On the Cartesian product of non well-covered graphs

Bert L. Hartnell*
Department of Mathematics and Computing Science
Saint Mary's University
Halifax, Nova Scotia, Canada
bert.hartnell@smu.ca

Douglas F. Rall ${ }^{\dagger}$
Department of Mathematics
Furman University
Greenville, SC, U.S.A.
doug.rall@furman.edu

Submitted: May 1, 2012; Accepted: Apr 21, 2013; Published: Apr 30, 2013
Mathematics Subject Classifications: 05C69, 05C76

Abstract

A graph is well-covered if every maximal independent set has the same cardinality, namely the vertex independence number. We answer a question of Topp and Volkmann (1992) and prove that if the Cartesian product of two graphs is well-covered, then at least one of them must be well-covered.

Keywords: maximal independent set; well-covered; Cartesian product

1 Introduction

A well-covered graph G (Plummer [3]) is one in which every maximal independent set of vertices has the same cardinality. That is, every maximal independent set (equivalently, every independent dominating set) is a maximum independent set. This class of graphs has been investigated by many researchers from several different points of view. Among these are attempts to characterize those well-covered graphs with a girth or a maximum degree restriction. For more details on these approaches as well as others see the surveys by Plummer [4] and by Hartnell [2].

Topp and Volkmann [5] investigated how the standard graph products interact with the class of well-covered graphs. They asked the following question that was restated by Fradkin [1].

[^0]Question 1. ([5]) Do there exist non well-covered graphs whose Cartesian product is well-covered?

The principal result of this paper is the following theorem that answers Question 1 in the negative.

Theorem 2. If G and H are graphs whose Cartesian product is well-covered, then at least one of G or H is well-covered.

In Section 2 we define the terms used most often in this paper; standard graph theory terminology is used throughout. We then establish Theorem 2 in Section 3.

2 Definitions

If $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are any two graphs, the Cartesian product of G_{1} and G_{2} is the graph denoted $G_{1} \square G_{2}$ whose vertex set is the Cartesian product of their vertex sets $V_{1} \times V_{2}$. Two vertices $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ if either $x_{1}=y_{1}$ and $x_{2} y_{2} \in E_{2}$, or $x_{1} y_{1} \in E_{1}$ and $x_{2}=y_{2}$. Note that if I_{1} is independent in G_{1} and I_{2} is independent in G_{2}, then the set $I_{1} \times I_{2}$ is independent in $G_{1} \square G_{2}$.

For an arbitrary graph G we follow Fradkin [1] and define a greedy independent decomposition of G to be a partition $A_{1}, A_{2}, \ldots, A_{t}$ of $V(G)$ such that A_{1} is a maximal independent set in G, and for each $2 \leqslant i \leqslant t$, the set A_{i} is a maximal independent set in the graph $G-\left(A_{1} \cup \cdots \cup A_{i-1}\right)$. One way to construct maximal independent sets in the Cartesian product $G \square H$ is to select any greedy independent decomposition $A_{1}, A_{2}, \ldots, A_{t}$ of G and an arbitrary greedy independent decomposition $B_{1}, B_{2}, \ldots, B_{s}$ of H and combine them into what is called a "diagonal" set of the product as $M=\cup_{i}\left(A_{i} \times B_{i}\right)$. If $s \neq t$, then there are as many sets in this union as the smaller of s and t.

For a vertex x of a graph G, the open neighborhood of x is the set $N(x)$ defined by $N(x)=\{w \in V(G) \mid x w \in E(G)\}$, and the closed neighborhood, $N[x]$, of x is the set $N(x) \cup\{x\}$. For $A \subseteq V(G)$ we define $N(A)$ to be $\cup_{x \in A} N(x)$ and $N[A]=N(A) \cup A$. The vertex independence number of a graph G is the cardinality of a largest independent set in G. We denote the vertex independence number of G by $\alpha(G)$ and refer to an independent set of this order as an $\alpha(G)$-set. If a graph G has an independent set M such that $G-N[M]=\{x\}$ for some vertex x, then x is said to be an isolatable vertex of G. The existence of such a vertex is central to our work.

