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Abstract

Generalized Mono-Implicit Runge-Kutta Methods for Stiff Ordinary Differential
Equations

by

Fatima Dow

Ordinary differential equations (ODEs) arise in many applications. Typically these
ODEs are sufficiently complicated that they must be solved using numerical methods.
One of the well-known classes of numerical methods for ODEs is the class of Mono-
Implicit Runge-Kutta (MIRK) methods. An important property of a MIRK method
is its order; a method is of order p if its global error is O(hp). An issue with MIRK
methods, when applied to certain ODEs, known as stiff ODEs, is that when they
should be of order p, they perform as if their order is q, where q < p. This is called
order reduction. This means that the MIRK methods will be inefficient when the
ODE is stiff because the amount of computation that is performed is not consistent
with the accuracy obtained.

In this thesis, we derive generalizations of MIRK methods that can avoid order
reduction when the ODE is stiff.
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Chapter 1

Introduction

Mathematical models play an important role in the analysis of real world problems

that arise in many branches of science, engineering, and economics; see, e.g., [5].

Often these mathematical models involve ODEs which describe how a system changes

with time. These ODEs are typically too difficult to solve by hand. Therefore, it is

common to obtain approximate solutions by means of numerical methods. In this

thesis, we focus on a subclass of the well-known implicit-Runge-Kutta methods [6],

called mono-implicit Runge-Kutta (MIRK) methods, [8], ]9], which have been used to

compute numerical solutions of ODEs. During the process of solving the ODE these

methods partition the problem domain using a step size sequence with steps of size

h for initial value ODEs (explained later in this chapter) or a mesh of subintervals

each of size h for boundary value ODEs (also explained later in this chapter).

An important property of a MIRK method is its order; a MIRK method is of

order p if its global error behaves like O(hp). (The global error of a point t is the

difference between the numerical solution approximation at t and the exact solution

at t.) Unfortunately, when a MIRK method is applied to certain ODEs known as

stiff ODEs, the method suffers from order reduction. Stiffness (explained later in

1
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this chapter) is a property of some differential equations which causes the observed

accuracy of some numerical methods to be unrelated to the theoretical order of the

method [16], [22]. This means that a pth order MIRK method will perform as if it

were a method of order q, where q < p. (In [16], it is shown that q is the stage

order of the method; stage order will be defined in Chapter 2.) This leads to these

methods being inefficient for the numerical solution of stiff ODEs since the amount

of computation performed is that of a pth order method, while the achieved accuracy

is that of a lower order method. The lower order accuracy could be achieved using a

method of order q that requires less computational effort.

The main purpose of this thesis is to describe the development of a family of

generalized MIRK methods for use with stiff ODEs. These new methods do not

suffer from order reduction when applied to stiff ODEs.

This thesis is organized as follows. In this chapter, a summary of the types of dif-

ferential equations we are interested in is provided; we also discuss stiffness. Chapter

2 first describes Runge-Kutta methods. This chapter also discusses MIRK methods.

The order and stage order for a MIRK method are explained, and we give descrip-

tions of a number of families of MIRK methods having orders 1 through 6. Next, in

Chapter 3, numerical experiments on non-stiff ODEs and stiff ODEs are presented

to demonstrate order reduction for standard MIRK methods. Chapter 4 considers

our proposed solution to the issue of order reduction for MIRK methods, which leads

us to introduce generalized MIRK methods; these are methods in which some of the
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stages are generalized to allow for an increase in the stage order of the methods so

that they will not suffer from order reduction when applied to stiff ODEs. In Chapter

5, we give numerical results from some computational experiments, where we compare

the standard MIRK methods with the new generalized MIRK methods. These com-

parisons suggest that generalized MIRK methods are good candidates for use in the

numerical solution of stiff ODEs since they do not show evidence of order reduction

when applied to stiff ODEs . Finally, Chapter 6 gives the conclusions from this thesis

and suggestions for future work.

1.1 Ordinary Differential Equations

An ordinary differential equation is an equation that includes a function of one

independent variable t (e.g., time or space) and derivatives of this function with

respect to t [2]. In this thesis, we assume a system of ODEs having the general form

y′(t) = f(t, y(t)), y : R→ Rn, f : R×Rn → Rn, (1.1)

where y and f are vector functions of size n.

As mentioned earlier, ODEs occur in many applications. These include, for exam-

ple, computational models of the human heart, numerical weather forecasting, and

predicting the spread of viruses; see, e.g, [1].
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1.1.1 Initial Value ODEs (IVODEs)

We look for a solution to (1.1) for t ≥ a with

y(a) = y0, (1.2)

where a is the initial value of t and y0 ∈ Rn is the known solution at t = a. The

first order system of differential equations (1.1) with the initial condition described

in (1.2) is known as an initial value ODE (IVODE); see, e.g, [4].

1.1.2 Boundary Value ODEs (BVODEs)

Boundary value ODEs are systems of differential equations for which the values of

the solution components are specified at two distinct points [1]. We are interested

in the BVODEs written in first order system form (1.1) with boundary conditions

(BCs),

g(y(a), y(b)) = 0, (1.3)

where g : Rn ×Rn → Rn is a vector function, and 0 ∈ Rn is the zero vector.

1.2 Stiff ODEs

There are various definitions of stiffness in the literature for ODEs. The earli-

est research on stiffness in differential equations was presented by the two chemists:

Curtiss and Hirschfelder [7] in 1952. They gave a definition of stiffness as follows:
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“Stiff equations are equations where certain implicit methods perform better, usu-

ally tremendously better, than explicit ones”. The next important development was

by Dahlquist [13] in 1963. Based on his work, he described stiff ODE systems as

“Systems containing very fast components as well as slow components”.

The chemical reaction of Robertson is one of the most well-known examples that

involves stiff ODEs. The equations and initial values are given in [21] by

x′1 = −0.04x1 + 104x2x3, x1(0) = 1, (1.4)

x′2 = 0.04x1 − 3.107x22 − 104x2x3, x2(0) = 0, (1.5)

x′3 = 3.107x22, x3(0) = 0, (1.6)

where the reaction rate 0.04 is relatively slow, while the reaction rate 3.107 is very

fast.

When an explicit method, such as the explicit Euler method (see (2.4)) is used to

solve a stiff ODE, the issue is that the method is forced to take very small steps due

to stability issues. This makes the method very inefficient (see, e.g., [4]).

There is a second issue associated with stiff ODEs. Previous work [16], [22] has

shown that for stiff ODEs even when we use an implicit method that does not require

a step size restriction due to stability issues, the accuracy of the numerical method

appears to be unrelated to the classical order of the method. This phenomenon is
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known as order reduction. In this thesis, we will study MIRK methods that suffer

from order reduction when applied to stiff ODEs.



Chapter 2

Runge-Kutta Methods

Runge-Kutta (RK) methods are a popular class of methods for the numerical solu-

tion of ODEs [4]. RK methods can be divided into two major subclasses. The first is

the Explicit Runge-Kutta (ERK) methods which were first developed for the solution

of IVODEs by Runge, with further development by Heun and Kutta; see, e.g., [4].

The second major subclass is the Implicit Runge-Kutta (IRK) methods which were

presented in [6] for the use in the numerical solution of IVODEs. These methods have

also been described in [26] for the use in the numerical solution of BVODEs.

2.1 RK methods for IVODEs

A Runge-Kutta (RK) method can be used to obtain an approximation to the so-

lution of an IVODE of the form

y′(t) = f(t, y(t)), y(t0) = y0. (2.1)

The RK method is used in a stepwise fashion, starting from the initial point, t0, and

passing through a sequence of points, ti, with computed solution approximations, yi,

and ending at the required end point, tend.

7
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2.2 Explicit Runge-Kutta (ERK) methods

The family of s-stage Explicit Runge-Kutta (ERK) methods is defined as follows.

Given a numerical solution approximation, yi, at a point ti, a numerical approximation

yi+1 at ti+1 is given by

yi+1 = yi + h
s∑
r=1

brkr, (2.2)

where

kr = f

ti + crh, yi + h
s−1∑
j=1

arjkj

 , r = 1, 2, . . . , s, (2.3)

where h = ti+1 − ti, and each stage kr depends only on previous stages, which makes

the calculation of the stages a simple process. The coefficients cr, arj, br for an ERK

method can be represented using a Butcher Tableau [4]:

0 0 0 . . . . . . 0

c2 a21 0 . . . . . . 0

...
...

. . .
...

...
...

. . .
...

cs as1 as2 . . . as,s−1 0

b1 b2 . . . . . . bs

.

The simplest ERK method is the (Explicit) Euler method. The formula for this

method is

yi+1 = yi + hf(ti, yi), (2.4)
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and the corresponding tableau is

0 0

1

.

The explicit Euler method is of first order accuracy; this means that its global error

is O(h1).

Another example of an ERK method is the classical 4-stage, 4th Order, stage order

1 Runge-Kutta method see, e.g., [4]. This has the form

yi+1 = yi +
h

6
(k1 + 2k2 + 2k3 + k4), (2.5)

where

k1 = f(ti, yi),

k2 = f(ti +
h

2
, yi +

h

2
k1), (2.6)

k3 = f(ti +
h

2
, yi +

h

2
k2),

k4 = f(ti + h, yi + hk3).
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Its tableau is

0 0 0 0 0

1
2

1
2

0 0 0

1
2

0 1
2

0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

.

This method is fourth order; this means that its global error is O(h4).

The coefficients of a RK method are chosen to satisfy certain conditions, known

as order conditions, which determine the classical order of the method. We explain

order conditions later in this chapter.

2.3 Implicit Runge-Kutta (IRK) methods

For an implicit RK (IRK) method, during the ith step, an approximation, yi+1, to

the exact solution, y(t), evaluated at the point ti+1 = ti + h, has the form

yi+1 = yi + h
s∑
r=1

brkr, (2.7)

where

kr = f

ti + crh, yi + h
s∑
j=1

arjkj

 , r = 1, 2, . . . , s. (2.8)
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The coefficients of this method are given in a Butcher tableau of the form

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s

...
...

...
...

cs as1 as2 . . . ass

b1 b2 . . . bs

.

The above tableau is sometimes condensed to:

c A

bT
,

where c = (c1, c2, ..., cs)
T , b = (b1, b2, ..., bs)

T , A is the s by s matrix whose (i , j)th

component is aij. Also, the coefficients are usually required to satisfy c = Ae, where

e is the vector of l’s of length s. This is equivalent to requiring cr =
∑s
j=1 arj.

For IRK methods, each stage kr in (2.8) is implicitly defined in terms of itself and

the other stages. Therefore, in order to compute values for the stages, it is necessary

to solve a nonlinear system of size n× s where n represents the number of differential

equations and s represents the number of stages of the method. The non-linear system

for the determination of the stages is often solved using a Newton type iteration [4],

which makes the calculation of the stages a computationally expensive process.
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2.4 Mono-implicit Runge-Kutta methods

A number of subclasses of the IRK methods have been developed and investigated

in the literature. One subclass which has been found to be efficient for the numerical

solution of ODEs, is the class of mono-implicit Runge-Kutta (MIRK) methods [8],

[9]. An important property of this class of methods is that for IVODEs, they are

implicit only in the single unknown yi+1, and for BVODEs they are explicit in yi and

yi+1.

