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Abstract 

 

Constraints on the formation of mineralization and volatile activity in the layered mafic-

ultramafic Caribou Lake Gabbro, Northwest Territories, Canada 

By: Kevin John Neyedley 

 The Caribou Lake Gabbro, NT, Canada is a small layered mafic-ultramafic 

intrusion hosting minor Ni-Cu-PGE sulphide mineralization. Sulphide mineralization is 

described in detail and directly compared to early magmatic sulphide melt inclusions. 

Constraints on the initial silicate melt and R factors to produce the sulphide 

mineralization are determined. As well, it is demonstrated that sulphide melt inclusion 

compositions provide a reasonable estimate for metal tenor in sulphide mineralization. 

Melt and fluid inclusions present in mafic pegmatites and gabbros allow for a study of the 

volatile history and fluid and melt evolution of the system. Melt inclusion compositions 

indicate the system formed from an evolved metal-depleted melt. Fluid inclusions 

preserve the trapping of immiscible carbonic-aqueous brine fluids that may have been 

exsolved from different parts of the intrusion. This process has been described in 

economic Ni-Cu-PGE deposits, suggesting the presence of these fluids is not directly 

related to mineralization potential.  

 

August 29, 2016 
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Chapter 1: Introduction 

 

1.0 Structure of thesis 

 This thesis consists of four chapters. Chapter 1 contains a brief outline of the 

thesis structure, highlights the main objectives, and provides a general background on the 

geology of the Caribou Lake Gabbro. Chapter 2 provides a detailed description of the 

sulphide mineralization present in the Caribou Lake Gabbro and directly compares the 

mineralization to early magmatic sulphide melt inclusions. Chapter 2 represents a stand-

alone manuscript for submission to Ore Geology Reviews. Chapter 3 focuses on the melt 

and fluid inclusion systematics of the Caribou Lake Gabbro and this chapter represents a 

stand-alone manuscript to be submitted to Mineralium Deposita. Chapter 4 suggests 

future work and studies that would aid in the understanding of the formation of the 

Caribou Lake Gabbro. 

 

1.1 Primary objectives of thesis 

 The primary objectives of this thesis were to provide a comprehensive 

mineralogical characterization of the different styles of sulphide mineralization hosted 

within the Caribou Lake Gabbro, Northwest Territories, Canada. The sulphide 

mineralization would then be directly compared to early magmatic sulphide melt 

inclusions to determine if the initial sulphide liquid of the system had been influenced by 

fractional crystallization or alteration. The results of this thesis identify genetic 

relationships between the preserved sulphide melt inclusions and mineralization. This 
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relationship could be usefull to predict the metal fertility of other layered mafic-

ultramafic systems. 

 

1.2 Secondary objectives of thesis 

 Mafic pegmatites in the Caribou Lake Gabbro contain early coarse-grained apatite 

which host abundant secondary fluid inclusions and minor primary fluid inclusions. By 

examining fluid inclusions within the Caribou Lake Gabbro, the fluid history of the 

system can be traced and therefore they can help us understand if/when metals were either 

mobilized or brought into the system. Silicate melt inclusions also preserved in apatite 

provide a unique opportunity to investigate the starting liquid composition of the system. 

 

1.3 List of abbreviations 

 The following table summarizes commonly used abbreviations and acronyms used 

in this thesis (following page): 
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1.4 Overview of geology and geochemistry 

1.4.1 Regional geology 

 The Caribou Lake Gabbro (CLG) is located approximately 90 km southeast of 

Yellowknife, Northwest Territories along the Hearne Channel, Great Slave Lake and lies 

at the southern margin in the Slave Province of the Canadian Shield (Figure 1.1). The 

CLG comprises the western suite of the alkaline to peralkaline Blatchford Lake Intrusive 

Suite (BLIS), which is thought to be related to the formation of the Authapuscow 

Aulacogen and the associated failed rift (Bowring et al, 1984; Hoffman, 1980) that could 

have promoted crustal thinning, decompressional melting and provided conduits for 

mantle derived magmas (Mumford, 2013 unpublished PhD thesis). The BLIS intrudes 

sedimentary rocks of the Archean Yellowknife Supergroup, Morose granite, and the 

Defeat granodiorite (Davidson, 1972, 1978). Geophysical gravity studies by Birkett et al 

(1994) and Pilkington (2012) suggested that the BLIS is a relatively thin tabular body, 

approximately 1 km thick with deep mafic (CLG) roots at the western contacts. The CLG 

also appears to extend underneath the Grace Lake granite for almost half of the BLIS. 

The first detailed mapping of the BLIS was undertaken by Davidson (1972). His 

subsequent work (Davidson, 1978, 1981, 1982) identified six distinct units based on field 

relationships and geochronology: (i) Caribou Lake gabbro ranging to leucoferrodiorite 

(2184 ± 2 Ma, Mumford, 2013 unpublished PhD thesis); (ii) Whiteman Lake quartz 

syenite (2185 ± 2 Ma, Bowring et al, 1984); (iii) Hearne Channel granite (2175 ± 5 Ma, 

Bowring et al, 1984); (iv) Mad Lake granite (2166 ± 47 Ma, Wanless et al, 1979); (v) 

Grace Lake granite (2176.2 ± 1.3 Ma, Sinclair et al, 1994); vi) Thor Lake syenite (2164 ± 

11 Ma, Mumford, 2013 unpublished PhD thesis). Based on geochemistry (Davidson,  
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Figure 1.1: Regional and local geological maps of the Blatchford Lake Intrusive Suite. 

A) Location map and regional geological map of the Blatchford Lake Intrusive Suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). B) 

Detailed geologic map of the western portion of the Blatchford Lake Intrusive suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). Locations 

of diamond drill holes (DDH) used in this study are shown as well.  
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1981), the BLIS could be broken into two distinct portions; an older sub-alkaline western 

lobe (Units i-iv) and a younger peralkaline eastern lobe (Units v-vi). Mumford (2013, 

unpublished PhD thesis) has described units ii to vi as coeval multi-phase intrusions, 

(based on contacts and variations within the granitic intrusions), that show large scale 

changes from north to south; therefore, these units (ii, iii, iv) are transitional and the Mad 

Lake granite can be distributed between the northern Whiteman Lake and southern 

Hearne Channel, eliminating the Mad Lake granite from the intrusive suite.  

1.4.2 Exploration History 

 The Earl Jack Syndicate investigated aeromagnetic anomalies during 1963 in the 

Caribou Lake area. They discovered Fe-Ti occurrences with up to 15 % oxide 

corresponding to aeromagnetic highs within an anorthositic gabbro in the higher 

mineralized grade zones, assays returned values of 30 % Fe and 10 % TiO2. No claims 

were staked because zones of titanium and iron mineralization were deemed too small to 

be considered economic at the time (Curry et al, 1963). Shield Resources performed 

magnetic surveys during the 1960’s and discovered sulphide occurrences associated with 

magnetic lows. Numerous trenches were also blasted during the time Shield held claims 

in the area, several of which contained niccolite hosted in carbonate veins (Curry, 1969).  

 Airborne magnetic and EM survey were conducted by New Caledonia Mining in 

1994 and collected till samples looking for diamond indicator minerals. A few magnetic 

anomalies were identified, with a follow-up ground magnetic survey suggested for one 

anomally. They also stated that no significant concentrations of base metals were 

recognized in the gabbroic units (Warman and Gelo, 1995).  
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In 2004, Kodiak Exploration performed reconnaissance prospecting of the 

Caribou Lake gabbro. They sampled previously known niccolite showings with one 

sample returned assay values of 38.2 % Ni and 3.8 % Co. One sample of gabbro within 

the Whiteman Lake syenite was collected and had values of 19.7 % Cu and 0.3 % Ni. A 

total of 130 samples were analyzed (Marmont, 2006). During the summer of 2005 Kodiak 

Exploration hired Aurora Geoscience to perform a prospecting and sampling program as 

well as to investigate the areas around the magnetic anomalies discovered by New 

Caledonia Mining. Aurora Geosciences’ program resulted in 714 samples being 

submitted for assay. Of all the 2004 and 2005 samples submitted for assay (n=844), 91 

came back with values greater than 0.1 % Cu and 41 with greater than 0.1 % Ni. Because 

of these assay results, an airborne VTEM electromagnetic and magnetic survey over the 

Caribou Lake intrusion were conducted. From these surveys thirteen strong EM 

anomalies were identified and twelve of them occurred in the mafic-ultramafic units of 

the Caribou Lake intrusion (Marmont, 2006).  

 Kodiak’s prospecting work continued into 2006 and focused on areas located 

around the anomalies from the EM and magnetic surveys. This program identified new 

anomalies that contained modest amounts of PGE (30 ppb Pt-Pd) and one sample with Pt 

and Pd values of 97 and 25 ppb,  respectively. Some mineralized carbonate veins were 

also found during this program, which returned assay values of 8.4 % Ni and 1.25 % Co 

(Marmont, 2006). 

In 2006, Kodiak also undertook a drilling program that was designed to test the 

EM anomalies, explore the contact of the CLG, test the depth of surface showings, as well 

as to determine the stratigraphy of the CLG. The first, third and fifth drill holes produced 
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the best results of the program, encountering massive sulphides with grades ~0.53 % Ni 

and ~0.7 % Cu (Marmont, 2006). Kodiak continued its drill program in 2007 with an 

additional fifteen drill holes to explore the basal contact of the CLG, re-test some VTEM 

anomalies and to improve their understanding of the stratigraphy. No significant sulphide 

intersections were encountered during the 2007 drill program (Marmont, 2007).  

1.4.3 Study Area 

 The oldest part of the Blatchford Lake Intrusive Suite is the CLG (2184 ± 2 Ma; 

Mumford, 2013 unpublished PhD thesis) which intrudes into the Archean sedimentary 

rocks of the Yellowknife Supergroup, the Morose granite, and the Defeat granodiorite 

(Figure 1.1; Davidson, 1982). Contacts between the CLG and its Archean host rocks are  

commonly obscured by vegetation, swamps, or lakes. Davidson (1978) described a 

chilled margin along the western contact and also observed progressive changes from 

west to east across the gabbro starting with pegmatitic patches in massive olivine gabbro 

along the west and north shores of Caribou and Whiteman Lakes transitioning into a 

massive to faintly layered noritic gabbro with plagioclase defining a weak foliation, with 

the most eastern portion of the gabbro described as a leucoferrodiorite.  

1.4.4 Diamond drill hole summaries 

1.4.4.1 Drill hole CL-06-16 

Drill hole CL-06-16 is a 170.6 m long vertical drill hole that was drilled into the 

southern portion of the CLG (Figure 1.1). This hole was chosen for the study based on its 

moderate disseminated sulphide mineralization. The hole is predominately composed of a 

gabbroic unit that varies from fine- to coarse-grained. Plagioclase and clinopyroxene 

modal proportions are relatively consistent throughout the unit, ranging from 30-50 % 
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plagioclase and 20-35 % clinopyroxene. Orthopyroxene and olivine vary significantly 

through the gabbroic unit, ranging from 0-10 % for both minerals. Alteration intensity 

varies throughout the gabbro as well. Short intervals of a melagabbro were observed at 

34.7-36.1 m in the core, which will be referred to as a clinopyroxenite. The upper and 

lower contacts with the surrounding gabbro are gradational. Clinopyroxenite consists of 

5-10 % plagioclase, 50-75 % clinopyroxene, 0-15 % olivine, Fe-Ti oxides 10-15 %, and 

3-5 % pyrrhotite with trace chalcopyrite. From 51.8 m to 64.5 m, weak to moderate 

disseminated sulphides are present, primarily pyrrhotite with minor amounts of 

chalcopyrite. A small anorthosite unit occurs at 90 m within the gabbro and is only ~10 

cm in length. From 87.5-88.1 m and 92.2-108.9 m alteration zones contain abundant 

calcite-quartz veinlets and stringers composed of epidote, pyrite, serpentine and chlorite. 

Minor amounts of bleaching are present within the zone as well as minor amounts of 

hematite alteration. Below the alteration zone is a thick interval of quartz syenite (108.9-

139.05 m) and then a plagioclase-rich diabase (139.05-151.5 m). A small interval of 

gabbro is present from 151.5-153.3 m. The hole ends in plagioclase rich diabase. A 

stratigraphic column showing differences in mineralogy and alteration is illustrated in 

Figures 1.2, 1.3 and 1.4. 
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Figure 1.2: Stratigraphic column of CL-06-16 showing variations in mineral proportions. 
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Figure 1.3: Stratigraphic column of CL-06-16 showing variations in alteration. Grain 

sizes: very fine (VF) = <0.8mm; fine (F) = 0.8-1.5; medium (M) = 1.5-3mm; coarse (C) 

3-7mm; very coarse = 7-12mm. Alteration intensity: none (N), trace (T), weak (W), 

moderate (M), strong (S), complete (C). 
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Figure 1.4: Legend for stratigraphic columns in Figures 1.2, 1.3, 1.5 and 1.6. 



25 

 

1.4.4.2 Drill hole CL-06-39 

 Drill hole CL-06-39 is a 163.1 m long vertical drill hole that was drilled 

approximately 2000 m north of CL-06-16 (Figure 1.1). The significance of this hole is 

that it contains a ~70 m thick interval of ultramafic rocks, the thickest ultramafic 

succession identified by Kodiak’s drill program. The upper ~27 m of the hole is primarily 

composed of a gabbro with grain sizes ranging from medium- to coarse-grained and 

relatively consistent modal proportions of plagioclase (45-50 %), clinopyroxene (40-45 

%,) and Fe-Ti oxides (2-7 %). A few pegmatitic gabbros were also encountered within the 

first 27 m, one at 4.1 m and the other at 6.85 m. These pegmatites are different from the 

host gabbro in modal mineral abundances, with the pegmatite at 4.1 m being composed of 

primarily of clinopyroxene (~65 %) and plagioclase (~35 %) and the pegmatite at 6.9 m 

being composed of primarily of plagioclase (~65 %) and clinopyroxene (30 %). A small 

60 cm interval of dunite is present at 20.3 m within the gabbro and is strongly altered. 

The gabbros upper contact with the dunite is slightly chilled for 2 cm downhole, where 

grain sizes change from < 1 mm at the contact to 2-8 mm after the contact. A thick 

ultramafic interval was encountered from 27.7 m to 97.45 m and is primarily composed of 

olivine (60-90 %), clinopyroxene (10-20 %) and plagioclase (0-5 %), varying between 

dunite, lherzolite and wehrlite. Rarely, plagioclase modal abundances reach ~10-15 %, as 

such, some short intervals can be classified as troctolite (e.g., 83.9 m). Iron-titanium 

oxides concentrations range considerably throughout the ultramafic interval, with modal 

abundances anywhere from trace amounts to 35 % of a given interval. A short (40 cm) 

interval of gabbro occurs within the ultramafics, with sharp contacts and abrupt 

differences in modal proportions, but magnetite appears to be focused around the 
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contacts. From 82.1-84.8 m, a carbonate alteration zone is present, which is adjacent to a 

small fault surface at 85.7 m. From 97.45-118.45 m, the lithology is composed primarily 

of varied gabbros that can be rich in plagioclase, clinopyroxene, or Fe-Ti oxides. Each 

type of gabbro is generally restricted to a short interval (< 20 cm) and contacts appear to 

be gradational. Rare, thin ultramafic and oxide-rich ultramafic sections are also present 

within this interval. Two pegmatites occur, one at 100 m, which is an anorthosite and 

another at 103.9 m, which is an olivine gabbro. A magnetite rich (~70 % Fe-Ti oxides) 

interval is present at 103.7 m shortly before the pegmatite. After the varied gabbro 

interval, a uniform gabbro occurs from 118.45 to 122.95 m, where an anorthosite is 

intersected from 122.95-125.9 m, which appears to be highly altered. The lower contact 

of the anorthosite is gradational with a gabbro below at 125.9 m, while the top contact of 

the anorthosite is sharp. The gabbro from 125.9-152.9 m is similar to the uniform gabbro 

present above the anorthosite. At 152.9 m, the lithology transitions into an oxide-rich 

dunite, with Fe-Ti oxides composing 20-35 % of the interval. This oxide-rich dunite 

extends to 156.9 m where it has a sharp contact with a gabbroic pegmatite. The narrow 

pegmatite is only present for 20 cm before the lithology returns to a gabbro at 157.2 m. 

The gabbro occurs for 3 m and then the unit changes into a syenite at 160.3 m, which then 

ends the length of the drill hole at 163.05 m. Stratigraphic column showing variations in 

mineralogy and alteration is illustrated in Figures 1.5 and 1.6. 
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Figure 1.5: Stratigraphic column of CL-06-39 showing variations in mineral proportions. 
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Figure 1.6: Stratigraphic column of CL-06-39 showing variations in alteration. Grain 

sizes: fine (F) = 0.8-1.5 mm; medium (M) = 1.5-3 mm; coarse (C) 3-7 mm; very coarse = 

7-12 mm; pegmatitic (P) = >12 mm. Alteration intensity: none (N), trace (T), weak (W), 

moderate (M), strong (S), complete (C).   
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1.4.5 Geochemistry 

 Rocks of the CLG are of alkaline to sub-alkaline affinity and follow a tholeiitic 

trend (Figure 1.7). Chondrite-normalized REE plots of unaltered fine-grained gabbros 

within the CLG display a negative slope, with a moderate enrichment in the light rare-

earth elements (LREE) over the heavy rare-earth elements (HREE); (Figure 1.8A). Both 

the unaltered and altered fine-grained gabbros both have similar LREE enriched profiles 

with a positive Eu anomaly (Figure 1.8A). Primitive mantle normalized plots of the 

unaltered fine-grained gabbros show a slight enrichment in Sr and Ti relative to altered 

fine-grained gabbros (Figure 1.8B). Both altered and unaltered gabbros show depletions 

in Th, U, and HREE relative to primitive mantle. Altered fine-grained gabbros are highly 

enriched in Pb compared to unaltered gabbros, and show moderate enrichments in Cs and 

Rb, while being slightly depleted in some LREE (Figure 1.8B).  

Gabbroic rocks in the intrusion show similar SiO2 contents (39-45 wt %) with 

each other regardless of their relative position in drill core. Typically, the gabbros with 

greater amounts of SiO2 are a function of higher alteration present in the sample and 

Al2O3 also follows this trend. Magnetite and ilmenite are a direct control on the FeO and 

TiO2 content of gabbros. As units with more FeO and TiO2 (15-18 and 2.6-4.2 wt %, 

respectively) contain 5-12 % Fe-Ti oxides, while gabbros with lesser amounts of Fe-Ti 

oxides (2-3 %) have FeO and TiO2 contents of ~11 and ~1.5 wt %, respectively. 

Ultramafic rocks (dunite, clinopyroxenite) have MgO concentrations of 13-18 wt % and a 

wide range of FeO and TiO2 concentrations (22-51 and 2-8 wt % respectively) contents 

controlled by magnetite and ilmenite. Vanadium concentrations are highly variable, 

ranging from 50 ppm up to 2.3 wt % averaging ~500 ppm.  
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Figure 1.7: AFM diagram (after Irvine and Barager, 1971) of rocks from the Caribou 

Lake Intrusion show that they are of a tholeiitic composition and as the melt evolved, 

rocks move away from the FeO-MgO tie line.  F-MG Gabbro = fine- to medium-grained 

gabbro. VCG-pegmatitic gabbro = very coarse grained – pegmatitic gabbro. FeO
T
 = total 

Fe.  
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Figure 1.8: A) Chondrite normalized plot comparing unaltered and moderately to highly 

altered fine-grained gabbros. Both show the same negative slope and a positive Eu 

anomaly. B) Normalized primitive mantle plot comparing same unaltered and altered 

fine-grained gabbros as in A. Both show similar trends in trace elements, except for Pb, 

which is highly enriched in the altered samples. After Sun and McDonough, 1989. 
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Abstract 

 Magmatic Ni-Cu-Co-Fe sulphide melt inclusions and associated sulphide 

mineralization hosted in cumulate rocks of the Caribou Lake Gabbro (CLG), Blatchford 

Lake Intrusive Suite, Northwest Territories, Canada, present an opportunity to study ore 

forming processes in a sub-economic system. Three distinct styles of sulphide 

mineralization occur in the CLG; (i) disseminated sulphides, (ii) semi-massive to massive 

sulphides, and (iii) trace sulphide “PGE-enriched” mineralization. Within all 

mineralization styles, the mineral assemblage consists of pyrrhotite + chalcopyrite + 

pentlandite + magnetite + ilmenite. Trace metal phases identified consist of sphalerite, 

galena, glaucodot-gersdorffite [(Co,Fe)AsS-NiAsS], molybdenite, tellurobismuthite 

(Bi2Te3), altaite (PbTe), electrum, nickeline, melonite (NiTe2), empressite (AgTe), and 

unidentified Se-Te-Pb, Bi-Te, and Pb-Te minerals. No platinum-group minerals were 
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observed in any mineralization styles. Within coarse-grained olivine gabbro, sulphide 

melt inclusions occur along healed fractures in olivine and plagioclase, and as primary 

inclusions in ilmenite. Secondary sulphide melt inclusions co-entrapped with silicate melt 

also occur in cumulus apatite in an altered mafic pegmatite. Sulphide melt inclusions 

consist predominately of pyrrhotite, with lesser amounts and variable proportions of 

chalcopyrite, cobaltian-pentlandite, sphalerite, magnetite, and glaucodot-gersdorffite. No 

platinum-group minerals are observed in the sulphide melt inclusions. 

 The metal tenors of sulphide melt inclusions and sulphide mineralization are 

comparable with respect to Cu concentration, with sulphide melt inclusions between 0.06 

and 2.7 wt %, and mineralization between 0.54 and 2.9 wt % (recalculated to 100% 

sulphide). Cobalt is also similar between sulphide melt inclusions (950-4,400 ppm) and 

mineralization (1,350-3,500 ppm). In contrast to Cu and Co, Ni is much more enriched in 

mineralization (0.94-2.1 wt %) than in sulphide melt inclusions (0.13-0.59 wt %). The 

difference in Ni concentration is the result of the sulphide melt having undergone minor 

fractional crystallization of monosulphide solid solution (MSS) prior to sulphide melt 

inclusion entrapment. This affected the Ni tenor more because Ni is more compatible in 

MSS than Co and Cu. 

Modeling shows it is not possible to produce the disseminated, semi-massive, and 

massive sulphide mineralization from an S-undepleted tholeiitic liquid containing 120 

ppm Cu and 12 ppb Pd. The best approximation for the formation of these three 

mineralization styles requires a silicate liquid with 44 ppm Cu and 0.08 ppb Pd, that 

likely resulted  from an initial S-undepleted tholeiitic melt that lost sulphide melt multiple 

times, possibly as the melt ascended to the current depth of the CLG. The dominance of 
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MSS products (pyrrhotite and pentlandite) in the mineralization would suggest that 

fractional crystallization of the sulphide liquid with an R factor ≤ 3000 gave rise to all 

styles of mineralization except the trace sulphide “PGE-enriched” mineralization. The 

trace sulphide “PGE-enriched” mineralization may have been formed from a S-

undepleted tholeiitic liquid that experienced sulphide liquid saturation followed by 

equilibrium sulphide liquid crystallization at an R factor between 7,500 and 100,000. 

Factors that can explain the low metal tenors of sulphide mineralization within the CLG 

include, low R-factors and low degrees of mantle partial melting. 

Sulphide melt inclusions can give an estimate of the sulphide liquid compostion at 

a specific stage in a mineralizing systems history. Composition of sulphide melt 

inclusions in the CLG confirms that the system was initially PGE-poor and predict Co 

and Cu concentrations in sulphide mineralization, suggesting sulphide melt inclusions can 

be used to predict the metal tenor of a mafic-ultramafic system where potential sulphide 

mineralization has not yet been intersected. This ablility to predict metal tenor, has 

application to surfical mineral exploration programs where sulphide melt inclusions may 

be present in highly resistive minerals (e.g., apatite) in soils and tills derived from 

weathering of an intrusion. 
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2.0 Introduction 

Numerous processes can affect the sulphide liquid once it has separated from a 

silicate liquid prior to sulphide minerals crystallizing, settling, and accumulating to form a 

Ni-Cu-PGE deposit. A sulphide liquid undergoing fractional crystallization will produce a 

Fe-Ni rich monosulphide solid solution (MSS), leaving behind a Cu-rich residue, which 

in time will crystallize to form an intermediate solid solution (ISS) (Ebel and Naldrett, 

1997; Barnes et al., 1997, 2005). Upon cooling, the MSS exsolves pyrrhotite and 

pentlandite, while the ISS exsolves Cu-rich minerals such as chalcopyrite and cubanite. 

Metamorphic and hydrothermal events can also play a major role in modifying Ni-Cu-

PGE ores after crystallization from a sulphide liquid (Sudbury: Molnar et al., 1997, 

Molnar et al., 1999, Hanley et al., 2005; Coldwell Complex: Watkinson and Ohnensterrer, 

1992; Salt Chuck: Alaska, Watkinson and Melling, 1992; Ferguson Lake, Nunavut: 

Campos-Alvarez, et al., 2012; Stillwater Complex, Montana: Polovina et al., 2004, 

Hanley et al., 2008; South Kawishiwi Intrusion, Duluth Complex: Gál et al., 2013). 

Studying sulphide melt inclusions (SUL) can help determine the composition of 

the initial (unmodified) sulphide liquid that led to the formation of sulphide 

mineralization. Sulphide inclusions have been documented in magmatic Ni-Cu-PGE 

settings previously (Platreef, Bushveld Complex: Holwell et al., 2011; Platinova reef, 

Skaergaard Intrusion: Holwell, et al., 2015; Uruguayan dike swarm: Prichard et al., 2004; 

Noril’sk: Czamanske et al., 1992; Stillwater complex: Barnes and Naldrett, 1985). Since 

SUL will behave as a closed system once trapped, the composition of the trapped liquid is 

not likely to be modified, unlike the sulphide mineralization, which may have been 

influenced by fractional crystallization and/or hydrothermal activity. Sulphide melt 
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inclusion metal tenors are likely representative of the initial sulphide liquid and knowing 

the initial metal tenor will determine if the liquid was initially depleted or enriched in 

base and precious metals and can possibly allow for prediction of the metal tenor of 

sulphide mineralization (Holwell et al., 2011). Sulphide melt inclusion isotopic ratios are 

also likely representative of the initial sulphide liquid and can help aid in determining if 

external sulfur was added to the system and the timing of sulfur saturation in a magma. 

Comparing sulphide mineralization and SUL metal tenor and isotopic compositions can 

help understand processes that may have occurred during the cooling history of the 

sulphide liquid.  

In this paper we examine the sulphide mineralization and sulphide melt inclusions 

in the Caribou Lake Gabbro (CLG) in the Northwest Territories, Canada. We describe the 

sulphide mineralization mineralogy and metal tenor of the system and directly compare 

them to sulphide melt inclusions. Sulfur isotopes of the mineralization and sulphide melt 

inclusions are also presented. This comparison is essential in order to understand the 

processes that have occurred during the history of the CLG to lead to the formation of 

magmatic sulphide Ni-Cu-PGE accumulations and the processes that may have modified 

the metal tenors of the initial sulphide liquid to the metal tenors present in sulphide 

mineralization.  

 

2.1 Geological setting 

2.1.1 Regional geology and tectonic setting 

 The CLG comprises the western suite of the Blatchford Lake intrusive suite 

(BLIS) and is located approximately 90 km southeast of Yellowknife, Northwest 
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Territories along the Hearne Channel, Great Slave Lake (Figure 2.1A). The BLIS occurs 

at the southern margin of the Slave Province and is adjacent to the Athapuscow 

Aulacogen (Hoffman, 1973; Bowring et al, 1984). Evidence for deformation of the BLIS 

is minimal with only a weak sub-vertical, northwest trending foliation that is highly 

localized and minor Proterozoic sub-vertical faults that trend north-south (Mumford, 

2013, unpublished PhD Thesis). The intrusive suite intrudes the Archean 

metasedimentary rocks of the Burwash Formation (Yellowknife Supergroup), Morose 

granite, and the Defeat granodiorite. In the region surrounding the BLIS, there are no 

reported volcanic rocks of a comparable age or similar composition, implying that the 

magma responsible for the formation of the BLIS never made it to surface or the volcanic 

equivalents have been eroded away (Mumford, 2013, unpublished PhD Thesis). The 

parental melt for the BLIS is likely a metasomatized depleted mantle source (Mumford, 

2013, unpublished PhD Thesis) and through tectonic reconstructions during the 

Paleoproterozoic, deformation along the southern Slave craton was influenced by either; 

i) a failed rift (Bowring et al, 1984; Hoffman, 1973), or ii) transpressional forces 

extending the length of an oblique crustal-scale boundary (Hoffman, 1987; Hammer et al, 

1992; Bleeker & Hall, 2007). These scenarios could result in crustal thinning invoking 

decompressional melting and the establishment of deep-seated structures (i.e., conduits) 

for a mantle derived melt (Mumford, 2013, unpublished PhD Thesis).  

2.2. Local geology 

 The oldest intrusive phase of the BLIS is the CLG (2184 ± 2 Ma, Mumford, 2012) 

which intrudes into the Archean sedimentary rocks of the Yellowknife Supergroup, the 

Morose granite, and the Defeat granodiorite (Figure. 2.1B) (Davidson, 1982). Davidson 
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Figure 2.1: Regional and local geological maps of the Blatchford Lake Intrusive Suite. 

A) Location map and regional geological map of the Blatchford Lake Intrusive Suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). B) 

Detailed geologic map of the western portion of the Blatchford Lake Intrusive suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). Locations 

of diamond drill holes (DDH) used in this study are shown as well.  
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 (1972) and his subsequent work (Davidson, 1978, 1981, 1982) and further work by 

Mumford (2013, unpublished PhD Thesis) identified five distinct units based on field 

relationships and geochronology: i) Caribou Lake gabbro grading in to leucoferrodiorite 

(2184 ± 2 Ma, Mumford, 2012); ii) Whiteman Lake quartz syenite (2185 ± 2 Ma, 

Bowring et al., 1984); iii) Hearne Channel granite (2175 ± 5 Ma, Bowring et al., 1984); 

iv) Grace Lake granite (2176.2 ± 1.3 Ma, Sinclair et al., 1994); v) Thor Lake syenite 

(2164 ± 11 Ma, Mumford, 2013 unpublished PhD Thesis).  

Based on geochemistry (Davidson, 1981), the BLIS is divided into two distinct 

portions; an older sub-alkaline western lobe (Units i-iii) and a younger peralkaline eastern 

lobe (Units iv-v). Geophysical gravity surveys reported by Birkett et al. (1994) and 

Pilkington (2012) suggest that the BLIS is a relatively thin tabular body, approximately 1 

km thick with deep mafic (CLG) roots at the western contacts. The CLG also appears to 

extend under the Grace Lake granite for almost half the width of the complex.  

Contacts between the CLG and its Archean host rocks are commonly obscured by 

vegetation, swamps, and/or lakes. Davidson (1972, 1978) and Mumford (unpublished, 

2013 PhD Thesis) described a chilled margin along the western contact that dips steeply 

(70-85°) away from the centre of the BLIS. Progressive lithological changes from west to 

east across the CLG were also observed by Davidson (1972, 1978) and Mumford (2013, 

unpublished PhD Thesis), with pegmatitic patches along the west and north shores of 

Caribou and Whiteman lakes, transitioning into a massive to faintly layered gabbro with 

plagioclase defining a weak foliation, and grading to a leucoferrodiorite in the most 

eastern portion of the CLG. 
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The CLG is a crudely layered mafic-ultramafic intrusion that is composed of a 

variety of units. Diamond drilling in 2006 and 2007 by Kodiak Exploration Limited 

identified multiple phases that were not recognized during the regional surface mapping. 

The dominant lithology of the CLG is a fine- to medium-grained gabbro but locally it can 

be rich in olivine, clinopyroxene, plagioclase, and/or Fe-Ti oxides. Ultramafic lithologies 

include dunite, clinopyroxenite, olivine clinopyroxenite, wehrlite and troctolite. Other 

phases observed include anorthosites and magnetitite. As Marmont (2006, 2007) and 

Mumford (unpublished, 2013 PhD Thesis) described and as observed during field work 

for this study, there is evidence that the CLG was of a cumulate origin. Correlation of 

individual units between closely spaced drill holes is extremely difficult and the 

ultramafic cumulate section (that should be the lowest portion of the CLG) has upper and 

lower with massive gabbro, providing evidence that the CLG was likely formed from 

numerous small batches of melt rather than from a single batch.  

Diamond drilling results by Kodiak Exploration Limited in 2006 were notable 

with massive to moderate (10-25 vol %) disseminated sulphide encountered in four drill 

holes, including an intersection of 0.53 % Ni and 0.7 % Cu over 3.18m (Marmont, 2006). 

Sulphides are hosted in a fine- to medium-grained gabbro and are primarily composed of 

pyrrhotite with lesser amounts of chalcopyrite, pentlandite, and pyrite (Marmont, 2006). 

The stratigraphic position of sulphide mineralization is variable, with semi-massive to 

massive sulphide being encountered at ~20 m depth in diamond drill hole (DDH) CL-06-

01, ~35 m in DDH CL-06-03, and ~80 m in DDH CL-07-05. All massive sulphide 

intersections were only 1.5-3 m thick with ~2 m of disseminated sulphide occurring 

above and below massive sulphides. Approximately 10 m of disseminated sulphide 
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mineralization occurred in one DDH (CL-06-16) occurring over an interval of 53 to 63 m. 

Disseminated and massive sulphide mineralizations contain minimal platinum group 

elements (PGE) (< 30 ppb Pd+Pt). Relatively higher PGE grades (~100-200 ppb Pt+Pd) 

were intersected (DDH CL-07-09) in a fine-grained gabbro that contained minimal 

amounts of sulphide (< 3 vol %, Marmont, 2007).  

 

2.2 Methodology 

 All samples collected for this study were collected during the 2013 summer field 

season, which involved surface mapping of the CLG and detailed logging of drill core 

from Kodiak Exploration Limited. Representative samples of sulphide mineralization and 

associated lithologies were collected from a variety of drill holes. Nine samples were 

collected from DDH CL-06-16, from a 10 m interval of disseminated sulphide and two 

additional samples of semi-massive and massive sulphide intersections approximately 15 

and 20 m below the disseminated sulphides, respectively (Figure 1.3). Three samples of 

semi-massive to massive mineralization were collected from DDH CL-06-01 and four 

samples were collected from DDH CL-06-05, with two representing disseminated 

mineralization above massive mineralization, while the other two samples were of 

massive sulphide. Two additional samples from DDH CL-07-09 were collected 

representing trace sulphide “PGE-enriched” mineralization at depths of 59 and 63 m. 

Sulphide melt inclusion samples came from DDH CL-07-01 from depths of 127 and 373 

m.   

 Drill core samples were sent to the Ontario Geological Survey (GeoLabs) in 

Sudbury, Ontario for whole rock analyses. Major element and loss of ignition (LOI) 
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determined by X-ray fluorescence spectrometry (XRF). The sample powders underwent 

LOI determinations, and were then fused with a borate flux to produce a glass disk. Trace 

elements were analyzed by inductively-coupled plasma mass spectrometry (ICP-MS) 

after closed vessel, four acid (HF-HCl-HNO3-HClO4) digestion. Relative analytical 

uncertainties are within ± 5 % for all major elements and ± 3 % for most trace elements. 

Nickel sulphide fire assay was conducted on mineralized samples for PGE (Pt, Pd, Ru, 

Rh, Ir) and Au determination. The sample is powdered and mixed with a Ni and S 

mixture and heated to produce a Ni sulphide disk. The Ni sulphide disk is then dissolved 

in aqua regia to produce a concentrate containing all six precious metals and then 

analyzed by ICP-MS. 

 Sulphide mineralization and sulphide melt inclusion samples were characterized 

petrographically using a Nikon Eclipse H550L microscope, using transmitted and 

reflected light. The composition and textural settings of base metal sulphides and discrete 

metal phases was conducted using a LEO1450VP scanning electron microscope (SEM) at 

Saint Mary’s University, equipped with an energy dispersive X-ray (EDS) Oxford INCA 

80 mm
2
 silicon drift detector (SDD) capable of quantitative analysis. Measurements were 

conducted at a working distance of ~20 mm, with a beam current of 40 µA and 

accelerating voltage of 25-30 kV. Raw data were reduced using the software package 

INCA. 

 Electron microprobe analyses of olivine were performed using a Cameca SX-50 

electron microprobe (EMP) at the University of Toronto. The instrument was operating at 

20 kV accelerating voltage with a 30 nA beam current and beam diameter of 1 µm. Raw 
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microprobe data count rates were converted to concentrations using the ZAF data 

reduction scheme using the software Probe for EMPA (Advanced Microbeam Inc.).  

  Trace element concentrations of sulphide melt inclusions and associated host 

minerals (apatite, plagioclase, olivine) were measured by laser ablation inductively 

coupled plasma mass spectrometery (LA-ICP-MS) at Virginia Tech, Blacksburg, 

Virginia, using an Agilent 7500ce quadrupole ICP-MS and a Lambda Physik GeoLas 193 

nm Excimer laser ablation system. The laser is linked to an Olympus petrographic 

microscope equipped with a 25x UV-VIS Schwarzschild objective for analyses as well as 

5x and 10x objectives for transmitted light viewing of the sample. A He carrier gas flow 

of ~1 L/min was passes through the ablation cell with a volume of ~1 cm
3
. Dwell times 

for all elements were 10 ms, except for 
105

Pd, 
106

Pd, 
108

Pd, 
195

Pt, and 
197

Au, (50 ms) to 

improve detection limits. Oxide production rates were maintained below 1 %. Calibration 

of analyte sensitivities utilized the standard reference material 610 from NIST (National 

Institute of Standards and Technology) and the PGE-bearing pyrrhotite standard PO724 

distributed by Memorial University (Sylvester et al., 2005). Each standard was analyzed 

twice before and twice after each analytical session that included 15-25 inclusion and host 

phase ablations, and the standards were used for data reduction and drift correction. 

Sulphide melt inclusion acquisition included 40-60 s of gas blank (laser off) before the 

laser shutter was opened to begin ablation of the host. The sites of interest were ablated 

using a beam diameter slightly larger than the inclusion (16-90 µm) and host phases were 

ablated with a spot size of 24 µm, which was the most common spot size used to ablate 

inclusions. Aerosols were generated using a pulsed beam with a repetition rate of 5 Hz 

and an output energy of 150 mJ. Since a majority of inclusions were not exposed at the 
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surface, the ablation process consisted of ablating the host before encountering the 

inclusion and continuing ablation until the entire inclusion was ablated. For complete 

operating conditions of the LA-ICP-MS system see Appendix 2. 

Trace element quantification of sulphide melt inclusions was performed using the 

software SILLS (Guillong et al., 2008). This involved deconvoluting the mixed sulphide 

inclusion plus host signal from the host only signal after calculation of background 

corrected count rates for each isotope and quantification of inclusion and host 

compositions. Since inclusions are polyphase, complete inclusions present below the 

minerals surface needed to be analyzed because if the inclusions were exposed at surface, 

all mineral phases may not be present within a single inclusion due to plucking during the 

grinding and polishing process of the thick section production. Analysis of exposed 

sulphide inclusions by SEM revealed consistent phases and slight variations in phase 

proportions in olivine and ilmenite hosted inclusions. Exposed sulphide inclusions in 

apatite and plagioclase were predominately single phase consisting of pyrrhotite, with 

minor chalcopyrite present in apatite hosted inclusions. Unopened inclusions hosted in 

apatite and plagioclase, were assumed to have the same bulk Fe as pyrrhotite. Since 

inclusions in olivine are polyphase, an estimate of the bulk Fe needed to be calculated by 

a weighted average of the Fe content of each phase within the inclusions, which required 

an accurate estimate of the vol % of each phase by calculating the area each mineral 

phase occupied within a single exposed sulphide melt inclusion (91-99 vol % pyrrhotite, 

0-6 vol % chalcopyrite, 0-3 vol % cobaltian-pentlandite) obtained by back scattered 

electron image analysis of cross sectional areas of individual inclusions. The relative 
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uncertainty associated with this method of calculation vol % estimation is ± 5 % 

(relative).  

Trace element concentrations in individual sulphide minerals in mineralization 

were measured by LA-ICP-MS at Laurentian University, Sudbury, Ontario using a 

Thermo X Series II quadrupole ICP-MS coupled to a Resonetics RESOlution M50 laser 

ablation system containing a 193 nm, 20 ns pulsed ArF Excimer laser. Ablation occurred 

in He carrier gas (650 mL/min), which was combined with a small amount of high purity 

N2 (6 mL/min) and Ar (800 mL/min) before being fed into the plasma. Dwell time for all 

elements was 10 ms, and oxide production rates were maintained below 0.3 % (ThO/Th 

checked on NIST 612). Calibration of analyte sensitivities utilized the standard reference 

material 610 from NIST and a PGE-bearing pyrrhotite standard PO725 distributed by 

Memorial University (Sylvester et al., 2005). A chalcopyrite PGE “blank” was used to 

evaluate the 
63

Cu
40

Ar and 
65

Cu
40

Ar interferences on 
103

Rh and 
105

Pd, respectively and 

allow for manual correction. Unknowns were bracketed with standards between every ten 

analyses. The sulphide acquisition consisted of 30s of a gas blank followed by ~10-15s of 

sample ablation. The laser conditions used were: repetition rate of 5 Hz, spot size between 

36 and 66 µm, and a fluence of 6 J/cm
2
. Trace element quantification of sulphide time-

signal intensity data was performed using the software SILLS (Guillong et al, 2008). For 

complete operation conditions of the LA-ICP-MS system see Appendix 2. Internal 

standardization utilized the Fe content of the sulphide minerals determined separately by 

SEM.  

Samples that contained large (>2 mm) sulphide grains were drilled out with a ~2 

mm diamond drill bit to produce a sulphide powder. This powder was sent to the Queens 
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Facility for Isotope Research (QFIR) in Kingston, Ontario. Stable sulfur isotope 

measurements were completed on pyrrhotite, chalcopyrite, and pyrite using a Carlo Erba 

NCS 2500 elemental analyzer coupled to a Finnigan MAT 252 mass spectrometer with a 

Finnigan MAT Conflo 11. Values are reported in the δ notation in units of per mil (‰) 

relative to standard Vienna Canyon Diablo Troilite (V-CDT). Replicate δ
34

S analyses are 

reproducible to within ±0.3‰. 

  Sulfur isotope compositions of sulphide mineralization, secondary sulphides (e.g., 

along fracture planes in core) , and sedimentary pyrrhotite were determined in situ using a 

CAMECA IMS 7f secondary ion mass spectrometer (SIMS) at the University of 

Manitoba, Winnipeg, Manitoba. A cesium (Cs
+
) primary beam with a 2 nA current, was 

accelerated (+10 kV) onto the sample surface with a sputtering diameter of 15 μm; the 

instrument operated at a 200 V sample offset, -9 kV secondary accelerating voltage and at 

mass resolving power of 347. During the measurement process by SIMS, an intrinsic 

mass dependent bias is introduced, which is referred to as instrumental mass fractionation 

(IMF) and typically favors the low mass isotope. The greatest contributor to the IMF is 

the ionization process, which depends most strongly upon sample characteristics (i.e., 

chemical composition). This is referred to as compositionally dependent fractionation or 

“matrix effects” (e.g., Riciputi et al. 1998). Therefore, accurate isotopic SIMS analysis 

requires that IMF be corrected for by standardizing the IMF using mineral standards that 

are compositionally similar to the unknown. SIMS results from the standard are compared 

to its accepted isotopic composition in order to calculate a correction factor that is applied 

to the unknowns measured during the same analysis session (e.g., Holliger, 1988). A 

grain of Anderson pyrrhotite with an accepted δ
34

S value of 1.4 ± 0.3‰ from the 
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Anderson Lake Mine, Manitoba, Canada was used as the sulfur isotope standard (Crowe 

and Vaughn, 1996). Spot-to-spot reproducibility for Anderson pyrrhotite was 0.3 ‰ and 

precision for individual analysis was 0.3 ‰ for δ
34

S values. Therefore, 2σ errors for 

sulfur isotope analyses are 0.3 ‰. Isotopic data are reported in standard δ-notation 

relative to the appropriate standard, Canyon Diablo Troilite (CDT) for 
34

S/
32

S. The 

equation for calculating δ values in units of per mil (‰) is: 

δsample= (Rsample/Rstd-1)x10
3
        [1] 

where Rsample and Rstd are the absolute isotope ratios in sample and standard, respectively. 

Isotope ratios measured by SIMS were compared to the accepted ratios (calculated from δ 

values determined by conventional analyses and gas source mass spectrometry) for each 

mineral using equation [2]: 

Rsample=[(δsample/10
3
)+1]Rstd       [2] 

where Rstd (
34

S/
32

S) for CDT is 4.450045 x 10
-2

 (Jenson & Nakai, 1962). These data can 

be used to calculate isotope mass fractionation that occurs during SIMS analysis by using 

equation [3]: 

 αSIMS=RSIMS/Rconv.        [3] 

where RSIMS is the ratio measured by SIMS and Rconv is the accepted ratio measured by 

conventional gas source mass spectrometry. These ratios can be converted to ‰ notation 

by: 

δbias= [(RSIMS/Rconv.)-1] x 10
3
       [4] 

 



50 

 

2.3 Results 

2.3.1 Sulphide mineralization petrography  

Two main types of sulphide mineralization occur in the CLG: (i) fine- to coarse-

grained disseminated sulphides, comprising the longest interval of sulphide 

mineralization (~10 m)  encountered in diamond drilling by Kodiak Exploration 

(Marmont, 2006, 2007); and (ii) Massive to semi-massive sulphide mineralization is 

represented comprising relatively short intervals of drill core (~1.5-3 m). Disseminated 

mineralization is hosted in fine- to medium-grained gabbros, that has gradational upper 

contacts with lesser mineralized (≤ 5 % sulphide) fine-grained gabbro that increases in its 

sulphide content and sulphide grain size into disseminated mineralization (~10-25 % 

sulphide). The lower contact of disseminated mineralization is defined by a ~1 cm thick 

pyrrhotite seam separating mineralization from barren, fine- to medium-grained gabbro 

below. Upper and lower contacts of massive sulphide are sharp with fine- to medium-

grained gabbros that contain ≤ 5 % sulphide. Occasionally, a short interval (≤ 2 m) of 

disseminated sulphides occurs above and below massive sulphide mineralization with 

occasional sulphide stringers crosscutting the weakly foliated gabbro. A minor trace 

sulphide mineralization style is present within fine-grained gabbro and shows with local 

enrichment in PGE, determined through assay analyses (Marmont, 2007). These samples 

contain only trace amounts of sulphides and through detailed SEM work, no platinum 

group minerals (PGM) were observed.  

Massive and semi-massive sulphide mineralization is primarily composed of 

pyrrhotite (~80 %), with lesser amounts of chalcopyrite (2-9 %), magnetite (5 %), 

pentlandite (1-3 %), pyrite (≤ 2 %),  ilmenite (trace), and sphalerite (trace). Pyrrhotite is 
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massive and hosts all other sulphides and oxides as inclusions. Chalcopyrite primarily 

occurs as anhedral inclusions within pyrrhotite and is ≤ 2 mm in size (Figure 2.2A). Very 

fine-grained (< 0.05 mm) inclusions of sphalerite and pyrrhotite occur in chalcopyrite. 

Pentlandite occurs as flame lamella in pyrrhotite and in a blocky form (Figure 2.2B, C). 

Individual grains of blocky pentlandite are ≤ 0.1 mm and are generally concentrated 

around chalcopyrite; as well, blocky pentlandite occurs as chains (i.e., linked network of 

grains) in pyrrhotite. The pentlandite chains are up to 600 µm in length. Unlike blocky 

pentlandite, flame pentlandite has no strong association with chalcopyrite and individual 

lamella are ≤ 80 µm. Flame pentlandite does show a strong correlation to fractures in 

pyrrhotite, as lamellas are most common  perpendicular to these fractures. Blocky 

pentlandite comprises the majority volume of pentlandite present in massive and semi-

massive sulphides. Sphalerite grains have irregular to blebby form, are ≤ 0.1 mm, and 

occur as inclusions within chalcopyrite and pyrrhotite or on the edges of chalcopyrite 

(Figure 2.2A). Pyrite is not observed as a primary sulphide mineral but as an alteration of 

pyrrhotite and magnetite. Grains of pyrite are typically concentrated along fractures, 

occur in a blocky form, and are ≤ 0.2 mm (Figure 2.2B). Magnetite occurs as 1-2.5 mm 

inclusions within pyrrhotite, typically blebby, and moderately fractured (Figure 2.2A). 

Pyrrhotite can occur as ≤ 0.5 mm inclusions at the centre of magnetite grains. These small 

inclusions of pyrrhotite usually have a thin rim or small inclusions of chalcopyrite 

associated with them, suggesting they may be sulphide melt inclusions. All magnetite 

grains display a very thin exsolution texture of ilmenite. Very fine-grained pyrrhotite and 

chalcopyrite is observed in fractures and along the edges of magnetite grains.  
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Figure 2.2 (previous page): Representative petrography of sulphide mineralization. A) 

Massive pyrrhotite with anhedral inclusions of chalcopyrite and blebs of magnetite 

displaying fine-grained ilmenite exsolution. Very fine-grained anhedral inclusions of 

sphalerite occur in chalcopyrite. CL-06-05-81.6, massive sulphide mineralization. 

Reflected Light (RL). B) Massive pyrrhotite with anhedral inclusions of chalcopyrite, and 

blocky pentlandite occurs around the edges of chalcopyrite. Fine-grained sphalerite 

occurs on the edge of chalcopyrite and anhedral pyrite occurs along a fracture in 

pyrrhotite. CL-06-05-81.6, massive sulphide mineralization. RL. C) Fine-grained 

pentlandite flame lamella in pyrrhotite with a small bleb of chalcopyrite. CL-06-16-84.6, 

massive sulphide mineralization. Back scattered electron image (BSE). D) Anhedral bleb 

of galena in pyrrhotite. CL-06-16-56.3, disseminated sulphide mineralization. BSE. E) 

Anhedral bleb of glaucodot-gersdorffite in pyrrhotite. CL-06-16-56.3, disseminated 

sulphide mineralization. BSE. F) Anhedral blebs of glaucodot-gersdorffite occur along 

the grain margin and as inclusions in pyrrhotite. Fine-grained sphalerite and chalcopyrite 

are also present along the grain margins of pyrrhotite. CL-06-05-81.6, massive sulphide 

mineralization. BSE. G) Anhedral glaucodot-gersdorffite occurs along the contact of 

pyrrhotite and apatite. CL-06-16-84.6, massive sulphide mineralization. BSE. H) 

Molybdenite occurs along a fracture in pyrrhotite. Flame lamella and blocky pentlandite 

are also present along the margin of the fracture. CL-06-16-84.6, massive sulphide 

mineralization. BSE. I) Composite sulfarsenide inclusion in pyrrhotite where end-member 

gersdorffite forms the core and an intermediate composition of glaucodot-gersdorffite 

forms the rim. A large nickeline inclusion occurs within the composite grain as well as 

very fine inclusions of melonite, altaite, and unknown Pb-Se-Te grains. CL-06-16-84.6, 

massive sulphide mineralization. BSE. J) Representative microphotograph of trace 

sulphide “PGE-enriched” mineralization composed of fine-grained pyrrhotite and 

chalcopyrite with composite grains of ilmenite and magnetite. CL-07-09-60. RL. Alt = 

Altaite; Ap = Apatite; Ccp = Chalcopyrite; Gn = Galena; Gers = Gersdorffite; Glc-Gers = 

Glaucodot-gersdorffite solid solution; Ilm = Ilmenite; Mt = Magnetite; Melon = Melonite; 

Mo = Molybdenite; Nc = Nickeline; Pn = Pentlandite; Py = Pyrite; Po = Pyrrhotite; Sp = 

Sphalerite. 
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Trace metal phases present in massive sulphide mineralization include galena, 

glaucodot-gersdorffite [(Co,Fe)AsS-NiAsS], molybdenite, tellurobismuthite (Bi2Te3), 

altaite (PbTe), electrum (Au:Ag ratio ~70:30 at %), nickeline, melonite (NiTe2), and 

unidentified Se-Te-Pb, Bi-Te, and Pb-Te minerals. Galena primarily occurs as blebby to 

anhedral inclusions within pyrrhotite (Figure 2.2D) (64.4 % of grains analyzed, n=149), 

but is also present as inclusions within chalcopyrite (13.4 %), glaucodot-gersdorffite (18.5 

%), pentlandite (2 %), sphalerite (0.7 %), or along fractures in pyrrhotite (1 %). Grains of 

galena are ≤ 37 µm in their maximum dimension and occasionally, galena contains SEM-

EDS detectable Se, up to 5.8 atomic % (n=3). Glaucodot-gersdorffite occurs as anhedral 

blebs to tabular inclusions within pyrrhotite (Figure 2.2E) (36 % of grains analyzed, 

n=45) and pentlandite (4 %), along fractures in pyrrhotite (9 %), or along the edges of 

pyrrhotite at the contact with silicates or apatite (51 %; Figure 2.2F, G). Grains of 

glaucodot-gersdorffite are ≤ 91 µm in their maximum dimension and have Co:Ni ratios 

ranging from 0.2-2.0 (average = 0.7±0.4; n=45). The range in Co:Ni ratio of glaucodot-

gersdorffite is consistent among all its different textures and occurrences. Molybdenite 

tends to occur within and near fractures in pyrrhotite that have been infilled by quartz, 

grains are tabular, and are ≤ 71 µm in their maximum dimension (Figure 2.2H). In one 

example, molybdenite is observed as an inclusion within glaucodot-gersdorffite. 

Tellurobismuthite and altaite occur as ≤ 4 µm anhedral inclusions within approximately 

12 % of the glaucodot-gersdorffite grains analyzed. Nickeline, melonite, and unidentified 

Se-Te-Pb and Te-Pb minerals are observed as inclusions within a single grain composed 

of glaucodot-gersdorffite. The host glaucodot-gersdorffite grain has an intermediate 

member of glaucodot-gersdorffite solid solution forming the rim and a core composed of 
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gersdorffite (Figure 2.2I). Grains of electrum are present as anhedral inclusions within 4 

% of glaucodot-gersdorffite grains that are inclusions in pyrrhotite, and electrum grains 

are ≤ 6 µm. No PGM are observed in the massive sulphide. 

Disseminated sulphides comprise 10-25 vol % of a fine- to medium-grained 

gabbro over a length of ~10.4 m in drill core. The mineral mode of sulphides present was 

determined using the program ImageJ to calculate the area each mineral phase occupies 

based on several representative micorphotographs of sulphide mineralization. The vol % 

each mineral comprises is as follows: pyrrhotite represents 75-85 %, chalcopyrite 2-8 %, 

pyrite trace-3 %, pentlandite trace-3 %, magnetite 5-10 %, ilmenite 5-10 %, and 

sphalerite trace. Sulphide textures present in the disseminated sulphide mineralization are 

the same as those observed in semi-massive to massive sulphide mineralization. 

Pyrrhotite grains are angular, ≤ 4 mm (~1 mm), and occur interstitial to silicates. 

Plagioclase is a common euhedral inclusion within pyrrhotite and inclusions range from 

0.1-2 mm. Magnetite and ilmenite are also present as 0.01-0.2 mm inclusions within 

pyrrhotite. Chalcopyrite generally occurs as anhedral to tabular inclusions within 

pyrrhotite or along the edges of pyrrhotite and grains are ≤ 1 mm (ave. ~0.1 mm). 

Chalcopyrite also occurs as smaller (≤ 0.05 mm) grains interstitial to silicates. Rarely, 

chalcopyrite occurs spatially associated with actinolite and biotite alteration after 

clinopyroxene. As in the massive sulphides, pentlandite shows both blocky and flame 

lamella forms. Pentlandite blocks and flames are ≤ 100 µm, and individual chains of 

blocky pentlandite are up to 500 µm in length. Sphalerite occurs as anhedral blebs that are 

≤ 100 µm, are typically concentrated around chalcopyrite and in some cases sphalerite 

displays chalcopyrite disease. Pyrite occurs primarily as an alteration product of 
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pyrrhotite and is concentrated along fractures, with grains ≤ 500 µm. Very fine-grained 

pyrite also occurs on the edges of, and infilling fractures of plagioclase. Composite grains 

of magnetite and ilmenite are present thought the disseminated sulphide mineralization, 

featuring blebby and trellis exsolution of ilmenite from original titanomagnetite grains. 

Composite oxide grain sizes are ≤ 4 mm (~1 mm), while individual grains of magnetite 

and ilmenite are typically ≤ 1.5 mm. Inclusions of pyrrhotite, ≤ 0.2 mm, occur in 

ilmenite/magnetite and commonly have a thin rim of chalcopyrite.  

Only minor amounts of trace metal phases are present in the disseminated 

sulphides, primarily glaucodot-gersdorffite inclusions occurring within pyrrhotite that are 

tabular to anhedral and are ≤ 60 µm. Altaite and melonite occur as ≤ 2 µm, anhedral 

inclusions within glaucodot-gersdorffite. Empressite (AgTe), which is not observed in the 

massive sulphides, also occurs as an inclusion in glaucodot-gersdorffite as anhedral, ≤ 2 

µm blebs. Galena (≤ 7 µm) and tellurobismuthite (≤ 2 µm) are observed as blebby 

inclusions within pyrrhotite. No PGM are observed in the disseminated sulphide samples. 

 Trace sulphide “PGE-enriched” mineralization occurs within a fine-grained 

gabbro. Sulphides occur in only trace amounts and pyrrhotite comprises the majority of 

sulphides with minor chalcopyrite, ilmenite, magnetite, and traces of pyrite and 

pentlandite (Figure 2.2J). Pyrrhotite grains are ≤ 1.8 mm (~0.5 mm), anhedral blebs that 

occur interstitially to silicates. Chalcopyrite grains are ≤ 0.4 mm (~0.1 mm) and 

predominantly occur as tabular to anhedral inclusions within or on the edges of pyrrhotite. 

Rarely chalcopyrite is observed associated with alteration of clinopyroxene and is very 

fine-grained (< 0.1 mm). Ilmenite and magnetite composite grains are ≤ 1.5 mm and 

occur interstitial to silicates. The overall proportion of ilmenite:magnetite is ~9:1 and 
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when magnetite is present it is always associated with ilmenite, whereas ilmenite 

primarily occurs on its own. In spite of detailed SEM work, no discrete metal phases or 

PGM were observed.  

2.3.2 Bulk rock base metal and platinum-group element chemistry 

 Disseminated sulphide mineralization contains minor amounts of PGE (~2 to 62 

ppb; combined Pd+Pt+Ir+Rh+Ru), where Pd and Pt are the major PGE and comprise 28 

to 94 % and 0.4 to 69 %, respectively (Pt\Pd = 0.004-2.5). In semi-massive to massive 

sulphide mineralization, total PGE content ranges from 6 to 31 ppb, with Pd comprising 

49 to 72 % of total PGE and Pt comprising 1 to 32 % (Pt\Pd = 0.017-0.67). Gold is also 

low, ranging from 2 to 11 ppb in disseminated sulphides and from 13 to 39 ppb in semi-

massive to massive sulphide mineralization. Base metal concentrations in bulk rock are 

relatively low with Ni ranging from 0.12 to 0.41 wt % in disseminated sulphide 

mineralization and from 0.48 to 1.72 wt % in semi-massive and massive sulphide 

mineralization. Cobalt concentrations range from 0.02 to 0.04 wt % and 0.04 to 0.13 wt % 

and Cu ranges from 0.06 to 0.72 wt % and 0.14 to 1.04 wt % in disseminated and semi-

massive to massive sulphide mineralization, respectively. Base metals (Ni, Co, Cu) and 

PGE in all of these mineralization styles have a positive correlation with S content, 

indicating base metal sulphides are the primary control on these metals. Nickel and Co 

have a positive correlation, suggesting pentlandite abundance or its Co content is the 

primary control on bulk Co. Base and precious metal assays are presented in Table 2.1. 

Two samples were collected from the trace sulphide “PGE-enriched” mineralization style 

as indentified in drilling by Kodiak Exploration (Marmont, 2007). The base metal 

concentrations in this mineralization style are very low compared to the other  
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mineralization styles (Co = 50-57 ppm; Cu = 218-516 ppm; Ni = 150-182 ppm), however 

the total PGE contents are significantly higher (146-159 ppb; combined 

Pd+Pt+Ir+Rh+Ru). Palladium and Pt comprise ~97 % of the PGE in the trace sulphide 

mineralization, with Pd ranging from 113 to 117 ppb and Pt from 29 to 37 ppb (Pt\Pd = 

0.26-0.32), while the IPGE (Ir+Rh+Ru) are present in abundances of 4 to 5 ppb. Gold has 

similar concentration in the trace sulphide mineralization (9-14 ppb) as was observed in 

the massive and disseminated mineralization styles. Unlike the massive and disseminated 

sulphide mineralization styles, the trace sulphide style does not show a strong positive 

correlation with increasing sulfur content, indicating that PGM may be present in these 

samples (but not observed) or the PGE are in solid solution within base metal sulphides in 

varying concentrations.  

Recalculation of Ni, Cu, Co, Au, and PGE whole rock assay values to 100 % 

sulphide has been completed using the average compositions of pyrrhotite, chalcopyrite, 

and pentlandite based on the observation these minerals are the primary three phases 

present in sulphide mineralization. Error in this calculation, introduced by minor amounts 

of pyrite in the samples, is negligible. No olivine is present within mineralized intervals, 

therefore no significant Ni or Co within olivine structure needs to be accounted for in the 

calculation. Recalculated base and precious metal values are present in Table 2.1.  

Disseminated and semi-massive to massive mineralization have similar profiles 

when normalized to primitive mantle and show Co and Ni enrichment relative to 

primitive mantle (Figure 2.3 A, B). Disseminated sulphides have relatively higher IPGE 

(Ir, Ru, Rh) values (1-15 ppb) when compared to semi-massive and massive sulphides (≤ 

3 ppb) and are similar to or depleted relative to primitive mantle. Platinum and Pd 
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Figure 2.3 (previous page): Caribou Lake Gabbro (CLG) mineralization recalculated to 

100 % sulphide and normalized to primitive mantle. Sulphide melt inclusion 

compositions are also plotted. Note, Pt, Pd, and Au compositions for sulphide melt 

inclusions are based on minimum detection limits for inclusions hosted in plagioclase and 

apatite and arrows indicate that these elements real concentrations are lower than the 

concentration plotted. A) Comparison of CLG mineralization to large Ni-Cu-PGE 

deposits globally. Only Co and some Cu values from other deposits are similar to the 

CLG. All PGE, except Ir, in disseminated, semi-massive, and massive sulphide 

mineralization are more enriched in the other Ni-Cu-PGE deposits compared to the CLG. 

Trace sulphide “PGE-enriched” mineralization in the CLG shares a similar profile to 

Noril’sk. Sudbury: Naldrett (1984); Noril’sk: Barnes et al., 1997b; Perseverance: Barnes 

et al., 1988; Pechenga: Barnes et al., 2001; Voisey’s Bay: Naldrett et al., 2000; Cape 

Smith: Barnes et al., 1997b B) Comparison of the CLG mineralization to PGE deposits 

globally. Trace sulphide “PGE-enriched” mineralization in the CLG shares a similar 

pattern to these PGE deposits, but overall concentrations are significantly lower in the 

CLG. Stillwater Complex: Godel and Barnes, 2008; Merensky Reef: Naldrett, 1981; 

Platreef: Holwell et al., 2011; Lac des Iles: Hinchey (2005); East Bull Lake: Peck et al., 

2001.  
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concentrations are relatively consistent between the three mineralization styles (12-52 ppb 

Pd; 0.2-23 ppb Pt), with a few higher values occurring in disseminated mineralization 

(224 ppb Pd; 39 ppb Pt) (Figure 2.3A, B). Palladium is moderately enriched compared to 

primitive mantle where as Pt is commonly depleted and the Pd:Pt ratio is highly variable, 

ranging from 0.4 to 232 in disseminated and semi-massive to massive sulphide. The ratio 

between IPGE and PPGE is also highly variable as well ranging from 0.7-22. Gold tends 

to have higher concentrations in disseminated sulphides (38-128 ppb) than in semi-

massive and massive mineralization (10-46 ppb) and is also enriched compared to 

primitive mantle. Copper is the only base metal that is highly enriched compared to 

primitive mantle and disseminated sulphides contain slightly higher concentrations 

(Figure 2.3A, B). One sample from a pyrrhotite rich stringer occurring ~4 m above 

massive sulphide mineralization is enriched in Pt relative to all other samples (156 ppb) 

and moderately enriched in Au (145 ppb). Copper in this stringer is also highly enriched 

relative to all other samples with 12.1 wt % Cu. After recalculation to 100 % sulphide for 

trace sulphide “PGE-enriched” mineralization samples, PGE are significantly enriched 

(except Ir) compared to the other styles of mineralization while, base metal (Ni ,Cu, Co) 

are only moderately higher (Figure 2.3A, B). Palladium and Pt are 12-20 ppm and 4-5 

ppm, respectively with IPGE between 500-630 ppb. The Pd:Pt ratio is generally lower in 

the trace sulphide mineralization (~3-4) compared to the disseminated and massive 

mineralization styles (~1-60), while the PPGE:IPGE ratio is higher ~31-39 in trace 

sulphide mineralization than other mineralization styles (~0.7-27).  
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2.3.3 Trace element distribution between sulphide minerals 

  In massive sulphides, As (2-50 ppm), Se (36-67 ppm), and Ta (13-30 ppb) 

concentrations are comparable between pyrite, chalcopyrite, pyrrhotite, and pentlandite. 

Pentlandite has higher concentrations of Co (1.8-7.6 wt %), V (3-17 ppm), Ag (13-80 

ppm), Te (2-5 ppm), Tl (13-22 ppm), and Bi (9-25 ppm) relative to all sulphide phases 

analyzed and Pd (40-150 ppb) is comparable between pentlandite and chalcopyrite. 

Antimony is comparable in pyrite and pentlandite (100-400 ppb). Chalcopyrite contains 

more Zn (230-980 ppm), Cd (1-5 ppm), and Rh (15-20 ppm) than the other sulphides and 

Pt (20-36 ppb), Au (40-8600 ppb), Re (183-410 ppb), and Sn (37-150 ppm) are 

comparable in chalcopyrite and pyrrhotite, while Pt is below detection limits (< 43 ppb) 

in pyrite and pentlandite. Trace elements that concentrate into pyrite over other sulphides 

are Cr (< 13 ppm) and Pb (120-250 ppm) and only Ir concentrates into pyrrhotite (30-70 

ppb). Osmium is below detection limits in all sulphide phases (< 50 ppb).  Pyrrhotite 

contains (on average) 0.8 wt % Ni. Complete LA-ICP-MS results for trace elements in 

sulphide mineral analyses are presented in Table 2.2. 

 In disseminated sulphides, the distribution of trace elements between sulphide 

minerals is similar to that of the massive sulphides with the exception of  Cr (< 2 ppm), 

Ta (< 5 ppb), Ir (<16 ppb), and Pt (< 54 ppb) are all below detection limits. Gold is not 

similar in chalcopyrite and pyrrhotite but is concentrated into pentlandite (28-300 ppb), 

Sb is only concentrated in pyrite (600-2300 ppb) and not evenly between pyrite and 

pentlandite as in the massive sulphide. The main hosts for Sn (234-1200 ppb) are 

pentlandite and chalcopyrite in disseminated sulphides, whereas pyrrhotite and 

chalcopyrite host Sn in the massive sulphide. Rhenium (50-500 ppb) is partitioned 
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 between pyrite and pyrrhotite in disseminated sulphides. Pyrrhotite on average contains 

1.0 wt % Ni. 

As shown in Figure 2.4, trace metals in pyrrhotite, chalcopyrite, and pyrite tend to 

be higher in concentrations in massive sulphide relative to disseminated sulphide 

mineralization, and pentlandite has higher concentrations for most trace elements in 

disseminated sulphide mineralization. The most notable enrichments in massive sulphide 

relative to disseminated sulphides are for Sn, Au, Zn, and As, while only Rh and Tl are 

consistently concentrated in the disseminated sulphides. 

2.3.4 Sulphide melt inclusion petrography and paragenesis 

Sulphide melt inclusions were identified in two different lithologies; a coarse-

grained olivine gabbro, where SUL are hosted in olivine, plagioclase, and ilmenite, and a 

highly altered gabbroic pegmatite, where SUL are hosted in apatite.  

Olivine grains hosting SUL are 6-15 mm in size, subhedral, and moderately 

fractured. Sulphide melt inclusions in olivine occur as circular to oval blebs in secondary 

trails along healed fracture planes (Figure 2.5A). The size of the inclusions range from 25 

to 160 µm (avg. 55 µm). Based on petrographic observations, the olivine-hosted SUL are 

polyphase and consist of pyrrhotite, chalcopyrite, pentlandite, sphalerite and magnetite. 

Ilmenite grains hosting SUL occur interstitially to olivine and plagioclase and are 4-5 mm 

in size. Sulphide melt inclusions in ilmenite have a larger size range than olivine hosted 

SUL (40 to 230 µm, avg. ~65 µm) and are circular to tubular in shape (Figure 2.5B). 

Unlike olivine-hosted SUL, ilmenite hosted SUL appear to be primary in origin as they 

are randomly orientated and do not have a planar alignment as SUL in olivine, which is 

consistent with ilmenite being an interstitial phase while olivine is a primary cumulate 
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Figure 2.4: Log graph of average massive sulphide/disseminated sulphide ratios for trace 

element concentrations in sulphide minerals analyzed by LA-ICP-MS. Pyrite (massive, 

n=5 analyses; disseminated, n=5 analyses), pentlandite (massive, n= 4 analyses; 

disseminated, n=4 analyses), chalcopyrite (massive, n=5 analyses; disseminated, n=5 

analyses) and pyrrhotite (massive, n=4 analyses; disseminated, n=5 analyses). Complete 

sulphide LA-ICP-MS analysis results are presented in Table 2.3. Arrows indicating a 

minimum ratio specify a certain element was below detection limits in a sulphide mineral 

from the disseminated sulphides and arrows indicating a maximum ratio indicate that a 

certain element was below detection in a sulphide mineral analyzed from the massive 

sulphides. No data point above an element indicates that it was below detection limits in 

both disseminated and massive sulphide.  
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Figure 2.5 (previous page): Representative sulphide melt inclusion petrography and 

inclusion mineralogy. A) Secondary sulphide melt inclusion trail occurring in olivine. B) 

A composite Fe-Ti oxide grain composed of ilmenite and magnetite with primary 

sulphide melt inclusions hosted in the Ilm phase. C) Secondary trail of sulphide and 

silicate melt inclusions hosted within apatite. D) Enlarged section of the inclusion trail in 

C, showing an interconnected network of tube shaped sulphide-silicate melt inclusions. E-

F) Enlarged section of inclusion trail in C, showing silicate melt connecting two sulphide 

inclusions. One sulphide inclusion consists of pyrrhotite and chalcopyrite, while the other 

inclusion is only pyrrhotite. G-J) Scanning electron microscopy element maps of a 

sulphide melt inclusion that is surrounding an inclusion of silicate melt. K) Secondary 

sulphide melt inclusion trail occurring within plagioclase. L) Sulphide melt inclusions 

hosted in plagioclase consisting only of pyrrhotite. M) Representative sulphide melt 

inclusions occurring within ilmenite. Mineralogy of the sulphide inclusions consists 

predominantly of pyrrhotite, with lesser amounts of chalcopyrite, cobaltian pentlandite, 

and sphalerite. N) Representative sulphide melt inclusion hosted in olivine. Mineralogy of 

the inclusion consists of pyrrhotite, chalcopyrite, magnetite, and glaucodot-gersdorffite. 

Ap = Apatite; Ccp = Chalcopyrite; Cpx = Clinopyroxene; Co-Pn = Cobaltian-pentlandite; 

Glc-Gers = Glaucodot-Gersdorffite; Ilm = Ilmenite; Mt = Magnetite; Ol = Olivine; Plag = 

Plagioclase; Po = Pyrrhotite; SIL = Silicate melt inclusion; Sp = Sphalerite; SUL = 

Sulphide melt inclusion.  
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 mineral. Sulphide melt inclusions occurring within ilmenite contain the same mineral 

assemblage as olivine hosted SUL. Olivine and ilmenite SUL are contained within a 

single ilmenite or olivine grain and never crosscut grain boundaries. 

Apatite grains hosting SUL are very coarse-grained (≤ 20 mm), subhedral to 

euhedral cumulate grains and are highly fractured. Sulphide melt inclusions in apatite 

occur in secondary trails and are subspherical or tube shaped in appearance (Figure 2.5C, 

D). Sulphide melt inclusions range in size from 5 to 25 µm (avg. 10 µm). Within SUL 

trails, small (≤ 8 µm) quantities of suspected silicate glass are present, creating an 

interconnected network of tube shaped sulphide-silicate melt inclusions. As shown in 

Figure 2.5E, F and G, single inclusions can be composed of a silicate glass and sulphide 

melt, where the silicate glass fills the inclusion in between two distinct SUL. Elemental 

SEM-EDS mapping of a mixed silicate-sulphide inclusion shows that in between two 

sulphide inclusions, a small amount of silicate glass is trapped, indicated by the elevated 

SiO2 and MgO (Figure 2.5H, I, and J). The proportion of sulphide to silicate glass within 

a single trail is highly variable from inclusion to inclusion, which indicates coeval 

entrapment of the two melt phases and the textures are representative of a liquid rather 

than a solid mineral being entrapped. Plagioclase grains hosting SUL are 1-15 mm 

euhedral, cumulate grains that show weak to moderate sericitic alteration throughout. 

Plagioclase-hosted SUL from secondary trails and are circular to oval in shape, ranging in 

size from 5 to 15 µm (avg. ~8 µm; Figure 2.5K, L). Apatite and plagioclase hosted SUL 

are composed of pyrrhotite and minor chalcopyrite. Sulphide melt inclusion trails are 

contained within a single apatite or plagioclase grain and never crosscut grain boundaries, 

indicating they did not get trapped after the solidus was reached.  
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2.3.5 Sulphide melt inclusion mineralogy and chemistry 

 Based on reflected light and SEM-EDS, five different sulphide and sulfarsenide 

phases are observed in SUL: pyrrhotite, chalcopyrite, cobaltian-pentlandite, sphalerite, 

and one occurrence of glaucodot-gersdorffite (Figure 2.5M and N). The volumetric 

proportions of SUL described below are only an estimate because during cutting and 

polishing to expose SULs at the surface, sulphide phases may have been partially or 

completely removed. 

 Pyrrhotite is the dominant sulphide phase in all SUL and comprises 91-100 vol % 

of individual inclusions. Chalcopyrite typically occurs as subangular to rounded phases 

near the edges of the inclusions and occurs in 56 % of inclusions hosted in olivine, 59 % 

of inclusions in ilmenite, 11 % of inclusions in apatite, and 6 % of inclusions in 

plagioclase. The chalcopyrite volumetric proportion of the total sulphide melt inclusion is 

very similar between each host phase (0-8 % in olivine, 0-8 % in ilmenite, 0-9 % in 

apatite, and 0-3 % in plagioclase). Cobaltian-pentlandite typically occurs as flame lamella 

and/or in a blocky form on the edges of inclusions (Figure 2.5M). In olivine, cobaltian-

pentlandite occurs in 44 % of inclusions, comprising 0-5 vol % of individual inclusions. 

Cobaltian-pentlandite occurs more often in ilmenite hosted inclusions (64 %) but 

occupies a lesser proportion of individual inclusions (0-3 vol %). Petrographically, no 

cobaltian-pentlandite is observed in apatite or plagioclase hosted SUL. Sphalerite occurs 

as a subrounded phase near the edge of inclusions and occurs in 6 % of olivine hosted 

inclusions, 5 % of ilmenite hosted inclusions and is not observed in apatite or plagioclase 

hosted inclusions (Figure 2.5M). Volumetrically, sphalerite comprises 0-0.2 % of olivine 

hosted inclusions and significantly more of ilmenite hosted inclusions (0-1.5 vol %). Only 
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one SUL (hosted by olivine) contained glaucodot-gersdorffite, which occurs as a rounded 

bleb on the the inner inclusion wall or edge of the inclusion in the host, and comprises 

0.007 vol % of the inclusion (Figure 2.5M). 

 Representative SEM-EDS analyses of sulphide phases within SUL are 

summarized in Table 2.3. The Fe content of pyrrhotite is consistent for all inclusions 

hosted all four host minerals, ranging between 59.5-62.2 wt %. No Ni in pyrrhotite was 

detected using SEM-EDS. The average Cu in chalcopyrite is 32.0 wt %, which is slightly 

(~2 %) less than ideal composition. Cobaltian pentlandite is Fe-deficient, with 13.6 to 

19.8 wt % Fe (Fe poor compared to stoichiometric pentlandite). The Fe deficiency is 

accounted for by the large amounts of Co (31.3-40.9 wt %). 

2.3.6 Sulphide melt inclusions bulk chemistry 

Sulphide melt inclusion compositions were determined by LA-ICP-MS for 

inclusions hosted in apatite, plagioclase, and olivine. Representative laser signals are 

shown in Figure 2.6. Bulk compositions in olivine are semi-quantitative because SUL are 

exposed at surface and is unlikely that the entire inclusion was ablated, since a portion of 

the inclusion was removed during sample polishing. Therefore only trace element 

compositions of SUL in apatite and plagioclase will be presented from inclusions buried 

below the mineral surface which represent complete polyphase inclusions. 