Lemma 3. Let G be a graph in which no vertex is isolatable. If I is any maximum independent set in G and x is any vertex of $I, G-N[I-\{x\}]$ is a clique of order at least two.

Proof. Suppose I is an $\alpha(G)$-set and that I has a vertex v such that the graph $G-N[I-$ $\{v\}]$ has an independent set A of size at least two. Then $I^{\prime}=(I-\{v\}) \cup A$ is independent in G and has order larger than $|I|=\alpha(G)$, a contradiction. Therefore, $G-N[I-\{v\}]$ is a clique. Since G has no isolatable vertex it follows that $G-N[I-\{v\}]$ has order at least two.

3 Main Results

We first reduce the study of when a Cartesian product is well-covered by considering the existence of isolatable vertices in the two factors.

Theorem 4. Suppose that H is not well-covered and G has an isolatable vertex. Then $G \square H$ is not well-covered.

Proof. Let A and B be maximal independent subsets of H with $|A|>|B|$, and suppose that x is an isolatable vertex in G. Let I be an independent set in G such that x is an isolated vertex in the graph $G-N[I]$. Extend the independent set $I \times A$ to a maximal independent set J of $(G-N[x]) \square H$. Let $m=|J|$. Note that J dominates $N_{G}(x) \times A$ (and perhaps other vertices of $N_{G}(x) \times V(H)$), but J does not contain any vertices from $N_{G}[x] \times V(H)$.

Let $J_{1}=J \cup(\{x\} \times A)$ and $J_{2}=J \cup(\{x\} \times B)$. By the choice of A and B it is clear that $\left|J_{1}\right|>\left|J_{2}\right|$. Let X_{A} denote the set of vertices in $N_{G}(x) \times V(H)$ that are not dominated by J_{1}. Similarly, let X_{B} denote the set of vertices in $N_{G}(x) \times V(H)$ that are not dominated by J_{2}. Note that any vertex in $N_{G}(x) \times V(H)$ that is dominated by J_{1} is also dominated by J. Since $J \subset J_{2}$, it follows that if a vertex of $N_{G}(x) \times V(H)$ is dominated by J_{1} it is also dominated by J_{2}. Hence, the set X_{B} is a subset of X_{A}.

Choose a maximal independent set L of the subgraph of $G \square H$ induced by X_{B}. Then $J_{2} \cup L$ is a maximal independent set in $G \square H$. Extend L to a maximal independent set M of the subgraph of $G \square H$ induced by X_{A}. Now, $J_{1} \cup M$ is a maximal independent set of $G \square H$, and

$$
\left|J_{1} \cup M\right|=\left|J_{1}\right|+|M|>\left|J_{2}\right|+|M| \geqslant\left|J_{2}\right|+|L|=\left|J_{2} \cup L\right| .
$$

Therefore, $G \square H$ has maximal independent sets of distinct cardinalities, and thus $G \square H$ is not well-covered.

It now follows that if both of G and H are not well-covered but $G \square H$ is well-covered, then neither G nor H has an isolatable vertex.

Lemma 5. Let G and H be graphs such that neither has an isolatable vertex. If $G \square H$ is well-covered, then both G and H have the property that if M is any maximal independent set of the graph, that graph must have a maximal independent set N that is disjoint from M. Furthermore, at least one of G or H has the property that any two disjoint maximal independent sets have the same cardinality.

Proof. As stated above, neither G nor H has an isolatable vertex. Let $I_{1}, I_{2}, \ldots, I_{t}$ be any greedy independent decomposition of G and $J_{1}, J_{2}, \ldots, J_{s}$ be any greedy independent decomposition of H. Let $p=\min \{s, t\}$. The (so-called "diagonal") set $M=\left(I_{1} \times J_{1}\right) \cup$ $\left(I_{2} \times J_{2}\right) \cup \cdots \cup\left(I_{p} \times J_{p}\right)$ is maximal independent in $G \square H$. Since $G \square H$ is well-covered, this implies that $\alpha(G \square H)=|M|=\sum_{k=1}^{p}\left|I_{k}\right| \cdot\left|J_{k}\right|$.