Muir and Enright [19] introduced MIRK formulae as a particular class of param-

eterized implicit Runge-Kutta methods having the form

yi+1 = yi + h
s∑
r=1

brkr, (2.9)

where

kr = f

ti + crh, (1− vr)yi + vryi+1 + h
r−1∑
j=1

xrjkj

 , r = 1, 2, . . . , s. (2.10)

The method is defined by the number of stages, s, the coefficients, {vr}sr=1 and

{xrj}r−1,sj=1,r=1, and the weights {br}sr=1. The abscissa, {cr}sr=1, are defined by cr =

vr+
∑r−1
j=1 xrj, which is equivalent to requiring c = Xe+v. The coefficients of a MIRK
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method are often given in a tableau of the form,

c1 v1 0 0 . . . . . . 0

c2 v2 x21 0 . . . . . . 0

...
...

...
. . .

...

...
...

...
. . .

...

cs vs xs1 xs2 . . . xs,s−1 0

b1 b2 . . . . . . bs

.

which is sometimes condensed to the form

c v X

bT
,

where c = (c1, c2, ..., cs)
T , v = (v1, v2, ..., vs)

T , b = (b1, b2, ..., bs)
T , X is the s by s

matrix whose (i , j)th component is xij. It can be shown that the MIRK method

(2.9), (2.10) is equivalent to the general IRK method (2.7), (2.8), with A defined as

A = X + vbT [5].

For MIRK methods, all stages kr, (2.10), are implicit only in yi+1. The computation

of yi+1 can thus be reduced to the numerical solution of one system of only n nonlinear

equations. This means that the computation on each step, based on the use of MIRK

method, is less costly than that based on IRK methods. The trade off, however, is

that the maximum order of an implicit s-stage MIRK method is lower than that of
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an s-stage IRK method for s ≥ 2.

2.4.1 Order conditions for MIRK methods

As mentioned earlier, a MIRK method is of order p if the numerical solution of the

ODE, obtained by solving (2.9), satisfies |y(ti+1) − yi+1| = O(hp), where y(ti) is the

exact solution of (1.1) evaluated at ti and yi+1 is the numerical solution approximation

at ti+1. MIRK methods that appear in the literature typically have p in the range from

1 to 8. A family of MIRK methods of a particular order p is derived by requiring its

coefficients to satisfy a set of equations called order conditions. Since MIRK methods

can be shown as IRK methods [19], the order conditions for MIRK methods are

similar to those for IRK methods [4].

For example, an IRK method having order p = 1, with the tableau

c A

bT
,

must satisfy

bT e = 1. (2.11)

The order condition for second order is

bT c =
1

2
. (2.12)



15

An IRK method must satisfy (2.11) and (2.12) in order to be second order.

The order conditions for third order are

bT c2 =
1

3
, bTAc =

1

6
, (2.13)

where cj = (cj1, c
j
2, ..., c

j
s)
T . An IRK method must satisfy (2.11), (2.12), and (2.13) in

order to be third order.

The order conditions for fourth order are

bT c3 =
1

4
, bT cAc =

1

8
, bTAc2 =

1

12
, bTA2c =

1

24
. (2.14)

So, if an IRK method has coefficients that satisfy all conditions (2.11), (2.12), (2.13),

and (2.14), then it is a fourth order method.

For MIRK methods, the order conditions up to order 4 are bT e = 1, bT c =

1
2
, bT c2 = 1

3
, bT (Xc + v

2
) = 1

6
, bT c3 = 1

4
, bT c(Xc + v

2
) = 1

8
, bT (Xc2 + v

3
) =

1
12
, bT (X(Xc+ v

2
) + v

6
) = 1

24
[16].

Table 2.1: Number of order conditions for MIRK methods of orders p = 1, ..., 8.

p 1 2 3 4 5 6 7 8
number of order conditions 1 2 4 8 17 37 85 200

Table (2.1) shows that the number of order conditions increases rapidly with

increasing order.
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2.4.2 Stage order conditions for MIRK methods

An additional set of conditions that can be imposed on the coefficients of a MIRK

method are the stage order conditions. These are not required but it is often helpful

to impose some of these conditions because it turns out that imposing stage order

conditions will reduce the number of order conditions that must be satisfied [20]. A

MIRK method is of stage order q if its coefficients satisfy the stage order conditions

up to stage order q

Xcj−1 +
v

j
=
cj

j
, j = 1, . . . , q, (2.15)

where c0 = e [20].

Theorem : (i) a MIRK method having stage order 2 must have c1 = 0 or 1, (ii) a

MIRK method, with at least 2 stages and having stage order 3, must have x2,1 = 0

and either c1 = 0; c2 = 1 or (equivalently) c1 = 1; c2 = 0, and (iii) the maximum

stage-order of an s stage MIRK method is min(s, 3).

A proof of this theorem can be found in [5]. According to this theorem, the

maximum stage order for a pth order MIRK method is q = 3. This means, it is

impossible to derive a MIRK method of stage order greater than 3.

In the following, we will show examples of MIRK methods of different orders.
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2.5 A MIRK method of order 1

An example of a first order, 1-stage, stage order 1 MIRK method is the explicit

Euler method (2.4). The general form of the tableau is given in (2.16); the explicit

Euler method has c1 = v1 = 0 and b1 = 1.

c1 v1 0

b1

. (2.16)

This class of methods also includes the first order implicit Euler method, obtained by

choosing c1 = v1 = 1 and b1 = 1; this method has stage order 1.

2.6 A MIRK method of order 2

It is also possible to obtain a 1-stage, second order method by choosing c1, v1, b1

appropriately. The only order 2 MIRK method with 1-stage is the mid-point method

[20]. This method has stage order 1 and the tableau of this method is

1
2

1
2

0

1

. (2.17)

An example of a MIRK method of order 2 with 2 stages and having stage order 2 is
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the trapezoidal method [5], which has the following tableau

0 0 0 0

1 1 0 0

1
2

1
2

. (2.18)

2.7 A MIRK method of order 3

An example of a two stage, third order, stage order two MIRK method is given in

[5]; its tableau is

1 1 0 0

1
3

5
9
−2
9

0

1
4

3
4

. (2.19)

2.8 A MIRK method of order 4

The unique three stage, fourth order, stage order three MIRK method is given in

[5]; its tableau is

0 0 0 0 0

1 1 0 0 0

1
2

1
2

1
8
−1
8

0

1
6

1
6

2
3

. (2.20)
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2.9 A MIRK method of order 5

An example of a four stage, fifth order, stage order three MIRK method is [5]

0 0 0 0 0 0

1 1 0 0 0 0

1
4

5
32

9
64

−3
64

0 0

7
10

413
1250

−63
5000

−21
1000

252
625

0

1
14

5
54

32
81

250
567

. (2.21)

2.10 A MIRK method of order 6

An example of a five stage, sixth order MIRK method is given in [20], where the

stage order has the maximum value of three:

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
2
−
√
21
14

1
2
− 9

√
21

98
1
14

+
√
21
98
− 1

14
+
√
21
98

0 0 0

1
2

+
√
21
14

1
2

+ 9
√
21

98
1
14
−
√
21
98
− 1

14
−
√
21
98

0 0 0

1
2

1
2

− 5
128

5
128

7
√
21

128
−7
√
21

128
0

1
20

1
20

49
180

49
180

16
45

. (2.22)
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2.11 RK methods for BVODEs

In the BVODE context, given a mesh which subdivides the problem interval, the

discrete system, Φ(Y ) = 0, consisting of the boundary conditions, g(y0, yN) = 0, and

n more equations per subinterval, can be solved with a Newton iteration to obtain

a discrete numerical solution Y having the form Y = [y0, y1, ..., yN ]T , where N is

the number of subintervals. When the RK method is applied as the discretization

method, the set of number n equations associated with the ith subinterval has the

form

Φi(yi, yi+1) = yi+1 − yi − h
s∑
r=1

brkr = 0, (2.23)

with the stages, kr, defined as in (2.8).

The use of MIRK methods for the numerical solution of BVODEs has been de-

scribed in [10,11,14,15,17]. When a MIRK method is used for the solution of a

BVODE, the set of equations associated with the ith subinterval has the same form

as in (2.23), but the corresponding stages are of the mono-implicit type as in (2.10).

Since approximations to both yi and yi+1 can be obtained from the current Newton

iterate, the stages of the MIRK method can be computed explicitly [14], which means

these methods have approximately the same computation cost on each subinterval as

the ERK methods do for each step when they are applied to an IVODE.
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2.12 Order reduction

Order reduction arises when the stiffness of a problem causes a numerical method to

suffer a decrease in its order, rather than having the expected classical order associated

with the order conditions its coefficients satisfy. In 1974, Prothero and Robinson [22]

showed that when certain numerical methods were applied to solve stiff problems, the

order that these methods exhibited was not the expected order, but rather was equal

to their stage order. Further analysis was provided in [16] where it was shown that

the order of the method can be reduced to the stage order or the stage order plus 1,

depending on certain characteristics of the problem. Moreover, it was noted by Voss

and Muir [25] that the implicit Runge-Kutta methods are affected by the phenomena

of order reduction when applied to stiff ODEs; regardless of its classical order, the

method will behave as if its order is only its stage order.

Thus, it can be important for a method to have as high a stage order as possible.

However, in [5] it is proved that while it is possible to derive a MIRK method of any

classical order, the method can have at most stage order 3 (see Subsection 2.4.2).

This means that for stiff ODEs, an order reduction phenomenon can cause a MIRK

method having stage order 3 to behave if its order is only 3, independent of its classical

order. This implies that the MIRK method will be inefficient for stiff ODEs because

extra computation will be done without obtaining extra accuracy.

In 2014, Chen [12] has extended the tableau of different types of IRK methods

to obtain methods with higher stage order. Such methods do not suffer from order
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reduction when applied to stiff problems. This paper is relevant to this thesis because

we will similarly extend the general form for a MIRK method to obtain a method

with a higher stage order that will not suffer from order reduction when applied to a

stiff ODE.



Chapter 3

Order Reduction Experiments for IVODEs and for

BVODEs

3.1 Numerical Experiments for IVODEs

Numerical experiments are presented here to demonstrate order reduction for MIRK

methods of different orders. For IVODEs, a MIRK method (2.9) with stages (2.10),

computes approximate solution values yi ≈ y(ti) in a step-wise fashion (with step size

h) starting with initial value t0 = a and the solution y0 at t0 = a. Then, using the

MIRK method, the next approximation yi+1 is computed at ti+1 = ti + h, proceeding

across the domain to the required final t value. Since the stages are implicit in yi+1,

each step requires the solution of a system of n non-linear equations at the end of

each step. The absolute global error is computed by taking the difference between

the known analytical solution and the approximate solution. The maximum error is

the largest error over all steps. We then repeat the computation with the step size

reduced by a half; if the method is of order p the error will be reduced by (1/2)p.