Plagioclase-hosted SUL have Cu concentrations ranging from 640-27,200 ppm 

(avg. 7,800 ± 4,400 ppm; 1σ, n=29), Ni concentrations of 1,300-5,940 ppm (avg.1,900 ± 

980 ppm; 1σ, n=24), and Co concentrations from 950-4,430 ppm (avg. 1,780 ± 820 ppm; 

1σ, n=29). The Co:Ni ratio of plagioclase-hosted SUL ranges from 0.7-1.4 (avg. 0.9 ± 

0.2; 1σ, n=24) and Cu:Ni ratios of 0.2-6.6 (avg. 4.2 ± 1.3; 1σ, n=24) (Figure 2.7A, B). 
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Figure 2.6 (previous page): Example LA-ICP-MS profile (signal intensity in counts per 

second vs. time) showing the ablation of sulphide melt inclusions in apatite and 

plagioclase. A) Apatite hosted sulphide melt inclusion LA-ICP-MS signal. A gas blank is 

collected for ~20 s, at which point the laser is turned on and a representative apatite host 

composition is collected. At time ~573 s, the sulphide melt inclusion is encountered (note 

increased count rates for Fe, Cu, Co, Ni) and a mixed signal of apatite and sulphide is 

collected. B) Plagioclase hosted sulphide melt inclusion LA-ICP-MS signal. Inclusion is 

encountered at ~452 s, note increased count rates of Co, Ni, Cu, Ag, and Bi. In both the 

apatite and plagioclase signals, all Pd isotopes (105, 106, and 108) are consistent 

throughout the gas blank, inclusion host collection, and when the sulphide inclusion is 

intersected, indicating Pd is below detection limits. Note the correlation between Co and 

Ni, as both elements are concentrated into cobaltian pentlandite in the inclusions. Also, 

the offset between Co+Ni and Cu indicates that cobaltian-pentlandite and chalcopyrite are 

present within the inclusion and Ni, Co, and Cu are not in solid solution in pyrrhotite; 

these are recognizable phases in the transient signals.   
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Figure 2.7: Ratios of sulphide melt inclusions plotted against sulphide mineralization that 

has been recalculated to 100 % sulphide. A) Cobalt plotted against Ni. Note how sulphide 

melt inclusions plot at approximately Co:Ni ratios of ~1, while sulphide mineralization 

plots at ratios of ~0.1. B) Copper plotted against Ni. Note how sulphide melt inclusions 

plots at approximately Cu:Ni ratios of ~5-10, while sulphide mineralization falls around 

1. 
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The Cu:Co ratios of plagioclase-hosted SUL ranges from 0.2 to 6.8 (avg. 4.6 ± 1.4; 1σ, 

n=29). Trace elements that occur in plagioclase hosted SUL include Ti (320-21,000 ppm; 

avg. 5,200 ± 3,740 ppm; 1σ, n=25), Zn (100-3,870 ppm; avg. 200 ± 140 ppm; 1σ, n=6), 

Ag (6.9-69.9 ppm; avg. 15.6 ± 18.5 ppm, 1σ, n=11), Pb (4.0-420 ppm; avg. 121 ± 145 

ppm, 1σ, n=16), and Bi (0.9-6.9 ppm; avg. 3.3 ± 2.7 ppm, 1σ, n=6).  

Apatite-hosted SUL have Cu concentrations of 4,000-15,500 ppm (avg. 6,500 ± 

2,600 ppm; 1σ, n=30), Ni ranging from 1,400-3,400 ppm (avg. 1,900 ± 630 ppm; 1σ, 

n=16), and Co from 1,100-2,700 (avg. 2,000 ± 430 ppm; 1σ, n=33). The Co:Ni ratio of 

apatite-hosted SUL ranges from 0.64-1.3 (avg. 1.1 ±0.1; 1σ, n=16) and Cu:Ni ratio is 2.2-

8.8 (avg. 3.5 ±1.6; 1σ, n=15; Figure 2.7A, B). The Cu:Co ratios of apatite hosted SUL 

range from 1.5-8.1 (avg. 3.0 ± 1.3; 1σ, n=30). Other than Cu, Co, and Ni, the only trace 

elements above detection limits in apatite-hosted SUL are Pb (63.5-161 ppm; avg. 105 ± 

55.8 ppm, 1σ, n=7) and Bi (avg. 3.3 ± 0.02 ppm, 1σ, n=2). Palladium, Pt, and Au were 

always below detection limits in all SUL analyzed in apatite, plagioclase, and in olivine. 

The minimum detection limits in apatite and plagioclase hosted SUL for Pd, Pt, and Au 

were very high (330 ppb, 2,000 ppb, and 833 ppb, respectively) owing to the relatively 

small inclusion size. Although olivine hosted SUL may have been partially removed 

during polishing, their much larger inclusion size (and therefore mass) allows for lower 

detection limits for PGE and Au. Minimum detections limits for olivine-hosted SUL for 

Pd, Pt, and Au
 
were 9 ppb, 50 ppb, and 42 ppb, respectively. Complete LA-ICP-MS 

results for SUL are presented in Table 2.4.  
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2.3.7 Sulfur isotopes 

The sulfur isotope composition (δ
34

S) of the volumetrically dominant pyrrhotite 

phase of SUL hosted in olivine and ilmenite (determined in situ by SIMS) was -0.6 to 

+1.0‰ (avg. +0.3 ± 0.5 ‰; 1σ, n=8) and -0.3 to +1.4 ‰ (avg. +0.2 ± 0.6 ‰; 1σ, n=7), 

respectively; both of which are typical of a mantle source (δ
34

S = 0 ± 2 ‰, Ohmoto & 

Rye, 1979). Bulk sulfur isotope analyses for δ
34

S in disseminated and massive pyrrhotite 

from mineralized intervals have consistent values (δ
34

S ranging from +1.0 to +1.4 ‰; 

avg. +1.2 ± 0.1 ‰; 1σ, n=14) and chalcopyrite from mineralization has a value of δ
34

S of 

+1.0 ± 0.2 ‰ (n=1). Interstitial pyrrhotite not associated with mineralization has bulk 

δ
34

S values ranging from -0.4 to +0.9 ‰ (avg. +0.3 ± 0.5 ‰; 1σ, n=7) and in situ δ
34

S 

range from +0.5 to +1.4 ‰ (avg. +0.8 ± 0.3 ‰; 1σ, n=14). Secondary pyrite that is 

exposed along fracture planes in drill core have bulk δ
34

S values of +0.7 ± 0.1 ‰ (n=2) 

and a secondary pyrrhotite stringer analyzed in situ has values between -1.3 and +2.5 ‰ 

(avg. +0.6 ± 1.0 ‰; 1σ, n=7). The Archean sedimentary Burwash Formation contains 

minor amounts of pyrrhotite and in situ analyses of these sulphides have δ
34

S values  

ranging from -0.3 to +0.8 ‰ (avg. +0.2 ± 0.4 ‰; 1σ, n=10). No distinct differences in 

δ
34

S values are present between the different sulphide minerals, in situ and bulk analyses 

of mineralization, and between SUL, sulphide mineralization, and barren units. A 

summary for sulfur isotope results are presented in Table 2.5. 

2.3.8 Olivine petrography and chemistry 

 Olivine occurs in a variety of different rock types within the studied drill holes. 

Olivine is present as an early cumulate phase (e.g., in dunite, magnetitite) or as a 

relatively late cumulus phase in some lithologies (e.g., in gabbro). Early cumulate olivine 
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 ranges in size from 0.25-3 mm (avg. 1 mm) with euhedral grain form, and have an 

average forsterite content (Fo#) of 59.5 in clinopyroxenite 71.7 in dunite (Figure 2.8A). 

Late cumulus olivine is 0.2-2.5 mm in size (ave. 0.75 mm) and has sub-anhedral habit 

containing occasional inclusions of plagioclase. Late cumulus olivine has an average Fo# 

of 47.9 in olivine gabbros and 59.3 in gabbros. Serpentinization intensity is highly 

variable within each textural style of olivine present, ranging from rare to pervasive 

replacement. Early cumulate olivine is also present within very coarse-grained olivine 

gabbro. Grains are 6-15 mm in size and sub-euhedral showing rare serpentinization. The 

olivine gabbro hosts SUL and olivine grains have an average Fo# of 55. No variation in 

Fo content occurs with proximity to SUL (Figure 2.8B). Representative EMP analyses of 

olivine are presented in Table 2.6. 

 Nickel content in olivine is low within all grains analyzed, with late cumulate 

olivine containing 60 ppm in olivine gabbro to 675 ppm in magnetite-ilmenite-rich 

clinopyroxenite (Figure 2.8A). Early cumulus olivine has a range in Ni content from 40 

ppm in olivine clinopyroxenite to 1140 ppm in dunite. The olivine gabbro hosting SUL 

has no detectable concentrations of Ni in its olivine (by SEM-EDS).  

 

2.4 Discussion 

2.4.1 Fractionation of a sulphide liquid and formation of sulphide mineralization 

Once sulphide saturation occurs in a melt, an immiscible sulphide liquid will 

form. The first phase to crystallize from this sulphide liquid at temperatures around 

1000°C is the Fe-rich MSS, which leaves the remaining sulphide liquid enriched in Ni, 

Cu, Zn, precious (Pt, Pd, Au, Ag) and semi-metals (As, Te, Se, Bi, Sb, Pb) as their 
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Figure 2.8 (previous page): Nickel and calculated Fo content of olivines in the Caribou 

Lake Gabbro.  A) Plot of Ni content in olivine against forsterite content of olivine for the 

CLG and various Ni-Cu-PGE deposits. Data for barren komatiite and komatiites hosting 

disseminated sulphides came from Barnes and Fiorentini (2012) and references therein. 

Olivine data for the Bushveld Complex is for olivine-rich cumulates occurring beneath 

the Platreef from the northern limb of the complex at Turfspruit and Sandsloot 

(Yudovskaya et al., 2013). Data for the Stillwater Complex is from Barnes and Naldrett 

(1985) for olivine cumulate rocks within the J-M reef. Voisey’s Bay olivine data is from 

Li and Naldrett (1999) and Li et al. (2007) for all major rock types in the intrusion. Data 

for Noril’sk and Talnakh intrusions is for various gabbroic rocks from Li et al. (2003). 

Duluth Complex olivine data is from Ripley et al. (2007) from the basal zone of the 

Partridge River intrusion. B) SEM-BSE image of olivine hosted sulphide melt inclusions 

(SUL). Numbers on the image represent Fo content of olivine. Note, how Fo content does 

not change regardless of analysis location relative to location of SUL. 
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partition coefficients (KD) between MSS and residual sulphide liquid are generally < 1, 

except for IPGE (Ir, Os, and Ru), Rh and Re, which partition into MSS (Kullerud et al., 

1969; Fleet et al., 1993; Barnes et al., 1997a; Ballhaus et al., 2001; Brenan, 2002; 

Mungall et al., 2005; Helmy et al., 2007; Helmy et al., 2010; Holwell and McDonald, 

2010; Liu and Brenan, 2015). Initially, Ni is slightly incompatible with MSS at high 

temperatures and high metal/S ratios with KD ~0.6 but becomes more compatible with 

MSS at lower temperatures and lower metal/S ratios with KD slightly > 2 (Barnes et al., 

1997a; Ballhaus et al., 2001). As the temperature falls to ≤ 900°C, the Cu-rich residual 

liquid crystallizes to form ISS, which will be rich in Pt, Pd, and Au (Fleet et al., 1993; 

Barnes et al., 1997a; Ballhaus et al., 2001; Barnes and Lightfoot, 2005; Mungall et al., 

2005; Holwell and McDonald, 2010). As the temperature of the system falls to < 650°C, 

MSS and ISS become unstable and start to exsolve sulphide mineral phases. Pyrrhotite 

and pentlandite are the two dominant minerals to be exsolved from MSS and chalcopyrite 

is the primary mineral exsolved from ISS. While the exsolution of base metal sulphides 

occurs from MSS and ISS, PGE and precious and semimetals that were present as solid 

solution within MSS and ISS may exsolve to form discrete PGM along the grain margins 

and boundaries of sulphide grains (Holwell and McDonald, 2010). This fractionation of 

sulphide minerals can result in the zonation of Ni-Cu-PGE deposits with Ni-rich 

pyrrhotite-pentlandite assemblages forming one ore zone and a second ore zone 

dominated by chalcopyrite (e.g., Sudbury and Noril’sk; Li et al., 1992; Distler 1994; 

Naldrett et al., 1994; Zientek et al., 1994; Naldrett et al., 1997; Naldrett et al., 1999; 

Barnes et al., 2006).   
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Experiments by Helmy et al. (2007) indicate that if a sulphide melt contains a 

modest enrichment in Te relative to Pd and Pt, then MSS and ISS will essentially be PGE 

free, and Pd and Pt will be partitioned into a telluride melt. They also observed that as 

temperatures decreased and MSS crystallization continued, the sulphide melt shifted to 

higher Te/S ratios until a separate telluride melt exsolved, however their experiments 

contained higher (Pt+Pd)/semimetal ratios than observed in natural systems. Helmy et al. 

(2013) also performed experiments with As-rich melts and determined that if a sulphide 

melt reaches As saturation, a Ni-PGE-rich melt will form. With the tendency of Pt and Pd 

to form stable PGM with Te, As, Sb, and Bi, a low (Pt+Pd)/(Te+Sb+Bi) ratio should 

prevent Pt and Pd portioning into sulphide phases and would keep Pt and Pd in the 

sulphide melt until a Bi-Sb-Te and/or As-rich melt can exsolve (Helmy et al., 2007, 

2013). Liu and Brenan (2015) experimentally determined KD for PGE, Se, Te, As, Sb and 

Bi between MSS-ISS, MSS-sulphide liquid, and ISS-sulphide liquid and determined Se is 

near unity for partitioning between ISS-sulphide liquid, while Te, As, Sb, and Bi are 

weakly to moderately incompatible in ISS, suggesting they would be concentrated into 

the sulphide liquid as Helmy et al. (2007) experiments implicated for Te. All observed 

telluride minerals in massive sulphide mineralization from the CLG occur as inclusions 

within glaucodot-gersdorffite. It is consistent that Te, As, and Bi to be concentrated 

together with experiments of Liu and Brenan (2015). 

An important comment from Helmy et al. (2007) in regards to the CLG 

mineralization is if Ni-tellurides occur in abundance, the (Pt+Pd)/semimetal ratio and 

absolute Pt and Pd contents in the sulphide melt were most likely low when tellurides 

crystallized. This would suggest the possibility for extensive Pt-Pd mineralization is low. 
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As Ni-tellurides are present in the CLG and no Pt- or Pd-telluride phases observed, 

combined with low Pt and Pd in solid solution in base metal sulphides, one can conclude 

that Pt and Pd concentrations were low in the sulphide melt. In addition, Ni-tellurides are 

sparse, suggesting that the Te content of the sulphide liquid was likely low as well.  

The results of Helmy et al. (2007, 2013) experiments may have implications for 

the formation of arsenides, sulfarsenides, and tellurides within the CLG. The 

concentration of As in a sulphide melt needs to be between 0.5 and 2.0 wt %, for As 

saturation and the subsequent formation of an As-rich liquid (Helmy et al., 2013). If an 

As-rich melt separated early from a sulphide liquid, then euhedral grains of sulfarsenides 

and/or arsenides should be present as inclusions within base metal sulphides, because the 

As-rich liquid would have crystallized at high temperatures prior to crystallization of 

MSS (e.g., Creighton, Dare et al., 2010; Spotted Quoll, Prichard et al., 2013). 

Mineralization in the CLG does not contain any euhedral sulfarsenide or arsenide grains, 

suggesting that sulfarsenides and arsenides did not crystallize from an early As-rich 

liquid. The occurrence of sulfarsenides and arsenides in the CLG as inclusions and along 

edges of base metal sulphides, combined with their small grain size and sparse 

population, it is most likely that sulfarsenides and arsenides formed by exsolution from 

base metal sulphides during cooling rather than crystallization from an early As-rich 

liquid. 

 The occurrence of galena in the CLG predominantly as inclusions in base metal 

sulphides, suggests galena formed as an exsolution product during cooling of sulphides. 

However with little known about the formation of galena in magmatic sulphides and more 

experimental work needs to be completed (Dare et al., 2014). Molybdenite most likely 



87 

 

was introduced as a hydrothermal phase as it is associated with fractures containing 

quartz. The electrum formation mechanism is unclear but it occurs as inclusions within 

glaucodot-gersdorffite, suggesting it may have exsolved from base metal sulphides during 

cooling along with the sulfarsenides. 

Zonation of sulphide mineralization resulting from fractional crystallization of a 

sulphide liquid is not present in the CLG in contrast to large Ni-Cu-PGE deposits (i.e., 

Sudbury and Noril’sk; Li et al., 1992; Distler 1994; Naldrett et al., 1994; Zientek et al., 

1994; Naldrett et al., 1997; Naldrett et al., 1999; Barnes et al., 2006). Extremely low 

concentrations of PGE are observed in sulphide minerals in the CLG, making it difficult 

to determine the relative partitioning of PGE between MSS products (pyrrhotite and 

pentlandite) and ISS products (chalcopyrite). As described above, IPGE, Rh, and Re are 

compatible in MSS over a sulphide liquid, therefore should concentrate into pyrrhotite 

and pentlandite. While Pyrrhotite and pentlandite in the CLG show a minor preference of 

Ir and Rh over chalcopyrite, but Re is distributed evenly between pyrrhotite and 

chalcopyrite and Ru is concentrated in chalcopyrite.Osmium is below detection limits in 

all sulphide minerals. Li et al. (1996) and Barnes et al. (1997a) experimentally have 

shown that as the sulfur content of the sulphide liquid or of MSS decreases, the KD for 

IPGE and Rh become closer to and can be less than 1. Ballhaus et al. (2001) experiments 

show that as the metal/S ratio of the MSS (metal/S(MSS)) increases Rh and Ir have similar 

KD over the range of 0.85-1, whereas Li et al. (1996) data show a decrease in KD as the 

metal/S(MSS) ratio increases. Li et al. (1996) used wt % concentrations of Ir and Rh which 

Ballhaus et al. (2001) suggest this resulted in a miscalculation of the partitioning of PGE. 

Ruthenium’s partition coefficient has a positive correlation with the metal/S(MSS) ratio 



88 

 

(Ballhaus et al., 2001), which Li et al. (1996) and Barnes et al. (1997a) did not conduct 

experiments on. The preference of Ru to be concentrated into chalcopyrite over pyrrhotite 

and pentlandite in the CLG could therefore be related to a low metal/S(MSS) ratio of the 

sulphide liquid.  

If semimetals (As, Se, Te, Sb, Bi) were not in high enough concentrations to form 

a separate semimetal-rich liquid, then they should be present in solid solution within base 

metal sulphides, as discrete grains occurring as inclusions, or along the edges of base 

metal sulphides formed as exsolution products during cooling (Helmy et al., 2007, 2010, 

2013; Holwell and McDonald, 2010; Liu and Brenan, 2015). As Helmy et al. (2007) and 

Liu and Brenan (2015) show that Pd and Pt tend to be concentrated into a semimetal-rich 

liquid over ISS, given that semimetals are in enough concentration to form a separate 

liquid. With no PGM observed in the CLG mineralization, it would suggest the 

concentration of semimetals (As, Sb, Bi, Te, Se) were relatively low in the sulphide liquid 

(see SUL compositions; Table 2.4) and that Pt and Pd would stay in solution with ISS and 

be present in their crystallized products (chalcopyrite) (Helmy et al., 2007). The 

concentrations of Pd and Pt in pyrrhotite, pentlandite, and chalcopyrite are extremely low 

(Pt < 250 ppb; Pd < 900 ppb), combined with no PGM observed in mineralization and the 

low concentrations of PGE and semimetals in SUL. This would suggest that the sulphide 

liquid responsible for forming mineralization in the CLG was low in PGE and 

semimetals. 

2.4.2 Formation of sulphide melt inclusions  

The polyphase mineralogy (pyrrhotite, pentlandite, chalcopyrite, sphalerite, 

magnetite, sulfarsenide) of the SUL within the CLG is consistent with the mineral 
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assemblage expected to be produced through fractional crystallization of a sulphide melt 

as described above. Chalcopyrite, sphalerite, and sulfarsenides should be located near the 

paleo-top or along the margins of the inclusions as is expected from fractionation and 

crystallization of a sulphide liquid (Prichard et al., 2004) as is observed in SUL of the 

CLG (Figure 2.5M, N). The presence of magnetite on the margins could be attributed to 

by the crystallization of pyrrhotite because as pyrrhotite begins to form, Fe2O3 will 

diffuse outward from the immiscible sulphide due to an increase of fO2 (Naldrett, 1969; 

Prichard et al., 2004). The Fe2O3 will then react with FeO and TiO2 of the silicate liquid 

and form titaniferous magnetite at the sulphide-silicate boundary (Naldrett, 1969; 

Prichard et al., 2004). Where silicate melt was observed coentrapped with sulphide melt 

(Figure 2.5E-J), it provided evidence of the migration of interstitial melts in non-cotectic 

proportions indicating that the migrating sulphide liquid were not primary droplets but 

samples of accumulating liquid that was migrating.   

As previously mentioned, the composition of a trapped sulphide liquid should be 

representative of the mineralization barring any processes altering the composition (i.e., 

fractionation, hydrothermal alteration) (Holwell et al., 2011). Sulphide melt inclusion 

compositions normalized to Ni+Co-Cu-Fe are displayed in Figure 2.9, and are 

compositionally similar to those experimentally determined MSS by Kullerud et al. 

(1969). As shown in Figure 2.7B, the Cu:Ni ratios of SUL are between ~2 and 6, with 

few outliers (9 and 0.2), and the Cu:Ni ratios of mineralization range from ~0.5 to 1.5, 

with one outlier of 12. The Cu concentrations are fairly consistent between SUL (0.06-2.7 

wt %) and mineralization (0.54-2.9 wt %, outlier of 12.1 wt %), but the Ni contents are 

enriched in the mineralization (0.94-2.1 wt %) compared to SUL (0.13-0.59 wt %; Figure 
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Figure 2.9: Bulk sulphide melt inclusion compositions plotted in the Fe-(Ni+Co)-Cu 

field. Monosulphide solid solution (mss) and mss + liquid stability fields are based on the 

experiments of Kullerud et al. (1969) performed at 1100°C.  
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7B). Keeping in mind that Ni becomes more compatible into MSS as temperature falls 

(Barnes et al., 1997a; Ballhaus et al., 2001), it would appear that the sulphide liquid likely 

underwent a minor degree of fractionation before entrapment, for the Ni concentration to 

be lower in SUL than in mineralization. The Co:Ni ratio is also different between SUL 

and mineralization (~1 in SUL and ~0.1 in mineralization) but the Co concentrations are 

relatively constant (949-4,431 ppm in SUL and 1,339-3,534 ppm in mineralization) 

(Figure 2.7A). The KD of Co between MSS and residual sulphide liquid is less than that 

of Ni but greater than that of Cu (L.A. Rose, 1998 unpublished thesis). This could explain 

the high Co:Ni ratio of the SUL compared to mineralization. If the sulphide liquid 

crystallized a small amount of MSS prior to the trapping of SUL, this would increase the 

Co:Ni ratio of the remaining sulphide liquid. Crystallization of olivine prior to the 

segregation of a sulphide liquid can cause the Co:Ni ratio of the sulphide liquid to be high 

because of the higher KD of Ni into olivine than Co into olivine (Duke, 1976; Seifert et 

al., 1988). However, the high Co:Ni ratio of SUL cannot be explained by this process 

because of the relatively depleted nature of Ni in olivine within the CLG (Figure 2.8A). 

Also, if olivine was responsible for removing Ni from the system, pentlandite present in 

mineralization should have a higher Co concentration than is present (e.g., Upper Zone of 

the Bushveld complex; Merkle and Von Gruenewaldt, 1986). Since Ni has a higher KD 

between sulphide and silicate liquid than Co, the removal of a small batch of sulphide 

liquid from the magma prior to the formation of the sulphide liquid responsible for the 

formation of SUL, would increase the bulk Co:Ni ratio of the magma and would result in 

the high Co:Ni ratios observed in the SUL (MacLean and Shamazaki, 1976; Rajamani 
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and Naldrett, 1978; Merkle and Von Gruenewaldt, 1986; Li and Audetat, 2012; Patten et 

al., 2013).  

 The Cu:Co ratios of SUL and mineralization are fairly consistent (unlike Cu:Ni 

and Co:Ni) with both ratios ranging from 1-20. However, SUL Cu:Co ratios plot slightly 

lower than mineralization ratios (~1-8), which could indicate a small amount of Co was 

partitioned into the crystallizing MSS phase prior to entrapment of SUL, as Co has a 

slightly higher D into MSS than Cu (L.A. Rose, 1998 unpublished thesis; Barnes et al., 

1997a; Ballhaus et al., 2001; Mungall et al., 2005).   

2.4.3 Other occurrences of sulphide melt inclusions in Ni-Cu-PGE deposits 

As described by Holwell et al. (2011) SUL from the Platreef of the Bushveld 

Complex, South Africa have been trapped very early in the crystallization history as 

inclusions within chromite. The SUL in chromite are polyphase consisting primarily of 

pyrrhotite, pentlandite, and chalcopyrite, which is similar to the SUL of CLG. The most 

notable mineralogical difference between the Platreef and CLG SUL is the presence of 

PGM in the Platreef SUL, where cooperite (PtS), laurite (RuS2), moncheite (PtTe2), and 

sperrylite (PtAs2) occur along the edge of SUL (Holwell et al., 2011). The occurrence of 

chalcopyrite and PGM along the SUL margins could be related to the fractionation of the 

sulphide liquid during cooling. Pyrrhotite and pentlandite form from MSS with 

chalcopyrite forming from the relatively later ISS and PGM forming from a residual 

semi-metal rich melt, which would result in chalcopyrite and PGM located on the margins 

of SUL (Holwell and McDonald, 2010; Holwell et al., 2011). 

In the study carried out by Holwell et al. (2011) with SUL hosted in an opaque 

mineral (chromite), the inclusions had to be exposed at surface, which would have 
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resulted in partial or complete loss of a mineral within the inclusion. To overcome this 

issue, they homogenized sections of the host rock to 1195°C completely homogenizing 

the SUL and followed by rapid quenching. After the the heating treatment, they then 

polished the sections to expose the inclusions and then were analyzed by LA-ICP-MS to 

ensure that all contents were analyzed. Fortunately, SUL in the CLG are hosted in 

translucent minerals (apatite and plagioclase) so there is no need to homogenize the 

inclusions as they are visible through the microscope objectives attached to the LA-ICP-

MS and inclusions present below surface can be analyzed. All PGE, semi-metals (As, Sb, 

Te, Bi) and Au were all present in ppm concentrations for homogenized SUL in the 

Platreef, with average Pt and Pd contents of 190.2 and 160.5 ppm, respectively (Holwell 

et al., 2011). Nickel (12.3 wt %) and Cu (14.1 wt %) concentrations are ~60x greater in 

the Platreef than in the CLG (Ni=~0.2 wt %; Cu=~0.8 wt %). Also, Holwell et al. (2011) 

noted that the compositions of SUL are similar to bulk rock when recalculated to 100 % 

sulphide by Holwell and McDonald (2007). The presence of PGM and the higher 

concentrations of PGE in SUL of the Platreef would imply that the initial sulphide liquid 

was PGE-rich and is supportive of a model where PGE were concentrated in the sulphide 

liquid prior to intrusion (Holwell et al., 2011).  

 Prichard et al. (2004) describe sulphide blebs occurring within a mafic dike 

belonging to the Uruguayan dike swarm. The formation of sulphide blebs was early 

relative to the crystallization of silicate minerals and the occurrence of interstitial 

sulphides immediately below the blebs may implied that the sulphide liquid was sinking 

and migrating prior to solidification of the silicate melt (Prichard et al., 2004). The blebs 

do not occur enclosed within a single mineral as SUL  CLG or the Platreef, but are 
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enclosed by the silicate groundmass, with a sharp lower margin and an irregular upper 

margin consisting of a mixture of silicate and sulphide minerals (Prichard et al., 2004). 

The sulphide blebs are composed predominately of magnetite, pyrrhotite, pentlandite, 

chalcopyrite, and cubanite, as well as some PGM that occur in chalcopyrite rich veinlets 

that crosscut magnetite and terminate at the blebs grain boundary (Prichard et al., 2004). 

The sulphide blebs could be divided into two distinct zones representing sulphide liquid 

evolution and segregation of MSS and ISS. The lower zones of the blebs are composed of 

pyrrhotite and pentlandite (representing MSS) and the upper zone is composed largely of 

chalcopyrite intergrown with cubanite laths, representative of ISS (Prichard et al., 2004). 

The presence of the “late” chalcopyrite-rich veinlets that crosscut magnetite and terminate 

at the blebs margins are representative of a highly fractionated sulphide liquid, which was 

enriched in Cu, Pb, Sn, Ag, Mo, Pd, Bi, Te, and Sb (Prichard et al., 2004). Titaniferous 

magnetite is present within the blebs along their margins and the marginsare typically 

fractured and filled by chalcopyrite. Sulphide droplets similar to the ones described by 

Prichard et al. (2004) have also been described in the Noril’sk-Talnakh district, where 

Czamanske et al. (1992) documented sulphide droplets with a pyrrhotite and pentlandite 

base with chalcopyrite comprising the uppermost portion of the droplet. Prichard et al. 

(2004) also examined similar sulphide droplets from Noril’sk and observed Pt- and Pd- 

tellurides, bismuthides, and arsenides within the sulphide droplets.  

 The SUL of the Platreef and the sulphide droplets from Uruguay and Noril’sk 

have similar mineralogy with respect to their major mineral assemblage to the CLG 

(pyrrhotite, pentlandite, chalcopyrite, magnetite), but the CLG lacks the presence of PGM 

compared to these other occurrences. Possible explanations for the lack of PGM in SUL 
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could be that the sulphide liquid was depleted with respect to PGE or a semi-metal liquid 

had separated before SUL became trapped leaving the sulphide liquid depleted in PGE 

(Ballhaus et al., 2001; Helmy et al., 2007). As there is no evidence for an early semi-

metal rich liquid in sulphide mineralization of the CLG, the latter scenario seems 

unlikely. 

2.4.4 Comparison of the Caribou Lake Gabbro mineralization to Ni-Cu-PGE deposits 

globally 

 Metal tenor (metal content in 100 % sulphide) of sulphide mineralization has been 

calculated because a majority of metals are assumed to reside in base metal sulphides and 

would give an estimate of the sulphide liquid that lead to the formation of mineralization. 

Since sulphide contents vary between mineralization intervals within a deposit and 

between various deposits, mineralization is recalculated to 100 % sulphide to compare the 

various styles. Tenor calculations used the whole rock S, Cu, and Ni concentrations as 

well as Ni in pyrrhotite obtained through LA-ICP-MS analysis.  

 Comparing the CLG mineralization styles to major PGE deposits globally (e.g., 

Stillwater Complex, Bushveld Complex, Lac des Iles, East Bull Lake), it is evident that 

the CLG is extremely depleted in PGE and Au (Figure 2.3B). Massive, semi-massive, and 

disseminated sulphide mineralization exhibit a concave pattern while the PGE deposits 

show a convex pattern. The trace sulphide mineralization is depleted in PGE relative to 

the other deposits but does have a similar convex pattern, except for the relative Ir 

depletion (Figure 2.3B). The base metals in the CLG (Co, Ni, Cu) are also relatively 

depleted compared to the PGE deposits. Comparison of CLG mineralization to major Ni-

Cu deposits globally (e.g., Sudbury, Noril’sk, Perseverance, Pechanga, Voisey’s Bay, 
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Cape Smith) shows that the CLG is depleted in Ni but has similar Co ratios relative to 

primitive mantle. Copper in the CLG is similar to a majority of the deposits except for 

Noril’sk (Figure 2.3A). The CLG is depleted in PGE compared to Ni-Cu deposits but has 

similar Au ratios relative to primitive mantle compared to Perseverance, Voisey’s Bay, 

Sudbury, and Cape Smith (Figure 2.3A).  

2.4.5 Sulfur isotopes and inducing sulphide saturation 

 Assimilation of externally derived sulphur is believed to be a crucial process in 

the formation of a magmatic Ni-Cu-PGE deposit by invoking S-saturation in the system 

(Ripley and Li, 2003, 2013). Other mechanisms have been proposed to promote sulfur 

saturation such as: (i) the assimilation of felsic country rocks (i.e., addition of SiO2), 

which decreases the solubility of S, promoting sulfur saturation (Irvine, 1975; Li and 

Naldrett, 1993) and has been suggested at the Nebo-Babel  deposit, Western Australia 

(Seat et al., 2009); and (ii) an increase in fO2 in the melt, lowers the amount of S required 

to reach sulfur saturation (Buchanan et al., 1981), as suggested by Lehmann et al. (2007) 

at the Jinchaun Ni-Cu-PGE deposit, China. However, Ripley and Li (2013) point out that 

it is still uncertain if silica contamination or an increase in fO2 can account for the large 

amount of sulphide observed in Ni-Cu-PGE deposits (e.g., Jinchaun).  

 Sulfur isotopes are the most common technique used to assess the role that 

externally derived sulfur may have played in the formation of a magmatic Ni-Cu-PGE 

deposit and can provide an indication of the amount of S assimilated (Ripley and Li, 

2003, 2013). Studies on Ni-Cu-PGE deposits such as Voisey's Bay (Ripley et al., 1999), 

Duluth (Ripley, 1981), Noril'sk (Li et al., 2003), and Uitkomst (Li et al., 2002) have all 

used sulfur isotopes as evidence for the incorporation of external S to invoke sulfur 
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saturation. However, the use of sulfur isotopes is only effective if the δ
34

S signature of the 

contaminant(s) is different than the δ
34

S signature of the sulphide liquid. Mixing may 

result in the homogenization of δ
34

S values, or if contamination of S-poor country rocks 

occurred then the δ
34

S values may remain consistent with mantle values and sulfur 

isotopes would not provide an indication of externally derived sulfur (Ripley and Li, 

2003, 2013).   

 Sulfur isotopes of pyrrhotite in the Archean sedimentary Burwash Formation have 

δ
34

S within mantle range (-0.3 to +0.8 ‰). In situ isotope analysis of SUL and 

disseminated sulphides, as well as mineral separate isotope analysis of pyrrhotite and 

chalcopyrite within mineralization and pyrite along fracture planes all have δ
34

S values 

consistent with a mantle source as well (-1.3 to +2.5‰). Therefore, the use of sulfur 

isotopes to document the effect of sulfur contamination from the Burwash Formation is 

not an effective method.  

 One issue with a model that requires sulfur contamination from the Burwash 

Formation to induce sulphide saturation in the CLG is the difficulty of liberating sulfur 

from pyrrhotite (Ripley et al., 1999). A fluid at temperatures < 700°C and in equilibrium 

with pyrrhotite, graphite, and ilmenite or magnetite would have only minor XH2S (< 0.01), 

therefore only minor amounts of sulphide would be added to a melt through advection or 

diffusion (Andrews and Ripley, 1989; Ripley et al., 1999). Also, as Ripley et al. (1999) 

noted for Voisey's Bay, directly melting pyrrhotite in the sediments and transferring the 

liberated sulfur to a melt is not likely to occur in a tholeiitic melt, due to the relatively 

high melting point for pyrrhotite varieties (~1000°C; Naldrett, 1969). Thus it would 

difficult to derive external sulfur from the Burwash Formation and invoke sulphide 
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saturation in the CLG melt. Contamination of the BLIS has been modeled by Mumford 

(unpublished, 2013 PhD Thesis) by plotting ƐNd vs Th/Yb to track crustal contamination. 

The results demonstrate the most likely lithology to contaminate the BLIS was the 

Morose Granite and possibly lower crustal rocks of similar composition to the Kam group 

of the Yellowknife Greenstone Belt. With the narrow range in δ
34

S values from the CLG 

and the difficulty to liberate sulfur from pyrrhotite, combined with the modeling by 

Mumford, it would appear that sulphide saturation  may have be induced by the addition 

of SiO2 from the Morose Granite to the CLG melt and not by contamination from the 

Burwash sediments. 

2.4.6 Olivine chemistry as an indicator of early sulphide segregation 

The amount of Ni in olivine displays a positive correlation with the mole % Fo of 

olivine, generally as Fo decreases, Ni decreases as seen in Figure 2.8A. This trend is 

expected for olivine formed through fractionation crystallization. Since MgO and Ni are 

highly compatible in olivine, as crystallization proceeds, olivine progressively removes 

MgO and Ni from the melt and as Ni is removed, initially, it shows a sharp decrease with 

respect to Fo but becomes more gradual at lower Fo contents (Simkin and Smith, 1970; Li 

et al., 2007). For Fo values in the range of Fo50 to Fo60, variable Ni contents are present 

(Figure 2.8A). This scatter in Ni concentrations could be due to the “trapped liquid shift” 

as described by Barnes (1986). This “shift” occurs when olivine crystallizing from an 

intercumulus liquid nucleates on a core of early cumulus olivine. The olivine crystallizing 

from the intercumulus liquid will be much richer in FeO and with the diffusion rates of Fe 

and Mg within the olivine structure being relatively fast, the resulting olivine will be of a 

homogeneous Fo composition and be much richer in Fe (lower Fo) than the original 
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cumulus olivine. Li and Naldrett (1999) also state that the Ni content will be lower as 

well because the intercumulus liquid will be Ni poor. The “trapped liquid effect” is a 

good possibility for the relatively low Fo overall, because olivine is rarely seen as 

massive cumulate rocks formed by equilibrium crystallization in the CLG but is generally 

a relatively late cumulate mineral and likely formed via gravitational settling or flow 

differentiation likely allowing interaction with intercumulus liquid (Ripley et al., 2007). 

The scatter in Ni contents may also be due to interaction with a sulphide liquid. 

The exchange partition coefficient (KD) for the interaction of olivine with a sulphide 

liquid is defined as: 

KD = (NiS/FeS)sulphide/(NiO/FeO)olivine      [5] 

As described by Brenan (2003), the KD is a function of the Ni+Cu content and the fO2 of 

the sulphide liquid. If these two parameters are kept constant, then the KD will be 

constant, so if olivine with variable FeO content is immersed into a sulphide liquid, an 

olivine with a higher FeO content will contain more Ni than an olivine with lower FeO, 

producing a relationship opposite to normal crystallization (Brenan, 2003; Li et al., 2007). 

This relationship has been shown at the Stillwater Complex (Barnes and Naldrett, 1985), 

Voisey’s Bay (Li and Naldrett, 1999), Noril’sk and Talnakh intrusions (Li et al., 2003), 

and Jinchaun deposit (Li et al., 2004). Comparing Fo content of olivine adjacent to SUL 

and Fo content of olivine distal to SUL, no variation in Fo is present and SEM-EDS did 

not detect any Ni (Figure 2.8B). This observation would imply that local Fe-Ni exchange 

did not occur between SUL and olivine.  

 Comparing the Ni and Fo contents of olivine in the CLG to other Ni-Cu-PGE 

deposits globally (Figure 2.8A), the CLG has relatively low Fo and extremely low Ni. 
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The most notable difference would be for the olivine-rich ultramafic rocks of the 

Bushveld Complex beneath the Platreef (Yudovskaya et al., 2013). The Fo content is 

relatively consistent between 84 and 92, which is much higher than dunites from the CLG 

(Fo71-72). The Ni contents of olivine from the Bushveld are highly variable ranging from 

~700-5,000 ppm, while olivine from the CLG dunite is relatively poor in Ni (~1,100 ppm) 

(Figure 2.8A). Olivine rich cumulates from the J-M Reef of the Stillwater Complex 

(Barnes and Naldrett, 1985) have olivine compositions that are much more enriched in Ni 

than the CLG and have relatively higher Fo contents. The same relative Ni and Fo 

enrichments are also present for a majority of gabbroic rocks from the Noril’sk and 

Talnakh intrusions (Li et al., 2003) and from the basal zone of the Partridge River 

intrusion, Duluth Complex (Ripley et al., 2007) (Figure 2.8A). Olivine from Voisey’s 

Bay are generally more Fo and Ni rich, until Fo62 where the Ni-Fo trend between the 

CLG and Voisey’s Bay are similar (Figure 2.8A). The most plausibly explanation(s) for 

the relatively low Fo and Ni contents of olivine from the CLG would be the parental 

magma(s) had relatively low Ni concentrations or that the sulphide liquid had already 

separated before olivine crystallized. However, with the presence of SUL as secondary 

inclusion trails in olivine, it would imply that olivine was crystallizing prior to a sulphide 

liquid separating and therefore the segregation of a sulphide liquid may not be responsible 

for the Ni depletion in olivine. As well, the scatter in Ni content in olivine could simply 

be due to different parental magmas with variable Ni concentration. If sulphide 

mineralization in the CLG formed at high R factors and/or the parental magma was 

sufficiently rich in Ni, then there would be no appreciable depletion of Ni in olivine due 
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to competition with sulphide liquid (e.g., Betheno and Mirabela komatiite deposits, 

Barnes et al., 2013).  

2.4.7 Magmatic mineralizing processes in the Caribou Lake Gabbro 

 To model the magmatic processes responsible for the studied magmatic sulphide 

mineralization, mineralization was plotted on a Cu versus Pd diagram (e.g., Barnes et al., 

1993) and modeled sulphide compositions segregated from a basaltic liquid by varying R 

factors were calculated using the equation of Campbell and Naldrett (1979), 

C°sul/C°sil = D
sul/sil

(R+1)/(R+D),       [6] 

where C°sul = the initial concentration of an element in the sulphide liquid, C°sil = the 

initial concentration of an element in the silicate liquid, D
sul/sil

 = the partition coefficient 

of an element between sulphide and silicate liquid, and R = the ratio of silicate to sulphide 

liquid (R factor). Partition coefficients used for Cu between sulphide and silicate liquid 

are 1,380 (Peach et al., 1990; Patten et al., 2013) and 33,000 for Pd (Peach et al., 1994). 

 Three stages are suggested for the formation of disseminated and semi- to massive 

sulfide mineralization: i) initial loss of 0.1 to 0.2 wt % sulphide at depth during ascent; ii) 

a secondary stage of sulphide loss prior to formation of sulphide mineralization; and iii) 

formation of sulphide liquid responsible for forming sulphide mineralization. Modeling of 

the system has been done for using an initial silicate melt composition with 

concentrations of 120 ppm Cu and 12 ppb Pd was used because these values are 

representative of S-undepleted tholeiites and picrites (Lightfoot and Keays, 2005; Keays 

and Lightfoot, 2007). However, this composition would not produce the disseminated, 

semi-massive, or massive sulphide mineralization present in the CLG. The trace sulphide 
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"PGE-enriched" mineralization may be produced from such a liquid at an R factor of 

~970, but the compositional evolution line falls slightly above where mineralization plots.  

In order for a silicate liquid to produce the observed sulphide mineralization at 

different R factors, the Cu/Pd ratio needs to be increased, which can be accomplished by 

the melt losing sulphide at depth prior to intrusion at its present location (stage i), because 

Pd will be removed at a greater rate than Cu due to their respectively D’s between 

sulphide and silicate liquid. This can be modeled by using the following equation of 

Barnes et al. (1993) for determining the composition of a silicate liquid after sulphide 

segregation: 

C
f
sil/C°sil = 1/[1+X(D

sul/sil
-1)\100],       [7] 

Where C
f
sil = concentration of an element in the fractionated silicate magma, C°sil = the 

initial concentration of an element in the silicate liquid, X = weight percent sulphide that 

has segregated, and D
sul/sil

 = the partition coefficient of the element between the sulphide 

and silicate liquid. Using equation [7] for an initially S-undepleted silicate source melt 

with a Cu and Pd concentrations of 120 ppm and 12 ppb, respectively, the silicate melt 

would have to lose > 0.3 wt % sulphide to produce the disseminated, semi-massive, and 

massive sulphide mineralization of the CLG (stage i). This is unlikely because a basaltic 

magma can typically only carry ~1000-2000 ppm (depending on fO2, pressure, silicate 

melt composition) sulfur before sulfur saturation occurs and sulphides start to precipitate 

(Mavrogenes and O’Neil, 1999; O’Neil and Mavrogenes, 2002). A scenario that seems 

most plausible is that the silicate liquid lost sulphide multiple times upon its ascent to its 

present location.  
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 Starting with an initial silicate melt with a Cu concentration of 120 ppm and Pd of 

12 ppm, if 0.1 to 0.2 wt % sulphide liquid was lost as the silicate melt ascended (stage i; 

prior to emplacement), this would result in a silicate melt with Cu and Pd contents of 50 

to 39 ppm and 0.35 to 0.24 ppb, respectively. The Cu values are in good agreement with 

the Cu concentration (59 ppm) of the chilled margin in the CLG (Mumford, 2013 

unpublished PhD Thesis). The values for Cu and Pd are also in good agreement with S-

depleted tholeiites and picrites (Lightfoot and Keays, 2005; Keays and Lightfoot, 2007). 

Using equation [6], it is still not possible to produce the disseminated, semi-massive, or 

massive sulphide mineralization present in the CLG from these new silictae compositions 

after losing 0.1-0.2 wt % sulphide. This would suggest that even after the initial silicate 

melt lost a large amount of sulphide prior to magma emplacement (stage i), additional 

sulphide loss was required (stage ii). Considering an initial loss of sulphide and using 

equation [7], revised values of 50 ppm Cu and 0.35 ppm Pd were calculated for , 0.005 to 

0.01 wt % sulphide would have to be lost for compositional trend lines for R factors of 

150-1680 to produce the mineralization of the CLG (stage ii; Figure 2.10). This would 

result in new silicate melt compositions of 47 ppm Cu and 0.13 ppb Pd (0.005 wt % 

sulphide lost) and 44 ppm Cu and 0.08 ppb Pd (0.01 wt % sulphide lost). If a silicate melt 

with Cu and Pd concentrations of 39 ppm and 0.24 ppb lost 0.005 wt % sulphide, it would 

contain 36 ppm Cu and 0.09 ppb Pd, and if it lost 0.01 wt % sulphide it would have Cu = 

34 ppm and Pd = 0.06 ppb. Losing 0.01 wt % sulphide from either starting composition 

gives the best approximation for R factors passing through mineralization. A silicate melt 

with 50 ppm Cu and 0.35 ppb Pd and 0.01 wt % sulphide lost (stage iii), R factors that 

would give rise to the disseminated, semi-massive, and massive sulphide mineralization 
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Figure 2.10: Plot of Cu/Pd against Pd showing the composition sulphide mineralization 

in the Caribou Lake Gabbro and results of modeling. Values for Mantle and PGE-

dominated deposits are from Barnes et al., 1993, Duluth: Thériault et al., 2000, Noril’sk: 

Barnes and Maier, 1999, Sudbury: Naldrett, 1981.  
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 would range from 470 up to 1,680 (Figure 2.10). If the silicate melt had 39 ppm Cu and 

0.24 ppb Pd (stage iii), R factors range from 500 to 2,420 (Figure 2.10).  

To model fractional crystallization of the sulphide liquid, the following equation is used 

(Mungall, 2002): 

C
f
sul =  C°sulF

(Dmss/sul-1)
,        [8] 

where C
f
sul = concentration of an element in the fractionated sulphide liquid, C°sil = the 

initial concentration of an element in the sulphide liquid, D
mss/sul

 = the partition coefficient 

of the element between the MSS and sulphide liquid, and F = fraction of sulphide liquid 

remaining. For a silicate melt with a Cu content of 44 ppm and 0.08 ppb Pd, an R factor 

of 500 could be responsible for crystallizing the disseminated sulphide mineralization if > 

90 % of the sulphide liquid crystallized as MSS; ~80 % crystallization could produce the 

semi-massive and massive sulphide mineralization. At an R factor of 2,500, semi-massive 

and massive sulphide mineralization could be produce by crystallizing up to 50 % of the 

sulphide liquid as MSS; between 60 and 80 % sulphide liquid crystallizing as MSS could 

produce the disseminated sulphide mineralization. For a silicate melt containing only 34 

ppm Cu and 0.06 ppb Pd, at an R factor of 1,500, 50 to 70 % of the sulphide liquid would 

need to crystallize as MSS to produce semi-massive and massive sulphide mineralization, 

while 80 to 90 % crystallization of the sulphide liquid as MSS would produce the 

disseminated sulphides (Figure 2.11A). At an R factor of 3,000, 0.001 to 55 % of the 

sulphide liquid would need to crystallize as MSS to produce semi-massive and massive 

sulphides and 70 to 80 % sulphide liquid crystallization as MSS could produce the 

disseminated sulphides (Figure 2.11A). Since sulphide mineralization within the CLG is 

predominately composed of MSS products (pyrrhotite and pentlandite), with only minor 
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Figure 2.11: Modelling results for fractional crystallization of a sulphide liquid. Liquid 

and cumulate trends are calculated using equation [8] for fractional crystallization. 

Numbers along liquid and cumulate lines represent fraction of MSS that has crystallized. 

A) Cu vs Pd compositions formed under fractional crystallization from a S-depleted 

silicate melt (Cu=34 ppm; Pd=0.06 ppb). B) Cu vs. Pd compositions formed under 

fractional crystallization from a S-undepleted silicate melt (Cu=120 ppm; Pd=12 ppb). 
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 ISS products (chalcopyrite), it would suggest that fractional crystallization of the 

sulphide liquid with an R factor ≤ 3,000 likely gave rise to the CLG mineralization. If the 

trace sulphide "PGE-enriched" mineralization formed under fractional crystallization, 

then it would have formed at an R factor of 10,000 with ~50 % of the sulphide liquid 

crystallizing as MSS or over a range of R factors of 70,000 to 150,000 with ≤ 10 % of the 

sulphide liquid crystallizaing as MSS from an initial silicate liquid with a composition 

similar to S-undepleted tholeiites and picrites (Figure 2.11B). 

To assess the amount of sulphide liquid that would need to crystallize as MSS, 

under equilibrium crystallization, to produce the mineralization observed in the CLG, the 

following equation is used (c.f. Li et al., 1992: Fleet et al., 1993; Barnes et al., 1997a) 

C
f
sul = C°sil[D

mss/sul
/((1-F)+FD

mss/sul
)],      [9] 

where C
f
sul = concentration of an element in the fractionated sulphide liquid, C°sil = the 

initial concentration of an element in the silicate liquid, D
mss/sul

 = the partition coefficient 

of the element between the MSS and sulphide liquid, and F = fraction of sulphide liquid 

remaining. Partition coefficients used for Cu between MSS and sulphide liquid are 0.2 

(Ballhaus et al., 2001; Mungall et al., 2005) and 0.07 for Pd (Mungall et al., 2005; Liu 

and Brenan, 2015). Under MSS equilibrium crystallization for a silicate melt with Cu and 

Pd concentrations of 44 ppm and 0.08 ppb, respectively, no range of R factors can 

produce MSS crystallization products that are similar to disseminated to massive sulphide 

mineralization of the CLG. As well, if the silicate melt contained only 34 ppm Cu and 

0.06 ppb Pd, no range of R factors can produce the CLG mineralization. If the CLG 

mineralization did form under equilibrium sulphide crystallization, then the silicate melt 

would need to contain ~120 ppm Cu, similar to S-undepleted tholeiites and picrites, but 
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only ~0.08 ppb Pd, which is similar to S-depleted tholeiite. In order for a silicate liquid of 

a S-undepleted tholeiitic composition to have a concentration of 0.08 ppb Pd, it must have 

lost a significant proportion of sulphide at depth prior to sulphide crystallization. 

However, to have a Cu concentration of 120 ppm, little to no sulphide would have been 

lost from a S-undepleted tholeiitic liquid, therefore the composition of the silicate liquid 

to produce the CLG mineralization under MSS equilibrium crystallization seems 

unreasonable. As well, the R factors that would produce the CLG disseminated to 

massive sulphide mineralization from a silicate liquid composition of 120 ppm Cu and 

0.08 ppb Pd range from 20,000 up to 5,000,000, which also seem unreasonable. Trace 

sulphide "PGE-enriched" mineralization does not also seem reasonable to have been 

produced through MSS equilibrium crystallization, as R factors ranging from 30,000 to 

5,000,000 could produce the trace sulphide "PGE-enriched" mineralization from an initial 

silicate liquid with 220 ppm Cu and 15 ppb Pd.  

Through modeling estimations of the sulphide liquid and R factors responsible for 

the evolution of mineralization in the CLG, it appears that two different mineralization 

events took place: 1) trace sulphide “PGE-enriched” sulphide mineralization that evolved 

at high R factors under fractional crystallization from a S-undepleted silicate liquid and, 

2) disseminated to massive sulphide mineralization that formed from a S-depleted silicate 

melt under relatively low R factors through fractional crystallization.  

2.4.8 Reasons for the low metal tenor of the Caribou Lake Gabbro  

 Depletion of Ni in olivine combined with the relatively low Ni tenor in sulphide 

mineralization, would suggest that a sulphide liquid was lost early on in the magmas 

history, prior to olivine crystallization and segregation of a sulphide liquid. If a sulphide 
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liquid did not separate prior to olivine crystallization and/or segregation of a sulphide 

liquid, then mineralization and SUL should contain more Ni than what is present. As 

discussed above, modeling of sulphide crystallization suggests that sulphide was lost prior 

to formation of sulphide mineralization as the silicate melt would have only contained 

~44 ppm Cu and ~0.08 ppb Pd to produce the disseminated, semi-massive, and massive 

sulphide mineralization, which is significantly depleted compared to tholeiites and 

picrites that have not experienced sulphide saturation (Keays and Lightfoot, 2005; 

Lightfoot and Keays, 2007). However, trace sulphide “PGE-enriched” mineralization may 

have formed from a S-undepleted tholeiite with Cu and Pd concentrations of 120 ppm and 

12 ppb and this style of mineralization in the CLG could be representative of the sulphide 

liquid that was lost prior to crystallization of the other sulphide mineralization styles.  

It is evident through modeling that the majority of mineralization in the CLG was 

formed through low R factors (≤ 3,000) and would explain the overall low metal tenor of 

the system and relatively short intervals of mineralization. Through observation of drill 

core throughout the CLG, lithologies are not overly continuous and are relatively short in 

length, which could imply that multiple small injections of magma formed the CLG 

(Mumford, 2013, unpublished PhD Thesis) and therefore, indicate the sulphide liquid did 

not interact significantly with silicate liquids, resulting in a low R factor.  

  Another explanation for the poor metal tenor in the CLG could be explained by 

low degrees of partial melting of the mantle. Since sulphide minerals have relatively 

lower melting temperatures than silicates in the upper mantle, they would primarily melt 

during the first stages of partial melting of the upper mantle (Li et al., 2001). As well, 

with Ni, Cu, and PGE prefering to reside in a sulphide liquid, they will be concentrated 
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into an initial sulphide liquid during partial melting (Li et al., 2001). As Barnes and Maier 

(1999) explain, molten sulphide will become completely dissolved in a silicate melt only 

when approximately 30 % partial melting of the upper mantle occurs. If a smaller degree 

of partial melting occurs, then not all of the sulphide liquid may be dissolved into the 

silicate liquid, therefore leaving behind the sulphide liquid in the upper mantle and the Ni, 

Cu, and PGE that reside in the sulphide liquid (Li et al., 2001). Magmas resulting from 

high degrees of partial melting (e.g., komatiites) can dissolve all sulphide liquid and 

therefore should be rich in Ni, Cu, and PGE (Keays, 1995; Li et al., 2001). A low degree 

of partial melting for the CLG could explain the poor metal tenors in the system as well 

as the relatively low Fo content of olivine compared to other economic Ni-Cu-PGE 

deposits.  

 

2.5 Conclusion 

Through modeling, estimations of R factors responsible for the formation of 

sulphide mineralization in the were made and appears CLG, it appears that two distinct 

mineralizating events occurred: (i) the formation of the trace sulphide "PGE-enriched" 

sulphide mineralization by fractional crystallization of sulphide melt, involving high R 

factors (70,000-150,000), from a S-undepleted silicate liquid resulted and; (ii) the 

formation of disseminated to massive sulphide mineralization from a S-depleted silicate 

magma that underwent fractional sulphide crystallization involving relatively low R 

factors (≤ 3,000) forming the disseminated to massive sulphide mineralization.  

Depletions in PGE and similar Cu and Co concentrations in both SUL and 

disseminated-massive sulphide mineralization, suggest these inclusions contain the 
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parental sulphide liquid responsible for the formation of the disseminated to massive 

sulphide mineralization. However, Ni concentrations in SUL are significantly lower 

compared to sulphide mineralization, implying that prior to SUL entrapment, minor 

fractional crystallization of MSS occurred, removing Ni from the sulphide liquid. 

ThereforeSUL in the Caribou Lake Gabbro represent a snapshot of the parental sulphide 

liquid composition, confirming the PGE-poor nature of the system, and can predict the 

base metal sulphide metal tenor mineralization. For highly chemically-resistive minerals 

(e.g., apatite) present in soils and tills, SUL preserved in these minerals may provide a 

potential tool for locating and assessing metal tenor in hidden potentially mineralized 

mafic-ultramafic intrusions during greenfields exploration. 

In the absence of any evidence for Fe-Ni exchange of olivine with sulphide melt 

in the CLG, olivine is depleted in Ni (≤ 1138 ppm) compared to economic Ni-Cu-PGE 

deposits, suggesting olivine crystallized from a Ni-depleted melt. As well, with SUL 

occurring as secondary inclusions in olivine, it would suggest that olivine began to 

crystallize prior to sulfide liquid formation and likely not be responsible for the Ni 

depletion in olivine 

Overall, sulphide mineralization in the CLG is depleted in PGE and semi-metals. 

This could be the result of a combination of a several processes: (i) a large amount of 

sulphide was lost at depth prior to the intrusions present location resulting in poor metal 

contents in the silicate liquid (e.g., Ni-poor olivine); (ii) as shown through modeling, low 

R factors likely limited the metal grades in mineralization, and/or (iii) a low degree of 

partial melting of a source region.  
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Abstract 

 Mafic pegmatites in the Caribou Lake Gabbro (CLG), Northwest Territories, 

Canada, comprise irregular pods and patches consisting of coarse-grained clinopyroxene, 

plagioclase, apatite, Fe-Ti oxides, with minor orthopyroxene, biotite, and sulphides. 

Apatite in these pegmatites hosts a variety of primary and secondary fluid inclusions: (i) 

type P2 primary polyphase (i.e., containing > two phase at room temperature) brine-

carbonic fluid inclusions, (ii) type S1 secondary polyphase CO2-dominant carbonic fluid 

inclusions, (iii) type S2 secondary polyphase CH4-dominant carbonic-brine fluid 

inclusions, (iv) type S3 secondary polyphase mixed (i.e., heterogeneously entrapped) 

brine-carbonic fluid inclusions, and (v) type S4 secondary mixed silicate-sulphide melt 

inclusions. Type S3 inclusions preserve assemblages of two immiscible fluids being co-

entrapped, a carbonic-dominant fluid and an aqueous brine and S1 inclusions are likely 
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the end-member carbonic-dominant fluid while the end-member aqueous-brine fluid was 

not observed in the samples. A fine- to medium-grained gabbro hosts primary silicate 

melt inclusions (type P1 inclusions) within cumulus apatite. Apatite in the mafic 

pegmatites and apatite hosting P1 inclusions are all F-rich with XF (mol fraction of F in 

the Cl-F-OH site) ranging from 0.73 to 1.0 and all have similar trace element patterns, but 

apatite in the mafic pegmatites contain higher concentrations of trace elements.  

 Major and trace element concentrations in P1 inclusions determined by SEM-EDS 

and LA-ICP-MS show the melt is of a gabbroic to syeno-dioritic composition. However, 

the trace elements show a more enriched melt signature with metals (Ni, Cu, Co) being 

relatively depleted compared to MORB and primitive mantle, while high field strength 

elements (HFSE) are highly enriched, likely indicating a low degree of partial melting of 

the mantle was the source for the CLG melt, the melt was crustally contaminated, or 

sulphide had already separted from the melt causing the low Ni, Cu, and Co. Trace 

elements such as Zr, Nb, Ta, W, Hf, and Cs were detected in S3 inclusions by SEM-EDS 

and LA-ICP-MS, and are likely sourced from a late-stage intercumulus liquid, that was 

enriched in these elements, and was squeezed upwards during crystal settling.  

 Entrapment conditions for P1 melt inclusions can be constrained by the minimum 

liquidus temperature (Tm
liquidus

), determined by microthermometry and combined with an 

estimated pressure of entrapment determined by the Al- and Ti-in-amphibole 

thermobarometer. These yield P-T conditions of 1130° to 1200°C and 1.6 to 4.5 kbar, for 

melt entrapment indicating the emplacement depth of the CLG was between 5.9 and 16.6 

km. The Tm
liquidus

 can also be used as the maximum T for entrapment of P2 and S1 

inclusions. The minimum temperature for P2 inclusions can be constrained by the lower 
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limit of the Al-in-hornblende thermometer, therefore P2 isochores intersection with 

Tm
liquidus

 and Al-in-hornblende thermometer give P-T entrapment conditions ranging from 

910°-1200°C and 3.2-4.4 kbar (11.8-16.3 km depth). Since S1 inclusions are the end-

member fluid for the immiscible S3 inclusions, they can be used to estimate S3 fluid 

inclusion entrapment as well. The minimum T for S1/S3 inclusions can be constrained by 

the apatite-biotite halogen exchange thermometer that represents final equilibrium in the 

unit. The intersection of S1 isochores with Tm
liquidus

 and the apatite-biotite thermometer 

give P-T conditions of 455° to 1200°C and 1.5 to 4.05 kbar (5.6-15 km depth). The high 

temperature of entrapment for fluid inclusions suggest that volatile activity is magmatic in 

origin and not related to a later hydrothermal event. Fluids similar to those reported in this 

study have previously been documented in economic Ni-Cu-PGE deposits. Since the 

CLG is only weakly mineralized (low PGE and base metal tenor), this may suggest the 

presence of these fluid types in layered mafic-ultramafic systems are not related to 

mineralization potential and primary PGE-bearing sulphide concentrations need to be 

present for PGE remobilization by fluid to occur. 
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3.0 Introduction 

 Fluid and melt inclusion studies of mineralized Ni-Cu-PGE layered mafic-

ultramafic intrusions are uncommon in the literature (Table 3.1; Ballhaus and Stumpfl, 

1986; Frost and Touret, 1989; Larsen et al., 1992; Glebovitsky et al., 2001; Hanley et al., 

2008; Somarin et al., 2009; Hanley and Gladney, 2011; Gál et al., 2013) and there are no 

reported fluid and melt inclusion data for barren layered-mafic ultramafic intrusions. 

Characterizing fluid and melt evolution is important in understanding the genesis of 

mineralized systems, notably if fluids have had an effect on metal mobility in the system 

at postcumulus conditions. It is also important to document fluid related processes in 

barren systems as well in order to understand how these processes alter the mineralogy 

and geochemistry of the rocks. A major challenge that needs to be addressed when 

comparing mineralized and barren systems, is to distinguish magmatic-hydrothermal 

events that are common to both settings from events that are unique to the mineralized 

setting.  

 A series of studies of layered mafic-ultramafic intrusions involving direct analyses 

of fluid inclusions or through mineral chemistry have documented volatile activity in 

primarily mineralized systems (Bushveld: Ballhaus and Stumpfl, 1986; Schiffries, 1990; 

Boudreau and Kruger, 1990; Mathez, 1995; Willmore et al., 2000; Stillwater: Boudreau 

and McCallum, 1989, 1992; Meurer et al., 1999; Polovina et al., 2004; Hanley et al., 

2008; Lac des Iles: Somarin et al., 2009; Hanley and Gladney, 2011; Schisa et al., 2014; 

Skaergaard: Larsen et al., 1992; Duluth: Gál et al., 2013; Laramie: Frost and Touret, 

1989; Lukkulaisvaara: Glebovitsky et al., 2001; Munni Munni: Boudreau et al., 1993; 

Great Dyke: Boudreau et al., 1995) and are supported by experimental studies
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(e.g., Mathez and Webster, 2005). In these studies, volatile compositions range from high 

salinity aqueous-dominant brines, hydrosaline melts, and immiscible brine-carbonic fluids 

in the system NaCl-CaCl2-H2O-CO2-CH4 to more rarely documented H2O-poor carbonic 

fluids (CO2 ± CH4). Apatite mineral chemistry (i.e., halogen chemistry) in these systems 

provides evidence for the saturation of a high salinity brine at specific stages of melt 

evolution. Evidence for volatiles of variable composition exsolving from different parts of 

the cumulate pile, and the remobilization of ore metals by volatiles is abundant. For 

example, PGE grades may be positively correlated with hydrothermal alteration intensity 

but negatively correlated with sulphide content (Polovina et al., 2004). Direct 

measurements of ore metals in fluid inclusions show that the fluids were metal-bearing at 

the time of entrapment (Hanley, 2006 unpublished PhD thesis; Hanley and Gladney, 

2011). However, these observations are heavily criticized by ore deposit geologists as 

being secondary in nature to primary metal enrichment by magmatic processes. 

Examining fluid and melt inclusions in robust mineral hosts in a barren system, such as 

the Caribou Lake Gabbro (CLG), can provide a better understanding whether these 

observations are common to all layered intrusions and allow the only method to see 

through the alteration of the system, notably alteration that occurred after magmatic-

hydrothermal events occurred. 

In this study, mafic pegmatites from the CLG hosting fluid and melt inclusions 

were studied using a variety of micro-analytical techniques [scanning electron 

microscopy-back scattered electron (SEM-BSE), scanning electron microscopy-energy 

dispersive X-ray (SEM-EDS), electron microprobe (EMP), Raman spectroscopy, laser 

ablation inductively coupled plasma mass spectrometery (LA-ICP-MS), 
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microthermometry, gas chromatography (GC)] were used to characterize these inclusions 

and provide the first detailed fluid inclusion study of the CLG. Collectively, the data 

gathered place first constraints on the P-T conditions of pegmatite crystallization and 

hydrothermal activity, and allow fluid sources to be considered.   

 

3.1 Geological setting 

3.1.1 Regional geology and tectonic setting 

 The CLG comprises the most western unit of the Blatchford Lake Intrusive Suite 

(BLIS), located ~90 km southeast of Yellowknife, NT along the Hearne Channel of Great 

Slave Lake (Figure 3.1A). The BLIS is situated at the southern margin of the Slave 

Province adjacent to the Athapuscow Aulacogen (Hoffman, 1973; Bowring et al., 1984). 

The BLIS is only weakly deformed, indicated by a weak, highly localized sub-vertical, 

northwest trending foliation and minor Proterozoic sub-vertical faults that trend north-

south (Mumford, 2013 unpublished PhD Thesis). The BLIS intrudes into Archean 

metasedimentary rocks of the Burwash Formation (Yellowknife Supergroup), Morose 

granite, and Defeat granodiorite. In the region surrounding the BLIS, no reported volcanic 

rocks of a similar age or composition have been reported, implying that either the magma 

source responsible for the formation of the BLIS was restricted in its extent to the 

subsurface, or the volcanic equivalents were eroded away (Mumford, 2013 unpublished 

PhD Thesis). Tectonic reconstructions during the Paleoproterozoic suggest deformation 

along the southern Slave craton was influenced by: i) a failed rift (Bowring et al., 1984; 

Hoffman, 1973) or ii) transpressional forces extending the length of an oblique crustal-

scale boundary (Hoffman, 1987; Hammer et al., 1992; Bleeker and Hall, 2007). Either of
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Figure 3.1: Regional and local geological maps of the Blatchford Lake Intrusive Suite. 

A) Location map and regional geological map of the Blatchford Lake Intrusive Suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). B) 

Detailed geological map of the western portion of the Blatchford Lake Intrusive suite, 

modified after Davidson (1982) and Mumford (2013, unpublished PhD Thesis). Locations 

of diamond drill holes (DDH) used in this study are shown as well.  
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these scenarios could result in crustal thinning, promoting decompressional melting and 

the establishment of deep seated structures (i.e., conduits) for migration of a mantle 

derived melt (Mumford, 2013 unpublished PhD Thesis) that acted as the parental melt for 

the BLIS. A metasomatized, depleted mantle source is suggested for the BLIS (Mumford, 

2013 unpublished PhD Thesis). 

3.1.2 Local geology 

 The CLG (2184 ± 2 Ma, Mumford, 2013 unpublished PhD Thesis) is the oldest 

and first magmatic phase of the BLIS which intrudes into the Archean sedimentary rocks 

of the Yellowknife Supergroup, the Morose granite, and the Defeat granodiorite (Figure 

3.1B; Davidson, 1982). Davidson (1972, 1978, 1981, 1982) and Mumford (2013 

unpublished PhD Thesis) identified five distinct units based on field relationships and 

geochronology: i) Caribou Lake Gabbro evolving from dunite to leucoferrodiorite (2184 

± 2 Ma, Mumford, 2013 unpublished PhD Thesis); ii) Whiteman Lake quartz syenite 

(2185 ± 2 Ma, Bowring et al., 1984); iii) Hearne Channel granite (2175 ± 5 Ma, Bowring 

et al., 1984); iv) Grace Lake granite (2176.2 ± 1.3 Ma, Sinclair et al., 1994); v) Thor Lake 

syenite (2164 ± 11 Ma, Mumford, 2013 unpublished PhD Thesis).  

Geochemically, the BLIS can be broken into two distinct portions; an older sub-

alkaline western lobe (Units i-iii) and a younger peralkaline eastern lobe (Units iv-v) 

(Davidson, 1981). Geophysical gravity studies by Birkett et al. (1994) and Pilkington 

(2012) suggests the BLIS is a relatively thin tabular body (~1 km thick) with a deep mafic 

(CLG) root at its western contact. The CLG also appears to extend under the Grace Lake 

granite for almost half of the entire surface area expression of the complex. Contacts 

between the CLG and its Archean host rocks are rarely observed due to cover by 
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vegetation, swamps, and/or lakes. However, a chilled margin occurs along the western 

contact and dips steeply (70-85°) away from the centre of the BLIS (Davidson 1972, 

1978; Mumford, 2013 unpublished PhD Thesis). Progressive changes in rock texture and 

composition occur from west to east across the CLG beginning with pegmatitic patches 

along the west and north shores of Caribou and Whiteman Lakes, transitioning into a 

massive to poorly layered gabbro with a weak foliation defined by plagioclase, and 

progressing into a leucoferrodiorite as the most eastern portion of the CLG (Davidson 

1972, 1978; Mumford, 2013 unpublished PhD Thesis). 

The CLG is a crudely layered mafic-ultramafic intrusion that is composed of a 

variety of units. Diamond drilling in 2006 and 2007 by Kodiak Exploration Limited 

allowed for identification of multiple new lithologies that were not previously identified 

through surficial mapping by Davidson (1972, 1978). The dominant lithology throughout 

the CLG is a fine- to medium-grained gabbro that is comprised of olivine, clinopyroxene, 

plagioclase, and Fe-Ti oxides, with minor orthopyroxene and apatite. Ultramafic 

lithologies observed in drill core include dunite, clinopyroxenite, olivine clinopyroxenite, 

wehrlite, and troctolite. Other rock types observed include anorthosites and magnetitites 

and locally, pegmatitic gabbros occur. The CLG was predominantly formed through 

cumulate processes and is a very complex system (Mumford, 2013 unpublished PhD 

thesis). Correlation of individual units between closely spaced drill holes is extremely 

difficult due to lateral variability in texture and unit thickness. With the upper and lower 

contacts of ultramafic cumulate sections commonly bounded by massive gabbro, 

preserving the tops and bottoms of typical layered sequences, suggesting that the CLG 
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was formed from numerous small batches of magma instead of from a single batch of 

magma (Mumford, 2013 unpublished PhD Thesis).  

Diamond drilling by Kodiak Exploration Limited in 2006 encountered massive to 

heavily disseminated sulphide in four drill holes, including 0.53 % Ni and 0.7 % Cu over 

3.18 m (Marmont, 2006). Disseminated sulphides are hosted by a fine- to medium- 

grained gabbro and are composed of pyrrhotite with lesser amounts of chalcopyrite, 

pentlandite, and pyrite (Marmont, 2006). The relative stratigraphic position of sulphide 

mineralization in drill holes is variable, with semi-massive to massive sulphide 

encountered at a depth of ~20 m in diamond drill hole (DDH) CL-06-01, ~35 m in DDH 

CL-06-03, and ~80 m in DDH CL-07-05. All massive sulphide intersections were only 

1.5 to 3 m thick with ~2 m of disseminated sulphide above and below and consist of the 

same mineralogy as the disseminated sulphides. Disseminated sulphide mineralization 

occurs in DDH CL-06-16 with a thickness of ~10 m over a depth of 53 to 63 m. 

Disseminated and massive sulphides show marginal enrichment in platinum group 

elements (PGE) (< 30 ppb Pd+Pt). Relatively high PGE (~100-200 ppb Pt+Pd) were 

intersected (DDH CL-07-09) in a fine-grained gabbro that contained minimal amounts of 

sulphide (< 3 vol %; Marmont, 2007). A detailed description of sulphide mineralization is 

presented in Chapter 2. 

 

3.2 Methodology 

 Samples collected for this study were obtained during the 2013 summer field 

season. This field work involved detailed core logging and surface mapping of the CLG. 

Fluid and melt inclusions were observed in two different settings: i) in fine- to very 
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coarse-grained apatite hosted in highly altered mafic pegmatites (CL-07-01-127, -167, -

173.9, CL-07-05-499); and ii) in fine- to medium- grained apatite hosted in a medium-

grained gabbro (CL-07-01-29.1).  

Petrographic characteristics (from thin and thick sections) were completed using 

an Olympus BX51 microscope, in transmitted and reflected light. The characterization of 

solid phases in exposed fluid and melt inclusions present at the surface of samples was 

conducted using a LEO1450VP scanning electron microscope (SEM) at Saint Mary’s 

University, equipped with an energy dispersive X-ray (EDS) Oxford INCA 80mm
2
 

silicon drift detector (SDD) capable of quantitative analysis. All analyses were conducted 

at a working distance of ~20mm, with a beam current of 40 µA and accelerating voltage 

of 25-30 kV. Raw data were reduced using the software package INCA. 

 Drill core samples were sent to the Ontario Geological Survey GeoLabs in 

Sudbury, Ontario, for whole rock analyses. Major elements were determined by X-ray 

fluorescence spectrometry (XRF) on a borate flux-fused glass disk after loss of ignition 

(LOI) determination. Trace elements were analyzed by inductively-coupled plasma mass 

spectrometry (ICP-MS) after closed vessel, four acid (HF-HCl-HNO3-HClO4) digestion. 

Relative analytical uncertainties are within ± 5 % for all major elements and ± 3 % for 

most trace elements. Standards used were MRB-29, AGV-2, NPD-1, BHVO-2, LDI-2, 

SY-4, and GSP-2.  

Fluid inclusion microthermometric measurements were performed on a Linkam 

FTIR600 heating-freezing stage mounted on an Olympus BX51 microscope at Saint 

Mary’s University, Halifax, Canada. Calibration of the stage was completed using 

synthetic fluid inclusion standards of pure H2O (melting at 0
o
C and homogenization at 
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374.1
o
C) and pure CO2 (melting at -56.6

o
C). Uncertainties for the microthermometric 

measurements are ± 0.2
o
C at a heating rate of 1

o
C/min, based on repeated analyses of 

these standards. For type S1 inclusions, the software of BULK and ISOC [Bakker, 2003; 

equations of state from Bowers & Helgeson (1983) and Bakker (1999)] were used to 

calculate molar volumes (cc/mol) and isochores, and utilized the mode of CO2 

homogenization (i.e., to liquid, to vapor, to supercritical fluid) and the temperature of CO2 

homogenization (ThCO2). The presence of CO2 clathrates were noted in type P2 and S3 

inclusions (ThCO2 > TmCLA) and bulk salinities (wt % NaCl equivalent) were calculated 

using measured values of TmCLA following methods from Darling (1991) and Diamond 

(1992). 

Microthermometry of melt inclusions were performed using a Linkam TS1500 

equipped-heating stage with sapphire heating plates mounted on an Olympus BX53 

microscope with a Q imaging colour video camera. Heating rates varied between 

10°C/min and 100°C/min, and a flow rate of 40 mL/min of Ar gas was used to try and 

prevent oxidation of melt inclusions and their apatite host during heating. The error 

associated with the absolute temperature is ±2°C based on monitoring of fixed 

temperature stability. Pure Ag (961.8°C), Au (1064°C), and Cu (1085°C) metals were 

used as standards to calibrate the stage by measuring their melting points and comparing 

them against accepted values to create a linear calibration curve to correct observed 

temperatures to actual temperatures. 

Qualitative Raman spectroscopy was performed on polished thick sections 

containing fluid inclusions at Saint Mary’s University, Halifax. The instrument used was 

a Jobin-Yvon Horiba LabRam HR confocal Raman microscope with an 800 mm 
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spectrograph and Synapse 1024 x 256 pixel CCD detector. A 1800 groves/mm grating 

and 25 µm confocal hole size were used during spectrum collection, with a 532 nm 

(green) Nd-YAG laser (105 mW laser power at objective) was used for excitation, 

directed through a 100x objective. Pure silicon was used as a frequency calibration 

standard. Spectrum collection over the range 100-4000 cm
-1

 was done at an acquisition of 

0.5s per accumulation with 60 accumulations obtained per inclusion analysis. Using the 

empirical quantification parameters and methodologies summarized by Wopenka and 

Pasteris (1986, 1987), Dubessy et al. (1989), Burke (2001), and Beeskow et al. (2005), 

semi-quantitative determination of gas species relative abundances (in mol %) were 

calculated. Wavelength-dependant relative Raman scattering cross-sections (σ532 nm) for 

each gas species were determined by interpolation from Table 2 in Burke (2001). 

Instrument efficiencies () for CO2 and CH4 were determined by comparing 

microthermometrically-determined CO2 and CH4 contents to those determined by Raman 

spectroscopy for quartz-hosted CO2-CH4 standard inclusions from the South Wales Coal 

Field (Beeskow et al., 2005). Uncertainties in calculated mole fractions of species present 

in the carbonic phase of the inclusions are within 20 % relative. 

Gas chromatographic (GC) analysis was performed on samples of fragmented 

apatite extracted from a mafic pegmatite (CL-07-01-127). All samples were fragmented 

and hand-picked for GC analysis (1-3 mm in maximum dimension). Fragments were 

washed twice in deionized water, treated with a 1M HCl solution overnight to remove any 

carbonates present, and re-washed and sonicated in deionized water to remove any 

remaining residue. Samples were then dried on a hot plate in a sterile glass vial and 
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weighed prior to analysis. Gas chromatographic analysis of bulk fluid inclusion volatiles 

was conducted at Saint Mary’s University using an Agilent 7890 series gas 

chromatograph equipped with a micro-thermal conductivity detector (TCD) and 2H2-

flame ionization detectors (FID), one installed in tandem with the TCD and the other on 

an independent valve-flow path. For determination of trace hydrocarbon phases (Method 

2), an alumina-PLOT capillary analytical column (50 m × 0.53 mm × 10 μm) was used in 

series with a flame ionization detector (FID) capable of analyzing combustible 

compounds (e.g., alkanes, alkenes/alkynes, thiols). For the analysis of non-combustible 

volatile species (e.g., H2O, CO2; Method 1) an alumina-PLOT analytical column (30m x 

0.53 mm x 10 μm) was using in series with a thermal conductivity detector (TCD) and 

FID. Raw data was compiled by the software package Agilent Chromatographic 

Chemstation
® 

and then, by using the calibration curves composed of standard gas 

mixtures (Matheson Tri-Standards), the sample data was converted to moles/g of rock. 

For detailed analytical procedure and quality control evaluation for routine analyses at 

Saint Mary’s University (Department of Geology), see Kerr et al. (2015).  

Electron microprobe analyses of apatite, biotite, amphibole, and plagioclase were 

performed using a Cameca SX-50 electron microprobe (EMP) at the University of 

Toronto. The instrument was operating at 15 kV accelerating voltage with a 20 nA beam 

current for all mineral analyses. The beam diameter was 15 µm for apatite and 10 µm for 

biotite, amphibole, and plagioclase analyses. Raw microprobe data count rates were 

converted to concentrations using the ZAF data reduction scheme using the software 

Probe for EMPATM (Advanced Microbeam Inc.).  
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Trace element concentrations from individual apatite grains were determined by 

LA-ICP-MS at Laurentian University, Sudbury, Ontario using a Thermo X Series II 

quadrupole ICP-MS coupled to a Resonetics RESOlution M50 laser ablation system 

using a 193 nm, 20 ns pulse ArF Excimer laser. Ablation occurred in He (650 mL/min), 

which was combined with a small amount of high purity N2 (6 mL/min) and Ar (800 

mL/min) before being fed into the plasma. Dwell time for all elements was 10 ms and 

oxide production rates were maintained below 0.3 % (ThO/Th checked on NIST 612). 

