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Abstract

Cupin superfamily of proteins, including germin and germin-like proteins (GLPs) from higher plants, is known to play crucial
roles in plant development and defense. To date, no systematic analysis has been conducted in soybean (Glycine max)
incorporating genome organization, gene structure, expression compendium. In this study, 69 putative Cupin genes were
identified from the whole-genome of soybean, which were non-randomly distributed on 17 of the 20 chromosomes. These
Gmcupin proteins were phylogenetically clustered into ten distinct subgroups among which the gene structures were
highly conserved. Eighteen pairs (52.2%) of duplicate paralogous genes were preferentially retained in duplicated regions of
the soybean genome. The distributions of GmCupin genes implied that long segmental duplications contributed
significantly to the expansion of the GmCupin gene family. According to the RNA-seq data analysis, most of the Gmcupins
were differentially expressed in tissue-specific expression pattern and the expression of some duplicate genes were partially
redundant while others showed functional diversity, suggesting the Gmcupins have been retained by substantial
subfunctionalization during soybean evolutionary processes. Selective analysis based on single nucleotide polymorphisms
(SNPs) in cultivated and wild soybeans revealed sixteen Gmcupins had selected site(s), with all SNPs in Gmcupin10.3 and
Gmcupin07.2 genes were selected sites, which implied these genes may have undergone strong selection effects during
soybean domestication. Taken together, our results contribute to the functional characterization of Gmcupin genes in
soybean.
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Introduction

The cupin superfamily of proteins, mainly consisted of germin

and germin-like protein (GLP) subfamilies, is extremely diverse in

plants and possess various enzymatic activities such as sugar-

binding metal-independent epimerases, and metal-dependent

enzymes possessing dioxygenase, and decarboxylase [1,2]. Ger-

min, initially identified as a specific marker for germination in

wheat embryos [3], has been characterized as a homopentameric

glycoprotein with oxalate oxidase (OxO) activity [4]. To date, it is

speculate to play significant roles in plant development and

defense through oxidative breakdown of oxalate, leading to

generation of H2O2 [5,6]. Germin like proteins (GLPs), with a

high sequence and structural similarity to cereal germins, differ

from germin as they mostly lack oxalate oxidase activity, and

possess activity of SOD and phosphodiesterase [2,7–9]. Cupin-

domain has been reported to be associated with the biological

properties in plants. For instance, a group of single cupin-domain

related proteins, including two phosphomannose isomerases and

two epimerases involved in cell wall synthesis, were identified in

Synechocystis PCC6803 genome [10]. Moreover, a duplicated,

two cupin-domain GLP protein showed close similarity in

structure of an oxalate decarboxylase from the fungus Collybia

velutipes and is considered as a putative progenitor of the storage

proteins of land plants [10].

Until now, a total of 27 GLP genes have been identified in

Arabidopsis, and their expression vary in different tissues such as

roots, leaves and flowers [11–13]. Lapik et al reported a cupin-

domain protein AtPirin1 could interact with a CCAAT box

binding transcription factor, and served as a downstream

component of GPA1 in regulating seed germination and early

seedling development [14]. Recently, another two GLP proteins

(PDGLP1 and PDGLP2) in Arabidopsis, which could interact with

Cucurbita maxima PHLOEM PROTEIN 16 (Cm-PP16), involved

in the regulation of growth of primary root through modulating

phloem-mediated resource allocation between the primary and

lateral root meristems [15]. The PDGLP1 signal peptide was

shown to function in localization to the plasmodesmata (PD) by a

novel mechanism involving the endoplasmic reticulum-Golgi

secretory pathway. Further, in plum (Prunus salicina), two GLP-

encoding genes (designated as Ps-GLP1 and Ps-GLP2) were

cloned, and the regulation was studied throughout fruit develop-
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Table 1. Summary of Cupin family members in soybean.

