which incorporate natural 

materials and work with the geomorphology, hydrology and biology of the system (Gittman 

et al. 2015; Manis et al. 2015; Pilkey et al. 2015; RAE, 2015; Gianou, 2014; Currin et al. 

2009). In addition, these methods offer coastal land and infrastructure protection though 

erosion mitigation and flood prevention, while increasing other ecosystem services and 

functions such as habitat restoration and creation, fisheries support, and increased usability 

of the coastal zone (Gittman et al. 2016; Sutton-Grier et al. 2015; RAE, 2015; COPRI, 

2014; Gianou, 2014; Currin et al. 2009). While traditional engineered methods, work well 

to deflect wave energy and mitigate erosion in certain circumstances, they are having 

difficulty keeping up with the impacts of climate change, as well there are negative impacts 

associated with purely engineered structures such as increased scouring, wave energy 

deflection, and alteration of intertidal and shoreline habitat (RAE, 2015; Gianou, 2014; 

Gittman et al. 2014; Bilkovic and Mitchell, 2013; Jackson et al. 2013; Currin et al. 2009; 

MDE, 2008; Bozek and Burdick, 2005; Moschella et al. 2005; Rogers and Skrabal, 2001; 

Shipman, 2001; Zelo et al. 2000). 

Chapter 2 reviews some of the more commonly used methods when constructing a 

living shoreline including, bank grading, vegetation addition and low-lying structural 

materials such as sills. These methods were all prevalent through literature and 
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applications. For example, marsh-sill combinations (sills and marsh vegetation addition) 

composed half of all living shoreline projects completed in the United States to date 

(Chesapeake Bay Trust, 2014). While there is an increasing bank of living shorelines 

literature continuing to be published, this chapter further discusses the lack of quantitative 

data (construction methods or monitoring) being published within this literature. This 

makes living shorelines a difficult decision for coastal zone managers, as this lack of data 

means they are relying on incomplete science. As well, no concrete definition of living 

shorelines has been given in peer-reviewed literature to date, and attempts to do so by 

researchers and practitioners have been done on a case by case basis, leading to a multitude 

of names and characteristics used to define what a living shoreline is (Gittman et al. 2016; 

Gianou, 2014; Patterson et al. 2014; Pilkey et al. 2012; Shipman, 2001). This chapter has 

attempted to bring together as much information on applicable methods as possible, and 

includes diagrams to aid coastal zone managers in comprehending the ideas behind these 

methods. One of the main conclusions to come out of this chapter is that this set of methods, 

while not a complete list, need to be applied with a site specific approach, that is to say 

there is no one size fits all set of living shoreline methods that can be applied to all coastal 

areas.   

The methods reviewed in Chapter 2 indicated that planting intertidal vegetation was 

an extremely common method in living shoreline projects, it was noted that these methods 

had not yet been applied (or at least documented) in the Atlantic Canadian provinces (Nova 

Scotia, New Brunswick, Prince Edward Island and Newfoundland). Success of planted 

vegetation can depend heavily on horticultural practices prior to planting and planting 
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techniques used. Demonstration of appropriate techniques and quantification of their 

effects may help local practitioners and planners further develop a region's capacity to 

implement these technologies.  Given this, four methods of vegetation addition were 

attempted at two sites using S.alterniflora (at the Eastern Passage- S. alterniflora and 

Lawrenctown Lake sites) and one site of S. patens (at the Eastern Passage – S. patens site), 

both common intertidal species (Konisky and Burdick, 2004). Seeds were initially 

germinated for use as transplants, due to the lack of available suppliers, by applying four 

storage treatments to the seeds (germinated in freshwater/stored frozen, freshwater/stored 

cold, saltwater/frozen, saltwater/cold). The three targeted species, S. alterniflora, S. patens, 

S. pectinata all had varying germination rates depending on the storage treatment. For S. 

alterniflora, saltwater/frozen yielded the lowest germination, and freshwater/cold yielded 

the highest rate of germination. Spartina patens, which had the highest overall germination, 

and S. pectinata, the best germination success was found with the freshwater/cold 

treatment, and the least success with either of the frozen treatments.  