Then, the observed order of the MIRK method is obtained by taking log2 of the error

ratio. For IVODEs, the results were obtained by using an implementation within the

Scilab programming environment [27]. See Appendix A.

23
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First, we consider the following simple non-stiff IVODE:

y′(t) = λy(t), λ = −1, (3.1)

with initial condition

y(0) = 1.

Its exact solution is

y(t) = e−t.

Second, we consider the following example of a stiff IVODE (see [22]). It is defined

by the IVODE:

y′(t) = g′(t) + λ(y(t)− g(t)), y(0) = g(0). (3.2)

where

g(t) = 10− (10 + t)e−t, λ ∈ R and λ < 0. (3.3)

Its analytical solution is g(t) (for any differentiable g(t)); this can be seen simply by

substituting y(t) = g(t) into (3.2).

3.1.1 Numerical Results

In this subsection, we will show numerical results for the non-stiff IVODE (3.1) and

the stiff IVODE (3.2) obtained by using standard MIRK methods of various orders.

For stiff ODEs, we need to choose λ to be sufficiently large magnitude in order to

observe order reduction.
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Table 3.1: Numerical results for the non-stiff IVODE (3.1) with λ = −1 for the
2-stage, third order, stage order 2 MIRK method (2.19).

h maxerr error ratio observed order
0.1 0.0000050
0.05 0.0000006 7.8985544 2.9815886
0.025 7.931D-08 7.9479749 2.9905873

Table (3.1) shows that when we applied the 2-stage, 3rd order, stage order 2 MIRK

method (2.19) to the non-stiff IVODE (3.1) with λ = −1, and reduced the step size

by half, the error dropped by a factor of approximately 1/8. This means that the

method has 3rd order, which means that there is no order reduction.

Table 3.2: Numerical results for the stiff IVODE (3.2) with λ = −150 for the 2-stage,
third order, stage order 2 MIRK method (2.19).

h maxerr error ratio observed order
0.2 0.0001645
0.1 0.0000381 4.3179637 2.1103511
0.05 0.0000077 4.9472846 2.3066369

Table (3.2) shows that when we applied the 2-stage, 3rd order, stage order 2

MIRK method (2.19) to the stiff IVODE (3.2) with λ = −150, the order of the 2-

stage, 3rd order, stage order 2 MIRK method drops from its classical order, 3, to its

stage order, 2. That is, the error ratio drops to approximately 1/4. This illustrates

that the method suffers from order reduction.
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Table 3.3: Numerical results for the non-stiff IVODE (3.1) with λ = −1 for the
3-stage, fourth order, stage order 3 MIRK method (2.20).

h maxerr error ratio observed order
0.2 0.0000008
0.1 5.112D-08 16.028571 4.0025739
0.05 3.194D-09 16.007143 4.0006439

Table (3.3) shows that the 3-stage, 4th order, stage order 3 MIRK method (2.20)

does not suffer from order reduction when applied to the non-stiff IVODE (3.1) with

λ = −1, because it has its classical order, which is 4.

Table 3.4: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 3-stage,
fourth order, stage order 3 MIRK method (2.20).

h maxerr error ratio observed order
0.1 0.0000002
0.05 2.553D-08 7.0152226 2.8104889
0.025 2.660D-09 9.5955363 3.2623634

Table (3.4) shows that for the stiff IVODE (3.2) with λ = −5000, the 3 stage, 4th

order, stage order 3 MIRK method (2.20) drops from its classical order 4, to its stage

order 3. This shows that the method suffers from order reduction.
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Table 3.5: Numerical results for the non-stiff IVODE (3.1) with λ = −1 for the
4-stage, fifth order, stage order 3 MIRK method (2.21).

h maxerr error ratio observed order
0.25 0.0000002
0.125 4.878D-09 33.460711 5.0643962
0.0625 1.492D-10 32.687957 5.0306873

Table (3.5) shows that the 4-stage, 5th order, stage order 3 MIRK method (2.21)

does not suffer from order reduction when applied to the non-stiff IVODE (3.1) with

λ = −1, because it retains its classical order, which is 5.

Table 3.6: Numerical results for the stiff IVODE (3.2) with λ = −55 for the 4-stage,
fifth order, stage order 3 MIRK method (2.21).

h maxerr error ratio observed order
0.25 0.0001151
0.125 0.0000108 10.66354 3.4146146
0.0625 0.0000012 9.2841103 3.2147637

Table (3.6) shows that for the stiff IVODE (3.2) with λ = −55, the 4-stage, 5th

order, stage order 3 MIRK method (2.21) drops from its classical order 5, to its stage

order 3. This implies that the method suffers from order reduction.
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Table 3.7: Numerical results for the non-stiff IVODE (3.1) with λ = −1 for the
5-stage, sixth order, stage order 3 MIRK method (2.22).

h maxerr error ratio observed order
0.1 3.651D-12
0.05 5.690D-14 64.167805 6.0037777

Table (3.7) shows that the 5-stage, 6th order, stage order 3 MIRK method (2.22)

does not suffer from order reduction when applied to the non-stiff IVODE (3.1) with

λ = −1, because it retains its classical order, which is 6.

Table 3.8: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 5-stage,
sixth order, stage order 3 MIRK method (2.22).

h maxerr error ratio observed order
0.012 2.021D-14
0.006 2.665D-15 7.5833333 2.9228321

Table (3.8) shows that, for the stiff IVODE (3.2) with λ = −5000, the 5-stage,

6th order, stage order 3 MIRK method (2.22) drops from its classical order 6, to its

stage order 3. This shows that the method suffers from order reduction.
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3.2 Numerical experiments for BVODEs

For BVODEs, a MIRK method (2.23) with stages (2.10), computes approximate

solution values yi, i = 0, 1, ..., N , at the points of an (N + 1)-point mesh which sub-

divides the problem interval. Since the stages are explicit in yi and yi+1 (assuming

the availability of the approximations yi, i = 0, 1, ..., N , from the current Newton

iterate Y (i)), this requires only the solution of a system of n(N + 1) non-linear equa-

tions where n is the number of ODEs and N is the number of subintervals. The

results were obtained by using an implementation within the Scilab programming

environment [27]. See Appendix A.

We consider the following example of a BVODE [1]:

y′1(t) = λy2(t), (3.4)

y′2(t) = λy1(t) + λ cos(πt)2 + 2/λπ2 cos(2tπ),

where the boundary conditions are

y1(0) = 0,

y2(1) = 0.

Its exact solution is

y1(t) =
eλ(t−1) + e−λt

1 + e−λ
− cos2(πt),
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y2(t) =
eλ(t−1) − e−λt

1 + e−λ
+
π

λ
sin(2πt).

Note that a BVODE (3.4) is only stiff if we choose λ to have a large enough negative

value; e.g. λ = −1 will not give a stiff BVODE.

3.3 Numerical Results for BVODEs

In this section, we will show numerical results for the BVODE (3.4) obtained by

using the 3-stage, 4th order, stage order 3 MIRK method (2.20) and the 5-stage, 6th

order, stage order 3 MIRK method (2.22).

Table 3.9: Numerical results for the non-stiff BVODE (3.4) with λ = −1 for the
3-stage, 4th order, stage order 3 MIRK method (2.20).

N h maxerr1 maxerr2 observed order1 observed order2
52 1/52 0.0000002 0.0000003
104 1/104 1.223D-08 1.889D-08 4.0009056 3.9984742

For the non-stiff BVODE (3.4) with λ = −1, the 3-stage, 4th order, stage order 3

MIRK method (2.20) does not suffer from order reduction because it has its classical

order of 4.

Table 3.10: Numerical results for the stiff BVODE (3.4) with λ = −150 for the
3-stage, 4th order, stage order 3 MIRK method (2.20).

N h maxerr1 maxerr2 observed order1 observed order2
52 1/52 0.0242038 0.0242039
104 1/104 0.0023085 0.0023085 3.3901937 3.3901973

For the stiff BVODE (3.4) with λ = −150, the 3-stage, 4th order, stage order 3

MIRK method (2.20) drops from its classical order 4, to its stage order 3. This shows
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that the method suffers from order reduction.

Table 3.11: Numerical results for the stiff BVODE (3.4) with λ = −1 for the 5-stage,
6th order, stage order 3 MIRK method (2.22).

N h maxerr1 maxerr2 observed order1 observed order2
19 1/19 9.141D-10 5.989D-10
38 1/38 1.424D-11 9.445D-12 5.9867628 6.0043873

For the non-stiff BVODE (3.4) with λ = −1, the 5-stage, 6th order, stage order

3 MIRK method (2.22) does not suffer from order reduction because it retains its

classical order of 6.

Table 3.12: Numerical results for the stiff BVODE (3.4) with λ = −750 for the
5-stage, 6th order, stage order 3 MIRK method (2.22).

N h maxerr1 maxerr2 observed order1 observed order2
19 1/19 0.2968541 0.2969199
38 1/38 0.0265662 0.0265662 3.4820928 3.4824125

For the stiff BVODE (3.4) with λ = −750, the 5-stage, 6th order, stage order 3

MIRK method (2.22) drops from its classical order 6, to its stage order 3. This shows

that the method suffers from order reduction.

3.4 Summary

MIRK methods of different orders are applied to solve non-stiff and stiff IVODEs

and BVODE. We experimentally observed that when a classical pth order MIRK

method is applied to the non-stiff IVODE (3.1) with λ = −1 and the non-stiff BVODE

(3.4) with λ = −1 the order of the MIRK method was as expected; that is there is no
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order reduction. However, when we applied the same method to the stiff IVODE (3.2)

and the stiff BVODE (3.4) with λ << −1, we found that the order of the method

drops from its classical order to its stage order. When the order of a method drops

from its classical order, there is wasted computation; it would be better to use a lower

order method that does not suffer from order reduction.

Order reduction for RK methods applied to stiff IVODEs has been observed in

the literature; see, e.g., [12, 16, 22, 25]. To our knowledge, the order reduction

phenomenon for RK methods applied to stiff BVODEs has not been reported in the

literature.



Chapter 4

Addressing the Order Reduction Issue for MIRK Methods

As mentioned earlier, although one can derive a MIRK method of any desired order,

the resultant method can have at most stage order 3 [5]. Thus, when a MIRK method

is applied to a stiff ODE, for example, even a 6th order method will behave like a 3rd

order method due to the order reduction phenomenon.

In this chapter, we will start with the general form for a MIRK method; such a

general form limits the method to having at most stage order 3. We will then extend

this general form to allow us to derive generalizations of MIRK methods that have a

higher stage order.