Gene Symbol Gene Locus Primary transcript Gene location Amino Acids Extrons

Gmcupin01.1 Glyma01g04450 Glyma01g04450.1 Gm01:3990477-3991986 220 1

Gmcupin02.1 Glyma02g01085 Glyma02g01085.1 Gm02:816290-817482 147 2

Gmcupin02.2 Glyma02g03100 Glyma02g03100.1 Gm02:2414696-2415880 220 1

Gmcupin02.3 Glyma02g05010 Glyma02g05010.1 Gm02:4077995-4078612 205 1

Gmcupin03.1 Glyma03g32030 Glyma03g32030.1 Gm03: 39840052 - 39842763 495 4

Gmcupin03.2 Glyma03g38630 Glyma03g38630.1 Gm03:44934345-44933730 218 2

Gmcupin04.1 Glyma04g39040 Glyma04g39040.2 Gm04:45306333-45307231 199 3

Gmcupin05.1 Glyma05g25620 Glyma05g25620.1 Gm05:31685194-31686123 215 2

Gmcupin06.1 Glyma06g15930 Glyma06g15930.1 Gm06:12516557-12517688 228 1

Gmcupin07.1 Glyma07g04310 Glyma07g04310.1 Gm07:3163391-3164534 209 1

Gmcupin07.2 Glyma07g04320 Glyma07g04320.1 Gm07:3167203-3168078 208 1

Gmcupin07.3 Glyma07g04330 Glyma07g04330.1 Gm07:3173276-3174394 208 1

Gmcupin07.4 Glyma07g04340 Glyma07g04340.1 Gm07:3179749-3180833 225 1

Gmcupin07.5 Glyma07g04400 Glyma07g04400.1 Gm07:3202414-3203532 208 1

Gmcupin08.1 Glyma08g08600 Glyma08g08600.1 Gm08:6134739-6134464 215 2

Gmcupin08.2 Glyma08g24320 Glyma08g24320.1 Gm08:18508831-18509842 211 1

Gmcupin09.1 Glyma09g03010 Glyma09g03010.1 Gm09:2110529-2109847 217 2

Gmcupin09.2 Glyma09g08030 Glyma09g08030.1 Gm09:7066672-7066667 135 1

Gmcupin10.1 Glyma10g08360 Glyma10g08360.1 Gm10:7201264-7200871 226 2

Gmcupin10.2 Glyma10g11935 Glyma10g11935.1 Gm10:12509357-12509734 125 1

Gmcupin10.3 Glyma10g28010 Glyma10g28010.1 Gm10:36807794-36807686 221 2

Gmcupin10.4 Glyma10g28020 Glyma10g28020.1 Gm10:36812065-36811696 220 2

Gmcupin10.5 Glyma10g28190 Glyma10g28190.1 Gm10:36981942-36980791 223 2

Gmcupin10.6 Glyma10g31200 Glyma10g31200.2 Gm10:39762112-39761524 198 3

Gmcupin10.7 Glyma10g31210 Glyma10g31210.1 Gm10:39768393-39768098 232 2

Gmcupin10.8 Glyma10g42611 Glyma10g42611.1 Gm10:49519941-49520574 177 3

Gmcupin12.1 Glyma12g09630 Glyma12g09630.2 Gm12:7391558-7392181 207 1

Gmcupin12.2 Glyma12g09640 Glyma12g09640.2 Gm12:7398088-7398957 212 2

Gmcupin12.3 Glyma12g09760 Glyma12g09760.2 Gm12:7531728-7532351 207 1

Gmcupin12.4 Glyma12g31110 Glyma12g31110.1 Gm12:34711894-34712517 207 1

Gmcupin13.1 Glyma13g16960 Glyma13g16960.2 Gm13:20815056-20816399 199 2

Gmcupin13.2 Glyma13g18450 Glyma13g18450.2 Gm13: 22109247 - 22113254 226 4

Gmcupin13.3 Glyma13g22050 Glyma13g22050.1 Gm13:25624544-25624397 239 2

Gmcupin13.4 Glyma13g40360 Glyma13g40360.1 Gm13:40856942-40859117 483 5

Gmcupin15.1 Glyma15g05040 Glyma15g05040.2 Gm15: 3611464 - 3613757 351 7

Gmcupin15.2 Glyma15g13960 Glyma15g13960.1 Gm15:10534152-10533514 215 2

Gmcupin15.3 Glyma15g19510 Glyma15g19510.1 Gm15:16833879-16835243 213 1

Gmcupin15.4 Glyma15g35130 Glyma15g35130.1 Gm15:39672342-39673419 231 1

Gmcupin16.1 Glyma16g00980 Glyma16g00980.1 Gm16:652712-653968 209 1

Gmcupin16.2 Glyma16g00990 Glyma16g00990.1 Gm16:656546-657171 181 2

Gmcupin16.3 Glyma16g01000 Glyma16g01000.1 Gm16:660570-661190 206 1

Gmcupin16.4 Glyma16g06500 Glyma16g06500.1 Gm16:5853241-5853122 221 2