In applying the vegetation addition methods, I had minimal success with the 

survivability of S. alterniflora transplants I grew due to the fact they were likely too young 

to be transplanted into the sites, and this caused almost complete mortality at both sites. A 

regression analysis indicated that the health index was not dominantly impacted by 

elevation at both sites, but from other forces (e.g., fetch, currents, human impact). Of the 

(adjacent) transplants used, I had marginally better success with health indices of the 

transplants at Lawrencetown Lake, and a regression analysis indicated that elevation was 

not the main factor of health index at this site either, but more likely that the fetch was too 
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large. As indicated in Chapter 2, a fetch of 1.6 km or more likely requires some type of 

structural protection (sill or bio-log), and the average fetch at Lawrencetown Lake was 

measured at approximately 1.6km (Hardaway et al. 1984). Spartina alterniflora seeds 

germinated at both the Eastern Passage- S. alterniflora and Lawrencetown Lake sites, but 

quickly died, likely due to stress from currents, wave actionand human impacts such as 

trampling. As well, at the Lawrencetown Lake site, seeds were scoured out by wave impact 

in less than 1 week, indicating that wave energy played a larger role at this site. Wrack 

material followed the same trend, where some seeds germinated at the Eastern Passage S. 

alterniflora site, but quickly died due to likely due to low elevations and the wrack being 

composed of higher-marsh species (Glogowski, 2013; Minchinton, 2013; Leck, 2003). As 

well scouring occurred in the wrack plots at Lawrencetown Lake, which lead to no 

germination of wrack material.  

The S. patens seeds and plug transplants did exceptionally well at the Eastern 

Passage- S. patens site, with health indices remaining high for the extent of the growing 

season. The likely reason for the high survival rates was that elevations were in the range 

for S. patens to thrive (elevations at the S. patens plots were significantly higher than the 

Eastern Passage- S. alterniflora plots), as well there was added protection from wave 

energy due to existing vegetation communities. Upon checking the site 1 year later, the 

plants have survived, and continue to thrive at the site, indicating that I was able to establish 

a S. patens community at the Eastern Passage- S. patens site (Figure # 3.22).  

What this chapter establishes is that there are a multitude of factors that can impact 

the success and survival of vegetation within the intertidal zone. Physical and 
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environmental factors such as wave climate, elevation, tidal inundation, and soil 

characteristics can impact transplant and seedling health. As well, human disturbance such 

as trampling, had a large impact at the Eastern Passage- S. alterniflora site, and reinforces 

the importance of public education and proper site selection when working in public areas 

such as sand flats or beaches.   

The living shoreline approach to shoreline management is proving to be a viable 

option when there is concern regarding critical land or infrastructure eroding, flooding or 

degrading. Traditional engineered methods, while they have been proven to work in the 

past, they are facing increased pressure from climate change and maintenance costs. There 

is a wide variety of living shoreline methods available to suit most sites, depending on the 

site characteristics and goals of the project (e.g., habitat creation or erosion mitigation). The 

seed germination and vegetation addition in Chapter 3 have implications for living 

shoreline projects in Atlantic Canada, as there are no greenhouses with intertidal vegetation 

available, so alternative methods (seeds, wrack, adjacent or grown transplants) would likely 

need to be used.  This research has demonstrated that the physical conditions of the sites 

(elevation, wave energy and currents), as well as the health of transplants, and viability of 

seeds, can be the main determinates of success of vegetation addition methods in living 

shoreline projects. Finally, the survival of some of the plants at the field sites confirms that 

local plant material can be used in living shoreline projects in Atlantic Canada. Further 

development of local capacity to produce native shoreline plant species at commercial 

scales would help facilitate the development of large-scale living shorelines projects. 
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Appendix A: Summary table of living shoreline methods and some of the major benefits associated with them. 
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Upland planting x   x  x  x   x   x x      

Intertidal planting  x  x  x     x  x  x  x  x 

Subtidal planting  x  x  x      x  x       

Sills    x       x     x     

Bio-logs  x x         x   x      
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Appendix B: Potential species for use in Living Shoreline projects in Nova Scotia 