This extended general form will allow us to increase the number of coefficients as-

sociated with certain stages of the method that limit its stage order. We will first

apply the appropriate stage order conditions in order to ensure that the method has

the desired higher stage order. Then, we will derive a specific method by forcing the

remaining free coefficients to satisfy the desired order conditions. As mentioned ear-

lier, imposing high stage order leads to a reduction in the number of order conditions

that must be satisfied in order to obtain a method of a desired classical order. This

will determine specific values for the coefficients of the method allowing us to derive

33
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a specific generalized MIRK method with higher stage order. We expect that such a

method will not suffer from order reduction when applied to stiff ODEs.

For IVODEs, the higher stage order is obtained by allowing some of the stages to

be implicitly defined in terms of themselves and some of the other stages. This is in

addition to the dependence these stages already have on yi+1, the unknown solution

at the right hand end of the step. This means that in order to compute these implicit

stages and yi+1 in order to increase the stage order, the size of the non-linear system

that must be solved, will increase. Instead of needing to solve a non-linear system of

size n where n is the number of ODEs, the computation will require the solution of a

non-linear system of size n(l + 1) where l is the number of stages that are implicitly

defined in terms of each other.

When we impose a stage order that is equal to the classical order of the method,

these new methods will retain the desired classical order even for stiff IVODEs and

we can then take larger steps to achieve a desired accuracy. But the amount of work

per step will increase.

For BVODEs, when we introduce a number of implicit stages, in order to increase

the stage order the size of the non-linear system, that must be solved, will increase.

Rather then needing to solve a non-linear system of size n(N + 1), the computation

will involve the solution of a non-linear system of size n(N + 1) + l · n ·N where n is

the number of ODEs, N is the number of subintervals, and l is the number of stages

that are implicitly defined in terms of each other.
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Since all first order MIRK methods (2.16) have stage order 1, no order reduction

is possible. It is possible for a second order MIRK method to have only stage order

1 (the midpoint method (2.17)) and in that case order reduction would be a concern.

However, the standard Trapezoidal method (2.18) is of second order and has stage

order two and will not suffer from order reduction. In the following, we will derive

generalization of MIRK methods of orders 3, 4, 5, and 6. The Maple programming

environment [28] is employed to derive generalized MIRK methods. See Appendix B.

4.1 A 2-stage, 3rd order, stage order 3 Generalized MIRK method is

not possible

We first consider a generalization of a two stage, third order, stage order two MIRK

method, given in (2.19), to a two stage, third order, stage order three generalized

MIRK method. Its tableau is

0 0 0 0

c2 v2 x21 x22

b1 b2

. (4.1)

This implies that k2 = f (ti + c2h, (1− v2)yi + v2yi+1 + h(x21k1 + x22k2)). Note

that k2 now depends implicitly on itself and on yi+1.
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The stage order three conditions are

Xe+ v = c, Xc+
v

2
=
c2

2
, Xc2 +

v

3
=
c3

3
. (4.2)

Applying these conditions to (4.1), we get v2, x21, x22 in terms of c2 with c2 6= 2
3
.

Then, we apply the third order conditions, which are bT e = 1, bT c = 1
2
, bT c2 = 1

3
.

However in attempting to satisfy these conditions, we find that c2 must be 2
3
. This

proves that we cannot have a method with the tableau (4.1) being third order, and

having stage order three.

4.2 A 3-stage, 3rd order, stage order 3 MIRK method

Since, it is not possible to obtain a 2-stage, third order, stage order 3 generalized

MIRK method, we turn to a 3-stage, third order, stage order 3 MIRK method, for

which the tableau is

0 0 0 0 0

1 1 0 0 0

c3 v3 x31 x32 0

b1 b2 b3

. (4.3)

The application of the stage order 3 conditions (4.2), and the third order conditions,

which for a stage order 3 method are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, leads to one free
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parameter c3 with c3 6= 0, 1. An example with c3 = 1
3
, is the method whose tableau is

0 0 0 0 0

1 1 0 0 0

1
3

7
27

4
27

−2
27

0

0 1
4

3
4

. (4.4)

Thus it is possible to obtain a 3-stage, 3rd order, stage order 3 MIRK method:

there is no need to employ a generalized MIRK method.

4.3 A 3-stage, 4th order, stage order 4 Generalized MIRK method is

not possible

We first consider a generalization of the three stage, fourth order, stage order

three MIRK method given in (2.20), to a three stage, fourth order, stage order four

generalized MIRK method. For this method, we have the tableau:

0 0 0 0 0

1 1 0 0 0

c3 v3 x31 x32 x33

b1 b2 b3

. (4.5)
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We need to introduce x33 in order to try to have k3 have stage order four. Note

that k3 now depends implicitly on yi+1 and on itself. That is

k3 = f (ti + c3h, (1− v3)yi + v3yi+1 + h(x31k1 + x32k2 + x33k3)) . (4.6)

The stage order four conditions are

Xe+ v = c, Xc+
v

2
=
c2

2
, Xc2 +

v

3
=
c3

3
, Xc3 +

v

4
=
c4

4
. (4.7)

Applying these conditions to (4.5), we get v3, x31, x32, and x33 in terms of c3 with

c3 6= 1, 1
2
. Then, we apply the fourth order conditions, which for a stage order 4

method are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, and bT c3 = 1

4
. Unfortunately, we find that

the application of these conditions forces c3 to be 1
2
. Thus, we cannot get a method

with the tableau (4.5) being fourth order, and having stage order four.

4.4 A 4-stage, 4th order, stage order 4 Generalized MIRK method

Since, we cannot have a three stage, fourth order, stage order four Generalized

MIRK method, we thus turn to using a four stage, fourth order, stage order four
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Generalized MIRK method, for which the tableau is

0 0 0 0 0 0

1 1 0 0 0 0

c3 v3 x31 x32 x33 0

c4 v4 x41 x42 x43 0

b1 b2 b3 b4

. (4.8)

Note that, the third stage, in addition to being implicit in yi+1, is also implicit in

itself. However, the fourth stage is implicit only in yi+1.

The application of the stage order 4 conditions (4.7), and the fourth order condi-

tions, which for a stage order 4 method are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, and bT c3 = 1

4
,

leads to a family of methods with two free parameters c3 6= 0, 1, 1
2
, or c4, and c4 6= 0, 1,

or c3. An example, with c3 = 1
3
, and c4 = 2

3
, is the method whose tableau is

0 0 0 0 0 0

1 1 0 0 0 0

1
3
−5
27

4
27

1
27

1
3

0

2
3

8
27

2
27

−1
27

1
3

0

1
8

1
8

3
8

3
8

. (4.9)
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4.5 A 4-stage, 5th order, stage order 4 Generalized MIRK method

In this section, we consider a generalization of the four stage, fifth order, stage

order three MIRK method given in (2.21), to a four stage, fifth order, stage order

four generalized MIRK method, for which the tableau is

0 0 0 0 0 0

1 1 0 0 0 0

c3 v3 x31 x32 x33 0

c4 v4 x41 x42 x43 0

b1 b2 b3 b4

. (4.10)

Note that k3 is implicit in itself and in yi+1, while k4 is implicit only in yi+1.

We assume stage order four (4.7), which allow us to reduce the order conditions for

fifth order to bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
, and bT c4 = 1

5
. We apply the stage

order 4 conditions (4.7) to (4.10) to ensure that the method has the desired higher

stage order. We then apply the fifth order conditions. This gives a family of methods

with 1 free parameter c3 with the restriction that c3 6= 0, 1 or c4.
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By choosing c3 = 1
3
, we obtain a generalized four stage, fifth order, stage order four

MIRK method, which has the tableau

0 0 0 0 0 0

1 1 0 0 0 0

1
3

−5
27

4
27

1
27

1
3

0

4
5

416
625

4
125

−44
625

108
625

0

5
48

1
24

27
56

125
336

. (4.11)

We note that this method is of order 5 but has stage order four. When applied to

a stiff ODE we would expect to see order reduction from order 5 to order 4. This is

not as severe as in the MIRK method case where the order of the method would be

reduced to order 3.
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4.6 A 4-stage, 5th order, stage order 5 Generalized MIRK method is

not possible

We cannot have a four stage, fifth order, stage order five generalized MIRK method

by using the tableau (4.10) because there are not enough free coefficients to satisfy

the stage order 5 conditions and the fifth order conditions. Therefore, we generalize

(4.10) by introducing x34 and x44. The tableau is

0 0 0 0 0 0

1 1 0 0 0 0

c3 v3 x31 x32 x33 x34

c4 v4 x41 x42 x43 x44

b1 b2 b3 b4

. (4.12)

Note that k3 and k4 are implicit in yi+1, and each other.

Applying the stage order 5 conditions, which are Xe + v = c, Xc + v
2

= c2

2
,

Xc2 + v
3

= c3

3
, Xc3 + v

4
= c4

4
, and Xc4 + v

5
= c5

5
, to (4.12), we obtain v3, x31, x32,

x33, x34, v4, x41, x42, x43, x44 in terms of c3 6= 0, 1, c4, and c4 6= 0, 1, c3,
7
10

. Then,

we apply the order conditions for fifth order, which for stage order 5 methods are

bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
, and bT c4 = 1

5
. Unfortunately, we find that

the application of these conditions forces c4 to be 7
10

. Therefore, we cannot have a

method with the tableau (4.12) being fifth order, and having stage order five.
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4.7 A 5-stage, 5th order, stage order 5 Generalized MIRK method

Since it is not possible to get a 4-stage, 5th order generalized MIRK method with

stage order 5, we therefore consider an extra stage. The tableau we consider is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

c3 v3 x31 x32 x33 x34 0

c4 v4 x41 x42 x43 x44 0

c5 v5 x51 x52 x53 x54 0

b1 b2 b3 b4 b5

. (4.13)

Note that the third and fourth stages are implicit in yi+1 and each other.

We apply the stage order conditions up to stage order 5 which are Xe + v = c,

Xc + v
2

= c2

2
, Xc2 + v

3
= c3

3
, Xc3 + v

4
= c4

4
, and Xc4 + v

5
= c5

5
, and the fifth order

conditions up to 5th order. These are again bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
,

and bT c4 = 1
5
. We find that it is possible to choose the coefficients of the method to

satisfy these conditions. This gives a family of methods with free parameters c3, c4,

and c5. The restrictions on the parameters c3, c4, and c5 are c3 6= 0, 1, c4, c5, c4 6= 0, 1,

and c5 6= 0, 1. With a choice of c3 = 1
4
, c4 = 3

4
, and c5 = 1

2
the tableau of the resultant
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method is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
4
−11
16

9
64

3
64

15
32

9
32

0

3
4

27
16

−3
64

−9
64

−9
32

−15
32

0

1
2

1
2

1
24

−1
24

1
6

−1
6

0

7
90

7
90

16
45

16
45

2
15

. (4.14)

4.8 A 5-stage, 6th order, stage order 4 Generalized MIRK method

We first consider a generalization of a five stage, sixth order, stage order three

MIRK method given in (2.22), to a five stage, sixth order, stage order four generalized

MIRK method. Its tableau is:

0 0 0 0 0 0 0

1 1 0 0 0 0 0

c3 v3 x31 x32 x33 0 0

c4 v4 x41 x42 x43 0 0

c5 v5 x51 x52 x53 x54 0

b1 b2 b3 b4 b5

. (4.15)

Note that k3 is implicit in yi+1 and itself.