Calibration of analyte sensitivities utilized the standard reference material 610 from 

NIST. Standards were bracketed between every ten analyses to correct for instrumental 

drift. Apatite measurements consisted of 30 seconds of a gas blank (laser off) followed by 

~25-35 seconds of sample ablation. The laser conditions used were: repetition rate of 5 

Hz, a spot size of 66 µm, and a fluence of 6 J/cm
2
. Trace element quantification of apatite 

analyses was performed using the software SILLS (Guillong et al, 2008). For complete 

operation conditions of the LA-ICPMS system see Appendix 2. Internal standardization 

utilized the Ca content of the apatite determined independently by EMP.  

Trace element concentrations of fluid and silicate melt inclusions and the apatite 

host mineral were measured by LA-ICP-MS at Virginia Tech, Blacksburg, Virginia, using 

an Agilent 7500ce quadrupole ICP-MS and a Lambda Physik GeoLas 193 nm excimer 

laser ablation system. The laser is attached to an Olympus petrographic microscope 

equipped with a 25x UV-VIS Schwarzschild objective for analyses, and 5x and 10x 

objectives for transmitted light viewing of the sample. The He carrier gas flow was ~1 

L/min through an ablation cell with a volume of ~1 cm
3
. Dwell time for all isotopes was 

10 ms, except for Pd
108

, Pt
195

, and Au
197

 (50 ms) and Ni
62

, As
75

, Ta
181

, and W
182

 (30 ms) 
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to improve detection limits. For silicate melt inclusions all dwell times for all isotopes 

was 10 ms. Oxide production rates were maintained below 1 %. Calibration of analyte 

sensitivities utilized the standard glass reference material 610 from NIST (National 

Institute of Standards and Technology) for both fluid and silicate melt inclusions and the 

PGE-bearing pyrrhotite standard PO724 from by Memorial University (Sylvester et al., 

2005) additionally for fluid inclusions. Each standard was ablated twice before and after 

each analytical session containing a total of 15-25 analyses (for fluid inclusions and host 

analyses) and 12 analyses (silicate melt inclusions and host analyses) for drift correction 

prior to data reduction. Fluid inclusion measurements each consisted of 40-60 seconds of 

gas blank before the laser was turned on. A beam diameter slightly larger than fluid 

inclusions ranging from 16-32 µm was used, host ablations were done with a spot size of 

24 µm, which was the most common spot size used to ablate inclusions. Silicate melt 

inclusions used a beam diameter of 32-120 µm and 44-60 µm for the apatite host. 

Aerosols were generated using a pulsed beam at a repetition rate of 5 Hz for fluid 

inclusions and 10 Hz for silicate melt inclusions and both had an output energy of 150 

mJ. Since the majority of inclusions were not exposed at surface the host phase was 

ablated before opening the inclusion and ablation was stopped once the entire inclusion 

was ablated. For complete operation conditions of the LA-ICP-MS system see Appendix 

2. 

Trace element quantification of the fluid and silicate melt inclusions was 

performed using the software SILLS (Guillong et al., 2008). This involved deconvoluting 

the mixed fluid/silicate melt inclusion + host signal from the host only signal after 

calculation of background corrected count rates for each isotope, and quantification of 
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inclusion and host compositions. Absolute trace element concentrations could not be 

quantified because of the lack of internal standard (bulk inclusion salinity), since carbonic 

inclusions lacked a visible aqueous phase, no salinity estimate of the aqueous component 

could be determined. Under normal circumstances, brine-carbonic fluid inclusion trace 

element concentrations can be quantified by using wt % NaCl equiv. as an internal 

standard and determining the bulk salinity of the inclusion. However, due to the presence 

of silicates in these inclusions (see results below), this method cannot be applied because 

it is not known how much Na is being contributed by the silicates. Therefore, fluid 

inclusions were quantified by assuming 100 % total oxides in the inclusions and using La 

as a matrix (i.e., apatite) only tracer. Values obtained from this method are only 

maximum values because they do not take into account Cl, H2O, and CO2 and therefore 

the data are only semi-quantitative allow for general correlations to be explored. 

Quantification of silicate melt inclusions and host compositions utilized SiO2 as internal 

standard of the melt inclusions determined separately by SEM. With the inclusions being 

polyphase, complete inclusions buried below the mineral surface needed to be analyzed 

because if the inclusions were exposed at surface, all phases may not be present within a 

single inclusion due to grinding and polishing during sample preparation.    

 

3.3 Results 

3.3.1 Petrography of fluid and melt inclusion bearing rocks and mineral compositions  

Silicate melt inclusions are hosted in cumulus apatite grains within a fine- to 

medium-grained gabbro (CL-07-01-29.1; Figure 3.2A-C). Apatite (5-7 vol %) occurs as ≤ 

0.5 mm, anhedral-subhedral equant inclusions within plagioclase, clinopyroxene, olivine, 
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Figure 3.2 (previous page): Petrographic characteristics of apatite and silicate melt 

inclusion in a fine- to medium-grained gabbro (CL-07-01-29.1). A) Photomicrograph of 

apatite hosting a large silicate melt inclusion. Plane polarized light (PPL). B) Apatite 

partially included in clinopyroxene hosting fine-grained melt inclusions that are elongated 

in the same direction as the apatite grain. PPL. C)  Photomicrograph of apatite hosting 

small melt inclusions that also parallel the elongation axis of the apatite grains as in the 

grains in D and A. PPL. D) Magnified view of the melt inclusion outlined in A). PPL. E) 

SEM-EDS image of the melt inclusion outlined in A). Minerals identified in the inclusion 

include: Aug, Plag, Kfs, Ilm, and Zrc. F) Magnified view photomicrograph of melt 

inclusions outlined in D). PPL. G) Magnified view photomicrograph of melt inclusions 

outlined in F. PPL. Note that the phases in melt inclusions present in E and G could not 

be identified through SEM-EDS because they were not exposed at surface. Amp = 

amphibole; Ap = apatite; Aug = augite; Cpx = clinopyroxene; Kfs = K-feldspar; Ilm = 

ilmenite; Mgt/Ilm = magnetite/ilmenite composite grain; Plag = plagioclase; Zrc = zircon.  
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ilmenite, magnetite, and biotite. Apatite is also a common interstitial matrix phase as 

well, where grains are ≤ 1.5 mm, anhedral-subhedral, and equant to tabular in form. 

Apatite is has higher concentrations of F compared to Cl, containing up to 3.6 wt % F 

(3.22 ± 0.26 wt %; n=10), with Cl up to 0.14 wt % (0.09 ± 0.04 wt %; n=10). Mole 

fraction chlorapatite (XCl) ranges from 0.002 to 0.02 and mole fraction fluorapatite (XF) 

from 0.79 to 0.98, thus approaching end-member fluorapatite (Figure 3.3). Plagioclase 

(An37-40; 60-65 vol %) grains are 0.5-8 mm (~1.7 mm), tabular, and euhedral-subhedral. 

Clinopyroxene (20-25 vol %) occurs interstitial to plagioclase and grains are ≤ 3 mm 

(~1.2 mm), subhedral-anhedral, and contains < 0.5 mm inclusions of magnetite/ilmenite 

composite grains. Minor amounts of olivine are present (3-5 vol %) and is generally 

alterd to serpentine, with only a few grains unaltered. Grains are ≤ 2.5 mm (~1.5 mm), 

highly fractured with magnetite commonly infilling the fractures, and occurring 

interstitial to plagioclase. Interstitial biotite (2-3 vol %) grains are ≤ 2 mm (~1 mm), 

euhedral and tabular. Biotite in CL-07-01-29.1 (Figure 3.4A) also contains more F than 

Cl, with up to 0.09 wt % F (0.07 ± 0.02 wt %; n=2) and up to 0.06 wt % Cl (0.05 ± 0.01 

wt %; n=2). Biotite is also common as rims on magnetite-ilmenite grains. Trace amounts 

of primary amphibole (grains are < 0.5 mm) are present as an interstitial phase. 

Magnetite-ilmenite (5 vol %) grains are ≤ 2 mm (~0.9 mm), anhedral, occur interstitial to 

plagioclase, and display blebby and trellis style exsolution of ilmenite from an original 

titanomagnetite grain. 

Primary and secondary fluid inclusions are hosted in early coarse-grained apatite 

(i.e., is not interstitial) in moderate to highly pervasively altered mafic pegmatites and is 

enclosed by altered clinopyroxene and plagioclase (CL-07-01-127, 167, 173.9; CL-07-05- 
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Figure 3.3: Triangular plot of mole proportions of F-Cl-OH of apatite from fluid and 

melt inclusion bearing lithologies, clinopyroxenite, and a gabbro hosting disseminated 

sulphides from the CLG compared to apatite compositions from other Ni-Cu-PGE 

deposits globally (Stillwater, Bushveld, and Skaergaard complexes, Great Dyke: 

Boudreau, 1995; Lac Des Iles: Schisa et al., 2014; Duluth: Gál et al., 2014). 
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Figure 3.4: Representative microphotographs of various minerals in the CLG. A) 

Cumulate apatite and interstitial biotite used for the apatite-biotite thermometer for CL-

07-01-29.1. PPL. B) Interstitial apatite and biotite in a clinopyroxenite (CL-07-01-95.9). 

XPL. C) Fine-grained interstitial apatite hosted in a fine-grained gabbro (CL-06-16-59.9). 

XPL. D) Amphibole phenocryst with inclusions of plagioclase, clinopyroxene, and 

magnetite. This amphibole was used for amphibole-plagioclase thermometer and Al-in-

hornblende barometer. PPL. E) Representative microphotograph of an unaltered fine-

grained gabbro used for geochemistry comparisons to fluid and melt inclusion bearing 

samples. PPL. F) Same as E but in XPL. Amp = amphibole; Ap = apatite; Bt = biotite; 

Chl = chlorite; Cpx = clinopyroxene; Mgt = magnetite; Plag = plagioclase.  
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499; Figure 3.5 A, B). Coarse-grained apatite in the mafic pegmatites is 5 to 20 mm in 

length (avg. 10 mm), weakly to highly fractured, and is anhedral to euhedral (Figure 3.5 

C-F). Apatite in the mafic pegmatites have higher concentrations of F (up to 3.77 wt %; 

3.19 ± 0.4 wt %; n=15) compared to Cl (up to 0.27 wt %; 0.20 ± 0.07 wt %; n=15). Mole 

fraction XCl ranges from 0.01 to 0.04 and XF from 0.73 and 1.0 (Figure 3.3). Minor 

amounts of euhedral ~1 mm apatite are present as inclusions within clinopyroxene and 

composite magnetite-ilmenite grains. Primary silicate minerals in the mafic pegmatites 

are clinopyroxene, plagioclase, minor orthopyroxene and biotite. Biotite from CL-07-01-

173.9 generally has higher concentrations of Cl compared to F, with up to 0.62 wt % Cl 

(0.42 ± 0.16 wt %; n=8) and up to 0.36 wt % F (0.15 ± 0.12 wt %; n=8). Clinopyroxene is 

moderately to completely altered to amphibole and plagioclase is typically highly 

sericitized and alteration for both minerals is pervasive throughout all examined 

pegmatites. Amphibole is also commonly altered along its edges to biotite and/or chlorite. 

A minor amount of spotty calcite alteration is present in the pegmatites as well. Minor 

amounts of sulphides and oxides are present in the mafic pegmatites (pyrrhotite, 

chalcopyrite, sphalerite, pentlandite, magnetite, and ilmenite).  

Coarse-grained, an-subhedral interstitial apatite occurs in a clinopyroxenite (CL-

07-01-95.9; Figure 3.4A) where it occurs interstitial to biotite, plagioclase, and magnetite 

(Figure 3.4A). Apatite in the clinopyroxenite is also F-rich but contains slightly more Cl 

than the fluid and melt inclusion bearing samples (2.68 ± 0.18 wt % F, 0.62 ± 0.13 wt % 

Cl, n=9) with XCl between 0.06 and 0.12 and XF between 0.65 and 0.79. Biotite from the 

clinopyroxenite (Figure 3.4A) also has higher concentrations of F compared to Cl (0.26 ± 

0.08 wt % F, 0.12 ± 0.02 wt % Cl, n=5).  
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Figure 3.5 (previous page): Drill core and thin section photographs of fluid inclusion-

bearing apatite in the CLG. A) Photograph of drill core from diamond drill hole CL-07-01 

at a depth of 127 m showing extremely coarse-grained apatite (circled) hosted in a highly 

altered mafic-ultramafic pegmatite. B) Scanned image of CL-07-01-127 thin section 

showing the extremely coarse-grained nature of apatite. C) Photomicrograph of coarse-

grained apatite from CL-07-01-127 and the various alteration minerals present in the unit. 

Cross polarized light (XPL). D) Photomicrograph of coarse-grained apatite in CL-07-01-

167 and various alteration and minor primary minerals. XPL. E) Photomicrograph of 

coarse-grained apatite in CL-07-01-173.9 and various alteration and primary igneous 

minerals. XPL. F) Photomicrograph of coarse-grained apatite from CL-07-01-173.9 and 

primary igneous minerals present in the sample. Plane polarized light. Alt = alteration pod 

of chlorite + amphibole; Amp = amphibole; Ap = apatite; Bt = biotite; Cal = calcite; Chl 

= chlorite; Cpx = clinopyroxene; Mgt/Ilm = magnetite and ilmenite composite grain; Plag 

= plagioclase. 
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Anhedral apatite is also present as a fine-grained interstitial phase in fine-grained 

gabbros and contains the most Cl-rich apatite analyzed in the CLG (0.77 ± 0.08 wt % Cl, 

2.25 ± 0.22 wt % F; n=4) with XCl from 0.1 up to 0.12 and XF is between 0.55 and 0.70. 

(CL-06-16-59.9; Figure 3.4B). Amphibole phenocrysts occur in CL-06-16-59.9 as well 

and contain abundant inclusions of plagioclase, clinopyroxene, and magnetite (Figure 

3.4C). Amphibole and plagioclase compositions from a fine-grained gabbro with minor 

disseminated sulphides were also analyzed by EMP. Amphibole (var. magnesio-

hastingsite; Figure 3.4C) has variable F and Cl contents ranging from below detection 

limits (b.d.l) to 0.14 wt % F (~0.07 ± 0.04 wt % F, n=7) and from 0.05 to 0.12 wt % Cl 

(~0.09 ± 0.02 wt % Cl, n=10). Plagioclase (var. labradorite; Figure 3.4C) has a range in 

anorthite content from 50 to 61. Representative apatite and biotite and amphibole and 

plagioclase analyses are presented in Table 3.2 and Table 3.3, respectively. For 

comparison purposes, Figure 3.4D and E, show microphotographs of unaltered fine-

grained gabbros, which consist of plagioclase, clinopyroxene, and minor biotite and 

magnetite.  

Melt and fluid inclusion bearing apatite analyzed by LA-ICP-MS show 

enrichment in LREE compared to HREE when normalized to chondrite and have enriched 

trace element patterns compared to primitive mantle (Figure 3.6A, B). As well, based on 

the fields of Belousova et al., (2002), apatite from the CLG predominately falls in the 

mafic rocks and iron ore fields (Figure 3.6C). 

3.3.2 Whole rock geochemistry 

 The major and trace element data of the fluid and melt inclusion bearing rocks are 

summarized in Table 3.4 and major (Figure 3.7A) and selected incompatible trace 
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Figure 3.6: Apatite trace element geochemistry. A) Average apatite trace element 

compositions normalized to chondrite, note the steep LREE:HREE slope. B) Average 

apatite trace element compositions normalized to primitive mantle. C) Plot of Sr against 

Y content in apatite. Different rock type fields are from Belousova et al. (2012). Note 

how the CLG apatites plot in the mafic rocks and iron ore compositional field.  
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Figure 3.7: Major and trace element geochemistry plots of fluid and melt inclusion 

bearing rocks and a fine-grained relatively unaltered gabbro from the CLG. A) Major 

element plot of fluid and melt inclusion bearing rocks normalized to a fine-grained 

gabbro to determine relative enrichments of elements in the inclusion bearing rocks. B) 

Trace element plot of inclusion bearing rocks and fine-grained gabbro normalized to 

chondrite. C) Trace element plot of inclusion bearing rocks and fine-grained gabbro 

normalized to primitive mantle.  
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 elements are plotted in Figure 3.7 (normalized to primitive mantle, Figure 3.7B; 

normalized to chondrite, Figure 3.7C; Sun and McDonough, 1989) along with relatively 

unaltered fine-grained gabbros from the CLG. Compositionally, the mafic pegmatitic are 

typically enriched in P, K, Ti, Mn, Fe, and Ca compared to their host gabbros and are 

depleted in Si, Al, Mg, and Na (Figure 3.7A). These differences can be accounted for by 

the higher abundances of apatite, ilmenite, magnetite, and biotite and lesser amounts of 

plagioclase and pyroxene present in the mafic pegmatites compared to the host gabbros. 

The gabbro hosting type P1 inclusions is enriched in P, K, Mn, and Ti and has similar Si, 

Al, Fe and Ca to the host gabbros (Figure 3.7A). This can be accounted for 

mineralogically by greater amounts of apatite, biotite, and ilmenite in the melt inclusion 

bearing rock. Representative photos of the unaltered fine-grained gabbro are shown in 

Figure 3.4E, F. Fluid and melt inclusion bearing samples show relatively parallel trace 

element patterns to those of the unaltered fine-grained gabbros when normalized to 

primitive mantle, but are generally much more enriched in trace elements (Figure 3.7B). 

Generally only Sr, K, and Zr, in the fluid and melt inclusion samples are in similar 

concentration to the fine-grained gabbros. The enrichment in REE and other trace 

elements in the fluid and melt inclusion bearing samples is most likely controlled by the 

high amounts of apatite present in these samples. All samples normalized to chondrite 

(Figure 3.7C) display a negative slope (enriched in LREE compared to HREE) and have a 

positive Eu anomaly with the exception of CL-07-01-127 and CL-07-05-499, which both 

display a negative Eu anomaly. With the exception of CL-07-05-499, fluid and melt 

inclusion bearing samples are much more enriched in LREE over HREE compared to the 

unaltered fine-grained gabbros (Figure 3.7C).  
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3.3.4 Fluid and melt inclusion descriptions 

Two varieties of primary melt and fluid inclusions were observed; type P1) 

silicate melt inclusions (SMI) and type P2) polyphase brine-carbonic fluid inclusions. As 

well, four varieties of secondary melt and fluid inclusions were observed: type S1) 

polyphase (i.e., containing > two phase at room temperature) CO2-dominant carbonic 

fluid inclusions, type S2) polyphase CH4-dominant carbonic-brine fluid inclusions, type 

S3) polyphase mixed (i.e., heterogeneously entrapped) brine-carbonic fluid inclusions, 

and type S4) mixed silicate-sulphide melt inclusions. Inclusions were grouped using the 

fluid inclusion assemblage (FIA) method, whereby single FIA represent groups of 

temporally coeval inclusions (i.e., trapped at the same time) present in clusters, along 

healed fractures, or along grain boundaries.  

3.3.4.1 Type P1, SMI 

Type P1 inclusions occur as SMI assemblages consisting of two to four inclusions 

and are hosted in cumulus apatite in a medium-grained gabbro (CL-07-01-29.1; 

petrography described above) where they occur either parallel to the elongation axis or at 

the center of an individual apatite grain (i.e., in an inclusion rich zone), providing strong 

evidence for a primary origin (Figure 3.2 A-C). Type P1 inclusions range in size from < 8 

µm up to 100 µm and vary in shape from elliptical to spherical (Figure 3.2 D-F). At room 

temperature (24°C), type P1 inclusions do not contain a vapor bubble and all type P1 

inclusions observed appear to contain multiple crystalline phases. Typically, type P1 

inclusions consist of variable proportions of light to medium brown and clear phases with 

rare opaque grains, indicating the melt has crystallized after entrapment (Figure 3.2 D-F). 

An SEM-EDS map showing major element compositional variations of the inclusion in 
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Figure 3.2 D,E is shown in Figure 3.8 and shows the variation in element X-ray 

intensities in the inclusion. Examining exposed unhomogenized type P1 inclusions by 

SEM-EDS, numerous crystalline phases were identified in the melt inclusions based on 

SEM-EDS analyses: plagioclase (Ab93-98), K-feldspar, clinopyroxene (var. augite; 

XMg=49), amphibole (var. ferrokaersutite?), biotite, magnetite, ilmenite, and zircon 

(Figure 3.2 D,E).  

3.3.4.2 Type P2, polyphase brine-carbonic fluid inclusions 

 Type P2 fluid inclusions occur throughout coarse-grained apatite in mafic 

pegmatites, where they are parallel to the elongation axis of apatite, again suggesting that 

they are primary in origin (Figure 3.9 A, B). Inclusions are up to 20 µm, but are very thin 

and tubular in shape making it difficult to identify liquid and vapor phases, phase 

proportions, and if solids are present within the inclusions. At room temperature (24°C) 

P2 inclusion trails rarely contain halite daughter minerals (Figure 3.9C) and these trails 

have VCO2 vol % ranging from 25 to 45. More commonly P2 inclusions do not contain 

daughter minerals and consist of a liquid aqueous phase (Laq) and a liquid carbonic phase 

(LCO2) or a vapor carbonic phase (VCO2) with VCO2 vol % between 45 and 70 (Figure 3.9 

D-G).  

3.3.4.3 Type S1, polyphase CO2-dominant carbonic fluid inclusions 

Type S1 fluid inclusions occur as secondary trails in apatite where they occur in 

various orientations throughout their host grain (e.g., parallel fractures, crosscutting 

fractures) (Figure 3.9 H). Inclusions consist of LCO2, VCO2, and occasionally a solid phase 

at room temperature (24°C). Inclusions show highly variable VCO2 vol %, ranging from 

40 up to 95, but ratios are relatively similar within a single FIA (±15 vol %) with rare 
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Figure 3.8: SEM-EDS element map of exposed unhomogenized silicate melt inclusion in 

CL-07-01-29.1 showing relative intensity of X-rays. A) BSE image of exposed melt 

inclusions. Amp = amphibole; Ap = apatite; Aug = augite; Ilm = ilmenite; Kfs = K-

feldspar; Plag = plagioclase; Zrc = zircon, B) Kα intensity of Si, C) Kα intensity of Fe, D) 

Kα intensity of Al, E) Kα intensity of Mg, F) Kα intensity of Ti, G) Kα  intensity of K, H) 

Kα  intensity of Na. Note the variation in Mg# of augite and the difference in Mg Kα.  
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Figure 3.9: Primary and secondary type P2 and S1 fluid inclusions hosted in apatite. All 

scale bars in the figure are 5 µm unless otherwise indicated. All fluid inclusions images 

taken at room temperature (24°C). A-B) Fluid inclusion microphotographs of primary 

fluid inclusions hosted in apatite. C) Primary inclusions containing rare halite daughter 

mineral. Note the variation in vapor bubble proportions between inclusions. D-G) 

Primary inclusions showing variable V:L ratios. H) Trail of secondary type S1 carbonic 

fluid inclusions. I-J) Note the variation in V:L ratios between secondary type S1 carbonic 

fluid inclusions. Laq = liquid aqueous phase; LCO2 = liquid carbonic phase; VCO2 = vapor 

carbonic phase; H = halite.   
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 exceptions with variations of VCO2 vol %, up to 30 vol % (Figure 3.9 I, J). Type S1 

inclusions typically display negative crystal shape, have spherical to tabular 

morphologies, and range in size from 8-40 µm (~15 µm). Small (3-8 µm) birefringent 

calcite crystals are rarely present in type S1 inclusions and have variable phase 

proportions within a single FIA, suggesting accidental entrapment. 

3.3.4.4 Type S2, polyphase CH4-dominant carbonic-brine fluid inclusions 

 Type S3 fluid inclusions occur as secondary trails in apatite where they generally 

occur parallel to fractures. Inclusions consist of a liquid CH4-dominant phase (LCH4), and 

Laq with solids at room temperature (24°C). Inclusions show variable VCO2 vol % within a 

given assemblage ranging from 10 to 100 (Figure 3.10). Type S3 inclusions typically 

display negative crystal shape, have spherical to tabular morphologies, and range in size 

from 8-20 µm (~12 µm). Small (2-10 µm) birefringent calcite crystals are commonly 

present in type S2 inclusions and have variable phase proportions within a single FIA, 

suggesting accidental entrapment (Figure 3.10). 

3.3.4.5 Type S3, polyphase mixed brine-carbonic fluid inclusions 

Type S3 fluid inclusions occur in secondary trails (i.e., healed fractures) in apatite 

where they generally parallel open fractures and occur in various trail orientations 

throughout the host grains (Figure 3.11 A,B). Inclusions contain a LCO2, Laq with solids 

and rarely a VCO2 at room temperature (24°C). Inclusions show variable VCO2 vol % 

within a single assemblage (35-70) and overall VCO2 vol % of type S3 inclusions range 

from 15 to 80 (Figure 3.11 A-J). Type S3 inclusions have sub-spherical to tabular 

morphologies, and range in size from 4-25 µm (~12 µm). Large birefringent calcite 

crystals (2-12 µm) are the most common solid phases present (Figure 3.12A) and display 
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Figure 3.10: Representative FIA of S2-S3CH4 inclusions with CO2:CH4 proportions 

determined by Raman spectroscopy. All carbonic phases were homogenous at room 

temperature (24°C) and therefore CO2:CH4 proportions are determined for the bulk 

carbonic phase. Note the various V:L ratios and variations in calcite crystal sizes. As 

discussed in the results section for S2 inclusions, Raman spectroscopy was conducted on 

these inclusions that showed ThCH4 >-82.3°C, but no CO2 was detected, indicating other 

dissolved species are present but due to the fluorescent nature of the apatite Raman 

spectra, any other volatile species could not be identified. Laq = liquid aqueous phase; 

LCH4 = liquid CH4-rich carbonic phase; Cal = calcite.  
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Figure 3.11 (previous page): Photomicrographs of type S3 fluid inclusions hosted in 

apatite. All scale bars in the figure are 5 µm. All fluid inclusions images taken at room 

temperature (24°C). A-B) Fluid inclusion photomicrograph (PPL) and interpretive line 

map showing distribution of type S3 inclusions in apatite. Note the highly variable V:L 

ratios present in this assemblage as well as the highly variable calcite phase proportions 

between fluid inclusions. C-F) Type S3 fluid inclusions showing various V:L ratios and 

various sizes of accidentally entrapped calcite crystals. G) Fluid inclusion trail of S3 

inclusions showing variable V:L ratios and various sizes of accidentally entrapped calcite. 

H) Rare S3 inclusions showing LCO2+VCO2 and no accidentally entrapped calcite. I) Type 

S3 inclusion coexisting in the same FIA with a type S1 fluid inclusion. J) Fluid inclusion 

trail of S3 inclusions showing variable V:L ratios and various sizes of accidentally 

entrapped calcite. Laq = liquid aqueous phase; LCO2 = liquid carbonic phase; VCO2 = vapor 

carbonic phase; Cal = calcite. 
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Figure 3.12: Raman spectroscopy analysis of an S3 fluid inclusion. Spot analysis for 

each spectrum is indicated by the dot in the fluid inclusion image. A) Raman spectra of an 

accidentally trapped calcite grain in the inclusion. B) Representative apatite analysis by 

Raman. C) Raman spectra for the aqueous phase in a type S3 inclusion. Note in 

comparison to B, the overlap of the H2O spectral range (3000-3600 cm
-1

) with the apatite 

host. D) Carbonic phase in a type S3 inclusion composed primarily of CO2 (peaks at 1285 

and 1388 cm
-1

) and minor CH4 (peak at 2917cm
-1

).  



166 

 

variable phase ratios within inclusions of a given assemblage, suggesting they were 

accidentally trapped (i.e., a saturated phase at time of entrapment). As well, calcite 

commonly occurs as solid inclusions within the host apatite consistent with accidental 

entrapment. 

Thick sections of CL-07-01-127 were examined by SEM-EDS to identify solid 

phases that occur within type S1 and S3 fluid inclusions by examining exposed fluid 

inclusions. Up to 9 solid phases were observed in exposed fluid inclusions determined by 

SEM-EDS and include: magnetite, monazite, arsenopyrite, an unidentified Ta-bearing 

mineral, unidentified W-Si-bearing mineral, and an unidentified Si-Fe-Mg-Ti-Al phase 

(silicate melt?). One grain of each chalcopyrite and sphalerite were found within separate 

inclusions. Tantalum and W-Si bearing phases are typically found in association with the 

Si-Fe-Mg-Ti-Al phase and calcite (Figure 3.13 A, B). Monazite was never found alone in 

fluid inclusions, but with calcite, magnetite, and/or the Si-Fe-Mg phase and was present 

in 78 of several hundred inclusions analyzed (Table 3.5; Figure 3.13 C,D). Magnetite was 

observed in 25 inclusions and the Si-Fe-Mg phase was present in 99 of the several 

hundred inclusions analyzed (Table 3.5). Along with these phases identified within fluid 

inclusions, magnetite and monazite were also identified as solid inclusions within the host 

apatite. All of these solids are considered to be accidentally trapped phases because the 

distribution of each type of solid in a given FIA is inconsistent and the volumetric 

proportion of each solid in an inclusion is highly variable. Summary of solid phases 

identified in exposed fluid inclusions is presented in Table 3.5. 

Type S3 inclusions coexist with Type S1 inclusions within a given FIA (Figure 

3.11I), however it is difficult to tell if the inclusions are truly Type S1 or if they are Type 
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Figure 3.13: SEM-EDS X-ray intensity element maps of exposed type S3 fluid 

inclusions. All scale bars are 5 µm A) Note the elevated W in the centre of the inclusion 

as well as the elevated Si and Fe throughout (melt?). B) Note the elevated W occurring in 

the centre of the inclusion and the elevated S on the bottom of the inclusion. C) Note the 

presence of elevated Fe and S in the top right of the inclusion, Ce and Nd (not shown) 

appear on the right side of the inclusion (monazite). Calcite comprises the majority of the 

volume of this particular inclusion and note the elevated Fe, Si, Ti, and Al present in the 

lower left portion of the inclusion (melt?). D) Large grain of monazite and numerous 

grains of magnetite are present in the inclusion. Cal = calcite; Fe-silicate = Si-Fe-Mg-Ti-

Al phase; Mgt = magnetite; Mnz = monazite; Fe-S = Fe-sulphide (pyrite or pyrrhotite); 

W-Si = W-Si phase. 
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S3 with an extremely large vapor phase making the aqueous phase difficult to observe. 

Raman spectroscopy was attempted to determine if an aqueous phase was present in S1 

inclusions, but due to the fluorescent nature of the host apatite, the spectral range at which 

H2O characteristic Raman peaks occur is obstructed by the apatite fluorescence and 

therefore could not determine if an aquoues phase is present in S1 inclusions (Figure 3.13 

B, C). Type 3 inclusions also coexist with type S2 inclusions within a given FIA (Figure 

3.10). The highly variable carbonic:brine ratios present in type S3 inclusions, combined 

with the occurrence of S1 or S2 inclusions occurring within a single assemblage with type 

S3 inclusions, would suggest heterogeneous entrapment of two immiscible fluids. From 

here forward, type S3 inclusions coexisting with S2 inclusions will be referred to as type 

S3CH4. 

3.3.4.6 Type S4, mixed silicate-sulphide melt inclusions 

Secondary trails composed of mixed silicate and sulphide melt inclusions occur in 

apatite and are subspherical and tube shaped (Figure 2.5). Sulphide and silicate inclusions 

range in size from 5 to 25 µm, with an average size of 10 µm and create an interconnected 

network of tube shaped mixed silicate-sulphide melt inclusions. Single inclusions within a 

given trail can be composed of a silicate glass and/or sulphide melt. In instances where 

the silicate and sulphide melt occur together as a single inclusion, the silicate glass fills 

the inclusion in between two distinct sulphide melt inclusions (Figure 2.5). Elemental 

mapping by SEM-EDS of a mixed silicate-sulphide inclusion shows that the silicate glass 

in between two distinct sulphide inclusions contains up to 26 wt % SiO2 and 16 wt % 

MgO (Figure 2.5). Coeval entrapment of the silicate and sulphide melt is indicated by the 

variable proportions of each phase within individual inclusions from a single trail and the 
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interconnected, tubular shapes and textures of inclusions and trails is representative of a 

liquid being entrapped rather than a solid. Petrographically, pyrrhotite is the dominant 

phase observed in the sulphide inclusions with rare chalcopyrite and no distinct mineral 

phases could be identified in the silicate inclusions. These mixed trails of Type S3 

inclusions are contained within a single apatite grain and never crosscut grain boundaries. 

For a detailed characterization of the sulphide melt inclusions, see Chapter 2. 

Microthermometry was not conducted on these inclusions.  

3.3.5 Microthermometry and Raman spectroscopy 

3.3.5.1 Type P1, silicate melt inclusions 

 Microthermometry was conducted on 18 type P1 SMI from CL-07-01-29.1. These 

inclusions did not contain vapor bubbles at room temperature (24°C) and are not glassy. 

First melting of solids in SMI was reliably observed in 12 inclusions occurring between 

557° and 701°C (652°C ± 40; n=12) and first melting of the SMI is an approximation of 

final crystallization temperature of the melt. The first appearance of a vapor bubble 

during heating was obtained in only 3 inclusions and occurred between 988° and 1171°C. 

The difficulty in reliably obtaining first melting and vapor bubble appearance in SMI 

relates to internal oxidation, which occurs at temperatures as low as 630°C during heating 

despite the attempt to depress this by the use of Ar externally. The inclusions would 

become very dark on the edges or throughout the entire inclusion, obscuring the 

transparency of the SMI. The minimum liquidus temperature (Tm
liquidus

) is determined 

when the solid phases present in a SMI have completely melted; this was observed in 11 

inclusions. Complete melting of solids in 10 inclusions occurred between 1119° and 

1231°C (1164°C ± 35; n=10) with one outlier of 1015°C. Five SMI decrepitated between 
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1000° and 1175°C before Tm
liquidus

 was observed, and 2 of these inclusion decrepitated in 

the same range as Tm
liquidus 

was observed, indicated these inclusions were likely close to 

their Tm
liquidus

. Two of the inclusions completely oxidized and did not provide any reliable 

microthermometric measurements. Figure 3.14 shows the progressive melt changes with 

increasing temperature during microthermometry. Table 3.6 presents a summary of melt 

inclusion microthermometry results.  

 3.3.5.2 Type P2, polyphase brine-carbonic fluid inclusions 

 Owing to the small size and thin tubular shape of P2 inclusions and the rarity of 

inclusions large enough to observe microthermometric changes in, on, only a few 

measurements were obtained. P2 inclusions show melting of the carbonic phase (TmCO2) 

between -57.3° and -57.1°C. Homogenization of the carbonic phase (ThCO2) was observed 

in two inclusions and occurred at 21.3°C to the liquid state (LCO2+VCO2 → LCO2) and at 

25.5°C to the vapor state (LCO2+VCO2 → VCO2), respectively. Clathrate melting (TmCLA) 

was confidently identified in only one P2 inclusion, at -16.9°C equating to a salinity of 

28.3 wt % NaCl. In one inclusion, a solid appeared to form during cooling and this solid 

did not melt until 17°C. This solid may be antarcticite, if so then the melting of it at 

~17°C would equate to aqueous phase salinity of approximately 40 wt % CaCl2 (Oakes et 

al., 1990). Fluid inclusion microthermometry data is presented in Table 3.7. 

3.3.5.3 Type S1, polyphase CO2-dominant carbonic fluid inclusions 

Type S1 inclusions show TmCO2 between -58.8° and -56.7°C (Figure 3.15A) and 

ThCO2 between 26.9° to 30.9°C (Figure 3.15B). The depression of TmCO2 below -56.6°C 

(pure CO2) indicates that additional volatile species (e.g., CH4) are present in the carbonic 
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Figure 3.14: Photomicrographs of silicate melt inclusion during microthermometry 

heating from 26°C to 1231°C. A) Room temperature image of SMI. B) At 300°C no 

melting has occurred yet, but the inclusion appearance has changed and phases have 

shifted color. C) Melt inclusions have already begun to melt at 819°C. D) Increased 

presence of melt inside SMI. E) Vapor bubbles became visible at ~1171°C and in the 

inclusion in the top left. F) Increased melt proportions in one SMI and the vapor bubble in 

the other expanded. G) Vapor bubbles increase in size in one SMI and the melt on the 

right hand side of the image has decrepitated. H) Slightly above 1230°C all mineral 

phases in the inclusion in the top left were completely melted and the vapor bubble 

disappeared at ~1265°C.    



174 

 

 



175 

 



176 

 

 



177 

 

 
Figure 3.15: Box-whisker plots for microthermometric data type S1 carbonic fluid 

inclusion assemblages. Data for single assemblages (letters along x-axis) and individual 

inclusions (solid bars, labeled along x-axis as “SI”) are shown. A) Variation in carbonic 

phase melting temperature (TmCO2) for individual assemblages and inclusions. Note that 

measurements of fluid inclusion TmCO2 are slightly depressed below that for pure CO2 (-

56.6°C); see text for explanation. B) Range in carbonic phase homogenization 

temperature for individual assemblages and inclusions.  



178 

 

phase. The presence of CH4 was confirmed by Raman spectroscopy (up to 5 % CH4) 

(Table 3.8). Homogenization of the carbonic phase mainly occurred to vapor (LCO2+VCO2 

→ VCO2) with only 2 inclusions homogenizing to liquid (LCO2+VCO2 → LCO2). Estimated 

densities of the VCO2 phase determined by Raman (CO2 fermi diad spacing) range from 

0.33 to 0.69 g/cm
3
, based on the equation of Rosso and Bodnar (1995). The bulk densities 

of type S1 inclusions range from 0.706 to 0.731 g/cm
3
, were determined using the 

program BULK and expressions from Bowers and Helgeson (1983) and Bakker (1999). 

3.3.5.4 Type S2, polyphase CH4-dominant carbonic-brine fluid inclusions 

Homogenization of the CH4-dominant phase (ThCH4) in type S2 inclusions occurs 

between -96.1° and -68.0°C. Homogenization of the methane phase occurred to the liquid 

state (LCH4+VCH4 → LCH4). Values of ThCH4 occurring above the CH4 critical point (-

82.3°C) indicates that there are minor amounts of other dissolved volatiles (e.g., CO2) 

present within bulk carbonic fluid. However, Raman spectroscopy was conducted on 

inclusions that showed ThCH4 >-82.3°C, and no CO2 was detected, indicating other 

dissolved species are present but due to the fluorescent nature of the apatite Raman 

spectra, any other volatile species could not be identified. Clathrate melting was identified 

in only two S2 inclusions at -13.3° and 2.0°C, equating to salinities of 26.2 and 13.2 wt % 

NaCl equiv.  

3.3.5.5 Type S3, polyphase mixed brine-carbonic fluid inclusions 

 Type S3 inclusions show TmCO2 between -64.9° and -56.6°C (Figure 3.16A) and 

ThCO2 occurs between -7.9° and 30.6°C (Figure 3.16B). As with type S1 inclusions 

TmCO2 is typically below -56.6°C and the presence of CH4 was confirmed by Raman 
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Figure 3.16 (previous page): Box-whisker plots for microthermometric data for type S3 

brine-carbonic fluid inclusion assemblages. Data for single assemblages (letters along x-

axis) and individual inclusions (solid bars, labeled along x-axis as “SI”) are shown. A) 

Variation in CO2 melting temperature (TmCO2) for individual assemblages and inclusions. 

Note that measurements of fluid inclusion TmCO2 are slightly depressed below that for 

pure CO2 (-56.6°C); see text for explanation. B) Range in CO2 homogenization 

temperature for individual assemblages and inclusions. C) Range in salinity (wt % NaCl 

equiv.) for the aqueous component of individual assemblages and inclusions determined 

by clathrate melting. 
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spectroscopy, with up to 8 % CH4 (Table 3.8; Figure 3.12D). Homogenization of the 

carbonic phase primarily occurred to the liquid state (LCO2+VCO2 → LCO2), while 

homogenization to the vapor state was rarely observed (LCO2+VCO2 → VCO2). First ice 

melting in type S3 inclusions was noted to occur at approximately -31°C, indicating other 

dissolved cations besides Na
+

 are present within the brine portion of the inclusion. 

Clathrate melting (TmCLA) occurred between -11.3° and -2.1°C, equating to salinities 

between 17.9 and 25.1 wt % NaCl equiv. (Figure 3.16C). Estimated densities of the VCO2 

phase based on the CO2 fermi diad spacing determined by Raman spectroscopy conducted 

on the homogenized VCO2 phase in S3 inclusions, range from 0.06 to 0.89 g/cm
3 

(avg 0.47 

± 0.22, n=28).  

3.3.5.6 Type S3CH4, polyphase mixed brine-carbonic fluid inclusions 

Type S3CH4 inclusions show TmCO2 between -65.6° and -57.8°C and ThCO2 

between 4.1° and 25.5°C. As with type S3 inclusions TmCO2 is typically below -56.6°C 

and the presence of CH4 was confirmed by Raman spectroscopy, with up to 51 % CH4 

present in the carbonic phase. Homogenization of the carbonic phase primarily occurred 

to the liquid state (LCO2+VCO2 → LCO2), while homogenization to the vapor state was 

rarely observed (LCO2+VCO2 → VCO2). First ice melting in type S3CH4 inclusions occurred 

at approximately -29°C, indicating other dissolved cations besides Na
+

 are present within 

the brine portion of the inclusion. Clathrate melting (TmCLA) occurred between 0.3° and 

4.7°C, equating to salinities between 9.4 and 15.3 wt % NaCl equiv. Estimated densities 

of the VCO2 phase based on the CO2 fermi diad spacing determined by Raman range from 

0.17 to 0.74 g/cm
3
 (avg. 0.40 ± 0.17, n=17). 
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3.3.6 Gas chromatography 

 Apatite from CL-07-01-127 was separated and crushed to determine bulk fluid 

hydrocarbon content by gas chromatography (GC). This method takes into account all 

fluid inclusion generations representing a bulk analysis of volatile species present in fluid 

inclusions. A wide variety of hydrocarbons were detected in the analysis and in summary, 

the hydrocarbon content of the sample contains up to 79.59 mol % C1 hydrocarbons 

(CH4), 15.69 mol % C2 hydrocarbons, 2.56 mol % C3 hydrocarbons, 1.21 mol % C4 

hydrocarbons, 0.60 mol % C5 hydrocarbons, and 0.35 mol % C6 hydrocarbons (Figure 

3.17).  

3.3.7 Silicate melt inclusion chemistry 

 Due to challenges associated with homogenizing type P1 inclusions and their 

rarity, the major element compositions were not determined on homogenous (i.e., glassy) 

inclusions. However, major element compositions of unhomogenized P1 inclusions were 

estimated using a defined area analysis of exposed P1 inclusions by SEM-EDS. Results of 

SEM-EDS defined area analyses are presented in Table 3.9. Based on the abundances of 

P in the major element data, the host contribution (contamination) associated with this 

method is no more than 2 wt % of the total analyzed elements. Defined area analyses 

gave ranges of 49.7-53.7 wt % SiO2, 1.4-7.6 wt % Na2O, 0.9-5.4 wt % K2O, 1.95-4.96 wt 

% MgO, and 14.6-17.0 wt % FeO. Melt inclusion compositions determined by this 

method range from gabbroic to syeno-dioritic (Figure 3.18A). Using trace element 

discrimination diagrams SMI compositions primarily plot in the arc-basalt compositional 

field. Unaltered fine-grained gabbros plot in the E-MORB field and the chilled margin 
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Figure 3.17: Saturated hydrocarbon abundances versus carbon number for the bulk fluid 

in apatite from two separate aliquots from mafic pegmatite CL-07-01-127. Note the 

relatively flat slope with increasing carbon number and the CLG data plot slightly above 

the peralkaline field and in the thermogenic/biogenic environments. The 

thermogenic/biogenic field is compiled data from the China oil fields (Chen et al., 2000), 

the Ula Formation in Norway (Potter and Konnerup-Madsen, 2003, and references 

therein), and the Green Tuff Basin in Japan (Sakata et al., 1997). Peralkaline field is 

compiled data from Strange Lake (Salvi and Williams-Jones, 1997), Lovozero (Potter et 

al., 2004), Ilimaussaq (Petersilie and Sørensen, 1970, Konnerup-Madsen et al., 1979, and 

Konnerup-Madsen and Rose-Hansen, 1982).  
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Figure 3.18: Major and trace element discrimination diagrams for silicate melt 

inclusions. A) Total alkalis vs. silica diagram for plutonic rocks. SEM-EDS defined area 

analyses data and LA-ICP-MS data are both plotted and both methods show the melt 

composition ranging from gabbroic to syeno-dioritic. B) Ternary plot of Th-Hf/3-Nb/16 

of silicate melt inclusions, unaltered fine-grained gabbros, gabbro hosting silicate melt 

inclusions, and the chilled margin of the CLG (Mumford, 2013, unpublished PhD thesis). 

Note the silicate melt inclusions plot primarily in the arc-basalt field, while the fine-

grained gabbros plot in the E-MORB field. C) Ternary plot of Th-Zr/117-Nb/16 of 

silicate melt inclusions, unaltered fine-grained gabbros, gabbro hosting silicate melt 

inclusions, and the chilled margin of the CLG (Mumford, 2013, unpublished PhD thesis). 

Note the silicate melt inclusions plot primarily in the arc-basalt field, while the fine-

grained gabbros plot in the E-MORB field. D) Plot of Nb/Th vs. Zr/Nb of of silicate melt 

inclusions, unaltered fine-grained gabbros, gabbro hosting silicate melt inclusions, and 

the chilled margin of the CLG (Mumford, 2013, unpublished PhD thesis). Note how 

silicate melts and the chilled margin plot near the arc field, while the gabbros have high 

Nb/Th ratios and do not plot in any field. 
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 sample collected by Mumford (2013, unpublished PhD thesis) plots in the oceanic island 

basalt field (Figure 3.18B,C,D). 

 Major and trace elements of SMI were also determined simultaneously by LA-

ICP-MS. An example LA-ICP-MS signal of a P1 inclusion is shown in Figure 3.19; an 

increase count rates in major and trace elements (e.g., Si, K, Al, Na, Fe, Mg) relative to 

the apatite host indicate the opening of the inclusion (Figure 3.19). Trace elements in type 

P1 inclusions determined by LA-ICP-MS show enrichments in B, Rb, Zr, Nb, Sn, Cs, Ba 

Hf, Ta, Th, and U when compared to MORB, while V, Cr, Ni, and Cu are all below 

detection limits and have a maximum melt:MORB ratio of ~1 when using their detection 

limits as a maximum value (Figure 3.20A). Cobalt is above detection limits in the 

inclusions and has concentrations between 14 and 66 ppm; Co has a melt:MORB ratio of 

~1 (Figure 3.20A). Comparing the compositions to primitive mantle, a similar pattern to 

the comparison to MORB is observed. Metals are typically below detection limits or have 

a ratio around 1 while HFSE are highly enriched in the inclusions (Figure 3.20B). 

Complete LA-ICP-MS results of type P1 inclusions are presented in Table 3.10. 

Comparing major element compositions by SEM-EDS defined area analyses and LA-

ICP-MS, FeO and MgO are higher in LA-ICP-MS results, otherwise all other major 

elements correlate well between the two techniques.  

3.3.8 LA-ICP-MS of fluid inclusions 

 Trace element concentrations of secondary type S3 inclusions were obtained by 

LA-ICP-MS for several FIAs in mafic pegmatites from the CLG. As the laser intersected 

the inclusions, increases in count rates occurred commonly for measured isotopes of Na, 

K, Fe, Si, Mg, Al, Ti, V, Mn, Zr, W, Nb, Ta, Cs, and Hf (Figure 3.21). Cobalt, Ni, and Cu 
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Figure 3.19: Representative LA-ICP-MS signal (signal vs. time) showing the ablation of 

a silicate melt inclusion in apatite. A gas blank is collected for ~35 s and then the laser is 

turned on. The apatite host is collected for ~ 6 s prior to the melt inclusion being 

encountered.  
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Figure 3.20 (previous page): Trace element concentrations of silicate melt inclusion 

compositions determined by LA-ICP-MS. A) Silicate melt trace element data normalized 

to MORB. Arrows pointing down in the symbols indicate that element was below 

detection in the silicate melt and therefore it is a maximum ratio plotted. Note that the 

metals (V, Cr, Ni, Cu) are all below detection limits in the silicate melt and their 

respective ratios are all depleted compared MORB and the detection limits for these 

elements were used to plot on the diagram. The high concentrations of HFSE in the melt 

inclusions relative to MORB, likely indicate an evolved melt was present in the CLG. B) 

Silicate melt trace element data normalized to primitive mantle. Arrows pointing down in 

the symbols indicate that element was below detection limits in the silicate melt and 

therefore it is a maximum ratio plotted. Maximum ratios for metals are typically below 

detection limits (close to 1), while HFSE are at least an order of magnitude enriched in 

the melts compared to primitive mantle.   
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Figure 3.21: Representative LA-ICP-MS signal (signal vs. time) showing the ablation of 

fluid inclusions in apatite (inclusion 127-3-7-3). Calcium is shown to represent the apatite 

host. A gas blank is collected for ~ 60 s at which point the laser is turned on and the host 

apatite is collected for ~ 3 s before the fluid inclusion is encountered. Shortly after, the 

silicate melt in the inclusion is encountered (increased count rates for Si, Fe,Zr, W, Ta, 

Hf). 
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were also observed in the inclusions but rarely. Table 3.11 reports fluid inclusion 

compositional data for elements detected in inclusions as ratios relative to Na.  

 Semi-quantitative trace element concentrations of Cu and Co in type S3 fluid 

inclusions show a very weak positive trend plotted against Si (as a proxy for silicate melt) 

and plot in clusters when compared against Na, indicting the melt is the primary control 

on Cu and Co (Figure 22A,B). No correlations are observed for Ni (Figure 3.22A,B). 

High field strength elements (HFSE) also show a very weak correlation when plotted 

against Si, suggesting their concentrations are a function of the amount of melt trapped in 

the fluid inclusions and show no correlation to Na (Figure 22C,D). Ratios of Zr:Hf in the 

S3 inclusions vary between 5.9 and 168 (n=17) and Nb:Ta ratios range from 0.05 to 10.6 

(n=8).  

3.4 Discussion 

3.4.1 Comparison to other mafic-ultramafic intrusions and the Blatchford Lake Intrusive 

Suite 

 Fluid inclusions present within the CLG share two common characteristics with 

inclusions described in other layered mafic-ultramafic intrusions (Table 3.1): i) they occur 

in abundance in evolved pegmatitic phases and within interstitial quartz and/or apatite as 

primary and secondary inclusions, indicating that they are present at a late magmatic 

stage but also persist to post-cumulus conditions, and ii) fluid inclusion assemblages 

preserve the trapping of immiscible carbonic-brine fluids. In comparison to the Bushveld 

and Stillwater complexes, there is an absence of an early high hydrosaline melt (> 80 wt 

% NaCl; Ballhaus and Stumpfl, 1986; Hanley et al., 2008) in the CLG. Fluid inclusions 

described in this study have very similar texture and composition to inclusions described 
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Figure 3.22: Plots of bulk trace element concentrations in type S3 fluid inclusions. A) Si 

vs. Co, Ni, and Cu. Note how Co and Cu have a slightly positive correlation with Si, 

while Ni there isno correlation. B) Na vs. Co, Ni, and Cu. Note how there are no 

correlations, indicating the brine does not influence these metals. C) Si vs. HFSE and Cs. 

Note the slightly positive correlations for all HFSE. There is no correlation for Cs. D) Si 

vs. HFSE and Cs. Note how there are no correlations, indicating the brine does not 

influence these metals. Error associated with each data point is approximately the size of 

the symbol for each plotted data point.  
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 in the Bushveld, Stillwater, and Duluth Complexes where there is evidence for the 

trapping of two immiscible fluid phases, an aqueous brine end-member and a carbonic 

fluid end-member (Ballhaus and Stumpfl, 1986; Hanley et al., 2008; Gál et al., 2013). In 

the Stillwater Complex, Hanley et al. (2008) attributed this association to brine and 

carbonic fluid being sourced from different interstitial silicate liquids at different depths 

in the intrusion. No primary carbonic fluid inclusions were identified in the CLG as they 

were in the Lac des Iles and Duluth complexes (Hanley and Gladney, 2011; Gál et al., 

2013) but secondary carbonic inclusions are abundant in the CLG. The similarities of 

volatile inclusion characteristics between large PGE sulphide mineralized layered 

intrusions is significant because it demonstrates that the presence of these brine-carbonic 

fluids in not associated with primary metal melt enrichment. 

A fluid inclusion study of the T Zone that is hosted in the Thor Lake Syenite in 

the eastern lobe of the BLIS was conducted by Feng (2014, unpublished PhD thesis). The 

inclusions observed in that study were primarily aqueous inclusions with minor amounts 

of CO2 and CH4 detected by Raman spectroscopy, and showing a wide range in salinity 

(2-27 wt % NaCl equiv.). The general characteristics of these fluids are different from 

those of the CLG as the fluids observed in the CLG are much richer in carbonic phases, 

though they do have a similar range in salinity (9-28 wt % NaCl equiv.). Some trace 

elements detected (at ppm levels) in fluid inclusions from the T Zone are also detected in 

fluid inclusions from the CLG (K, Ti, Fe, Nb, Ta, Zr) in this study.  

3.4.2 Trapping conditions for SMI and parental melt source 

 Silicate melt inclusions (P1) were trapped relatively early in the crystallization 

sequence as they are preserved in early cumulus apatite in the CLG and allow temperature 
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constraints for crystallization of the system to be inferred. Three lines of evidence point 

towards these inclusions being primary silicate melts: i) inclusions show similar bulk 

compositions, ii) the inclusions are mineralogically different from their host rocks 

(plagioclase: An93-98 in SMI vs. An37-40 in gabbro), and iii) some minerals present in the 

SMI are different then the minerals present in the host rock (i.e., zircon, K-feldspar). 

Based on SMI microthermometry, the Tm
liquidus 

of the system is approximately 1164 ± 

35°C based on the final melting temperature of solids in P1 inclusions hosted in early 

primocryst apatite. The liquidus temperature can also be approximated using the SMI 

major element chemistry and entering the composition into the program PELE (Boudreau, 

1999). The average major element composition determined by defined area analyses of 

exposed P1 inclusions by using SEM-EDS was used as the melt composition for this 

liquidus determination instead of the LA-ICP-MS results because LA-ICP-MS analyses 

do not include Ca because it is present in the host (i.e., apatite). Output from PELE for the 

average melt inclusion composition assuming 0 wt % H2O and 0 wt % CO2, results in a 

liquidus temperature of 1179°C. This estimate is probably too high as some H2O and CO2 

would be present in the melt (indicated by the presence of amphibole; Figure 3.8), with 

MORB typically containing <1 wt % H2O (Sobolev and Chaussidon 1996; Fischer and 

Marty 2005; Wallace 2005) and <0.6 wt % CO2 (Fisher and Marty 2005). Various 

combinations of H2O and CO2 contents were input into PELE to calculate a more realistic 

liquidus temperature. For example, results from PELE with H2O contents of 1 wt % and 

CO2 of 0.6 wt %, gave a liquidus temperature of 1156°C. A liquidus range for the CLG 

SMI between 1156° and 1179°C determined by PELE is consistent with Tm
liquidus

 obtained 

by microthermometry (Figure 3.23).  
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Figure 3.23 (previous page): Estimation of pressure and temperature trapping conditions 

for silicate melt and fluid inclusions in the CLG. Area 1 represents the range of isochores 

calculated for the carbonic component of P2 inclusions. Area 2 represents the range of 

isochores calculated for S1 inclusions. Area 3 is the range of Tm
liquidus

 determined from 

microthermometry of P1 melt inclusions. Area 4 is the range of Tm
liquidus

 calculated using 

the program PELE and the major element chemistry of P1 inclusions with variations of 

H2O (0-1 wt %) and CO2 (0-0.6 wt %) contents. Area 5 is the range of P-T conditions for 

the formation of amphibole base on the Al- and Ti-in-hornblende thermobarometer of 

Ernst and Liu (1998). Area 6 is the calculated temperature of formation of amphibole 

based on the plagioclase-amphibole thermometer of Blundy and Holland (1990). Area 7 

is the calculated final temperature of equilibrium based on the apatite-biotite halogen 

exchange thermometer of Zhu and Sverjensky (1992). Line 8 is the solvus separating 1-

phase (1Φ) and 2-phase (2Φ) field for an aqueous fluid with a composition of 20 wt % 

NaCl equiv. and 20 mol % CO2 (Schmidt and Bodnar, 2000).  Area 9 is the calculated P-

T conditions of formation for the Hearne Channel granite (Mumford, 2013, unpublished 

PhD thesis). Area 10 is the calculated P-T conditions of formation for the Whiteman Lake 

quartz syenite (Mumford, 2013, unpublished PhD thesis). Area 11 is the P-T conditions of 

entrapment for the P1 melt inclusions, based on the Tm
liquidus

 and the pressures determined 

from the Al- and Ti-in-hornblende thermobarometer, resulting in P-T conditions of 1135° 

and 1200°C and 1.6 to 4.5 kbar. Area 12 is preliminary constraint of the P-T conditions of 

P2 fluid inclusion entrapment based on the isochore intersections with Tm
liquidus

 and the 

Al-in-hornblende thermometer resulting in P-T conditions of 910°-1200°C and 3.2-4.4 

kbar. Area 12 is the constraint on S1 and S3 fluid inclusion entrapment based on the 

intersection of S1 isochores with Tm
liquidus

 and the apatite-biotite thermometer, resulting in 

P-T conditions of 455° to 1200°C and 1.5 to 4.05 kbar. However, due to the difference in 

relative variability of S1 and S3 ThCO2 values it would suggest that the S1 isochores may 

not be applicable to the carbonic phase in S3 inclusions.  



199 

 

A rough constraint on the pressure of SMI entrapment can be approximated by the 

Al- and Ti-in-hornblende thermobarometer (Ernst and Liu, 1998; Figure 3.23). Titanium 

is accommodated increasingly in the amphibole structure as temperature increases but has 

a slightly negative correlation with increasing pressure. Aluminum content increases with 

increasing pressure (Ernst and Liu, 1998). Late cumulus amphibole phenocrysts in the 

CLG are Ti-rich (3.3-4.6 wt % TiO2) and relatively Al-rich (11.6-12.3 wt % Al2O3), 

equating to T-P conditions ranging from 925° to 1060°C and 1.6 to 4.5 kbar, respectively 

(Figure 3.23). The pressure range obtained by this thermobarometer is similar to other 

pressure constraints determined for lithologies in the western portion of the BLIS (Hearne 

Channel granite: 3.84-4.93 kbar; Whiteman Lake quartz syenite: 3.49-4.43 kbar; 

Mumford, 2013, unpublished PhD Thesis; Figure 3.23) but extends to lower pressures in 

the CLG. Using the pressure determined from the amphibole composition and the 

Tm
liquidus

 from microthermometry, entrapment of primary SMI is estimated between 1130° 

and 1200°C and 1.6 to 4.5 kbar (5.9-16.6 km depth; Figure 3.23; Table 3.12). However, 

caution should be taken with these pressure estimates because the amphibole analyzed is 

a late cumulus phase yielding lower temperatures (925°-1060°C) than the melt inclusions 

were likely trapped. Therefore the pressure at the time of amphibole crystallization may 

have been slightly different than at the time of melt entrapment.  

 Trace elements determined by LA-ICP-MS show that silicate melt inclusions in 

the CLG are enriched in HFSE and depleted in metals (Ni, Co, Cr, Cu; Figure 3.19A,B). 

The depletion in metals could be related either to i) S-saturation prior to the trapping of 

melt inclusions, leading to metal loss to a sulphide liquid, ii) the melt was derived from an 

initially metal-depleted, or iii) the melt was crustally contaminated. 
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Modelling presented in Chapter 2 shows that for the sulphide mineralization present in 

the CLG, an already metal-depleted silicate melt was likely responsible for forming the 

observed marginal mineralization. As explained in Chapter 2, if a small degree of partial 

melting of the mantle occurs, then not all of the sulphide in the mantle may be melted and 

dissolved into the silicate liquid, leaving the sulphide in the upper mantle along with the 

Ni, Cu, and PGE that reside in that sulphide (Li et al., 2001). The low degree of partial 

melt for the CLG fits with the proposed evolution of the Nechalacho Layered Suite (NLS) 

where high concentrations of incompatible elements in the NLS would imply that only a 

small degree of partial melting of an upwelled mantle occurred (Sheard et al., 2012). 

Mumford (2013, unpublished PhD thesis) also suggests that the CLG magma was likely 

sourced from metasomatism of a previously depleted mantle source based on the depleted 

Nd isotopic signature and the high enrichment of LILE and HFSE. As well, Mumford 

(2013, unpublished PhD thesis) states that the most likely lithology to contaminate the 

BLIS was the Morose Granite and possibly lower crustal rocks of similar composition to 

the Kam group of the Yellowknife Greenstone Belt. Therefore, the CLG magma was 

formed from low degrees of partial melting that was crustal contamination, causing the 

enrichment in HFSE and the relatively low concentrations of chalcophile metals in the 

SMI (Figure 3.19A,B).  

3.4.3 Trapping conditions for primary and secondary brine-carbonic fluid inclusion 

assemblages 

 Given that the apatite in mafic pegmatites is an early coarse-grained cumulate 

phase, P2 fluids are early with respect to pegmatite formation but are late with respect to 

the overall crystallization sequence of the intrusion. To constrain the trapping conditions 
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for immiscible fluids that are not trapped on a two-phase curve because of the variable 

V:L ratios of inclusions indicating they did not form by unmixing from an initial one-

phase fluid, the method of intersecting isochores can be used (Roedder and Bodnar, 

1980). This method involves calculating isochores for the end-member carbonic-aqueous 

fluids. Where the isochores intersect, the P-T conditions at which the carbonic-brine 

fluids were trapped can be estimated (Roedder and Bodnar, 1980). Type S3 fluid 

inclusions do not meet the criteria for using the method of intersecting isochores because 

only the carbonic end-member fluid (type S1 inclusions) is observed. Observation and 

microthermometric measurements of the corresponding brine end-member would be 

required to utilized the method of intersecting isochores. Type S3 inclusions cannot be 

used as the brine end-member since they are not close to suspected end-member 

composition (as defined by a solvus relationship in the brine-carbonic fluid system) 

because of their variable carbonic phase proportions. However, intersection of isochores 

for the carbonic end-member fluid isochores (S1 inclusions) with independent mineral 

thermometers give approximate P-T conditions for the trapping of the carbonic end-

member and by textural association, the mixed brine-carbonic assemblages. Type P2 

inclusions may also preserve the same immiscible brine-carbonic fluid assemblages based 

on the large variation in VCO2 vol %, (Figure 3.9D-G).  

 To calculate the isochores for the carbonic component of P2 inclusions and S1 

inclusions, equations of state from Bowers and Helgeson (1983) and Bakker (1999) were 

used, based on a fluid composition of 98 % CO2 and 2% CH4. Methane was identified in 

the S1 inclusions based on microthermometry and Raman spectroscopy (ave 2 % ± 0.01 

CH4; n=24). The same ratio of CO2:CH4 ratio is characteristic of the carbonic component 
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in type P2 inclusions based on similar TmCO2 values (-57.3° to -57.1°C). There may be a 

thin coating of an aqueous fluid on the inner inclusion wall of S1 inclusions that is not 

visually detectable but the apatite Raman peaks overlap with the peaks for H2O, making it 

impossible to confirm this. For S1 inclusions, theoretical densities were calculated for a 

CO2-CH4-H2O fluid with 93 % CO2, 2 % CH4, and 5 % H2O, in order to determine the 

impact a small amount of H2O would have on the inclusion density. The calculated 

densities were comparable to densities calculated for a H2O-free, CO2-CH4 fluid (0.706-

0.731 g/cc), therefore water has a negligible effect and inclusions were modeled in the 

CO2-CH4 system.  

 The intersection of the carbonic phase isochores in P2 inclusions with the Tm
liquidus

 

of P1 inclusions constrains the maximum P-T conditions of the entrapment of P2 

inclusions, corresponding to 4.4 kbar and 1200°C (Figure 3.23). This would represent the 

maximum P-T conditions for P2 inclusions because the Tm
liquidus

 for an overall melt of the 

CLG is likely not representative for the mafic pegmatites. Pegmatites typically crystallize 

from evolved melts with higher H2O contents. With the additional H2O, the Tm
liquidus

 

becomes lower. Minimum constraints for P2 inclusions may be determined by the 

intersection of the P2 carbonic phase isochores with the first melting temperature of SMI 

(which represents the final crystallization temperature of the system). This intersection 

results in a minimum P-T condition for the P2 carbonic phase entrapment of 2.3 kbar and 

610°C. To summarize, based on the P2 isochore intersections with the first melting and 

Tm
liquidus 

of SMI, the P-T conditions for P2 inclusion entrapment range from 610°-1200°C 

and 2.3-4.4 kbar (8.5-16.3 km depth; Figure 3.23; Table 3.12). 
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 As with P2 inclusions, the intersection of S1 isochores with the Tm
liquidus

 of P1 

inclusions gives maximum P-T conditions of the entrapment of S1 inclusions, 

corresponding to 4.05 kbar and 1200°C (Figure 3.23). Again, this would be maximum 

entrapment conditions because of the reasons stated for the P2 inclusions above. 

Minimum estimates on the trapping of S1 inclusions can be constrained by the 

intersection of S1 isochores with the lowest temperature calculated from the apatite-

biotite halogen exchange thermometer, which determines minimum conditions for fluid 

migration through the mafic pegmatites in the CLG, suggesting S1 fluids likely did not 

migrate through the pegmatites at temperatures lower than this thermometer (Zhu and 

Sverjensky, 1992). The minimum entrapment conditions equate to 455°C and 1.5 kbar 

(Figure 3.23) and the range of P-T conditions for the entrapment of S1 inclusions would 

be 455° to 1200°C and 1.5 to 4.05 kbar (5.6-15 km depth; Figure 3.23; Table 3.12). The 

large range in pressure is consistent with the variability in ThCO2 in S1 inclusions, which 

is either due to variable trapping pressure during formation of or post-entrapment 

modification. 

As described above, S1 inclusions likely represent the carbonic end-member fluid 

for the mixed brine-carbonic S3 fluid inclusions and therefore the trapping conditions for 

S3 inclusions are likely the same as trapping conditions for S1 inclusions. However, due 

to the difference in relative variability of S1 ThCO2 (26.9-30.9°C) and S3 ThCO2 (-7.9-

30.6°C) it would suggest that the S1 isochores may not be applicable to the carbonic 

phase in S3 inclusions. Variability in ThCO2 in S3 inclusions may indicate either 

differences in trapping pressure during formation of S3 inclusions or post-entrapment 

modification. The mode of homogenization for S1 and S3 is also different as S1 
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inclusions primarily homogenize to the vapor state while S3 carbonic phase primarily 

homogenizes to the liquid state. 

 

3.4.4 Apatite compositional evolution-halogen and trace element geochemistry 

3.4.4.1 Tracing halogen content in the melt 

The evolution of volatile components during crystallization of a layered intrusion 

is recorded by the distribution and composition of halogen-bearing cumulus and 

intercumulus minerals (e.g., apatite, amphibole, micas; Boudreau et al., 1995). However, 

apatite is a more robust mineral for tracing halogens than amphiboles or micas because it 

has fewer crystal-chemical reactions possible for defining equilibrium halogen content 

with associated fluids or melts. Apatite also exhibits typical ideal halogen substitution 

behavior at magmatic temperatures (Volfinger et al., 1985; Tacker and Stormer 1989; 

Boudreau, 1995).  

The F-rich nature of apatite in the CLG is broadly similar to other layered mafic-

ultramafic intrusions such as the Skaergaard intrusion, Munni Munni Complex, Great 

Dyke, and in Stillwater and Bushveld Complexes above their respective major PGE reefs 

(Figure 3.3; Nash 1976; Boudreau, 1993; Boudreau et al., 1995; Meurer and Boudreau, 

1996; Willmore et al., 2000). No Cl-rich apatite was observed in the CLG as is present in 

the Stillwater and Bushveld Complexes in and stratigraphically below their major PGE 

reef horizons (Boudreau and McCallum, 1989; Boudreau and Kruger, 1990).  

As volatiles separate from a crystallizing mafic liquid, the liquid will become 

enriched in F compared to Cl, as F partitions into the melt relative to a volatile phase (i.e., 

fluid-incompatible) while Cl is compatible in a volatile phase and would fractionate into 
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exsolving fluid. Therefore, low Cl/F ratios in apatite can be linked directly to Cl loss 

during degassing and fractionation (Boudreau, 1995; Mathez and Webster, 2005). As 

well, no cumulus minerals sequester halogens, aside from trace amounts in mica and 

amphibole, thus Cl loss during degassing alone leads to decreasing Cl/F ratios in the 

liquid and lower Cl/F ratios in crystallizing apatite (Boudreau et al., 1995). Since apatite 

in the CLG is very F-rich, Cl has been lost to an exsolved volatile fluid phase prior to its 

crystallization or the melt simply had a low Cl/F ratio to begin with.  

Comparing apatite compositions within the CLG, it is evident that the interstitial 

apatite in the clinopyroxenite and the gabbro with disseminated sulphides is slightly more 

Cl-rich than the coarse-grained apatite in pegmatites and gabbro hosting cumulus apatite 

(Figure 3.3). If all the apatites were formed from the same liquid, then the more Cl-rich 

apatite evolved from a liquid that had not yet lost as much of a Cl-rich volatile fluid phase 

and therefore, formed earlier than the other F-rich apatites. Alternatively, these more Cl-

rich apatites could have crystallized in deeper portions of the intrusion at higher pressure 

where volatiles had not yet separated causing the Cl/F ratio to be higher (Boudreau et al., 

1995). Within a single thin section there can be up to a 20 mol % variation in XF (CL-07-

01-29.1) and up to a 6 mol % variation in XCl (CL-07-01-95.9). Boudreau et al. (1993) has 

suggested these thin section variations in Cl and F mol % to, apatite being isolated from 

the intercumulus liquid as individual grains grew, therefore separate apatite grains in a 

thin section could have formed from intercumulus liquids with slightly different F/Cl 

ratios. However, the overall F-rich nature of all apatite in the CLG would suggest that the 

CLG was relatively Cl-poor and F-rich.  
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3.4.4.2 Trace element content of apatites in gabbro and mafic pegmatites 

 The REE concentration in apatite is lower in the fine- to medium-grained cumulus 

apatite hosting melt inclusions in a medium-grained gabbro (CL-07-01-29.1) compared to 

the coarse-grained apatite hosting primary and secondary fluid inclusions in mafic 

pegmatites (Figure 3.6A,B). These elevated levels of REE may be related to the amount 

of interstitial liquid the apatite has crystallized from. The finer grained apatite crystallized 

early relative to the other cumulus minerals in the unit, consistent with its lower REE 

concentrations relative to the apatite in the mafic pegmatites.  

 The higher concentrations of REE in apatite in the mafic pegmatites could be 

explained by the “trapped liquid shift effect” (Cawthorn, 2013). As melt crystallizes, 

incompatible elements (e.g., REE) will be concentrated into intercumulus liquid. As the 

cumulate column undergoes compaction, the intercumulus melt can migrate upwards and 

then mix with the overlying melt (Mathez, 1995). If apatite has already started to 

crystallize in this overlying melt, the apatite will interact with this REE-rich intercumulus 

liquid and the apatites REE concentrations will thereby be increased (Cawthorn, 2013). 

This effect agrees with the occurrence of the most REE-rich apatite occurring in the most 

evolved lithologies (i.e., mafic pegmatites). The intercumulus liquid will also be enriched 

in H2O, which may account for their coarse-grained nature. A strong negative Eu 

anomaly occurring within two of the pegmatites would imply that the intercumulus liquid 

that may have been responsible for the “trapped liquid shift effect” was sourced from an 

area of the melt that had already crystallized plagioclase (Cawthorn, 2013). Compared to 

apatites in the mafic pegmatites, apatite in gabbro has a minor negative Eu anomaly 

(Figure 3.6A), suggesting that at the time of apatite crystallization, only minor plagioclase 
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had crystallized (Cawthorn, 2013). This would be in agreement with the observed apatite 

inclusions within plagioclase. 

3.4.5 Brine-carbonic fluid immiscibility 

 The presence of type S1 inclusions trapped together in the same FIAs as type S3 

inclusions showing large variations in carbonic:aqueous ratios suggests these assemblages 

trapped two coeval immiscible fluids. By this interpretation of the petrographic 

observations the fluids may represent the products of unmixing of an initially one-phase 

H2O-CO2-CH4-NaCl fluid, to produce carbonic-dominant and brine-dominant end-

member fluids. Under this scenario, end-member carbonic-dominant inclusions should 

have the same carbonic:aqueous ratio and brine-dominant end-member inclusions should 

have the same aqueous:carbonic ratio. The proportions of each end-member formed by 

unmixing are dictated by the starting fluid composition (Bowers and Helgeson, 1983; 

Duan et al., 1995; Schmidt and Bodnar, 2000; Diamond, 2003). In the mixed S1-S3 FIAs 

this is not the case as aqueous:carbonic ratios are highly variable because the inclusions 

trapped mixtures of both end-memebrs (i.e., VCO2 = 10-80 vol %; Figure 3.11A,B). The 

position of the solvus for a 20 wt % NaCl and 20 mol % CO2 (XCO2 = 0.1884) one-phase 

aqueous-carbonic fluid is plotted on Figure 3.23. This solvus may not be applicable to the 

CLG because carbonic fluid appears to dominate the FIAs in terms of volumetic 

abundance. The position of the solvus for a one-phase fluid with much higher CO2 

concentrations is not experimentally known. While the exact location of the solvus 

relevant to the fluid inclusions in this study cannot be accurately plotted the experiments 

of Schmidt and Bodnar (2000) showed that at a constant salinity, and with increasing CO2 

content, the solvus shifts to higher P-T conditions. Therefore, we suggest the solvus for 
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an initial one-phase fluid, given the predominance of carbonic-dominant fluids present in 

the CLG, would likely be at extremely high and unrealistic P-T conditions.  

 It may be more appropriate to account for the variable carbonic:aqueous phase 

proportions in the type P2 and S3 inclusions by the heterogeneous trapping of a carbonic-

dominant fluid and an brine-dominant fluid that did not unmix from an initially one-phase 

fluid. Rather the fluid end-members could have been sourced from two different parts of 

the intrusion and mingled immiscibly in common pathways. This is possible due to the 

differential solubility and timing of exsolution for CO2 and H2O-NaCl fluids from a 

basaltic melt. Due the low solubility of CO2 in a melt compared to the solubility of H2O 

and Cl, CO2 should be the first volatile to exsolve (Webster, 1999; Lowenstern, 2001). It 

is possible that the carbonic-dominant fluid was sourced from a hotter melt (i.e., 

shallower stratigraphic level) that was CO2-saturated and releasing carbonic-dominant 

volatiles, while at the same time a colder melt (i.e., deeper stratigraphic level) in the CLG 

was releasing a brine-dominant fluid having already lost CO2 during earlier degassing 

(Hanley et al., 2008). These two fluids were then trapped simultaneously in the 

pegmatites, which would have acted as common fluid pathways for these fluids. The 

petrographic result would be the variable VCO2 vol % present in P2 and S3 inclusions and 

the coexistence of S1 and S3 inclusions in a given FIA (Figure 3.11I). An end-member 

brine-dominant fluid (with no CO2 present) would be expected to be present in 

coexistence (i.e., in the same FIA) with S1 and S3 inclusions, but this end-member brine-

dominant fluid (with no or minor CO2 present) was not observed in the CLG. The process 

described above has been attributed to the trapped of brine-dominant and carbonic-

dominant fluids in the Stillwater Complex (Hanley et al., 2008). Heterogeneous trapping 
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of NaCl-H2O-CO2 and CO2-NaCl-H2O fluids has also been reported in the Bushveld 

Complex (Ballhaus and Stumpfl, 1986) and so appears to be a feature common to both 

barren and mineralized, layered mafic-ultramafic intrusions.  

3.4.6 Fluid metal sources  

 Fluids in layered mafic-ultramafic intrusions have been suggested through field 

and petrographic relationships, and directly identified through microanalysis of fluid 

inclusions, to carry metals and sulphur, and therefore have the potential ability to impact 

the ore tenor in layered intrusions (Boudreau and McCallum, 1992; Meurer et al., 1999; 

Polovina et al., 2004; Hanley, 2006, unpublished PhD thesis; Hanley and Gladney, 2011; 

Gál et al., 2013; Schisa et al., 2014). Nickel (16-354 ppm), Cu (18-160 ppm), and Co (2-

83 ppm) were determined by LA-ICP-MS in S3 fluid inclusions present in the CLG 

(Table 3.11) and are comparable in concentrations to metal contents in fluid inclusions 

from Ni-Cu-PGE-mineralized differentiated intrusions (Sudbury, Cu=5-1000 ppm, 

Hanley et al., 2005; Lac des Iles Complex: Cu and Ni = 1-100 ppm, Hanley and Gladney, 

2011). The metals Co, Ni, and Cu are higher in S3 inclusions with minor melt than the 

primary SMI. 