 

 

 

 

Coastal species (Dune and Salt marsh) 

 
  

Species Name Common Name Vegetation Type Notes 

Spartina 

alterniflora 

Smooth 

Cordgrass Grass low intertidal 

Spartina 

patens 

Saltmeadow 

cordgrass Grass mid-high intertidal 

Spartina 

pectinata Erect cordgrass Grass high intertidal to transitional 

Juncus 

gerardii Black grass Grass high intertidal to transitional 

Ammophila 

breviligulata  Beach grass Grass Dune grass 

Elymus repens Quack grass Grass Dune grass 

Elymus 

virginicus 

Virginia Wild 

Rye Grass Dune grass 

        

Upland Species (Terrestrial) 

  

Species Name Common Name Vegetation Type Notes 

Raphanus 

raphanistrum Wild Radish 

herbaceous 

perennial plant Edible 

Lupinus spp. Lupines 

herbaceous 

perennial plant 

Garden lupine may be invasive 

(Mittelhouser et al. 2010) 

Achillea 

milefolium Common Yarrow 

herbaceous 

perennial plant Edible 

Vaccinium 

angustifolium 

Low-bush 

blueberry Shrub edible 

Morella 

carolinisnsis 

Northern 

Bayberry Shrub Edible 

Cornus 

stolonifera 

Red-osier 

dogwood Shrub can grow roots from cuttings 

Swida rugosa 

Round leaf 

dogwood Shrub Swida alterniflora can also be used 

Rosa spp. Rose species Shrub See below for invasive species 

Salix spp. Willow species Shrub can grow roots from cuttings 

Alnus spp. Alder species Tree can grow roots from cuttings 

Acer spp. Maple species Tree See below for invasive species 

Picea spp. Spruce trees Tree   

Pinus spp. Pine trees Tree   
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Undesirable species 
  

   

Species Name Common Name Vegetation Type Notes 

Phragmites 

australis Common reed Grass Aggressively Invasive 

Heracleum 

mantegazzianum Giant hogweed 

herbaceous 

perennial plant Poisonous 

Tussilago 

farfara Coltsfoot  

herbaceous 

perennial plant Invasive 

Fallopia 

japonica 

Japanese 

knotweed 

herbaceous 

perennial plant Invasive 

Rose muntiflora Multiflora rose Shrub Invasive 

Lythrum 

salicaria Purple loostrife 

herbaceous 

perennial plant Invasive 

Lawn grass Sod Grass Shallow root systems 

Acer 

platanoides Norway Maple Tree Aggressively invasive in natural areas 
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Appendix C:  Timeline of germination graphs 
 

Bay of Fundy Population 

  
Bay of Fundy Spartina alterniflora seed germination timeline                        

 
Bay of Fundy Spartina patens seed germination timeline                        

 
Bay of Fundy Spartina pectinata seed germination timeline                        
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Atlantic Coast Population 

  
Atlantic coast Spartina alterniflora seed germination timeline                        

 
Atlantic coast Spartina patens seed germination timeline                        

 
Atlantic coast Spartina pectinata seed germination timeline                        
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Appendix D: Individual health index graphs for each of the sites broken down by 

treatment 
 
Eastern Passage- S. alterniflora Site Health Index graphs 

Plug transplant plots 

 

 
Plot 1       Plot 5 

 
Plot 10                                  Plot 17 
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Plot 1D 
 

 

Eastern Passage- S. alterniflora Site Health Index graphs 

Adjacent transplant plots 

 

 
Plot 3           Plot 8 

 
 Plot 12                                       Plot 14 
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Eastern Passage- S. alterniflora Site Health Index graphs 

Seeding plots 

 

 
Plot 2                                                                                         Plot 6 

 
 Plot 9                                                                                             Plot 15 
 

 
Plot 16 
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Eastern Passage- S. alterniflora Site Health Index graphs 

Wrack plots 

 

 
Plot 4          Plot 7 

 
Plot 11                Plot 13 
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Eastern Passage- S. patens Site Health Index graphs 