Applying the stage order four conditions (4.7) allows us to reduce the number of

order conditions, which is 37 for 6th order, to the seven conditions bT e = 1, bT c = 1
2
,
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bT c2 = 1
3
, bT c3 = 1

4
, bT c4 = 1

5
, bT c5 = 1

6
, and bT (Xc4 + v

5
) = 1

30
. The application of

the stage order 4 conditions, and the order conditions up to order 6 leads to a family

of methods with 2 free parameters c3, and c4, with c3 6= 0, 1, c4, c5, and c4 6= 0, 1, c5.

An example with c3 = 1
3
, and c4 = 2

3
, is the method whose tableau is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
3
−5
27

4
27

1
27

1
3

0 0

2
3

8
27

2
27

−1
27

1
3

0 0

1
2
−5
8

25
128

11
128

81
128

27
128

0

11
120

11
120

27
40

27
40

−8
15

. (4.16)

This method improves upon the corresponding standard MIRK method in that it

has stage order 4 but we would expect this method to exhibit some order reduction

when applied to stiff ODEs since its stage order is two orders below its classical order.

4.9 A 5-stage, 6th order, stage order 5 Generalized MIRK method

Based on the results of the previous subsection, we next turn to a five stage, sixth

order generalized MIRK with stage order five. The general form for the tableau of a
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generalized, 5-stage, 6th order, stage order 5 MIRK method is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

c3 v3 x31 x32 x33 x34 0

c4 v4 x41 x42 x43 x44 0

c5 v5 x51 x52 x53 x54 0

b1 b2 b3 b4 b5

. (4.17)

Note that k3, and k4 now depend implicitly on yi+1 and each other.

We apply the stage order five conditions Xe + v = c, Xc + v
2

= c2

2
, Xc2 + v

3
= c3

3
,

Xc3 + v
4

= c4

4
, and Xc4 + v

5
= c5

5
, and the order conditions up to order six, which for

stage order five methods, are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
, bT c4 = 1

5
, and

bT c5 = 1
6
. This gives a family of methods with c3 and c4 free parameters with the

restrictions that c3 6= 0, 1, c4, and c4 6= 0, 1. By choosing c3 = 1
5
, and c4 = 4

5
, we get a

method with the tableau

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1
5
−79
625

52
625

2
625

14
75

4
75

0

4
5

704
625

−2
625

−52
625

−4
75

−14
75

0

1
2

1
2

7
256

−7
256

125
768

−125
768

0

1
16

1
16

125
432

125
432

8
27

. (4.18)
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This method improves upon the method of the previous section but still has stage

order one below its classical order and it would therefore be expected to exhibit order

reduction when applied to a stiff ODE.

4.10 A 5-stage, 6th order, stage order 6 Generalized MIRK method is

not possible

We next consider trying to derive a 5-stage, 6th order generalized MIRK method with

stage order 6. The tableau we consider is

0 0 0 0 0 0 0

1 1 0 0 0 0 0

c3 v3 x31 x32 x33 x34 x35

c4 v4 x41 x42 x43 x44 x45

c5 v5 x51 x52 x53 x54 x55

b1 b2 b3 b4 b5

. (4.19)

Note that k3, k4, and k5 depends implicitly on yi+1 and on each other.

Applying the six stage order conditions Xe + v = c, Xc + v
2

= c2

2
, Xc2 + v

3
= c3

3
,

Xc3 + v
4

= c4

4
, Xc4 + v

5
= c5

5
, and Xc5 + v

6
= c6

6
, we get v3, x31, x32, x33, x34, x35,

v4, x41, x42, x43, x44, x45, v5, x51, x52, x53, x54, and x55 in terms of c3 6= 0, 1, c4, c5,

c4 6= 0, 1, c3, c5, and c5 6= 0, 1, 1
2
. However, when we apply the order conditions for

sixth order, which for stage order 6 methods are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
,

bT c4 = 1
5
, and bT c5 = 1

6
, we find that c5 must be 1

2
. Therefore, it is not possible to
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obtain a 5-stage, 6th order, stage order 6 generalized MIRK method.

4.11 A 6-stage, 6th order, stage order 6 Generalized MIRK method

Since we cannot have a 5-stage, 6th order, stage order 6 generalized MIRK method,

we therefore consider using an extra stage to increase the stage order. The tableau

we consider is

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

c3 v3 x31 x32 x33 x34 x35 0

c4 v4 x41 x42 x43 x44 x45 0

c5 v5 x51 x52 x53 x54 x55 0

c6 v6 x61 x62 x63 x64 x65 0

b1 b2 b3 b4 b5 b6

. (4.20)

Note that k3, k4, and k5 now depend implicitly on yi+1, and each other.

The application of the stage order 6 conditions Xe+v = c, Xc+ v
2

= c2

2
, Xc2 + v

3
=

c3

3
, Xc3 + v

4
= c4

4
, Xc4 + v

5
= c5

5
, and Xc5 + v

6
= c6

6
, and the order conditions, which

for a stage order 6 method are bT e = 1, bT c = 1
2
, bT c2 = 1

3
, bT c3 = 1

4
, bT c4 = 1

5
,

and bT c5 = 1
6
, leads to four free parameters c3, c4, c5, and c6. The restrictions on

the parameters c3, c4, c5, and c6 are c3 6= 0, 1, c4, c5, c6, c4 6= 0, 1, and c5 6= 0, 1, and

c6 6= 0, 1. With a choice of c3 = 1
3
, c4 = 2

3
, c5 = 1

4
, c6 = 3

4
the tableau of the resultant
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MIRK method is

0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1
3

−23
81

23
243

20
729

−2
9

7
45

2048
3645

0

2
3

−56
81

32
243

47
729

1
9

22
45

2048
3645

0

1
4
−299
1024

783
8192

231
8192

−2187
8192

6561
40960

21
40

0

3
4
−567
1024

987
8192

435
8192

729
8192

21141
40960

21
40

0

29
360

29
360

27
200

27
200

64
225

64
225

. (4.21)



Chapter 5

Experimental Results for Generalized MIRK Methods

5.1 Numerical Results For IVODEs

In this section, we show numerical results for the stiff IVODE (3.2) for generalized

MIRK methods of various orders. The implementations are done in Scilab. See

Appendix A.

Table 5.1: Numerical results for the stiff IVODE (3.2) with λ = −150 for the 3-stage,
third order, stage order 3 MIRK method (4.4).

h maxerr error ratio observed order
0.25 0.0000832
0.125 0.0000103 8.0680902 3.0122272

Table (5.1) shows that for the stiff IVODE (3.2) with λ = −150, the 3-stage, 3rd

order, stage order 3 MIRK method (4.4) does not suffer from order reduction because

it still has its classical order of 3.

Table 5.2: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 4-stage,
fourth order, stage order 4 generalized MIRK method (4.9).

h maxerr error ratio observed order
0.6 0.0000002
0.3 1.321D-08 14.254651 3.8333608
0.15 8.701D-10 15.181713 3.9242627

50
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Table (5.2) shows that the 4-stage, 4th order, stage order 4 generalized MIRK

method (4.9) does not suffer from order reduction when applied to the stiff IVODE

(3.2) with λ = −5000 because it has its classical order of 4. This is in contrast to

the standard 3-stage, 4th order, stage order 3 MIRK method (2.20), which we saw in

Table 3.4 exhibits order reduction when applied to this problem.

Table 5.3: Numerical results for the stiff IVODE (3.2) with λ = −55 for the 4-stage,
fifth order, stage order 4 generalized MIRK method (4.11).

h maxerr error ratio observed order
0.1 3.442D-10
0.05 2.607D-11 13.202391 3.7227273
0.025 1.644D-12 15.856718 3.9870223

Table (5.3) shows that for the stiff IVODE (3.2) with λ = −55, the order of the

4-stage, 5th order, stage order 4 generalized MIRK method (4.11) is reduced to 4,

but this is better than the standard 4-stage, 5th order, stage order 3 MIRK method

(2.21), whose order was reduced to 3. See Table 3.6.

Table 5.4: Numerical results for the stiff IVODE (3.2) with λ = −55 for the 5-stage,
fifth order, stage order 5 generalized MIRK method (4.13).

h maxerr error ratio observed order
0.5 0.0000001
0.25 3.076D-09 32.509753 5.0228007

Table (5.4) shows that for the stiff IVODE (3.2) with λ = −55, the 5-stage,

5th order, stage order 5 generalized MIRK method (4.13) does not suffer from order

reduction because it retains its classical order of 5.
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Table 5.5: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 5-stage,
sixth order, stage order 4 generalized MIRK method (4.16).

h maxerr error ratio observed order
0.2 2.703D-09
0.1 1.737D-10 15.55887 3.9596654
0.05 1.081D-11 16.06284 4.0056551

Table (5.5) shows that for the stiff IVODE (3.2) with λ = −5000, the 5-stage, 6th

order, stage order 4 generalized MIRK method (4.16) has its order reduced to 4,

but this is better than the standard 5-stage, 6th order, stage order 3 MIRK method

(2.22), whose order was reduced to 3. See Table 3.8.

Table 5.6: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 5-stage,
sixth order, stage order 5 generalized MIRK method (4.18).

h maxerr error ratio observed order
0.2 1.161D-10
0.1 4.322D-12 26.852446 4.7469816
0.05 1.181D-13 36.586466 5.1932382

Table (5.6) shows that for the stiff IVODE (3.2) with λ = −5000, the order of

the 5-stage, 6th order, stage order 5 generalized MIRK method (4.18) reduced to 5.

However, this is better than the standard 5-stage, 6th order, stage order 3 MIRK

method (2.22), whose order was reduced to 3. See Table 3.8.
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Table 5.7: Numerical results for the stiff IVODE (3.2) with λ = −5000 for the 6-stage,
sixth order, stage order 6 generalized MIRK method (4.21).

h maxerr error ratio observed order
0.6 1.874D-10
0.3 3.222D-12 58.169515 5.8621914
0.15 5.218D-14 61.753191 5.9484418

Table (5.7) shows that for the stiff IVODE (3.2) with λ = −5000, the 6-stage,

6th order, stage order 6 generalized MIRK method (4.21) does not suffer from order

reduction because it still has its classical order of 6.

5.2 Numerical Results For BVODEs

In this section, we show numerical results for the stiff BVODE (3.4) obtained by

using the 4-stage, 4th order, stage order 4 generalized MIRK method (4.9) and the 6-

stage, 6th order, stage order 6 generalized MIRK method (4.21). The implementations

are done in Scilab. See Appendix A.