Compared to Ni, Cu, and Co, HFSE elements are much more abundant in S3 

inclusions in the CLG (Table 3.11). A similar process to the one described above for the 

enrichment of trace elements in apatite in the mafic pegmatites could likely be 

responsible for the HFSE enrichment in type S3 fluid inclusions. As the cumulate pile 

crystallizes, incompatible elements and H2O become concentrated in the intercumulus 

liquid but the major element composition of the intercumulous liquid may not differ 

significantly from the original cumulate liquid (Boudreau, 1995; Mathez, 1995). The 
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settling of cumulus minerals down through the cumulate column will cause the 

intercumulus liquid to efficently migrate upwards (e.g., Boudreau, 2016) and as pressure 

and/or temperature decreases, the solubility of H2O in the interstitial melt will drop and a 

volatile phase will be exsolved (Mathez, 1995; Métrich and Wallace, 2005). The volatile 

fluid phase exsolving from this intercumulus liquid is moderately saline (~23 wt % NaCl; 

average salinity of the aqueous phase in type S3 inclusions) and the metals could partition 

into the fluid during exsolution. Zajacz et al. (2008) conducted LA-ICP-MS analysis of 

naturally coexisting fluid and silicate melt inclusions (of granitic composition) to 

determine metal fluid/melt partition coefficients (KD
fluid/melt

) and found that for Zr and Nb, 

KD
fluid/melt

 are < 0.1, while for Cs and W, KD
fluid/melt

 are > 1. Experimental studies have 

shown that Zr has a KD
fluid/melt 

between 0.2 and 4.6 and Nb has a KD
fluid/melt

 between 0.2 

and 4.7 (Webster, et al., 1989). As illustrated in Figure 3.13 and 3.22, the mafic silicate 

melt is present in variable proportions within type S3 fluid inclusions indicating it 

migrated through the cumulate (mush) pile together with the immiscible brine-carbonic 

fluid. This melt in type S3 inclusions is highly evolved based on its enrichment in HFSE 

but not in terms of its major element chemistry (i.e., their mafic composition, as 

determined by SEM-EDS; Figure 3.13). Such a process has been described by Mathez 

(1995) in the Bushveld Complex, where pyroxenes in the Merensky Reef are not evolved 

in terms of their major element chemistry but are highly evolved in terms of their REE 

chemistry resulting from metasomatic enrichment by trace element enriched silicate 

liquid migrating up through the cumulate pile. This would indicate that as the carbonic 

fluid and brine exsolved and mingled in the intrusion, both of these fluid types interacted 

with an HFSE-enriched intercumulus liquid (sample of which is trapped in type S3 
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inclusions; Figure 3.22). Therefore, even at KD
fluid/melt

 near unity for HFSE, W, and Cs, 

the fluids would be a powerful metasomatic agent for the redistribution of these metals.  

If the HFSE-enriched melt and associated fluid were externally derived, rather 

than internally from the CLG, a possible source would be the eastern lobe of the BLIS. In 

this area, the Thor Lake syenite and the NLS rocks contain Zr, Nb, and REE 

mineralization (Pinckston and Smith, 1995; Sheard et al., 2012; Timofeev and Williams-

Jones, 2015a, 2015b; Möller and Williams-Jones, 2016). Zirconium, Nb, and REE 

mineralization in the NLS is thought to have formed when an alkaline, volatile rich, 

nepheline syenite magma was intruded into the Thor Lake Syenite. The NLS represents 

the most fractionated crystalization products of residual melt derived from the nepheline 

syenitic magmatic intrusion (Sheard et al., 2012; Möller and Williams-Jones, 2016). 

Möller and Williams-Jones (2016) state that a key factor for the NLS melt to sequester 

HFSE was its parental melt prefractionation and its exceptionally evolved, Na- and 

halogen-rich chemistry. The HFSE were further enriched in a final volatile stage - (H2O, 

F, C) and Fe-rich, Al-depleted residual melt. If an Fe-rich, Al-depleted, HFSE-rich melt 

and brine from the NLS was able to channel through the mafic pegmatites of the CLG 

then this could be the source of melt and brine-carbonic fluid in S3 inclusions. However, 

SEM-EDS mapping and spot analyses of S3 inclusions show that Mg and Ti are common 

in the trapped melt phase in S3 inclusions and Na and K are low or absent, which is more 

consistent with this melt being derived from the CLG rather than from the NLS. Further 

work is needed to evaluate the source of this melt. 

On examining the bulk rock compositions of mafic pegmatites and unaltered fine-

grained gabbros in the CLG and comparing the data with rocks from Thor Lake and the 
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NLS, it is apparent that Thor Lake and the NLS magmas had much higher concentrations 

of Rb, Zr, Nb, Sn, Hf, and Ta (Figure 3.24). The mafic pegmatites in the CLG have very 

similar bulk trace element patterns and concentrations as SMI (P1 inclusions). Fine-

grained gabbro follows the same pattern but have lower concentrations of incompatible 

trace elements overall (Figure 3.24). If the HFSE-enriched melt (and fluids in type P1, 

and S3 inclisons) were externally derived, one would expect that the trace element pattern 

for the pegmatites in the CLG to be similar to those for Thor Lake and NLS. Examining 

Nb/Ta and Zr/Hf ratios (Figure 3.25), shows that rocks of the CLG have relatively similar 

Nb/Ta ratios to trapped melts (P1 inclusions) wheras the rocks of the NLS, Thor Lake, 

and the Grace Lake granite show a much wider range in Nb/Ta ratio. Again, if the HFSE-

enriched melt and fluid were externally derived, the Nb/Ta ratios of the pegmatites may 

be expected to have been modified by the Nb and Ta being introduced into the system 

from the external source. However, only Zr/Hf ratios show evidence of some 

modification. The similar trace element patterns and the relatively similar Nb/Ta ratios of 

the mafic pegmatites compared to the SMI suggest no influence from Thor Lake or the 

NLS. The presence of magnetite in S3 inclusions is also evidence that the HFSE-enriched 

melt and fluid in S3 inclusions were internally derived as the fluid could have interacted 

with magnetite in the mafic pegmatites or other units in the CLG and reprecipitated in 

fractures in apatite during melt and fluid migration. 

Other elements and accidentally entrapped minerals occurring within type S3 fluid 

inclusions as found by LA-ICP-MS and/or SEM have a more ambiguous source. The 

source for As and S could be fluids interacting with the Burwash sediments as the highest 

natural abundances of As tend to occur in phosphatic sediments, organic-rich shales, and 
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Figure 3.24: Silicate melt inclusions and rocks of the CLG compared to the Thor Lake 

Syenite, Thor Lake Rim Syenite, and the Nechalacho Layered Suite all normalized to 

primitive mantle. Note the much higher concentrations of Zr, Nb, Hf, and Ta in the Thor 

Lake and Nechalacho rocks compared to units in the CLG and the silicate melts. Data for 

Thor Lake units and Nechalacho come from Möller and Williams-Jones (2016). 
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Figure 3.25: Binary plot of Zr/Hf ratio against Nb/Ta ratio of melt and fluid inclusion 

bearing host rocks, unaltered fine-grained gabbros of the CLG, the Grace Lake granite 

and units of Thor Lake and the NLS. Data for Grace Lake Granite, Thor Lake Syenite and 

Rim Syenite, and Nechalacho Layered Suite come from Mumford (2013, unpublished 

PhD thesis) and Möller and Williams-Jones (2016).  
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mudstones (Plant et al., 2004). Alternatively As and S could have been derived through 

the interaction of the fluid with existing sulphide mineralization that contains sulfarsenide 

minerals (gersdorffite, nickeline).  

3.4.7 Source of CH4-dominant S2 fluid inclusions  

The presence of CH4-dominant carbonic fluid inclusions within the CLG is 

atypical of mafic-ultramafic intrusions. One possibility for the origin of this CH4 is the 

respeciation of an original CO2-rich carbonic fluid in the presence of graphite (Cesare, 

1995). This requires that the fluid inclusions trap a graphite-saturated fluid, and upon 

cooling and decompression, C-O-H respeciation in the inclusions can change the 

CO2:CH4 ratio internally (Morgan et al., 1993; Cesare, 1995). This depends on the initial 

O:H ratio of the fluid, whereby O/(O+H) ratios > 1/3, will lead to an increase in the 

CO2:CH4 ratio and O/(O+H) ratios < 1/3 will lead to a decrease in the CO2:CH4 ratio 

during cooling (Cesare, 1995). These interactions can lead to the formation of CO2-

dominant or CH4-dominant carbonic fluid inclusions. However, graphite was not 

observed as a daughter or accidentally trapped phase in any fluid inclusion types from the 

CLG. As well, the low carbon content of the country rocks and units within the BLIS 

would argue that externally derived carbon did not affect fluid evolution (e.g., Lovozero, 

Potter et al., 2004). While graphite has been linked to the formation of CH4 via the FT 

synthesis, it has not been linked to the formation of higher order hydrocarbons as detected 

here by GC in the CLG (Figure 3.17). The same line of evidence has been used to exclude 

graphite reactions for the formation of complex aliphatic hydrocarbons at Strange Lake 

and Lovozero (Salvi and Williams-Jones, 1997; Potter et al., 2004). 
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 The presence of CH4-dominant inclusions and the significant amounts of higher 

order hydrocarbons within them detected by GC, is explained by Fischer-Tropsch (FT) 

synthesis. This involves the reaction between a CO2-dominant fluid and H2 (produced 

from hydrothermal alteration reactions) to produce CH4 and higher order hydrocarbons 

governed by the reactions (Potter and Konnerup-Madsen, 2003):  

nCO + (2n+1)H2 → CnH2n+2 +n2H2O 

nCO2 + (3n+1)H2 → CH2n+2 + 2nH2O 

To catalyze the breaking of the C-O bonds, a group VIII metal in native form or as an 

oxide must be present (e.g., magnetite; Anderson, 1984; Salvi and Williams-Jones, 1997; 

Potter and Konnerup-Madsen, 2003). In order for FT reactions to proceed, H2 must be 

generated. This occurs during serpentinization of olivine because Fe
2+

 will be excluded 

from serpentine and brucite and will be partially oxidized to Fe
3+

 and incorporated into 

magnetite releasing H2 from Fe(OH)2 (Sherwood-Lollar et al., 1993; Potter and 

Konnerup-Madsen, 2003): 

 5Mg2SiO4 (s) + Fe2SiO4 (s) + 9H2O (aq) → 3MgSi2O5(OH)4 (s) + Mg(OH)2 (s) + 

2Fe(OH)2 (aq) 

 3Fe(OH)2 (aq) → Fe
2+

2Fe
3+

O4 (s) + H2 (aq) + 2H2O (aq) 

The formation of CH4 in mafic and ultramafic rocks is suggested to be the result of these 

reactions (e.g., Abrajano et al., 1988, 1990; Kelly et al., 1996). The high modal 

abundances of magnetite throughout the CLG rocks could provide the catalyst for such 

FT reactions. However, if the parental carbonic fluid that underwent FT synthesis was 

sourced from within the CLG, why would only some FIAs show higher CH4:CO2 ratios? 

The CO2-dominant, CH4-poor FIAs may have originated earlier in the magmatic history 
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of the CLG when olivine was stable, while the CH4-dominant FIAs exsolved later when 

olivine was altering to serpentine allowing for FT reactions to occur.  

 A third possibility could be an externally sourced CH4-dominant fluid entering the 

CLG from the peralkaline NLS (eastern portion of the BLIS). In peralkaline systems fluid 

inclusions studies have shown that magmatic-hydrothermal fluids are CH4-dominant with 

high concentrations of higher order hydrocarbons (C2+) (Figure 3.17; Strange Lake: Salvi 

and Williams-Jones, 1997; Lovozero: Potter et al., 1998, 2004). Methane and other 

hydrocarbons in peralkaline systems are attributed to CO2-dominant fluids undergoing FT 

reactions related to the alteration of primary igneous minerals (i.e., nepheline, 

arfvedsonite, augite, Ti-magnetite) to minerals such as cancrinite, aegerine, biotite, 

magnetite, and natrolite. In the NLS, Möller and Williams-Jones (2016) report the 

alteration of nepheline to cancrinite, producing the H2 needed for FT reactions to proceed 

as follows (Potter and Konnerup-Madsen, 2003): 

 3NaAlSiO4 (s) + Na
+ 

(aq) + 2H2O (aq) → Na4Al3Si3O12(OH)•H2O (s) + 0.5H2 (aq) 

Magnetite and hematite are also present in the NLS representing the alteration products of 

aegirine and eudialyte (Möller and Williams-Jones, 2016), however only minor amounts 

of CO2 and CH4 are reported in fluid inclusions from the Thor Lake T Zone (Feng, 2014, 

unpublished PhD thesis). 

3.4.8 Formation of calcite and monazite in fluid inclusions  

 Calcite has been observed in fluid inclusions in the CLG and has highly variable 

phase proportions suggesting accidental entrapment of a saturated mineral phase and is 

evidence for calcite mingling in the system at the same time as the immiscible brine-

carbonic fluid inclusions (type S3; Figure 3.11A,B). As well, possible antarcticite is 
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observed in P2 fluid inclusions implying the fluids were Ca
2+

-rich. The formation of 

calcite through the interaction with a high salinity brine and CO2 or CH4 can be shown 

through the reactions (Newton and Manning, 2002): 

CaCl2 (aq) + H2O (aq) + CO2(g) = CaCO3(s) + 2HCl(aq) 

and 

CaCl2(aq) + CH4(g) + 2O2(g) = CaCO3(s) + 2HCl(aq) + H2O(aq) 

The products of the reactions listed above (HCl and H2O) may then be involved in  

reactions to form monazite (discussed below) that is present within the fluid inclusions.  

Monazite has been observed as solid inclusions with type S3 inclusions and as 

solid inclusions within apatite. In natural and experimental settings, monazite is observed 

as either solid inclusions within or along the grain margins of fluor- and chlorapatite (Pan 

et al., 1993; Harlov et al., 2002a; Harlov et al., 2002b; Harlov and Förster, 2003) and all 

of these studies have suggested that monazite formed through fluid-rock interactions. The 

removal of Na and/or Si from the apatite structure will cause a charge imbalance because 

(Y+REE) are charge balanced through the coupled substitutions (Harlov and Förster, 

2003; Harlov et al., 2005): 

Si
4+

 + (Y+REE)
3+

 = P
5+

 + Ca
2+

 

and 

Na
+
 + (Y+REE)

3+
 = 2Ca

2+ 

Therefore, removal of Na and/or Si will result in monazite and/or xenotime formation in 

fluorapatite through the reactions (Harlov and Förster, 2003): 

[Ca5–2x, Nax, (Y+REE)x]P3O12F + x [2Ca
2+

 + P
5+

] (fluid) = Ca5P3O12F + 

x(Y+REE)PO4 + x[Na+] (fluid) 
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and 

[Ca5–y, (Y+REE)y][P3–y, Siy]O12F + y[Ca
2+

 + 2P
5+

] (fluid) = Ca5P3O12F + y 

(Y+REE)PO4 + y [Si
4+

] (fluid) 

 Experimental results by Harlov and Förster (2003) have shown for fluorapatite, 

monazite is formed through reactions with a H2O, a high H2O:CO2, a KCl brine fluid, or a 

HCl solution. No monazite formed when fluorapatite was reacted with NaCl or CaCl2 

brine because Na
+
 and Ca

2+
 can enter the fluorapatite structure and can maintain the 

charge balance if Na
+
, Si

4+
, or (Y+REE)

3+
 be removed (Harlov and Förster, 2003, Harlov 

et al., 2005). Experiments of fluorapatite reacting with HCl have also been carried out and 

have shown monazite has formed in areas of the apatite that are depleted in (Y+REE), Si, 

Na, S, and Cl (Harlov et al., 2005). With the removal of Na and/or Si, this can be 

accompanied by the local dissolution of P in the apatite in order to form monazite (Figure 

3.13C,D; Harlov et al., 2005). The products produced by the formation of calcite (i.e., 

HCl and/or H2O) could then locally influence apatite dissolution-reprecipitation and form 

monazite within the fluid inclusions and within the host apatite.  

If large scale metasomatism occurred to produce monazite present in fluid 

inclusions and in apatite, then one would except to see variations in the apatite trace 

element chemistry for elements present in monazite (Ce, La, Th, U). However, trace 

element chemistry for apatite is consistent between individual samples and individual 

spot analyses in the same grain, therefore this could imply late metasomatic processes did 

not alter the apatite influencing monazite precipitation. In addition, as described by 

Harlov and Förster (2003) and (Harlov et al. (2005), BSE images of fluid modified apatite 

show high contrast between metasomatically-altered and non-altered regions. Apatite in 
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this study did not show these large variations in composition when examined by BSE 

imaging suggesting late metasomatic processes did not influence monazite precipitation. 

Monazite present in the fluid inclusions and apatite may therefore represent accidental 

entrapment of saturated mineral phases.  

 

3.5 Conclusion  

 This study describes a variety of fluid inclusion types preserved in coarse-grained 

apatite within mafic pegmatites in the CLG. The trapping of immiscible brine-carbonic 

fluid in primary and secondary assemblages demonstrates that the CLG was actively 

degassing throughout its crystallization and that fluids were sourced from different parts 

of the intrusion at different stages of crystallization. These brine-carbonic fluids mingled 

in common fluid pathways and were trapped there (i.e., mafic pegmatites). Fluids similar 

to those reported here and their immiscible entrapment has been documented in 

economic, Ni-Cu-PGE-rich layered mafic-ultramafic intrusions. Since the CLG is poorly 

mineralized and subeconomic, this suggests that fluids of this composition are not directly 

related to mineralization potential. It may be more important to have existing PGE-rich 

sulphides that fluids can interact with, leading to the potential remobilization of metals 

and reprecipitation in economically minable quantities.  

Microthermometry of melt and fluid inclusions combined with independent 

geothermometers and barometers allows for the P-T conditions of melt and fluid 

entrapment to be estimated. The minimum liquidus temperature obtained from primary 

melt inclusions and the pressure determined from the Al- and Ti-in-hornblende 

geothermobarometer gives trapping conditions between 1135° and 1200°C and 1.6 to 4.5 
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kbar, implying the emplacement depth of the CLG is between 5.9 and 16.6 km. Primary 

fluid inclusions entrapment is constrained the isochore intersection by first melting and 

Tm
liquidus

 of SMI resulting in P-T conditions of 2.3-4.4 kbar and 610°-1200°C (8.5-16.3 

km depth), while S1/S3 inclusions are constrained by Tm
liquidus

 and the apatite-biotite 

thermometer at 455° to 1200°C and 1.5 to 4.05 kbar (5.6-15 km depth). The high P-T 

conditions of fluid inclusion entrapment implies that the volatile activity is magmatic in 

origin and not related to a late hydrothermal event. 

Entrapment of primary silicate melt inclusions in apatite have a relatively 

unevolved major element composition consistent with a gabbroic to syeno-dioritic melt, 

but are relatively enriched in incompatible elements (e.g., Zr, Nb, Cs, Hf, Ta) and 

depleted in metals (e.g., Ni, Cu, Co) suggesting this melt is likely sourced from a low 

degree of mantle partial melting, the melt was crustally contaminated, or sulphide 

saturation had occurred already causing the depletion in Ni, Cu, and Co.  

Silicate melt present in S3 fluid inclusions, is the primary host for the HFSE, Cu, 

and Co contents. This silicate melt was likely sourced from an intercumulus liquid that 

was squeezed up during compaction of the cumulate pile and became highly enriched in 

incompatible elements. Nickel, Cu, and Co are uncommon in S3 inclusions but have 

higher concentrations compared to primary silicate melt inclusions and the source for 

these metals is currently ambiguous. This silicate melt mingled with a brine and a 

carbonic fluid, and all became trapped as S3 inclusions. The enrichment of incompatible 

elements in the intercumulus liquid can also explain the enrichment in trace elements in 

apatite in the mafic pegmatites over apatite in a fine- to medium-grained gabbro. As the 

HFSE-enriched intercumulus liquid is compressed and squeezed upwards, it interacts 
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with apatite already growing in the pegmatites, enriching it in incompatible elements at 

concentrations higher then if it only grew from its original surrounding liquid. 
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Chapter 4: Key conclusions and future work 

4.0 Key conclusions from Chapter 2 

i. Three distinct styles of sulphide mineralization are present in the Caribou Lake 

Gabbro: (i) disseminated sulphide mineralization, (ii) semi-massive to massive 

sulphide mineralization, and (iii) trace sulphide “PGE-enriched” mineralization. 

Two distinct sulphide mineralization events occurred within the CLG determined 

through modeling based on estimates of the starting silicate melt composition: (i) 

trace sulphide “PGE-enriched” sulphide mineralization formed through fractional 

crystallization of a sulphide melt derived from a S-undepleted silicate liquid under 

high R factors (70,000-150,000), and (ii) disseminated and semi-massive to 

massive sulphide mineralization also formed by fractional crystallization of a 

sulphide melt but was derived from a S-depleted silicate liquid and involved lower 

R factors (≤ 3000).  

ii. Sulphide melt inclusions present in the Caribou Lake Gabbro preserve the 

composition of the sulphide liquid at a specific stage (likely early before or 

slightly after MSS crystallization) in the evolution of the system. The Cu and Co 

concentrations in and PGE-poor nature of sulphide melt inclusions are consistent 

with the composition of disseminated and semi-massive to massive sulphide 

mineralization (when recalculated to 100 % sulphide). Sulphide melt inclusions 

contain a parental sulphide liquid to these mineralization styles. This would imply 

that sulphide melt inclusion compositions can be used as a potential tool to 
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determine if the initial sulphide liquid in a system is sufficiently rich in metals to 

produce an economic Ni-Cu-PGE deposit. 

iii. Nickel concentrations in sulphide melt inclusions are lower compared to 

disseminated and semi-massive to massive sulphide mineralization (when 

recalculated to 100 % sulphide). This discrepancy in concentration can be 

explained by a small amount monosulphide solution was removed from the 

sulphide liquid by fractional crystallization, removing some Ni from the sulphide 

liquid.    

iv. Compared to economic Ni-Cu-PGE deposits, olivine in the Caribou Lake Gabbro 

is depleted (≤ 1138 ppm). The presence of SUL as secondary inclusion trails in 

olivine, would imply that olivine was crystallizing prior to a sulphide liquid 

separating and therefore the segregation of a sulphide liquid may not be 

responsible for the Ni depletion in olivine. 

v. Three explanations are proposed for subeconomic nature of Ni-Cu-PGE 

mineralization in the Caribou Lake Gabbro: (i) a large amount of sulphide was lost 

at depth as the parental silicate melt ascended to the current depth of the intrusion, 

(ii) low R factors likely influenced the poor metal tenors, and/or (iii) low degree of 

partial melting of a source region.   

 

4.1 Key conclusions from Chapter 3 

i. Entrapment of primary silicate melt inclusions within early cumulate apatite 

occurred between 1130° and 1200°C (Tm
liquidus

 determined by microthermometry) 
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and 1.6 to 4.6 kbar (determined by Al- and Ti-in-hornblende 

geothermobarometer). Therefore the depth of emplacement of the Caribou Lake 

Gabbro is between 5.9 and 16.6 km, assuming a density of 2.8 g/cm
3
 of the 

overlying material.  

ii. Primary and secondary fluid inclusions preserved in early cumulus apatite in 

mafic pegmatites preserve the trapping of immiscible brine-carbonic fluids. This 

suggests the Caribou Lake Gabbro was continually loosing volatiles during it 

crystallization history, as the carbonic fluid would have been sourced from a 

shallower, hotter portion of the melt and the brine from a deeper, cooler portion of 

the melt. These two distinct fluids mingled in common fluid pathways (i.e., now 

mafic pegmatites) and became entrapped, forming P2, S1, and S3 fluid inclusions. 

The same types of fluids and mingling processes have been reported in 

(economic) Ni-Cu-PGE-bearing layered mafic-ultramafic intrusions, suggesting 

that fluids of this compositon are not required for mineralization. Rather, it seems 

necessary to have pre-existing PGE-rich sulphides that fluids can possibly interact 

with, remobilizing the metals and enriching magmatic sulphides further.  

iii. The presence of silicate melt in type S3 fluid inclusions implies that a melt was 

transported with the immiscible carbonic-brine fluid. The major element 

chemistry of the melt in S3 inclusions is dominated by Si-Fe-Mg-Ti-Al 

(determined by SEM-EDS) and it is enriched in incompatible elements 

(determined by LA-ICP-MS). This melt likely represents an intercumulus melt 

that was squeezed up during compaction in the cumulate pile. As this melt 

percolated upwards, it becomes enriched in incompatible elements but its major 
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element composition remained relatively unchanged. Incompatible elements in S3 

inclusions are positively correlated with Si but show no correlation with Na, 

indicating that the trapped melt abundance (rather than trapped brine) is the 

primary control on incompatible element concentration in S3 inclusions.  

iv. The enrichment of incompatible elements present in S3 inclusions could indicate 

derivation from peralkaline, HFSE- and REE-rich Nechalacho Layered Suite in 

the Thor Lake syenite in the adjacent eastern portion of the Blatchford Lake 

Intrusive Suite. However, trace element patterns and Nb/Ta ratios in the mafic 

pegmatites and primary silicate melt inclusions (type P1) are similar and would 

suggest no external melt or fluid influence from the Thor Lake syenite or NLS.  

 

4.2 Suggestions for Future Work 

 The conclusions of this work confirm speculation, based on limited drilling 

results, that the Caribou Lake Gabbro represents a weakly mineralized Ni-Cu-PGE 

layered mafic-ultramafic intrusion. The volatile activity preserved in secondary fluid 

inclusions appears to be associated with the intrusive phases of the eastern lobe of the 

Blatchford Lake Intrusive Suite. There are numerous follow-up studies that can be 

conducted on the Caribou Lake Gabbro to clarify the understanding of its sulphide 

genesis and volatile activity that was initiated through this thesis work. Below are only 

few suggestions of potential next steps in research: 
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 Obtain more detailed and concise constraints on the initial melt composition. This 

would involve more work on silicate melt inclusions. The inclusions would need 

to be homogenized on a melt inclusion microthermometry stage or in a high 

temperature furnace to produce glassy inclusions that could be analyzed by 

microbeam methods (e.g., EMP) to give a better constraint on the melt major 

element geochemistry. This would also allow determination of a more accurate 

internal standard to be used for LA-ICP-MS analyses. Analysis by EMP would 

also allow for determination of Cl and other elements in the melt. Homogenized 

melt inclusions could also be analyzed by Micro-Fourier Transform Infrared 

Spectrometry to determine the melts CO2 and H2O contents directly, that are 

assumed or not determined in this thesis. This would provide constraints on 

volatile content and crystallization depth of the melt. 

 Conduct a detailed apatite halogen study throughout the intrusion to help constrain 

the halogen (i.e., Cl and F) evolution of the system. The results would help trace 

degassing events by looking for a decrease in Cl/F ratios throughout the intrusion, 

identifying at what stratigraphic level saline brine(s) may have exsolved from the 

crystallizing melt. 

 Constrain the fO2 of the mineralizing system. This could be done by examining 

the composition and nature of the magnetite-ilmenite composite grains present 

throughout the intrusion. Analysis of magnetite and ilmenite that have exsolved 

from an original titanomagnetite grain can place fO2 constraints on the system 

provided this is due to primary exsolution and not oxidation exsolution. The 



239 

 

relevant oxybarometer is based on the iron redox equilbria (6FeTiO3 (ilmenite) + 

2Fe3O4 (magnetite) = 6Fe2TiO4 (ulvöspinel) + O2) and, for given P-T-fO2 

conditions compositions of coexisting magnetite and ilmenite are unique. 

 Additional fluid inclusion analyses of type 3 inclusions. The exact P-T conditions 

of entrapment of secondary type S3 fluids entrapment are lacking. Looking for 

inclusions that contain the coeval end-member brine phase of type S3 inclusions 

would allow for the method of intersecting isochores to be used to constraint the 

P-T conditions of entrapment for type S3 inclusions, assuming brine and carbonic 

fluids were coeval but not in equilibrium..  

 Further work on the primary fluid inclusions (i.e., type P2 inclusions) present in 

the pegmatites to better constrain P-T conditions of volatile degassing in the 

intrusion. LA-ICP-MS work could also be conducted on these inclusions to 

determine if any metals (Ni, Cu, Co, PGE) were exsolved and extracted from the 

melt during the degassing event, a possible alternative to the magmatic hypotheses 

for low metal tenor.  

 Detailed textural analyses on the trace sulphide “PGE-enriched” mineralization. 

More sample material would be need for this. Grain mounts could be made for a 

more detailed scanning for discrete PGM by MLA-SEM. Additionally, LA-ICP-

MS analyses of the pyrrhotite could be completed to determine if the PGE in these 

samples are mostly dissolved in the structure of pyrrhotite.  

 High resolution LA-ICP-MS analyses of the sulphide melt inclusions. Instead of 

collecting data for a large range of elements as was done in this study, a limited 
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element menu for enhancement of detection capabilities (i.e., Ni, Cu, Co, Fe, Pd, 

Pt, and Au). The dwell times for the Pd, Pt, and Au could also be increased 

significantly allowing for improved likelihood of detection and therefore would 

provide a constraint on the initial sulphide liquids PGE content.  
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Introduction 

 The mafic-ultramafic Caribou Lake Intrusion (CLI), located roughly 90 km 

southeast of Yellowknife in the Northwest Territories, contains minor Ni-Cu-platinum 

group element (PGE) mineralization hosted mainly in rock units of gabbroic composition. 

Mineralization consists of massive to disseminated pyrrhotite with lesser amounts of 

chalcopyrite, pentlandite, pyrite, and sphalerite. No PGE mineral grains have been found 

to date, but assay results from a fine-grained gabbro with trace amounts of sulfides 

indicate 214 ppm Pt+Pd (Marmont, 2007). A major aspect of this project is to 

characterize the mineralization and its associated host rocks. Detailed core logging and 

sampling of a drill hole containing highly disseminated sulfide over ~10m was conducted 

over the summer of 2013 and two other drill holes were logged and sampled in order to 

examine the internal stratigraphy of the intrusion. Additional samples of massive sulfide 

mineralization and their associated host rocks were also collected from drill holes. 

Geochemical analyses of the intrusion reveal that it is tholeiitic in composition and 

alteration has not significantly changed the overall geochemistry of the rocks. Fluid 

inclusions in apatite and quartz are well preserved in various coarse grained gabbroic 

units and will be studied in this project.  

A major question to be answered by this study is have fluids remobilized metals in 

the system and therefore decreased the tenor of sulfide mineralization? Whole rock 

geochemical results have shown that some units can be extremely enriched in vanadium 

(up to 2.3 wt%). Magnetite has up to 1.3 wt% vanadium and can display two styles of 

ilmenite exsolution: blebby texture, where ilmenite and magnetite occur as a composite 

grain with a grain of ilmenite on the edge of magnetite and trellis pattern exsolution, 

where ilmenite exsolves from titanomagnetite along the {111} plane to produce a 

crosshatched exsolution pattern. Questions that have arisen from the observations of high 

abundances of Fe-Ti oxides in the intrusion include: What was the fO2 conditions of the 

intrusion, which can be constrained by reconstructing the composition of the original 

titanomagnetite, and is there enough magnetite with appreciable vanadium concentrations 

to validate further exploration in the area.  

 

 



 

Regional Geology 

 The Caribou Lake mafic-ultramafic intrusion is located approximately 90km 

southeast of Yellowknife, Northwest Territories along the Hearne Channel, Great Slave 

Lake and lies at the southern margin in the Slave Province of the Canadian Shield (Figure 

4.1 and Figure 4.2). The CLI comprises the western suite of the alkaline to peralkaline 

Blatchford Lake Intrusive Suite (BLIS), which is thought to be related to the formation of 

the Authapuscow Aulacogen and the associated failed rift (Bowring et al, 1984; Hoffman, 

1980) that could have promoted crustal thinning, decompressional melting and served as 

a conduit for mantle derived magmas (Mumford, 2013). The BLIS intrudes sedimentary 

rocks of the Archean Yellowknife supergroup, Morose granite, and the Defeat 

granodiorite (Davidson, 1972, 1978). A geophysical gravity study by Birkett et al (1994) 

and Pilkington (2012) suggested that the BLIS is a relatively thin tabular body, 

approximately 1km thick with deep mafic (CLG) roots at the western contacts. The CLG 

also appears to extend under the Grace Lake granite for almost half of the entire complex. 

The first detailed mapping of the BLIS was undertaken by Davidson (1972). His 

subsequent work (Davidson, 1978, 1981, 1982) identified six distinct units based on field 

relationships and geochronology:  

1) Caribou Lake gabbro ranging to leucoferrodiorite (2184 ± 2 Ma, Mumford, 2013),  

2) Whiteman Lake quartz syenite (2185 ± 2 Ma, Bowring et al, 1984), 

3) Hearne Channel granite (2175 ± 5 Ma, Bowring et al, 1984), 

4) Mad Lake granite (2166 ± 47 Ma, Wanless et al, 1979), 

5) Grace Lake granite (2176.2 ± 1.3 Ma, Sinclair et al, 1994), 

6) Thor Lake syenite (2164 ± 11 Ma, Mumford, 2013).  

Based on geochemistry (Davidson, 1981), the BLIS could be broken into two 

distinct portions; an older sub-alkaline western lobe (Units 1-4) and a younger peralkaline 

eastern lobe (Units 5-6). Mumford (2013) has described units 2 to 4 as coeval multi-phase 

intrusives, (based on contacts and variations within the granitic intrusions), that show 

large scale changes from north to south; therefore, these units (2, 3, 4) are transitional and 

the Made Lake granite can be distributed between the northern Whiteman Lake and 

southern Hearne Channel, eliminating the Mad Lake granite from the intrusive suite.  

 



 

 

 

Figure 4.1: Simplified geology of the Blatchford Lake intrusive suite, modified after 

Davidson (1982) and Mumford (2013). 



 

 

Figure 4.2: Geology legend for Figure 4.1 and Figure 4.3. 



 

Exploration History 

 The Earl Jack Syndicate investigated aeromagnetic anomalies during 1963 in the 

Caribou Lake area. They discovered Fe-Ti occurrences with up to 15% oxide 

corresponding to aeromagnetic highs within an anorthositic gabbro in the higher grade 

zones, assays returned values of 30% Fe and 10% TiO2. No claims were staked because 

zones of titanium and iron mineralization were deemed too small to be considered 

economic at the time (Curry et al, 1963). Shield Resources performed magnetic surveys 

during the 1960’s and discovered sulfide occurrences associated with magnetic lows. 

Numerous trenches were also blasted during the time Shield held claims in the area, 

several of which contained niccolite hosted in carbonate veins (Curry, 1969).  

 Airborne magnetic and EM survey were conducted by New Caledonia Mining in 

1994, also collected till samples looking for diamond indicator minerals. A few magnetic 

anomalies were identified, with a follow-up ground magnetic survey suggested for one of 

them. They also suggested that there were no significant concentrations of base metals 

occurring in the gabbroic units (Warman and Gelo, 1995).  

In 2004 Kodiak Exploration performed reconnaissance prospecting of the Caribou 

Lake gabbro. They sampled previously known niccolite showings and one sample 

returned assay values of 38.2% Ni and 3.8% Co. One sample of gabbro within the 

Whiteman Lake syenite was collected and had values of 19.7% Cu and 0.3% Ni. A total 

of 130 samples were sent for assay analysis (Marmont, 2006). During the summer of 

2005 Kodiak Exploration hired Aurora Geoscience to perform a prospecting and 

sampling program as well as to investigate the areas around the magnetic anomalies 

discovered by New Caledonia Mining. Aurora Geosciences’ program resulted in 714 

samples submitted for assay. Of all the 2004 and 2005 samples submitted for assay 

(n=844), 91 came back with values greater than 0.1% Cu and 41 with greater than 0.1% 

Ni. Because of the results produced during the sampling program, an airborne VTEM 

electromagnetic and magnetic survey over the Caribou Lake intrusion was conducted. 

From these surveys thirteen strong EM anomalies were identified and twelve of them 

occurred in the mafic-ultramafic units of the Caribou Lake intrusion (Marmont, 2006).  

 Kodiak’s prospecting work continued into 2006 and focused on areas located 

around the anomalies from the EM and magnetic surveys. This program identified new 



 

anomalies that contain modest amounts of PGE (30 ppb Pt-Pd) and one sample with Pt 

and Pd values of 97 and 25 ppb Pd respectively. Some mineralized carbonate veins were 

also found during this program, which returned assay values of 8.4% Ni and 1.25% Co 

(Marmont, 2006). 

In 2006 Kodiak also undertook a drilling program that was designed to test the 

EM anomalies, explore the contact of the CLI, test the depth of surface showings, as well 

as to determine the stratigraphy of the CLI. The first, third and fifth drill holes produced 

the best results of the program, encountering massive sulfides with grades ~0.53% Ni and 

~0.7% Cu (Marmont, 2006). Kodiak continued its drill program in 2007 with an 

additional fifteen drill holes to explore the basal contact of the CLI, re-test some VTEM 

anomalies and to improve their understanding of the stratigraphy. No significant sulfide 

intersections were encountered during the 2007 drill program (Marmont, 2007).  

 

Study Area 

 The oldest part of the Blatchford Lake Intrusive Suite is the Caribou Lake gabbro 

(2184 ± 2 Ma, Mumford, 2013) which intrudes into the Archean sedimentary rocks of the 

Yellowknife Supergroup, the Morose granite, and the Defeat granodiorite (Figure 4.2 and 

Figure 4.3), which contain minor amounts of disseminated pyrrhotite (Davidson, 1982). 

Contacts between the CLI and its Archean host rocks are not commonly observed due to 

cover by vegetation, swamps, or lakes. Davidson (1978) described a chilled margin along 

the western contact and also observed progressive changes from west to east across the 

gabbro starting with pegmatitic patches in massive olivine gabbro along the west and 

north shores of Caribou and Whiteman Lakes transitioning into a massive to faintly 

layered noritic gabbro with plagioclase defining a weak foliation, with the most eastern 

portion of the gabbro identified as a leucoferrodiorite.  

 Drilling results in 2006 were moderately successful, with massive to heavily 

disseminated sulfide encountered in four drill holes approximately 3km south of Caribou 

Lake (Figure 4.3), including the first hole which intersected 0.53% Ni and 0.7% Cu over 

3.18m (Marmont, 2006). The other intersections of massive to highly disseminated 

sulfide have similar Ni and Cu grades (Marmont, 2006). Sulfides are hosted by a fine to 

medium grained gabbro and are primarily composed of pyrrhotite with lesser amounts of 



 

chalcopyrite and pyrite (Marmont, 2006). Drilling results in 2007 proved to be 

unsuccessful in the effort to find more massive sulfide intersections (Marmont, 2007).  

 



 

 

Figure 4.3: Detailed geology of the western portion of the Blatchford Lake intrusive suite, 

modified after Davidson (1982) and Mumford (2013). 



 

Methodology 

 During the winter of 2013 a total of 29 samples were collected from Kodiak 

Explorations 2007 drill program by Hendrik Falck for the purpose of preliminary 

petrography of various units within the CLI (refer to Appendix A for sample list). During 

the summer of 2013, an additional 266 sample were collected from numerous drill holes 

from the 2006 and 2007 drill programs. Of the 266 collected only 112 were sent to 

Vancouver Petrographics and the Ontario Geological Survey Geolabs for whole rock and 

trace element analysis as well as 20 samples for Ni-sulfide fire assay for PGE contents 

(refer to Appendix B for sample list).  

The majority of samples were collected from only three drill holes that were also 

descriptively logged; 1) CL-06-16 (170.7 m), 2) CL-06-39 (163.05 m), and 3) Cl-07-

01(481.4 m). A total of 28 samples were sent for analysis from drill hole CL-06-16, nine 

of which were within a 10 m interval of heavily disseminated sulfide, the other samples 

represented lithology changes throughout the length of the hole. In CL-06-39, a thick 

ultramafic succession of approximately 50m had been intersected and represented the 

thickest ultramafic package encountered in drilling; a total 29 samples were shipped for 

analysis representing lithology changes. CL-07-01 and CL-06-39, which were drilled 200 

m apart, were logged to correlate units between the two drill holes. Thirty nine samples 

were sent for analysis from CL-07-01, representing lithology changes throughout the 

length of the hole. The remaining 16 samples sent for analysis came from various drill 

holes representing other styles of mineralization (i.e. semi-massive to massive), host rock 

lithologies, and other units composing the BLIS. 

  The petrographic characteristics of thin sections were determined using a Nikon 

Eclipse H550L microscope, which has the capability to use transmitted and reflected 

light. The characterization of base metal sulfides and discrete mineral phases has been 

conducted using a LEO1450VP scanning electron microscope (SEM) at Saint Mary’s 

University, equipped with an energy dispersive X-ray (EDS) Oxford INCA 80mm
2
 

silicon drift detector (SDD) capable of quantitative analysis. Measurements of all analysis 

were conducted at a working distance of ~20mm, with a beam current of 40uA and 

accelerating voltage of 25.00-30.00 kV. 



 

  Core samples were sent to the Ontario Geological Survey GeoLabs in Sudbury, 

Ontario for whole rock and trace element geochemistry which were determined by X-ray 

fluorescence spectrometry (XRF) and inductively-coupled plasma mass spectrometry 

(ICP-MS).   

 

Results 

Drill Hole CL-06-16 

Drill hole CL-06-16 is a 170.6m long vertical drill hole that was drilled into the 

southern portion of the CLI (Figure 4.3). This hole was chosen for the study based on its 

highly disseminated sulfide mineralization. The hole is predominately composed of a 

gabbroic unit that varies from fine to coarse grained. Plagioclase and clinopyroxene 

modal proportions are relatively consistent throughout the unit, ranging from 30-50% 

plagioclase and 20-35% clinopyroxene. Orthopyroxene and olivine vary significantly 

through the gabbroic unit, ranging from 0-10% for both minerals. Alteration intensity 

varies throughout the gabbro as well. Short intervals of a melagabbro were observed at 

34.7-36.1m in the core, which will be referred to as a clinopyroxenite. The upper and 

lower contacts with the surrounding gabbro are gradational. Clinopyroxenite consists of 

5-10% plagioclase, 50-75% clinopyroxene, 0-15% olivine, Fe-Ti oxides 10-15%, and 3-

5% pyrrhotite with trace chalcopyrite. From 51.8 m to 64.5 m, moderate to heavily 

disseminated sulfides occur, primarily pyrrhotite with minor amounts of chalcopyrite. A 

small anorthosite unit occurs at 90 metres depth within the gabbro and is only ~10 cm in 

length. From 87.5-88.1 m and 92.2-108.9 m alteration zones contain abundant calcite-

quartz veinlets and stringers consisting of epidote, pyrite, serpentine and chlorite. Minor 

amounts of bleaching are present within the zone as well as minor amounts of hematite 

alteration. Below the alteration zone is a thick interval of quartz syenite (108.9-139.05 m) 

and then a plagioclase rich diabase (139.05-151.5 m). A small interval of gabbro occurs 

from 151.5-153.3 m. The hole ends in plagioclase rich diabase. Stratigraphic column 

showing variations in mineralogy and alteration is illustrated in Figures 4, 5 and 6.    

 

 

 



 

Drill Hole CL-06-39 

 Drill hole CL-06-39 is a 163.1m long vertical drill hole that was drilled 

approximately 2000 m north of CL-06-16 (Figure 4.3). The significance of this hole is 

that it contains a ~70 m thick interval of ultramafic, the thickest ultramafic succession 

identified by Kodiak’s drill program. The upper ~27 m of the hole is mainly composed of 

a gabbro with grain sizes varying from medium to coarse grained and relatively consistent 

modal proportions of plagioclase (45-50%), clinopyroxene (40-45%,) and Fe-Ti oxides 

(2-7%). A few pegmatitic gabbros were also encountered within the first 27m, one at 4.1 

m and the other at 6.85 m. These pegmatites are different from the host gabbro in modal 

mineral abundances, with the pegmatite at 4.1m being composed of primarily of 

clinopyroxene (~65%) and plagioclase (~35%) and the pegmatite at 6.9m being 

composed of primarily of plagioclase (~65%) and clinopyroxene (30%). A small 60cm 

interval of dunite occurs at 20.3m within the gabbro and is strongly altered. The gabbros 

upper contact with the dunite is slightly chilled for 2cm downhole, where grain sizes 

change from <1mm at the contact to 2-8mm after the contact. A thick ultramafic interval 

was encountered from 27.7m to 97.45m and is primarily composed of olivine (60-90%), 

clinopyroxene (10-20%) and plagioclase (0-5%), varying between dunite, lherzolite and 

wehrlite. Rarely, plagioclase modal abundances reach ~10-15%, as such; some short 

intervals can be classified as troctolite (e.g. 83.9m). Iron-titanium oxides vary 

considerably throughout the ultramafic interval, with modal abundances ranging 

anywhere from trace amounts to 35% of a given interval. A short (40cm) interval of 

gabbro occurs within the ultramafics, with sharp contacts and abrupt changes in modal 

proportions, but magnetite seems to concentrate around the contacts. From 82.1-84.8m, a 

carbonate alteration zone is present, which occurs just before a small fault surface at 

85.7m. From 97.45-118.45m is composed primarily of various types of gabbros that can 

be rich in plagioclase, clinopyroxene, or Fe-Ti oxides. Each type of gabbro is generally a 

short interval (<20cm) and contacts appear to be gradational. Rare, thin ultramafic and 

oxide-rich ultramafic sections are also present within this interval. Two pegmatites occur 

within this interval, one at 100m, which is an anorthosite and another at 103.9m, which is 

an olivine gabbro. A magnetite rich (~70% Fe-Ti oxides) interval also occurs at 103.7m 

shortly before the pegmatite. After the varied gabbro interval, a uniform gabbro occurs 



 

until 122.95m, where an anorthosite is intersected, which appears to be highly altered. 

The lower contact of the anorthosite is gradational with a gabbro below at 125.9m, while 

the top contact of the anorthosite is sharp. The gabbro from 125.9-152.9m is similar to the 

uniform gabbro present above the anorthosite. At 152.9m, the lithology changes into an 

oxide-rich dunite, with Fe-Ti oxides composing 20-35% of the interval. This oxide-rich 

dunite, occurs until 156.9m where a sharp contact occurs with a gabbroic pegmatite and 

the pegmatite is only present for 20cm before the lithology changes back into a gabbro at 

157.2m. The gabbro occurs for 3m and then the unit changes into a syenite at 160.3m, 

which then ends the length of the drill hole at 163.05. Stratigraphic column showing 

variations in mineralogy and alteration is illustrated in Figures 4.7 and 8.    

 

 



 

 

Figure 4.4: Stratigraphic column of CL-06-16 showing variations in mineral proportions. 

 



 

 

Figure 4.5: Stratigraphic column of CL-06-16 showing variations in alteration. Grain 

sizes: Very fine (VF) = <0.8mm; Fine (F) = 0.8-1.5; Medium (M) = 1.5-3mm; Coarse (C) 

3-7mm; Very coarse = 7-12mm.  



 

 

 

Figure 4.6: Legend for stratigraphic columns in Figures 4, 5, 7 and, 8. 

 



 

 

Figure 4.7: Stratigraphic column of CL-06-39 showing variations in mineral proportions. 

 



 

 

Figure 4.8: Stratigraphic column of CL-06-39 showing variations in alteration. Grain 

sizes: Fine (F) = 0.8-1.5; Medium (M) = 1.5-3mm; Coarse (C) 3-7mm; Very coarse = 7-

12mm; Pegmatitic (P) = >12mm.  

4.6.3 Petrography of CL-06-16 



 

Gabbro 

Gabbroic units in CL-06-16 are primarily composed of plagioclase (25-50%) and 

clinopyroxene (20-55%), with variable amounts of olivine (0-10%). Plagioclase and 

clinopyroxene display subophitic textures and occasionally ophitic textures are present 

(Figure 4.9A,B). Inclusions of plagioclase are common in pyroxene and olivine 

throughout the entire section (Figure 4.9C).  Plagioclase grains are euhedral-subhedral 

and display a wide range of sizes, from 0.02-5mm. Alteration of plagioclase is also quite 

variable where some grains only show trace amounts of sericite alteration and others 

display 80% alteration (Figure 4.10). Other alterations of plagioclase are chlorite and 

possible epidote. In intervals with heavily disseminated sulfide, plagioclase occurs as 

inclusions within pyrrhotite (Figure 4.9D). Clinopyroxene ranges in size from 0.05-7mm 

and are subhedral-anhedral. Exsolution lamellas of ilmenite along cleavage planes are 

present in all clinopyroxene grains and clinopyroxene occasionally contains inclusions of 

magnetite and ilmenite. Alteration products of clinopyroxene include amphibole 

(actinolite), biotite, chlorite, serpentine, and fine grained uralitization (Figure 4.11). The 

majority of alteration is present along the edges of grains, and typically where amphibole 

is in contact with clinopyroxene, the amphibole is altered to biotite and subsequently to 

chlorite. Biotite is also present as fine grained alteration product in the cores of 

clinopyroxene. Olivine, when present, is subhedral, highly fractured and ranges in size 

from 0.1-2mm. Fine grained (< 0.3mm) inclusions of plagioclase and ilmenite occur in 

olivine implying that olivine is a late cumulus phase. Samples near the top of the hole 

only show weak alteration of olivine to serpentine, while further downhole, complete 

olivine alteration to serpentine is present (Figure 4.11). Actinolite alteration is 

occasionally present on the edges of serpentine as well. Fine grained pyrite, as well as 

magnetite, can be present along fractures in olivine. Carbonate alteration is present in the 

gabbro and its occurrence is very patchy and generally localized around clinopyroxene, 

suggesting that the carbonate is an alteration product of clinopyroxene (Figure 4.11).  

 Trace mineral phases that occur within gabbroic units include apatite, biotite, and 

amphibole. Biotite is present in three different forms; 1) corona around oxides, 2) 

interstitial grains to plagioclase and pyroxenes, and 3) poikilitic grains with inclusions of 

plagioclase and pyroxene (Figure 4.12A,B,C). Interstitial biotite grains are subhedral and 



 

< 0.4mm. Poikilitic grains are up to 5mm and contain < 1mm inclusions of euhedral 

plagioclase and subhedral pyroxene. Corona textured biotite is variable in thickness and 

may not always form a complete rim around the oxides. Total biotite content in gabbroic 

units can be up to 8%, but average is ~3%. Poikilitic amphibole also occurs with similar 

texture and appearance as the poikilitic biotite grains (Figure 4.12D). Apatite can be 

present up to 1% but typically occurs in trace amounts. Apatite grains are < 1.5mm but 

average ~0.2mm, are euhedral-subhedral, and occur interstitially to pyroxene and 

plagioclase (Figure 4.12E). 

Magnetite and ilmenite occur interstitially to silicates, comprising 2-12% of the 

gabbro and typically occur together as composite grains that are < 2.5mm. These 

composite grains are also found as inclusions within pyroxene and olivine. Two styles of 

exsolution are present within these composite grains, blebby exsolution where ilmenite 

exsolves to form a grain of its own on the edge of magnetite and trellis exsolution where 

ilmenite exsolves along a common plane (Figure 4.13 A,B). Magnetite always displays at 

least one style of exsolution but ilmenite can occur on its own but is not commonly 

observed. In sample CL-06-16-80.0, a graphic texture exists between ilmenite and 

feldspar, which likely indicates a eutectic crystallization of the two minerals (Figure 

4.13C,D). Pyrrhotite is the dominate sulfide present within the gabbroic units comprising 

1-25%. Detailed description of the disseminated sulfides is discussed below.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 4.9: Photomicrographs showing primary textures present in gabbro units in CL-06-

16. A) Subophitic texture occurring between clinopyroxene (Cpx) and plagioclase (Plag). 

An inclusion of Plag occurs in Cpx as well. Small grains of magnetite (Mt) occur on the 

edge of Cpx and have a thin corona of biotite (Bt). Sample CL-06-16-57.5. Cross 

polarized light (XPL). B) Subophitic texture occurring between Cpx and Plag. Interstitial 

Mt occurs between Plag grains. Sample CL-06-16-59.9. XPL. C) Olivine (Ol) containing 

an inclusion of Plag. Magnetite occurs around the edge of Ol and interstitial to Plag and 

Cpx. CL-06-16-8.9. XPL. D) Plagioclase inclusion within highly disseminated pyrrhotite 

(Po). Fine-grained Bt occurs interstitial to Plag. CL-06-16-52.5. XPL. 

 

 



 

 

Figure 4.10: Photomicrographs showing the range of alteration intensity demonstrated by 

plagioclase throughout the gabbro units in CL-06-16. A) Subophitic texture between Plag 

and Cpx. Plagioclase shows only trace amounts of alteration. Trace amounts of serpentine 

(Serp) are present with remnants of Cpx at its core. CL-06-16-56.3. XPL. B) Weak 

alteration of plagioclase with interstitial Bt and Mt between Plag and Cpx. CL-06-116-

58.6. XPL. C) Moderate alteration of Plag. CL-06-16-8.9. XPL. D) Strong alteration of 

Plag. CL-06-16-11.2. XPL. 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 

Figure 4.11 (previous page): Photomicrographs of alteration products of pyroxenes and 

olivine. A) Grain of Cpx that has an outer rim of amphibole alteration (Amp)  and 

occurring inwards from the rim is fine grain Bt alteration. CL-06-16-52.5. Plane polarized 

light (PPL). B) Strong alteration of Cpx to Amp on the edge and appears to penetrate into 

the core of Cpx. CL-06-16-11.2. XPL. C) Moderate Bt alteration of Cpx at the core and 

along the rim with a patch of chlorite (Chl) with small inclusions of Mt. CL-06-16-56.3. 

PPL. D) Clinopyroxene and Plag have a rim of actinolite (Act) and the core has been 

altered to a very fine grained brown mineral (?). CL-06-16-63.8. PPL. E) Serpentine and 

Chl alteration olivine. CL-06016-55.0. PPL. F) Patch of carbonate (Carb) alteration next 

to a Cpx grain. A fine grained network of Act occurs along the rim of the Carb alt. CL-

06-11.2. XPL.  

 

 

 

 



 

 

Figure 4.12: Photomicrographs of trace to minor mineral phases present in the gabbro. A) 

Partial Bt corona on grain of magnetite. CL-06-16-57.5. PPL. B) Interstitial Bt to 

plagioclase grains. CL-06-16-56.3. XPL. C) Poikilitic Bt with inclusions of Cpx, Plag, 

Po, and Mt. CL-06-16-47. PPL. D) Poikilitic amphibole with inclusions of Plag, ilmenite 

(Ilm) and Cpx. CL-06-15-52.5. XPL. E) Interstitial apatite (Ap) to plagioclase. Interstitial 

Mt also occurs in close proximity to Ap. CL-06-16-63.15. PPL.  



 

Clinopyroxenite 

 A small interval of clinopyroxenite consists primarily of clinopyroxene (50-75%) 

and lesser amounts plagioclase (5-10%), and olivine (0-15%). Clinopyroxene ranges in 

size from 0.3-7mm and is subhedral. Alteration of clinopyroxene is generally weak and 

consists of biotite starting to replace the edges of grains, with small patches of biotite 

occurring in the cores. Very fine grained (<0.3mm) inclusions of pyrite and ilmenite 

occur in clinopyroxene and ilmenite exsolution occurs along cleavage planes (Figure 

4.14A). Inclusions of altered olivine also occur in clinopyroxene (Figure 4.14B). 

Clinopyroxene and plagioclase display an ophitic texture (Figure 4.13C). Plagioclase is 

0.3-5mm, subhedral, and weakly-moderately altered to sericite. Anhedral inclusions of 

clinopyroxene and olivine occur in plagioclase (Figure 4.14D,E). Olivine is subhedral, 

highly fractured and ranges in size from 0.1-2mm. Very fine grained inclusions of 

ilmenite (< 0.4mm) occur in olivine as well as trace amounts of pyrite. Olivine is 

typically relatively unaltered, but some isolated grains have been completely replaced by 

serpentine and chlorite (Figure 4.14B). Olivine is only present in the interval from 34.7-

36.1m. Magnetite and ilmenite comprise 4-10% of the feldspathtic clinopyroxenite and 

are < 2.5mm in size.  

Apatite is present in trace amounts up to 2% in the feldspathtic clinopyroxenite 

where it ranges in size from 0.05-1.5mm and is euhedral-subhedral. Apatite grains are 

interstitial to plagioclase and clinopyroxene, but apatite also occurs as inclusions within 

plagioclase suggesting it is an early phase (Figure 4.14F).  

Similar to biotite in the gabbroic units, biotite in the clinopyroxenite occurs in 

trace amounts as coronas around oxides and as poikilitic grains with inclusions of 

plagioclase, oxides, and clinopyroxene. In the clinopyroxenite, magnetite, and ilmenite 

are commonly composite grains with two styles of exsolution. A rim of biotite is often 

found around these composite oxide grains. Up to 3% interstitial sulfides occur in the 

clinopyroxenite and predominantly consist of pyrrhotite with trace amounts of 

chalcopyrite, pentlandite, sphalerite, and pyrite. Sulfides are < 1.5mm with chalcopyrite 

occurring as very fine grained inclusions within pyrrhotite and pentlandite typically 

occurring as flame lamella in pyrrhotite and rare blocky form (Figure 4.13B). 

 



 

 

Figure 4.13: Photomicrographs of oxide and sulfide phases in the feldspathic 

clinopyroxenite.  A) Large trellis exsolution of ilmenite (Ilm) in Mt. Fine grained Po 

occurs near the edge of Mt. CL-06-16-35.7. RL. B) Trellis and blebby exsolution of Ilm 

from Mt. Grain of Po occurs on the edge of Ilm that contains inclusions of chalcopyrite 

(Ccp), sphalerite (Sp), pentlandite (Pn), and Py. CL-06-16-35.7. RL. C) Graphic texture 

occurs between an oxide (magnetite or ilmenite?) and feldspar. Blebby ilmenite 

exsolution occurs in the large grain of Mt. CL-06-16-80.0. Reflected light (RL). D) Same 

images as A, but in PPL. 



 

Mineralization 

 Sulfide mineralization occurs in two different styles: 1) fine- to coarse-grained 

blebby disseminations that grades into a net texture (Figure 4.15A,B), and 2) massive 

(Figure 4.15C). Fine to coarse grained blebby disseminated sulfides occur in a fine to 

medium grained gabbros. The upper contact of the mineralized interval is with a fine 

grained gabbro that gradational increases in sulfide percentage downhole. Initially the 

unit contains trace sulfides then local concentrations of patchy pyrrhotite (~20%) occur, 

followed by 10-15% disseminated sulfides for approximately 2m, then the gabbroic unit 

is crosscut by a syenite dyke. After the dyke, sulfides comprise 20-30% of the unit and 

form a net texture until the lower contact, which is defined by a 1cm thick band of 

pyrrhotite. After the pyrrhotite band, the rock is a fine grained gabbro that contains only 

trace amounts of sulfide. Massive sulfide mineralization has either sharp upper and lower 

contacts with a fine to medium grained gabbro that contain ≤ 5% fine grained 

disseminated sulfides or has a short interval of net-textured sulfides above hosted by a 

medium grained gabbro. 

Massive sulfide mineralization is primarily composed of pyrrhotite (~80%), with 

lesser amounts of chalcopyrite (2-10%), pentlandite (trace-3%), pyrite (trace), magnetite 

(5%), and ilmenite (trace), and sphalerite (trace). Pyrrhotite is massive and hosts all other 

minerals as inclusions. Chalcopyrite primarily occurs as anhedral inclusions within 

pyrrhotite that are ≤ 2mm (Figure 4.16A). In one instance, chalcopyrite occurs as a 4 mm 

wide veinlet crosscutting pyrrhotite and seems to be associated with a 5mm wide quartz 

veinlet that is also crosscutting pyrrhotite. Very fine grained (< 0.05mm) inclusions of 

sphalerite and pyrrhotite occur in both the chalcopyrite veinlet and in the anhedral 

chalcopyrite inclusions hosted by pyrrhotite (Figure 4.16A,B). Pentlandite occurs as 

flames in pyrrhotite and in a blocky form (Figure 4.16B,C). The blocky pentlandite is ≤ 

0.1mm and is generally, but not always concentrated around anhedral chalcopyrite, as 

well on the form of pentlandite chains. Unlike blocky pentlandite, Flame pentlandite has 

no strong association with chalcopyrite and is ≤ 0.02mm.  



 

 

 

 

 

 

 

 

 

 



 

Figure 4.14 (previous page): Photomicrographs of primary textures and secondary 

alteration in the feldspathic clinopyroxenite. A) Fine grained inclusions of pyrite (Py) in 

Cpx. The Py inclusions resemble the outline of a grain and therefore Cpx may have 

overprinted a Py grain. CL-06-80.0. XPL. B) Large grain of Cpx that contains inclusions 

of non-altered Ol and Ol that has been altered to Chl and Serp. Biotite alteration is also 

present near the rims of Cpx and throughout the core. CL-06-16-35.7. XPL. C) Ophitic 

texture between Cpx and Plag. CL-06-16-35.7. XPL. D) Inclusion of Cpx within Plag. 

CL-06-16-35.7. XPL. E) Inclusions of Ol in Plag. CL-06-16-35.7. XPL. F) Inclusion of 

subhedral Ap within Plag.  CL-06-16-80.0. XPL.  



 

Geochemistry 

 Rocks of the CLI are of alkaline to sub-alkaline affinity and follow a tholeiitic 

trend (Figure 4.19). Chondrite-normalized plots of unaltered fine grained gabbros within 

the CLI display a negative slope, with a moderate enrichment in the light rare earth 

elements (LREE) over the heavy rare earth elements (HREE); (Figure 4.20A). Both the 

unaltered and altered fine grained both have similar LREE enriched profiles with a 

positive Eu anomaly (Figure 4.20A). Primitive mantle normalized plots of the unaltered 

fine grained gabbros show a slight enrichment in Sr and Ti, likely due to Plagioclase and 

ilmenite respectively (Figure 4.20B). Both altered and unaltered gabbros show depletions 

in Th, U, and HREE. Altered fine grained gabbros are highly enriched in Pb compared to 

unaltered gabbros, and show moderate enrichments in Cs and Rb, while being slightly 

depleted in some LREE (Figure 4.20B). Pegmatites plotted on a chondrite normalized 

plot also follow the same trend as unaltered fine grained gabbros, except for one sample 

(CL-07-05-499) (Figure 4.21A). Primitive mantle normalized plots of the pegmatites 

exhibit similar patterns to those of the grained gabbros (Figure 4.21B). Only a few minor 

enrichments, such as Pb, Rb, Ba, and Cs are noted.  

Gabbroic rocks in the intrusion show similar SiO2 contents (39-45 wt%) with each 

other regardless of their relative position in drill core. Typically, the gabbros with higher 

SiO2 are a function of higher alteration present in the sample and Al2O3 also follows this 

trend. Magnetite and ilmenite are a direct control on the FeO and TiO2 content of 

gabbros. As units with higher FeO and TiO2 (15-18 and 2.6-4.2 wt%, respectively) 

contain 5-12% Fe-Ti oxides, while gabbros with lower amounts of Fe-Ti oxides (2-3%) 

have FeO and TiO2 contents of ~11 and ~1.5 wt%, respectively. Ultramafic rocks (dunite, 

clinopyroxenite) have MgO concentrations of 13-18 wt% and highly variable FeO and 

TiO2 (22-51 and 2-8 wt% respectively) contents controlled by Mag and ilmenite. 

Vanadium concentrations are highly variable, ranging from 50 ppm up to 2.3 wt% 

averaging ~500 ppm. Geochemical results from the preliminary sample set collected in 

February 2013 are presented in Appendix C.  

Nickel sulfide fire assay results of the samples collected in February 2013 

returned marginal results for PGE and Au. Highest Pd and Pt concentrations, 6.72 and of 

7.68 ppb respectively, occurred in a very coarse grained gabbronorite (CL-07-14-477.5). 



 

The highest Au content was observed in a clinopyroxenite (CL-07-05-50) 21.3 ppb. Full 

PGE and Au results are listed in Table 1.  



 

 

 

Figure 4.19: AFM diagram (after Irvine and Barager, 1971) of rocks from the Caribou 

Lake Intrusion show that they are of a tholeiitic composition and as the melt evolved, 

rocks move away from the FeO-MgO tie line.  F-MG Gabbro = Fine-medium grained 

gabbro. VCG-pegmatitic gabbro = Very coarse grained – pegmatitic gabbro. FeO
T
 = total 

Fe.  

 

 

 



 

 

Figure 4.20: A) Chondrite normalized plot comparing unaltered and moderately to highly 

altered fine grained gabbros. Both show the same negative slope and a positive Eu 

anomaly. B) Normalized primitive mantle plot comparing same unaltered and altered fine 

grained gabbros as in A. Both show similar trends in trace elements, except for Pb, which 

is highly enriched in the altered samples. After Sun and McDonough, 1989. 

 



 

 

Figure 4.21: A) Chrondrite normalized plot of unaltered fine grained gabbros compared to 

pegmatitic gabbros. All but one sample follows the same trend as the fine grained 

gabbros. The outlier (CL-07-05-499) is highly enriched in all REE and exhibits a negative 

Eu anomaly rather than a positive anomaly. B) Normalized primitive mantle plot for same 

units as in A. Pegmatites have a slight enrichment in Pb compared to the unaltered 

gabbros. Again, the one sample is highly enriched in its trace elements compared to 

unaltered gabbros. After Sun and McDonough, 1989. 
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Appendix 2: LA-ICP-MS run conditions

LA-ICP-MS instrument and data acquisition parameters for sulfide trace element analysis

Output Energy 100 mJ

Energy Density on sample 5 J/cm
2

Repition Rate 5 Hz

Pit Size 36, 48, or 66 µm

Ablation Cell Volume ~1.5 cm
3

Cell Gas Flow (He) 650 mL/min

Auxiliary Gas Flow 0.8 l/min Ar

RF Power 1450 kW

Detector Mode Dual 8 orders of magnitude linear dynamic range

Quadrupole Settline Time Dynamically set for a minimum of 1ms

Sweeps per Reading 1

Reading per Replicate 200 - 300

Replicates 1

Dwell Time per Isotope 10 ms

Points per Peak 1 per measurement

External Standard NIST610 glass; PO724; Chalcopyrite PGE blank

Spot Size 36, 48, or 66 µm

Isotopes Analyzed for Sulfide Analyses Si (29), S (33), Ca (43), V (51), Cr (53), Fe (57), Co (59), Ni (60), Cu (65), 

Zn (66), As (75), Se (82), Sr (88), Y (89), Zr (90), Ru (99), Ru (101), Rh 

(103), Pd (105), Pd (106), Ag (107), Pd (108), Cd (111), Sn (118), Sb (121), 

Te (125), Ta (181), Re (185), Os (189), Ir (193), Pt (195), Au (197), Tl 

(205), Pb (208), Bi (209)

Excimer 193-nm ArF laser RESOlution M-50

Thermo X Series II quadrupole ICP-MS

Data acquisition parameters



LA-ICP-MS instrument and data acquisition parameters for sulfide melt inclusions

Output Energy 150 mJ

Energy Density on sample ~7 -10 J/cm
2

Repition Rate 5 - 10 Hz

Pit Size Between 16 and 90 µm

Ablation Cell Volume ~1.5 cm
3

Cell Gas Flow (He) ~1 L/min

Auxiliary Gas Flow 1.03 l/min Ar

RF Power 1500 V

Detector Mode Dual 8 orders of magnitude linear dynamic range

Quadrupole Settline Time 2 ms

Sweeps per Reading 1

Reading per Replicate 200 - 300

Replicates 1

Dwell Time per Isotope 10 ms, except for Pd (105), Pd (106), Pd (108), Pt (195), Au (197) had 50 

ms dwell times

Points per Peak 1 per measurement

External Standard NIST610 glass; PO724

Spot Size Between 16 and 90 µm

Isotopes Analyzed Na (23), Mg (25), Si (28), S (32), Ca (40), Ti (49), Fe (56), Co (59), Ni 

(62), Cu (63), Cu (65), Zn (66), As (75), Se (82), Pd (105), Pd (106), Ag 

(107), Pd (108), Cd (114), Sn (120), Sb (121), Te (125),  Pt (195), Au 

(197), Pb (208), Bi (209)

Excimer 193-nm ArF laser GeoLasPro

Agilent 7500ce quadrupole ICP-MS

Data acquisition parameters



LA-ICP-MS instrument and data acquisition parameters for silictae melt inclusions

Output Energy 150 mJ

Energy Density on sample ~7 -10 J/cm
2

Repition Rate 5 - 10 Hz

Pit Size Between 24 and 120 µm

Ablation Cell Volume ~1.5 cm
3

Cell Gas Flow (He) ~1 L/min

Auxiliary gas flow 1.03 L/min Ar

RF power 1500 V

Detector Mode Dual 8 orders of magnetite linear dynamic range

Quadrupole Settline Time 2 ms

Sweeps per reading 1

Reading per replicate 200 - 300

Replicates 1

Dwell time per isotope 10 ms

Points per peak 1 per measurement

External Standard NIST610 glass

Spot Size Between 24 and 120 µm

Isotopes Analyzed B (11), Na (23), Mg (25), Al (27), Si (28), P (31), K (39), Ca (40), Ti (49), V (51), 

Cr (52), Mn (55), Fe (56), Co (59), Ni (62), Cu (63), Zn (66), As (75), Rb (85), Sr 

(88), Y (89), Zr (90), Nb (93), Mo (98), Ag (107), Sn (120), Sb (121), Cs (133), Ba 

(138), La (139), Ce (140), Pr (141), Nd (143), Sm (147), Eu (153), Gd (157), Tb 

(159), Dy (163), Ho (165), Er (166), Tm (169), Yb (172), Lu (175), Hf (178), Ta 

(181), W (182), Au (197), Pb (208), Bi (209), Th (232), U (238)

Data acquisition parameters

Agilent 7500ce quadrupole ICP-MS

Excimer 193-nm ArF laser GeoLasPro



LA-ICP-MS instrument and data acquisition parameters for fluid inclusions

Output Energy 150 mJ

Energy Density on sample ~7 -10 J/cm
2

Repition Rate 5 - 10 Hz

Pit Size Between 16 and 60 µm

Ablation Cell Volume ~1.5 cm
3

Cell Gas Flow (He) ~1 L/min

Auxiliary gas flow 1.03 l/min Ar

RF power 1500 V

Detector Mode Dual 8 orders of magnetite linear dynamic range

Quadrupole Settline Time 2 ms

Sweeps per reading 1

Reading per replicate 200 - 300

Replicates 1

Dwell time per isotope 10 ms; except for Ni (62), As (75), Ta (181) at 30 ms

Points per peak 1 per measurement

External Standard NIST610 glass

Spot Size Between 16 and 60 µm

Isotopes Analyzed Na (23), Mg (25), Al (27), Si (28), P (31), K (39), Ca (40), Ti (49), V (51), 

Mn (55), Fe (56), Co (59), Ni (62), Cu (63), Zn (66), As (75), Zr (90), Nb 

(93), Ag (107), Sn (120), Cs (133), Ba (138), La (139), Hf (178), Ta (181), 

W (182)

Data acquisition parameters

Agilent 7500ce quadrupole ICP-MS

Excimer 193-nm ArF laser GeoLasPro



LA-ICP-MS instrument and data acquisition parameters for apatite

Output Energy 100 mJ

Energy Density on sample 5 J/cm
2

Repition Rate 5 Hz

Pit Size 66 µm

Ablation Cell Volume ~1.5 cm
3

Cell Gas Flow (He) 650 mL/min

Auxiliary Gas Flow 0.8 L/min Ar

RF Power 1450 kW

Detector Mode Dual 8 orders of magnitude linear dynamic range

Quadrupole Settline Time Dynamically set for a minimum of 1ms

Sweeps per Reading 1

Reading per Replicate 200 - 300

Replicates 1

Dwell Time per Isotope 10 ms

Points per Peak 1 per measurement

External Standard NIST610 glass; Durango apatite

Spot Size 66 µm

Isotopes Analyzed for Sulfide Analyses Na (23), Mg (24), Al (27), Si (29), P (31), K (39), Ca (43), V (51), Cr (53), 

Mn (55), Fe (57), Co (59), Ni (60), Cu (65), As (75), Rb (85), Sr (88), Y 

(89), Zr (90), Nb (93), Ag (107), Sb (121), Cs (133), La (139), Ce (140), Nd 

(146), Sm (147), Eu (153), Tb (159), Dy (163), Lu (175), Hf (178), Ta 

(181), Pb (208), Bi (209), Th (232), U (238)

Data acquisition parameters

Excimer 193-nm ArF laser RESOlution M-50

Thermo X Series II quadrupole ICP-MS



Appendix 3: February 2013 sample list

Sample Description

CL-07-01-8 Very coarse grained leucogabbro

CL-07-01-115.7 Very coarse grained gabbro, 1% Po

CL-07-01-167.8 Pegmatoidal gabbro, shows signs of fluid interactment

CL-07-01-322.4 Fine-medium grained gabbro, 1% Po, magnetite rich

CL-07-01-325.6 Fine grained gabbro

CL-07-01-354.2 Medium grained gabbro

CL-07-01-371.2 Medium grained gabbro, Tr Po, 10% Mag

CL-07-01-373 Coarse grained gabbro, shows signs of serpentinization, Tr Po

CL-07-01-380 Coarse grained gabbro, shows signs of serpentinization, Tr Po

CL-07-01-422.9 Fine grained gabbro, 1% Po, magnetite rich

CL-07-02-347 Medium grained gabbro, highly serpentinized?

CL-07-09-169 Fine-medium grained gabbro

CL-07-05-11 Medium grained gabbro, pyroxene rich

CL-07-05-14 Coarse grained gabbro, Tr Po blebs

CL-07-05-30.2 Coarse grained gabbro

CL-07-05-50 Very coarse grained gabbro, 10-15% 1-2cm blebs of Po, Cp concentrated around Po grains

CL-07-05-105 Very coarse grained leucogabbro

CL-07-05-117 Magnetite rich ultramafic rock, 1% Po

CL-07-05-142.5 Gabbro, 1% Po

CL-07-05-144 Magnetite rich ultramafic rock (pyroxenite?), 1% Po

CL-07-05-499 Very coarse grained gabbro, < 1% Po

CL-07-05-675 Magnetite rich ultramafic, Mag crystals look like a cumulate texture in areas

CL-07-07-101.1 Medium grained leucogabbro, Tr Po

CL-07-07-17 Medium-coarse grained leucogabbro, Tr Po

CL-07-07-450 Coarse grained gabbro

CL-07-07-483 Very coarse grained leucogabbro, Tr Po

CL-07-14-323.5 Very coarse grained gabbro

CL-07-14-477.5 Coarse grained gabbro, 5-10% Po, Cp concentrated on rims of Po

CL-07-15-145 Extemely coarse grained norite?



Appendix 4: Summer 2013 sample list

Sample Description

CL-06-16-8.9 Gabbro. Grains ≤4mm. Trace pyrrhotite. 5-10% < 2mm interstitial magnetite.

CL-06-16-11.2 Gabbro. Grains ≤4mm. Trace pyrrhotite. 5-10% < 4mm interstitial magnetite. 

CL-06-16-14.1 Syenite vein crosscutting gabbroic units

CL-06-16-33.7 Gabbro. Grains <2mm. Trace pyrrhotite. 5% interstitial magnetite

CL-06-16-35.7 Pyroxenite. Grains <12mm. 2% pyrrhotite. 10-15% <6mm interstitial magnetite

CL-06-16-47.0 Gabbro. Grains <3mm. 5% pyrrhotite. 5% < 3mm interstitial magnetite.

CL-06-16-47.6 Gabbro. Grains <3mm. 25% pyrrhotite. 5% < 3mm interstitial magnetite. 

CL-06-16-51.2 Syenite vein crosscutting gabbroic units

CL-06-16-52.5 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-55.0 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-56.3 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-57.5 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-58.6 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-59.9 Gabbro. Grains <2mm. 2% pyrrhotite. 5-10% interstitial <2mm magnetite. 

CL-06-16-61.7 Gabbro with highly disseminated pyrrhotite (20-30%). Grains ≤5mm. 10% interstitial magnetite.

CL-06-16-63.15 Gabbro, Grains <3mm. Trace pyrrhotite. 5% <2mm interstitial magnetite

CL-06-16-63.8 Gabbro. Grains <15mm. Trace pyrrhotite. 5%, <5mm interstitial magnetite

CL-06-16-65.7 Quartz syenite vein crosscutting gabbro

CL-06-16-71.15 Gabbro. Grains <3mm. 5-10% pyrrhotite. 5%, <2mm interstitial magnetite

CL-06-16-78.75 Gabbro. Grains <15mm. Trace pyrrhotite. 5% <4mm interstitial magnetite

CL-06-16-80.0 Gabbro. Grains <15mm. Trace pyrrhotite. 5% <4mm interstitial magnetite

CL-06-16-83.5 Gabbro. Grains <2mm. Trace pyrrhotite. 5% interstitial magnetite

CL-06-16-84.6 Massive pyrrhotite

CL-06-16-90.0 Gabbro. Grains <3mm. Trace pyrrhotite. 5%, <2mm interstitial magnetite, locally rich in plagioclase

CL-06-16-103.0 Altered gabbro, bleaching and abundant epidote and chlorite stringers throughout

CL-06-16-152.45 Gabbro. Grains <1mm. Trace pyrrhotite. 5% interstitial magnetite

CL-06-16-155.6 Quartz syenite vein crosscutting gabbro

CL-06-16-170.6 Carbonate altered diabase

CL-06-39-4.1 Pegmatitic gabbro. Grains <60mm. 10% 5-20mm interstitial magnetite

CL-06-39-6.85 Pegmatitic gabbro. Plagioclase, 30%, 5-25mm. Pyroxene, 60%, 10-60mm. Magnetite, 10%, 7-12mm.

CL-06-39-10.98 Gabbro, coarse grained. Plagioclase , 30-40%, 3-7mm. Pyroxene, 40%, 4-7mm. Magnetite, interstitial, 20%, 3-6mm.

CL-06-39-17.2 Gabbro. Grains ≤3mm. Trace pyrrhotite. 5-10% < 4mm interstitial magnetite. 

CL-06-39-20.35 Ultramafic. <5%, 1-3mm Plag. Highly serpentinized, formerly dunite?

CL-06-39-32.21 Feldspathic ultramafic. 10% plagioclase, <4mm. 20% interstitial magnetite, <8mm. Highly serpentinized, formerly dunite?

CL-06-39-32.82 Ultramafic. 5% plagioclase, <4mm. 20% interstitial magnetite, <8mm. Highly serpentinized, formerly dunite?

CL-06-39-33.28 Ultramafic. Trace plagioclase, <4mm. 15% interstitial magnetite, <8mm. Highly serpentinized, formerly dunite?

CL-06-39-47.36 Pegmatitic gabbro. Plagioclase, >15mm, 60%. Pyroxene, <25mm, 30%. Biotite, 5mm, 2-4%.

CL-06-39-57.38 Gabbro. Grains ≤3mm. Trace pyrrhotite. 5-10% < 4mm interstitial magnetite. 

CL-06-39-60.23 Feldspathic ultramafic. 15-20% plagioclase, <5mm. 20% interstitial magnetite, <7mm. Highly serpentinized, formerly dunite?

CL-06-39-63.88 Feldspathic ultramafic. 15-20% plagioclase, <5mm. 20% interstitial magnetite, <7mm. Highly serpentinized, formerly dunite?

CL-06-39-83.9 Highly altered ultramafic. Olivine grains altered to a cream colour (?)

CL-06-39-94.95 Feldspathic ultramafic. 15-20% plagioclase, <5mm. 20% interstitial magnetite, <7mm. Highly serpentinized, formerly dunite?

CL-06-39-100.0 Pegmatitic anorthosite. Plagioclase, >30mm, 90%. Magnetite, 6-12mm, 5%. Biotite, 10mm, 2-3%.



CL-06-39-103.55 Gabbro. Grains <8mm. Magnetite, interstitial, 10%, <8mm. 

CL-06-39-103.7 Feldspathic ultramafic. 15-20% plagioclase, 3-10mm. 10% interstitial magnetite, <5mm. 