Plug transplant plots 

 

 
Plot 1              Plot 3 

 
Plot 5                  Plot 7 
 

 
plot 9 
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Eastern Passage- S. patens Site Health Index graphs 

Seeding plots 

 

 
Plot 2                Plot 4 
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Plot 10 
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Lawrencetown Lake Health Index graphs 

Plug transplant plots 
 

 
Quadrat 1                       Quadrat 2

 
Quadrat 3           Quadrat 4 

 
         Quadrat 5 
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Lawrencetown Lake Health Index graphs 

Plug transplant plots 

 

 
Quadrat 1         Quadrat 2 

 
Quadrat 3     Quadrat 4 

 
quadrat 5 
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Lawrencetown Lake Health Index graphs 

Wrack plots 

 
Quadrat 5  
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Appendix E: Elevation and slope for each of the treatment quadrats per site 
 

Eastern Passage- S. alterniflora Site 

 

Quadrat # 

Slope Average elevation (m) 

1 0.015 0.916 

5 -0.027 0.948 

10 -0.033 0.917 

17 -0.033 0.926 

1B -0.015 0.973 

1C -0.024 0.971 
 Showing slope and average elevation for plug transplant plots at the Eastern Passage-S. alterniflora site 

 

Quadrat Slope Average Elevation (m) 

3 -0.025 0.95 

8 -0.015 0.96 

12 -0.01 0.921 

14 -0.016 0.931 
Showing slope and average elevation for adjacent transplant plots at the Eastern Passage-S. alterniflora site 

 

Quadrat # Slope Average Elevation (m) 

2 -0.007 0.949 

6 -0.002 0.961 

9 -0.026 0.94 

15 -0.017 0.929 

16 -0.013 0.917 
Slope and average elevation for seed plots at the Eastern Passage-S. alterniflora site 

 

Quadrat # Slope Average Elevation (m) 

2 -0.007 0.949 

6 -0.002 0.961 

9 -0.026 0.94 

15 -0.017 0.929 

16 -0.013 0.917 
Slope and average elevation for wrack plots at the Eastern Passage-S. alterniflora site 
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Eastern Passage- S. patens site 

Quadrat Slope Average Elevation (m) 

1 0.009 1.160 

3 -0.013 1.151 

5 0.011 1.150 

7 -0.008 1.156 

9 -0.005 1.160 
Showing slope and average elevation for plug transplant plots at the Eastern Passage-S. patens site 

 

 

Quadrat Slope Average elevation (m) 

2 0.003 1.162 

4 -0.011 1.156 

6 0.013 1.154 

8 0.001 1.155 

10 0.005 1.154 
Slope and average elevation for seed plots at the Eastern Passage-S. patens site 

 

Quadrat Slope Average Elevation (m) 

1 -0.023 0.471 

2 -0.053 0.43 

3 -0.002 0.485 

4 -0.03 0.396 

5 -0.045 0.433 
  Slope and average elevation for the five quadrats at the Lawrencetown Lake site 
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Appendix F: Relevant climate data, temperature and snow cover  
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Climate data for Halifax showing 2015 vs the Climate Normals (Environment Canada, 2015) 

 

Month 2015 Average 

Temperature 

Average 

Temperature 

 Climate 

normals 

2015 

Snowfall 

(cm) 

Climate 

Normals 

snowfall 

(cm) 

Rainfall 

(mm) 

Rainfall 

Normals 

Total 

Precipitation  

Precipitation 

Normals 

         

March -4.73 -0.7 153.7 31.1 32.8 96.9 178,1 125.2 

April 1.95 4.3 26.2 11.9 80.1 105,3 103.3 117.7 

May 11.42 9.2 0.4 1.7 56.6 118.9 57 120.6 

June 13.28 14.3 0 0 154.1 117.9 154.1 117.9 

July 18.61 18.1 0 0 117.4 103.4 117.4 103.4 

August 20.73 18.5 0 0 76.1 91.8 76.1 91.8 

September 17.15 15.1 0 0 75.6 103 75.6 103 

October 8.64 9.6 0.03 0.2 190.4 130.3 190.3 130.5 
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Appendix G: Layout of plots at Eastern Passage and Lawrencetown Lake  
 