Table 5.8: Numerical results for the stiff BVODE (3.4) with λ = −150 for the 4-stage,
fourth order, stage order 4 generalized MIRK method (4.9).

N h maxerr1 maxerr2 order1 order2
50 1/50 0.0043325 0.0043325
100 1/100 0.0003322 0.0003322 3.7049415 3.7049414

Table (5.8) shows that for the stiff BVODE (3.4) with λ = −150, the 4-stage, 4th

order, stage order 4 generalized MIRK method (4.9) retains its classical order of 4.

This implies that there is no order reduction.
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Table 5.9: Numerical results for the stiff BVODE (3.4) with λ = −750 for the 6-stage,
sixth order, stage order 6 generalized MIRK method (4.21)

N h maxerr1 maxerr2 order1 order2
20 1/20 0.1015255 0.1015255
40 1/40 0.0012637 0.0012637 6.3280603 6.3280603

Table (5.9) shows that for the stiff BVODE (3.4) with λ = −750, the 6-stage, 6th

order, stage order 6 generalized MIRK method (4.21) does not suffer from order

reduction because it still has its classical order of 6.

5.3 Timing Comparison

In this section, we show results to compare CPU times for standard MIRK meth-

ods with generalized MIRK methods when applied to stiff ODEs. We will require

that the methods achieve the same error. We note that the standard MIRK meth-

ods will be more efficient per step but will have to take smaller steps due to order

reduction. On the other hand, the generalized MIRK method will use more work per

step but can take larger steps. The time is given in seconds as measured within the

Scilab environment; version 5.5.1. The computer had an Intel(R) Core(TM) i3-2310M

processor.

Table 5.10: Comparison of the 3-stage, fourth order, stage order 3 standard MIRK
method (2.20) with the 4-stage, fourth order, stage order 4 generalized MIRK method
(4.9) on the stiff IVODE (3.2) with λ = −5000.

Method Type h maxerr time
The 4th order standard MIRK method 0.1 0.0000002 4.2140315

The 4th order generalized MIRK method 0.6 0.0000002 2.1216136
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We experimentally chose the step size for each method so that they obtain the

same error. We see that the 4th order generalized MIRK method can take a step

that is six times larger. Even though there is more work per step for the generalized

MIRK method, the fact that it can take larger steps means that it overall requires

less CPU time than the standard MIRK method.

Table 5.11: Comparison of the 5-stage, sixth order, stage order 3 standard MIRK
method (2.22) with the 6-stage, sixth order, stage order 6 generalized MIRK method
(4.21) on the stiff IVODE (3.2) with λ = −5000.

Method Type h maxerr time
The 6th order standard MIRK method 0.2 1.7×10−9 6.9018476

The 6th order generalized MIRK method 0.88 1.6×10−9 5.0388323

We experimentally select the step size for each method so that they achieve the

same error. We notice that the 6th order generalized MIRK method can take a step

that is 4.4 times larger. Even though the generalized MIRK method uses more work

per step, the fact that it can take larger steps means that it requires less CPU time

than the standard MIRK method.

If we were to apply a generalized MIRK method to a non-stiff ODE, this advantage

would disappear because the standard MIRK method would perform at its classical

order. This would mean that it could take steps of approximately the same size as

this of the generalized MIRK method but would require less work per step. This

points out that it is important to couple the use of generalized MIRK methods with

a stiffness detection algorithm.
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5.4 Summary

Based on the results presented in Tables 5.10 and 5.11, we observed that the gen-

eralized MIRK methods run faster than standard MIRK methods when both are

required to achieve the same accuracy.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we discussed MIRK methods for solving IVODEs and BVODEs. We

reviewed some of the background literature for MIRK methods. The phenomenon of

order reduction for certain types of numerical methods when applied to stiff ODEs

was described. Then, numerical experiments were presented to demonstrate order

reduction for MIRK methods when they are applied to stiff ODEs. After that, gen-

eralized MIRK methods of various orders were developed by introducing implicit

stages to allow the method to have a higher stage order. We then provided numer-

ical experiments that show that the generalized MIRK methods do not suffer from

order reduction when applied to some stiff problems. We also compared CPU times

for standard MIRK methods and generalized MIRK methods, and found that even

though the generalized MIRK methods require more work per step they are more

efficient than the corresponding MIRK methods because they can take larger steps

while achieving the same accuracy.
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6.2 Future Work

The main direction of future work following from the work described in this thesis is

to implement the generalized MIRK methods within the BVP SOLVER [23] software

package. BVP SOLVER is a Fortran 90/95 based solver used to solve BVODEs. A

second direction for future work is to look more closely at the solution of the non-

linear equations associated with the implicit stages. There may be techniques for

improving the efficiency of this computation. A third direction for future work is to

develop continuous mono-implicit Runge-Kutta (CMIRK) methods to augment the

generalized MIRK methods to provide an accurate continuous solution approximation

over the entire domain. A fourth direction for future work is to develop methods for

stiffness detection so that a numerical solver can decide whether the presence of order

reduction might be a concern, allowing it to switch over to the more appropriate

methods described in this thesis when necessary.
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Appendix A

Scilab Scripts

Application of the 2-stage, 3rd order, stage order 2 MIRK for solving

a stiff IVODE (3.2)

h=0.1;

for j=1:3 do

function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

function nonlin=g(z)

fff1=f(t+h,z);

fff2=f(t+(h/3),(4/9)*y+(5/9)*z+h*((-2/9)*fff1));

nonlin=z-(y+h*((1/4)*fff1+(3/4)*fff2));

endfunction

z0=0;

y=0;

t=0;

lambda=-150;

tfinal=1; n=1; tt(n)=t; yy(n)=y;

while t<tfinal
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z=fsolve(z0,g);

y=z;

t=n*h;

n=n+1;

z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e = abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(e);

h=h/2;

end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1));

end

disp(order)

Application of the 3-stage, 4th order, stage order 3 MIRK for solving

stiff IVODE (3.2)

h=0.1;

for j=1:3 do

function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));
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endfunction

y=0;

t=0;

lambda=-5000;

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z);

fff3=f(t+(h/2),(y+z)/2+(h/8)*(fff1-fff2));

nonlin=z-(y+h*((1/6)*fff1+(1/6)*fff2+(2/3)*fff3));

endfunction

z0=0; tfinal=12; n=1; tt(n)=t; yy(n)=y;

while t<tfinal

z=fsolve(z0,g);

y=z;

t=n*h;

n=n+1; z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e=abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(e);

h=h/2;
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end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1));

end

disp(order)

Application of the 4-stage, 4th order, stage order 4 generalized MIRK

for solving stiff IVODE (3.2)

h=0.6;

for j=1:3 do

function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

y=0;

t=0;

lambda=-5000;

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z(1));

fff3=f(t+(1/3)*h,(32/27)*y+(-5/27)*z(1)+h*((4/27)*fff1+(1/27)*fff2+

(1/3)*z(2)));

fff4=f(t+(2/3)*h,(19/27)*y+(8/27)*z(1)+h*((2/27)*fff1-(1/27)*fff2+

(1/3)*z(2)));
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nonlin(1)=z(1)-(y+h*((1/8)*fff1+(1/8)*fff2+(3/8)*z(2)+(3/8)*fff4));

nonlin(2)=z(2)-fff3;

endfunction

z0(1)=0;

z0(2)=0;

tfinal=12; n=1; tt(n)=t; yy(n)=y;

while t<tfinal

z =fsolve(z0,g);

y=z(1);

t=n*h;

n=n+1; z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

error = abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(error)

h=h/2;

end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1));

end

disp(order)
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// Note that I compared the standard (3-4-3) MIRK

with the generalized (4-4-4) MIRK method using tfinal=600.

Application of the 4-stage, 5th order, stage order 4 generalized MIRK

for solving stiff IVODE (3.2)

h=0.1;

for j=1:3 do

function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z(1));

fff3=f(t+(1/3)*h,(32/27)*y-(5/27)*z(1)+h*((4/27)*fff1+

(1/27)*fff2+(1/3)*z(2)));

fff4=f(t+(4/5)*h,(209/625)*y+(416/625)*z(1)+h*((4/125)*fff1-

(44/625)*fff2+(108/625)*z(2)));

nonlin(1)=z(1)-(y+h*((5/48)*fff1+(1/24)*fff2+(27/56)*z(2)+

(125/336)*fff4));

nonlin(2)=z(2)-fff3;

endfunction

z0(1)=0;

z0(2)=0;
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y=0;

t=0;

lambda=-55;

tfinal=1; n=1; tt(n)=t; yy(n)=y;

while t<tfinal

z=fsolve(z0,g);

y=z(1);

t=n*h;

n=n+1;

z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e = abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(e)

h=h/2;

end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1)); end

disp(order)

Application of the 5-stage, 6th order, stage order 4 generalized MIRK

for solving stiff IVODE (3.2)
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h=0.2;

for j=1:3 do

function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z(1));

fff3=f(t+(1/3)*h,(32/27)*y-(5/27)*z(1)+h*((4/27)*fff1+(1/27)*fff2

+(1/3)*z(2)));

fff4=f(t+(2/3)*h,(19/27)*y+(8/27)*z(1)+h*((2/27)*fff1-(1/27)*fff2

+(1/3)*z(2)));

fff5=f(t+h/2,(13/8)*y-(5/8)*z(1)+h*((25/128)*fff1+(11/128)*fff2

+(81/128)*z(2)+(27/128)*fff4));

nonlin(1)=z(1)-(y+h*((11/120)*fff1+(11/120)*fff2+(27/40)*z(2)+

(27/40)*fff4-(8/15)*fff5));

nonlin(2)=z(2)-fff3;

endfunction

z0(1)=0;

z0(2)=0;

y=0;

t=0;
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lambda=-5000;

tfinal=12; n=1; tt(n)=t; yy(n)=y;

while t<tfinal

z=fsolve(z0,g);

y=z(1);

t=n*h;

n=n+1;

z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e = abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(e)

h=h/2;

end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1));

end

disp(order)

Application of the 5-stage, 6th order, stage order 5 generalized MIRK

for solving stiff IVODE (3.2)

h=0.2;
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for j=1:3 do

function ydot=f(t, y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z(1));

fff3=f(t+(1/5)*h,(704/625)*y-(79/625)*z(1)+h*((52/625)*fff1+

(2/625)*fff2+(14/75)*z(2)+(4/75)*z(3)));

fff4=f(t+(4/5)*h,(-79/625)*y+(704/625)*z(1)+h*((-2/625)*fff1-

(52/625)*fff2-(4/75)*z(2)-(14/75)*z(3)));

fff5=f(t+(1/2)*h,(1/2)*y+(1/2)*z(1)+h*((7/256)*fff1-(7/256)*fff2+

(125/768)*z(2)-(125/768)*z(3)));

nonlin(1)=z(1)-(y+h*((1/16)*fff1+(1/16)*fff2+(125/432)*z(2)+

(125/432)*z(3)+(8/27)*fff5));

nonlin(2)=z(2)-fff3;

nonlin(3)=z(3)-fff4

endfunction

z0(1)=0;

z0(2)=0;

z0(3)=0;

y=0;
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t=0;

lambda=-5000;

tfinal=12; n=1; tt(n)=t; yy(n)=y;

while t¡tfinal

z=fsolve(z0,g);

y=z(1);

t=n*h;

n=n+1;

z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e = abs(yy-(10-(10+tt).*exp(-tt)));

ee(j)=max(e);

h=h/2;

end

for j=1:2 do

order(j)=log2(ee(j)/ee(j+1));

end

disp(order)