CL-06-39-103.91 Pegmatitic anorthosite. Plagioclase, >30mm, 90%. Magnetite, 6-12mm, 5%. Biotite, 10mm, 2-3%.

CL-06-39-105.83 Gabbro. Grains <5mm. Magnetite, interstitial, 15%, <3mm. 

CL-06-39-108.0 Feldspathic ultramafic. 15-20% plagioclase, 3-10mm. 10% interstitial magnetite, <5mm. 

CL-06-39-118.75 Gabbro. Grains 5-12mm. Magnetite, interstitial, 10%.

CL-06-39-122.3 Diorite. Pyroxene, 5-10%, interstitial, 2-5mm. Magnetite, interstitial, <3mm, 2%.

CL-06-39-125.0 Anorthosite. Grains 3-15mm.

CL-06-39-128.4 Gabbro. Grains <4mm. Magnetite, interstitial, 10%.

CL-06-39-132.47 Pegmatitic Gabbro. Plagioclase, 6-20mm, 40%. Pyroxene, 8-80mm, 40%. Magnetite, 4-15mm, 10%.

CL-06-39-133.4 Pegmatitic Gabbro. Plagioclase, 6-20mm, 40%. Pyroxene, 8-80mm, 40%. Magnetite, 4-15mm, 10%.

CL-06-39-150.08 Gabbro. Grains <8mm. Magnetite, interstitial, <4mm, 5-10%.

CL-06-39-154.16 Feldspathic ultramafic. Plagioclase 10-15%, 2-6mm. Magnetite, 20%, 2-5mm. 

CL-06-39-156.97 Pegmatitic gabbro. Plagioclase and pyroxene, up to 5cm. Magnetite, interstitial, 5%, <5mm. 

CL-07-01-9.1 Pegmatitic gabbro. Graphic texture between pyroxene and magnetite. Subophitic textures.

CL-07-01-29.1 Gabbro. Grains < 12mm. Plagioclase is altered to a cream colour rather than being white like in other units. 

CL-07-01-50.2 Feldspathic ultramafic. Plagioclase, 10-15%, 1-4mm. Ophitic textures. 

CL-07-01-52.3 Gabbro. Grains < 12mm. Magnetite, 2-10mm, 10-15%. Trace amounts of interstitial quartz.

CL-07-01-55.9 Gabbro. Grains < 12mm. Magnetite, 2-10mm, 10-15%. Trace amounts of interstitial quartz.

CL-07-01-67.5 Pegmatitic gabbro. Plagioclase and pyroxene, up to 5cm. Magnetite, interstitial, 20%, 2-20mm. 

CL-07-01-76.9 Pegmatitic gabbro. Plagioclase and pyroxene, up to 5cm. Magnetite, interstitial, 20%, 2-20mm. 

CL-07-01-79.3 Gabbro. Plagioclase and pyroxene 3-12mm. Magnetite, 2-10mm, 10-15%. 2% biotite, associated with magnetite. 2% pyrrhotite

CL-07-01-95.9 Pegmatitic gabbro. Plagioclase and pyroxene, up to 5cm. Magnetite, interstitial, 20%, 2-20mm. 

CL-07-01-101 Plagioclase rich gabbro. Plagioclase, 50-60%, 3-12mm. Pyroxene, 30-35%, 2-8mm. 

CL-07-01-113.8 Plagioclase rich gabbro. Plagioclase, 50-60%, 3-12mm. Pyroxene, 30-35%, 2-8mm. Trace amounts of pyrrhotite and biotite.

CL-07-01-117.2 Pyroxenite. Grains <10mm. Magnetite, 1-5mm, 20%, interstitial.

CL-07-01-124.3 Gabbro. Grains <4mm. Magnetite, interstitial, 20%.

CL-07-01-127 Pegmatitic gabbro. Plagioclase and pyroxene <70mm. Magnetite, 2-25mm, 10%. Trace apatite?

CL-07-01-128.1 Gabbro. Grains <10mm. Magnetite, interstitial, 10-20%.

CL-07-01-134.3 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-140 Gabbro. Grains <4mm. Magnetite, interstitial, 25-30%.

CL-07-01-145.7 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-156.3 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-166.4 Gabbro. Grains <10mm. Magnetite, interstitial, 10-20%.

CL-07-01-171.5 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-173.9 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-180.1 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-203.6 Gabbro. Grains <10mm. Magnetite, interstitial, 10-20%.

CL-07-01-222.1 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-233 Silicified gabbro?

CL-07-01-249.9 Gabbro. Grains <8mm. Magnetite, 1-4mm, interstitial, 5-10%. Trace biotite.

CL-07-01-251.6 Granitic vein crosscutting gabbros. "sugary" appearance.

CL-07-01-271 Gabbro. Grains 3-15mm. Magnetite, 1-10mm, 15-20%.

CL-07-01-275.7 Pegmatitic gabbro. Plagioclase and pyroxene 10-50mm. Magnetite, 2-20mm, 20%. Trace biotite.

CL-07-01-277.4 Gabbro. Grains <8mm. Magnetite, 1-4mm, interstitial, 5-10%. Trace biotite. Trace quartz.

CL-07-01-287.1 Gabbro. Grains <8mm. Magnetite, 1-6mm, interstitial, 15%. 



CL-07-01-308.8 Gabbro. Grains <8mm. Magnetite, 1-6mm, interstitial, 15%. Magnetite also occurs as bands across the sample.

CL-07-01-327.3 Gabbro. Grains <3mm. Magnetite, 10-15%.

CL-07-01-329 Magnetitite. 50-70% Magnetite, 1-6mm, forming a net texture.

CL-07-01-367 Magnetitite. 50-70% Magnetite, 1-6mm, forming a net texture.

CL-07-01-381.7 Pegmatitic gabbro. Plagioclase and pyroxene 8-35mm. Magnetite, 8-20mm, 10-15%. Trace biotite.

CL-07-01-411.6 Gabbro. Grains <20mm. Magnetite, 1-10mm, 15%. Trace apatite.

CL-07-01-429.8 Granitic package at bottom of hole. Quartz syenite.

CL-07-11-494.6 Morose granite. Weakly foliated. Locally megacrystic

CL-07-14-107.8 Whiteman Lake quartz syenite

CL-07-14-208.9 Whiteman Lake quartz syenite

CL-06-44-58.8 Leucoferrodiorite

CL-06-50-150 Hearne granite

GLG Grace Lake granite

CL-06-35-56.36 Burwash sediments

CL-06-01-18.8 5-10% disseminated pyrrhotite. Hosted in 2-8mm gabbro.

CL-06-01-22.0 10-15% disseminated pyrrhotite. Pyrrhotite has been partial replaced by pyrite, 10-15%. 2% chalcopyrite. Hosted in 5-15mm gabbro.

CL-06-01-22.5 20-25% disseminated pyrrhotite. 2% chalcopyrite. Hosted in 5-15mm gabbro.

CL-06-05-75.1 10-15% disseminated pyrrhotite, <2mm. Hosted in <3mm gabbro.

CL-06-05-77.72 10-15% disseminated pyrrhotite, <2mm. Hosted in <3mm gabbro. 3mm band of chalcopyrite and pyrrhotite crosscutting gabbro.

CL-06-05-81.2 Massive Pyrrhotite. Magnetite, 10%,1-4mm. Chalcopyrite, 2%,<2mm. 

CL-06-05-81.6 Massive Pyrrhotite. Magnetite, 10%,1-4mm. Chalcopyrite, 2%,<2mm. Two bands of Chalcopyrite present.

CL-07-09-57 Fine grained gabbro. Assay results from Kodiak indicate 118.4 ppb Pt + Pd

CL-07-09-60 Fine grained gabbro. Assay results from Kodiak indicate 214.1 ppb Pt + Pd



From  To Lithology Description Structure (Lwr Ctc Described) Alterations

0.00 2.00
Qtz (5-12mm, 10%) Feld (7-15mm, 40%) Amp (3-

15mm, 5-10%) Plag (5-10mm, 40%)

Sharp increase in mafic contents. From 5-10% above ctc to 

30% below. 

2.00 2.60

Qtz (5-12mm, 5-10%) Feld (7-15mm, 35%) Amp (3-

15mm, 10-30%) Plag (5-10mm, 35%). Amp % 

decreases to 10% 30cm after upr ctc and then 

increases to 25% 10cm above lwr ctc. 

Decrease in grain size along ctc (Amp 3-5mm, feld/plag/qtz 

1-4mm) chilled ctc. Also have a concentration of mafics 

along lwr ctc.

2.60 4.06

Light grey gabbroic unit. Plag (intersital, 35-45%) 

Pyx (Seem interconnected, 40-45%) Mag (Intersital, 

5%-10%). All grains <2mm. @3.75m increased % of 

Mag for 10 cm to 10-15%. 

Sharp, 5% Po concentrated around ctc. No change in grain 

size observed along ctc. 

4.06 4.55

Possible intrmediate dyke? Or could just be an 

altered version of gabbro above. 2-3mm feld grains 

(40%) in groundmass along with 1-3cm feld grains 

(20%). Could just be plag w/ potassic alteration.

Mafic unit maybe slightly chilled, difficult to observed 

though. 2% Py around ctc. 

4.55 5.14 Same unit as from 2.6-4.06 Ctc core piece not present in core.

Appendix 5: CL-06-16 drill log



5.14 5.50 same unit as 4.06-4.55. Ctc core piece not present in core.

5.50 7.90

Plag (interstial, 30-35%) Pyx (seem interconnected, 

45-55%) Mag (interstial, 5-15%). All grains <3mm. 

Appearance of light green 1mm rectangular crystals 

@6.5m, alt product?

Ctc core piece not present in core.
Epd? Chl? ; White 

mineral; Serp

7.90 8.15
Granitic Pegmat section of grains upto2-3cm. Qtz 

(10-20%) Feld (45%) Amp (20%) Plag (10%)
Ctc core piece not present in core.

8.15 9.45

Plag (interstial, 1-3mm, 30-40%) Pyx (seem 

interconnected, 1-4mm, 45-50%) Mag (interstitial, 5-

10%, <2mm)

Sharp ctc, slight grain size change of granitic unit below 

from 4mm at ctc to 5-15mm after ctc, slight chilled ctc.
Serp; pot; Epd; Chl

9.45 9.75 Same unit as 7.9-8.15. Granitic Pegmat.
Band of black mineral (Amp) along ctc and 5% pot alt of 

mafic for 1-2cm after ctc. No chilling observed.



9.75 9.86 Same unit as 8.15-9.45. 1-4mm gabbroic rock.
Sharp, no change in grain size in either unit. 10% pot alt of 

mafic above ctc for 1-2cm.
Pot

9.86 10.36

Granitic unit with similar mineral percentages from 

pegmatitic unit before (7.9-8.15). Grain sizes are 

smaller however and increase from the centre of the 

unit outward towards contacts. In centre grains are 1-

4mm and increase outwards to 6-10mm. 

Ctc core piece not present in core.

10.36 11.67

Plag (interstial, 30-40%, 1-5mm) Pyx (seem 

interconected, 40-50%, 3-10mm, mainly 3-6mm 

grain though) Bt (trace) Mag (interstial, 5-10%, 

<4mm) 

Gradational ctc over 10cm where grain size changes from 1-

6mm down to <3mm.
Epd

11.67 13.80

Plag (Interstial, 35-45%, 1-3mm) Pyx (seem 

interconected, 1-3mm, 40-50%) Mag (interstial, 

<5%, <2mm) 5cm granitic pegmatite @12.14.

Sharp unchilled ctc Epd

13.80 14.80

Granitic interval similar to 7.9-8.15. Amp content is 

apx 10% at top of unit and gradationally increases 

downhole to apx 20%. Grains are 0.5-2cm. 

3cm concentration of Amp along ctc, after Amp is a 2mm 

band of <2mm plag/feld, then sharp ctc w/ mafic unit below.



14.80 34.72

All grains are <2mm. Plag (interstial, 30-40%) Pyx 

(seem interconnected, 45-50%) Mag (interstial, 5-

10%). @25.41-26.0 change in grain size to <4mm 

(same mineralogy) change is gradational over 5cm 

and change back into <2mm grains is also gradational 

over 5cm. 1cm syenitic vn @ 25.1 & 31.0. 

Fracs are present above ctc in unit spaced 1cm apart and do 

not extend below ctc. Moving across ctc, grains size 

increases. Trace amts of Po are in the area of the ctc.

Epd/Chl?

34.72 36.07

Plag (interstial, 10-15%, 4-6mm) Pyx 

(interconnected, 70%, 4-12mm) Bt (possibly in 

fractures?) Mag (Interstial, 10-15%, <6mm) 

Sharp ctc, no chilling or gradation in grain size/mineralogy 

observed.

36.07 49.85
All grains <3mm. Plag (interstial, 40%) Pyx (seem 

interconnected, 50%) Mag (Interstial, 5%) 

Near Ctc highlyfractured w/ serp along them. Core piece 

not present with actual ctc.
Chl; Epd; Serp

49.85 51.77
Syenitic unit. Feld (60%) Qtz (10-20%) Plag (10-

20%) Amp (10-20%). All grains <4mm. 
Ctc core piece not present in core. Chl

51.77 59.08

Plag (interstial, 30%, <4mm) Pyx (seem 

interconnected, 40%, 3-5mm) Mag (interstial, 

<5mm, 10-15%). Gradational change to fine grained 

interval (<3mm grains) from 54.9-55.1. 1cm syenitic 

Vn @58.3m with a concentration of Amp along upr 

and lwr ctc w/host rock. Bottom 20cm of unit, Mag 

coarsens to grain sizes 4-7mm.

Gradational decrease in grain size from above to below ctc. 

Also have a drastic decrease in Po% from 30% down to 2-

3%.

Serp; Epd; Amp/Chl



59.08 61.20
All grains <2mm. Plag (interstial, 30-40%) Pyx 

(seem interconnected, 50%) Mag (interstital, 5-10%)

Ctc marked by drastic increase in sulphides from 5% to 

20% below.
Chl;Epd

61.20 62.15

Plag (interstial, 2-3mm, 30%) Pyx (seem 

interconnected, 40%, 2-4mm) Mag (Interstial, 

<4mm, 5-10%) Short interval of coasrening from 

61.75-62.15 where grains become apx 6mm.

Ctc marked by a 1cm band of Po after which sulphides % 

drop to trace amounts after ctc. Grain size also decreases 

after ctc to <3mm.

Epd

62.15 64.55

Plag (interstial, <3mm, 30-40%) Pyx (seem 

interconnected, 45-50%, <3mm) Mag (interstial, 5%, 

<2mm) Coarse interval from 63.8-64.01 where grains 

are <14mm. At top and btm of coasre section there is 

an appearance of 4mm Po. @62.75 10cm granitic vn. 

Ctc sharp, no evidence of chilling Chl/Epd; Serp

64.55 66.39
Syenitic to granitic unit. 2-4mm grains of Feld 

(60%), Plag(10-15%), Qtz (10-15%), Amp (10%). 

Ctc seems to be brecciated with a concentration of chl 

strings along and near ctc.
Qtz

66.39 68.80

Uniform unit. Plag (interstial, <2mm, 30-40%) Pyx 

(seem interconnected, <3mm, 45-55%) Mag 

(Interstital, 5-10%, <2mm). 

Ctc marked by appearance of disseminated sulphides (10%) Chl/Epd; Serp



68.80 72.00
Same mafic unit as above but contains 5-10% Po and 

Tr Ccp. 

Ctc marked by 10cm syenitic vn and after vn have decrease 

in Po to Trace amounts
Chl/Epd

72.00 78.75 Same unit as 66.39-68.8m
Ctc, gradual increase in grain size over 5-10cm and 

separated by 4-5cm band of Po.
Chl/Epd

78.75 80.80

Plag (interstial, 4-15mm, 45%) Pyx (seem 

interconnected, 4-12mm, 45-50%) Mag (interstial, 5-

10%, 4mm) 

Ctc not in core but above ctc have qtz vnlets and fracs near 

base of unit for 5cm and then have abrupt change in fine 

grained rock below.

Chl/Epd

80.80 84.40

Plag (interstial, 30-40%, <2mm) Pyx (seem 

interconnected, 40-50%, <2mm) Mag(interstial, 5-

10%, <2mm) Sloight coasening @ 83.8 for 5cm 

where grains become 4-5mm and sulphides increase 

to 10% and <6mm. 

Ctc marked by appearance of massive sulphides Chl; Epd

84.40 84.84

Massive sulphide. 15cm of massive Po and then 

transitions into a net texture (30% Po) within a mafic 

host rock (4-5mm grains and similar mineralogy to 

unit above)

Ctc marked by dissapeance of sulphides and decrease in 

grain size over 5cm.



84.84 85.50 Same unit as 80.8-84.4m.
Core piece not there, but change seems to be abrupt change 

in grains size.
Chl/Epd

85.50 86.55

Plag (interstial, 30-40%, 2-5mm) Pyx (seem 

interconnected, 4-10mm, 45-55%) Mag (interstial, 

5%, <3mm) 

Ctc, dissapearance of dissem sulphides and decrease in grain 

size. Have bands of Po occurring close to lwr ctc.
Chl/Epd

86.55 87.50
All grains <2mm. Plag (interstial, 30-40%) Pyx 

(seem interconnected, 50%) Mag (interstital, 5-10%)
Ctc marked by appearance of carb/qtz vns White minerl

87.50 88.13

Carb/qtz veins/Alteration zone. Entire interval looks 

bleached and chloritized. Unit would of likely been 

mafic rock present above as some primary textures 

are faintly visable. 

Ctc, out of veining and into a <2mm mafic rock. Serp, Chl, Pot

88.13 92.15

Plag (interstial, 35-45%, <3mm) Pyx (seem 

interconnected, 50-55%, <3mm). Highyl altered to 

serp/chl until 89.4 where slip surfaces are 10cm 

apart. Rock becomes more competent until end of 

unit with slip surfaces 30cm apart. 

Ctc marked by appearance of carb/qtz vns. Have a Py/Chl; 

stringer along ctc.
Pot; Serp/chl



92.15 106.65

Carb/qtz veining/stringers which are spaced every 5-

10cm. Alteration Zone, original host rock appears to 

be similar to 88.13-92.15. 92.4-93.8 and 98.0-

101.9m. have a white cubic mineral (Mag alt?)occurs 

about 10%. @101.5 have a colour change of the unit 

from a slght green colour to a light grey for apx 

15cm. also occurs at 102.9.  

Ctc marked by an overall chnage oc colur (alteration?) to 

unit. Changes from a greyish/green colour to a tan colour 

below.

Epd, Chl, Serp, 

bleaching, Fe staining, 

Pot

106.65 108.90

Tan coloured alteration of same mafic unit above in 

alteration zone. Plag becomes more of a creamy 

colour (sericite alt?) Alteration overprints much of 

unit so difficult to tell mineral %. Carb/qtz 

strings/veinlets spaced apx 10cm apart, usually <1cm 

thick.

Sharp ctc w/ syentitic unit below. 
Hematite, bleaching, 

Chl/Epd. Fe staining

108.90 139.05

Syenitic unit, possibly bleached until 118.9m. All 

grains are <5mm. Feld (60-70%, possible zoning of 

feld grains) Qtz (10-20%) green mineral (Epd?) 

(10%) Brown minerla (5%). Carb vnelts 3-15mm 

thick spaced 15cm apart.  @135-136.6 have carb 

vnlets 4-20mm thick and highly concentrated in this 

interval. Possible niccolite (according to old log) in 

vn at 135.15. @118.7 have appearance of black 

intersital minerla, alt product of bt to chl?

Very sharp ctc, no chilling. Have a clay seam along ctc. Bleaching, Chl, Epd

139.05 151.50

Diabase? 139.05-143.36, tan colour to interval. Have 

a gradational colour change over 10-15cm where 

colour changes to a dark grey. 150.6-151.5 transition 

back into tan colour. Magnetic.

Ctc marked by increase in grain size. 

151.50 153.30

Grain are <1mm, difficult to tell % of plag and pyx 

due to tan alt colour. Magnetic. Tan colour occurs 

for 25cm after upr ctc then turns into a grey coloured 

unit. 

Sharp ctc w/ syentitic unit below, marked by a carb-qtz 

vnlet.

Epd, Hematite, 

bleaching?



153.30 157.90

Similar mineralogy to 108.9-139.05. Less Epd in this 

unit however (5%). 2cm carb vnlet @154 & 1cm 

vnlet @155. 

Sharp ctc, no chilling observed Chl, Epd, Sericite

157.90 161.30

Diabase, tan colour from upr ctc down to 158.6, and 

then changes to a grey colour. Possible visicles 

wfilled with feld? Qtz? 10% and 1-3mm.

Sharp ctc, no chilling observed Epd

161.30 167.30

Possibly the same unit as above but grain sizes are 

somehwhat Distinguishable, <1mm. White mineral 

present (replacemnt mineral of Mag??) its cubic. 5% 

of those vesicle filled feld/qtz? 10cm carb vn 

@163.7. and 1-3mm carb stringers every 5-10cm. 

Unit coarsens @166.9 to 2-4mm grains, alterations 

still present. 

Ctc core piece not present in core.
Bleaching? Fe staining, 

Hematite

167.30 170.70

Same as 158.5-161.3. grey colour. Carb vns present 

throughout unit. Ribbon texture of carb vns present 

@168.5. 

Fe staining



Alt Description Sulphides Sulph Description Samples

2.15m

Po Interstial, 1-2%, <1mm 2.85m

Py; Ccp

Trace for both, mainly 

concentrated around upr 

and lwr ctc.



Epd/Chl strings spaced 20cm apart. @6.6m patchy 

light green alteration, epd? White mineral (clay?) 

occurs along fracs. @6.91 slip surface with serp and 

white mineral along it.

Po; Ccp; Py

Po: 2%, interstial, <2mm 

grains. Ccp+Py: occur 

along fracs w/white 

mineral, <1mm grains.

6.4m

Slip surface @9.1m, with serp along it. 1cm into mafic 

after ctc have potassic alt of plag affecting 30% of 

grains. Epd: stringers spaced every 15-20cm. Chl: 

stringers spaced every 30cm.

Po Interstial, Tr-1%, <1mm 8.9m



5-10% pot alt 1-2cm after upr ctc and before lwr ctc.

10.15m

Stringers along fractures (maybe chl?) 15-20 cm 

spacing
Po

Interstial, closely assoc 

w/ Mag as 50% of Mag 

grains have a partial rim 

of Po. Po <2mm, 5%

11.2m

Stringers spaced apx 30cm apart None 13.3m

14.1m



Strings, spaced 25cm apart, consistent throughout 

unit. 
Po

Trace, present around lwr 

ctc.

16.4m, 19.6m, 

23.8m, 27.2m, 

30.35m, 33.7m

Po

2%, interstial, increased 

downhole towards ctc to 

5-10%. 

35.7m

Chl: light-medium green colur change of unit increases 

downhole towards lwr ctc w/ syenitic unit. Epd strings 

spaced 30cm apart and contain Chl in apx 50% of 

strings. @44.85, chl along frac surface w/ band of Po 

along it as well. Slip surfaces @ 42.2, 44.8, 46.1 all 

with serp along them.

Po

Trace in upr part of unit 

and increase to 5-10% in 

lwr part of unit after 

patchy and net textured 

intervals. @44.4, 20% 

net text Po. @ 47.5 30% 

net textured Po assoc w/ 

sort interval of 1cm 

plag/pyx grains. 

@47.0,48.77 patchy Po 

(15%) assoc w/ <2mm 

plag/pyx. 

38.9m, 42.9m, 

47.0m, 47.6m, 

Strings, spaced apx 40cm apart. Py

Trace amts along chl 

stringser, grains <1mm. 

Near upr ctc, for 10cm 

apx5% Py in stringers as 

well as 1cm clusters of 

VFG Py. 

51.2m

Slip surfaces @55.4,56.0 with serp along them. Epd 

stringers 30-40cm apart. Have green alteration of 25-

30% pyx grains around edges (Amp or chl)

Po; Ccp

30% Po, <10mm and Ccp 

2%, <4mm. Both forming 

a net texture. Ccp has 

been observed to be 

tarnished to green or 

blue, commonly occurs 

on edges of Po. 

Sulphides can be parially 

to completely enclosing 

Mag grains. @57.35 

large patch of Po 3-5cm 

across.

52.5m, 55.0m, 

56.3m, 57.5m, 

58.6m



Rare Epd stringers which only occur in upper 40cm of 

unit. Chl occurs with Epd stringers.
Po

2-3% interstial, increased 

to 5% downhole within 

10cm of lwr ctc

59.9m

Strings, spaced 20-30cm apart Po; Ccp

Net texture of Po and 

Ccp. Po (20-25%), 

<5mm. Tr-4% Ccp, 

<4mm, closley assoc w/ 

Po. Localized areas of 

3cm patchy Po .

61.7m

Chl/Epd stringers spaced 20cm apart. Serp along slip 

surface @ 63.1.
Po

Tr, interstial, <2mm. @ 

63.7 1-2cm band of Po 

(80% Po).

63.15m, 63.8m

Qtz stringers soaced apx 50cm apart Py

Trace, occurs along fracs 

w/qtz? Strings. 1m 

spacing between Py 

bearing stringers

65.7m

Strings spaced apx 30cm apart. Slip surface @67.3 

w/Serp along it.
Po Trace, intertstial, <2mm 68.2m



Strings spaced apx 30cm apart Po; Ccp

5-10% Po, disemminated, 

<1mm w/ Trace Ccp 

assoc w/Po

71.15m

Stringers are spaced 5-10cm apart Po Trace, intertstial, <2mm 75.25m

Stringers apx 30cm apart Po 2%, intersital, < 4mm 78.75m, 80.0m

Chl/Epd strings apced 20cm apart. Chl only stringers 

which occur close to Chl/Epd stringers.
Po 0-4%, interstial, <2mm 83.5m

Po

Massive and 

disseminated. 

Disseminated grains are 

interstial and <10mm.

84.6m



Stringers spaced 20cm apart

Stringers spaced 20cm apart Po

Interstial, <4mm, 2%. @ 

85.75, Po increases to 10-

20%. Pyx % decreases 

w/increased Po

85.8m

Strings of a white mineral along fractures every 10cm. Po Interstial, <1mm, 2%. 87.2m

After 87.9-88.0 Pot alt occurs affect Plag. Slip 

surfaces occur every 10cm and serp and chl are 

present along them. 

Gn, Po, Sp

Gn: Trace, hosted in carb 

vn, 4mm. Sp: Trace, 

hosted in carb vn or 

along vn ctc, 1-4mm. Po: 

Trace, hosted in host 

rock and along edges of 

vns.

87.7m

Pot alt occurs in trace amount 50cm above lwr ctc. 

Serp/chl occurs along all slip faces present in unit.
Po Trace, interstial, <1mm 90.0m



Epd & Chl stringers spaced 15cm apart. Fe staining 

affects Py that occurs in stringers @98.2m. Bleaching? 

Occurs in lwr part of unit and marks change of to unit 

below. Pot, trace amounts concentreated around veins.  

Slip surfaces throughout have serp and chl along them. 

@97.5, overall change from a chl alteration ro epd 

alteration of host rock. 

Py; Po

Py occurs along chl/epd 

stringers, tr-2%, <1mm, 

also occur w/ qtz 

stringers. Slip faces also 

contain Py along them. 

Po: interstial, trace, 

<1mm. 92.4-93.3 2-5%. 

Also have Trace Po along 

stringers. @93.9 Po 

seems to form a net 

texture over 5cm.

93.3m, 99.0m, 

102.9m

Hemaite (<5%) occurs as <2mm blebs. Bleaching? 

Intene and consistent throughout unit. Fe staining, 

throughout unit affecting stringers and host rock. 

Chl/Epd strings about 15cm spacing. 

Py
Trace amounts present in 

carb/qtz stringers.
107.65m

Possible bleaching, strong until 118.9 and then 

decreases in intensity downhole, responsible for slight 

tan colour?? Chl stringers throughout 20cm spacing. 

Epd unifrom thoughout unit, 10%.

Py Trace, interstial, <1mm
109.35m, 120.15m, 

135.0m

142.2m, 146.9m

Epd concentrated in first 10cm after tan colour 

disappears and then again 40cm before lwr ctc. 

Hematite is concentrated with Epd alteration. Does the 

tan colour reflect a bleaching alt??

Po Tr, interstial, <1mm 152.45m



Chl/Epd Stringers, 1-2mms thick, 10-15cm spacing. 

Epd patchy 5%. Sericite alt in unit by appearance of 

creammy coloured feld grains and not affecting qtz.

Py
Trace around upr ctc and 

assoc w/qtz.
155.6m

Possible Epd alt occuring @162.2 until lwr ctc. 158.0m, 160.0m

Tan colour reflect bleaching? Fe staining, present 

throughout unit. Hematite, strings, 5-10mm thick 

@166.2m.

165.0m

Generally present around carb vns affecting 10-15% of 

vein and also affects apx 30% of qtx/feld vesicle fills. 
170.6m



From  To Lithology Description Structure (lwr ctc described) Alt's

0.00 1.50
3-4mm gabbroic rock with interstitial plag (apx 40-45%) and pyx (seem 

interconnected,apx 40-50%). Mag interstial (5-10%).

Core piece not there, change in grain 

size from ≤5mm to ≤7mm marks 

change

Epd/Chl

1.50 3.05

≤7mm gabbroic rock, interstital plag (40-45%), pyx (seem interconnected, 30-

40%), interstital mag (5-10%, <5mm). Localized grains may be upto 2cm. 

@1.75m for 10cm plag and pyx upto 3cm 

Ctc gradational over 10cm with grain 

size increasing from ≤7mm to ≤12mm. 

Plag % also decreases from ~40% to 

30%

3.05 3.96

5-12mm gabbroic rock with intersitial plag (5-10mm, apx 25-30%), interstital 

mag (3-12mm, apx 10%), pyx (seem interconnected, 5-8mm, apx 50%). 

Trace Bt 4-7mm (@3.2m).

Core piece not there, change in grain 

size from 5-12mm to 5-30mm marks 

change. Band of Plag occurs on finer 

grain side before change occurs.

3.96 4.90

4-30mm pyx rich gabbroic rock. Plag interstitial (4-15mm, apx 30%), pyx 

(seem interconnected, 7-30mm, 50-60%), interstital mag (5-20mm, apx 10%). 

Top of unit is more pyx rich (apx 70%) and decreases downhole (apx 50%). 

Plag increases downhole from 15 to 30%. 5cm before contact, trace Bt 

present in association with Po?

Core piece not there, change in grain 

size from ≤30mm to ≤6mm marks 

change. Grain size increases to ≤15mm 

10cm after ctc.

Chl/Amp?

4.90 5.60

appears to be a cyclic unit. For 10cm after top contact grain sizes are <6mm, 

then  changes to <15mm, and 10cm before bottom contact grain sizes are 

<30mm. Percentages of minerals roughly the same throughout, plag apx 40%, 

pyx apx 40%, mag apx 10%.  Grain sizes of each mineral within the cycles are 

plag (<6mm, 4-10mm, 7-20mm) pyx (<6mm, 5-15mm, 10-30mm) mag 

(<5mm, <7mm, <10mm)

Ctc abrupt change over 1cm from 

≤30mm to ≤5mm. 5cm into lwr unit 

plag ~80&pyx~20%and then change 

to ~40%plag & Pyx

Chl/Amp?

5.60 8.25

4-10mm gabbroic rock with interstital plag (4-10mm, apx 40%) , pxy (seem 

interconnected, 5-10mm, 40-50%), interstitial mag (<5mm, apx 10%). 

@6.3m an increases in pyx % and decrease in plag % occurs (plag apx 30%, 

pyx apx. 50-60%, mag 10%). Grain sizes similar to above section. @6.8m 

appearance of 6cm pyx (range in grin size of px from 10-60mm, apx 60%) 

plag (30%, 5-25mm), Mag ( 7-12mm, 10%). Mag look like inclusions within 

pyc grains. @7.1m transition into finr grained unit from depth 5.6-6.3m. 

Gradational increase in pyx and decrease in plag downhole towatds 7.65m. 

@7.65 3cm of <3mm grains with similar  as unit above. @7.68 back into unit 

from 7.1-7.65m. @7.81 Increase in grain size, same interval a 6.8-7.1m.

Ctc sharp,possibly chilled onlwr unit 

for 5cm (≤3mm). Chnge in unit 

marked by decrease in grain size from 

8-30mm down to ≤7mm after chilled 

zone.

Chl/Amp?

8.25 9.25

Unit stsrts in grain sizes <3mm ad gradationally over 15cm grain sizes 

increase to <7mm. Plag (interstital, 3-7mm, 30-40%), Pyx (seem 

interconnected, 4-7mm, apz 40%) Mag (Interstitial, 3-6mm, apx 20%)

Ctc,Subtle change in grain size over 

5cm from ≤7mm to ≤10mm
Chl/Amp?

9.25 14.93

3-10mm gabbroic rock. Plag (interstiial, 3-10mm, 35-40%) Pyx (seem 

interconnected, 4-10mm, 40-45%), Mag (Intersttial, 4-10mm, apx 15%) Bt 

(closely assoc w/ mag, 2-3%)

Ctc, sharp decrease in grain size from 

≤10mm down to ≤4mm. Ctc likely 

chilled as for 4cm after ctc grain size 

≤2mm.

Chl/Amp? Epd      Potassic

14.93 20.30
≤3mm gabbroic unit, that is very homogenious. Plag (interstial, 30-40%) Pyx 

9seem interconnected, apx 40-50%)  Mag (Interstial, 10%)

Ctc not in core, appears sharp. Change 

in unit from mafic to ultramafic
Chl/Epd?

20.30 20.94

Ultramafic interval. <5%, 1-3mm plag. Very dark green unit (serpentinized?) 

and highly magnetitc but unable to give %. Trace interstial Bt. Possible areas 

of cumulous olivine? (eihedral, circular and dark green) Pyx, unable to 

describe (too altered???)

Ctc not in core, appears sharp. Change 

in unit from ultramafic to mafic

20.94 27.66

2-8mm gabbroic unit. Plag (2-6mm, interstiial, 35-40%) Pyx (seem 

interconnected, 3-8mm, 40-45%) Mag (interstiial, <4mm, 10%) Trace Bt.  

Have a concentration of mag around carb veins @21.6m (apx 20% mag)

Ctc, upr unit chilled for ~2cm(≤1mm 

grain size) before change of unit from 

mafic to ultramafic

Epd/Chl Chl/Amp?

Appendix 6: CL-06-39 drill log



27.66 82.10

Thick ultramafic package. Dark green pyx of oliv? (80%, 4-15mm, euhedral, 

likely cumulous) Mag (4-10mm, 10-20%) Plag (interstiial, <5mm, <10%) 

Ilmenite? (has a paler colour than mag, occurs with mag, 5%). Highly cyclic 

unit. @28.73, plag decreaes to Trace amounts, pyx apx 85%, mag 15%. @ 

28.9 Plag <10%. @30.83 Plag trace amounts @31.0 plag <10%. @31.7 Plag 

trace. @32.21 plag appears as a 1cm thick band and then occurs in 10% of 

interval. @32.62 Plag trace-2% <3mm. @33.65 Plag increases to 15-20% 

and gradually decreases to 10%until 35.0m @35.0 Plag trace. @35.27 Plag 

15-20%. @36.11 plag 2-3%. @37.0 5mm band of plag and increase of plag 

to 10%. @37.85 plag <3%. @38.15 plag 10-15%. @38.47 Plag trace. @38.6 

plag 10-15%, <5mm. Mag  20% <5mm, Pyx or oliv? 60%, <10mm. Very 

homogenous until 47.41. @47.41 pegmatoidal section of 2.5cm pyx apx 30%, 

>1.5cm plag apx 60%, Bt, 5mm, 2-4%. @47.51 Back into homogenous unit 

from 38.6-47.41m. @57.38 Out of ultramafic package and into 40cm of 

gabbroic rock. Plag ( 1-3cm apx 50%) Pyx (2cm, 30%) Mag( intertital, 0.5-

2cm) Bt concentrated around edges of Mag. @57.7 Back into homogenous 

ultramfic unit from 47.51-57.38. 67.1m have a slight decreae in dark 

green/black cumulous mineral from 10cm. localized (66.8, 67.2) areas of plag 

apx 30% and grains 1cm. 71.94-72.44, 73.44-76.28, and 77.04-78.12 plag 

increase to 23-30% and 4-8mm. @81.05 Dark green/black cumulous minerals 

dissappear for 40cm and unit seems to become massive, mag is interstial 

(15%, 5-15mm), otherwise difficult to distinguish minerals. @81.6 cumulous 

gains appear. some look alterd as they have a creamy light green colur to 

them (40-50% of grains altered) otherwise unit similar to homogenous unit 

aboe.

Ctc, have 1cm carb? Vnlet. Signs of 

alteration around 81.6 as Pyx or Oliv 

cumulate grains change from dark 

green to creamy color

Whole unit seems to be 

serpentinized. 35-36m may be 

one large slip surface w/ 

chl/serp along it. Other slip 

surfaces occur at 38.5m, 

39.0m, 47.2m, 64.2m, 72.44m, 

78.6m, 

82.10 84.76

Alteration package. Top of unit defined by carb vnlet with brown mineral 

along its edges (siderite?) Original mineralogy seems to be similar to ultramfic 

section above. Primarily composed of darkgreen/balck oliv or pyx. These 

grains now have a light creamy green colour to them (3-10mm, 60-70% of 

unit) Interstitial mag( <10mm, 10-15%)

Ctc, 2cm carb? Vnlet. Alteration stops 

and move into non-altered Pyx or Oliv 

cumulate grains

Serp

84.76 85.70 Back into ultramafic-mafic unit from 57.5-81.05 Ctc obsurced by flt zone below

85.70 85.80 Fault Zone. Highyl fractured and broken. Pieces seems similar to unit above. Ctc obsurced by flt zone above Serp

85.80 97.45

Back into ultramafic-mafic unit from 57.5-81.05. Small Carb Vn@ 86.9m 

1cm thick with serp along edges. 2 1cm thick mag bad @ 90.25m. Compared 

to same unit above, this interval has more mag (apx 20-25%)

Ctc Core piece not there, Abrupt 

change in mineralogy and grain size. 

Move from an ultramafic into a mafic. 

Grain size change from ≤15mm down 

to ≤7mm.

Serp



97.45 118.45

<4mm gabbroic unit. Plag (Interstitial, 30-40%), Pyx (seem interconnected, 

40-50%), Mag (interstial, 10-15%), Bt (trace). @98.23 Plag(interstital, 5-

10mm, 30-35%), Pyx (seem interconnected, 7-15mm, 40-50%), Oliv? 

(euhedral, 6-10mm, 10%) @98.55 Plag(interstital, 3-10mm, apx20%) Pyx 

(apx 70%, possible oikiocryrst, cannot pick out grain edges of pyx), Mag 

(interstial, <5mm, 10%). @98.70 Pyx %decreases and move into unit similar 

to 97.45-98.23m. @98.85 Plag (intstitial, 4-8mm, 40%) Pyx (seem 

interconnected, 40-45%, 5-12mm) Mag (interstitial, <8mm, 10-15%). 

@99.61 Similar interval to 98.55-98.7m. @100.0 Plag (90%? grains >3cm? 

too large to tell.) Bt (3-5% 1cm grains) Mag( 3-5%, 6-12mm) @100.2 Plag( 

35-45%, 3-12mm) Pyx (30%, 5-7mm), Mag (Interstitial, 5%, 4-8mm) Bt (5-

10%, 2-10mm). @100.38 Similar interval to 98.85-99.61. 100.5m increase 

Pyx increase for 5cm. @101.3 similar interval to 98.55-98.8 and 99.61-100. 

Increase in mag compared to those other intervals (15-20%). This interval 

looks like it may be made up of multiple small pyx grains instead of an 

oikiocryst, not sure though. @101.66 similar to 98.85-99.61. 1-2% Bt 

present. 5cm increase of pyx at 102.3 to 70%.. @102.62 similar to 97.45-

98.23. @102.79 similar to 101.66-102.62. @103.06 coarsening of plag to 2-

3cm grains and pyx 1-2.5cm. @103.16 same as 98.55-98.7 @103.55 same as 

98.85-99.61, mag band at 103.7 1cm thick. @103.74 massive mag section 

(70-75%, <3mm) plag (10-15%,4mm grains) pyx (10%, 5mm grains) 

@103.91 plag (15% interstial, 1-3cm @104, 80%, <4cm?) Pyx (70-80% 1-

5cm intrergrown w/mag) Mag (10% 1cm grains). @104.09 Similar to 101.66-

102.62. @104.47 similar to 98.55-98.7. @104.63 similar to 97.45-98.23. 

@104.83 similar to 104.09-104.47. @105.3 Plag (interstial, 30%, 2-4mm) 

Pyx (seem interconnected, 45-50%, 2-5mm), Mag (Interstial, 10-15%, 

<3mm). @107.6 same as 101.03-101.66, @108.7 same unit as 105.3-107.6. 

115.5-118.45 NOT ACCESIBLE, STUCK IN CORE RACK.

Ctc, sharp change in plag % from 

~30% upto ~60%. Lwr unit may be 

chilled as for 2-3cm as grain sizes are 

≤4mm then increase to ≤10mm.

Chl/Amp?; Serp

118.45 121.30

White grey coloured unit. Plag (seem interconnected, 5-12mm, 60%) Pyx 

(interestitial, 5-10mm, 25-30%) Black mineral closely assoc w/pyx Bt or 

Mag, <4mm, 10%. Unit not really  magnetic though. Gradual coarsening of 

Pyx @120.6-121.3 with grains upto 15mm.

Ctc, gradational change in color from 

white grey to dark grey over 3-5cm
Chl/Amp?

121.30 122.95

Dark grey colured unit. Plag (seem interconnected, 85-90%? 2-12mm) Mag 

(<3mm, 2-3% and gradually increase in % downhole to 5-7% and <8mm) Pyx 

(interstial, 5-10%, 2-5mm), Tr Bt and Qtz?

Ctc, change in color from dark grey to 

white. Plag % also increases from ~85 

to 100?

Chl/Amp?; Serp

122.95 125.93 Plag (100%?, 3-15mm) Very homogenous unit.

Ctc, color chnge from white to dark 

grey, and decrease plag from 100? 

Down to 85.

125.93 126.30 Back into unit from 121.3-122.45

Gradational change into a more mafic 

unit over over 5cm. Pyx increases 

from ~10% to ~50%.

126.30 132.40

Dark grey coloured unit. Plag (interstiial, 30-35%, <4mm) Pyx (seem 

interconnected, <4mm, 50-55%) Mag (interstial, <5mm with rare grains upto 

1cm, 10%) @131.5 for 10cm coarsening of plag to grains upto 2cm w/ 

intersitial Po+Ccp (5%), seems like an isolated pod. 

Ctc sharp, chilling occurs in top unit 

over 2cm with grain size decreae to 

≤1mm. Black band (mag?) occurs at 

ctc. Grain size after ctc increase to 

~2cm grains of Pyx & Plag

132.40 132.74

Pegmatitic interval. Plag (6-20mm, 40-50%) Pyx (8-80mm, 30-40%) Bt (6-

20mm, 2-5%, interstial, can occur on edges of mag) Mag (4-15mm, 5-10%, 

interstial, seem to contain inclusions of plag?) decrease in grain sizes 

downhole @132.6 where plag and pyx are <15mm

Ctc, not in core. Seems abrupt as 

drastic decrease in grain size from 

≤15mm near lwr ctc to ≤10mm after 

ctc. 

Chl/Amp?

132.74 133.85

Plag (interstial, 5-8mm, 40%) Pyx (seem interconnected, 45-50%, 5-10mm) 

Mag (interstial, 10%, 5-10mm) @133.3 small peg pod w/ 2-3cm Bt, similar 

interval to 132.4-132.74.

Ctc, gradational over 5cm with 

increases Pyx (45 to 60%), incraed 

mag (10 to 20%) and decreased plag 

(40 to 20%).

Chl/Amp?



133.85 134.15

Plag (intersital, 25%, 2-10mm) Pyx (seem interconnected, 60%, <4mm) Mag 

(15-20%, <3mm) concentration of Mag in lwr 10cm and increase in grain size 

as well to 15mm. 

Ctc, increase in mag 10cm before ctc 

and a band of mag at ctc but core 

piece dividing the two units is not 

there. Seems to be an abrupt decrease 

in Pyx % from 60 down to 40%.

Chl/Amp?

134.15 142.20

Plag (Interstial, <7mm, 30-45%) Pyx (seem interconnected, 2-8mm, 40-45%) 

Mag (interstial, 5-10%, <4mm) Coarsening at 141.0 for 5cm where plag is 

upto 15mm and pyc upto 25mm. Otherwise very homogenous unit. 

Ctc, marked by qtz-carb vein and 

strgs. Also by appearane of beige-light 

green alteration to host rk.

Chl/Amp?; Serp

142.20 143.43
Mineralogy of unit in question. Plag (<5mm, ?% interstial? 30%?) Pyx may all 

be altered to beige light green product.

Ctc, gradational over 10cm, comes of 

out beige-light green alt and qtz-carb 

vns diminish

143.43 143.88

Similar unit in appearance to 118.45-121.3. Plag (60-70%, 5-10mm) Pyx (15-

20%, 3-10mm) Black mineral (Mag? Bt? 10-15%, <5mm) Unit not really 

magnetic. 

Ctc, sharp, change in grain size from 

≤10mm down to ≤3mm. No chilling 

observed.

Chl/Amp?

143.88 144.32
All grains are <3mm. Plag (interstial, 40%) Pyx (seem interconnected, 45-

50%) Mag (interstial, 5-10%)

Core piece not present. Sharp change 

in grain size occurs from ≤3mm to 

≤10mm.

Chl/Amp?

144.32 145.25 Similar to 143.43-143.88 w/2-3% Bt. @145 coarsening of plag up to 2.5cm. 

Ctc, gradational over 5cm, change in 

grain size from ≤10mm down to 

≤3mm. 

Chl/Amp?; Serp

145.25 145.95 Similar to 143.88-144.32 except Plag can occur as blebs upto 10mm.
Ctc, gradational increase in grain size 

from ≤3mm to ≤14mm.
Serp

145.95 147.23
Plag (interstial, 4-12mm, 35-45%) Pyx (seem interconnected, 4-14mm, 45-

50%) Mag (interstial, 5%, <5mm) Bt (Tace, <5mm)

Ctc, transition into alteration zone 

similar to alt zone above @ 142.2. 

Core is quarter so difficult to see 

actualy ctc's.

Chl

147.23 148.00 Alteration zone, similar to 142.2-143.43

Ctc core piece not present. But seems 

to have a carb vnlet at ctc and change 

in unit marked by coming out of 

alteration zone.

148.00 152.90

Plag (interstial, 2-6mm, 30-40%) Pyx  (seem interconnected, diffucul to tell 

but looks like grains are around 8mm, 50-55%) Mag (Interstial, 5-10%, 

<4mm)

Ctc, gradational increase in mag from 

~10%above to ~20% below ctc.
Chl/Amp?; Serp

152.90 156.97

Plag (interstial, 10-15%, 4-8mm) Pyx (seem interconnected, 50-60%, 4-

10mm) Mag (interstial, 20-25%, 2-5mm) Olivine? (dark green euhedral 

crystals, 5mm, 10%). Possible inclusions of plag within Mag???

Ctc, not in core, but drastic increase in 

grain size occurs from ≤10mm to 

≤50mm.

Serp

156.97 157.22
Pegmatitic interval. Plag (55%, upto 5cm) Pyx (40%, upto 3.5cm) Mag 

(interstial, 5%, <5mm)

Ctc, sharp change in grain size from 

≤50mm down to ≤8mm.
Serp

157.22 160.30

Plag (seem interconnected, 50%, 2-6mm) Pyx (seem interstial, 1-6mm, 40-

45%) Mag (interstial, 1-8mm, 5-10%) Pyx may be interstial as it contains plag 

inclusions.

Ctc, is not magnetic within 5cm above 

ctc. Dark green bands occur at ctc. 

Change from a mafic unit to felsic 

units defines unit change.

Serp

160.30 163.05

Syenitic unit. Feld (60-70%) Plag (15-20%) Bt (15-20%). All grains <3mm. 

5cm coarser section @160.55, grains are apx 8mm. Possible mafic fragments 

from unit above at 161.6-162.0, 162.2-162.3. Another coaser section w/ 10-

15% mag @161.4-161.6. Over last 60cm Mag 10-15% 4-12mm and a dark 

green mineral present (10-15%)

Serp



Alt Description Sulph Sulph Description Other Samples

1mm stringers, apx spaced 15cm apart None

Po Trace amounts, interstitial, <2mm 2.1m

Po Trace amounts, interstitial, <2mm 3.22m

Green discolouration around edges of 

pyx apx 1mm thick Amp? Chl? Affects 

apx 30-40% of pyx grains within 10cm 

of bottom contact.

None 4.1m, 4.73m

Green discolouration around edges of 

pyx present throughtout unit, apx 20% 

of pyx affected.

None

Green rims around pyx, affeects apx 

40% of pyx grains. @7.81 seems that 

green alteration around pyx has started 

to affect mag grains as well over 10cm 

length.

5.87m, 6.36m, 6.85m

Green alt around pyx, affects apx 40% of 

pyx grains.
None 8.68

Chl/Amp: green mineral asso c with pyx 

and affects apx 40-50% of pyx grains.   

Epd: strings, spaced apx 15cm apart and 

are 1-2mm thick.  Potassic: plag affected 

around Epd stringers only

None

Banding of pyx occurs roughly every 30cm 

starting at 10.75m for 1m. Band of plag 

@10.7m.

10.98m, 14.29m

Chl/Epd?: stringers spaced 30cm apart
No sulphides observed until lwr 

contact where trace Po is interstial. 

 16.65m, multiple slip surfaces with 

serpentine along them.
17.2m,

Thin 1mm chl stringers throughout unit 

spaced 2-3cm apart
Po 2-4%, <2mm, interstial 20.35m

Epd/Chl: Stringers spaced 20cm apart 

Chl/Amp? Green alt around edges of pyx 

affecting apx 20% of pyx grains.  

Po Trace amounts, interstitial, <2mm

1cm mag seam @ 24.56. @21.6 10cm carb 

vein and slip surfaces, which appear highyl 

altered.

23.0m, 25.76m



56.39: 1cm carb? Vnlet seems to have 

chl along edges. 61.0: Mag vnlet 1cm 

thick w/ serp in centre of it? 61.8: 1cm 

carb vnlet w/ serp along lwr and upr 

contacts. 62.8: 3cm knot of Mag. 66.55: 

band of mag w/ creamy dark green 

stringer which contains mag crystals 

(4mm) as inclusions. 81.6: three 2 mm 

carb vnlets w. chl stringers along edges.

Po, Ccp

Trace amounts, interstitial, <2mm. 

@33.75m Po grain size increaes to 

<5mm and only in trace amounts 

over 5cm length. @38.6 1-2% 

interstital <2mm w/ trace Ccp on 

edges of Po. @47.95 local increase in 

Po for 5cm to 15% forming a net-

texture, Ccp present in cores and 

along rims of Po. Po grains 4-10mm, 

could mark change in unit? @55.3 

Po increase to 5-10% over 7cm, 

<5mm grains. @71.94-72.44, 73.44-

75.56 sulphides increase to 5-10% 

and are <1cm, Ccp occurs on edges 

of Po. 

Cycles are determined by the appearance 

and dissapearance of plag.       Upper and 

lower contacts of Peg section at 47.41 are 

marked by concentrations of mag over 2-

4cm. Mag does not extend into pegmat 

section however, just in ultramafic rock. 

Within interval from 38.6-47.41m Pyx may 

be interstitial , meaning dark geen mineral 

would be olivine? @57.7 abrupt change 

from mafic into ultramafic section, with 

increase of Mag (80%) around contact for 

4cm

27.89m, 28.25m, 28.73m, 

32.21m, 32.82m, 33.28m, 

37.0m, 37.43m, 37.85m, 

41.45m, 44.5m, 47.36m, 

48.0m, 50.4m, 54.0m, 

57.38m, 60.23m, 63.88m, 

67.3m, 71.15m, 74.5m, 

78.0m, 81.15m

Multiple carb vns throughout unit. Vary 

from 1mm - 1cm thick and occur ever 2-

5cm. 2 Mag bands, 2mm thick @ 82.3. 

May have some chl alt within carb vnlets 

or ma be serp. Whole unit serpentinized.

Po; Ccp

Trace amounts of interstitial <3mm 

sulphides. Ccp occurs on edges of Po 

and appears to be hosted within carb 

vnlets?

83.9m

Po; Ccp
5%, interstial, <4mm, trace Ccp on 

or near edges of Po

Serpentinized.

Some evidence of the flt zone occurs 

40cm into this unit as fractures occur 5-

10cm apart and have serp along them. 

Slip surfaces @ 90.4m, 93.9m with 

minor fractures and serp along them. 

5%, interstial, <4mm, trace Ccp on 

or near edges of Po
88.63m, 92.1m, 94.95m



Slip surface @98.0m w/ serp along it. 

97.45-98.23: green alteration around pyx 

grains affects 50% of pyx. @98.23 carb 

stringer 2mm thick with Chl? Along its 

edges. Green alteration only affects pyx 

around this carb stringer in the interval of 

98.23-98.55. @98.7-98.85, green 

alteration of pyx affects 10% of pyx 

grains. 98.85-99.61: green alt affects 

30% of pyx grains. Carb vnlet @ 99.15m 

for 10cm 2mm thick w/ chl/ along edges. 

@99.61 green alt of pyx may still be 

occuring in pyx interval. @100 pale 

green alt affecting plag? Slip surfaces @ 

101.75 and 102.5, 104.83, 105.5,112.75 

with serp along them. @100.2- 105.3  

green alt affecting 50% of pyx grains.  

105.3-118.45: green alt of pyx affects 15-

20% of pyx grains. chl string 2mm thick 

@105.6. Carb stringer @108.5, 109.3, 

117

97.45-98.23: none observed. 98.23-

98.55: Trace interstial Po at top of 

interval and increases to 2-3% in 

bottom 5cm of interval, grains 

<10mm, tr Ccp on edges of po. 98.55-

98.7: 2-3% Po, interstial, generally 

<3mm but is rare grain of 1cm Po, 

w/trace Ccp on edges. 98.85-100: 

Trace interstial Po, <2mm. 100-

100.2: 1-2% Po 2cm w. Ccp at core 

and on edges. 100.2-101.3: none. 

101.3-101.66: 2% interstial Po<8mm 

w.Ccp on edges. 101.66-118.45: 

Trace -2%interstitial Po, <2mm. 

Cyclic unit. Top of a cycle is a <4mm 

gabbroic unit, then move into a 5-15mm 

gabbroic unit, then bottoms in a Pyx rich 

unit. Ctc @98.23 is sharp where grain size 

increases, no chilling or concentration of 

minerals along ctc. Ctc @ 98.55 core piece 

not present. Ctc @98.7 pyx % gradually 

decreaes over 5cm. ctc @98.85 core piece 

not present. Ctc @ 99.61 gradational 

increae in Pyx over 5cm. Ctc @ 100 

abrupt change in anorthositic pegmatite. 

Ctc @100.2 core piece not present. ctc 

@100.38 decrease in Bt and increase in 

Pyx gradationally over 5cm. Ctc @101.3 

sharp increase in pyx% over 2cm. Ctc @ 

101.66: sharp decrease in pyx % and 

increase grain size for 5cm after ctc to 3-

5cm plag/pyx and then moves into main 

unit. Ctc @102.62 change in grain size 

over 1cm to <3mm. Ctc @102.79 increase 

in grain size over 1cm. Ctc @103.06 

increase in grain sizes. Ctc @103.16 

decrease in grain sizes and increase in 

Pyx%. Ctc @103.55 decrease in Pyx %. 

Ctc @103.74 increase in mag and decrease 

in grain sizes. Ctc @103.91 decrease in 

mag %, increas in plag/pyx, and increase in 

grain sizes. Ctc @ 104.09 grain size 

decrease, pyx increase, plag decrease. Ctc 

@104.47 pyx %increased. Ctc @104.63 

decrease in pyx. Ctc @104.83 slight 

increase in grain size. Ctc @105.3 

decrease in grain size over 10cm. Ctc 

@107.6 gradational increase in Pyx over 

5cm. Ctc @108.7 decrease in Pyx over 2-

3cm. 

98.85m, 99.7m, 100.0m, 

103.55m, 103.7m, 

103.91m, 105.83m, 

108.0m, 111.56m

Pyx, apx 90% have some degree of 

alteration to a medium green colour. 

@119.1, 119.6, 120, 2mm carb vnlets

None 118.75m

Apx 80-90% of pyx grains altered to a 

green colour. @121.6 slip surface with 

serp along it. 

Po;Ccp
Trace-2% interstial, <2mm. Ccp 

occurs on edges
122.3m

Carb strings apx every 30cm None 125.03m

Carb vnlets 30cm spacing, may have chl 

strings along edges of vnlets
Po; Ccp

2-3% Po and 1% Ccp, both interstial 

and <2mm.
128.4m

5% of plag gains have a "white" centre 

to them, alt? zoning? Apx 60% of pyx 

have some degree of alt to a green 

colour.

Po; Ccp Tr Po + Ccp, <1mm, interstial?
Corona texture occurs between Bt and 

mag
132.47m

20-30% of pyx have green alteration to 

them. Carb string at 133.05 w/ Py along 

it and chl

Py Along carb string 132.74m, 133.4m



Carb strings at 133.9. 10% of pyx grains 

have green alteration.
Po

Intersitlal over last 10cm, coinciding 

with increased Mag contane

134.45, 136, 138.4 10cm slip surface 

with serp along it. Epd strings? Spaced 

30cm apart. 137.1,137.7,141.03 carb 

vnlet 2cm thick. Pyx altered to green 

colour around  these vnlets. String 

spacing decreased to every 15cm at 

140.2 until 142.2.

None 136.4m, 140.0m

Beige-light green alt affecting Pyx about 

50% of unit. Thin beige strings closely 

assoc w/ carb vns.

Po Trace, <2mm 142.3m

90% of pyx grains have some degree of 

alt to a green mineral
None 143.53m

Slight green alt to all pyx grains 

observed.
None 144.0m

Slip surfaces with serp along them at 

144.75 & 145.3. 45-60% of pyx grains 

have alt of green colour to them.

None 144.42m

145.8 slip surface with serp along it None 145.47m

rare chl? Stringers None 146.8m

small pieces of carb vns thruout interval Po; Ccp
1-2% Po, interstial <4mm, Trace 

Ccp, 
147.36m

at 149.6, 150.8, 152.0 slip surfaces with 

serp along them. 50% of pyx have green 

alt to them. 2cm carb vnlet @ 149.45 

and carb stringer at 152.1m.

Po Tr-1%, intersital, <2mm 150.08n

10cm slip surface w/ serp along it 

@156.8
Po; Ccp

Trace-1%, interstial, <2mm, Ccp 

closely assoc w/Po

5cm granitic vn @153.3. Mag band at top 

and lwr ctc of this particular unit. 
154.16m

Slip surface at upr Ctc None 156.97m

Slip surface @ 157.7, serp along it Po Trace, intersitla, <2mm 157.23m, 159.6m

slip surface @161, w/ serp along it. Also 

around mafic fragments serp can be 

present.

Ctc w/ mafic fragments are sharp, no 

chilling observed. 
162.45m



From  To Lithology Description Structure Alt

0.00 4.50 Casing

4.50 5.00

Plag (1-8mm, 30%, interstital) Pyx (1-10mm, 50%, interconnected) Mag (1-4mm, 

10%, interstital) Bt (1-5mm, 10%) Interval highly weathered and rounded from 

drilling

Ctc not in core

4.50 7.90

Dark green likely due to alteration. Plag (1-5mm, 10-15%, interstial) Pyx (1-4mm, 

65%, interconnected) Mag (1-3mm, 15-20%, interstital, "net texture pattern) 

Every 30cm Mag strings.

Ctc not in core Serp; Chl

7.90 8.60

Plag (4-15mm, 50-60%) Rare primary Pyx majority altered to Amp (3-15mm, 20-

25%) Mag (1-8mm, 10-15%, interstial) Qtz (1-7mm, 2%, interstial) Pyx (5-10mm, 

5%)

Ctc not in core Amp; Chl

8.60 11.00

Plag (1-4cm, 40%) Pyx (majority of Pyx alterd to Amp, not altered 1-10cm, 

40%)Subophitic Textures. Mag (1-5cm, interstital, 20-25%) Bt (5-20mm, 1-2%) 

@9.1-9.25m 80% Pyx w/ Mag inclusions forming a "graphic" texture. Mag may 

form rims around altered Pyx grains. Slight fining of grains from 9.3-9.4m % 

10.05-10.75 where grains become <20mm. 

Abrupt change in grain size to 

<20mm.

Amp; Chl; 

Serp

11.00 15.07

Plag (4-20mm, 40-50%) Pyx (5-10mm, 40%) Subophitic Textures. Mag (2-8mm, 

10-15%, interstial) Bt (4-10mm, 1-2%, closely assoc w/ Mag) @11.8-12.2m 

increaes Mag (30%) with 2mm bands of Mag and Plag decreases to 10-15%. Mag 

froms a net texture in this short interval. 

Sharp ctc in and out of Mag 

rich interval.Gradational 

increase in Mag % over 5cm

Chl; Amp

15.07 17.10

Similar to interval 11.8-12.2 in unit above. Mag (30%, 1-4mm, net texture) Mag 

band 2mm thick spaced 15-20cm apart. Possible Chl or Serp occurs along Mag 

bands. Plag (<10%, <5mm) Pyx (60%, 1-8mm). Short interval of gabbroic unit 

from above @15.36m and @ 15.61m.

Ctc, sharp change into 

gabbroic unit, no chilling.
Chl; Serp

17.10 22.41

Same Interval as 11.00-15.07m. Plag (4-20mm, 40-50%) Pyx (5-10mm, 40%) 

Subophitic Textures. Mag (2-8mm, 5-20%, interstial) Bt (4-10mm, 1-2%, closely 

assoc w/ Mag). 

Have a concentration of Mag 

along ctc and unit change 

marked by abrupt decrease in 

Pyx and increase in Plag.

Chl; Amp; 

Serp; Carb

22.41 24.10
Plag (5-20mm, 75%) Mag (2-9mm, 10%) Bt (3-7mm, 2-3%) Likely all Pyx altered 

to Amp (15%, 3-8mm) Subophitic. Increase Amp downhole to 20%

Ctc abrupt increase in Pyx % 

and size

Amp;Chl;Car

b;Pot;Serp

24.10 27.00

Plag (4-8mm, 50%) Pyx (3-10mm, 30%, interstital?) Mag (5-10mm, 15%, 

interstital) Bt (2-10mm, 2-3%, close assoc w/ mag) @24.9-25.1m some sort of 

EFG unit, diabase? Sharp ctc on ends of diabase. Pale red alt throughout diabase 

and multiple xcut dark strings (Chl?) @26.44Pyx and Mag decrease to 10%. 

Ctc increase in Pyx and Mag %
Amp; Serp; 

Chl

27.00 32.84

Plag (5-12mm, 40-50%) Pyx (2-8mm, 35-40%) Mag (1-4mm, 15-20%, interstial) 

Bt (4-15mm, 2-3%) Qtz (Tr, 1-4mm, close assoc w/ Bt) Plag has a "creamy" color 

to it indicate alteration? Ser? Epd? @32m appearance of 1-4mm beige mineral, 

Mag alteration?

Fault gauge @ 29.95m. Ctc, 

sharp change into alteration 

zone.

Carb; Serp; 

Amp; Chl

32.84 42.88

Alteration Zone. Same lithology as unit above but has an intermitant "bleached" 

look to it until 34.3m then is completely "bleached". Brecciation textures @37.8-

38.6m, 40.9-41.1m, 41.9-42.2m. Large vug of calcite and smokey qtz @37.8m. 

@37.8 Clasts in breccia are altered to a brick red colour and range in size from 

mm's - 8cm. Clasts seem to be of a mafic (gabbroic) composition and are very 

angular and highyl fractured. Not magnetic unit anymore. 

Ctc, move out of alteration 

zone and into gabbroic unit 

from before, seem to have a 

concentration of hematite 

staining along ctc.

Carb; 

Hematite

Appendix 7: CL-07-01 drill log



42.88 44.15
Similar to 27.0-32.84m. Plag (3-10mm, 55%) Pyx (2-10mm, 35%) Mag (3-6mm, 

10%, interstial) Bt (4-8mm, 2-3%) Subophitic textures. 

Gradational ctc over 5cm w/ 

plag % decrease and increased 

Pyx and Mag %

Carb; Serp; 

Chl; Amp

44.15 46.35

Seem to be a "layered" interval with layers defined by being Plag "rich" (55%) and 

Plag "poor" (10-15%). Layers vary from 1cm to 40 cm thick. Plag "poor" 

intervals: Plag (10-15%, 1-4mm, interstial) Pyx (50-60%, 1-6mm) Ophitic textures 

Mag (25%, 1-3mm, interstial). Plag "rich" intervals: Plag (55%, 1-10mm) Pyx 

(30%, 1-6mm) Mag (10-15%, 1-4mm, interstial). @44.9 -45.1m section of <2mm 

grains. @45.9m Plag "rich" interval w/ increased grain sizes, Plag (4-12mm), Pyx 

(2-10mm) Mag (2-8mm) Tr Qtz present as well. 

Ctc, Fault Zone
Chl; Amp; 

Serp

46.35 46.55 Fault Zone, highly fractured, gauge present

46.55 47.40

Plag (30-35%, 4-12mm) Pyx (45-50%, 3-10mm) Mag (20%, 2-8mm, interstial) 

Subophitic textures. @46.7 have 60% Mag over 5cm. @ 47.15 Play increase 65%, 

Pyx decrease to <10%, Mag 5%. Have overal decrease in Pyx downhole.

Ctc, 10cm interval of 1-2cm 

Mag and 1-2cm Pyx w/ some 

Py then move into a FG rock. 

Chl; Amp; 

Serp

47.40 51.80

Plag (15-20%, 1-5mm) Pyx (55%, 1-7mm) Mag (20-25%, 1-3mm, interstial) Bt 

(TR, <2mm, assoc w/ Mag) Ophitic textures. @48.4-48.7, anorthositic interval w/ 

<4cm Plag and 5-15mm Mag (10%) and an interval of 30% Mag 1-3mm. At base 

of anorthosite, have a 3cm Pyx grain. @48.7-51.82 Similar to unit above 

anorthosite, but MORE Plag (20-25%) and 2-3% Bt <2mm

Ctc, change into 

Pegmatitc/layered interval of 

units.

Amp; Chl; 

Serp; Carb

51.80 96.40

Layered unit of Pegmatites and Gabbro. Pegmatite: Plag (1-4cm, 40%) Pyx 1-

5cm, 40%), Mag (2-20mm, 20%) Bt (Tr, <5mm). Gabbro: Plag (40-45%, 3-

12mm) Pyx (4-12mm, 40%) Mag (2-10mm, 10-15%) Bt (2-3%, 2-5mm, assoc w/ 

Mag) Qtz (Tr, 1-4mm, interstial, Close assoc w/ Bt) Pegmatitc intervals : 51.8-

52.1; 54.2-54.5; 55.75-56.08; 56.68-56.82; 57.87-58.1;58.35-58.9; 66.3-67.0; 

69.65-69.9; 74.5-75.2; 76.7-78.4; 91.9-92.1; 94.8-95.1; 95.8-96.0. Within 

Gabbroic intervals, there can be intervals of finer grained and more Pyx (60-70%), 

these intervals are: 56.08-56.2; 58.9-59.1; 73-74; 75.1-76.1. 

Majority of Pegmatitc ctc w/ 

gabbro are at 50
o
. Ctc, move 

out of Peg intervaled unit and 

into layered interval of Plag 

"rich" and Plag "poor" units

Chl; Serp; 

Ampl Carb; 

96.40 115.70

Appear to be banded cycles w/plag rich tops and then grades to more Pyx rich 

bottoms. Plag "rich": Plag (50-60%, 3-12mm) Pyx (30-35%, 2-8mm) Mag (10%, 

1-5mm) Nesophitic - Subophitic. Po (0-3%, <2mm, interstial) Bt (tr). Plag "poor": 

Plag (1-6mm, 15-20%) Pyx (60-70%, 1-8mm) Mag (10-15%, 1-4mm) Po (<3mm, 

0-5%) Bt (tr). "cycles" 96.4-97.9,97.9-98.1,98.1-98.65,98.65-99.5,99.5-

99.85,99.85-100.4,100.4-100.9,100.9-101.6,101.6-101.9,101.9-102.2,102.2-

102.45,102.45-103.5,103.5-104.4,104.4-105.5,105.5-106.1,106.1-106.8,106.8-

107.4,107.4-108.0,108.0-109.5,109.5-110.5,110.5-110.7,110.7-110.85,110.85-

112.6,112.6-113.4,113.4-114.15,-114.15-114.4,114.4-114.8.

Ctc between cycles are 

gradational over 1-3cm and 

occur at apx 45
o
. Lwr ctc 

abrupt change into pegmatite

Serp;Chl;Carb

115.70 116.80
Pegmatitic interval. Plag (7-25mm, 40%) Pyx (1-4cm. 40%) Mag (2-15mm, 15%) 

Bt (1-5mm, 1-3%, assoc w/ mag) Po (1-7mm, 2-4%, interstial)

Sharp ctc, change in grain size 

and modal %
Serp;Chl

116.80 124.25

Similar type of "cycling" like before pegmatite but both types of intervals are Plag 

"poor". Plag "poor": Plag (10-25%, 1-8mm) Pyx (3-15mm, 50-60%) Mag (2-

8mm, 20%) Olivine? (15-20%, 2-6mm, dark green, euhedral) Plag "Trace": Plag 

(1-2%, <2mm) Pyx (80%,3-10mm) Mag (1-5mm, 20%). Plag "poor":116.8-

117.2;117.6-123.15. Plag "trace": 117.2-117.6;123.15-124.25. Pegmatite interval 

121.62-122.0, Plag (>1cm, 30%) Pyx (4cm, 55%) Mag (3-20mm, 15%) Bt 

(10mm, 2%)

Sharp change in modal %
Amp; Chl; 

Serp



124.25 126.70

Overall unit is a gradational change from Pyx poor at the top and around 125m 

changes into Pyx rich w/ bands of Pyx poor. Pyx poor: Plag 45%, Pyx 45%, Mag 

20% all <4mm subophitic textures. Pyx rich: Plag (20%, 1-6mm) Pyx (60%, 1-

5mm) Ophitic textures Mag (20%, 1-5mm) Bt (tr, 1-3mm) Po (tr, <2mm). At 

126.3 no Plag. Pyx 75% 1-5mm, Mag 25%, 1-4mm.

Ctc change into pegmatite Serp; Amp

126.70 128.10
Pegmatitic interval. Plag (0.5-7cm, 45%) Pyx (1-7cm, 45%) Mag (2-25mm, 10%) 

Bt (tr, 5-10mm) Ap (tr, 5-10mm) Subophitic textures

Abrupt change out of 

pegmatitic interval
Amp; Chl

174.40 180.60

Plag (2-12mm, 45%) Pyx (3-14mm, 40%) Mag (1-6mm, 15%) Bt (Tr, 1-4mm, 

assoc w/ mag) 1cm plag band @ 176m. @176.7-179.0 have decrease in grain size 

and increase in Pyx %. Plag (1-9mm, 35-40%) Pyx (2-8mm, 45-50%) Mag (1-

6mm, 15%). From 179.5-179.65 in Pyx rich again. 180.0-180.6 in a slight 

pegmatitic interval w. Plag and pyx upto 4cm. 

CTC, move into alteration 

zone, sharp ctc.

Amp, Serp, 

Carb, Chl

180.60 184.50

Alteration Zone. Seems to be originally <10mm gabbroic rock but now has been 

subjected to alteration. Plenty of Chl and Carb stringers throughout and tend o 

occur together. Rare Pot alteration. Some areas are still magnetic but generally 

unit is non-magnetic. Some areas may be slightly brecciated. 

Ctc, out of alteration zone
Chl, Carb, 

Pot

184.50 187.20

Same interval as before alteration zone (174.4-180.6) with slightly more Mag (20-

25%). Pegmatite  186.4-187 w/ 30% Mag. 184.9-186.4 have the increase in Pyx 

%. Tr Bt in unit, 1-3mm. 

CTC, move into alteration 

zone, sharp ctc.

187.20 188.70 Alteration zone as 180.6-184.5. Pink calcite present.

Banded gabbroic unit w/ cycles of plag rich tops and pyx ruch bottoms interuppted 

by several pegmatite intervals. Plag Rich: Plag (40-55%, <10mm) Pyx (35-40%, 

<10mm) Mag (10-20%, <10mm) Some Plag rich intervals may have grains 

<15mm. Plag Poor: Plag (<10%, <4mm) Pyx (60%, <4mm) Mag (30%, <5mm). 

Pegmatitic intervals: 131.5-132.05,132.5-138.1,139-139.15,140.7-141.5,144.5-

145.8,149.3-150,153.5-153.8,156.1-157.3,167.3-167.6,173-174.4, pegmatitic 

intervals have similar descriptions to pegmatite @51.8. Cycles: 128.1-128.9,128.9-

130.15,130.15-130.45,130.45-131.5,132.05-132.5,138.1-139,139.15-

140.25,140.25-140.35,140.35-140.7,141.5-141.6,141.6-144.5,145.8-148,148-

149.3,150-153,153-153.5,153.8-154.6,154.6-155,155-155.3,155.3-156.1,157.3-

158.5,158.5-159.6,159.6-159.9,159.9-160.1,160.1-160.9,160.9-162.2,162.2-

162.5,162.5-162.9,162.9-163.4,1634.4-163.6,163.6-164,164-164.25,164.25-

164.45,164.45-165,165-165.8,165.8-166.7167.6-167.9 (all plag poor) 167.9-

169.22,169.22-170.6,170.6-171.4,171.4-172.6,172.6-173.

128.10 174.40

Banding that occurs in this unit 

varies from 45-80, majority @ 

70. Ctc occurs after a 

pegmatite interval. Gabbro 

after ctc is slightly coarser 

grained.

Amp; Serp; 

Chl



188.70 228.60

Same mineralogy and grain sizes as 174.4-180.6, subophitic textures. Have 

alternating units between Plar rich and Pyx rich units like before. Pegmatite 

intervals : 200-200.1, 204.6-205, 206.9-207.3, 221.9-222.4, 228-228.6. Granitic 

vein/veinlets: 214.7-214.8, 217.1-217.2, 221.8-221.9, 222.45-222.5, 222.8-

222.87, 223.25-223.3, 223.55-223.6, 224.4-224.5. Intervals of Plag rich and Pyx 

rich: 188.7-189.4 Pyx, 189.4-191 Plag, 191-191.5 Pyx, 191.5-192.4 Plag, 192.4-

195 Plag, 195-199.8 Plag, 199.8-200 Pyx, 200.1-201.9 Pyx, 201.9-202.2 Plag, 

202.2-203.2 Pyx, 203.2-203.9 Plag, 203.9-205 Pyx, 205-205.4 Plag, 205.4-207.7 

Pyx, 207.7-207.9 Plag, 207.9-208.7 Pyx, 208.7-208.9 Plag, 208.9-209.2 Pyx, 

209.2-209.3 Plag, 209.3-209.4 Pyx, 209.4-214.5 Plag, 214.5-215 Pyx, 215-220.2 

Plag, 220.2-221.5 Pyx, 221.5-228.6 Plag.

Ctc move into Fault zone.
Amp; Chl; 

Serp; Carb

228.60 231.40
Fault Zone, highly broken and fractured. Competent rock seems to be an altered 

gabbro. Plag (1-5mm, 40-45%) Pyx (1-5mm, 45-50%) Mag (10%, <3mm)
Ctc move out of fault zone Serp, Chl

231.40 236.90

Seems to be a gabbro that has been "granitized" contains abundant feldspar but 

also still has some Pyx grains present, Mag 2-8mm, <10%. Seems to have granitic 

veinlets cutting through interval as well

Ctc, out of gabbro/granitic 

veinlets and into a gabbro, 

sharp ctc

Amp

236.90 250.50

Plag (1-8mm, 40-50%) Pyx (1-6mm, 35-50%) Mag (1-4mm, 5-15%) Bt (Tr, 1-

3mm) Majority of Interval is: Plag (40%, 1-8mm) Pyx (50%, 1-6mm) Mag (1-

3mm, 10%) Bt (Tr) but there are intervals where plag is more abundant, 240.1-

240.65 Plag (85%) Pyx (tr-5%, 2-3mm) Mag (10%, 2-12mm). Carb-qtz vein 

@239.5, 10cm, small vug, Tr Py

Possible foliation of Plag apx 

45deg.

Amp,;Chl; 

Serp; Carb

250.50 252.60
Sugary looking vein. Kfs and plag generally <5mm have local concentration of 

mafic minerals (10%, amp?) throughout. 

Have increase in mafic 

minerals around lwr ctc (20%) 

but sharp change into next unit

Chl; serp

252.60 267.40

Same unit as before granitic vein. Plag (40%, 1-8mm) Pyx (1-6mm, 50%) Mag 

(10%, 1-3mm) Bt 9tr, 1-2mm). Pegmatitic sections, 259.6-259.8, 253.3-253.4. 

Possible "inclusion" of more plag rich gabbro, <10mm grains @255.5 & 262.5.  

@256.1 have a Chl band 5mm thick w/ concentration of <4mm Po along it. From 

256-256.2 habe increased Mag (20%) and from 255.5-266 have increase in Plag 

(50%) 261.3-261.7 & 263-263.1 granitic vein like 250.5-252.6 w/ concentration 

of mafics around ctcs. Plag band 1-2cm thick @ 261.2, 262.2

Possible foliation of Plag apx 

45deg. Ctc gradational 

increase in Mag over 20cm 

until move into a magnetitie 

(60-70% Mag)

Carb; Map; 

Chl

267.40 267.75
Magnetite. 60-70% Mag, <5mm. 10% Plag, <8mm, 20% Pyx, <5mm. Pyx 

increases to 5-15mm over final 10cm of unit.

Ctc, sudden decrease in Mag 

%
Amp, Chl

267.75 280.90

Plag (3-15mm, 45%) Pyx (5-15mm, 35-45%) Mag (1-10mm, 15-20%) Bt (tr, 

<3mm)Subophitic textures.. From 270-270.2, magnetitite unit, w/ 50-60% Mag, 1-

5mm, Plag (30%, 2-12mm, surrounded by Mag) Pyx (10%, 2-8mm) After Mag 

interval have an anorthositic unit from 270.2-270.9 (Plag 80%, 3-12mm; Pyx 10%, 

1-8mm; Mag 10%, 1-8mm; Bt Tr, 8mm) Tr amounts of qtz @ 277.5. Granitic vein 

@ 279m.