Since J_{1} is an independent set in H and J_{2} is a maximal independent set in $H-J_{1}$, if there exists a vertex $u \in J_{1}$ that is not dominated by J_{2}, then u is isolated in $H-N\left[J_{2}\right]$.
(This follows since every neighbor of u in H would thus belong to $V(H)-\left(J_{1} \cup J_{2}\right)$, and none of these remains in $H-N\left[J_{2}\right]$.) This contradicts the fact that H does not have an isolatable vertex. Therefore, J_{2} is actually a maximal independent set in H as well as in $H-J_{1}$. By an identical argument it follows that I_{2} is a maximal independent set in G. Suppose that $a=\left|J_{1}\right|$ and $b=\left|J_{2}\right|$ and that $a \neq b$. Let $c=\left|I_{1}\right|$ and $d=\left|I_{2}\right|$. Since I_{1} and I_{2} are disjoint maximal independent sets in G, the list $I_{2}, I_{1}, I_{3}, \ldots, I_{t}$ is also a greedy independent decomposition of G. This implies

$$
c a+d b+\sum_{k=3}^{p}\left|I_{k}\right| \cdot\left|J_{k}\right|=\alpha(G \square H)=d a+c b+\sum_{k=3}^{p}\left|I_{k}\right| \cdot\left|J_{k}\right|,
$$

since $G \square H$ is well-covered, and thus $c a+d b=d a+c b$. Since $a \neq b$ we get $c=d$; that is, $\left|I_{1}\right|=\left|I_{2}\right|$. Since $I_{1}, I_{2}, \ldots, I_{t}$ is an arbitrary greedy independent decomposition of G, the lemma follows.

We now proceed to prove our main result.
Theorem 2. If G and H are graphs such that $G \square H$ is well-covered, then at least one of G or H is well-covered.

Proof. Suppose by way of contradiction that the statement is not true. Let G and H be a pair of graphs neither of which is well-covered but such that $G \square H$ is well-covered. As above we may assume that no vertex of either G or H can be isolated in its own graph. From Lemma 5 we may assume without loss of generality that G has the property that any two maximal independent sets of different cardinalities must intersect nontrivially.

Since G is not well-covered, there exists a maximal independent set whose cardinality is less than $\alpha(G)$. From the collection of all maximal independent sets in G choose a pair, say I and J, such that $|J|<|I|=\alpha(G)$ and $|I \cap J|$ is as small as possible. Since $|I| \neq|J|$ there exists $v \in I \cap J$. Let $F=G-N[I-\{v\}]$. By Lemma 3 this subgraph F is a clique of order at least two. Let w be any vertex of F such that $w \neq v$, and let $I^{\prime}=(I-\{v\}) \cup\{w\}$. Note that I^{\prime} is independent, $\left|I^{\prime}\right|=|I|$, and yet $\left|I^{\prime} \cap J\right|=|I \cap J|-1$ contradicting our choice of I and J. Therefore, G is well-covered.

References

[1] A. O. Fradkin. On the well-coveredness of Cartesian products of graphs. Discrete Math., 309:238-246, 2009.
[2] B.L. Hartnell. Well-covered graphs. J. Combin. Math. Combin. Comput., 29:107-115, 1999.
[3] M.D. Plummer. Some covering concepts in graphs. J. Combin. Theory, 8:91-98, 1970.
[4] M. D. Plummer. Well-covered graphs: a survey. Quaestiones Math., 16(3):253-287, 1993.
[5] J. Topp and L. Volkmann. On the well coveredness of products of graphs. Ars Combin., 33:199-215, 1992.

[^0]: *Partially supported by NSERC.
 ${ }^{\dagger}$ Supported by a grant from the Simons Foundation (\#209654 to Douglas Rall) and the Herman N. Hipp Endowed Chair.