 Layout of the Eastern Passage S. alterniflora Plots 

 
Layout of the Eastern Passage S. alterniflora Plots 

 

 

 

 

 

 

 

 

 

 

 

ID Treatment Notes 

1 Plug Transplants Some encroaching vegetation 

2 Seeds- Lawrencetown No growth 

3 Adjacent Transplants Not enough root mass attached to transplant 

4 Wrack- Lawrencetown Some growth at end of growing season 

5 Plug Transplants Trampled 

6 Seeds- Windsor Germinated, then became stressed and died 

7 Wrack- Lawrencetown Some growth, then death 

8 Adjacent Transplants Not enough root mass attached to transplant 

9 Seeds- Windsor S. Patens. No Growth 

10 Plug Transplants Encroaching vegetation 

11 Wrack- Lawrencetown No growth 

12 Adjacent Transplants Not enough root mass attached to transplant 

13 Wrack- Lawrencetown Growth, then stressed and death 

14 Adjacent Transplants Not enough root mass attached to transplant 

15 Seeds- Rainbow Haven Heavy sediment deposit early July, death of seedlings 

16 Seeds- Rainbow Haven 

S. Patens. Heavy sediment deposit early July, death of 

seedlings 

17 Plug Transplants Survived. 

1B Plug Transplants 

In existing vegetation. Transplants buried mid growing 

season 

1C Plug Transplants 

In existing vegetation. Transplants buried mid growing 

season 

1D Plug Transplants Encroaching vegetation 
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Layout of the Eastern Passage S. patens plots 

 

 

Quadrat ID # Treatment PlantID # Treatment 

1 

1 Plug Transplant 14 Adjacent Transplant 

2 Adjacent Transplant 15 Plug Transplant 

3 Plug Transplant 16 Adjacent Transplant 

4 Adjacent Transplant 17 Plug Transplant 

5 Plug Transplant 18 Adjacent Transplant 

6 Adjacent Transplant 19 Plug Transplant 

7 Plug Transplant 20 Adjacent Transplant 

8 Adjacent Transplant 21 Plug Transplant 

9 Plug Transplant 22 Adjacent Transplant 

10 Adjacent Transplant 23 Plug Transplant 

11 Plug Transplant 24 Adjacent Transplant 

12 Adjacent Transplant 25 Plug Transplant 

13 Plug Transplant     

Layout of Quadrat 1 at Lawrencetown Lake 

 

 

 

 

 

 

Plot ID Treatment Notes 

1 Plug Transplant  Existing vegetation, higher marsh species 

2 Seeds- Windsor  Existing vegetation, higher marsh species 

3 Plug Transplant  Existing vegetation, higher marsh species 

4 Seeds- Cogmagun River  Existing vegetation, higher marsh species 

5 Plug Transplant  Existing vegetation, higher marsh species 

6 Seeds Windsor/ Rainbow Haven  Existing vegetation, higher marsh species 

7 Plug Transplant  Existing vegetation, higher marsh species 

8 Seeds - Windsor  Existing vegetation, higher marsh species 

9 Plug Transplant  Existing vegetation, higher marsh species 

10 Seeds- Cogmagun River  Existing vegetation, higher marsh species 
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Quadrat ID# Treatment Plant ID # Treatment 

2 

1 Seeds 11 Wrack 

2 Plug Transplant 12  Plug Transplant 

3 Adjacent Transplant 13 Plug Transplant 

4 Adjacent Transplant 14 Adjacent transplant 

5 Plug Transplant 15 Plug Transplant 

6 Plug Transplant 16 Adjacent transplant 

7 Adjacent Transplant 17 Plug Transplant 

8 Plug Transplant 18 Wrack 

9 Wrack 19 Adjacent transplant 

10 Adjacent Transplant 20 Seeds 

Layout of Quadrat 2 at Lawrencetown Lake 

 

 

 

 

 