Gmcupin16.5 Glyma16g06520 Glyma16g06520.1 Gm16:5858235-5858104 221 2

Gmcupin16.6 Glyma16g06530 Glyma16g06530.1 Gm16:5860996-5862104 220 2

Gmcupin16.7 Glyma16g06630 Glyma16g06630.1 Gm16:5947078-5946961 221 2

Gmcupin16.8 Glyma16g06640 Glyma16g06640.1 Gm16:5951136-5952363 215 2

Gmcupin16.9 Glyma16g07550 Glyma16g07550.1 Gm16:6838751-6839383 210 1

Gmcupin16.10 Glyma16g07560 Glyma16g07560.2 Gm16:6844140-6843743 188 1

Gmcupin16.11 Glyma16g07580 Glyma16g07580.1 Gm16:6860067-6860840 214 1

Gmcupin17.1 Glyma17g05760 Glyma17g05760.1 Gm17:4052453-4053577 208 1
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ment and during maturity of early and late cultivars. All these

demonstrated that GLPs may involve in certain developmental

stages in plants.

Expression of Cupin proteins could be modulated by abiotic or

biotic stresses, suggesting their multifunctional roles in plant

defense response. For instance, a 66-kDa cupin protein BspA (for

‘‘boiling-stable protein’’), highly expressed in cultured shoots of

aspen (Populus tremula) in the presence of water stress, was

considered to contribute to membrane stability [16]. However, the

mechanism of how cupin proteins involve in the plant defense is

still not well defined. One germin-like gene (CchGLP) cloned from

geminivirus-resistant pepper, induced by ethylene and salicylic

acid other than jasmonic acid, encoded an enzyme with

manganese superoxide dismutase (Mn-SOD)activity [17]. Also,

Mn-SOD activity was identified in GLPs isolated from tobacco

and Barbula unguiculata [18–20]. Considering plant Mn-SODs

was distributed extracellularly as well as in mitochondria and

peroxisomes and associated with defense against biotic stress in

plants [18,21,22], it is probably to speculate that Cupin protein

may involve in the plant defense through scavenging free radicals.

The ubiquitous distribution of GLPs implies their indispensable

and fundamental roles in plants [23,24]. In soybean, rare studies

have been performed on the functional characterization of Cupin

proteins [25]. Completion of the soybean genome greatly

facilitated the identification of gene families at the whole-genome

level [26]. In the present study, a genome-wide identification of

Cupin domain was performed in soybean, and detailed analysis of

the sequence phylogeny, genome organization, gene structure,

expression profiling and selective effects of Gmcupin genes during

soybean domestication was performed. Our data contributes to the

evolutionary and functional analysis of the Cupin gene family in

soybean.

Materials and Methods

Sequence retrieval and phylogenetic analysis
Amino-acid sequence of the Cupin domain was used to search

for potential Dof-domain homolog hits in the whole-genome

sequence of Glycine max with BLASTP at the Phytozome database

(http:/www.phytozome.net) [27]. All non-redundant hits with

expected values of ,1E-5 were collected. Subsequently, manual

analysis was performed to confirm the presence of Cupin domain

using InterProScan program (http://www.ebi.ac.uk/Tools/

InterProScan/) [28].