Ctc, sharpe change in grain 

size.
Amp

280.90 286.60

Plag (1-4mm, 40%) Pyx (1-6mm, 50%) Mag (1-3mm, 10%) Subophitic-ophitic 

textures. Anorthositic vein @ 281.1-281.25. Granitic vein @ 282.65-283.45. From 

284.5-285 granitic vein w/ massive qtz @ the centre and Kfs/plag on edges, sharp 

ctc fragment of gabbro in portion of vein. @282-282.4 have a coarser grained 

interval of gabbro, grains <12mm, Bt increases 2-3%.

Possible Plag foliation @ 

45deg. Ctc sharp change into 

Mag rich interval then into 

grains that are <1cm

Chl; Serp; 

Amp

286.60 287.80

Interval starts in Mag rich (50-60%) then grades into 10-15% Mag over 10cm. 

286.6-286.7: Mag (50-60%, 1-8mm) Plag (1-6mm, 15-20%) Pyx (1-4mm, 20%). 

286.7-287.6: Plag (40%, 1-12mm) Pyx (1-8mm, 45%) Mag (1-6mm, 15%) 

Subophitic textures. 287.6-287.8: Same as 286.6-286.7.

Ctc sudden decrease in Mag 

%.

Amp; Chl; 

Serp

287.80 302.75

Same domiant lithology as 280.9-286.6. [] of Mag @ 288.5 for 5cm. @ 295.15, 2 

plag bands, Mag bands @ 297.4,301.2. From 300.4-300.8, imilar Mag rich interval  

as 286.6-287.8.

Ctc, change in Mag % to 30-

40%

302.75 303.00 Mag rich interval. Mag (30-40%, 1-7mm) Pyx (40%, 1-6mm) Plag (15%, 1-8mm) 

[] of Mag around ctc (1cm 

band) then sudden decrease in 

Mag

Amp

303.00 305.75
Plag (1-10mm, 35-40%) Pyx (1-6mm, 50%) Mag (1-5mm,10-15%) ophitic - 

subophitic textures

Odd ctc as a Fg felsic vn/dyke 

occurs at a low angle (10) as 

the unit changes to a much 

finer grained gabbro. 

Amp; Carb; 

Chl

305.75 307.40
Felsic dyke/vn extends from 305.75-306.33 and is 2cm wide. Gabbroic unit is 

same as interval 280.9-286.6. 

Ctc, grad increase in grain size 

<1cm grains

307.40 313.00

Alternating between <10mm grains and <5mm grains, both gabbroic units w/ 

several Mag rich layers. <10mm intervals: Plag (40-50%, 3-12mm) Pyx 91-8mm, 

40%) Mag (2-10mm, 10-20%) Bt-Po-P(Tr). <5mm intervals: Same a s280.9-

286.6.  Mag bands / concentrations: 307.75, 308.85, 309.2, 309.5, 311.4, 311.8, 

312.1, 312.7, 312.95

Ctc,dissappearance of 

consistent Mag bands
Amp

313.00 321.90

Plag (40-45%) Pyx (45-50%) Mag (10-15%) all grains <3mm. Coarse grained 

patches do occur in short intervals; 314.7-314.8, 315.9-316, 316.3-316.5, 316.7-

316.9, 317-317.1, 318.8-318.9, 320.9-321.1, 321-321.2, 321.5-322, Coarse 

gained patches are: Plag (55%, 5-20mm) Pyx (30%, 3-20mm) Mag (1-10mm, 

15%)

Ctc, increase in grain size Chl; Amp



321.90 322.60
Same mineralogy as "Coarse" grained patches in unit before, local [] of Mag upto 

50%. 

Ctc, sharp change back into 

finer grained gabbro
Amp

322.60 328.90 Same interval as 313-321.9, CG patch @ 324.4, 326. Mag Band @327.2. 
Ctc, abrupt increase in Mag, 

sharp
Chl,; Amp

328.90 329.60
Magnetite. 50-70%, 1-6mm net-textured. Difficult to tell which minerals are also 

there, likely Pyx or Oliv 1-8mm. 
Sharp decrease in Plag

329.60 341.40

Same as 313-321.9m. Coarse grained patches (329.7,330.9,333-333.7, 335.8,339) 

Mag bands (330.8,332.2-332.5) @331.5 granitic dyke/vein, similar to 251m, 

possible inclusion of <1mm gabbro @340m.

Ctc, sharp increase in Mag Amp; Chl

341.40 342.00 Same type of magnetite unit as in interval, 328.9-329.6 Ctc, sharp decrease in Mag

342.00 359.75

Same interval as 313-321.9. CG patches (344.8,346.3,347.4,350.8,356,357.3,358) 

Large Chl stringer that runs from 348.5-349.5 that splits the core in half, seems to 

have serp along it, also one at 351.3-351.7. 

Ctc, sharp increase in Mag Chl; Amp

359.75 360.40 Same type of magnetite unit as in interval, 328.9-329.6 Ctc, sharp decrease in Mag

360.40 366.85
Unit starts in 10cm of a "CG" patch then switches to the same interval as 313-

321.9. "CG" Pathces (360.9,362.2,363,364.4)
Ctc, sharp increase in Mag Chl; Amp

366.85 367.50
Magnetite thick 4cm abnds interupter by gabbro . Very similar to other Mag 

intervals
Ctc, decrease in mag

367.50 371.08

Same as 131-321.9 but w/ the "CG"Patches occurring every 20cm for 3cm. Short 

5-10cm Magnetite intervals @368.7, 369. In Mag interval @369 also have 1cm Po 

band. Tr Bt in CG Patches.

Ctc, increase in grain size 

371.08 371.86 Magnetite as 328.9-329.6 w/short 10cm interval of gabbro at 371.7. Ctc, decrease in mag

371.86 372.20
CG interval similar to the patches in above units. Plag (55%, 5-20mm) Pyx (30%, 

3-20mm) Mag (15%, 1-10mm) Bt (2-3%, <8mm)
Sharp ctc w/vein, slight chilling Amp

372.20 372.50 Same type of vein/dyke as 251m, chilling observed @ upr ctc Ctc not in core

372.50 376.25

Pegmatite interval. Plag (upto 4.5cm, 55%) Pyx (upto 3.5cm, 30%) Mag (8-

20mm, 15%) Nesophitic-subophitic. Local [] of Mag upto 40% @375.3m, granite 

vein @374.1-374.8, 376-376.25, Slight chilling (same veins as 251m) 

Ctc, decrease in grain size after 

vein
Amp

376.25 384.70

After granitic vein @376-376.25 not so pegmatitic and just coarser grained. Plag 

(8035mm, 50%) Pyx (8-20mm, 35-40%) Mag 98-20%, 10-15%) Bt (Tr, 10mm) 

Local [] of Mag @ 382.4, 40%.

Ctc, sharp increase in Mag Amp;Carb

384.70 385.05 Magnetite unit as 328.9-329.6, has local [] upto 70% Mag Ctc, sharp decrease in Mag

385.05 411.00

Same as 313-321.9, "FG" gabbro. Local Mag [] @386.9 (60%,5cm thick), 387.5 

(40-50%,10cm), 389.4 (70%, 10cm), 390.7 (40%, 5cm), 402.7 (50%, 10cm), 403 

(40%, 5cm) Also have CG patches @387, 388, 388.6, 395.8, 396.3, 399.9, 401.6, 

402.9, 404.7.Mag bands @393.1,399.7. Pegmatie from 410.4-411 (Plag 5-35mm, 

45%; Pyx 5-30mm, 35%; Mag 3-20mm, 20%, oliv 5%) 

Ctc, sharp increase in Mag Amp; Chl

411.00 413.70
Magnetie varies from 30-90%, lwr mag [] intervals are similar to CG patches in 

gabbro above. Tr Apatite @411.6 in VCG interval. 90% Mag from 412.5-413.25

Grad decrease in Mag from 

413.25-413.7 down to 10-15%
Amp

413.70 424.00

Same interval as 313-321.9, CG patches @417.1,418.5,422-422.6. @417.6 have 

2x2cm granitic veins. Mag bands @419, 420, 421.5, 422.6, 423.7, 423.9. Short 

Pegmatitic interval from 419.3-419.5.

Grad increase in plag over 5cm Chl;Amp

424.00 424.90
Plag (60%, 1-8mm) Pyx (20-30%, 1-8mm) Mag (10-120%, 1-7mm) B (tr, <3mm) 

Mag Band @424.75

Sharp ctc and change into FG 

unit
Amp

424.90 425.80 Same as 313-321.9, inclusion of plag rich interval @425.14

Sharp ct w/ granitic unit, 

chilled about 50cm into granite 

(<5mm) then changes into 

<10mm grains

425.80 481.40
Kfs (50-70%) Qtz (10-20%) Plag (10%) all <10mm. 10% mafic mineral (amp?) 

very homogeneous unit



Alt Description Sulphides Sulph Description Samples

None

Over 10cm @6.2m, 3 slip surfaces with 

serp along them. Whole interval seems 

serpentinized. Chl strings spaced every 

15cm. 

None 5.3

90% of Pyx altered to Amp, with Chl 

occurring around edges of Amp grains.
None

50% of Pyx alterd to Amp w/ Chl 

concentrated around edges. Slip 

surface @9.13, serped

Py 1-2%, 2-12mm 9.1, 10.2

Chl strings spaced 20cm; 40% of Pyx 

alt to Amp
None 13

Chl stringers 20 cm apart' whole 

interval seems to be serpentinized.
None 15.24

Chl strings spaced 20cm; 40% of Pyx 

alt to Amp; long chl & carb stringer 

running from 17.3-17.7m, 3mm thick, 

carb in centre of string and chl on 

edges. Slip surfaces @21.36,22,19.5

None 20

Amp likely all Pyx altered to Amp; Chl 

conctrates around Amp rims; rare 

carb/chl stringers; rare Pot alt; Slip sur 

@22.9,23.1,23.6

None 23.7

50-60% of Pyx alt to Amp; Chl 

concentrated around edges of Amp; 

Slip sur @25.5 w/ carb and Serp along 

it

None 26.1

Carb stringers 15-20cm spaced after 

31.0m; 60% of Pyx altered to Amp; 

Chl stringers 20cm spaced; Slip 

surfaces @28.15, 27.2, 28.6, 30.8, 

31.35, 32

None 29.15

Carb strings 5-10cm apart until 38.6m 

then occur 50cm apart till end. 

Bleaching throughout unit. Hematie 

staing cyclic and inverse to bleaching 

(may just be a surface weathering 

feature) 

None
33.9,36.5,38,40.8,

41.9,42.6



Carb stringers every 10-15cm; Chl 

stringers every 10cm; 80% of Pyx alt 

to Amp slip surfaces @43.4 43.9

None 43.5

Chl strings spaced 3-10cm apart; 20% 

of Pyx alt to Amp; Slip sur 

@44.25,44.5,44.9,45.15,46.1

Po/Py

Cluster of both occurs @ base of unit 

@ 45.1m, grains <2mm. Po: @45.9 

2.5cm band of Po composed of 

<1mm grains.

44.25,44.8

Chl stringers 15cm apart; 20% of Pyx 

altered to Amp; Slip sur @46.7, 47, 

47.1

None 46.9

80% of Pyx alt to Amp; 48.7-51.82 

only 40% alt; Chl stringers 10-15cm 

spaced; Carb stringers spaced 50cm 

apart; Slip Surfaces @ 47.6, 47.8, 

51.5, 51.57, 48.2, 49

Po Tr, <2mm, interstial 50.2

Chl strings are rare at the beginning but 

around 57.87 start occur every 20cm; 

Carb veinlets occur every 1m; 40% of 

Pyx alt to Amp; Multiple slip surfaces 

(52.8, 53.1, 57.25, 57.6)

Po
Tr, <2mm, interstial, assoc w/ Mag. 

@69.6m 1-2% Po, 1cm grains.

52.3,55.9,56.7,61.

8,67.5,71.7,76.9,7

9.25,89,95.9

Chl stringers rare but more common in 

lwr 10m of interval. Carb stringers are 

concentrated around 100m for 50 cm 

and are 5cm spaced. Slip sur 

@98.7,100.5,102.5,108,108.5,109,109

.6,110.9,112.4,113.1,113.7,114.1

Po
Occur in both Plag "rich" and Plag 

"poor" intervals

100.8,101,113.8, 

113.9

Rare Chl stringers; Slip sur 116 Po 1-7mm, 2-4%, interstial 116.1

60% of Pyx alt to Amp; Rare Chl 

stringers; Slip sur @119,119,121.6
Po

Plag Poor: 0-4%, <2mm, intersital. 

Plag Trace: 0-3% <1mm, intersital
116.9,117.2,123.6



60% pyx alt to Amp. Slip sur 

@124.9,124.6,125.8
Po 125.3-126.7: tr, <2mm 124.3, 125.4

60% pyx alt to ampl; chl band 3mm 

thick
Po Tr, <5mm 127

15% Pyx alt to Amp; Carb stringers 

40cm apart; Rare Chl stringers; Slip sur 

@ 180, 178.3, 175, 175.9

None 176, 180.1

None 181.9

Po Tr, 1-2mm, interstital 184.6

187.3

128.1,128.4, 

134.3, 139.3, 140, 

145.7, 148, 149.1, 

158.6, 159.4, 

166.4, 166.6, 

171.5

10-30% of pyx alt to amp; Chl 

stringers sporadic; Slip sur @ 

131.5,132.4,134.7,136.8,139,139.5,14

0.9,141.2,142.8,143.1,150.8,149.9,150

.9,151.2,156,161,163.9,164.2,

Po 0-2%, <5mm, interstial



10% pyx alt to Amp, Chl stringers 

30cm apart; Carb stringers 40cm apart; 

Slip sur 

@189.1,192.6,195,196.8,197.2,199,20

1.2,202,203,207.3,208,209.7,212,205

Po 0-2%, 1-2mm, interstial.

190.3, 193, 203.6, 

205.6, 214.3, 

220.9, 222.1, 

227.9

Chl stringers 5-10cm apart; along all 

fractured surfaces
None

60-70% Pyx alt to Amp, variable alt 

intensity, more Amp alt around more 

Pot alt areas

Po Tr, <2mm, interstial 233

20-30% pyx alt to amp; chl stringers 

40 cm apart; stringers concentrated 

around carb vein. Slip sur 

@237.6,240.9,238.2,240.4,241.2,242,

244.8,247.3,250.5

Po Tr, <2mm, interstial 239. 249.9

Abundant chl stringers, 5-10cm apart, 

going in all directions; slipsur @252.45
None 251.6

Carb stringers concentrated between 

260-261, 20 cm spacing; Chl stringers 

20cm spacing; Tr Pyx alt to Amp.

Po Tr, <2mm, Interstial
253.8, 258.3, 

265.2

20% Pyx alt to Amp; rare Chl stringers Po Tr, <2mm 267.4

10% Pyx alt to Amp. Slip sur @ 268, 

268.6, 269, 269.9, 274
Po, Ccp

Po-Tr, <3mm; Ccp-Tr, <3mm assoc 

w/Po.

271, 275.7, 277.4, 

280.2

Rare Chl stringers; Slip sur 285.7, 

285.5, 284.6, 284.4, 283. 10-15% pyx 

alt to amp and increases to 30-40% 

from 282.-284.4

Po; Ccp
Band of Po+Ccp @ 285.2 occurring 

w/string of chl
281.7, 286

Rare Chl stringers; 10% Pyx alt to 

Amp; Slip sur @ 287
Po Tr in non-Mag rich intervals 287.1

Slip sur @ 289, 291.5, 296, 301 None 291, 299

10% Pyx alt to Amp Py 1-2%, cluster of <1mm grains 304.7

10-120% Pyx alt to Amp; Rar chl 

stringers; Slip Sur@303.4,304,304.1. 

Carb stringers along Slip sur

Po Tr, <2mm

306.9

10-20% Pyx alt to Amp; Slip Sur 

@309.7-310.5, 312.6
Po,Py Tr 308.8, 312.9

Chl stringers about 20cm apart; 10% 

Pyx alt to Amp; Slip Sur @ 315.3, 

313.2, 319.3, 320.7

None 319.1



20% pyx alt to Amp None

Rare Chl stringers; Tr Pyx alt to Amp; 

Slip Sur @ 324.5
None 327.3

Po Tr, <3mm 329

Rare Chl stringers; 10% Pyx alt to 

Amp; Slip sur @ 336.7, 338.1, 339.2
None 333.3, 336

Po 2%, <5mm 341.5

Chl stringers 20cm apart; 10% Pyx alt 

to Amp; Slip Sur @346, 346.7, 348.5, 

349.5, 351.3, 353, 353.5

Po Tr, <1mm 350.4

Po 1-2%, <8mm

Chl stringers 20cm apart; 10% Pyx alt 

to Amp; Slip Sur @366.4,363.5
Po

0-2%, <8mm, interstial, mostly in CG 

Patches
364.4

Po 5%, in Mag bands, <6mm 367

Slip sur @ 368, Chl and Carb along 

slip sur too
None 369.3

Po 3%, <6mm, interstit

50% pyx alt to amp Po 1-2%, <6mm, intersit

None

30% pyx alt to amp; slip sur 

@372.8,374.9
None 373.2

60% Pyx alt to Amp; Rare Chl 

stringers; Slip sur@380
None 381.7

384.8

10% pyx alt to amp; Chl strings 40cm 

apart; Slip sur @ 

385.5,389.3,392,393.1,395.5,397.2,39

8

Po
0-2%, mainly occurs in CG patches, 

<8mm

388.5, 389, 390.3, 

396.3, 400.4, 

407.4

40% Pyx alt to Amp Po
1-2%, <5mm scattered. 412.5-413.25 

3% Po, <8mm
411.6

Chl stringers spaced 50cm apart; 10% 

Pyx alt to Amp; Slip sur @422.6, 

420.1

Po Tr, <3mm, intersit 415

20% pyx alt to Amp; Slip sur @424.4 Po 1-2%, <5mm  assoc w/ Mag band 424.5

Slip Sur @425.4 None

426, 429.8, 445.1



Appendix 8: CL-06-16 thin section data

Sample Depth Rock Type Grain Size

8.9 Gabbro <2mm m

11.2 Gabbro <2mm m

33.7 Clinopyroxenite <2mm m

35.7 Clinopyroxenite <5mm c

47 Gabbro <1.5mm f

47.6 Gabbro <2.5 m

52.5 Gabbro <5mm c

55 Gabbro <5mm c

56.3 Gabbro <7mm c

57.5 Gabbro <7mm c

58.6 Gabbro <3mm m

59.9 Gabbro <2mm m

61.7 Gabbro <2mm m

63.15 Gabbro <1mm f

63.8 Clinopyroxenite <5mm c

71.15 Gabbro <1mm f

78.75 Massive sulfide/Plag rich Gabbro <2mm m

80 Clinopyroxenite <7mm c

83.5 Gabbro <2mm m

84.6 Massive sulfide <1.5mm f

90 Anorthosite <2mm m

103 Gabbro <2.5mm m

152.45 Gabbro <2mm m



Plagioclase % Clinopyroxene % Orhtopyroxene % Olivine % Fe-Ti-Oxide %

50 20 5 10 10

50 20 5 Trace 10

30 40 5 10 15

10 60 5 15 6

45 35 Trace 5 8

20 20 10

40 25 Trace 8

30 30 2 5 10

40 35 2 2 5

45 40 Trace 12

30 30 Trace 8

45 35 5 2 6

40 20 10 5

35 30 5 5

25 45 6

40 35 10 Trace 8

70 15 5 5

25 55 10 4

40 30 10 5

90 5 3 3

50 35 4

45 35 10 5



Sulfide %

Plagioclase 

Alteration

CPX 

Alteration

OPX 

Alteration

Olivine 

Alteration

4 Mod Wk w Wk

2 s Mod m C

Trace Mod Tr t tr

3 Tr Wk w Wk

7 Mod Mod w c

15 Mod Str

15 wk Mod m

12 Tr Mod w c

15 Tr Mod m c

9 wk Mod w

25 Tr Mod w

3 wk Wk w c

15 Mod Mod m

Trace s Mod m

20 wk Str

2 wk Wk w c

Trace Mod Mod w

1 wk Mod m

Trace Mod Mod m

98

Trace Tr Tr

Trace wk Str s

Trace wk Wk w



Appendix 9: CL-06-39 thin section data

Sample Rock type Grain Size (mm) Plagioclase % Clinopyroxene %

CL-06-39-4.1 Gabbro <12 35 65

CL-06-39-6.85 Gabbro <10 70 30

CL-06-39-10.98 Gabbro <3.5 45 45

CL-06-39-17.2 Gabbro <3 50 40

CL-06-39-20.35 Dunite <5 8 10

CL-06-39-32.21 Lherzolite <5 8 15

CL-06-39-32.82 Dunite <4 - 10

CL-06-39-33.28 Dunite <5 t 5

CL-06-39-47.36 Lherzolite <6 t 40

CL-06-39-57.38 oxide lherzolite <4 - 5

CL-06-39-60.23 Dunite <4 5 5

CL-06-39-63.88 Troctolite <5 12 10

CL-06-39-83.9 Troctolite <5 10-20 15-20

CL-06-39-94.95 Dunite <5 5 5

CL-06-39-100.0 anorthosite <15 100 -

CL-06-39-103.55 Gabbro <4 60-70 25-30

CL-06-39-103.7 Oxide-UM <5 t 20

CL-06-39-103.91 olivine gabbro 20 50

CL-06-39-105.83 Gabbro <3 45 40

CL-06-39-108.0 Troctolite >5 15-20 t

CL-06-39-118.75 Gabbro <7 70 30

CL-06-39-122.3 Gabbro <8 60 35

CL-06-39-125.0 anorthosite <4 100 -

CL-06-39-128.4 Gabbro <4 45 35

CL-06-39-132.47 Gabbro <17 60 30

CL-06-39-133.4 Gabbro <15 45 20

CL-06-39-150.08 Gabbro <4 45 35

CL-06-39-154.16 Oxide dunite <4 - t

CL-06-39-156.97 Gabbro <20 40 60



Olivine % Fe-Ti-Oxide % Sulfide % Plagioclase Alteration CPX Alteration Olivine Alteration

- t 3 w w -

- t 2 w-m w-m -

t t 7 m m w

3 t 5 w m m

75 1 5 m m s

70 t 4 m w c

80 t 8 - m c

88 t 7 m m c

45 t 5 w w c

60 t 35 - w c

80 1 7 m w s

75 t 4 m m s

60-70 t t c c c

85 t 7 m s c

- - - c - -

- t 2 m w -

10 1 70 m w m

20 t 10 s m c

5 2 5 w w m

75 t 7 w w m

- - 2 s c -

- t 4 t m -

- - t s -

10 2 5 w w m

- 1 2 s s

5 1 6 w w w

10 1 5 w w m

70 t 35 - s c

- - t m m -



Sample Rock type Grain Size (mm) Plagioclase % Clinopyroxene % Olivine % Fe-Ti-Oxide %

CL-07-01-8 Diorite ~5 (<8) 70 5 - 2-3(Ilm)

CL-07-01-9.1 Clinopyroxenite <5cm 5 70 - 20 (60M/40I)

CL-07-01-29.1 Gabbro ~3(<7) 60-65 20-25 3-5 5 (60M/40I)

CL-07-01-50.2 Olivine Gabbro ~1.5 (<5) 20 55 15 10(50/50)

CL-07-01-52.3 Gabbro 50 35 Tr 15 (60I/40M)

CL-07-01-55.9 Gabbro <25 20 60 - 15 (70I/30M)

CL-07-01-67.5 Gabbro ~5 (<10) 35 50 2-3 10 (50/50)

CL-07-01-79.3 Gabbro <7 70 15 5 Tr

CL-07-01-95.9 Clinopyroxenite ~3 (<7) 5 75 - 15 (60I/40M)

CL-07-01-101 Olivine Gabbro <4 45 30 10 15

CL-07-01-113.8 Olivine Gabbro <4 50 5 30 15

CL-07-01-115.7 Gabbro <20 75 20 - 3

CL-07-01-117.2 Dunite <3 - 15 80 5 (50/50)

CL-07-01-124.3 Gabbro <3 45 50 Tr 5

CL-07-01-127 Pegmatite Gabbro < 4 cm 15

CL-07-01-128.1 Gabbro <5 (2) 65 20-25 2 7

CL-07-01-134.3

CL-07-01-140 Olivine CPX <2.5 (1) 5 47 20-25 20

CL-07-01-145.7

CL-07-01-156.3

CL-07-01-166.4 Gabbro <3 (1) 80 15 Tr 5

CL-07-01-167A1 Pegmatite Gabbro < 4 cm 30 40 2

CL-07-01-167A2 Pegmatite Gabbro < 4 cm 30 40 3

CL-07-01-167B 40-45 25-30 5 10

CL-07-01-171.5 Wehrlite <20 (5) 10 45 40 5

CL-07-01-173.9

CL-07-01-180.1 Gabbro <9 (4) 25 70 - 5

CL-07-01-203.6 Gabbro <6 (2.5) 70 25 - 3

CL-07-01-233 HBL Qtz Syenite - - - - -

CL-07-01-249.9 Olivine Gabbro <4 (1) 45 22 20 7

CL-07-01-251.6 HBL Qtz Syenite - - - - -

CL-07-01-271 Gabbro <8 (5) 85 8 4 2

CL-07-01-275.7 Gabbro <12 (5) 65 25 5 5

CL-07-01-277.4 Gabbro <18 (10) 75 20 - 5

CL-07-01-287.1 Gabbro <5 (1.25) 40 45 8 5

CL-07-01-308.8 Oxide rock <2.5 (1) - - 20 80

CL-07-01-322 Oxide Anorthosite <8 (3) 60-65 - - 30

CL-07-01-327.3 Olivine Gabbro <2 (.7) 35 50 15 3

CL-07-01-329 Oxide Troctolite <4 (.5) 15 2 45 35

CL-07-01-354 Gabbro 40-45 30-35 4-6 5

CL-07-01-367 <.5 (2) 7 2 18 65

CL-07-01-373 Olivine Gabbro <15 50-55 5 10-15 15

Appendix 10: CL-07-01 thin section data



Sulfide % Comments

Tr s s - 1% Ap, 10-15% Amp, 5% Bt

Tr w m - 3% Bt, graphic Mag text; Pl inc in Mag

Tr Tr m m-s 5-7% Ap, 2-3% Bt, Plag ~4mm; Cpx/Oliv ~2mm

1-2 (Po,Ccp) Tr w w Plag massive oik? Lrg Ap <5mm,1%

1 Tr w m-s

Tr w m-s - Py replace Mag; Mag str alt but only rare Py replace

3 (Po, Ccp, Pn) m w w Amp 2%

2 m m-s c

1 (Po, Ccp) Tr w - 7% Bt, Tr Ap (1grain)

Tr w Tr m-s

Tr Tr w

1 w w -

1 (Po, Ccp) - m C OPX?

1 (Po, Ccp,Pn) Tr Tr s

1 (Po, Ccp, Py, Pn) s s Extremely coarse grained apatite

2 (Po, Ccp, Pn, Sp) w w m-s Tr interst Ap, Plag incs in CPX

m

1 (Po, Pn, Ccp) Tr w w Interst Plag, "cumul" CPX Oliv, 3% Amp

w w

w Thin Sections Does Not Represent Handsample

Tr (Po, Py, Ccp) w w w Tr Bt, 2% Amp, Tr KFS

Tr (Po, Ccp, Pn, Py) s s - Coarse grained apatite

Tr (Po, Ccp, Pn, Py) s s -

m m

1 (Po, Py,Ccp,Pn) m w-m m-s Mag alt in fracs of oliv

m w 5% CG Ap w/incs in CPX, Mag, Bt

1 (Po,Ccp,Pn,Py) m w - Tr Ap, 2%Amp/Bt on oxides

Tr (Py,Ccp,Po,Pn) m-s m - 1% interst Ap, 3% Bt, Pl inclusions in CPX, CPX interst

- - - -

1 (Po,Pn,Ccp,Py) w w m-s 5% Bt/Amp halo, Tr Ap

- - - -

Tr (Po, Ccp, Py) w m m

Tr (Po, Ccp) w m m

1 (Po, Py alt) w s -

1 (po, ccp, pn, py) w m m-s

(po, Py, Ccp, Pn) - - w 1% Spinel

(po, Py, Ccp, Pn) m - - 5% Bt

1 (Po Pn Ccp) Tr w s

Tr (Po, Ccp) Tr m m-s Tr Bt, 1-2% Spinel, Oliv alt to act w/ mag in fracs

Tr

Tr (Po Pn) w s m-s Spinel (3%) Amp (5%)

2 Tr Ap

Plagioclase 

Alteration

CPX 

Alteration

Olivine 

Alteration



Appendix 11: February 2013 whole rock major and trace element geochemistry

Sample CL-07-01-8 CL-07-01-115.7 CL-07-01-167.76 CL-07-01-322.4 CL-07-01-325.6

SiO2 (wt%) 46.5 42.6 39.1 21.9 43.7

TiO2 2.60 2.25 2.61 8.00 2.70

Al2O3 18.3 15.9 13.3 8.80 11.1

Fe2O3 11.3 13.1 18.4 44.8 16.0

MnO 0.24 0.14 0.19 0.33 0.20

MgO 3.73 8.10 8.31 4.16 8.62

CaO 7.28 13.0 10.2 6.03 13.7

Na2O 3.88 1.71 1.86 1.15 1.73

K2O 1.69 0.53 0.44 0.20 0.15

P2O5 0.25 0.063 0.35 0.089 0.042

LOI 3.3 1.40 4.15 -0.49 0.81

Ba (ppm) 524 145 199 85.2 99.3

Be 0.61 0.37 0.57 0.28 0.42

Bi <0.15 0.15 <0.15 <0.15 <0.15

Cd 0.172 0.196 0.209 0.126 0.153

Ce 20.13 11.33 31.81 10.37 12.68

Co 21.98 65.66 59.53 137.83 65.3

Cr 17 660 71 105 486

Cs 1.77 0.377 1.995 0.204 0.258

Cu 2 363.9 142.4 92.8 92.1

Dy 1.735 1.382 3.034 1.142 2.271

Er 0.636 0.562 1.122 0.48 0.917

Eu 2.1135 0.9821 2.0192 0.7205 1.2892

Ga 21.11 21.52 22.59 34.17 18.06

Gd 2.626 1.927 4.559 1.626 3.024

Hf 1.23 1.09 1.54 2.01 1.44

Ho 0.2795 0.2351 0.4929 0.1951 0.3788

In 0.0659 0.0557 0.0775 0.1039 0.0785

La 8.57 4.87 12.56 4.27 4.47

Li 24.9 13.6 18.9 11.2 10.1

Lu 0.0625 0.0534 0.104 0.0484 0.0908

Mo 1.38 1.32 0.73 1.52 0.69

Nb 9.528 3.861 9.1 22.356 3.955

Nd 13.41 7.98 22.3 7.04 10.88

Ni 4.8 489.7 190.2 125.7 139.6

Pb 4 1.6 1.8 1.4 0.8

Pr 2.902 1.685 4.724 1.507 2.138

Rb 55.97 8.3 13.27 4.19 2.68

Sb <0.04 <0.04 <0.04 <0.04 <0.04

Sc 10.8 26.3 13.2 18.9 40.9

Sm 2.947 1.983 5.049 1.699 2.984



Sn 10.97 0.69 1.51 0.9 0.45

Sr 1172.6 683.9 672.5 350.3 560.4

Ta 0.664 0.278 0.573 1.618 0.286

Tb 0.3288 0.2615 0.564 0.2152 0.4115

Th 0.539 0.28 0.433 0.175 0.113

Ti 16388 13909 15809 >25000 16860

Tl 0.27 0.055 0.17 0.027 0.022

Tm 0.075 0.068 0.14 0.056 0.11

U 0.12 0.074 0.11 0.059 0.033

V 74.4 376 342 1410 389

W 3.66 0.050 0.20 0.18 <0.05

Y 7.01 5.92 12.2 4.94 9.73

Yb 0.43 0.38 0.75 0.34 0.66

Zn 139 76.0 98.0 319 102

Zr 45.0 33.0 50.0 70.0 40.0



CL-07-01-354.2 CL-07-01-371.2 CL-07-01-373 CL-07-01-380 CL-07-01-422.9

41.3 41.9 36.0 39.1 38.3

3.25 3.65 6.42 4.01 4.77

12.5 13.0 11.8 16.7 16.5

20.0 19.0 29.1 19.5 22.5

0.22 0.22 0.29 0.22 0.20

7.97 7.23 8.10 5.91 4.46

10.5 10.9 5.15 7.49 6.97

2.16 2.26 2.03 2.6 2.88

0.24 0.27 0.65 0.68 0.52

0.17 0.12 0.11 0.12 0.16

0.48 0.59 -0.08 2.42 1.28

151 149 167 193 229

0.54 0.49 0.63 0.79 0.73

<0.15 <0.15 <0.15 <0.15 <0.15

0.118 0.137 0.092 0.421 0.17

20.12 15.46 13.73 13.21 21.86

88.04 72.8 104.46 73.21 101.95

321 163 57 17 227

0.262 0.361 1.031 4.597 1.31

197.2 65.7 54.5 18.6 120.4

2.208 1.805 1.1 0.769 1.493

0.89 0.729 0.49 0.317 0.602

1.4085 1.3379 0.9818 1.113 1.4591

20.55 21.29 21.66 21.66 27.48

3.055 2.496 1.531 1.192 2.248

1.28 1.03 1.62 0.84 1.25

0.371 0.2995 0.1936 0.131 0.2475

0.0694 0.069 0.0629 0.048 0.059

8.43 6.73 6.29 6.27 9.99

8.5 14.7 17.3 31.1 28.5

0.0873 0.0678 0.0583 0.0345 0.0576

0.83 0.73 1.18 0.75 0.94

7.052 6.307 17.809 7.747 8.396

13.73 10.73 7.97 7.22 12.8

179.7 88.5 40.8 20.2 107.3

1 0.9 2.3 13.3 1.6

2.922 2.269 1.854 1.726 2.945

3.48 3.81 22.65 25.98 12.32

<0.04 <0.04 <0.04 0.04 <0.04

26.1 25.5 8.8 4.6 12.2

3.249 2.61 1.733 1.398 2.563



0.52 0.43 0.95 5.27 0.54

622.7 670.1 697.7 1054.7 765.6

0.473 0.435 1.263 0.531 0.62

0.4097 0.3275 0.2015 0.1533 0.2802

0.231 0.174 1.228 0.383 0.666

20328 22753 >25000 >25000 >25000

0.02 0.018 0.14 0.44 0.049

0.11 0.087 0.064 0.039 0.072

0.067 0.046 0.54 0.09 0.16

449 430 535 361 563

0.090 0.060 0.38 0.71 0.88

9.45 7.62 5.17 3.44 6.47

0.63 0.51 0.41 0.23 0.42

131 125 206 276 181

41.0 33.0 60.0 33.0 43.0



CL-07-02-347 CL-07-03-169 CL-07-05-11 CL-07-05-14 CL-07-05-30.2 CL-07-05-50

45.4 44.2 15.3 40.0 40.1 39.3

1.47 1.79 8.00 4.32 4.21 3.53

15.0 14.9 4.83 6.46 13.0 9.10

12.8 11.7 50.9 19.9 18.4 19.9

0.14 0.14 0.36 0.26 0.18 0.18

8.15 8.34 13.5 11.1 7.96 9.21

11.7 13.0 0.58 15.0 9.67 13.9

2.31 1.73 0.050 0.63 1.77 0.72

0.44 1.12 0.030 0.44 1.26 0.90

0.013 0.0070 0.0060 0.038 0.04 0.022

1.82 2.33 3.18 1.20 2.49 1.81

96.9 889 8.30 76.7 278 119

0.34 0.6 0.08 0.76 0.72 0.4

<0.15 <0.15 <0.15 0.17 <0.15 0.29

0.118 0.351 0.06 0.394 0.236 0.381

4.85 5.63 1.41 19.92 8.94 10.65

69.43 53.11 >187 90.62 72.84 109.73

420 547 >4500 104 9 449

1.23 3.591 0.218 0.583 2.138 2.227

150.7 100.6 696.1 352.4 112.4 1005.7

0.897 1.412 0.292 3.527 1.498 1.971

0.423 0.591 0.12 1.468 0.614 0.807

0.6049 0.7214 0.1084 1.3273 0.8788 0.9386

19.85 21.55 39.75 19.73 23.43 19.46

1.104 1.74 0.358 4.428 1.989 2.625

0.48 0.74 0.59 2.45 1.07 1.58

0.1604 0.2416 0.0494 0.594 0.2539 0.3393

0.0408 0.0643 0.0827 0.1028 0.0746 0.1036

2.29 1.94 0.58 7.38 3.48 3.83

33.9 45.9 10.3 27.1 50.7 40.1

0.043 0.0584 0.0148 0.1309 0.0573 0.0776

0.33 0.35 0.56 0.6 0.47 0.59

1.213 0.412 3.545 9.632 4.282 4.187

3.73 5.42 1.16 15.62 7.23 9.02

205.4 321.2 1318 417.2 101.2 852.5

5.6 32.4 2.7 5.1 3.4 5.7

0.748 1.019 0.227 3.125 1.4 1.758

18.12 38.06 1.07 13.8 33.98 26.25

0.07 <0.04 <0.04 <0.04 <0.04 0.07

27.4 30.4 14.6 50.8 32.8 45.1

1.039 1.644 0.354 4.343 1.949 2.59



0.45 5.28 0.4 1.1 0.6 3.02

412.9 467 27.4 124.6 458.4 178.2

0.086 0.043 0.29 0.667 0.322 0.324

0.1606 0.2529 0.0519 0.638 0.2699 0.3671

0.104 0.031 <0.018 0.726 0.238 0.42

9113 10951 >25000 >25000 >25000 21710

0.13 0.27 0.086 0.11 0.15 0.23

0.053 0.075 0.016 0.18 0.073 0.099

0.048 0.019 <0.011 0.23 0.054 0.19

492 465 2190 942 983 801

0.17 0.85 <0.05 0.28 0.10 0.46

4.31 6.22 1.27 15.2 6.47 8.55

0.30 0.44 0.10 0.98 0.43 0.58

117 148 329 120 129 112

14.0 15.0 17.0 74.0 30.0 43.0



CL-07-05-105 CL-07-05-117 CL-07-05-142.8 CL-07-05-144 CL-07-05-499 CL-07-05-675

45.3 30.5 33.8 38.1 40.2 2.9

3.41 4.26 3.79 2.63 4.43 8.00

14.2 4.72 7.09 10.6 11.9 4.94

15.1 32.1 27.4 21.6 19.2 68.8

0.22 0.24 0.23 0.19 0.28 0.33

5.33 18.1 14.4 13.1 5.53 5.00

10.7 3.28 8.09 7.49 10.9 0.071

2.87 0.31 0.35 0.69 2.26 0.00

1.36 0.32 0.27 1.15 1.32 0.06

0.17 0.012 0.019 0.040 0.85 0.0050

1.28 5.15 3.25 3.21 1.26 0.04

465 52.9 53.8 163 503 3.60

0.76 1.23 0.22 0.4 17.54 0.1

<0.15 0.17 0.25 0.33 0.37 <0.15

0.135 0.07 0.253 0.279 0.548 0.032

27.01 44.04 5.44 8.32 270.96 0.74

40.72 166.57 141.21 117.26 71.69 >187

13 2949 1614 1084 29 176

1.282 1.967 2.16 4.125 4.9 0.027

10.6 317.5 773.1 900.3 113.3 10.5

2.84 3.245 1.035 1.137 27.935 0.061

1.133 1.554 0.42 0.491 13.726 0.029

2.1162 0.6674 0.4962 0.6096 4.7877 0.0687

22.58 20 19.76 19.91 23.42 49.1

4.032 4.078 1.349 1.482 31.867 0.073

2.07 6.03 0.9 1.01 25.21 0.86

0.4722 0.5795 0.1759 0.1951 5.1748 0.0099

0.0764 0.0836 0.0733 0.0635 0.1932 0.0877

11.3 18.72 2.04 3.48 109.24 0.33

27.8 16.5 60.9 68.6 25.7 1.2

0.1141 0.1578 0.0448 0.0514 1.3341 0.004

1.22 0.67 0.36 0.37 1.66 0.54

13.297 21.976 2.948 3.584 88.513 7.735

18.62 23.45 4.59 5.69 146.67 0.39

22.8 1011.7 850 790 77 298.1

5 2.1 2.3 2.9 88.8 0.7

3.941 5.83 0.875 1.227 35.933 0.095

34.19 24.09 9.49 30.65 79.16 0.65

<0.04 <0.04 <0.04 <0.04 0.08 <0.04

23.6 14.9 28.7 24.7 22.3 10.7

4.324 4.909 1.302 1.512 34.58 0.092



0.76 1.47 0.88 1.22 >14 1.21

687.3 96.6 91.3 178.4 478.2 4.9

0.89 1.326 0.219 0.264 5.892 0.66

0.5315 0.5837 0.1829 0.2022 4.8699 0.0106

0.846 3.259 0.178 0.545 26.726 0.023

21113 >25000 23320 16431 >25000 >25000

0.17 0.24 0.19 0.31 0.37 0.031

0.14 0.20 0.053 0.062 1.80 0.0037

0.26 1.10 0.038 0.20 3.65 <0.011

250 966 840 571 438 4231

0.88 0.30 0.16 1.04 3.24 0.20

12.2 15.7 4.46 5.11 135 0.27

0.81 1.19 0.30 0.37 10.4 0.025

113 175 178 125 407 396

76.0 237 24.0 30.0 1109 27.0



CL-07-07-10.1 CL-07-07-17 CL-07-07-450 CL-07-07-483 CL-07-14-323.5 CL-07-14-477.5

44.6 40.6 43.8 46.3 33.4 40.3

3.54 3.97 4.00 2.58 6.55 3.12

13.2 12.2 17.0 10.6 8.75 13.8

16.0 19.7 13.5 13.2 28.5 19.3

0.19 0.19 0.17 0.20 0.22 0.15

6.42 7.29 4.79 8.40 8.12 6.25

11.3 12.0 10.6 15.8 12.2 11.3

2.45 1.94 3.10 1.85 0.96 2.15

0.55 0.54 0.99 0.59 0.20 0.82

0.082 0.11 0.088 0.066 0.038 0.07

1.06 0.68 1.18 0.87 0.32 1.35

162 146 350 179 67.3 279

0.7 0.65 2.39 0.53 0.29 0.47

<0.15 <0.15 <0.15 <0.15 <0.15 0.35

0.153 0.192 0.152 0.17 0.248 0.496

21.31 21.59 14.63 18.06 9.37 15.73

65.21 82.24 53.52 44.16 114.19 108.27

21 53 20 56 92 122

0.829 0.725 1.473 0.549 0.388 1.581

84.8 190.3 21.1 20.2 380.4 1226.7

2.992 2.667 1.575 2.819 1.758 2.209

1.256 1.095 0.664 1.114 0.715 0.913

1.5902 1.355 1.1954 1.5099 0.9085 1.2909

21.64 23.69 22.35 16.97 25.06 23.44

4.034 3.559 2.141 3.94 2.342 2.999

1.87 2.27 1.01 1.64 1.49 1.55

0.5177 0.4526 0.2699 0.4755 0.302 0.3818

0.083 0.0874 0.0513 0.089 0.0924 0.0924

8.16 8.85 6.81 6.64 3.44 6.18

20.7 15.9 26.3 21.9 20.5 23.7

0.1241 0.1015 0.058 0.1067 0.0664 0.0855

0.82 0.83 0.64 1.04 0.74 1.83

9.523 11.528 7.562 5.483 6.085 6.287

16.33 14.72 9.56 14.98 8.22 11.85

94 187.4 13.9 47.7 299.4 906.5

3.1 3.8 6.7 5.5 2.7 9.1

3.319 3.153 2.041 2.932 1.568 2.438

17.63 18.68 53.78 20.21 6.04 25.55

<0.04 <0.04 0.05 <0.04 <0.04 0.04

24.2 28.7 17.7 39.2 34.1 25.7

4.164 3.674 2.289 3.971 2.299 3.072



0.95 1.09 3.19 0.64 0.79 2.26

600.8 527.2 814.3 433.2 306.6 558.1

0.689 0.745 0.466 0.356 0.441 0.44

0.5531 0.4916 0.2873 0.5386 0.3218 0.4052

0.585 0.614 0.645 0.475 0.203 0.35

21635 24270 >25000 15584 >25000 19397

0.15 0.10 0.24 0.086 0.041 0.27

0.15 0.13 0.080 0.13 0.082 0.11

0.27 0.20 0.32 0.13 0.05 0.12

599 758 450 316 1374 581

0.36 0.35 1.01 1.15 0.07 2.44

13.2 11.5 7.44 11.9 7.47 9.54

0.91 0.77 0.45 0.77 0.50 0.62

77.0 133 106 85.0 167 136

58.0 77.0 32.0 48.0 41.0 48.0



CL-07-15-145

48.6

1.60

20.8

9.27

0.13

1.67

8.97

4.20

1.65

0.42

2.03

661

0.99

<0.15

0.127

35.53

23.79

20

1.895

5.1

2.183

0.853

2.8451

25.07

3.544

1.45

0.3613

0.0812

15.65

26.7

0.0777

1.72

11.033

20.76

7.2

4.3

4.778

55.18

0.05

6

4.223



6.85

1321.7

0.671

0.4302

0.996

10012

0.28

0.099

0.24

50.7

1.48

9.47

0.56

80.0

57.0



Sample SiO2 (wt%) TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O Cr2O3 P2O5 BaO LOI Total

CL-06-16-8.9 41.7 2.84 16.3 16.0 0.14 7.43 11.1 1.89 1.07 0.01 0.032 <0.004 1.22 99.7

CL-06-16-11.2 38.7 3.82 12.6 20.2 0.17 7.56 11.5 1.93 0.73 <0.002 0.047 <0.004 1.84 99.07

CL-06-16-14.1 71.7 0.19 11.8 4.95 0.12 0.97 0.53 6.88 0.9 <0.002 0.011 <0.004 0.81 98.83

CL-06-16-33.7 40.1 3.65 13.4 18.9 0.16 7.58 12.2 1.51 0.92 0.01 0.028 <0.004 1.02 99.49

CL-06-16-35.7 40.9 2.17 5.97 21.7 0.23 14.03 12.7 0.91 0.2 0.08 0.066 <0.004 1.16 100.12

CL-06-16-47.0 38.2 4.01 11.8 23.1 0.21 7.05 10.7 1.77 0.57 0.01 0.061 <0.004 1.88 99.32

CL-06-16-51.2 74.0 0.12 11.8 3.47 0.022 1.37 0.57 4.46 2.71 <0.002 0.003 0.01 1.24 99.77

CL-06-16-63.15 41.7 3.62 13.7 18.4 0.20 6.88 11.2 2.02 0.94 <0.002 0.107 0.01 1 99.76

CL-06-65.7 74.7 0.08 12.7 2.76 0.031 1.01 0.47 6.45 0.69 <0.002 0.003 <0.004 1.02 99.91

CL-06-16-71.15 39.1 3.66 12.7 22.0 0.19 7.38 10.9 1.75 0.63 0.01 0.084 <0.004 1.16 99.64

CL-06-16-80.0 44.5 3.4 12.1 18.2 0.21 7.06 10.6 1.92 0.84 <0.002 0.164 0.01 0.48 99.59

CL-06-16-83.5 43.1 3.91 13.7 17.8 0.18 6.67 10.4 1.98 0.7 0.01 0.11 0.01 0.99 99.58

CL-06-16-90.0 50.1 2.13 16.6 14.2 0.12 3.56 6.00 3.94 0.94 0.02 0.71 0.03 1.03 99.36

CL-06-16-103.0 35.3 3.33 13.4 17.6 0.17 7.34 10.8 1.64 0.66 0.01 0.11 0.01 8.69 99.07

CL-06-16-152.45 40.4 3.18 13.0 17.1 0.15 7.65 13.2 1.31 0.89 0.01 0.037 <0.004 2.41 99.36

CL-06-16-155.6 74.0 0.13 12.0 1.4 0.041 0.85 1.45 4.1 3.17 <0.002 0.009 0.03 2.68 99.86

CL-06-16-170.6 46.9 2.07 12.3 15.5 0.14 5.05 7.18 2.29 0.43 0.01 0.20 0.01 7.57 99.68

CL-06-39-4.1 39.1 4.09 9.82 20.9 0.20 9.37 13.4 1.23 0.56 0.11 0.41 99.19

CL-06-39-6.85 40.1 3.36 11.1 17.8 0.17 9.38 14.4 1.1 0.47 0.058 0.95 98.82

CL-06-39-10.98 37.9 4.48 14.6 22.1 0.16 6.00 11.1 1.77 0.57 <0.002 0.025 <0.004 0.87 99.52

CL-06-39-17.2 41.1 6.68 12.0 17.8 0.23 6.61 11.2 2.35 0.26 <0.002 0.22 <0.004 0.27 98.74

CL-06-39-20.35 32.3 3.62 3.86 32.7 0.31 18.7 5.15 0.36 0.07 0.29 0.071 <0.004 1.54 98.95

CL-06-39-32.21 32.1 3.14 4.24 28.7 0.21 19.9 4.95 0.26 0.08 0.32 0.018 <0.004 5.39 99.33

CL-06-39-32.82 29.7 3.71 2.88 32.0 0.24 20.4 3.85 0.12 0.01 0.43 0.007 <0.004 5.36 98.77

CL-06-39-33.28 23.6 5.39 3.77 39.3 0.31 18.8 1.27 0.09 0.02 0.64 0.006 <0.004 5.38 98.61

CL-06-39-47.36 28.8 5.56 5.29 36.4 0.31 13.2 4.38 0.96 0.31 0.18 2.86 98.19

CL-06-39-57.38 34.9 4.88 9.8 26.8 0.36 10.5 5.45 1.8 0.66 0.572 3.35 98.97

CL-06-39-60.23 22.7 5.34 4.16 41.4 0.26 18.0 1.54 0.16 0.03 1.08 0.012 <0.004 4.5 99.2

CL-06-39-83.9 34.3 2.35 4.21 17.4 0.5 15.2 13.7 0.25 0.11 0.21 0.031 <0.004 10.53 98.69

CL-06-39-94.95 26.4 4.96 5.13 35.8 0.26 18.1 3.32 0.26 0.07 0.59 0.005 <0.004 4.88 99.7

CL-06-39-100.0 49.4 1.7 16.4 11.1 0.11 4.42 5.86 5.89 0.87 0.88 2.46 99.09

CL-06-39-103.55 40.4 2.8 18.4 16.2 0.14 5.86 10.2 2.09 0.6 0.19 0.10 <0.004 1.77 98.78

CL-06-39-103.91 40.0 2.49 19.1 15.5 0.13 6.06 10.6 1.57 1.43 0.059 2.29 99.22

CL-06-39-105.83 39.9 6.58 11.9 21.3 0.22 6.55 9.93 2.34 0.26 <0.002 0.077 <0.004 0.49 99.54

CL-06-39-108.0 34.6 3.42 4.97 28.4 0.24 17.6 6.83 0.6 0.09 0.36 0.051 <0.004 2.01 99.03

CL-06-39-118.75 49.7 2.36 20.3 9.4 0.10 3.46 4.75 5.44 0.76 <0.002 0.22 0.02 3.22 99.72

CL-06-39-122.3 42.7 5.09 14.9 16.7 0.20 4.26 9.58 3.3 0.75 <0.002 0.29 0.01 0.88 98.63

CL-06-39-125.0 51.7 0.58 23.5 4.58 0.057 1.47 5.53 5.76 2.29 <0.002 0.19 0.03 4.39 100.02

CL-06-39-128.4 39.4 7.06 11.0 21.3 0.24 7.32 10.3 2.07 0.2 0.01 0.074 <0.004 0.32 99.21

CL-06-39-132.47 38.7 4.49 11.8 22.1 0.19 7.02 11.9 1.78 0.83 0.16 0.83 99.68

CL-06-39-133.4 43.3 2.78 16.1 13.8 0.14 5.56 11.3 2.83 1.59 0.28 2.06 99.61

CL-06-39-150.08 40.7 7.66 11.6 19.6 0.23 7.42 10.5 2.22 0.23 <0.002 0.046 <0.004 -0.05 100.19

Appendix 12: Summer 2013 whole rock major element geochemistry



CL-06-39-156.97 42.0 2.11 11.8 15.4 0.16 9.48 12.8 1.85 0.52 0.061 3.06 99.17

CL-07-01-9.1 33.7 >8.00 5.06 29.7 0.48 6.51 13.0 1.11 0.29 1.406 -0.24 99.27

CL-07-01-29.1 39.3 4.55 11.0 22.5 0.33 5.11 10.6 2.69 0.43 <0.002 2.53 0.03 0.39 99.49

CL-07-01-50.2 37.2 7.3 8.73 26.3 0.34 7.14 10.3 1.81 0.2 <0.002 0.35 0.01 0.19 99.86

CL-07-01-52.3 42.2 6.2 12.8 18.0 0.23 5.58 10.4 2.7 0.35 <0.002 0.099 0.02 1.21 99.74

CL-07-01-55.9 41.7 5.35 12.5 18.5 0.25 5.81 10.4 2.74 0.37 0.087 1.55 99.18

CL-07-01-67.5 35.6 5.71 10.9 25.8 0.23 7.55 11.6 1.36 0.33 0.02 0.46 99.47

CL-07-01-67.5SP 35.5 5.87 11.0 26.0 0.23 7.49 11.5 1.38 0.33 0.02 0.53 99.85

CL-07-01-76.9 48.7 2.73 16.5 14.6 0.18 2.18 6.38 5.41 1.01 0.23 1.85 99.66

CL-07-01-79.3 44.5 1 21.9 11.0 0.10 5.2 10.5 2.65 0.61 0.01 0.11 0.02 1.77 99.35

CL-07-01-95.9 41.2 4.56 12.7 19.0 0.22 6.67 11.9 2.2 0.45 0.06 0.74 99.66

CL-07-01-101 32.7 5.65 14.2 28.8 0.19 6.15 9.11 1.41 0.26 0.02 0.039 <0.004 0.59 99.09

CL-07-01-113.8 33.3 7.38 8.87 32.5 0.34 8.12 7.90 1.63 0.19 <0.002 0.27 <0.004 -0.54 99.92

CL-07-01-117.2 26.1 5.5 3.17 37.3 0.34 18.3 3.37 0.13 0.01 0.46 0.016 <0.004 4.67 99.34

CL-07-01-124.3 41.4 4.87 12.7 19.8 0.21 6.59 12.2 2.09 0.16 <0.002 0.018 <0.004 0.18 100.09

CL-07-01-127 28.7 6.56 4.1 33.8 0.42 6.84 12.7 0.94 0.44 4.09 0.3 98.85

CL-07-01-128.1 37.4 4.52 13.2 23.7 0.21 7.54 11.3 1.46 0.2 0.01 0.033 <0.004 0.39 99.97

CL-07-01-134.3 42.2 1.69 17.8 13.9 0.16 9.06 11.3 1.73 0.5 0.053 1.05 99.35

CL-07-01-145.7 29.6 >8.00 5.93 35.6 0.37 6.93 10.5 0.94 0.14 0.16 -0.37 98.97

CL-07-01-156.3 37.8 4.87 13.2 23.5 0.25 4.93 9.90 2.43 0.4 0.21 0.99 98.5

CL-07-01-166.4 39.1 3.8 16.5 19.3 0.14 6.5 11.5 1.75 0.3 0.08 0.026 <0.004 0.77 99.71

CL-07-01-171.5 32.0 4.42 6.96 32.1 0.28 15.4 6.95 0.73 0.09 0.102 0.6 99.56

CL-07-01-173.9 39.0 4.62 10.3 24.4 0.32 4.14 11.2 3.06 0.59 1.97 0.02 99.57

CL-07-01-180.1 40.0 3.66 10.8 18.4 0.21 8.58 14.3 1.22 0.53 0.073 1.35 99.11

CL-07-01-203.6 43.2 2.91 16.6 14.6 0.13 5.57 13.5 2.02 0.58 <0.002 0.074 0.01 1.13 100.22

CL-07-01-222.1 35.7 4.96 11.8 25.0 0.17 7.06 12.3 1.31 0.51 0.043 0.6 99.43

CL-07-01-233 74.4 0.35 12.6 2.6 0.024 0.72 0.79 6.53 1.07 <0.002 0.14 0.01 0.84 100.03

CL-07-01-249.9 41.0 7.07 14.7 18.7 0.21 6.36 7.88 2.76 0.47 <0.002 0.077 <0.004 0.52 99.68

CL-07-01-251.6 76.1 0.09 12.7 1.5 0.018 0.28 0.50 4.21 4.58 0.01 0.028 0.04 0.5 100.6

CL-07-01-271 41.8 6.63 14.5 17.2 0.19 5.72 9.25 2.85 0.49 0.11 0.22 98.87

CL-07-01-275.7 43.4 6.03 13.3 15.8 0.20 6.3 10.3 2.72 0.5 0.29 0.16 99.04

CL-07-01-275.7SP 43.5 5.96 13.5 15.6 0.20 6.25 10.3 2.74 0.48 0.28 0.03 98.78

CL-07-01-277.4 46.3 4.9 14.5 14.3 0.18 5.28 9.55 3.4 0.63 <0.002 0.17 0.01 0.64 99.89

CL-07-01-287.1 43.1 3.44 12.8 17.4 0.19 7.12 12.4 2.1 0.36 0.01 0.13 0.01 0.55 99.56

CL-07-01-327.3 46.2 2.01 10.9 14.0 0.20 9.54 14.2 1.76 0.14 0.07 0.056 <0.004 0.69 99.87

CL-07-01-380 39.1 4.01 16.7 19.5 0.22 5.91 7.49 2.6 0.68 0.12 2.42 98.73

CL-07-01-381.7 43.1 2.7 18.6 16.3 0.18 6.08 7.42 3.04 0.83 <0.002 0.093 0.01 1.32 99.7

CL-07-01-429.8 73.2 0.18 13.5 1.79 0.025 0.16 0.55 4.31 5.37 <0.002 0.007 0.08 0.97 100.22



Appendix 13: Summer 2013 whole rock trace element geochemistry

Sample Ba (ppm) Be Bi Cd Ce Co Cr Cs Cu Dy Er Eu Ga Gd

CL-06-16-8.9 128.6 0.3 <0.47 0.23 8.09 78.38 108 1.443 305 1.071 0.455 0.785 22.19 1.488

CL-06-16-11.2 114.2 0.45 0.66 0.571 12.07 118.5 29 1.851 1172 1.699 0.68 0.91 21.93 2.251

CL-06-16-14.1 7.1 16.29 1.83 0.215 270.1 2.78 22 0.917 12.4 20.97 9.893 3.393 40.08 25.69

CL-06-16-33.7 118.2 0.4 <0.47 0.223 11.07 83.88 67 1.093 200 1.799 0.724 1.047 23.48 2.422

CL-06-16-35.7 57.1 0.48 1.08 0.78 16.16 131.3 641 0.693 979.9 2.575 1.047 1.09 14.36 3.331

CL-06-16-47.0 136.8 0.54 0.8 0.827 15.08 136 71 1.364 997.2 2.151 0.901 1.219 21.54 2.845

CL-06-16-47.6 41.6 0.24 1.35 1.078 16.77 975 58 0.718 4819 1.504 0.652 0.588 11.01 2.152

CL-06-16-51.2 57 2.62 <0.47 0.155 126.6 2.87 26 0.537 71.1 7.934 3.333 0.753 26.47 10.43

CL-06-16-52.5 132.7 0.49 0.49 0.526 14.89 276 59 1.361 4003 1.857 0.798 0.973 18.7 2.395

CL-06-55.0 77.7 0.38 0.71 0.624 14.18 281 104 1.068 3791 2.042 0.889 0.91 17.35 2.622

CL-06-16-56.3 135.6 0.64 0.74 0.475 18.48 295 51 1.102 3671 2.159 0.917 1.091 18.75 2.849

CL-06-16-57.5 94.7 0.39 0.96 0.725 13.96 421 36 0.775 5465 1.832 0.756 0.888 17.21 2.352

CL-06-16-58.6 133 0.47 0.77 0.739 13.39 256 35 0.702 3511 2.023 0.873 1.004 18.24 2.595

CL-06-16-59.9 148.3 0.46 0.75 0.818 17.01 108.8 82 0.886 863.4 2.279 0.953 1.238 21.76 3.031

CL-06-16-61.7 136.7 0.41 0.82 0.624 12.79 285 77 1.386 3177 1.921 0.829 0.965 18.65 2.496

CL-06-16-63.15 216.5 2.28 <0.47 0.456 22.26 73.52 57 1.591 188.6 2.801 1.198 1.482 25.23 3.73

CL-06-16-63.8 130.4 0.58 1.01 0.935 17.43 369 44 1.398 7206 2.29 0.998 0.958 17.46 2.937

CL-06-16-65.7 55.6 3.64 <0.47 1.334 355.3 4.19 24 0.333 50.6 14.58 8.87 1.155 30.63 17.36

CL-06-16-71.15 163.5 0.96 0.56 0.683 19.47 109.5 122 1.079 1331 2.268 0.955 1.194 23.69 3.089

CL-06-16-78.75 137.9 0.44 0.55 0.428 17.91 389 42 1.75 1944 2.32 1.035 1 16.02 2.907

CL-06-16-80.0 222.2 0.57 <0.47 0.77 21.07 67.93 15 1.308 539.4 3.385 1.543 1.31 21.56 4.254

CL-06-16-83.5 224.3 0.93 <0.47 0.263 22.39 74.8 50 1.69 314 2.746 1.155 1.488 24.4 3.683

CL-06-16-84.6 39.5 0.18 1.26 0.293 7.12 1118 13 1.485 10409 0.594 0.307 0.268 3.64 0.827

CL-06-16-90.0 350.8 1.21 <0.47 0.252 65.1 50 150 3.652 242.8 6.593 3.198 1.725 27.53 8.914

CL-06-16-103.0 154.7 1.08 <0.47 0.135 21.86 84.84 68 1.641 210 2.36 1 1.26 22.91 3.27

CL-06-16-152.45 152.7 0.56 <0.47 0.231 12.4 77.59 71 1.683 268.7 1.953 0.801 1.003 22.59 2.6

CL-06-16-155.6 280.9 3.11 <0.47 0.06 61.87 5.06 21 0.772 5.4 6.22 3.124 0.853 26.13 6.543

CL-06-16-170.6 125.8 1.44 <0.47 0.058 36.19 41.28 67 2.603 70.5 6.607 3.844 1.646 20.57 6.203

CL-06-39-4.1 117.2 0.62 <0.47 0.193 22.09 80.38 303 0.57 248 2.912 1.186 1.339 22.22 4.072

CL-06-39-6.85 83.8 0.4 <0.47 0.173 13.37 72.85 282 0.523 207.8 2.165 0.901 1.091 22.06 2.936

CL-06-39-10.98 109.8 0.3 <0.47 0.142 8.64 81.16 21 0.623 145.4 1.332 0.552 0.825 26.23 1.776

CL-06-39-17.2 148.6 0.39 <0.47 0.106 16.65 59.48 16 0.45 29.8 2.048 0.793 1.707 17.77 3.137

CL-06-39-20.35 33.1 0.22 <0.47 0.201 8.08 161.1 2065 0.588 453.7 1.15 0.474 0.612 14.61 1.642

CL-06-39-32.21 19.1 0.14 <0.47 0.064 4.14 164.7 2344 0.553 316.3 0.822 0.341 0.446 14.75 1.076

CL-06-39-32.82 3.8 0.1 <0.47 0.116 2.88 177.1 3022 0.232 407.7 0.744 0.306 0.285 15.58 0.95

CL-06-39-33.28 5.2 0.1 <0.47 0.031 1.89 >187 4366 0.308 567.7 0.412 0.169 0.184 21.09 0.55

CL-06-39-47.36 102.1 0.87 <0.47 0.232 29.2 132.8 >4500 1.114 707.3 3.059 1.345 0.991 26.39 3.919

CL-06-39-57.38 229.4 0.83 <0.47 0.694 49.04 92.97 1264 1.585 208.9 3.591 1.405 1.856 24.98 5.57

CL-06-39-60.23 12.7 0.1 0.54 0.061 2.28 >187 >4500 0.34 839.2 0.35 0.16 0.206 24.53 0.47

CL-06-39-63.88 20.5 0.14 <0.47 0.06 4.09 176.1 3468 0.465 205.8 0.673 0.288 0.335 15.81 0.867

CL-06-39-74.5 20.1 0.14 <0.47 0.089 4.26 177.1 2364 0.477 855.6 0.7 0.297 0.344 13.34 0.92

CL-06-39-83.9 11.2 12.01 1.17 0.706 59.17 114.9 1523 0.483 782.5 4.876 2.234 0.719 14.04 6.042



CL-06-39-88.63 7.7 0.14 <0.47 0.08 3.27 176.6 1940 0.368 1036 0.747 0.318 0.336 13.63 0.984

CL-06-39-94.95 17.5 0.18 <0.47 0.05 2.21 >187 4258 0.573 536.8 0.459 0.201 0.267 23.08 0.595

CL-06-39-99.7 45.2 0.24 <0.47 0.199 7.25 120.7 1255 0.517 548.8 1.46 0.594 0.714 25.37 1.959

CL-06-39-100.0 299.6 2.81 0.63 0.424 93.35 39.16 37 1.025 363 4.061 1.652 2.62 23.05 6.515

CL-06-39-103.55 146.4 0.62 <0.47 0.133 15.9 64.99 1449 0.838 219.2 1.319 0.529 1.232 26.26 1.888

CL-06-39-103.7 33.5 0.23 <0.47 0.253 7.29 170.4 >4500 0.389 711.5 1.183 0.471 0.607 33.48 1.602

CL-06-39-103.91 256 0.39 <0.47 0.156 10.59 68.38 820 0.738 318.8 1.029 0.428 0.848 25.57 1.43

CL-06-39-105.83 134.2 0.37 0.66 0.342 10.85 100.3 59 0.41 977.6 1.499 0.588 1.337 17.33 2.16

CL-06-39-108.0 43.7 0.31 <0.47 0.151 9.92 157.9 2526 0.584 436.5 1.614 0.675 0.8 16.26 2.139

CL-06-39-118.75 237.4 2.12 <0.47 0.373 19.91 17.92 25 1.514 82.1 1.484 0.668 1.308 22.22 2.075

CL-06-39-122.3 235.7 0.86 <0.47 0.477 27.29 51.56 41 3.771 147.4 2.459 0.941 1.939 23.29 3.688

CL-06-39-125.0 325 1.35 <0.47 0.03 18.02 7.3 60 0.999 6.6 1.083 0.442 1.689 23.12 1.655

CL-06-39-128.4 115.9 0.34 0.48 0.497 10.42 88.43 119 0.316 1510 1.597 0.615 1.272 16.82 2.301

CL-06-39-132.47 189.7 0.75 <0.47 0.182 25.96 74.49 106 1.252 123.5 2.323 0.963 1.109 26.08 3.342

CL-06-39-133.4 400.9 2.03 <0.47 0.315 36.74 55.92 18 3.697 282.9 3.247 1.415 1.48 23.57 4.441

CL-06-39-150.08 120.2 0.32 <0.47 0.089 8.92 78.93 97 0.526 26.7 1.369 0.532 1.194 16.72 2.043

CL-06-39-154.16 23.5 0.17 <0.47 0.099 4.1 167.5 >4500 0.899 421 0.7 0.29 0.355 23.03 0.926

CL-06-39-156.97 118.3 0.48 <0.47 0.138 16.98 52.45 182 0.963 30.5 2.924 1.196 1.41 21.6 3.989

CL-07-01-9.1 150.6 0.44 <0.47 0.219 58.61 55.95 8 0.39 13.3 5.691 2.01 3.36 19.76 9.517

CL-07-01-29.1 375.5 0.5 <0.47 0.135 92.55 47.76 21 0.323 12.9 6.417 2.231 4.831 18.78 11.74

CL-07-01-44.25 65.8 0.19 <0.47 0.147 116.5 82.34 17 0.329 16.3 8.127 2.718 4.699 11.36 14.96

CL-07-01-50.2 209.4 0.38 <0.47 0.153 24.99 73.35 21 0.233 17.5 2.671 1.008 2.143 18.22 4.269

CL-07-01-52.3 293.5 0.77 <0.47 0.105 18.11 53.21 16 0.447 14.4 2.154 0.863 2.142 19.33 3.193

CL-07-01-55.9 290.8 0.67 <0.47 0.144 18.76 49.65 13 0.691 8.5 2.24 0.867 1.996 19.93 3.188

CL-07-01-67.5 100.8 0.28 <0.47 0.229 8.25 87.25 69 0.269 107.5 1.726 0.705 0.993 25.55 2.291

CL-07-01-67.5SP 95.2 0.26 <0.47 0.214 8.23 78.76 72 0.246 76.7 1.852 0.735 1.015 25.97 2.48

CL-07-01-76.9 632 1.29 <0.47 0.25 41.46 22.58 15 3.299 15.4 3.019 1.214 3.487 27.62 4.436

CL-07-01-79.3 197.5 0.54 <0.47 0.168 15.65 76.09 110 0.626 464.5 0.933 0.397 0.96 22.16 1.363

CL-07-01-95.9 181.3 0.69 <0.47 0.151 21.41 62.41 15 0.373 77.7 2.492 0.999 1.612 21.56 3.484

CL-07-01-101 97.6 0.34 <0.47 0.172 8.05 112.2 184 0.296 340.4 0.992 0.409 0.723 29.86 1.354

CL-07-01-113.8 158.5 0.4 <0.47 0.105 21.14 104.6 32 0.183 69.2 1.929 0.73 1.452 21.57 3.045

CL-07-01-117.2 6.5 0.14 <0.47 0.097 4.76 160 3006 0.107 508.5 0.923 0.391 0.344 20.08 1.16

CL-07-01-124.3 113.1 0.3 <0.47 0.085 8.54 71.81 33 0.149 30.4 1.54 0.575 1.264 20.93 2.198

CL-07-01-127 146.7 1.18 <0.47 0.646 287.3 103.1 21 0.446 107.3 18.12 6.489 8.436 23.2 31.21

CL-07-01-128.1 92.9 0.24 <0.47 0.223 7 91.17 101 0.23 247 1.149 0.453 0.812 23.99 1.622

CL-07-01-128.4 22.6 0.12 <0.47 0.27 3.16 158.3 187 0.121 434.9 0.723 0.289 0.417 29.61 0.964

CL-07-01-134.3 102.3 0.32 <0.47 0.128 9.8 67.58 180 0.336 77.9 1.056 0.456 0.775 20.19 1.426

CL-07-01-140 60.3 0.34 <0.47 0.125 16.36 123.8 33 0.1 102.6 2.297 0.883 1.152 18.36 3.37

CL-07-01-145.7 91.2 0.32 <0.47 0.185 20.21 103.5 180 0.156 185.7 2.867 1.112 1.626 24.82 4.236

CL-07-01-156.3 237.9 1.23 <0.47 0.284 45.17 67.95 273 0.654 167 3.666 1.504 2.207 28.23 5.214

CL-07-01-159.4 4.6 0.14 <0.47 0.163 3.86 171.6 715 0.077 389.4 0.937 0.389 0.41 26.68 1.241

CL-07-01-166.4 106.2 0.3 <0.47 0.117 7.9 74.82 522 0.3 189.2 1.09 0.442 0.787 25.28 1.491

CL-07-01-171.5 58.4 0.28 <0.47 0.21 9.36 146.7 479 0.172 393.1 1.192 0.47 0.728 20.38 1.684

CL-07-01-173.9 429.2 1.21 <0.47 0.313 144.9 47.38 32 0.586 62.5 9.754 3.623 5.522 27.06 16.34



CL-07-01-180.1 114.1 0.9 <0.47 0.161 19.17 70.39 370 3.325 183.7 2.89 1.23 1.287 21.92 3.721

CL-07-01-203.6 155.5 0.46 <0.47 0.118 14.48 54.18 19 0.426 76.8 1.775 0.719 1.027 23.97 2.379

CL-07-01-222.1 119.3 0.3 <0.47 0.207 8.43 105.4 69 0.878 372.7 1.473 0.581 0.793 25.67 1.967

CL-07-01-233 90.5 2.52 <0.47 0.075 164.8 2.77 16 0.825 4.2 6.451 2.586 1.584 28.51 9.716

CL-07-01-249.9 193.1 0.36 <0.47 0.076 11.33 72.89 33 0.363 18.4 1.033 0.421 1.175 17.88 1.487

CL-07-01-251.6 316.5 4.81 <0.47 0.081 169.9 0.86 23 2.067 1.8 7.693 3.387 1.665 28.97 9.888

CL-07-01-267.4 45 0.15 <0.47 0.066 4.09 166.5 63 0.395 28.1 0.364 0.184 0.249 14.28 0.454

CL-07-01-271 223.1 0.64 <0.47 0.112 17.85 63.92 18 0.37 29.6 1.676 0.707 1.548 18.13 2.316

CL-07-01-275.7 210.3 0.74 <0.47 0.131 27.2 62.1 17 0.368 19.2 2.832 1.116 1.844 16.8 3.979

CL-07-01-275.7SP 210 0.7 <0.47 0.125 25.63 60.09 22 0.339 17.1 2.682 1.11 1.816 16.41 3.792

CL-07-01-277.4 251.9 0.96 <0.47 0.093 31.11 50.1 13 0.609 13.3 2.526 1.036 1.573 18.46 3.59

CL-07-01-287.1 191.7 0.61 <0.47 0.125 22.97 70.68 72 0.28 99.8 2.659 1.082 1.481 20.73 3.66

CL-07-01-308.8 68.6 0.2 <0.47 0.083 5.79 149.4 337 0.14 35.1 0.466 0.215 0.489 30.47 0.644

CL-07-01-327.3 96 0.4 <0.47 0.154 13.38 61.85 531 0.241 116.2 2.197 0.898 1.298 16.35 3

CL-07-01-329 31.9 0.13 <0.47 0.111 4.07 >187 699 0.055 46.8 0.323 0.156 0.244 27.2 0.431

CL-07-01-367 139.1 0.23 <0.47 0.149 12 163.5 454 0.229 342.7 0.466 0.189 0.902 37.33 0.849

CL-07-01-381.7 219.7 0.53 <0.47 0.144 14.26 62.34 10 2.692 10.3 0.826 0.353 1.124 20.02 1.216

CL-07-01-384.8 74.7 0.52 <0.47 0.187 6.73 159.1 1268 0.685 21.8 0.492 0.215 0.556 28.29 0.771

CL-07-01-411.6 97.1 0.3 <0.47 0.114 8.78 141.8 180 0.33 55 0.795 0.348 0.729 28.32 1.098

CL-07-01-429.8 732.4 3.29 <0.47 0.155 93.73 0.81 16 2.16 6.8 6.038 2.898 2.042 31.5 7.947



Hf Ho In La Li Lu Mo Nb Nd Ni Pb Pr Rb Sb Sc Sm Sn

0.93 0.183 0.055 3.43 34.7 0.046 0.66 3.652 5.88 237.9 3.5 1.22 38.14 0.04 22.9 1.515 1.04

1.48 0.284 0.095 4.96 40.1 0.069 0.92 6.432 8.74 754.6 11.3 1.825 36.02 0.05 29.9 2.27 2.47

>29 3.699 0.093 119.1 18.9 1.163 1.63 152.1 138.2 7.1 7.5 34.82 8.56 0.06 1.3 29.63 >14

1.52 0.3 0.076 4.27 32 0.071 0.57 5.122 8.83 202.1 2.3 1.781 27.07 <0.04 31.6 2.412 0.9

1.89 0.424 0.112 5.96 13.9 0.101 0.79 6.096 12.76 705.9 10.7 2.568 7.1 0.04 35.6 3.377 1.79

1.73 0.368 0.137 5.83 31.6 0.09 0.73 8.518 11.47 883.4 12 2.328 23.62 0.04 29.5 2.978 2.01

1.37 0.263 0.099 7.95 11.9 0.065 2.38 9.066 10.21 8858 12.1 2.286 8.41 <0.04 13.6 2.269 0.87

2.42 1.325 0.005 57.12 9.9 0.315 2.11 25.74 61.73 9.6 10.3 15.92 49.67 <0.04 <1.1 12.97 2.91

1.35 0.324 0.147 6.39 23.3 0.078 1.08 7.065 9.7 2516 7.8 2.109 35.17 <0.04 21.8 2.38 3.39

1.45 0.355 0.164 5.49 15.2 0.093 0.66 7.459 10.23 2526 8 2.149 11.98 <0.04 27 2.635 1.76

1.64 0.364 0.113 7.61 17.3 0.091 0.72 8.822 11.85 2678 40.4 2.609 15.27 0.04 20.5 2.819 1.43

1.42 0.315 0.124 5.49 14.2 0.079 0.83 8.549 9.7 4086 10.8 2.059 9.11 <0.04 18.4 2.396 2.01

1.53 0.349 0.127 5.33 21.3 0.084 0.64 7.132 9.73 2273 15.3 2 18.56 0.38 24.2 2.564 2.12

1.73 0.382 0.118 6.83 22.9 0.096 0.64 8.231 12.26 715.2 8.1 2.554 21.13 0.04 26.6 3.097 2.22

1.37 0.331 0.122 5.1 21.1 0.084 0.85 6.682 9.2 2904 12.9 1.918 21.85 <0.04 22.8 2.393 2.49

2.1 0.482 0.104 8.99 40.5 0.12 0.81 11.59 15.44 172.1 8.6 3.244 53.85 <0.04 28.5 3.782 7.09

1.21 0.405 0.177 7.08 19.4 0.103 1.69 7.418 11.56 3813 41.7 2.51 23.95 0.04 19.5 2.946 5.92

>29 2.899 0.028 167 8.6 1.354 9.4 35.04 138.4 6.4 88.2 40.38 6.65 0.04 <1.1 23.85 3.48

1.89 0.381 0.128 7.87 31.3 0.094 0.84 9.587 12.98 791.5 8.1 2.815 27.23 0.04 27.2 3.212 2.6

1.48 0.403 0.081 7.11 17.3 0.111 4.83 9.293 12.63 4822 12.6 2.659 25.89 0.04 20.1 3.106 1.15

2.01 0.597 0.111 7.98 22.1 0.169 0.92 9.097 16 128 4.7 3.253 35.01 <0.04 31.9 4.199 1.06

2.12 0.454 0.083 8.67 26.8 0.115 0.69 11.1 15.69 139.3 3.3 3.302 30.12 0.04 26.3 3.873 1.4

0.41 0.11 0.023 3.1 10.8 0.041 4.51 4.402 4.18 17246 11 0.947 16.83 0.04 3.9 0.89 1.34

1.15 1.174 0.081 26.14 19.6 0.361 3.36 15.16 42.54 78.3 11 9.331 47.36 0.06 19.6 9.727 2.27

2.09 0.403 0.074 9.25 31.8 0.099 1.72 10.75 14.09 183.3 15.1 3.09 27.08 0.1 27.9 3.435 0.89

1.56 0.328 0.074 4.83 25 0.075 0.49 5.114 9.7 255.8 8.1 1.959 32.02 0.05 35.2 2.59 0.95