Quadrat ID # Treatment Plant ID # Treatment 

3 

1 Adjacent Transplant 14 Adjacent Transplants 

2 Plug Transplant 15 Plug Transplant 

3 Seeds 16 Adjacent Transplants 

4 Plug Transplant 17 Seeds 

5 Wrack 18 Adjacent Transplants 

6 Wrack 19  Plug Transplant 

7 Seeds 20 Adjacent Transplants 

8  Plug Transplant 21 Plug Transplant 

9 Adjacent Transplant 22 Adjacent Transplants 

10 Plug Transplant 23 Plug Transplant 

11 Plug Transplant 24 Adjacent Transplants 

12 Plug Transplant 25 Plug Transplant 

13 Seeds   

Layout of Quadrat 3 at Lawrencetown Lake 
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Quadrat ID # Treatment PlantID # Treatment 

4 

1 Plug Transplant 11 Plug Transplant 

2 Wrack 12 Adjacent Transplant 

3 Seeds 13 Wrack 

4 Plug Transplant 14 Adjacent Transplant 

5 Adjacent Transplant 15 Adjacent Transplant 

6 Seeds 16 Seeds 

7 Adjacent Transplant 17 Adjacent Transplant 

8 Plug Transplant 18 Wrack 

9 Plug Transplant 19 Plug Transplant 

10 Wrack 20 Adjacent Transplant 

Layout of Quadrat 4 at Lawrencetown Lake 

 

 

 

 

 

 

 

 

Quadrat ID # Treatment Plant ID # Treatment 

5 

1 Adjacent Transplant 11 Plug Transplant 

2 Wrack 12 Adjacent Transplant 

3 Plug Transplant 13 Adjacent Transplant 

4 Seeds 14 Seeds 

5 Adjacent Transplant 15 Plug Transplant 

6 Plug Transplant 16 Wrack 

7 Adjacent Transplant 17 Plug Transplant 

8 Seeds 18 Plug Transplant 

9 Plug Transplant 19 Adjacent Transplant 

10 Wrack   

Layout of Quadrat 5 at Lawrencetown Lake 
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Appendix H: Germination per day for both populations 

 

Total germination per treatment for the Bay of Fundy population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Treatment 
March 
13th 

March 
15th 

March 
20th 

March 
28th 

Apr 
4th 

April 
11th 

S. alterniflora Fresh/Cold 0 0 9 1 0 1 

S. alterniflora Fresh/Frozen 0 0 0 0 0 0 

S. alterniflora Salt/Cold 0 0 1 3 0 0 

S. alterniflora Salt/Frozen 0 0 0 0 0 0 

S. patens Fresh/Cold 0 17 75 1 0 1 

S. patens Fresh/Frozen 0 0 23 5 1 0 

S. patens Salt/Cold 0 0 9 10 0 1 

S. patens Salt/Frozen 0 0 28 13 0 0 

S. pectinata Fresh/Cold 0 38 32 0 0 0 

S. pectinata Fresh/Frozen 0 0 0 4 0 0 

S. pectinata Salt/Cold 0 0 4 0 0 1 

S. pectinata Salt/Frozen 0 0 3 3 0 1 
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Total germination per treatment for the Atlantic population 

 

Species Treatment 
March 
13th 

March 
15th 

March 
20th 

March 
28th 

Apr 
4th 

April 
11th 

S. alterniflora Fresh/Cold 10 18 13 4 0 0 

S. alterniflora Fresh/Frozen 0 0 0 0 0 0 

S. alterniflora Salt/Cold 0 11 8 13 1 0 

S. alterniflora Salt/Frozen 0 0 0 1 0 0 

S. patens Fresh/Cold 2 9 53 1 0 0 

S. patens Fresh/Frozen 0 0 0 1 0 0 

S. patens Salt/Cold 0 0 42 8 0 2 

S. patens Salt/Frozen 0 0 0 4 0 3 

S. pectinata Fresh/Cold 0 11 46 6 0 0 

S. pectinata Fresh/Frozen 0 0 0 9 3 0 

S. pectinata Salt/Cold 0 0 3 27 1 0 

S. pectinata Salt/Frozen 0 0 0 3 6 2 