Sequence alignments of the full-length protein sequences were

performed using Clustal X software (version 1.8) [29]. Phyloge-

netic trees were constructed with MEGA 5.0 using Neighbor-

Joining (NJ) method with 1000 replicates of bootstrap analysis

[30]. The evolutionary distances were computed using the p-

distance method. WebLogo was used to create the distribution of

amino-acid residues at the corresponding positions in domain

profiles for the conserved Cupin domain of Gmcupins [28].

Identification of conserved motifs
For the motif analysis, deduced amino-acid sequences of the

Gmcupins were analysis by Multiple EM for Motif Elicitation

version 4.9.1 (http://meme.nbcr.net/meme/cgi-bin/meme.cgi)

[31]. Structural motif annotation was performed using the Pfam

(http://pfam.sanger.ac.uk), NCBI (http://www.ncbi.nlm.nih.gov/)

and SMART (http://smart.embl-heidelberg.de) database.

Genomic structure and chromosomal location of
Gmcupins

The exon/intron organization for individual cupin gene was

illustrated with Gene structure display server program (GSDS)

(http://gsds.cbi.pku.edu.cn/) [32] by comparing the cDNAs with

their corresponding gDNA sequences in the Phytozome database

Table 1. Cont.

Gene Symbol Gene Locus Primary transcript Gene location Amino Acids Extrons

Gmcupin19.1 Glyma19g09370 Glyma19g09370.2 Gm19:11189789-11189486 181 3

Gmcupin19.2 Glyma19g09810 Glyma19g09810.1 Gm19:11530120-11531183 221 2

Gmcupin19.3 Glyma19g09830 Glyma19g09830.1 Gm19:11554699-11555709 221 2

Gmcupin19.4 Glyma19g09840 Glyma19g09840.1 Gm19:11601504-11602281 221 2

Gmcupin19.5 Glyma19g09860 Glyma19g09860.1 Gm19:11630024-11631147 221 2

Gmcupin19.6 Glyma19g09990 Glyma19g09990.1 Gm19:11922733-11922620 221 2

Gmcupin19.7 Glyma19g24840 Glyma19g24840.1 Gm19:30509520-30510472 212 2

Gmcupin19.8 Glyma19g24850 Glyma19g24850.1 Gm19:30514099-30513955 221 2

Gmcupin19.9 Glyma19g24870 Glyma19g24870.2 Gm19:30532519-30533617 221 2

Gmcupin19.10 Glyma19g24900 Glyma19g24900.1 Gm19:30559228-30560036 221 2

Gmcupin19.11 Glyma19g24910 Glyma19g24910.1 Gm19:30576453-30577383 219 2

Gmcupin19.12 Glyma19g27580 Glyma19g27580.1 Gm19:34882234-34884637 212 2

Gmcupin19.13 Glyma19g34780 Glyma19g34780.1 Gm19: 42366324 - 42369290 481 4

Gmcupin19.14 Glyma19g41070 Glyma19g41070.2 Gm19:47390045 - 47391131 184 3

Gmcupin19.15 Glyma19g41220 Glyma19g41220.1 Gm19:47524955-47524382 219 2

Gmcupin20.1 Glyma20g22180 Glyma20g22180.1 Gm20:32106832-32105935 224 2

Gmcupin20.2 Glyma20g25430 Glyma20g25430.1 Gm20:35111115-35111738 207 1

Gmcupin20.3 Glyma20g36300 Glyma20g36300.1 Gm20:44453211-44454264 232 2

Gmcupin20.4 Glyma20g36320 Glyma20g36320.1 Gm20:44458621-44459718 222 2

doi:10.1371/journal.pone.0110092.t001
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(http://www.phytozome.net/gmax). The chromosomal locations

of soybean cupins were mapped to the duplicated blocks using the

Chromosome Visualization Tool (CViT) genome search and

synteny viewer at the Legume Information System (http://

comparative-legumes.org/) [33,34].