Application of the 6-stage, 6th order, stage order 6 generalized MIRK

for solving stiff IVODE (3.2)
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function ydot=f(t,y)

ydot=exp(-t)*(9+t)+lambda*(y-10+(10+t)*exp(-t));

endfunction

function nonlin=g(z)

fff1=f(t,y);

fff2=f(t+h,z(1));

fff3=f(t+(1/3)*h,(104/81)*y-(23/81)*z(1)+h*((23/243)*fff1+

(20/729)*fff2-(2/9)*z(2)+(7/45)*z(3)+(2048/3645)*z(4)));

fff4=f(t+(2/3)*h,(137/81)*y-(56/81)*z(1)+h*((32/243)*fff1+

(47/729)*fff2+(1/9)*z(2)+(22/45)*z(3)+(2048/3645)*z(4)));

fff5=f(t+(1/4)*h,(1323/1024)*y-(299/1024)*z(1)+h*((783/8192)*fff1+

(231/8192)*fff2-(2187/8192)*z(2)+(6561/40960)*z(3)+(21/40)*z(4)));

fff6=f(t+(3/4)*h,(1591/1024)*y-(567/1024)*z(1)+h*((987/8192)*fff1+

(435/8192)*fff2+(729/8192)*z(2)+(21141/40960)*z(3)+(21/40)*z(4)));

nonlin(1)=z(1)-(y+h*((29/360)*fff1+(29/360)*fff2+

(27/200)*z(2)+(27/200)*z(3)+(64/225)*z(4)+(64/225)*fff6));

nonlin(2)=z(2)-fff3;

nonlin(3)=z(3)-fff4;

nonlin(4)=z(4)-fff5;

endfunction

z0(1)=0;

z0(2)=0;
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z0(3)=0;

z0(4)=0;

y=0;

t=0;

lambda=-5000;

h=0.6;

tfinal=12; n=1; tt(n)=t; yy(n)=y;

while t¡tfinal

z=fsolve(z0,g);

y=z(1);

t=n*h;

n=n+1;

z0=z;

tt(n)=t; yy(n)=y;

end

tt,yy

e = abs(yy-(10-(10+tt).*exp(-tt)));

ee=max(e)

// Note that I compared the standard (5-6-3) MIRK

with the generalized (6-6-6) MIRK method using tfinal=880.

Application of the 3-stage, 4th order, stage order 3 MIRK for solving

stiff BVODE (3.4)



75

N=52; // Number of subintervals

function wdox=f(x, w)

wdox(1)=lambda*w(2);

wdox(2)=lambda*w(1)+lambda*cos(pi*x)2+2/lambda*(pi2)*cos(2*x*pi);

endfunction

lambda=-150;

a=0;

b=1;

h=(b-a)/N;

function mirk=g(y)

x=0;

mirk(1)=y(1);

for i=1:N

z(1)=y(2*i-1);

z(2)=y(2*i);

k1=f(x,z);

xx=x+h;

w(1)=y(2*i+1);

w(2)=y(2*i+2);

k2=f(xx,w);

xxx=x+(h/2);

u(1)=(z(1)+w(1))/2+(h/8)*(k1(1)-k2(1));
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u(2)=(z(2)+w(2))/2+(h/8)*(k1(2)-k2(2));

k3=f(xxx,u);

mirk(2*i)=y(2*i+1)-y(2*i-1)-h*(k1(1)/6+k2(1)/6+2/3*k3(1));

mirk(2*i+1)=y(2*i+2)-y(2*i)-h*(k1(2)/6+k2(2)/6+2/3*k3(2));

x=x+h;

end

mirk(2*N+2)=y(2*N+1);

endfunction

y0(1)=0;

for i=2:(2*N)+2 do

y0(i)=1;

end;

s=fsolve(y0,g);

y1 = s(1:2:2*N+2);

y2 = s(2:2:2*N+2);

x=[0:h:1];

exactSol1 = (exp(lambda*(x-1))+exp(-lambda*x))/(1+exp(-lambda))

-(cos(pi*x)2);

exactSol2 = ((exp(lambda*(x-1))-exp(-lambda*x))/(1+exp(-lambda)))

+((pi/lambda)*sin(2*pi*x));

error1(1) = abs(y1(1)-exactSol1(1));

error2(1) = abs(y2(1)-exactSol2(1));



77

for i=1:N do

error1(i+1) = abs(y1(i+1)-exactSol1(i+1));

error2(i+1) = abs(y2(i+1)-exactSol2(i+1));

end

max1 = max(error1);

max2 = max(error2);

Application of the 4-stage, 4th order, stage order 4 generalized MIRK

for solving stiff BVODE (3.4)

N=50; // Number of subintervals

m=2; //Number of ODEs

s=2*m; //Shift=Storage of y plus storage of k3

function wdot=f(t, w)

wdot(1)=lambda*w(2);

wdot(2)=lambda*w(1)+lambda*cos(pi*t)2+2/lambda*(pi2)*cos(2*t*pi);

endfunction

t=0;

lambda=-150;

a=0;

b=1;

h=(b-a)/N;

function nonlin=g(y)

t=0;
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nonlin(1)=y(1);

for i=1:N do

si=s*(i-1);

yi=y(si+1:si+2);

fff1=f(t,yi);

yip1=y(si+5:si+6);

fff2=f(t+h,yip1);

k3=y(si+3:si+4);

y3=(32/27)*yi-(5/27)*yip1+h*((4/27)*fff1+(1/27)*fff2+(1/3)*k3);

fff3=f(t+(1/3)*h,y3);

y4=(19/27)*yi+(8/27)*yip1+h*((2/27)*fff1-(1/27)*fff2+(1/3)*fff3);

fff4=f(t+(2/3)*h,y4);

nonlin(si+2:si+3)=yip1-yi-h*((1/8)*fff1+(1/8)*fff2+(3/8)*fff3+

(3/8)*fff4);

nonlin(si+4:si+5)=fff3-k3;

t=t+h;

end

nonlin(s*N+2)=y(s*N+1);

endfunction

y0(1)=0;

for i=2:(s*N)+2 do

y0(i)=1; end
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sol=fsolve(y0,g);

y1=sol(1:s:s*N+2);

y2=sol(2:s:s*N+2);

t=[0:h:1];

exactSol1 = (exp(lambda*(t-1))+exp(-lambda*t))/(1+exp(-lambda))

-(cos(pi*t)2);

exactSol2 = ((exp(lambda*(t-1))-exp(-lambda*t))/(1+exp(-lambda)))

+((pi/lambda)*sin(2*pi*t));

error1(1) = abs(y1(1)-exactSol1(1));

error2(1) = abs(y2(1)-exactSol2(1));

for i=1:N do

error1(i+1) = abs(y1(i+1)-exactSol1(i+1));

error2(i+1) = abs(y2(i+1)-exactSol2(i+1));

end

max1 = max(error1);

max2 = max(error2);

Application of the 6-stage, 6th order, stage order 6 generalized MIRK

for solving stiff BVODE (3.4)

N=20; // Number of subintervals

m=2; // Number of ODEs

s=4*m; // Shift= Storage of y plus storage of k3,k4,k5

function wdox=f(x, w)
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wdox(1)=lambda*w(2);

wdox(2)=lambda*w(1)+lambda*(cos(pi*x))2+2/lambda*(pi2)*cos(2*x*pi);

endfunction

lambda=-750;

a=0;

b=1;

h=(b-a)/N;

function nonlin=g(y)

x=0;

nonlin(1)=y(1);

for i=1:N

si=s*(i-1)

yi=y(si+1:si+2);

ff1=f(x,yi);

xx=x+h;

yip1=y(si+9:si+10);

ff2=f(xx,yip1);

k3=y(si+3:si+4);

k4=y(si+5:si+6);

k5=y(si+7:si+8);

y3=(104/81)*yi-(23/81)*yip1+h*((23/243)*ff1+(20/729)*ff2-

(2/9)*k3+(7/45)*k4+(2048/3645)*k5);
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ff3=f(x+(1/3)*h,y3);

y4=(137/81)*yi-(56/81)*yip1+h*((32/243)*ff1+(47/729)*ff2+

(1/9)*ff3+(22/45)*k4+(2048/3645)*k5);

ff4=f(x+(2/3)*h,y4);

y5=(1323/1024)*yi-(299/1024)*yip1+h*((783/8192)*ff1+(231/8192)

*ff2-(2187/8192)*ff3+(6561/40960)*ff4+(21/40)*k5);

ff5=f(x+(h/4),y5);

y6=(1591/1024)*yi-(567/1024)*yip1+h*((987/8192)*ff1+(435/8192)

*ff2+(729/8192)*ff3+(21141/40960)*ff4+(21/40)*ff5);

ff6=f(x+(3/4)*h,y6);

nonlin(si+2:si+3)=yip1-yi-h*((29/360)*ff1+(29/360)*ff2+(27/200)

*ff3+(27/200)*ff4+(64/225)*ff5+(64/225)*ff6);

nonlin(si+4:si+5)=ff3-k3;

nonlin(si+6:si+7)=ff4-k4;

nonlin(si+8:si+9)=ff5-k5;

x=x+h;

end

nonlin(s*N+2)=y(s*N+1);

endfunction

y0(1)=0;

for i=2:(s*N)+2 do

y0(i)=1;
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end;

sol=fsolve(y0,g);

y1 = sol(1:s:s*N+2);

y2 = sol(2:s:s*N+2);

x=[0:h:1];

exactSol1 = (exp(lambda*(x-1))+exp(-lambda*x))/(1+exp(-lambda))

-(cos(pi*x)2);

exactSol2 = ((exp(lambda*(x-1))-exp(-lambda*x))/(1+exp(-lambda)))

+((pi/lambda)*sin(2*pi* x));

error1(1) = abs(y1(1)-exactSol1(1));

error2(1) = abs(y2(1)-exactSol2(1));

for i=1:N do

error1(i+1) = abs(y1(i+1)-exactSol1(i+1));

error2(i+1) = abs(y2(i+1)-exactSol2(i+1));

end

max1 = max(error1);

max2 = max(error2);



Appendix B

Maple Scripts

Code for a 3-stage, 4th order, stage order 4 generalized MIRK method

s := 3;

one := array(1..s);

c := array(1..s);

c2 := array(1..s);

c3 := array(1..s);

c4 := array(1..s);

v := array(1..s);

b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

M := array(1..3,1..s);

RHS := array(1..3);

// Definitions

for i from 1 to s do
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one[i]:=1;

c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do

for j from i to s do

x[i,j] := 0

od;

od;

// The stage order conditions allow us to reduce the number of order

conditions to bT ∗ e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4

// Set up stage order conditions for C(4).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

// Impose C(4) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1],c[1],v[1]);

// This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.

c[1] := 0; v[1] := c[1];
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// Impose C(4) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],c[2],v[2],x[2,1]);

// This gives solutions: c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(4) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],v[3],x[3,1],x[3,2],

x[3,3]);

assign(Q);

// Setup the coefficient matrix,M, for the determination of the weights.

for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);

solve (dotprod(b,c3)-1/4, c[3]);

Code for a 4-stage, 4th order, stage order 4 generalized MIRK method.

s := 4;

one := array(1..s);

c := array(1..s);

c2 := array(1..s);

c3 := array(1..s);

c4 := array(1..s);

v := array(1..s);
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b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

M := array(1..4,1..s);

RHS := array(1..4);

// Definitions

for i from 1 to s do

one[i]:=1;

c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do

for j from i to s do

x[i,j] := 0

od;

od;

// The stage order conditions allow us to reduce the number of order
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conditions to bT ∗ e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4

// Set up stage order conditions for C(4).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

// Impose C(4) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1],c[1],v[1]);

// This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.

c[1] := 0; v[1] := c[1];

// Impose C(4) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],c[2],v[2],x[2,1]);

// This gives solutions: c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(4) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],c[3],v[3],x[3,1],x[3,2],x[3,3]);

assign(Q);

// Impose C(4) on the fourth stage.