10.95 1.16 0.054 26.02 5.6 0.338 1.95 24.59 30.99 7.4 3.6 7.905 84.9 0.13 1.3 6.913 5.62

4.33 1.326 0.097 17.21 52 0.541 1.12 7.601 20.84 34.4 7.9 4.773 11.21 0.22 46.5 5.369 1.3

2.2 0.487 0.09 8.45 10.6 0.108 1.27 8.788 16.78 346.8 2.9 3.438 14.96 <0.04 37.1 4.141 1.2

1.6 0.369 0.083 4.92 14.7 0.082 0.93 5.442 10.8 324.6 1.4 2.175 8.4 <0.04 40.8 2.882 0.94

1.04 0.224 0.067 3.48 16.3 0.053 0.46 3.587 6.54 141.2 2.4 1.338 9.25 <0.04 21.2 1.778 0.75

1.52 0.336 0.078 6.29 6.9 0.076 0.63 18.6 13.35 36.4 1.7 2.654 3.18 0.04 21.4 3.308 0.44

0.94 0.19 0.064 3.03 5.5 0.05 0.62 4.697 6.48 960.9 2.9 1.284 3.29 0.04 16.6 1.654 0.43

0.68 0.139 0.051 1.51 12.7 0.036 0.22 1.968 3.57 960.1 2.3 0.686 2.9 0.05 21.7 1.026 0.52

0.64 0.128 0.058 0.93 12.6 0.034 0.2 1.764 2.76 1101 6.1 0.52 0.8 0.07 21.8 0.856 0.39

0.48 0.065 0.068 0.7 13.7 0.019 0.19 2.208 1.67 1307 4.3 0.334 0.93 0.09 14.4 0.515 1.73

2.17 0.53 0.095 11.98 13.9 0.153 1.3 16.33 19.41 992.1 5.7 4.262 12.15 0.49 13.7 4.357 2.47

2.1 0.585 0.107 21.16 21.6 0.125 1.14 15.38 30.36 454.3 14.6 6.77 18.35 0.06 14 6.294 2.88

0.5 0.061 0.064 0.89 12.6 0.019 0.43 2.82 1.74 1380 15.3 0.35 1.05 0.07 11.2 0.451 0.63

0.6 0.118 0.05 1.54 8.5 0.031 0.52 2.181 3.28 1159 2.9 0.645 1.21 0.18 15.5 0.869 0.57

0.61 0.121 0.05 1.6 10.3 0.032 0.46 2.031 3.36 1316 4.5 0.67 1.64 0.1 19.2 0.905 0.64

1.91 0.875 0.154 30.45 24.3 0.24 1.36 19.22 27.61 893.3 45.2 7.113 4.91 0.77 22.5 6.05 12.29



0.64 0.131 0.053 1.12 5 0.034 0.33 1.746 3.17 1187 2.7 0.567 1.31 0.1 21.6 0.887 0.64

0.49 0.078 0.064 0.81 10.4 0.022 0.21 1.882 1.92 1158 11.9 0.376 2.82 0.06 18.5 0.555 1.01

1.24 0.252 0.086 2.55 11.5 0.057 0.69 3.335 6.41 744.8 3 1.185 6.46 <0.04 36.3 1.849 1.12

10.7 0.677 0.03 45 17.6 0.164 2.35 15.82 45.18 164 10.5 11.45 31.44 <0.04 3.8 8.173 3.14

1.07 0.225 0.048 7.16 25.2 0.052 0.39 4.921 9.52 373 1.7 2.141 10.45 <0.04 12.4 2.092 0.66

1.17 0.196 0.099 2.59 9.1 0.045 0.63 6.502 6.06 1087 2.6 1.202 3.75 <0.04 21.2 1.574 1.54

0.9 0.176 0.049 4.73 25 0.041 0.72 4.647 6.68 498 23.3 1.49 31.73 <0.04 14.4 1.548 0.8

1.26 0.251 0.082 4.2 5.8 0.057 0.62 14.96 8.61 747.5 2.6 1.708 3.29 <0.04 19.4 2.303 0.51

1.1 0.281 0.072 3.48 6.9 0.067 0.34 4.362 8.18 1091 2.6 1.633 2.44 <0.04 22.4 2.152 0.42

1.4 0.254 0.083 8.96 37.1 0.066 0.6 10.73 11.19 61.5 66.2 2.616 19.65 0.05 8.1 2.293 7.44

1.8 0.4 0.096 11.26 7.4 0.09 1.04 16.61 18.1 118.8 19.8 3.932 22.16 0.08 16.7 4.158 4.79

0.84 0.181 0.025 8.47 17.8 0.039 10.94 4.948 9.63 18.2 1.3 2.301 75.97 0.05 1.7 1.902 4.6

1.36 0.258 0.097 3.87 3.7 0.061 0.51 15.67 8.74 527.5 4.6 1.726 2.86 <0.04 22.1 2.365 0.8

2.77 0.395 0.082 11.23 9.4 0.086 0.93 7.796 15.74 281.3 3.5 3.566 38.48 0.26 30.9 3.555 1.3

2.72 0.566 0.066 16.13 10 0.142 1.25 22.7 21.91 212.3 5 5.03 89.89 <0.04 19.3 4.81 1.04

1.3 0.227 0.072 3.51 6 0.055 0.47 16.65 7.49 21.9 0.5 1.477 4.03 <0.04 21 2.005 4.09

0.73 0.118 0.07 1.59 15.9 0.033 0.79 3.686 3.38 1055 4.3 0.654 4.36 <0.04 15.3 0.879 1.6

1.85 0.49 0.078 6.24 31.3 0.107 0.79 3.159 14.33 121.6 2.3 2.78 16.71 <0.04 31.8 3.954 0.99

2.74 0.907 0.164 21.6 7.1 0.172 2.73 24.81 45.9 4.5 7.1 9.191 8.16 <0.04 30.9 10.42 0.56

1.6 1.018 0.083 37.15 5.1 0.17 1.82 17.73 63.45 4.9 1.1 13.36 5.59 <0.04 14.7 13.16 0.5

1.53 1.253 0.097 45.19 3.6 0.193 1.86 32.15 82.47 5.3 2.7 17.11 1.69 <0.04 15.4 16.96 0.28

1.81 0.431 0.098 9.4 4.2 0.096 1.27 22.1 18.65 7.3 0.9 3.806 2.37 <0.04 20.2 4.446 0.46

1.81 0.359 0.086 6.93 7.4 0.089 0.98 22.12 13.69 5.3 3.1 2.823 5.83 <0.04 19.5 3.357 0.46

1.99 0.364 0.089 7.51 10.2 0.088 1.19 17.9 13.91 5.5 3.6 2.8 7.11 <0.04 19.9 3.375 0.91

1.39 0.289 0.09 2.82 10.3 0.065 0.58 4.696 7.71 267 2.1 1.443 6.54 <0.04 30.6 2.26 0.83

1.44 0.313 0.09 2.79 9.2 0.068 0.52 4.021 8.1 224.8 1.8 1.512 6.59 <0.04 31.2 2.378 0.82

2.61 0.496 0.088 18.59 5.9 0.12 1.7 24.69 24.79 14.1 7 5.543 32.92 0.04 8.1 5.182 5.49

0.78 0.159 0.027 7.35 11.7 0.04 0.53 5.085 8.1 604.9 2.3 1.94 13.12 <0.04 5.7 1.574 0.48

1.99 0.411 0.076 8.68 7.2 0.093 0.8 9.75 15.2 79.8 1.5 3.173 9.38 <0.04 25 3.691 0.68

0.91 0.165 0.068 3.38 4.3 0.038 0.57 4.808 5.58 506.7 1.5 1.173 4.18 <0.04 17.7 1.439 1.02

1.5 0.309 0.076 8.58 2.7 0.068 1 12.02 14.26 94.1 0.7 3.044 2.25 <0.04 15.1 3.281 0.65

0.87 0.152 0.073 1.61 2.5 0.039 0.35 4.048 4.09 1016 1.3 0.794 0.94 <0.04 20.8 1.157 1.06

1.03 0.251 0.067 3.04 3 0.052 0.42 3.528 7.89 30.3 0.5 1.45 1.44 <0.04 23.7 2.152 0.41

3.87 2.88 0.178 117.7 4 0.477 2.8 41.59 185.8 45.6 10.3 40.86 10.72 <0.04 17.8 36.83 2.35

0.89 0.192 0.074 2.75 4.7 0.044 0.49 3.257 5.67 339.5 2.1 1.106 3.32 <0.04 23.4 1.536 0.86

0.69 0.124 0.088 1.06 2.9 0.027 0.39 2.516 3.06 616.8 1.7 0.548 1.37 <0.04 22.1 0.906 1.1

0.86 0.179 0.038 4.26 6.4 0.043 0.43 3.521 6.41 209.9 1 1.408 9.41 <0.04 15.5 1.539 0.49

1.97 0.381 0.111 5.9 2.3 0.085 1.08 19.86 13.63 51 0.5 2.592 3.42 <0.04 26.6 3.413 0.71

2.22 0.473 0.138 7.07 3.9 0.103 1.39 18.91 17.18 168.3 1 3.344 2.77 <0.04 25.1 4.354 0.67

3.41 0.616 0.116 19.46 5.7 0.152 1.23 23.56 26.94 142.4 2 6.124 13.77 <0.04 15.5 5.947 1.74

1 0.158 0.086 1.11 4.1 0.039 0.42 5.585 3.98 648.7 1.4 0.706 0.48 <0.04 22.6 1.215 1.1

0.84 0.181 0.055 3.24 9.3 0.043 0.5 3.672 5.94 313.6 1 1.216 5.76 <0.04 19.7 1.489 0.77

1.02 0.2 0.068 3.82 4.5 0.048 0.73 4.876 7.03 678.6 2.1 1.44 2.41 <0.04 19.3 1.743 1.02

3.4 1.594 0.16 60.59 6.1 0.289 2.51 39.88 94.73 47.2 1.8 20.86 16.14 0.04 15.9 19.24 2.43



2.3 0.499 0.09 7.49 16.4 0.121 1.85 13.54 14.49 319.9 3.6 3.024 30.33 <0.04 39.2 3.706 3.44

1.27 0.296 0.061 5.96 24.4 0.069 0.49 5.405 9.83 94.9 1.9 2.058 15.38 <0.04 22.2 2.423 0.84

1.26 0.25 0.078 3.22 26.6 0.055 0.68 5.077 6.81 327.6 3.7 1.364 20.91 <0.04 30.9 1.907 1.41

2.21 1.071 0.072 76.22 3.9 0.266 1.21 30.2 75.02 2.1 5.7 19.46 48.72 <0.04 2.1 12.9 5.22

1.18 0.171 0.048 4.94 21.2 0.044 0.72 17.09 7.14 18.9 0.9 1.583 10.51 <0.04 11 1.62 0.5

6.38 1.303 0.055 83.9 3.9 0.355 4.02 32.61 69.11 <1.6 14.1 19.08 163.4 0.06 1.9 12.63 2.25

1.39 0.07 0.073 1.83 9.2 0.03 0.69 29.33 2.25 31.1 1.7 0.52 5.38 <0.04 11.2 0.477 0.7

2.07 0.29 0.069 7.95 13.2 0.078 0.95 26.9 11.37 17.3 2.7 2.464 9.72 <0.04 17.8 2.585 0.62

2.32 0.474 0.077 11.32 13 0.117 0.86 34.13 18.87 15.9 2.3 4.031 9.91 <0.04 23 4.41 0.63

2.31 0.448 0.073 10.64 12.4 0.113 1.05 33.23 17.7 16.1 2.2 3.813 9.22 <0.04 22.2 4.231 0.64

1.98 0.427 0.062 13.55 10.8 0.102 0.97 17.3 17.92 9 2.6 4.14 17.07 <0.04 16.2 3.941 0.81

1.51 0.452 0.071 9.04 10 0.104 0.64 6.249 15.88 107.5 2.9 3.322 7.27 <0.04 30.2 3.751 0.66

1 0.077 0.074 2.62 6.3 0.027 0.9 11.32 3.43 121.5 0.5 0.75 2.57 <0.04 11.3 0.719 0.99

1.4 0.372 0.071 4.83 7.1 0.088 0.48 3.335 11.14 158.8 1 2.169 2.32 <0.04 45.5 2.946 0.46

1.22 0.057 0.082 1.76 4 0.025 0.87 14.07 2.42 120.2 0.4 0.558 1.21 <0.04 11 0.49 1.01

0.98 0.076 0.064 6.05 6.1 0.02 0.75 9.271 5.99 140.3 1.2 1.454 2.24 <0.04 7.9 1.055 0.78

0.8 0.138 0.034 6.68 25.3 0.037 0.6 5.882 7.38 18.7 4.8 1.771 18.41 0.04 3.8 1.382 3.33

1.05 0.086 0.074 3.07 7.8 0.026 0.65 9.604 3.95 81.3 3 0.878 3.95 <0.04 8.6 0.85 0.73

1.75 0.137 0.089 3.9 9.5 0.042 1.17 18.82 5.3 82.9 0.9 1.196 3.73 <0.04 11.3 1.2 1.04

7.69 1.084 0.055 42.63 2.4 0.332 3.15 27.78 47.29 2.5 12.3 11.68 161.8 0.04 1.1 9.4 2.37



Sr Ta Tb Th Ti Tl Tm U V W Y Yb Zn Zr

615.2 0.257 0.204 0.189 17310 0.196 0.054 0.053 628 0.64 4.83 0.317 95 27

458.4 0.433 0.316 0.468 23548 0.248 0.087 0.151 851 0.94 7.41 0.49 159 45

35.7 9.479 3.776 28.63 969 0.025 1.352 7.079 5.2 1.42 90.34 8.357 259 1252

516.3 0.379 0.338 0.24 22580 0.192 0.088 0.065 860 0.09 7.49 0.527 103 40

205 0.406 0.459 0.453 13659 0.072 0.13 0.125 448 0.47 10.83 0.735 122 58

465.9 0.584 0.399 0.4 >25000 0.262 0.113 0.133 838 0.37 9.25 0.645 163 53

58 0.603 0.282 0.555 17380 2.276 0.079 0.166 687 0.59 6.63 0.468 176 45

34.6 1.585 1.465 26 738 0.169 0.448 3.83 4.3 0.68 30 2.558 21 72

477.9 0.477 0.337 0.48 16704 0.484 0.1 0.135 627 0.89 8.69 0.551 157 41

271.2 0.504 0.374 0.365 23192 0.559 0.113 0.11 781 0.13 8.89 0.65 222 44

473.5 0.609 0.388 0.583 16562 0.743 0.113 0.173 614 0.19 9.42 0.646 145 52

364.7 0.581 0.33 0.327 16775 0.832 0.097 0.109 677 0.13 7.68 0.563 187 45

427.7 0.5 0.368 0.422 18751 0.23 0.106 0.131 691 0.19 9.11 0.621 202 46

526.5 0.568 0.417 0.47 20277 0.221 0.118 0.171 720 0.18 9.63 0.689 136 53

419.7 0.473 0.348 0.481 18821 0.337 0.1 0.157 622 0.89 8.72 0.588 160 41

544.2 0.799 0.517 0.598 22751 0.27 0.148 0.222 691 2.3 13.05 0.872 129 69

367.7 0.509 0.409 0.45 16112 0.626 0.127 0.258 514 1.32 11.18 0.733 231 37

63.6 2.767 2.493 >109 533 0.025 1.35 21.85 2.1 1.06 84.14 8.979 397 1364

510.8 0.64 0.413 0.699 22174 0.265 0.118 0.188 807 0.41 9.93 0.676 135 62

354.3 0.68 0.415 0.736 16136 0.704 0.131 0.458 530 1.79 10.29 0.785 105 47

471.3 0.678 0.605 0.705 20929 0.148 0.196 0.425 617 1.4 15.33 1.169 136 63

563.7 0.811 0.509 0.872 24570 0.129 0.14 0.526 681 0.38 11.97 0.822 115 66

39.6 0.372 0.113 0.171 4215 1.889 0.043 0.135 86.9 2.33 3.12 0.272 127 15

434.1 1.215 1.196 1.332 13490 0.309 0.404 1.235 191.8 2.02 33.92 2.489 180 39

512.8 0.703 0.439 0.787 21364 0.215 0.122 0.223 766 1.49 10.27 0.699 80 70

419.3 0.362 0.361 0.293 20386 0.264 0.094 0.089 810 0.21 8.34 0.547 96 44

41.9 2.001 1.051 21.82 838 0.383 0.415 5.09 2.4 0.78 32.05 2.461 7 376

133.2 0.463 1.024 3.134 12348 0.058 0.547 0.55 425 0.24 36.23 3.578 77 168

347.3 0.638 0.549 0.951 24751 0.088 0.145 0.198 735.1 0.38 11.89 0.818 116 66

389.1 0.392 0.402 0.267 21026 0.116 0.107 0.078 666.8 0.09 9.2 0.608 98 46

621.5 0.268 0.249 0.19 >25000 0.092 0.067 0.048 920 <0.05 5.56 0.391 116 29

891 1.486 0.403 0.173 >25000 0.03 0.094 0.048 229.9 0.15 8.33 0.524 108 49

143.6 0.354 0.216 0.18 22400 0.053 0.058 0.048 624 0.2 4.82 0.337 196 29

69.8 0.154 0.149 0.117 19771 0.117 0.042 0.047 770 <0.05 3.49 0.246 131 19

18.7 0.142 0.132 0.041 22836 0.094 0.038 0.017 946 <0.05 3.12 0.229 190 17

17.8 0.182 0.076 0.027 >25000 0.091 0.021 0.013 1420 0.09 1.77 0.129 207 13

72.2 1.057 0.551 1.04 >25000 0.145 0.181 0.448 1078 1.55 13.19 1.076 208 77

471.2 0.999 0.699 1.041 >25000 0.208 0.165 0.409 433 0.62 14.85 0.926 266 77

56.4 0.223 0.066 0.043 >25000 0.165 0.019 0.013 1428 0.4 1.63 0.127 212 15

97.3 0.17 0.118 0.076 18212 0.089 0.038 0.016 759 <0.05 3.07 0.221 133 17

100.3 0.147 0.131 0.101 15664 0.083 0.037 0.033 579 <0.05 3.03 0.222 117 17

71 1.078 0.873 3.471 13783 0.136 0.278 0.53 492 1.54 32.3 1.632 335 57



44.7 0.145 0.136 0.076 17753 0.117 0.041 0.036 699 0.16 3.3 0.243 99 16

79 0.153 0.083 0.033 >25000 0.1 0.024 0.011 1374 0.39 2 0.151 172 13

239.9 0.256 0.269 0.128 >25000 0.065 0.072 0.039 1061 0.15 6.37 0.419 159 32

632.8 1.309 0.802 13.43 9630 0.132 0.202 4.058 83.3 3.05 19.15 1.189 146 479

837.2 0.356 0.251 0.371 18266 0.061 0.065 0.109 564 0.11 5.75 0.366 97 35

195.2 0.518 0.212 0.111 >25000 0.071 0.058 0.043 1665 0.11 5.01 0.331 267 35

785.2 0.305 0.196 0.297 15293 0.15 0.053 0.096 496.3 0.11 4.53 0.31 93 30

870.7 1.259 0.283 0.161 >25000 0.045 0.07 0.06 236.9 0.23 6.23 0.42 115 42

187.6 0.349 0.298 0.18 21698 0.074 0.082 0.097 654 0.05 7.09 0.484 158 33

1008 0.783 0.275 1.405 14385 0.11 0.079 0.543 112.4 0.91 6.94 0.451 150 53

1062 1.149 0.467 0.577 >25000 0.303 0.112 0.194 272 0.68 10.57 0.647 190 68

1301 0.369 0.206 0.662 3412 0.304 0.052 0.254 18.9 4.26 4.96 0.286 16 36

779.8 1.306 0.306 0.14 >25000 0.047 0.074 0.052 345.2 0.05 6.46 0.428 121 44

457.5 0.529 0.44 1.99 >25000 0.158 0.115 0.689 931.8 1.02 10.14 0.638 161 103

639.9 1.314 0.607 2.052 16909 0.297 0.174 0.707 397 0.74 14.98 1.021 131 104

835 1.426 0.26 0.169 >25000 0.022 0.066 0.067 331.2 0.07 5.75 0.38 105 42

49.4 0.307 0.124 0.057 >25000 0.115 0.037 0.031 1207 0.24 2.97 0.212 227 21

421.9 0.25 0.543 0.27 12361 0.071 0.142 0.095 389.2 0.19 12.18 0.793 60 52

380.6 1.721 1.145 0.621 >25000 0.12 0.23 0.142 85.1 0.26 22.5 1.261 233 91

1021 1.251 1.339 0.776 >25000 0.035 0.242 0.199 25.8 0.08 26.42 1.312 168 57

285.6 2.442 1.702 0.655 >25000 0.007 0.285 0.165 14.9 <0.05 32.68 1.481 256 55

726.1 1.668 0.529 0.323 >25000 0.008 0.12 0.077 226.3 0.06 10.84 0.701 184 60

1043 1.602 0.416 0.367 >25000 0.032 0.102 0.08 179 0.07 8.87 0.603 124 64

950 1.212 0.416 0.545 >25000 0.071 0.107 0.156 179.5 0.12 9.07 0.626 132 73

460.2 0.391 0.315 0.105 >25000 0.049 0.083 0.032 1044 <0.05 7.18 0.472 148 37

425.9 0.342 0.341 0.111 >25000 0.045 0.089 0.031 1057 <0.05 7.31 0.498 135 37

1079 1.536 0.561 1.631 17080 0.373 0.152 0.372 77.3 2 12.59 0.887 120 102

922.8 0.327 0.179 0.683 5809 0.052 0.05 0.185 165.7 0.15 4.19 0.287 54 31

662.7 0.718 0.463 0.847 >25000 0.038 0.118 0.194 374.5 0.14 10.16 0.693 106 64

571.4 0.368 0.182 0.145 >25000 0.051 0.048 0.043 1301 <0.05 4.22 0.281 164 28

606 0.886 0.37 0.469 >25000 0.008 0.084 0.097 359.1 0.07 8.11 0.493 221 50

25.4 0.322 0.163 0.068 >25000 0.08 0.048 0.018 1297 <0.05 3.93 0.277 226 25

860.5 0.286 0.29 0.056 >25000 0.006 0.068 0.017 410 <0.05 6.28 0.382 121 27

223.5 2.54 3.643 2.349 >25000 0.059 0.712 0.565 243.8 0.3 73.28 3.704 394 132

554.7 0.27 0.215 0.152 >25000 0.026 0.056 0.04 841.8 <0.05 4.9 0.308 139 24

223 0.227 0.132 0.083 >25000 0.025 0.036 0.029 1702 <0.05 3.06 0.203 229 18

682.6 0.244 0.194 0.302 9573 0.031 0.054 0.082 318.5 0.06 4.5 0.305 75 29

142.9 1.605 0.436 0.274 >25000 0.008 0.104 0.072 540 0.05 9.49 0.613 236 63

319.4 1.332 0.558 0.275 >25000 0.013 0.131 0.062 503.4 0.07 11.23 0.743 227 68

647.7 1.479 0.681 2.538 >25000 0.065 0.184 0.586 522.6 0.25 15.15 1.066 189 128

28.6 0.419 0.176 0.04 >25000 0.065 0.049 0.018 1702 <0.05 4.02 0.281 278 31

667.1 0.272 0.199 0.109 22532 0.045 0.051 0.033 786.1 <0.05 4.62 0.305 107 25

296.8 0.393 0.222 0.183 >25000 0.023 0.058 0.053 916.5 <0.05 4.9 0.329 164 31

740.6 2.466 1.954 2.378 >25000 0.079 0.413 0.516 210.8 0.35 40.15 2.199 178 118



347.8 1.135 0.524 1.64 22384 0.199 0.155 0.805 735.3 0.83 12.68 0.888 115 67

738.7 0.395 0.33 0.42 17424 0.04 0.088 0.175 568.2 0.09 7.66 0.508 83 38

435.1 0.399 0.273 0.205 >25000 0.128 0.072 0.088 997.3 0.25 6.01 0.393 126 34

117.8 1.856 1.224 13.65 1910 0.168 0.325 2.851 5.5 0.97 28.64 1.911 27 54

1065 1.455 0.198 0.283 >25000 0.028 0.053 0.086 272.1 0.06 4.34 0.31 108 42

73.4 3.601 1.401 19.46 546 0.601 0.449 5.442 2.4 1.3 35.38 2.695 26 155

182 2.627 0.065 0.179 >25000 0.033 0.027 0.106 650 0.19 1.85 0.184 232 51

910.1 1.882 0.307 0.585 >25000 0.037 0.088 0.233 296 0.42 6.93 0.538 83 77

825.6 2.309 0.53 0.738 >25000 0.037 0.141 0.276 264 0.51 11.83 0.835 71 86

809.4 2.264 0.506 0.504 >25000 0.033 0.137 0.246 257.7 0.51 11.17 0.807 68 83

942.8 1.32 0.474 2.454 >25000 0.07 0.126 0.83 202 0.94 10.97 0.745 89 72

599.3 0.446 0.49 0.467 20352 0.027 0.134 0.145 583.1 0.21 11.36 0.769 112 48

351.7 0.833 0.087 0.082 >25000 0.013 0.027 0.036 1327 <0.05 2.05 0.173 324 35

506 0.247 0.408 0.138 11750 0.022 0.112 0.038 384 <0.05 9.58 0.64 87 38

120.4 1.08 0.054 0.076 >25000 0.005 0.023 0.033 1310 0.16 1.55 0.15 353 43

486 0.809 0.099 0.367 >25000 0.018 0.022 0.059 1159 0.22 2.02 0.129 339 31

1217 0.396 0.152 0.498 15934 0.302 0.044 0.129 223.5 0.65 3.66 0.262 126 33

318.8 0.74 0.098 0.153 >25000 0.035 0.028 0.053 1221 0.25 2.35 0.165 351 43

419.8 1.31 0.149 0.222 >25000 0.012 0.046 0.058 1053 0.16 3.54 0.288 324 66

67.8 2.601 1.084 14.3 898 0.502 0.391 3.82 2.3 2.45 30.69 2.411 36 282



Au (ppb) Ir Pd Pt Rh Ru

Detect Limit 0.22 0.01 0.12 0.17 0.02 0.08

CL-07-01-8 b.d.l 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-01-115.7 1.82 0.14 1.72 1.24 0.07 0.25

CL-07-01-167.76 0.48 0.01 0.15 0.27 b.d.l b.d.l

CL-07-01-322.4 0.76 0.01 0.15 0.23 b.d.l b.d.l

CL-07-01-325.6 0.65 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-01-354.2 1.05 0.06 1.01 0.9 0.08 0.1

CL-07-01-371.2 0.44 0.02 0.16 b.d.l 0.02 b.d.l

CL-07-01-373 0.5 0.02 0.2 b.d.l b.d.l b.d.l

CL-07-01-380 0.74 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-01-422.9 0.41 0.11 2.22 3.72 0.13 0.21

CL-07-02-347 0.72 0.02 0.24 b.d.l b.d.l b.d.l

CL-07-03-169 0.93 0.13 0.77 0.69 0.07 0.24

CL-07-05-11 6.81 1.74 5.83 5.59 0.85 3.67

CL-07-05-14 4.34 0.16 0.74 0.9 0.09 0.33

CL-07-05-30.2 0.23 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-05-50 21.3 1.99 5.74 1.82 1.01 3.95

CL-07-05-105 0.45 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-05-117 12.5 1.3 4.98 3.02 0.64 2.49

CL-07-05-142.8 10.2 0.42 3.27 3.16 0.26 0.58

CL-07-05-144 15 0.36 3.94 3.61 0.23 0.52

CL-07-05-499 1.05 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-05-675 0.63 0.03 0.26 b.d.l 0.03 0.13

CL-07-07-10.1 0.38 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-07-17 0.47 0.02 0.13 b.d.l 0.02 b.d.l

CL-07-07-450 0.42 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-07-483 0.4 0.01 b.d.l b.d.l b.d.l b.d.l

CL-07-14-323.5 2.29 0.08 0.6 2.58 0.05 0.14

CL-07-14-477.5 15.7 0.81 6.72 7.68 0.51 1.44

CL-07-15-145 b.d.l 0.01 b.d.l b.d.l b.d.l b.d.l

Au (ppb) Ir Pd Pt Rh Ru

Detect Limit 0.4 0.01 0.12 0.17 0.04 0.08

CL-06-16-47.6 13.2 0.93 9.73 4.23 1.32 1.13

CL-06-16-52.5 6.59 1.22 3.55 0.23 1.26 2.64

CL-06-55.0 9.72 0.21 4.96 0.33 0.66 0.2

CL-06-16-56.3 8.19 0.72 6.15 0.37 0.82 1.19

CL-06-16-57.5 12 0.92 7.41 b.d.l 1.14 1.67

CL-06-16-58.6 8.23 0.45 5.63 0.28 0.56 0.6

CL-06-16-59.9 4.53 0.06 1.85 0.69 0.08 b.d.l

February 2013 Samples

Summer 2013 Samples

Appendix 14: PGE assay data



CL-06-16-61.7 7.44 0.32 6.89 2.47 0.52 0.54

CL-06-16-63.8 9.51 0.48 8.66 0.43 0.82 0.39

CL-06-16-78.75 2.65 0.27 4.31 0.58 0.58 0.23

CL-06-16-84.6 13.3 0.27 21.6 7.7 0.97 0.09

CL-06-01-18.8 1.58 0.03 1.35 0.68 0.05 b.d.l

CL-06-01-22.0 9.48 2.74 15.5 0.3 3.25 5.56

CL-06-01-22.5 11.4 0.8 58 0.25 1.13 1.26

CL-06-05-75.1 4.43 0.11 3.14 2.75 0.16 0.16

CL-06-05-77.72 6.84 0.08 2.93 7.33 0.16 0.14

CL-06-05-81.2 16.8 1.16 12.6 8.42 2.5 1.31

CL-06-05-81.6 38.9 1.14 10.3 b.d.l 2.45 1.21

CL-07-09-57 8.91 0.07 113 29.6 3.18 0.42

CL-07-09-60 14.3 0.08 117 37.2 4.36 0.53



Appendix 15: EMP analyses

Plagioclase analyses

Sample CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9

Point 1 2 3 4

SiO2 52.58 51.18 52.91 51.02

TiO2 0.12 0.06 0.08 0.08

Al2O3 30.90 32.33 30.59 32.21

FeO 0.85 0.23 0.14 0.16

MnO 0.02 b.d.l b.d.l b.d.l

MgO 0.06 0.00 0.00 0.01

CaO 12.14 14.13 12.22 14.06

Na2O 4.43 3.58 4.52 3.33

K2O 0.05 0.04 0.05 0.04

Total 101.13 101.52 100.49 100.90

An 60.05 68.40 59.71 69.80



CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7

1 2 3 4 5

54.14 53.46 53.11 53.75 53.76

0.13 0.08 0.11 0.05 0.06

30.04 30.46 30.41 30.62 30.51

0.15 0.19 0.19 0.11 0.16

0.04 0.00 0.01 0.01 0.00

0.01 0.03 0.01 0.02 0.04

11.49 12.11 12.14 12.12 12.02

5.04 4.61 4.68 4.71 4.84

0.11 0.10 0.11 0.06 0.10

101.15 101.05 100.77 101.46 101.50

55.38 58.85 58.51 58.48 57.53



CL-06-16-35.7 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

6 Rim-1 Core-1 Rim-2 Core-3

53.12 54.14 54.63 54.65 52.52

0.05 0.09 0.08 0.06 0.05

30.56 29.78 29.53 29.54 30.62

0.16 0.41 0.50 0.21 0.15

0.00 0.00 0.02 b.d.l 0.02

0.01 0.02 0.13 0.04 0.01

12.26 11.13 10.80 10.83 12.41

4.64 4.88 5.29 5.33 4.35

0.08 0.12 0.18 0.09 0.07

100.89 100.55 101.16 100.72 100.19

59.09 55.35 52.45 52.59 60.94



CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

Rim-4 Core-4 Rim-5 Core-5 Rim-6

55.01 54.69 55.00 53.76 55.06

0.11 0.05 0.06 0.10 0.00

29.20 28.98 28.88 29.29 29.18

0.24 0.18 0.50 0.70 0.22

b.d.l b.d.l 0.02 b.d.l 0.00

0.00 0.02 0.08 0.20 0.01

10.71 10.54 10.28 11.21 10.43

5.38 5.55 5.65 4.87 5.47

0.12 0.14 0.07 0.10 0.09

100.77 100.13 100.53 100.20 100.46

52.02 50.80 49.91 55.63 51.00



CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

Core-6 Core-7 Rim-7 Core-8 Rim-8

53.70 54.80 52.76 53.17 53.49

0.02 0.04 0.05 0.14 0.13

28.30 29.69 28.96 30.55 30.44

2.05 0.16 2.22 0.28 0.60

0.05 0.01 b.d.l b.d.l b.d.l

0.98 0.02 0.53 0.01 0.03

9.82 10.87 10.91 12.20 12.04

5.15 5.23 4.94 4.63 4.69

0.18 0.12 0.09 0.08 0.07

100.25 100.93 100.44 101.05 101.48

50.78 53.07 54.68 59.00 58.43



CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80

Core-1 Rim-1 Rim-2 Core-2 Rim-3

57.58 57.67 57.12 56.92 57.06

0.06 0.01 0.01 0.10 b.d.l

27.25 27.19 27.52 27.47 27.47

0.19 0.30 0.20 0.32 0.22

0.00 b.d.l 0.00 b.d.l 0.00

0.01 0.02 0.02 0.02 0.00

8.74 8.64 8.88 8.97 8.98

6.41 6.39 6.45 6.29 6.09

0.39 0.33 0.35 0.34 0.38

100.62 100.53 100.56 100.39 100.15

42.01 41.95 42.36 43.21 43.91



CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80

Core-3 Rim-4 Core-4 5 6

57.55 56.96 56.43 47.10 48.36

0.02 0.05 0.06 b.d.l b.d.l

27.21 26.15 27.38 34.28 33.31

0.23 1.62 0.19 0.30 0.54

0.01 0.03 0.01 0.02 0.02

0.00 0.66 0.02 0.05 0.04

8.50 7.83 8.91 16.51 14.61

6.46 6.29 6.29 1.81 2.49

0.39 0.49 0.51 0.04 0.52

100.37 100.09 99.80 100.08 99.84

41.15 39.55 42.62 83.27 74.05



CL-06-16-80 CL-06-39-4.1 CL-06-39-4.1 CL-06-39-4.1 CL-06-39-4.1

7 1 2 3 4

48.63 52.35 53.23 51.80 51.50

b.d.l 0.06 0.06 0.35 0.04

33.47 30.95 30.34 30.93 31.51

0.32 0.26 0.35 0.59 0.30

0.01 0.01 0.03 b.d.l 0.00

0.04 0.02 0.08 0.08 0.05

15.34 12.90 12.31 13.11 13.53

2.56 4.09 4.41 4.03 3.79

0.07 0.16 0.16 0.26 0.24

100.42 100.79 100.96 101.14 100.94

76.45 62.98 60.09 63.27 65.46



CL-06-39-4.1 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35

5 Rim-1 Core-1 Rim-2 Core-2

53.21 55.09 55.45 54.73 55.37

0.06 0.03 0.06 0.07 0.11

30.70 29.07 28.99 28.72 28.92

0.25 0.36 0.18 1.14 0.13

b.d.l 0.00 0.01 0.05 0.03

0.02 0.04 0.00 0.22 0.03

12.30 10.54 10.33 9.77 10.41

4.56 5.37 5.33 5.40 5.75

0.08 0.20 0.22 0.24 0.07

101.16 100.71 100.57 100.33 100.81

59.60 51.45 51.05 49.25 49.82



CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35

Rim-3 Core-3 Rim-4 Core-4 Rim-5

54.08 53.36 53.47 50.92 54.31

0.10 0.05 0.03 0.06 0.11

29.68 30.46 30.58 32.07 30.04

0.44 0.12 0.23 0.21 0.18

0.07 0.02 0.00 0.02 0.04

0.55 0.03 0.02 0.04 0.03

11.21 12.20 12.16 14.08 11.46

4.83 4.56 4.66 3.51 4.98

0.12 0.13 0.12 0.08 0.17

101.08 100.93 101.27 100.99 101.31

55.78 59.20 58.65 68.58 55.44



CL-06-39-20.35 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23

Core-5 1 2 3 4

53.67 51.46 51.00 53.01 50.49

0.07 0.05 0.02 0.11 0.03

30.35 31.56 31.83 30.63 32.19

0.12 0.33 0.20 0.22 0.18

0.01 0.02 0.04 0.02 0.01

0.03 0.13 0.03 0.03 b.d.l

11.85 13.21 13.69 12.34 14.18

4.81 3.83 3.71 4.49 3.49

0.15 0.08 0.10 0.15 0.06

101.06 100.66 100.61 101.00 100.63

57.15 65.28 66.74 59.81 68.95



CL-06-39-60.23 CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128

5 Rim-1 Core-1 Rim-2 Core-2

50.64 55.96 55.33 56.42 55.75

0.09 0.14 0.09 0.05 0.03

31.89 28.55 28.69 28.11 27.84

0.40 0.30 0.25 0.28 0.47

0.02 b.d.l 0.03 b.d.l 0.01

0.02 0.04 0.02 0.03 0.18

13.87 10.00 10.00 9.41 9.55

3.54 5.79 5.47 6.03 5.80

0.07 0.31 0.30 0.39 0.32

100.53 101.08 100.17 100.69 99.94

68.12 47.99 49.39 45.26 46.75



CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128

Rim-3 Core-3 Rim-4 Core-4 Rim-5

55.58 55.86 56.37 55.68 55.76

0.04 0.07 0.07 0.07 0.02

28.30 28.40 28.19 28.58 27.95

0.26 0.20 0.31 0.16 0.35

0.02 0.02 0.04 0.01 b.d.l

0.02 0.04 0.01 0.02 0.01

10.03 9.82 9.38 10.01 9.67

5.77 5.87 5.85 5.81 5.66

0.25 0.24 0.32 0.26 0.28

100.26 100.53 100.54 100.62 99.68

48.28 47.40 46.10 48.04 47.75



CL-06-39-128 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1

Core-5 1 2 3 4

57.51 58.86 58.04 58.12 57.99

0.07 0.13 0.11 0.03 0.07

27.33 26.69 26.83 27.02 26.83

0.19 0.21 0.13 0.14 0.19

b.d.l b.d.l b.d.l 0.00 0.03

0.02 0.03 0.02 b.d.l 0.02

8.72 7.73 7.97 8.19 8.27

6.25 6.88 6.74 6.67 6.55

0.32 0.47 0.50 0.45 0.44

100.39 100.97 100.34 100.62 100.40

42.71 37.28 38.39 39.38 40.04



CL-07-01-29.1 CL-07-01-29.1 CL-07-01-140 CL-07-01-140 CL-07-01-140

5 6 Core-1 Rim-1 Core-2

58.39 58.77 55.97 55.99 56.45

0.11 0.06 0.13 0.03 0.11

26.92 26.57 28.13 27.52 28.23

0.15 0.12 0.57 1.72 0.14

b.d.l b.d.l b.d.l 0.07 0.00

0.04 0.01 0.12 0.06 0.00

7.89 7.80 9.36 8.63 9.46

6.86 6.75 5.91 6.15 6.12

0.45 0.40 0.07 0.23 0.16

100.78 100.46 100.25 100.39 100.69

37.83 38.05 46.46 43.09 45.65



CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-354

Core-3 Rim-3 Rim-4 Core-4 Core-1

56.54 56.75 56.34 56.24 55.03

0.11 b.d.l 0.08 0.08 0.08

28.17 27.99 27.82 28.29 29.10

0.15 0.17 0.67 0.17 0.17

0.01 0.00 b.d.l b.d.l b.d.l

0.03 0.01 0.12 0.02 0.04

9.26 9.09 9.08 9.54 10.51

6.22 6.38 6.22 6.08 5.20

0.08 0.06 0.08 0.08 0.33

100.57 100.45 100.41 100.47 100.43

44.92 43.88 44.43 46.25 51.73



CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354

Rim-1 Rim-2 Core-2 Rim-3 Core-3

55.69 55.56 55.34 55.12 55.39

0.08 0.03 b.d.l 0.04 0.02

28.81 28.94 29.15 28.79 29.10

0.19 0.24 0.15 0.15 0.15

0.00 0.08 0.03 0.00 b.d.l

0.02 0.02 0.04 0.02 0.04

10.18 10.45 10.49 10.45 10.40

5.67 5.33 5.35 5.43 5.67

0.31 0.33 0.29 0.29 0.30

100.95 100.97 100.81 100.29 101.04

48.89 51.01 51.12 50.67 49.50



CL-07-01-354 CL-07-01-354

Rim-4 Core-4

55.59 56.17

0.05 0.05

28.59 28.52

0.21 0.21

0.00 b.d.l

0.03 0.05

10.12 9.97

5.74 5.64

0.21 0.32

100.52 100.94

48.75 48.50



Sample CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9

Point 1 2 3 4

SiO2 36.19 36.45 36.30 36.01

Al2O3 0.00 b.d.l b.d.l b.d.l

FeO 35.15 34.73 35.05 36.18

MgO 28.54 29.64 28.65 27.87

MnO 0.49 0.48 0.49 0.54

CaO 0.05 0.04 0.04 0.05

NiO 0.04 0.06 0.04 0.06

TiO2 b.d.l 0.01 0.04 b.d.l

Cr2O3 b.d.l b.d.l b.d.l 0.01

V2O3 b.d.l 0.01 0.01 0.01

Na2O - - - -

K2O - - - -

Total 100.43 101.41 100.59 100.73

Fo 58.76 59.97 58.93 57.45

Olivine analyses



CL-06-16-8.9 CL-06-16-33.7 CL-06-16-33.7 CL-06-16-33.7 CL-06-16-35.7

5 1 2 3 1

36.69 35.40 35.70 35.54 36.36

b.d.l b.d.l b.d.l b.d.l 0.01

31.81 38.01 36.03 37.01 35.19

30.79 26.11 27.61 27.13 28.96

0.49 0.55 0.52 0.53 0.55

0.05 0.05 0.04 0.06 0.05

0.06 0.04 0.04 0.05 0.06

0.00 0.03 0.01 0.01 0.03

b.d.l 0.00 0.01 b.d.l 0.00

b.d.l 0.01 b.d.l 0.01 b.d.l

- 0.02 b.d.l b.d.l -

- 0.01 0.01 b.d.l -

99.84 100.22 99.95 100.27 101.22

62.90 54.64 57.35 56.24 59.04



CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7

2 3 4 5 6

36.39 36.37 36.79 36.49 36.48

0.02 b.d.l 0.00 0.01 0.01

35.02 34.93 34.53 34.86 34.83

29.11 28.84 29.22 28.94 29.10

0.54 0.53 0.50 0.53 0.48

0.04 0.06 0.04 0.03 0.03

0.07 0.06 0.05 0.04 0.08

0.02 0.02 0.02 0.03 b.d.l

b.d.l 0.02 0.01 0.01 0.01

b.d.l 0.01 b.d.l 0.00 b.d.l

- - - - -

- - - - -

101.16 100.81 101.16 100.93 101.01

59.30 59.12 59.75 59.28 59.47



CL-06-16-35.7 CL-06-16-35.7 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35

7 8 1 2 3

36.80 36.38 36.74 36.78 36.76

0.00 0.02 0.01 0.00 0.01

31.60 34.97 33.20 32.68 32.95

28.72 28.62 30.54 30.69 30.58

0.52 0.51 0.48 0.46 0.49

0.06 0.04 0.09 0.07 0.10

0.07 0.07 0.08 0.09 0.11

0.04 0.01 0.01 0.05 0.01

b.d.l b.d.l 0.01 b.d.l b.d.l

0.00 b.d.l 0.01 b.d.l 0.01

- - - - -

- - - - -

97.80 100.59 101.17 100.81 101.01

61.39 58.94 61.69 62.21 61.88



CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-60.23 CL-06-39-60.23

4 5 6 1 2

36.64 36.66 36.66 37.39 37.51

0.00 b.d.l 0.00 0.01 b.d.l

33.13 33.44 33.29 25.07 24.62

30.38 30.12 30.28 35.64 35.92

0.54 0.48 0.48 0.37 0.33

0.09 0.12 0.08 0.09 0.09

0.09 0.08 0.09 0.15 0.14

0.03 0.07 b.d.l 0.01 0.00

b.d.l 0.01 b.d.l 0.00 0.00

0.00 0.01 b.d.l b.d.l 0.00

- - - b.d.l 0.02

- - - 0.00 0.01

100.90 101.00 100.87 98.70 98.63

61.58 61.17 61.44 71.31 71.86



CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-103 CL-06-39-103

3 4 5 1 2

37.37 37.35 37.37 37.12 37.38

b.d.l b.d.l b.d.l 0.01 0.00

24.53 25.11 24.86 27.40 26.70

36.01 36.08 35.94 33.43 34.24

0.34 0.33 0.35 0.43 0.37

0.08 0.14 0.12 0.10 0.08

0.14 0.14 0.16 0.09 0.09

0.06 0.01 0.05 0.02 0.04

b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l 0.01 0.00 b.d.l

b.d.l 0.01 b.d.l b.d.l 0.03

b.d.l b.d.l 0.01 b.d.l b.d.l

98.51 99.15 98.84 98.57 98.92

71.99 71.51 71.63 68.07 69.20



CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-128 CL-06-39-128

3 4 5 1 2

37.53 37.11 37.37 35.28 35.50

0.01 0.02 0.01 0.02 b.d.l

26.60 27.14 26.78 39.45 38.41

34.16 33.45 33.82 24.61 24.43

0.40 0.42 0.42 0.64 0.61

0.09 0.11 0.08 0.05 0.05

0.07 0.09 0.08 0.06 0.06

0.03 0.03 0.02 0.04 b.d.l

0.01 0.00 0.00 b.d.l b.d.l

0.00 b.d.l 0.01 b.d.l 0.00

b.d.l b.d.l 0.01 0.01 b.d.l

b.d.l 0.00 b.d.l 0.00 0.00

98.86 98.37 98.61 100.15 99.01

69.19 68.28 68.82 52.20 52.70



CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-07-01-140

3 4 5 6 1

35.30 35.10 35.08 35.31 35.12

0.04 b.d.l 0.00 0.00 b.d.l

40.19 39.63 41.11 41.21 39.33

24.06 24.14 23.03 23.32 24.41

0.66 0.65 0.73 0.66 0.75

0.08 0.06 0.06 0.05 0.06

0.06 0.06 0.06 0.07 b.d.l

0.01 0.04 0.04 b.d.l 0.01

b.d.l b.d.l -0.01 b.d.l 0.00

0.01 b.d.l b.d.l b.d.l 0.01

0.05 b.d.l 0.03 0.00 b.d.l

0.00 b.d.l 0.00 0.00 0.00

100.45 99.65 100.13 100.61 99.65

51.15 51.60 49.48 49.78 51.99



CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-249

2 3 4 5 1

35.33 35.40 35.53 35.56 34.61

0.00 b.d.l 0.01 b.d.l 0.01

39.33 38.49 38.39 38.44 42.74

24.83 25.34 25.27 25.13 22.36

0.72 0.71 0.66 0.72 0.63

0.09 0.07 0.08 0.09 0.03

b.d.l 0.00 0.01 b.d.l 0.01

0.02 0.05 b.d.l 0.02 0.01

0.00 b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l 0.01 b.d.l b.d.l

b.d.l 0.04 b.d.l b.d.l b.d.l

b.d.l 0.01 0.00 b.d.l b.d.l

100.26 100.09 99.90 99.87 100.37

52.43 53.48 53.49 53.28 47.87



CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-249

2 3 4 5 6

34.78 34.44 34.88 34.47 34.51

0.01 0.00 0.02 b.d.l 0.00

42.25 42.81 42.00 41.77 42.41

22.64 22.37 22.24 21.92 21.80

0.61 0.62 0.65 0.59 0.60

0.04 0.07 0.04 0.06 0.06

b.d.l 0.00 0.01 b.d.l b.d.l

b.d.l 0.01 0.02 0.01 0.02

b.d.l 0.01 0.01 b.d.l 0.00

0.01 0.01 b.d.l 0.01 b.d.l

0.00 b.d.l 0.00 b.d.l b.d.l

b.d.l 0.00 b.d.l 0.00 0.00

100.30 100.29 99.86 98.72 99.37

48.47 47.82 48.15 47.93 47.42



CL-07-01-249 CL-07-01-249 CL-07-01-308 CL-07-01-308 CL-07-01-308

7 8 1 2 3

34.32 34.53 36.20 36.16 36.11

b.d.l 0.02 b.d.l b.d.l 0.03

41.77 42.15 34.39 34.00 34.01

21.96 22.15 28.37 28.65 28.60

0.64 0.61 0.56 0.56 0.56

0.04 0.05 0.12 0.09 0.09

b.d.l 0.01 0.03 0.02 0.02

0.04 -0.01 0.02 0.03 0.03

0.00 b.d.l 0.00 b.d.l 0.00

b.d.l b.d.l b.d.l b.d.l 0.00

b.d.l 0.04 0.06 b.d.l b.d.l

0.01 b.d.l 0.00 b.d.l 0.00

98.71 99.52 99.72 99.47 99.41

47.97 47.96 59.03 59.55 59.51



CL-07-01-308 CL-07-01-308 CL-07-01-308 CL-07-01-329 CL-07-01-329

4 5 6 1 2

36.10 36.01 36.16 35.49 35.57

0.00 0.03 b.d.l 0.01 0.02

34.34 33.97 34.26 37.08 36.95

28.67 28.35 28.45 26.97 26.87

0.57 0.59 0.54 0.55 0.59

0.09 0.10 0.08 0.08 0.08

0.03 0.02 0.02 0.01 0.03

0.02 0.05 0.02 0.02 0.02

b.d.l 0.00 0.01 0.00 b.d.l

0.01 b.d.l b.d.l b.d.l b.d.l

0.04 0.02 0.07 b.d.l b.d.l

0.00 b.d.l 0.00 b.d.l 0.01

99.86 99.12 99.58 100.19 100.07

59.34 59.30 59.23 56.02 55.98



CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329

3 4 5 6 7

35.45 35.38 35.53 35.73 35.61

0.02 0.02 0.01 0.04 0.01

36.52 36.67 36.41 36.11 35.76

26.84 27.34 27.05 27.46 27.84

0.60 0.63 0.55 0.54 0.56

0.09 0.07 0.07 0.07 0.08

0.01 0.02 0.01 0.03 0.01

0.05 b.d.l 0.05 0.03 0.04

0.01 0.00 0.00 0.01 0.01

0.00 0.00 0.00 0.00 b.d.l

b.d.l 0.01 0.04 0.04 0.02

0.00 0.00 b.d.l 0.00 b.d.l

99.57 100.14 99.70 100.06 99.91

56.23 56.58 56.55 57.12 57.67



CL-07-01-329 CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354

8 1 2 3 4

35.70 35.39 35.49 35.42 35.56

0.01 0.02 b.d.l 0.01 b.d.l

36.21 39.29 39.15 39.60 38.94

27.59 24.65 24.73 24.31 24.75

0.55 0.71 0.66 0.66 0.65

0.08 0.05 0.06 0.06 0.08

0.04 0.02 0.04 0.02 0.02

0.04 b.d.l b.d.l 0.01 0.00

b.d.l 0.00 b.d.l b.d.l b.d.l

b.d.l 0.00 0.01 0.01 b.d.l

b.d.l 0.00 b.d.l b.d.l 0.01

b.d.l 0.00 b.d.l 0.00 b.d.l

100.18 100.12 100.10 100.03 99.99

57.15 52.30 52.50 51.79 52.64



Sample CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9

Point 1 2 3 4

SiO2 49.42 49.71 48.91 49.56

TiO2 1.67 1.68 1.80 1.67

Al2O3 5.04 5.13 5.82 5.20

Cr2O3 0.03 0.01 0.00 0.01

FeO 8.55 8.03 8.27 8.41

MnO 0.18 0.17 0.14 0.18

MgO 13.64 13.68 13.47 13.51

CaO 21.94 21.92 21.84 21.98

Na2O - - - -

K2O - - - -

NiO 0.01 0.00 0.02 0.00

V2O3 0.06 0.05 0.07 0.08

Total 100.53 100.38 100.35 100.60

Mg# 73.99 75.22 74.38 74.12

Clinopyroxene analyses



CL-06-16-8.9 CL-06-16-8.9 CL-06-16-33.7 CL-06-16-33.7 CL-06-16-33.7

5 6 1 2 3

49.01 45.32 48.90 49.33 48.36

2.05 3.35 1.73 1.57 1.91

6.03 3.95 5.40 4.72 5.99

0.01 0.03 0.01 0.00 0.00

8.24 14.33 7.91 7.60 7.67

0.16 0.18 0.20 0.19 0.14

13.43 13.09 13.11 13.25 12.90

21.95 19.90 22.22 22.73 22.42

- - 0.59 0.53 0.57

- - 0.01 0.01 0.01

0.00 0.01 0.00 0.01 b.d.l

0.07 0.11 0.08 0.04 0.08

100.94 100.28 100.15 99.98 100.03

74.40 61.97 74.71 75.66 75.00



CL-06-16-33.7 CL-06-16-33.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7

4 5 1 2 3

50.57 48.28 41.12 42.04 51.54

1.09 2.04 4.73 3.13 0.77

3.25 4.60 12.91 13.43 2.72

0.00 0.01 0.07 0.16 0.04

8.05 9.44 12.76 12.61 8.02

0.17 0.26 0.11 0.13 0.20

13.68 13.12 12.08 12.83 14.81

22.54 21.47 11.67 12.01 22.63

0.45 0.51 - - -

0.00 0.00 - - -

0.03 0.01 0.03 0.03 0.02

0.04 0.09 0.10 0.11 0.04

99.87 99.83 95.58 96.48 100.78

75.19 71.24 62.78 64.47 76.71



CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80 CL-06-16-80

1 2 3 4 5

51.70 51.87 50.11 52.05 51.27

0.30 0.21 1.13 0.25 0.38

1.72 1.29 1.87 1.68 2.09

0.00 -0.01 0.01 0.00 0.02

14.66 13.44 14.71 13.92 12.74

0.43 0.31 0.34 0.34 0.32

12.86 12.28 11.87 12.74 11.96

18.47 20.94 20.67 19.64 21.55

0.25 0.23 0.35 0.24 0.34

0.00 0.01 0.00 0.00 0.00

0.01 0.04 0.01 0.01 0.01

0.02 0.03 0.04 0.02 0.02

100.41 100.62 101.13 100.90 100.71

60.99 61.96 58.97 61.99 62.59



CL-06-16-80 CL-06-16-80 CL-06-39.20.35 CL-06-39.20.35 CL-06-39.20.35

6 7 1 2 3

51.91 51.39 50.14 49.80 50.13

0.30 0.22 1.54 1.64 1.56

1.70 1.62 3.90 4.22 3.90

0.01 0.00 0.11 0.12 0.11

14.79 15.73 9.08 8.79 8.85

0.42 0.43 0.18 0.18 0.18

12.93 13.32 13.60 13.36 13.60

18.87 17.20 21.72 21.56 21.96

0.30 0.24 - - -

0.00 0.00 - - -

0.01 0.00 0.03 0.02 0.01

0.04 0.03 0.04 0.07 0.05

101.26 100.16 100.35 99.76 100.35

60.90 60.16 72.73 73.05 73.25



CL-06-39.20.35 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23

4 5 6 7 8

50.30 49.04 48.73 49.41 48.90

1.51 1.64 1.59 1.32 1.58

3.79 5.05 5.10 4.94 5.33

0.10 0.18 0.16 0.11 0.17

8.72 7.00 6.82 6.97 6.78

0.17 0.12 0.12 0.15 0.14

13.63 13.81 13.85 14.29 13.88

21.59 22.29 22.70 22.34 22.25

- 0.66 0.62 0.55 0.69

- 0.00 0.01 0.02 0.00

0.03 0.02 0.01 0.01 0.01

0.04 0.06 0.05 0.05 0.06

99.87 99.88 99.78 100.16 99.80

73.58 77.84 78.35 78.53 78.50



CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-103

1 2 3 4 5

49.95 49.44 49.83 49.80 49.32

1.42 1.36 1.25 1.31 1.47

5.25 5.04 5.06 5.00 5.27

0.09 0.09 0.08 0.07 0.10

7.22 7.24 7.33 7.25 7.36

0.16 0.17 0.13 0.14 0.15

13.40 13.34 13.36 13.46 13.33

23.03 23.31 22.87 23.14 23.30

0.48 0.47 0.54 0.43 0.46

0.00 0.00 0.00 0.01 0.00

0.01 0.03 0.01 0.01 0.01

0.05 0.04 0.06 0.04 0.04

101.05 100.54 100.53 100.66 100.82

76.80 76.64 76.46 76.81 76.34



CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-128 CL-06-39-128

6 7 8 1 2

49.51 49.40 49.16 51.54 51.00

1.43 1.39 1.60 0.59 1.25

5.53 5.13 5.03 2.25 2.84

0.09 0.09 0.11 0.00 0.01

7.47 7.46 8.04 9.45 10.33

0.17 0.16 0.16 0.25 0.26

13.23 13.22 13.45 13.52 13.62

23.01 23.13 22.76 22.22 21.23

0.53 0.48 0.50 0.40 0.53

b.d.l 0.00 0.00 0.00 0.01

0.02 0.02 0.03 0.02 0.01

0.04 0.07 0.06 0.03 0.02

101.03 100.55 100.90 100.27 101.11

75.95 75.97 74.89 71.85 70.15



CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-06-39-128

3 4 5 6 7

50.62 50.69 51.30 50.61 51.42

1.29 1.35 0.91 1.41 1.00

3.26 3.27 2.69 3.17 2.59

0.01 0.00 0.00 0.00 b.d.l

10.13 10.13 9.55 10.25 10.16

0.29 0.30 0.26 0.27 0.24

13.10 13.05 13.35 13.09 13.45

21.47 21.35 21.92 21.48 21.65

0.50 0.48 0.45 0.48 0.53

0.00 0.00 0.01 0.01 0.00

0.00 0.00 0.02 0.01 0.01

0.02 0.03 0.02 0.03 0.00

100.71 100.66 100.48 100.80 101.05

69.75 69.66 71.37 69.48 70.24



CL-06-39-128 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1

8 1 2 3 4

50.99 51.24 51.15 51.75 51.54

1.20 0.56 0.81 0.50 0.58

2.76 1.49 1.64 1.30 1.51

0.00 0.00 0.00 0.00 0.01

10.61 13.12 13.21 12.87 12.99

0.26 0.36 0.42 0.37 0.34

13.11 11.15 11.35 11.28 11.18

21.03 21.97 21.42 22.00 21.79

0.47 0.43 0.41 0.50 0.53

0.01 0.00 0.00 b.d.l 0.00

0.00 0.00 0.00 0.00 0.01

0.03 0.02 0.01 0.03 0.02

100.48 100.35 100.43 100.59 100.49

68.78 60.25 60.50 60.99 60.55



CL-07-01-9.1 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9

5 6 7 8 9

51.45 51.43 50.42 50.52 50.65

0.79 0.26 1.36 1.00 0.82

1.72 1.86 2.98 2.67 2.53

b.d.l 0.00 b.d.l b.d.l 0.00

12.87 9.84 10.14 9.90 10.00

0.42 0.27 0.25 0.26 0.25

11.14 13.28 13.42 13.34 13.62

21.65 22.04 21.35 21.61 21.55

0.72 0.56 0.45 0.52 0.58

0.00 0.00 0.00 0.00 0.00

b.d.l 0.01 0.00 0.00 0.00

0.01 0.02 0.04 0.01 0.03

100.74 99.57 100.40 99.82 100.06

60.67 70.65 70.22 70.62 70.82



CL-07-01-95.9 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-140

10 1 2 3 4

49.78 50.41 50.68 50.96 50.74

1.54 1.49 1.53 1.25 1.37

3.04 3.52 3.45 3.27 3.35

0.00 0.00 0.00 0.00 0.02

10.20 9.53 9.54 9.38 9.80

0.26 0.24 0.26 0.26 0.29

13.39 13.57 13.04 13.21 13.11

21.22 21.39 21.85 21.72 21.59

0.50 0.57 0.66 0.71 0.60

0.01 0.01 0.00 0.00 0.00

0.00 b.d.l b.d.l 0.00 b.d.l

0.03 0.02 0.03 0.04 0.01

99.98 100.74 101.03 100.80 100.85

70.06 71.74 70.91 71.50 70.46



CL-07-01-140 CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-249

5 1 2 3 4

50.32 50.45 44.43 49.46 50.23

1.66 1.23 0.62 1.36 1.16

3.51 3.54 6.28 3.46 3.14

0.00 0.00 b.d.l 0.01 0.01

10.01 8.83 13.20 9.69 9.20

0.25 0.25 0.17 0.22 0.24

13.35 13.07 16.02 13.21 13.33

21.39 22.21 14.11 21.60 22.06

0.60 0.48 0.26 0.50 0.45

0.00 0.00 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.00

0.04 0.03 0.04 0.04 0.03

101.13 100.10 95.13 99.55 99.84

70.39 72.51 68.40 70.86 72.10



CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-354 CL-07-01-354

5 6 7 1 2

50.75 50.92 50.42 51.09 51.26

0.93 0.85 1.21 1.19 1.09

2.74 2.81 3.36 2.98 2.84

0.01 0.00 0.01 0.02 0.01

8.78 8.97 9.10 10.01 9.79

0.21 0.23 0.26 0.27 0.29

13.55 13.45 13.27 13.70 13.71

22.19 22.55 21.80 21.35 21.46

0.50 0.39 0.50 0.44 0.47

0.00 0.00 0.00 0.01 0.00

b.d.l 0.00 0.00 0.01 0.00

0.03 0.04 0.03 0.04 0.04

99.66 100.21 99.97 101.13 100.95

73.34 72.76 72.22 70.94 71.39



CL-07-01-354 CL-07-01-354

3 4

51.39 50.49

0.84 1.22

2.71 3.43

0.04 0.07

9.42 9.85

0.27 0.25

13.56 13.15

21.92 21.43

0.38 0.47

0.00 0.00

0.01 0.01

0.04 0.05

100.56 100.43

71.95 70.41



Amphibole analyses

Line Numbers CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

1 2 3 4 5

SiO2 41.65 41.27 41.20 41.28 41.26

TiO2 4.03 4.61 4.45 4.63 4.10

Al2O3 11.93 12.08 12.18 11.97 12.13

Cr2O3 0.04 0.01 0.01 0.01 b.d.l.

FeO 14.28 14.17 14.18 14.22 14.61

MnO 0.13 0.17 0.18 0.14 0.16

MgO 11.64 11.71 11.71 11.67 11.50

CaO 11.67 11.81 11.66 11.77 11.71

Na2O 2.61 2.51 2.70 2.41 2.54

K2O 1.18 1.19 1.17 1.16 1.21

NiO 0.01 0.02 0.01 b.d.l. b.d.l.

V2O3 0.09 0.08 0.07 0.09 0.07

F b.d.l. 0.07 b.d.l. 0.09 0.07

Cl 0.09 0.05 0.10 0.07 0.10

O 0.01 b.d.l. b.d.l. b.d.l. b.d.l.

H2O 0.94 0.94 0.94 0.94 0.94

Total 100.22 100.65 100.52 100.38 100.31



CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

6 7 8 9 10

41.41 41.11 41.86 40.89 41.32

4.15 3.27 4.33 3.82 4.09

11.95 11.94 11.60 12.37 12.00

0.00 0.01 0.02 0.01 0.02

14.99 16.00 14.56 15.42 14.60

0.14 0.18 0.18 0.17 0.16

11.44 11.47 11.45 11.37 11.67

11.58 11.07 11.66 11.27 11.80

2.41 2.26 2.33 2.43 2.38

1.21 1.05 1.23 1.06 1.20

0.04 0.04 0.04 0.03 0.02

0.09 0.04 0.08 0.08 0.07

b.d.l. 0.06 0.01 0.07 0.14

0.08 0.06 0.10 0.11 0.12

b.d.l. b.d.l. b.d.l. b.d.l. b.d.l.

0.94 0.94 0.94 0.94 0.94

100.38 99.46 100.37 99.99 100.44



Sample CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9

Point 1 2 3 4

SiO2 36.16 36.32 36.04 36.55

TiO2 5.64 6.25 5.69 5.27

Al2O3 13.41 13.51 13.55 13.68

FeO 16.98 16.71 16.76 16.02

MnO 0.10 0.06 0.05 0.05

MgO 14.29 14.45 14.74 15.18

CaO 0.02 0.04 0.04 0.04

Na2O 0.70 0.55 0.69 0.64

K2O 9.03 9.03 9.05 8.82

NiO b.d.l 0.02 b.d.l 0.01

Cr2O3 0.01 b.d.l 0.01 b.d.l

V2O3 0.05 0.02 0.03 0.06

F 0.27 0.18 0.39 0.23

Cl 0.10 0.10 0.14 0.13

H2O 3.45 3.45 3.46 3.38

Total 100.07 100.58 100.43 99.93

Total 100.22 100.70 100.62 100.06

O=F, Cl 0.14 0.10 0.20 0.13

Total -O 100.08 100.60 100.43 99.93

xCl 0.01 0.01 0.01 0.01

xF 0.03 0.02 0.05 0.03

xOH 0.96 0.97 0.94 0.96

Biotite analyses



CL-07-01-95.9 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-173.9 CL-07-01-173.9

5 1 2 1 2

36.47 35.03 35.07 36.27 35.64

5.91 6.41 6.32 2.72 4.55

13.65 13.40 13.32 13.32 12.35

15.61 22.97 22.97 23.84 25.01

0.11 0.16 0.13 0.24 0.19

14.62 8.77 8.76 10.03 9.04

0.06 b.d.l 0.03 0.05 0.02

0.71 0.16 0.18 0.37 0.43

8.97 9.71 9.60 8.59 9.13

0.02 b.d.l b.d.l 0.02 b.d.l

b.d.l b.d.l b.d.l 0.01 b.d.l

0.02 0.01 0.01 0.02 0.03

0.21 0.09 0.06 0.17 0.36

0.13 0.06 0.04 0.37 0.19

3.43 3.71 3.67 3.29 3.49

99.79 100.38 100.09 99.17 100.22

99.92 100.49 100.18 99.32 100.44

0.12 0.05 0.03 0.16 0.19

99.81 100.44 100.14 99.17 100.25

0.01 0.00 0.00 0.02 0.01

0.03 0.01 0.01 0.02 0.05

0.97 0.98 0.99 0.95 0.94



CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9

3 4 5 6 7

36.15 35.41 35.21 35.44 34.79

4.53 4.08 4.30 4.69 4.99

12.22 12.59 11.37 11.35 11.24

24.28 24.69 29.97 29.70 30.76

0.16 0.21 0.18 0.27 0.20

9.33 8.92 5.46 5.81 5.06

0.07 0.04 0.06 0.08 0.07

0.54 0.50 0.20 0.21 0.23

9.21 9.36 8.96 9.17 8.95

0.02 b.d.l 0.03 b.d.l 0.00

0.01 0.00 b.d.l 0.05 0.01

0.03 0.05 0.00 0.01 0.03

0.11 0.27 0.03 0.02 0.19

0.23 0.33 0.58 0.54 0.53

3.52 3.58 3.43 3.51 3.43

100.32 99.80 99.64 100.70 100.27

100.42 100.01 99.79 100.83 100.47

0.10 0.19 0.14 0.13 0.20

100.32 99.82 99.64 100.70 100.27

0.02 0.02 0.04 0.04 0.04

0.01 0.03 0.00 0.00 0.02

0.97 0.94 0.96 0.96 0.94



CL-07-01-173.9

8

32.41

5.05

10.79

32.45

0.15

4.71

0.05

0.23

8.93

0.03

0.00

0.01

0.07

0.56

3.42

98.69

98.85

0.16

98.69

0.04

0.01

0.95



Apatite analyses

Sample CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9 CL-06-16-59.9

Point 1 2 3 4

CaO 54.12 53.29 54.69 54.33

P2O5 40.91 40.49 41.10 41.00

F 2.00 2.54 2.25 2.21

Cl 0.71 0.69 0.83 0.84

La2O3 0.08 0.01 b.d.l 0.02

Ce2O3 0.17 0.24 0.19 0.24

Nd2O3 b.d.l b.d.l 0.12 b.d.l

SiO2 0.05 0.69 0.00 0.01

MgO 0.04 0.30 0.04 0.09

FeO 0.13 0.85 0.20 0.15

MnO 0.07 0.04 0.08 0.04

Na2O b.d.l b.d.l 0.00 b.d.l

K2O 0.00 b.d.l b.d.l 0.00

TiO2 0.00 b.d.l b.d.l 0.03

Al2O3 0.01 0.17 0.02 0.00

Total 98.29 99.32 99.52 98.96

O=F, Cl 1.00 1.23 1.14 1.12

Total -O 97.28 98.09 98.39 97.84

xCl 0.11 0.10 0.12 0.12

xF 0.55 0.70 0.62 0.61

xOH 0.34 0.20 0.26 0.27



CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1

1 2 3 4 5

55.04 54.59 54.90 55.26 54.75

41.32 41.78 41.41 41.43 40.98

3.08 3.32 3.37 3.14 2.94

0.14 0.13 0.10 0.06 0.13

b.d.l 0.12 b.d.l b.d.l 0.04

0.08 0.09 0.18 0.29 0.13

b.d.l b.d.l b.d.l 0.05 b.d.l

0.03 0.00 0.01 0.04 0.09

0.05 0.04 0.05 0.04 0.05

0.24 0.21 0.24 0.28 0.28

0.00 0.01 0.02 0.07 0.05

b.d.l b.d.l 0.02 b.d.l b.d.l

b.d.l 0.00 0.00 0.01 0.01

b.d.l b.d.l 0.04 b.d.l b.d.l

0.02 b.d.l 0.01 0.01 0.01

100.00 100.30 100.37 100.67 99.45

1.33 1.43 1.44 1.33 1.27

98.68 98.87 98.93 99.34 98.19

0.02 0.02 0.01 0.01 0.02

0.83 0.89 0.91 0.85 0.80

0.15 0.09 0.07 0.15 0.18



CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1 CL-07-01-29.1

6 7 8 9 10

54.93 54.91 54.52 54.64 54.01

41.56 41.39 41.07 41.72 40.41

3.34 3.00 3.54 3.64 2.86

0.10 0.09 0.09 0.01 0.12

b.d.l 0.08 0.13 0.02 0.08

0.14 0.17 0.19 0.25 0.09

b.d.l 0.13 b.d.l b.d.l b.d.l

0.04 0.00 0.07 b.d.l 0.48

0.01 0.03 0.03 b.d.l 0.17

0.17 0.18 0.30 0.25 0.78

0.06 0.03 0.04 0.01 0.04

b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l 0.00 0.01 0.00 0.01

b.d.l 0.00 0.02 b.d.l 0.01

0.03 0.02 0.01 0.03 0.05

100.38 100.03 100.02 100.58 99.11

1.43 1.28 1.51 1.54 1.23

98.95 98.75 98.51 99.04 97.87

0.01 0.01 0.01 0.00 0.02

0.90 0.81 0.96 0.98 0.78

0.09 0.17 0.03 0.02 0.20



CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9

1 2 3 4 5

54.59 54.58 54.69 54.56 51.75

40.83 41.54 40.88 40.99 38.94

2.70 2.90 2.69 2.89 2.74

0.80 0.62 0.39 0.63 0.57

0.14 0.06 0.07 0.08 b.d.l

0.26 0.27 0.28 0.28 0.27

0.08 b.d.l b.d.l 0.04 b.d.l

0.02 0.07 0.09 0.05 1.42

0.07 0.05 0.00 0.01 0.63

0.16 0.14 0.27 0.19 1.83

0.07 0.07 0.00 0.02 0.00

0.00 0.02 0.00 b.d.l b.d.l

0.01 0.00 0.04 0.03 0.00

0.03 b.d.l 0.05 0.00 0.02

0.02 0.01 0.02 b.d.l 0.74

99.76 100.31 99.48 99.78 98.91

1.32 1.36 1.22 1.36 1.28

98.45 98.95 98.26 98.42 97.63

0.12 0.09 0.06 0.09 0.08

0.74 0.78 0.74 0.79 0.77

0.14 0.13 0.21 0.12 0.15



CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-167

6 7 8 9 1

51.85 54.63 54.28 54.40 54.75

38.93 41.11 41.01 40.75 41.40

2.51 2.52 2.38 2.75 2.74

0.53 0.50 0.71 0.79 0.26

0.22 0.13 0.16 0.07 0.07

0.17 0.18 0.07 0.26 0.07

0.05 0.07 b.d.l b.d.l 0.07

1.40 0.13 0.00 0.00 0.05

0.59 0.05 0.10 0.09 0.15

1.73 0.22 0.17 0.24 0.20

0.05 0.06 0.04 0.07 0.02

b.d.l b.d.l b.d.l 0.00 0.02

0.02 0.00 0.00 0.01 0.01

b.d.l b.d.l 0.00 0.00 0.01

0.76 b.d.l b.d.l 0.00 0.01

98.81 99.60 98.92 99.43 99.84

1.18 1.17 1.16 1.34 1.21

97.64 98.43 97.75 98.09 98.63

0.08 0.07 0.10 0.12 0.04

0.70 0.69 0.65 0.75 0.74

0.22 0.24 0.24 0.13 0.22



CL-07-01-167 CL-07-01-167 CL-07-01-167 CL-07-01-167 CL-07-01-167

2 3 4 5 6

54.20 54.89 54.90 54.68 54.65

40.94 41.23 40.77 41.07 41.12

2.89 3.06 2.90 2.72 2.67

0.27 0.27 0.25 0.25 0.25

0.05 0.11 0.03 0.14 0.10

0.16 0.25 0.24 0.37 0.19

0.03 b.d.l 0.05 b.d.l 0.04

0.31 0.02 0.04 0.03 0.01

0.19 0.10 0.08 0.07 0.09

0.42 0.22 0.15 0.16 0.13

0.08 0.10 0.07 0.06 0.08

0.03 b.d.l 0.03 0.05 0.06

0.00 0.03 0.01 0.02 0.00

b.d.l b.d.l 0.05 b.d.l b.d.l

0.16 0.01 b.d.l 0.03 b.d.l

99.74 100.30 99.57 99.65 99.39

1.28 1.35 1.28 1.20 1.18

98.46 98.94 98.29 98.44 98.21

0.04 0.04 0.04 0.04 0.04

0.79 0.83 0.79 0.74 0.73

0.17 0.13 0.17 0.22 0.23



CL-07-01-167 CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9

7 1 2 3 4

54.93 54.18 54.04 53.90 53.76

41.15 41.15 40.82 41.10 40.67

2.72 3.71 3.43 3.45 3.57

0.19 0.21 0.21 0.17 0.23

0.10 0.17 0.20 0.29 0.25

0.13 0.56 0.48 0.51 0.59

0.02 0.22 0.13 0.12 0.20

0.10 0.18 0.25 0.13 0.12

0.08 0.02 0.03 b.d.l 0.02

0.17 0.33 0.37 0.41 0.25

0.05 0.03 0.07 0.05 0.09

0.00 0.04 0.12 0.03 0.07

0.00 0.03 0.04 b.d.l 0.00

0.01 0.02 b.d.l 0.03 0.04

0.00 0.04 0.00 b.d.l 0.01

99.66 100.89 100.20 100.18 99.88

1.19 1.61 1.49 1.49 1.56

98.48 99.28 98.70 98.69 98.32

0.03 0.03 0.03 0.02 0.03

0.74 1.00 0.93 0.94 0.97

0.23 -0.03 0.04 0.04 0.00



CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9 CL-07-01-173.9 CL-07-15-145

5 6 7 8 1

54.29 54.52 53.02 54.26 54.63

40.80 40.78 39.33 40.77 41.05

3.69 3.28 3.34 3.77 3.29

0.08 0.11 0.08 0.17 0.48

0.22 0.14 0.19 0.22 0.13

0.59 0.65 0.39 0.31 0.13

0.00 0.14 0.11 0.11 0.00

0.27 0.22 0.98 0.10 0.02

0.03 0.03 0.27 b.d.l 0.10

0.27 0.26 1.25 0.16 0.23

0.11 0.03 0.05 0.06 0.05

0.04 0.03 0.06 0.04 0.00

0.03 0.02 0.09 0.01 0.02

b.d.l 0.01 b.d.l b.d.l b.d.l

b.d.l 0.00 0.25 0.01 b.d.l

100.42 100.23 99.41 100.00 100.13

1.57 1.41 1.42 1.63 1.49

98.85 98.82 97.99 98.37 98.64

0.01 0.02 0.01 0.03 0.07

0.99 0.89 0.92 0.97 0.89

0.00 0.09 0.07 0.00 0.04



CL-07-15-145 CL-07-15-145 CL-07-15-145 CL-07-15-145 CL-07-15-145

2 3 4 5 6

54.68 54.45 54.27 54.62 54.10

41.02 40.98 40.89 40.56 41.00

2.89 3.09 3.10 3.42 2.82

0.46 0.34 0.32 0.46 0.36

0.07 0.12 0.11 0.14 0.13

0.25 0.23 0.31 0.29 0.27

b.d.l 0.06 0.10 0.00 0.02

0.04 0.05 0.05 0.09 0.02

0.06 0.01 0.00 0.03 0.01

0.23 0.12 0.06 0.12 0.10

0.07 0.11 0.08 0.07 0.08

b.d.l 0.00 0.00 0.02 0.03

0.02 b.d.l 0.03 0.01 0.02

b.d.l 0.04 0.03 b.d.l b.d.l

b.d.l 0.00 b.d.l 0.01 0.01

99.80 99.62 99.36 99.84 98.97

1.32 1.38 1.38 1.55 1.27

98.48 98.24 97.98 98.29 97.71

0.07 0.05 0.05 0.07 0.05

0.79 0.84 0.85 0.93 0.77

0.15 0.11 0.10 0.00 0.17



Magnetite analyses

Sample CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9

Point 1 2 3 4 5

SiO2 0.06 0.04 0.04 0.07 0.05

MgO 0.07 0.11 0.12 0.19 0.11

FeO 86.23 87.82 89.09 94.35 87.26

NiO 0.06 0.04 0.04 0.05 0.04

Cr2O3 0.21 0.20 0.19 0.18 0.17

TiO2 7.39 7.79 5.83 3.64 8.18

Al2O3 4.24 3.74 4.21 1.43 3.09

MnO 0.22 0.19 0.18 0.09 0.23

CaO b.d.l. 0.00 0.00 b.d.l. 0.01

V2O3 1.18 0.98 1.16 1.08 1.01

Total 99.66 100.90 100.87 101.07 100.16



CL-06-16-33.7 CL-06-16-33.7 CL-06-16-33.7 CL-06-16-33.7 CL-06-16-35.7 CL-06-16-35.7

1 2 3 4 1 2

0.07 0.05 0.05 0.09 0.08 0.16

0.10 0.27 0.31 0.05 0.93 0.14

88.22 80.74 89.09 83.53 88.03 87.90

0.03 0.04 0.02 0.02 0.02 0.03

0.16 0.18 0.14 0.13 1.32 2.65

7.14 9.32 7.49 12.14 4.78 4.88

3.66 1.20 2.05 3.72 4.28 3.26

0.20 0.26 0.26 0.38 0.21 0.50

0.00 0.01 0.00 0.03 b.d.l. b.d.l.