Q:=solve(C1[4],C2[4],C3[4],C4[4],v[4],x[4,1],x[4,2],x[4,3]);

assign(Q);

// Setup the coefficient matrix,M, for the determination of the weights.

for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i];
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M[4,i] := c3[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);

Code for a 4-stage, 5th order, stage order 4 generalized MIRK method.

s := 4;

one := array(1..s);

c := array(1..s);

c2 := array(1..s);

c3 := array(1..s);

c4 := array(1..s);

v := array(1..s);

b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

M := array(1..4,1..s);

RHS := array(1..4);

// Definitions

for i from 1 to s do
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one[i]:=1;

c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do

for j from i to s do

x[i,j] := 0

od;

od;

// The stage order conditions allow us to reduce the number of order conditions

to bT ∗ e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4, bT ∗ c4 = 1/5

// Set up stage order conditions for C(4).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

// Impose C(4) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1],c[1],v[1]);

// This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.

c[1] := 0; v[1] := c[1];
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// Impose C(4) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],c[2],v[2],x[2,1]);

// This gives solutions:

c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(4) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],v[3],x[3,1],x[3,2],x[3,3]);

assign(Q);

// Impose C(4) on the fourth stage.

Q:=solve(C1[4],C2[4],C3[4],C4[4],v[4],x[4,1],x[4,2],x[4,3]);

assign(Q);

// Setup the coefficient matrix,M, for the determination of the weights.

for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i]; M[4,i] := c3[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);

solve (dotprod(b,c4)-1/5, c[4]);

Code for a 5-stage, 6th order, stage order 4 generalized MIRK method.

s := 5;

one := array(1..s);

c := array(1..s);

c2 := array(1..s);
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c3 := array(1..s);

c4 := array(1..s);

c5 := array(1..s);

v := array(1..s);

b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

M := array(1..5,1..s);

RHS := array(1..5);

// Definitions

for i from 1 to s do

one[i]:=1;

c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

c5[i] := c[i]5;

od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do
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for j from i to s do

x[i,j] := 0

od;

od;

// The stage order four conditions allow us to reduce the number of order condi-

tions

to the six conditions bT ∗ e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4, bT ∗ c4 =

1/5, bT ∗ c5 = 1/6, plus the condition bT (X ∗ c4 + v/5) = 1/30.

// The four stage order conditions are Xe+ v = c,Xc+ v/2 = c2/2, Xc2 + v/3 =

c3/3, Xc3 + v/4 = c4/4.

// Set up stage order conditions for C(4).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

// Impose C(4) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1],c[1],v[1]);

// This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.

c[1] := 0; v[1] := c[1];

// Impose C(4) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],c[2],v[2],x[2,1]);

// This gives solutions:
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c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(4) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],v[3],x[3,1],x[3,2],x[3,3]);

assign(Q);

// Impose C(4) on the fourth stage.

Q:=solve(C1[4],C2[4],C3[4],C4[4],v[4],x[4,1],x[4,2],x[4,3]);

assign(Q);

// Impose C(4) on the fifth stage.

Q:=solve(C1[5],C2[5],C3[5],C4[5], x[5,1],x[5,2],x[5,3], x[5,4]);

assign(Q);

// Setup the coefficient matrix,M, for the determination of the weights.

for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i]; M[4,i] := c3[i]; M[5,i] := c4[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);

Cond[1]:=dotprod(b,c5)-1/6;

Q:=solve(Cond[1],c[5]);

assign(Q);

Code for a 5-stage, 6th order, stage order 5 generalized MIRK method.

s := 5;

one := array(1..s);
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c := array(1..s);

c2 := array(1..s);

c3 := array(1..s);

c4 := array(1..s);

c5 := array(1..s);

v := array(1..s);

b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

C5 := array(1..s);

M := array(1..5,1..s);

RHS := array(1..5);

// Definitions

for i from 1 to s do

one[i]:=1;

c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

c5[i] := c[i]5;
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od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do

for j from i to s do

x[i,j] := 0

od;

od;

//The stage order four conditions allow us to reduce the number of order condi-

tions to the

six conditions bT ∗ e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4, bT ∗ c4 =

1/5, bT ∗ c5 = 1/6,

The five stage order conditions are Xe + v = c,Xc + v/2 = c2/2, Xc2 + v/3 =

c3/3, Xc3 + v/4 = c4/4, Xc4 + v/5 = c5/5.

// Set up stage order conditions for C(5).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

C5:= matadd(matadd(multiply(x,c4),v,1,1/5),c5,1,-1/5);

// Impose C(5) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1], C5[1],c[1],v[1]);

//This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.
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c[1] := 0; v[1] := c[1];

//Impose C(5) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],C5[2],c[2],v[2],x[2,1]); // This gives solutions:

c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(5) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],C5[3],v[3],x[3,1],x[3,2],x[3,3],x[3,4]);

assign(Q);

// Impose C(5) on the fourth stage.

Q:=solve(C1[4],C2[4],C3[4],C4[4],C5[4],v[4],x[4,1],x[4,2],x[4,3],x[4,4]);

assign(Q);

// Impose C(5) on the fifth stage.

Q:=solve(C1[5],C2[5],C3[5],C4[5],C5[5],v[5],x[5,1],x[5,2],x[5,3],x[5,4]);

assign(Q);

//Setup the coefficient matrix,M, for the determination of the weights.

for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i]; M[4,i] := c3[i]; M[5,i] := c4[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);

solve(dotprod(b,c5)-1/6,c[5]);

Code for a 6-stage, 6th order, stage order 6

generalized MIRK method.
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s := 6;

one := array(1..s);

c := array(1..s);

c2 := array(1..s);

c3 := array(1..s);

c4 := array(1..s);

c5 := array(1..s);

c6 := array(1..s);

v := array(1..s);

b := array(1..s);

x := array(1..s,1..s);

C1 := array(1..s);

C2 := array(1..s);

C3 := array(1..s);

C4 := array(1..s);

C5 := array(1..s);

C6 := array(1..s);

M := array(1..6,1..s);

RHS := array(1..6);

// Definitions

for i from 1 to s do

one[i]:=1;
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c2[i] := c[i]2;

c3[i] := c[i]3;

c4[i] := c[i]4;

c5[i] := c[i]5;

c6[i] := c[i]6;

od;

// Fill in zeros in the ’x’ matrix.

for i from 1 to 2 do

for j from i to s do

x[i,j] := 0

od;

od;

//The stage order four conditions allow us to reduce the number of order condi-

tions to the six conditions bT ∗e = 1, bT ∗ c = 1/2, bT ∗ c2 = 1/3, bT ∗ c3 = 1/4, bT ∗ c4 =

1/5, bT ∗ c5 = 1/6, The six stage order conditions are Xe + v = c,Xc + v/2 =

c2/2, Xc2 + v/3 = c3/3, Xc3 + v/4 = c4/4, Xc4 + v/5 = c5/5, Xc5 + v/6 = c6/6.

// Set up stage order conditions for C(6).

C1:= matadd(matadd(multiply(x,one),v),c,1,-1);

C2:= matadd(matadd(multiply(x,c),v,1,1/2),c2,1,-1/2);

C3:= matadd(matadd(multiply(x,c2),v,1,1/3),c3,1,-1/3);

C4:= matadd(matadd(multiply(x,c3),v,1,1/4),c4,1,-1/4);

C5:= matadd(matadd(multiply(x,c4),v,1,1/5),c5,1,-1/5);
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C6:= matadd(matadd(multiply(x,c5),v,1,1/6),c6,1,-1/6);

//Impose C(6) conditions on the first stage.

// Q:=solve(C1[1],C2[1],C3[1],C4[1], C5[1],C6[1],c[1],v[1]);

// This gives two solutions: c[1]=v[1]=0 or c[1]=v[1]=1.

c[1] := 0; v[1] := c[1];

// Impose C(6) on the second stage.

Q:=solve(C1[2],C2[2],C3[2],C4[2],C5[2],C6[2],c[2],v[2],x[2,1]);

// This gives solutions:

c[2] := 1; v[2] :=1; x[2,1]:=0;

// Impose C(6) on the third stage.

Q:=solve(C1[3],C2[3],C3[3],C4[3],C5[3],C6[3],v[3],x[3,1],x[3,2],x[3,3],x[3,4], x[3,5]);

assign(Q);

// Impose C(6) on the fourth stage.

Q:=solve(C1[4],C2[4],C3[4],C4[4],C5[4],C6[4],v[4],x[4,1],x[4,2],x[4,3],x[4,4],x[4,5]);

assign(Q);

//Impose C(6) on the fifth stage.

Q:=solve(C1[5],C2[5],C3[5],C4[5],C5[5],C6[5],v[5],x[5,1],x[5,2],x[5,3],x[5,4],x[5,5]);

assign(Q);

//Impose C(6) on the sixth stage.

Q:=solve(C1[6],C2[6],C3[6],C4[6],C5[6],C6[6],v[6],x[6,1],x[6,2],x[6,3],x[6,4],x[6,5]);

assign(Q);

// Setup the coefficient matrix,M, for the determination of the weights.
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for i from 1 to s do

M[1,i] := 1; M[2,i] := c[i]; M[3,i] := c2[i]; M[4,i] := c3[i]; M[5,i] := c4[i];

M[6,i] := c5[i];

RHS[i] := 1/i

od;

b:=linsolve(M,RHS);