1.11 1.05 1.12 0.86 0.91 1.91

100.63 93.10 100.43 100.95 100.55 101.43



CL-06-16-35.7 CL-06-16-56.3 CL-06-16-56.3 CL-06-16-56.3 CL-06-16-56.3 CL-06-16-56.3

3 1 2 3 4 5

0.04 0.11 0.32 1.65 1.64 0.30

0.23 0.11 0.18 0.60 0.68 0.10

90.14 96.00 93.28 91.18 92.21 93.99

0.04 0.03 0.01 0.02 0.02 0.02

1.62 0.09 0.08 0.08 0.06 0.08

5.20 1.99 3.85 2.03 3.43 3.64

2.06 1.44 1.15 2.87 2.41 1.85

0.30 0.10 0.16 0.09 0.12 0.15

0.00 b.d.l. 0.00 0.00 0.01 0.01

1.38 0.65 0.62 0.67 0.54 0.61

101.02 100.52 99.64 99.19 101.13 100.74



CL-06-05-81.6 CL-06-05-81.6 CL-06-05-81.6 CL-06-05-81.6 CL-06-05-81.6 CL-06-05-81.6

1 2 3 4 5 6

0.16 0.16 0.47 0.17 0.14 0.19

0.02 0.06 0.18 0.04 0.07 0.11

95.71 95.29 95.69 95.02 95.02 94.18

0.03 0.02 0.01 0.03 0.02 0.02

0.02 0.02 0.03 0.02 0.02 0.02

1.16 1.19 0.94 1.07 1.17 1.80

1.42 1.59 1.01 1.13 1.12 2.09

0.08 0.12 0.07 0.06 0.05 0.21

b.d.l. 0.00 0.00 b.d.l. b.d.l. b.d.l.

0.14 0.13 0.15 0.16 0.16 0.16

98.74 98.57 98.56 97.71 97.76 98.77



CL-06-05-81.6 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35

7 1 2 3 4

0.14 0.04 0.04 0.06 0.04

0.07 0.43 0.46 0.27 0.33

96.37 86.76 86.87 87.09 87.60

0.03 0.07 0.04 0.09 0.06

0.01 3.27 3.89 3.17 4.03

1.33 6.19 5.88 5.85 5.13

1.42 3.09 2.65 2.94 2.56

0.13 0.37 0.43 0.35 0.31

b.d.l. b.d.l. 0.00 0.01 b.d.l.

0.15 0.97 1.14 1.09 1.24

99.65 101.19 101.40 100.91 101.31



CL-06-39-20.35 CL-06-39-20.35 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23

5 6 1 2 3

0.06 0.07 0.05 0.03 0.02

0.40 0.48 1.99 1.80 2.24

86.76 84.99 77.13 79.82 76.48

0.10 0.09 0.14 0.15 0.14

3.50 3.62 3.04 2.87 3.06

6.11 7.38 13.34 10.96 13.19

3.13 3.38 3.69 2.88 3.86

0.43 0.46 0.63 0.64 0.62

b.d.l. 0.00 0.00 b.d.l. 0.01

0.97 1.08 0.61 0.60 0.60

101.44 101.56 100.55 99.61 100.13



CL-06-39-60.23 CL-06-39-60.23 CL-06-39-60.23 CL-06-39-103 CL-06-39-103

4 5 6 1 2

0.05 0.31 0.06 0.20 0.10

2.12 0.97 2.07 0.46 0.43

76.96 80.55 78.27 88.81 83.08

0.17 0.12 0.15 0.08 0.10

2.94 2.95 2.94 1.96 3.24

12.95 10.96 11.93 5.75 9.25

3.57 2.54 3.43 2.27 3.41

0.66 0.72 0.42 0.19 0.34

b.d.l. b.d.l. b.d.l. 0.01 b.d.l.

0.59 0.65 0.56 0.85 0.68

99.99 99.79 99.73 100.44 100.59



CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-128 CL-06-39-128 CL-06-39-128

3 4 5 1 2 3

0.07 0.05 0.06 0.11 0.10 0.05

0.31 0.75 0.59 0.17 0.40 0.33

86.20 83.94 85.71 97.42 96.47 93.09

0.13 0.11 0.10 0.04 0.07 0.06

2.02 2.29 1.88 0.11 0.11 0.12

8.19 9.28 8.49 2.00 2.49 4.60

2.54 2.92 2.82 1.13 0.98 2.32

0.28 0.26 0.30 0.06 0.09 0.13

b.d.l. b.d.l. 0.00 0.00 0.05 b.d.l.

0.80 0.74 0.80 0.77 0.70 0.93

100.49 100.26 100.68 101.76 101.34 101.51



CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1

4 5 6 1 2 3

0.26 0.11 0.10 0.09 0.10 0.12

1.00 0.40 0.42 0.10 0.07 0.21

79.79 92.68 90.46 90.69 96.19 94.70

0.04 0.06 0.07 b.d.l. b.d.l. b.d.l.

0.09 0.12 0.09 0.01 0.00 0.00

13.76 3.48 6.72 7.65 2.05 3.27

3.98 2.66 3.10 0.91 1.04 3.84

0.27 0.10 0.21 0.33 0.12 0.12

b.d.l. 0.03 b.d.l. b.d.l. 0.01 0.00

0.61 0.87 0.68 0.06 0.03 0.10

99.73 100.52 101.71 99.79 99.38 102.32



CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1

4 5 6 7 8 9

0.11 0.11 0.09 0.08 0.10 0.13

0.33 0.08 0.09 0.21 0.19 0.02

94.02 96.89 96.09 90.58 89.52 98.01

b.d.l. b.d.l. 0.01 0.00 0.02 0.02

0.01 0.01 b.d.l. 0.01 0.02 0.00

2.56 2.01 2.63 4.35 7.36 1.67

3.61 1.07 1.00 1.85 2.96 0.90

0.12 0.06 0.12 0.18 0.28 0.06

0.01 0.00 0.01 b.d.l. 0.00 b.d.l.

0.07 0.08 0.09 0.07 0.06 0.09

100.75 100.19 100.10 97.15 100.44 100.86



CL-07-01-9.1 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9

10 1 2 3 4 5

0.12 0.12 0.07 0.10 0.31 0.07

0.09 0.12 0.22 0.15 0.14 0.19

97.23 95.13 95.27 93.69 95.21 92.95

b.d.l. 0.02 b.d.l. 0.02 b.d.l. 0.01

0.00 0.08 0.08 0.05 0.07 0.04

1.92 2.41 2.66 3.33 2.96 4.80

0.91 1.01 1.13 1.74 0.96 1.24

0.09 0.08 0.09 0.17 0.07 0.19

0.01 0.02 0.02 0.01 0.07 b.d.l.

0.09 0.48 0.53 0.44 0.43 0.34

100.31 99.47 100.06 99.68 100.20 99.73



CL-07-01-95.9 CL-07-01-95.9 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-140

6 7 1 2 3 4

0.12 0.13 0.09 0.04 0.08 0.04

0.19 0.08 0.65 0.77 0.85 0.92

95.08 95.85 82.88 82.07 80.61 81.64

0.03 0.03 0.00 0.01 0.01 b.d.l.

0.05 0.06 0.06 0.06 0.07 0.07

2.58 1.84 13.79 13.22 14.84 14.18

1.05 0.79 3.19 3.82 3.93 3.64

0.12 0.05 0.45 0.41 0.50 0.46

0.01 b.d.l. 0.00 0.02 0.00 0.01

0.41 0.40 0.42 0.41 0.36 0.42

99.58 99.14 101.38 100.76 101.23 101.35



CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-249 CL-07-01-249 CL-07-01-249

5 6 7 1 2 3

0.06 0.05 0.08 0.08 0.07 0.12

0.88 0.71 0.67 0.32 0.16 0.16

78.55 82.09 80.87 92.57 95.53 91.14

0.01 0.01 b.d.l. 0.01 b.d.l. 0.01

0.05 0.05 0.04 0.25 0.23 0.19

18.39 14.83 16.20 3.28 1.95 1.49

2.28 2.54 2.64 1.59 0.99 0.81

0.57 0.52 0.48 0.10 0.06 0.05

0.01 0.03 0.02 0.01 b.d.l. b.d.l.

0.36 0.35 0.33 1.74 1.50 1.41

101.07 100.96 101.27 99.92 100.37 95.29



CL-07-01-249 CL-07-01-249 CL-07-01-308 CL-07-01-308 CL-07-01-308 CL-07-01-308

4 5 1 2 3 4

0.09 0.06 0.07 0.07 0.05 0.02

0.14 0.61 0.88 1.69 0.16 1.99

95.63 85.10 93.41 73.67 96.94 81.12

0.00 b.d.l. 0.06 0.03 0.02 0.02

0.21 0.27 0.17 0.19 0.22 0.20

1.63 8.05 2.98 7.30 1.36 9.13

1.23 4.23 3.60 15.90 0.83 8.42

0.03 0.32 0.13 0.29 0.06 0.41

0.01 0.00 b.d.l. 0.00 0.00 b.d.l.

1.43 1.68 0.77 0.64 0.82 0.80

100.44 100.34 101.99 99.62 100.47 101.97



CL-07-01-308 CL-07-01-308 CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329

5 6 1 2 3 4

0.06 0.06 0.09 0.07 0.08 0.08

0.56 0.18 0.11 0.45 0.15 0.58

91.40 97.67 94.86 95.14 95.47 89.86

0.02 0.01 b.d.l. 0.03 0.01 0.03

0.16 0.16 0.31 0.32 0.35 0.28

6.40 1.40 2.09 1.83 2.45 5.30

1.51 0.93 0.85 1.14 0.84 3.03

0.23 0.04 0.07 0.06 0.07 0.23

b.d.l. 0.01 b.d.l. b.d.l. b.d.l. 0.00

0.62 0.72 0.78 0.72 0.74 0.85

100.82 101.23 99.11 99.68 100.09 100.14



CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329

5 6 7 8 9 10

0.09 0.10 0.06 0.07 0.08 0.08

0.14 0.65 0.46 0.12 0.24 0.60

96.12 85.56 91.53 96.08 94.09 85.42

0.02 0.04 0.01 0.01 0.01 0.01

0.29 0.29 0.28 0.33 0.28 0.29

1.83 11.66 4.11 1.77 2.12 8.52

0.94 2.26 2.72 0.81 1.39 2.62

0.06 0.42 0.21 0.05 0.09 0.29

0.01 b.d.l. b.d.l. 0.00 b.d.l. 0.00

0.73 0.51 0.76 0.70 0.72 0.57

100.07 101.44 100.11 99.87 99.02 98.32



CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354 CL-07-01-354

1 2 3 4 5 6

0.05 0.11 0.06 0.06 0.11 0.09

0.21 0.27 1.31 0.66 0.09 0.14

93.50 93.07 91.86 82.34 96.51 94.41

0.03 0.04 0.03 0.01 0.03 0.03

0.87 0.69 0.83 0.56 0.62 0.54

4.11 4.12 1.53 11.90 1.51 1.97

1.29 1.86 7.27 3.07 0.92 1.16

0.11 0.14 0.08 0.44 0.03 0.11

b.d.l. 0.00 0.01 0.04 0.04 0.10

1.50 1.06 1.32 0.80 0.99 0.89

101.60 101.32 104.26 99.80 100.72 99.40



CL-07-01-354

7

0.06

0.31

94.31

0.03

0.49

2.09

2.21

0.08

0.05

0.74

100.37



Ilmenite analyses

Sample CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-8.9 CL-06-16-33.7

Point 1 2 3 4 1

SiO2 0.03 b.d.l. 0.06 0.01 0.02

MgO 0.12 0.28 1.65 0.57 0.22

FeO 46.89 46.66 45.81 46.83 46.86

NiO 0.00 0.01 0.01 0.02 b.d.l.

Cr2O3 0.01 0.02 0.00 0.04 0.02

TiO2 51.04 51.25 51.65 50.54 49.92

Al2O3 0.02 0.05 0.03 0.12 0.02

MnO 1.40 1.34 0.86 1.20 1.33

CaO b.d.l. 0.00 0.00 b.d.l. 0.00

V2O3 b.d.l. b.d.l. b.d.l. 0.04 0.10

Total 99.46 99.56 100.05 99.36 98.43



CL-06-16-33.7 CL-06-16-33.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-35.7 CL-06-16-56.3

2 3 1 2 3 1

0.04 b.d.l. 0.04 0.01 0.01 0.03

0.45 0.52 1.48 0.76 1.37 0.04

47.25 46.45 45.63 46.60 46.31 47.62

0.00 0.00 0.02 0.01 b.d.l. 0.00

0.02 0.02 0.09 0.13 0.07 0.02

49.90 50.54 51.42 51.00 50.96 50.92

0.06 0.01 0.05 0.02 0.02 0.03

1.16 1.34 1.15 1.27 1.32 1.52

0.00 b.d.l. b.d.l. 0.00 0.00 b.d.l.

0.14 0.11 b.d.l. 0.05 b.d.l. 0.00

99.03 98.93 99.86 99.85 100.06 100.17



CL-06-16-56.3 CL-06-16-56.3 CL-06-16-56.3 CL-06-16-56.3 CL-06-39-20.35

2 3 4 5 1

0.37 1.83 0.01 0.16 0.01

0.18 1.33 0.06 0.08 2.02

43.34 44.90 47.02 46.89 44.95

b.d.l. b.d.l. 0.00 b.d.l. 0.01

0.04 0.04 0.01 b.d.l. 0.05

47.05 47.09 50.68 49.87 51.90

9.28 4.40 0.24 0.65 0.02

1.62 1.69 1.72 1.68 1.01

b.d.l. 0.01 0.01 0.00 b.d.l.

b.d.l. 0.02 b.d.l. b.d.l. b.d.l.

101.80 101.30 99.69 99.29 99.97



CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35 CL-06-39-20.35

2 3 4 5 6

0.04 0.03 0.03 0.29 0.01

1.26 1.32 1.15 1.92 1.87

44.89 45.86 45.34 45.67 45.45

0.00 b.d.l. 0.02 0.00 0.02

0.14 0.09 0.52 0.08 0.08

51.56 51.43 50.87 51.10 51.62

0.05 0.05 1.64 0.19 0.02

2.21 0.92 1.77 0.95 0.94

0.01 b.d.l. 0.00 0.01 0.01

b.d.l. b.d.l. 0.00 b.d.l. b.d.l.

100.10 99.67 101.35 100.17 99.98



CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-103 CL-06-39-128

1 2 3 4 5 1

0.06 0.06 0.06 0.00 0.02 0.03

0.91 0.82 1.64 1.35 1.32 1.37

45.81 45.99 44.80 45.09 45.32 46.07

0.01 0.02 0.02 0.03 0.01 b.d.l.

0.06 0.07 0.04 0.06 0.06 0.01

50.51 50.87 51.08 51.28 50.73 51.51

0.05 0.05 0.03 0.03 0.04 0.01

1.20 1.19 1.06 1.11 1.10 0.85

b.d.l. 0.01 0.01 0.01 0.01 0.00

0.09 0.08 0.06 0.08 0.08 0.12

98.66 99.19 98.76 98.97 98.65 99.92



CL-06-39-128 CL-06-39-128 CL-06-39-128 CL-07-01-9.1 CL-07-01-9.1 CL-07-01-9.1

2 3 4 1 2 3

0.01 0.04 0.04 0.05 0.05 0.14

0.74 0.98 0.45 0.03 0.20 0.40

46.96 46.36 46.84 59.17 46.54 46.56

0.02 b.d.l. 0.01 0.02 0.00 0.00

0.01 0.00 b.d.l. b.d.l. b.d.l. b.d.l.

51.35 50.96 50.59 37.00 49.94 50.15

0.03 0.04 0.28 0.26 0.03 0.11

0.90 0.96 1.25 1.54 1.76 1.55

0.03 0.00 0.00 0.01 0.02 0.03

0.09 0.09 0.10 0.05 0.06 0.07

100.05 99.32 99.52 98.07 98.57 98.98



CL-07-01-9.1 CL-07-01-9.1 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9 CL-07-01-95.9

4 5 1 2 3 4

b.d.l. 0.03 0.02 0.04 0.32 0.02

0.35 0.19 0.66 0.60 0.47 0.18

46.81 46.72 46.54 46.63 47.01 47.14

0.01 0.00 0.01 b.d.l. 0.01 0.00

0.00 b.d.l. 0.00 b.d.l. b.d.l. 0.02

50.45 50.78 51.68 51.30 50.96 50.94

0.05 0.03 0.05 0.01 0.04 0.02

1.48 1.75 1.12 1.23 1.28 1.30

0.00 0.01 0.00 0.01 0.04 0.02

0.06 0.05 b.d.l. b.d.l. b.d.l. b.d.l.

99.15 99.56 100.02 99.75 100.12 99.61



CL-07-01-95.9 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-140 CL-07-01-249

5 1 2 3 4 1

0.02 0.03 0.06 0.01 0.04 0.06

0.62 1.92 2.46 2.15 2.45 1.36

46.27 44.84 44.69 44.87 44.55 45.57

0.02 b.d.l. 0.00 0.00 b.d.l. 0.00

b.d.l. 0.00 0.02 b.d.l. b.d.l. 0.01

50.65 51.44 51.31 51.52 51.80 50.33

0.03 0.05 0.05 0.04 0.05 0.03

1.15 0.97 0.73 1.07 0.73 0.94

0.05 0.01 b.d.l. b.d.l. 0.00 b.d.l.

b.d.l. 0.07 0.08 0.08 0.06 0.12

98.77 99.28 99.31 99.75 99.61 98.41



CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-249 CL-07-01-308 CL-07-01-308

2 3 4 5 1 2

0.01 0.02 0.05 0.67 0.01 0.01

0.83 1.57 1.76 0.82 1.88 1.61

46.17 45.38 45.68 45.80 46.01 45.66

0.01 b.d.l. 0.01 0.00 b.d.l. b.d.l.

0.02 b.d.l. 0.00 0.01 0.02 0.01

50.86 50.19 50.58 48.68 50.62 51.67

0.02 0.03 0.02 1.26 0.06 0.04

1.11 0.66 0.61 1.23 0.85 1.12

b.d.l. b.d.l. b.d.l. 0.00 b.d.l. 0.01

0.11 0.14 0.11 0.08 0.11 0.08

99.11 97.98 98.77 98.32 99.60 100.14



CL-07-01-308 CL-07-01-308 CL-07-01-329 CL-07-01-329 CL-07-01-329 CL-07-01-329

3 4 1 2 3 4

0.03 0.03 0.03 0.04 0.04 0.01

1.74 1.87 0.97 1.40 1.02 1.40

45.46 45.26 45.85 45.21 45.26 44.32

0.00 0.01 0.01 b.d.l. b.d.l. b.d.l.

0.03 0.01 0.03 0.03 0.01 0.03

51.60 51.00 49.91 50.45 50.01 50.62

0.02 0.05 0.06 0.03 0.04 0.04

1.03 1.03 1.12 0.98 1.08 1.13

0.00 b.d.l. 0.01 b.d.l. 0.00 0.00

0.08 0.09 0.07 0.08 0.07 0.09

100.04 99.29 98.11 98.18 97.52 97.60



CL-07-01-329 CL-07-01-354 CL-07-01-354 CL-07-01-354

5 1 2 3

0.02 0.04 0.03 0.04

1.64 1.21 1.29 0.65

44.97 46.75 46.31 46.65

b.d.l. b.d.l. 0.03 0.00

0.00 0.06 0.04 0.06

50.07 51.36 51.01 50.24

0.04 0.02 0.03 0.04

0.82 0.83 0.85 1.28

0.01 0.00 0.01 b.d.l.

0.08 0.09 b.d.l. b.d.l.

97.57 100.33 99.59 99.01



CL-06-16-56.3 8 - Py 11 - Py 21 - Py 23 - Py 26 - Py 5 - Pn 18 - Pn 19 - Pn 25 - Pn

Si
29

 (ppm) b.d.l b.d.l b.d.l b.d.l b.d.l 11054.27 8696.26 39508.37 6767.54

S
33

198890.58 180429.20 177352.25 170140.89 162043.59 159616.21 161312.79 122542.02 128312.45

Ca
43

34274.51 14493.72 25969.15 15147.18 20781.63 612.29 b.d.l b.d.l 453.49

V
51

b.d.l b.d.l b.d.l b.d.l b.d.l 3.12 10.83 63.94 1.15

Cr
53

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Fe
57

534500.00 534500.00 534500.00 534500.00 534500.00 291000.00 291000.00 291000.00 291000.00

Co
59

454.96 781.43 314.58 473.30 1150.89 89533.90 79771.85 57205.23 51461.28

Ni
60

1474.70 2449.82 1200.95 1276.87 2596.23 318604.31 301380.13 260361.92 261098.20

Cu
65

17.14 972.19 10.82 10.31 21.57 3354.52 4386.53 5982.96 1610.15

Zn
66

2.42 2.40 1.18 1.33 4.29 306.76 118.01 130.79 8.23

As
75

1.25 0.65 0.58 b.d.l 0.97 1.54 2.18 2.75 1.15

Se
82

44.01 40.45 39.34 42.85 38.26 55.56 41.28 50.81 36.09

Sr
88

8.44 4.23 5.24 4.01 6.67 12.81 2.54 6.42 2.74

Y
89

3.05 0.62 1.34 1.04 1.36 0.48 0.07 1.01 0.11

Zr
90

0.02 0.02 b.d.l 0.01 0.05 0.11 0.14 0.29 0.13

Ru
99

0.00 0.00 b.d.l 0.00 0.00 0.00 0.00 0.00 0.00

Ru
101

b.d.l b.d.l b.d.l b.d.l b.d.l 0.00 0.00 0.00 0.12

Rh
103

b.d.l b.d.l b.d.l 0.02 b.d.l 0.32 0.15 0.31 0.08

Pd
105

b.d.l b.d.l b.d.l b.d.l 0.66 0.27 0.23 0.21

Pd
106

b.d.l b.d.l b.d.l b.d.l b.d.l 0.61 0.44 0.46 0.18

Ag
107

0.39 2.43 0.36 0.77 1.51 168.47 138.11 88.70 79.93

Pd
108

b.d.l b.d.l b.d.l b.d.l b.d.l 0.68 0.38 0.38 0.28

Cd
111

b.d.l b.d.l b.d.l b.d.l b.d.l 2.25 0.49 0.89 b.d.l

Sn
118

b.d.l 0.06 b.d.l 0.08 0.29 0.09 1.26 0.38 0.36

Sb
121

0.67 2.29 0.94 0.61 0.71 0.56 0.12 0.07 0.07

Te
125

0.41 b.d.l b.d.l 0.34 b.d.l 4.32 b.d.l 4.97 1.25

Ta
181

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Re
185

0.13 0.38 2.19 0.49 0.19 0.13 0.07 0.18 b.d.l

Os
189

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Ir
193

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Pt
195

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Au
197

b.d.l 0.05 b.d.l b.d.l b.d.l 0.29 11.09 0.24 0.03

Tl
205

0.16 0.30 0.10 0.22 0.12 93.18 9.06 67.34 109.58

Pb
208

212.29 243.15 120.52 138.55 155.88 15400.60 154.03 137.49 105.25

Bi
209

1.42 0.98 0.99 0.88 0.53 83.97 15.53 43.19 18.42

Appendix 16: Sulfide LA-ICP-MS analyses



4 - Ccp 9 - Ccp 13 - Ccp 17 - Ccp 24 - Ccp 6 - Po 7 - Po 12 - Po 20 - Po 22 - Po

b.d.l b.d.l b.d.l b.d.l 6243.63 b.d.l b.d.l b.d.l b.d.l b.d.l

133976.39 104126.43 122502.21 122976.86 123410.31 143497.57 140611.06 116251.19 132460.61 129571.66

b.d.l b.d.l b.d.l 923.54 b.d.l 291.62 b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l 6.03 0.77 0.59 b.d.l 0.38 b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

314000.00 314000.00 314000.00 314000.00 314000.00 602700.00 602700.00 602700.00 602700.00 602700.00

44.20 18.39 <666.1918 36.68 31.60 694.00 421.24 751.79 656.73 758.90

399.90 1139.99 14.16 b.d.l 945.53 12417.37 9425.65 9313.54 9457.34 9111.28

374717.95 256479.43 353857.50 325818.44 340925.20 6460.43 b.d.l 7.49 b.d.l 8.43

563.90 282.14 671.53 311.85 147.21 8.80 1.80 2.10 0.68 1.27

b.d.l 0.52 b.d.l 2.34 1.57 0.92 0.60 0.78 0.83 b.d.l

42.77 31.41 36.67 33.07 37.08 44.13 39.52 37.29 42.92 37.63

0.15 0.21 0.95 0.53 1.78 0.33 0.35 0.13 0.09 0.19

0.01 b.d.l b.d.l 0.02 0.11 0.02 b.d.l b.d.l b.d.l b.d.l

0.01 b.d.l b.d.l 0.10 0.02 0.02 b.d.l 0.02 0.03 b.d.l

0.25 0.21 0.84 0.27 0.27 0.00 0.00 0.00 0.00 0.00

0.16 0.03 b.d.l b.d.l 0.00 0.00 0.00 0.00 0.00 0.00

15.59 10.60 16.87 14.30 15.47 0.24 b.d.l b.d.l 0.01 b.d.l

0.00 0.00 2.61 0.00 0.00 0.00 b.d.l b.d.l b.d.l b.d.l

0.12 0.08 0.33 0.11 0.06 b.d.l b.d.l b.d.l b.d.l b.d.l

20.64 24.32 20.78 20.44 24.51 3.12 0.23 0.07 0.07 0.22

0.08 0.04 b.d.l 0.11 0.06 b.d.l b.d.l b.d.l b.d.l b.d.l

3.66 1.89 4.39 1.74 1.22 b.d.l b.d.l b.d.l b.d.l b.d.l

0.07 0.45 1.23 0.80 0.23 0.12 0.18 0.22 0.32 0.12

b.d.l b.d.l 0.05 b.d.l 0.04 b.d.l b.d.l b.d.l b.d.l b.d.l

0.74 2.11 1.26 1.68 0.88 b.d.l 0.25 b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

0.15 0.11 b.d.l b.d.l b.d.l 0.30 0.14 0.05 0.46 0.16

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l 0.10 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

0.53 0.64 b.d.l 0.29 2.42 2.63 0.02 b.d.l 0.01 b.d.l

24.58 23.11 4.19 8.47 18.80 60.98 4.22 0.56 1.44 2.66

4.72 10.55 1.07 1.78 1.96 2.87 1.43 0.19 0.62 1.20

Appendix 16: Sulfide LA-ICP-MS analyses



CL-06-16-81.6 12 - Py 13 - Py 21 - Py 22 - Py 24 - Py 4 - Pn 5 - Pn 7 - Pn 8 - Pn

Si
29

 (ppm) b.d.l 1907.53 b.d.l 3698.32 6744.51 6079.36 6049.21 b.d.l b.d.l

S
33

207375.22 191139.69 207001.91 229981.23 244273.17 147143.41 109738.62 102235.74 166702.74

Ca
43

11435.94 5211.61 35028.72 16418.65 29198.73 1324.58 776.09 b.d.l 873.28

V
51

b.d.l b.d.l 2.79 6.73 1.67 17.13 15.86 3.51 b.d.l

Cr
53

b.d.l b.d.l b.d.l 13.85 b.d.l b.d.l b.d.l b.d.l b.d.l

Fe
57

534500.00 534500.00 534500.00 534500.00 534500.00 291000.00 291000.00 291000.00 291000.00

Co
59

1588.80 641.44 339.16 617.25 314.50 38178.75 18773.71 22468.83 76079.14

Ni
60

5328.27 2317.74 991.26 719.17 1536.42 349767.21 189650.81 150535.37 370207.58

Cu
65

14.52 65.02 345.54 85.92 16047.70 55.07 32.04 23.82 317.21

Zn
66

0.80 6.56 96.99 7.05 11.45 3.96 44.51 4.59 45.66

As
75

2.35 1.90 30.43 11.35 18.31 8.51 2.99 4.71 2.28

Se
82

60.78 52.62 46.93 47.37 43.53 42.90 36.89 37.69 66.95

Sr
88

2.84 2.25 6.84 4.62 6.29 3.34 3.33 4.17 1.99

Y
89

0.40 0.53 1.75 1.35 3.63 0.22 0.17 0.15 0.17

Zr
90

b.d.l 0.07 0.06 0.10 b.d.l 1.45 0.73 0.10 0.33

Ru
99

0.00 0.00 b.d.l 0.00 0.04 0.00 0.00 0.00 0.00

Ru
101

b.d.l b.d.l b.d.l b.d.l b.d.l 0.00 0.00 0.00 0.00

Rh
103

0.04 0.02 0.02 b.d.l 0.64 b.d.l b.d.l 0.01 0.04

Pd
105

b.d.l b.d.l b.d.l b.d.l 0.00 b.d.l b.d.l 0.05 0.03

Pd
106

b.d.l b.d.l b.d.l b.d.l b.d.l 0.13 0.05 0.11 0.15

Ag
107

1.56 3.40 1.06 0.65 3.00 31.09 12.78 22.74 81.37

Pd
108

b.d.l 0.05 b.d.l 0.05 b.d.l b.d.l b.d.l 0.05 0.06

Cd
111

b.d.l 0.58 0.39 0.21 b.d.l b.d.l b.d.l b.d.l 0.35

Sn
118

49.00 15.75 26.33 10.29 116.38 118.53 26.05 11.49 26.95

Sb
121

0.43 0.31 0.26 1.54 0.51 0.33 0.21 0.10 0.35

Te
125

0.35 b.d.l 1.34 2.35 0.97 4.67 1.88 2.63 2.66

Ta
181

b.d.l b.d.l b.d.l 0.01 0.01 0.03 b.d.l 0.02 0.02

Re
185

0.18 0.06 0.06 0.06 0.13 b.d.l 0.29 0.08 0.20

Os
189

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Ir
193

b.d.l b.d.l b.d.l 0.05 b.d.l b.d.l b.d.l 0.30 b.d.l

Pt
195

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Au
197

0.03 b.d.l 0.05 0.06 0.71 0.08 b.d.l 0.07 0.74

Tl
205

0.49 0.39 0.07 0.04 0.46 21.82 17.60 16.30 12.88

Pb
208

199.73 248.59 142.94 122.11 204.46 115.34 61.82 114.10 182.86

Bi
209

0.71 1.02 4.49 4.85 3.54 13.22 9.43 15.76 24.92



9 - Ccp 10 - Ccp 19 - Ccp 23 - Ccp 26 - Ccp 6 - Po 11 - Po 17 - Po 25 - Po

b.d.l b.d.l 6308.85 b.d.l 9797.84 b.d.l 7189.14 b.d.l b.d.l

141709.09 136168.31 162922.95 177166.71 189994.63 163081.02 145734.81 155379.22 153795.45

830.80 1112.94 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l 1.47 b.d.l b.d.l 2.27 6.43 1.28 1.66

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 6.25 b.d.l b.d.l

314000.00 314000.00 314000.00 314000.00 314000.00 602700.00 602700.00 602700.00 602700.00

13.69 2.07 78.27 0.89 3.29 574.85 469.79 532.25 264.44

909.08 25.72 315.57 14.02 50.01 8372.55 7952.05 8455.73 5987.46

396005.18 403292.63 353170.84 343591.73 402965.54 17.99 1096.08 839.20 146.94

239.20 978.25 226.63 617.46 231.98 2.66 105.14 57.99 208.58

3.89 52.90 3.44 13.44 1.97 1.83 30.08 5.23 11.75

47.37 48.89 48.69 48.56 64.44 46.58 43.92 49.40 41.92

0.50 0.65 0.78 0.65 0.53 0.56 2.92 1.49 2.12

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 b.d.l

0.05 0.07 0.14 0.14 0.11 0.09 0.14 b.d.l 0.15

0.34 0.65 b.d.l 0.41 0.83 b.d.l 0.00 b.d.l b.d.l

b.d.l 0.63 b.d.l b.d.l b.d.l b.d.l 0.00 b.d.l b.d.l

15.54 15.28 14.49 16.28 20.23 b.d.l b.d.l b.d.l b.d.l

0.00 0.00 0.00 0.00 0.00 b.d.l b.d.l b.d.l b.d.l

0.09 0.13 0.07 0.10 b.d.l b.d.l 0.08 b.d.l b.d.l

18.09 15.93 14.70 9.76 21.32 1.29 0.45 0.77 0.64

b.d.l b.d.l b.d.l 0.11 b.d.l 0.07 b.d.l b.d.l b.d.l

1.59 4.46 0.53 2.30 2.97 b.d.l b.d.l b.d.l 0.68

46.98 146.31 44.44 37.01 344.61 26.41 69.66 57.23 151.32

0.19 0.13 b.d.l 0.24 b.d.l b.d.l 0.09 0.08 0.20

2.23 b.d.l 2.15 1.65 1.35 b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.02

b.d.l b.d.l 0.41 0.18 0.42 0.21 0.30 0.24 0.38

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 0.04 0.07

b.d.l 0.36 b.d.l 0.13 b.d.l b.d.l b.d.l b.d.l 0.20

0.10 0.24 b.d.l 8.64 b.d.l b.d.l 1.30 0.04 2.44

0.38 0.07 0.20 1.00 0.39 0.05 0.67 b.d.l b.d.l

18.08 9.25 7.15 33.68 15.21 14.57 1.93 36.86 5.55

5.24 0.94 2.05 2.73 1.72 3.99 0.56 1.19 1.23



CL-06-39-20.35 6 - Po 10 - Po 13 - Po 19 - Po 21 - Po 4 - Mrc 18 - Mrc 7 - Py 11 - Py

Si
29

 (ppm) b.d.l b.d.l 9087.58 b.d.l b.d.l 14081.84 24706.89 b.d.l 5356.14

S
33

206624.99 211888.93 193743.04 172763.17 169879.84 261863.83 219313.51 268780.81 240183.49

Ca
43

b.d.l b.d.l b.d.l b.d.l b.d.l 10435.01 1308.23 23537.53 64688.80

V
51

b.d.l 0.71 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Cr
53

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Fe
57

602700.00 602700.00 602700.00 602700.00 602700.00 534500.00 534500.00 534500.00 534500.00

Co
59

1099.11 248.75 1499.77 109.80 242.39 674.60 400.73 2074.30 308.09

Ni
60

9632.42 8146.55 14017.71 8111.72 6841.48 29373.21 31891.91 9495.89 12705.39

Cu
65

43168.74 4.06 8277.66 249.80 4.29 82.29 95.51 36.19 788.61

Zn
66

18.02 3.83 1323.39 0.81 1.34 3.85 1.90 2.90 30.06

As
75

2.10 0.95 1.80 b.d.l 0.73 2.01 2.66 1.42 0.80

Se
82

45.31 58.42 63.91 54.97 43.15 69.97 68.84 62.51 65.68

Sr
88

2.36 0.48 1.24 0.11 0.93 5.19 17.87 9.08 14.84

Y
89

b.d.l b.d.l 0.09 b.d.l b.d.l b.d.l 0.06 b.d.l b.d.l

Zr
90

0.05 b.d.l 0.06 b.d.l 0.02 0.04 0.01 0.19 0.03

Ru
99

b.d.l 0.19 0.00 0.09 0.04 0.00 0.00 0.00 0.11

Ru
101

b.d.l 0.00 b.d.l 0.00 0.00 0.00 0.00 0.00 0.00

Rh
103

2.23 b.d.l 0.43 b.d.l 0.04 b.d.l 0.04 b.d.l 0.04

Pd
105

0.00 b.d.l 0.76 b.d.l b.d.l b.d.l b.d.l 0.04 0.06

Pd
106

b.d.l b.d.l 1.43 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Ag
107

0.80 0.10 3.96 0.21 0.41 16.45 67.10 3.22 10.58

Pd
108

0.33 b.d.l 1.01 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Cd
111

b.d.l b.d.l 15.02 b.d.l b.d.l 0.86 0.59 0.26 0.44

Sn
118

3.90 0.71 0.48 0.71 1.80 b.d.l 0.83 6.24 0.66

Sb
121

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 0.22 0.11

Te
125

b.d.l 0.64 75.08 0.45 1.43 0.96 0.63 0.49 1.73

Ta
181

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.01 b.d.l

Re
185

b.d.l 0.17 b.d.l 0.11 0.26 0.39 0.20 0.21 0.38

Os
189

b.d.l b.d.l b.d.l 0.08 0.08 0.16 0.08 b.d.l 0.11

Ir
193

b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 b.d.l 0.02 b.d.l

Pt
195

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Au
197

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Tl
205

b.d.l b.d.l 0.22 <0.012053 0.02 3.10 3.52 0.59 2.51

Pb
208

11.76 2.49 27.94 1.64 3.44 92.95 171.45 280.99 230.42

Bi
209

0.99 0.34 3.75 0.38 0.44 0.38 0.46 0.50 0.60



24 - Py 26 - Py 5 - Pn 9 - Pn 20 - Pn 23 - Pn 8 - Ccp 12 - Ccp 17 - Ccp 22 - Ccp 25 - Ccp

b.d.l 4895.44 17234.83 9112.87 b.d.l b.d.l 4718.45 6852.19 2934.47 b.d.l 15136.01

192987.33 219684.09 241772.67 163451.82 102289.26 133104.28 116471.98 154833.48 171638.54 155657.50 173540.46

b.d.l 54279.22 b.d.l b.d.l 649.78 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l 0.79 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 1.32

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

534500.00 534500.00 291000.00 291000.00 291000.00 291000.00 314000.00 314000.00 314000.00 314000.00 314000.00

351.24 957.49 70496.71 42834.66 43430.43 33131.29 8.41 3.01 6.27 1.18 12.74

17607.85 8089.35 352416.59 340177.28 204321.64 281109.78 176.30 44.08 186.43 64.24 51.34

153.42 4955.45 35.48 1726.89 931.28 412.33 205177.53 335511.28 389356.32 378064.81 380240.42

3.45 491.09 4.61 96.64 10.81 3.19 2373.10 196.33 324.94 695.40 298.13

b.d.l 4.37 2.43 4.19 1.86 1.06 1.38 1.25 0.88 0.70 <1.1523

73.22 66.27 54.72 65.15 24.43 47.11 45.19 48.37 59.19 62.63 82.55

0.53 14.52 2.44 1.45 0.69 0.31 0.41 0.53 0.21 0.28 1.13

b.d.l 0.03 b.d.l 0.18 b.d.l b.d.l 0.01 0.17 0.01 b.d.l 0.05

0.03 0.07 0.25 0.13 0.12 0.13 0.05 0.03 b.d.l 0.02 1.02

0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.49 0.33 0.41 0.65

0.00 0.00 0.00 0.00 0.00 0.00 b.d.l 0.27 0.22 0.29 0.25

b.d.l 0.25 b.d.l 0.09 0.07 0.03 8.40 13.29 16.34 15.97 17.23

b.d.l 0.00 0.61 2.79 0.32 0.74 0.00 0.00 0.00 0.00 0.00

b.d.l 0.30 1.14 2.94 0.35 0.44 1.14 0.04 0.08 0.86 b.d.l

30.41 7.75 15.04 17.78 10.48 35.44 0.17 34.48 4.16 39.48 0.14

b.d.l 0.16 0.95 2.43 0.27 0.37 0.67 b.d.l b.d.l 1.03 b.d.l

0.44 5.92 b.d.l 1.33 0.12 0.29 35.65 1.09 1.92 12.70 3.12

2.69 1.52 0.96 b.d.l 0.42 b.d.l 2.08 1.89 1.20 0.83 3.70

0.04 0.25 0.13 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

0.35 1.53 b.d.l 44.00 1.41 0.69 18.34 25.19 35.80 19.05 9.06

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

0.13 0.09 b.d.l b.d.l 0.03 0.07 b.d.l b.d.l b.d.l 0.32 0.11

0.08 0.18 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l 0.03 b.d.l b.d.l b.d.l b.d.l b.d.l 0.02 0.04 0.02 b.d.l

1.98 0.65 2.26 1.07 1.14 1.27 0.33 0.06 0.15 0.07 0.06

24.29 248.61 35.50 24.17 29.88 25.37 27.92 15.19 56.13 37.19 5.76

0.33 1.54 0.36 1.54 1.35 0.64 1.17 0.44 0.47 0.79 0.25



Sample/ 

Inclusion Na
23

 (ppm) Mg
25

Si
28

S
32

Ca
40

Ti
49

Fe
56

Co
59

Ni
62

Cu
65

373_12_1 b.d.l b.d.l b.d.l 335000 b.d.l 317.00 623300 1538 1678 8195

373_12_2 b.d.l b.d.l b.d.l 364215 b.d.l 3098.26 623300 1628 1678 4463

373_12_3 3442.13 16074.34 b.d.l 314123 b.d.l 4898.80 623300 2825 3359 641

373_12_4 b.d.l 12823.89 b.d.l 290639 b.d.l 4580.83 623300 1673 1856 8289

373_12_5 b.d.l b.d.l b.d.l 342759 52859.31 5518.16 623300 1344 1725 6638

373_12_6 b.d.l b.d.l b.d.l 315689 9066.27 8627.08 623300 1541 1729 7535

373_12_7 b.d.l b.d.l b.d.l 302872 36329.71 1964.09 623300 1471 1481 5036

373_12_11 7269.75 b.d.l b.d.l 336234 4731.77 4186.36 623300 1341 1299 8621

373_12_12 59467.53 b.d.l b.d.l 327634 b.d.l 1314.66 623300 2743 <2401.6326 13872

373_12_13 15867.22 b.d.l b.d.l 323062 b.d.l b.d.l 623300 1413 1430 6173

373_12_14 27152.42 b.d.l b.d.l 304136 b.d.l 2246.10 623300 1414 1470 7127

373_12_15 15237.33 b.d.l b.d.l 327666 b.d.l 4254.22 623300 1968 1692 9781

373_12_16 10040.90 b.d.l b.d.l 327247 1567.80 2901.28 623300 1660 1673 8933

373_12_17 19557.07 1762.85 b.d.l 384868 10456.59 3953.36 623300 1481 1774 4247

373_12_18 23362.09 b.d.l b.d.l 394096 12170.60 4183.46 623300 1456 1589 9398

373_12_19 9752.95 b.d.l b.d.l 287905 22285.50 3303.75 623300 1417 1515 6814

373_12_20 18826.45 b.d.l b.d.l 278207 1254.49 2138.42 623300 1404 1504 7028

373_12_21 12670.33 b.d.l b.d.l 315552 9971.90 2908.78 623300 1096 1569 6695

373_12_22 9173.17 b.d.l b.d.l 293634 b.d.l 2380.64 623300 1433 1656 7586

373_12_23 19648.25 b.d.l b.d.l 278900 5069.81 3275.00 623300 1429 1744 6903

373_12_24 18034.08 24271.53 b.d.l 222036 b.d.l 9303.32 623300 3998 5937 27165

373_12_25 26192.23 22921.35 b.d.l 238518 b.d.l b.d.l 623300 4431 3096 10335

373_9_2 15218.46 b.d.l b.d.l 208657 b.d.l 20789.44 623300 949 b.d.l 5127

373_9_3 <1354.7832 b.d.l b.d.l 267185 17699.77 12695.52 623300 1079 b.d.l 5975

373_9_4 11666.81 b.d.l b.d.l 283441 b.d.l 9223.21 623300 1379 1387 6862

373_9_5 10915.97 9622.00 b.d.l 254265 b.d.l 11795.40 623300 1412 b.d.l 5801

373_9_6 5788.60 25516.63 b.d.l 267087 b.d.l 6588.52 623300 1326 1478 6056

373_9_7 20675.11 b.d.l b.d.l 370226 b.d.l b.d.l 623300 2839 b.d.l 9599

373_9_8 13963.17 b.d.l b.d.l 300697 39811.51 14532.06 623300 1906 1896 5158

127-4-1 1278.99 b.d.l 1363.00 325718 b.d.l 178.29 623300 2436 2048 6291

127-4-2 26415.95 b.d.l b.d.l 288332 b.d.l b.d.l 623300 2601 b.d.l 4117

127-4-3 3441.80 189450.90 312751.31 78842 b.d.l 1910.37 623300 1067 b.d.l b.d.l

127-4-4 1335.27 b.d.l 1367.61 316749 b.d.l 177.98 623300 2441 2037 6310

127-4-5 26083.76 b.d.l b.d.l 284172 b.d.l b.d.l 623300 2599 b.d.l 4023

127-4-6 3245.11 193781.54 311901.81 79965 b.d.l 2046.68 623300 1130 b.d.l b.d.l

127-4-7 b.d.l b.d.l b.d.l 459856 b.d.l b.d.l 623300 2703 b.d.l 10036

127-4-8 b.d.l 10260.61 10098.74 288209 b.d.l b.d.l 623300 2131 b.d.l 5272

127-4-9 b.d.l b.d.l b.d.l 264053 b.d.l b.d.l 623300 2259 1823 4087

127-4-10 b.d.l b.d.l b.d.l 268930 b.d.l b.d.l 623300 1890 b.d.l 4273

127-4-11 b.d.l b.d.l b.d.l 233885 b.d.l b.d.l 623300 2164 b.d.l 4519

127-4-14 302.84 b.d.l b.d.l 283644 b.d.l 184.28 623300 2319 1968 4886

Appendix 17: LA-ICP-MS SUL analyses



127-4-1 n.a 7356.54 3605.32 259875 b.d.l n.a 623300 2158 1875 4621

127-4-3 n.a 2929.00 b.d.l 310739 b.d.l n.a 623300 1688 1822 4383

127-4-4 n.a b.d.l b.d.l 260219 b.d.l n.a 623300 2568 3994 15483

127-4-5 n.a 4887.00 b.d.l 264014 b.d.l n.a 623300 2907 b.d.l 8738

127-3-1 n.a 2564.82 4814.72 300938 b.d.l n.a 623300 2048 2393 7913

127-3-3 n.a 2470.51 3956.40 295119 b.d.l n.a 623300 1794 1589 <335.8374

127-3-4 n.a b.d.l b.d.l 283613 b.d.l n.a 623300 1573 1438 12692

127-3-5 n.a b.d.l b.d.l 291342 b.d.l n.a 623300 1860 b.d.l 5249

127-3-6 n.a 1425.43 2115.59 306254 b.d.l n.a 623300 1660 1594 5824

127-3-7 n.a 8572.30 11997.80 289611 b.d.l n.a 623300 2031 1809 6193

127-3-8 n.a 4246.45 6219.00 279332 b.d.l n.a 623300 1786 b.d.l 5053

127-3-10 n.a 27014.89 29209.93 230137 b.d.l n.a 623300 1548 b.d.l 4353

127-3-14 n.a 954.48 b.d.l 259141 b.d.l n.a 623300 1883 1409 5536

127-3-15 n.a b.d.l b.d.l b.d.l b.d.l n.a 623300 1932 1606 4628

127-3-16 n.a b.d.l b.d.l 258294 b.d.l n.a 623300 1794 b.d.l 5385

127-3-17 n.a b.d.l b.d.l 268658 b.d.l n.a 623300 1974 b.d.l 5964

127-3-18 n.a 23015.41 51703.06 237059 b.d.l n.a 623300 1800 1429 5005

127-3-24 n.a 1166.91 1425.03 240842 b.d.l n.a 623300 1701 1450 5214

127-3-25 n.a b.d.l b.d.l 260629 b.d.l n.a 623300 1561 b.d.l 4326

127-3-26 n.a b.d.l b.d.l 269510 b.d.l n.a 623300 1839 b.d.l 5750

127-3-27 n.a b.d.l b.d.l 294724 b.d.l n.a 623300 2374 b.d.l 7555

373_15_1 n.a b.d.l b.d.l 276530 b.d.l n.a 623300 657 1188 4541

373_15_2 n.a b.d.l b.d.l 261755 3033.44 n.a 623300 5543 2624 484

373-15-1 617.88 24935.03 b.d.l 317010 10434.93 201.95 623300 2905 2268 25774

373-15-3 b.d.l 25020.54 b.d.l 232070 b.d.l 211.07 623300 776 1166 5662

373-15-4 131.38 15251.43 b.d.l 205185 b.d.l 55.57 623300 488 916 10635

373-15-5 11.06 5549.59 b.d.l 260249 b.d.l 194.21 623300 1653 1461 4444



Zn
66

As
75

Se
82

Pd
105

Pd
106

Ag
107

Pd
108

Cd
114

Sn
120

Sb
121

Te
125

Pt
195

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

3872.73 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

447.60 b.d.l b.d.l b.d.l b.d.l 17.86 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l 6.90 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

119.09 b.d.l b.d.l b.d.l b.d.l 7.75 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l 9.45 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

149.82 b.d.l b.d.l b.d.l b.d.l 7.01 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

100.47 b.d.l b.d.l b.d.l b.d.l 7.08 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l 11.06 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l 8.07 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

180.83 b.d.l b.d.l b.d.l b.d.l 7.35 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l 69.87 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

255.77 b.d.l b.d.l b.d.l b.d.l 19.17 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l



n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l b.d.l n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l 2.09 n.a n.a n.a b.d.l

n.a n.a n.a b.d.l b.d.l n.a b.d.l 1.52 n.a n.a n.a b.d.l

788.18 b.d.l b.d.l b.d.l n.a b.d.l b.d.l 18.24 b.d.l b.d.l b.d.l b.d.l

233.25 b.d.l 17.67 b.d.l n.a 0.79 b.d.l 6.13 0.33 b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l b.d.l n.a 0.78 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

48.70 b.d.l 20.88 b.d.l n.a 0.74 b.d.l 2.04 b.d.l b.d.l b.d.l b.d.l



Au
197

Pb
208

Bi
209

b.d.l 5.38 b.d.l

b.d.l b.d.l <6.24

b.d.l 213.53 6.91

b.d.l 421.58 b.d.l

b.d.l b.d.l b.d.l

b.d.l 6.90 b.d.l

b.d.l b.d.l 1.07

b.d.l 12.51 0.88

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l 10.75 b.d.l

b.d.l 6.17 b.d.l

b.d.l 4.38 1.08

b.d.l 29.22 b.d.l

b.d.l b.d.l b.d.l

b.d.l 7.13 b.d.l

b.d.l 11.80 b.d.l

b.d.l b.d.l b.d.l

b.d.l 3.99 b.d.l

b.d.l 38804.13 6.12

b.d.l 525.01 b.d.l

b.d.l 424.48 3.61

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l 232.99 b.d.l

b.d.l 19.25 b.d.l

b.d.l 142.58 3.27

b.d.l 160.88 b.d.l

b.d.l 63.48 b.d.l

b.d.l 143.05 3.29

b.d.l 142.68 b.d.l

b.d.l 64.28 b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l

b.d.l 16.03 b.d.l



b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l n.a n.a

b.d.l 60.97 2.18

b.d.l 15.04 0.05

b.d.l 31.23 0.66

b.d.l 8.40 0.47



Appendix 18: LA-ICP-MS SMI analyses

Sample/Spot 29.1-5-1 29.1-5-2 29.1-5-3 29.1-2-1 29.1-2-2 29.1-13-1

SiO2 (wt%) 51.85 51.85 51.85 51.85 51.85 51.85

TiO2 1.39 1.22 1.11 1.47 1.03 0.58

Al2O3 18.63 13.63 11.52 14.30 14.90 16.42

FeO 38.91 23.72 32.26 22.25 10.83 18.57

MnO 0.52 0.29 0.30 0.29 0.18 0.05

MgO 12.73 12.22 13.20 10.56 2.64 8.46

CaO b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Na2O 1.56 1.09 1.11 1.75 4.97 4.64

K2O 1.13 2.54 1.14 2.78 3.41 1.26

P2O5 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

B
11

 (ppm) b.d.l 77.99 146.72 b.d.l b.d.l b.d.l

V
51

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Cr
52

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Co
59

65.76 42.72 44.95 36.66 14.46 47.63

Ni
62

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Cu
63

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Zn
66

2439.08 165.78 135.41 161.23 96.87 91.30

As
75

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Rb
85

b.d.l 32.47 28.37 56.46 94.61 155.39

Sr
88

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Y
89

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Zr
90

524.04 362.79 413.85 387.40 397.08 322.66

Nb
93

53.29 47.70 35.67 65.63 45.44 19.08

Mo
98

b.d.l b.d.l b.d.l b.d.l 1.91 1.49

Ag
107

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Sn
120

6.00 2.52 3.35 4.42 5.95 5.78

Sb
121

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Cs
133

b.d.l 0.50 4.92 0.76 1.11 13.38

Ba
138

731.21 776.53 532.11 1487.54 1291.29 135.76

La
139

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Ce
140

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Pr
141

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Nd
143

207.39 141.39 b.d.l b.d.l b.d.l b.d.l

Sm
147

60.32 40.61 b.d.l b.d.l b.d.l b.d.l

Eu
153

10.26 9.11 b.d.l b.d.l b.d.l 6.70

Gd
157

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l



Tb
159

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Dy
163

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Ho
165

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Er
166

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Tm
169

b.d.l 0.84 b.d.l b.d.l b.d.l b.d.l

Yb
172

b.d.l 3.08 b.d.l b.d.l b.d.l b.d.l

Lu
175

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Hf
178

11.50 8.39 8.99 9.41 9.66 7.08

Ta
181

3.86 3.39 2.63 4.56 3.17 1.37

W
182

b.d.l b.d.l b.d.l b.d.l b.d.l 0.81

Pb
208

b.d.l 3.43 3.48 b.d.l 4.36 27.18

Bi
209

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l

Th
232

7.77 15.51 12.98 b.d.l b.d.l 57.79

U
238

1.28 5.24 5.50 b.d.l b.d.l 10.64



Sample 29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.1 29.1

Spot 3-Ap.xl 5-Ap.xl 6-Ap.xl 7-Ap.xl 8-Ap.xl 11-Ap.xl 12-Ap.xl 13-Ap.xl 15-Ap.xl 16-Ap.xl

SiO2 (wt%) 1.92 0.74 0.46 0.31 b.d.l 0.28 0.41 0.47 0.52 0.38

Al2O3 0.19 0.04 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02

FeO 1.16 0.33 0.05 0.09 0.03 0.07 0.12 0.25 0.12 0.21

MnO 0.05 0.04 0.02 0.03 0.02 0.04 0.04 0.04 0.05 0.05

MgO 0.28 0.07 0.02 0.03 0.00 0.02 0.03 0.04 0.03 0.04

CaO 54.76 54.76 54.76 54.76 54.76 54.76 54.76 54.76 54.76 54.76

Na2O 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03

K2O 0.00 0.00 0.00 b.d.l b.d.l b.d.l b.d.l b.d.l 0.00 0.00

P2O5 33.62 34.65 34.98 36.00 36.55 38.26 38.90 39.95 41.28 41.17

V
51

 (ppm) 0.24 0.16 0.22 b.d.l 0.19 0.17 0.23 0.25 0.24 0.17

Cr
53

b.d.l b.d.l b.d.l 1.00 b.d.l b.d.l 1.50 b.d.l b.d.l b.d.l

Co
59

1.63 0.35 0.08 0.14 0.08 0.20 0.17 0.33 0.15 0.21

Ni
60

0.41 b.d.l b.d.l 0.30 0.36 0.31 0.53 b.d.l 0.73 b.d.l

Cu
65

3.30 3.77 1.69 b.d.l b.d.l 6.03 b.d.l b.d.l 0.55 4.64

As
75

12.93 15.61 12.02 14.53 11.70 12.71 13.17 11.42 12.14 11.15

Rb
85

0.16 0.08 0.05 0.05 0.05 b.d.l 0.06 0.06 0.08 0.08

Sr
88

1473.59 1444.52 1439.06 1451.88 1443.15 1542.68 1565.31 1542.10 1590.52 1569.55

Y
89

298.38 293.39 288.37 302.53 279.84 274.31 379.51 296.65 303.52 323.57

Zr
90

4.27 4.24 3.82 5.19 2.76 3.97 7.13 4.44 5.01 5.26

Nb
93

0.04 0.02 b.d.l 0.02 0.02 0.03 0.03 0.03 0.02 0.02

Ag
107

0.04 0.02 0.03 0.06 b.d.l b.d.l b.d.l b.d.l b.d.l 0.01

Sb
121

b.d.l b.d.l 0.02 b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 b.d.l

Cs
133

0.05 b.d.l b.d.l 0.01 b.d.l 0.01 b.d.l b.d.l b.d.l b.d.l

La
139

507.14 502.53 483.01 517.65 479.73 456.04 619.41 506.27 499.63 540.64

Ce
140

1269.67 1260.18 1185.68 1265.47 1195.28 1162.10 1565.02 1292.51 1290.55 1385.47

Nd
146

839.97 824.73 792.51 834.41 781.15 759.41 1030.17 830.92 832.00 886.32

Sm
147

167.96 163.32 159.21 166.82 153.90 151.73 203.33 164.60 164.01 177.42

Eu
153

37.97 36.41 35.27 37.78 35.12 34.36 46.98 37.21 38.31 40.58

Tb
159

15.19 14.54 14.42 15.28 13.99 13.77 18.85 14.96 14.97 15.96

Dy
163

74.94 72.57 70.98 74.54 68.47 67.22 92.11 73.46 73.15 77.87

Lu
175

1.49 1.42 1.36 1.48 1.26 1.34 1.87 1.42 1.44 1.49

Hf
178

0.02 0.04 0.03 0.02 0.01 0.02 0.06 0.03 0.02 0.03

Ta
181

b.d.l b.d.l 0.01 b.d.l b.d.l 0.00 0.01 b.d.l 0.00 b.d.l

Pb
208

2.42 1.82 2.60 1.29 3.11 1.37 1.79 1.72 1.56 1.56

Bi
209

0.02 0.01 0.02 b.d.l b.d.l b.d.l b.d.l 0.01 0.01 b.d.l

Th
232

10.13 6.83 10.67 4.57 14.11 3.99 6.77 5.40 3.06 3.47

U
238

2.64 2.19 2.43 1.21 3.37 1.38 1.93 1.64 0.89 1.08

Appendix 19: LA-ICP-MS apatite analyses



127-2 127-3 127-4 127-5 127-6 127-7 127-8 127-9 127-10 127-11 127-12 127-13

3-Ap.xl 4-Ap.xl 5-Ap.xl 6-Ap.xl 7-Ap.xl 8-Ap.xl 12-Ap.xl 13-Ap.xl 14-Ap.xl 15-Ap.xl 16-Ap.xl 18-Ap.xl

0.26 0.23 0.26 0.35 b.d.l 0.34 b.d.l 0.32 0.29 b.d.l b.d.l 0.51

0.00 0.03 0.00 0.00 0.00 b.d.l 0.00 0.01 0.00 0.00 0.00 0.10

0.09 0.16 0.10 0.07 0.08 0.05 0.06 0.13 0.08 0.09 0.07 0.32

0.06 0.07 0.07 0.06 0.06 0.05 0.06 0.06 0.07 0.07 0.07 0.07

0.03 0.05 0.04 0.02 0.03 0.01 0.02 0.04 0.03 0.04 0.03 0.18

54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72

0.08 0.07 0.06 0.08 0.08 0.08 0.06 0.05 0.04 0.04 0.04 0.04

b.d.l 0.00 0.00 b.d.l 0.00 b.d.l b.d.l 0.00 0.00 0.00 0.00 0.00

76.65 74.98 74.61 70.77 69.25 68.96 66.15 64.52 61.36 61.80 59.79 57.94

2.54 8.74 2.94 2.69 3.33 2.45 2.99 3.05 2.82 3.06 2.66 4.77

b.d.l b.d.l b.d.l b.d.l 0.88 b.d.l b.d.l b.d.l 1.00 b.d.l b.d.l b.d.l

0.49 0.39 0.15 0.12 0.13 0.11 0.13 0.15 0.30 0.81 0.10 0.62

0.38 0.63 0.39 0.87 0.55 0.51 0.34 0.39 0.67 0.33 0.37 0.68

2.37 b.d.l b.d.l 3.49 0.13 0.32 b.d.l b.d.l 9.33 0.13 b.d.l 2.04

19.45 18.20 16.97 20.05 18.80 17.98 14.93 13.00 18.34 10.54 9.55 12.24

0.07 0.06 0.07 0.07 0.08 0.07 0.05 0.06 0.08 0.04 0.04 0.07

1487.38 1728.68 1859.79 1276.63 1308.75 1438.77 1690.23 1761.43 1823.68 1815.52 1807.97 2004.48

499.64 485.43 459.10 530.15 508.79 524.12 421.66 394.25 301.76 277.20 259.14 361.71

6.07 6.90 6.63 6.27 5.83 5.67 6.25 5.69 5.73 5.27 4.64 6.25

0.03 0.03 0.03 0.04 0.02 0.02 0.03 0.03 0.05 0.04 0.03 0.02

0.02 0.02 b.d.l 0.08 b.d.l b.d.l 0.02 b.d.l 0.13 b.d.l b.d.l b.d.l

b.d.l b.d.l b.d.l 0.07 0.02 0.01 0.02 b.d.l 0.08 0.01 b.d.l 0.02

b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.03 b.d.l b.d.l b.d.l

998.44 932.62 841.70 1082.06 1039.94 1038.02 770.28 687.82 468.00 442.84 422.91 610.75

2678.49 2512.93 2298.86 2833.19 2716.70 2797.86 2010.66 1784.44 1262.72 1248.86 1173.69 1636.14

1523.87 1459.43 1352.26 1601.97 1539.06 1569.22 1170.71 1083.90 799.53 766.63 728.33 1038.63

279.86 268.73 250.99 289.53 280.30 283.71 223.01 206.25 157.89 150.01 143.63 202.51

60.82 62.27 60.01 61.36 59.90 60.70 53.62 50.86 41.20 39.49 38.04 50.98

24.23 23.28 21.86 25.81 24.84 25.00 19.82 18.66 14.06 13.43 12.69 17.79

119.86 114.32 107.26 126.62 121.55 124.30 97.45 91.15 68.71 63.49 60.76 86.19

2.40 2.16 2.05 2.65 2.49 2.55 2.06 1.90 1.33 1.20 1.10 1.48

0.05 0.05 0.04 0.06 0.04 0.03 0.05 0.04 0.05 0.03 0.04 0.04

0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 b.d.l 0.00

4.00 2.85 3.06 3.53 3.53 4.45 4.77 4.12 3.00 2.63 3.40 1.87

0.03 b.d.l 0.12 0.03 b.d.l 0.02 0.03 0.02 0.03 0.02 0.01 0.02

6.02 6.04 5.62 5.70 5.88 6.15 5.49 5.29 3.55 3.40 3.37 5.51

1.45 1.50 1.45 1.45 1.45 1.57 1.57 1.48 0.93 0.95 0.92 1.32



127-14 167-A1 167-A2 167-A3 167-A4 167-A5 167-A6 167-A7 167-A8 167-A9 167-A10 167-A11

19-Ap.xl 3--Ap.xl 4--Ap.xl 7-Ap.xl 8-Ap.xl 9-Ap.xl 10-Ap.xl 11-Ap.xl 15-Ap.xl 16-Ap.xl 17-Ap.xl 19-Ap.xl

0.30 0.63 0.65 0.34 0.44 0.23 0.29 b.d.l 0.43 0.83 0.46 0.55

0.04 0.21 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.01 0.00

0.21 0.31 0.37 0.14 0.16 0.14 0.13 0.14 0.09 0.35 0.09 0.08

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.07 0.06

0.12 0.16 0.21 0.08 0.09 0.06 0.06 0.06 0.01 0.19 0.01 0.01

54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72 54.72

0.05 0.06 0.05 0.05 0.05 0.07 0.07 0.06 0.07 0.07 0.10 0.10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 b.d.l b.d.l 0.00 b.d.l 0.00

59.26 70.51 74.28 69.60 69.07 68.74 66.67 64.86 65.00 62.10 60.94 60.12

2.91 6.01 7.92 8.63 8.86 6.82 6.92 7.70 6.81 6.86 5.06 4.91

b.d.l b.d.l b.d.l b.d.l b.d.l 1.29 b.d.l b.d.l b.d.l b.d.l b.d.l 0.84

0.35 0.76 0.76 0.20 0.26 0.21 0.12 0.18 0.10 0.93 0.09 0.08

0.34 1.74 1.96 2.43 0.41 0.67 b.d.l 0.38 b.d.l 1.76 0.52 0.78

5.05 1.92 b.d.l 0.85 0.86 180.31 0.15 1.28 1.56 2.92 2.58 0.33

12.60 28.06 18.38 18.43 18.18 27.03 19.63 22.51 20.35 25.11 24.33 24.36

0.17 0.09 0.09 0.06 0.06 0.09 0.08 0.06 0.08 0.10 0.10 0.10

2048.48 1725.80 1759.80 1610.27 1628.86 1454.20 1411.09 1398.54 1295.98 1237.36 784.96 877.82

394.77 397.79 405.98 439.38 432.97 499.80 481.16 456.37 574.36 570.88 711.97 674.57

6.11 7.36 7.13 7.36 7.34 9.05 7.06 6.57 11.22 10.80 10.56 8.49

0.04 0.06 0.05 0.05 0.04 0.05 0.05 0.02 0.04 0.04 0.04 0.04

b.d.l 0.04 b.d.l b.d.l 0.05 0.09 0.02 0.01 b.d.l 0.01 0.03 0.02

b.d.l 0.03 b.d.l 0.01 0.04 0.04 0.02 b.d.l b.d.l 0.02 0.04 b.d.l

b.d.l 0.02 0.02 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.02 0.08 b.d.l

662.28 794.05 814.95 814.51 798.36 998.82 976.46 936.16 1156.47 1174.57 1443.34 1394.41

1916.29 1874.01 2064.44 1979.90 1957.77 2512.50 2443.81 2302.20 2970.92 2887.93 3520.77 3430.54

1113.05 1237.00 1274.00 1289.94 1269.13 1521.31 1474.55 1403.67 1754.46 1773.61 2153.97 2077.96

215.33 231.61 238.10 241.71 239.65 280.03 270.50 254.77 316.09 321.27 386.83 370.25

53.20 53.99 56.16 56.49 55.60 62.52 60.14 58.07 62.98 64.36 64.68 64.56

19.12 20.29 20.68 21.34 21.11 24.33 23.24 22.45 27.69 28.04 34.09 32.69

92.02 99.82 101.77 104.75 103.87 121.71 117.06 111.20 137.44 138.67 168.95 164.10

1.69 1.87 1.94 1.95 1.92 2.40 2.31 2.15 2.71 2.76 3.47 3.39

0.06 0.04 0.06 0.05 0.05 0.06 0.06 0.06 0.11 0.11 0.10 0.06

0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01

2.28 2.78 2.94 3.67 3.24 3.23 3.23 2.79 3.28 3.50 6.62 6.72

0.49 0.03 0.03 0.02 0.01 0.04 0.02 0.02 0.03 0.05 0.06 0.06

5.84 8.65 9.16 8.59 8.81 11.06 9.95 9.07 12.40 12.75 15.92 13.15

1.46 2.02 2.24 1.98 2.07 2.39 2.24 1.97 2.91 2.97 3.97 3.20



167-A12 167-A13 167-A14 173.9 173.9 173.9 173.9 173.9 173.9 173.9 173.9 173.9

20-Ap.xl 21-Ap.xl 22-Ap.xl 3-Ap.xl 4-Ap.xl 5-Ap.xl 6-Ap.xl 7-Ap.xl 8-Ap.xl 12-Ap.xl 13-Ap.xl 15-Ap.xl

0.53 0.68 0.47 0.46 b.d.l 0.28 0.38 0.37 0.35 0.35 0.22 0.30

0.07 0.14 0.03 0.02 0.00 0.00 0.04 0.00 b.d.l 0.07 0.00 0.00

0.18 0.32 0.15 0.15 0.08 0.06 0.19 0.05 0.06 0.26 0.08 0.08

0.06 0.07 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.06

0.08 0.14 0.06 0.03 0.01 0.01 0.02 0.01 0.01 0.03 0.01 0.02

54.72 54.72 54.72 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00 54.00

0.09 0.10 0.10 0.10 0.09 0.09 0.09 0.08 0.08 0.09 0.10 0.10

0.00 0.00 b.d.l 0.00 b.d.l 0.00 0.00 0.00 0.00 0.00 0.00 b.d.l

57.20 57.66 56.21 99.68 79.30 78.63 74.21 69.39 66.45 64.64 63.34 59.56

3.53 6.01 6.73 1.78 1.62 1.66 1.73 1.65 1.57 1.66 1.68 1.46

8.52 b.d.l b.d.l 1.14 b.d.l b.d.l 2.12 b.d.l b.d.l b.d.l b.d.l b.d.l

0.82 0.38 0.25 0.31 0.09 0.09 0.22 0.06 b.d.l 0.39 0.17 0.15

0.78 0.83 0.55 0.61 0.33 0.37 0.59 0.31 0.55 0.54 0.46 0.41

6.32 1.12 0.50 7.32 b.d.l b.d.l 1.42 b.d.l 0.77 1.31 0.34 0.36

28.74 21.64 26.04 28.58 25.35 22.82 25.64 23.61 24.08 21.22 22.60 20.94

0.10 0.11 0.11 0.11 0.10 0.10 0.14 0.12 0.10 0.17 0.24 0.07

1028.52 775.64 859.88 924.12 832.98 743.30 787.56 788.04 833.81 1059.47 939.53 759.63

584.90 633.50 649.99 585.01 630.64 618.04 650.30 657.12 651.68 589.59 639.61 614.40

9.75 12.49 10.60 4.57 4.03 4.14 5.83 6.21 6.05 6.89 7.80 5.33

0.04 0.07 0.05 0.03 0.03 0.02 0.05 0.03 0.03 0.03 0.03 0.02

0.07 0.01 b.d.l 0.02 b.d.l 0.03 0.02 b.d.l b.d.l 0.01 0.02 0.11

0.04 0.01 0.11 0.04 0.02 b.d.l 0.02 b.d.l 0.01 0.03 0.02 b.d.l

b.d.l b.d.l 0.02 b.d.l b.d.l b.d.l b.d.l b.d.l b.d.l 0.02 b.d.l b.d.l

1232.16 1305.94 1301.53 1264.40 1262.67 1257.90 1286.99 1284.62 1220.80 1126.11 1256.15 1138.07

2914.57 3186.90 3211.00 3676.78 3233.95 3235.40 3366.85 3300.41 3143.12 2901.98 3290.00 2928.92

1788.95 1940.27 1951.14 1802.61 1832.54 1826.99 1907.77 1905.74 1847.85 1703.66 1847.74 1680.24

320.94 350.24 350.81 320.45 327.59 325.37 344.84 347.30 337.54 312.92 333.18 307.46

57.86 65.24 68.09 52.86 49.98 48.21 58.49 59.18 60.37 59.03 59.97 47.71

28.30 30.49 31.38 27.90 29.64 29.43 31.07 31.46 30.45 27.46 29.76 28.04

141.18 151.30 155.61 139.68 147.44 146.82 153.77 157.44 153.22 134.95 148.88 140.34

2.80 3.06 3.14 3.19 3.40 3.37 3.53 3.55 3.40 2.95 3.21 3.18

0.06 0.09 0.08 0.04 0.03 0.04 0.05 0.05 0.05 0.06 0.06 0.05

0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.00

10.60 9.15 8.74 4.59 4.53 6.16 4.21 4.43 5.17 6.19 7.61 2.90

0.29 0.07 0.11 0.06 0.04 0.05 0.09 0.07 0.06 0.09 0.13 0.03

20.33 12.17 11.81 10.40 14.41 15.17 12.88 15.04 14.70 10.00 13.23 6.02

4.85 2.69 2.52 3.30 3.77 4.44 3.38 3.56 3.43 2.48 3.57 1.83



173.9 173.9

16-Ap.xl 17-Ap.xl

b.d.l 0.51

0.00 0.05

0.07 0.27

0.06 0.07

0.02 0.06

54.00 54.00

0.09 0.09

b.d.l 0.00

57.54 55.40

1.74 3.40

b.d.l b.d.l

0.11 0.39

0.42 0.60

0.37 2.41

20.70 25.16

0.10 0.13

774.69 935.56

621.02 643.38

5.87 6.98

0.03 0.04

0.01 0.05

b.d.l 0.01

b.d.l b.d.l

1162.30 1191.17

2959.27 3127.31

1714.57 1833.02

317.56 334.43

49.17 61.61

28.58 29.45

144.59 146.71

3.23 3.16

0.06 0.05

0.01 0.01

3.30 3.25

0.02 0.10

6.94 9.06

1.92 2.17



Sample Lithology Sulfide Sulfide Texture/Occurrence Generation δ
34

S (‰  VCDT) Method

CL-06-16-47.6 gabbro Py Fracture Secondary 0.8 C

CL-06-16-59.9 gabbro Py Fracture Secondary 0.6 C

CL-06-05-77.72 gabbro Po Stringer Secondary 2.5 C

CL-06-05-77.72-1 gabbro Po Stringer Secondary 0.9 I

CL-06-05-77.72-2 gabbro Po Stringer Secondary 0.5 I

CL-06-05-77.72-3 gabbro Po Stringer Secondary 0.1 I

CL-06-05-77.72-4 gabbro Po Stringer Secondary -1.3 I

CL-06-05-77.72-5 gabbro Po Stringer Secondary 0.8 I

CL-06-05-77.72-6 gabbro Po Stringer Secondary 1.7 I

CL-06-05-77.72-7 gabbro Po Stringer Secondary 1.2 I

CL-06-16-52.5 gabbro Po Disseminated Primary 1.2 C

CL-06-16-55.0 gabbro Po Disseminated Primary 1.2 C

CL-06-16-56.3 gabbro Po Disseminated Primary 1.3 C

CL-06-16-57.5 gabbro Po Disseminated Primary 1.3 C

CL-06-16-58.6 gabbro Po Disseminated Primary 1.0 C

CL-06-16-61.7 gabbro Po Disseminated Primary 1.2 C

CL-06-16-63.8 gabbro Po Disseminated Primary 1.0 C

CL-06-01-22.5 gabbro Po Disseminated Primary 1.4 C

CL-06-01-22 gabbro Po Semi-Massive Primary 1.1 C

CL-06-16-47.6 gabbro Po Semi-Massive Primary 1.2 C

CL-06-16-78.75 massive sulfide Po Massive Primary 1.2 C

CL-06-16-84.6 massive sulfide Po Massive Primary 1.2 C

CL-06-01-81.2 massive sulfide Po Massive Primary 1.1 C

CL-06-05-81.6 massive sulfide Po Massive Primary 1.3 C

CL-06-05-81.6 massive sulfide Ccp Disseminated Primary 1.0 C

CL-07-01-115 gabbro Po Interstitial Primary 0.0 C

CL-07-01-422.9 gabbro Po Interstitial Primary 0.9 C

CL-07-05-14 gabbro Po Interstitial Primary -0.4 C

CL-07-05-50 websterite Po Interstitial Primary 0.2 C

CL-07-14-323.5 gabbro Po Interstitial Primary 0.3 C

C-L07-14-477.5 gabbro Po Interstitial Primary -0.1 C

CL-07-01-373 olivine gabbro Po Interstitial Primary 0.9 C

CL-07-01-373-1 olivine gabbro Po Interstitial Primary 1.4 I

CL-07-01-373-2 olivine gabbro Po Interstitial Primary 0.7 I

CL-07-01-373-3 olivine gabbro Po Interstitial Primary 0.6 I

CL-07-01-373-4 olivine gabbro Po Interstitial Primary 0.5 I

CL-07-01-373-5 olivine gabbro Po Interstitial Primary 0.5 I

CL-07-01-373-6 olivine gabbro Po Interstitial Primary 0.6 I

CL-07-01-373-7 olivine gabbro Po Interstitial Primary 1.2 I

Appendix 20: Sulphur isotope analyses



CL-07-01-373-1 olivine gabbro Po Interstitial Primary 0.6 I

CL-07-01-373-2 olivine gabbro Po Interstitial Primary 0.9 I

CL-07-01-373-3 olivine gabbro Po Interstitial Primary 1.1 I

CL-07-01-373-4 olivine gabbro Po Interstitial Primary 0.6 I

CL-07-01-373-5 olivine gabbro Po Interstitial Primary 1.0 I

CL-07-01-373-6 olivine gabbro Po Interstitial Primary 0.9 I

CL-07-01-373-7 olivine gabbro Po Interstitial Primary 0.9 I

CL-07-01-373-1 olivine gabbro Po Ilmenite hosted SUL Primary -0.3 I

CL-07-01-373-2 olivine gabbro Po Ilmenite hosted SUL Primary 0.1 I

CL-07-01-373-3 olivine gabbro Po Ilmenite hosted SUL Primary 0.2 I

CL-07-01-373-4 olivine gabbro Po Ilmenite hosted SUL Primary 1.4 I

CL-07-01-373-5 olivine gabbro Po Ilmenite hosted SUL Primary -0.1 I

CL-07-01-373-6 olivine gabbro Po Ilmenite hosted SUL Primary -0.1 I

CL-07-01-373-7 olivine gabbro Po Ilmenite hosted SUL Primary 0.3 I

CL-07-01-373-1 olivine gabbro Po Olivine hosted SUL Primary 1.0 I

CL-07-01-373-2 olivine gabbro Po Olivine hosted SUL Primary 0.4 I

CL-07-01-373-3 olivine gabbro Po Olivine hosted SUL Primary 0.4 I

CL-07-01-373-4 olivine gabbro Po Olivine hosted SUL Primary 0.0 I

CL-07-01-373-5 olivine gabbro Po Olivine hosted SUL Primary 0.5 I

CL-07-01-373-6 olivine gabbro Po Olivine hosted SUL Primary 0.1 I

CL-07-01-373-7 olivine gabbro Po Olivine hosted SUL Primary 0.3 I

CL-07-01-373-8 olivine gabbro Po Olivine hosted SUL Primary -0.6 I

CL-06-16-35-1 Burwash sediments Po Matrix - -0.3 I

CL-06-16-35-2 Burwash sediments Po Matrix - -0.1 I

CL-06-16-35-3 Burwash sediments Po Matrix - 0.5 I

CL-06-16-35-4 Burwash sediments Po Matrix - -0.1 I

CL-06-16-35-5 Burwash sediments Po Matrix - 0.7 I

CL-06-16-35-6 Burwash sediments Po Matrix - 0.2 I

CL-06-16-35-7 Burwash sediments Po Matrix - 0.0 I

CL-06-16-35-8 Burwash sediments Po Matrix - 0.3 I

CL-06-16-35-9 Burwash sediments Po Matrix - 0.4 I

CL-06-16-35-10 Burwash sediments Po Matrix - 0.8 I

Py=pyrite; Po=pyrrhotite; Ccp=chalcopyrite; SUL = sulfide melt inclusion