Calculation of Ka/Ks values
Clustal X (version 1.8) was used for the pairwise alignments of

the paralogous nucleotide sequences [29]. Ka (non-synonymous

substitution rate) and Ks (synonymous substitution rate) were

estimated using the DnaSp v5 program [35]. Divergence time (T)

was calculated using as the formula: T = Ks/2l, where the

synonymous mutation rate l was 6.161029 for soybean

[26,36,37].

Expression analysis of GmCupin genes
Genome-wide transcriptome data of seeds during various

developmental stages were downloaded from Soybase database

(http://soybase.org/). The transcript data were obtained from

vegetative tissues (e.g. young leaf, root and nodule), seed of seven

developmental stages (10, 14, 21, 25, 28, 35, and 42 days after

flowering), and reproductive tissues (e.g. flower, one cm pod, pod

shell of 10 and 14 days after flowering). All transcript data were

analyzed with Cluster 3.0 [38] and the heat map was viewed in

Java Treeview [39].

Evolutionary analysis of Gmcupin genes
Single nucleotide polymorphisms (SNPs) of the Gmcupin genes

were downloaded from the SoyKB database (http://soykb.org/)

based on the resequencing of wild and cultivated soybean genomes

[40]. The ratio of each SNP in wild and cultivated soybean

populations was analyzed respectively. The SNP site with reverse

distribution ratio in different types of soybean population was

defined as a putative selective site throughout domestication.

Results and Discussion

Identification of Cupin gene family in soybean
In order to identify the Cupin gene family in soybean genome,

BLASTP was performed against the G. max v1.1 genome using the

conserved Cupin domain. Afterwards, the obtained sequences

were used as secondary queries. A total of 69 non-redundant

Cupin genes were identified in the soybean genome (Table 1). To

identify the conserved Cupin domain, all candidates were

subjected to functional analysis using InterproScan program

(http://www.ebi.ac.uk/Tools/InterProScan/). Soybean Cupin
genes were numbered from Gmcupin01.1 to Gmcupin 20.4
according to their localization on chromosomes. Peptides consisted

of 125–495 (average 224) amino acids were encoded by the

identified Gmcupin genes in soybean.

Multiple alignment analysis was performed to discover the

features of the homologous domain sequence and the frequency of

Figure 1. Conserved domains across cupin proteins in soybean. The sequence logos are based on alignments of 69 Gmcupin domains.
Multiple alignment analysis of all typical Gmcupin domains (A: Gmcuppin 1; B: Gmcupin 2) were performed with Clustal W. The bit score indicates the
information content for each position in the sequence.
doi:10.1371/journal.pone.0110092.g001
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the amino-acids at each position of the Gmcupin domains.

Multiple EM for Motif Elicitation was used to identify the putative

cupin motif. Two conserved domains, designated as Gmcupin 1

and Gmcupin 2, were found in these Gmcupins, and were formed

by 59 amino acids and 52 amino acids, respectively. In Gmcupin

1, seven highly conserved residues were identified, including H-34,

H-36, P-37, E-41, Gly-48, Gly-53 and F-54. In Gmcupin 2, four

conserved residues were identified such as Gly-8, P-14, H-19 and

N-23 (Figure 1). In the previous reports, the histidines and

glutamic acid(s) have been reported to act as ligands for the

active-site metal [18,19,41]. Additionally, studies showed that a set

of conserved histidine residues employed in sugar-binding in the

ancestral non-enzymatic domain evolved into the metal-coordi-

nating histidine residues in oxalate oxidase [42] and oxalate

decarboxylase [43].

Phylogenetic relationships and gene structure of
soybean Cupin genes

The abundance of Gmcupin genes may derive from multiple

gene duplication events, which was represented by a whole-

genome duplication following multiple segmental and tandem

duplications [44]. In this study, an unrooted tree was constructed

to examine the phylogenetic relationships among the Cupin

domains using alignments of the full-length amino-acid sequences

in all Gmcupin proteins (Figure 2). The Gmcupin gene family was

classified into ten subgroups (I-X) with 2-22 members in each

subgroup. The very high bootstrap value in each subgroup

suggested a common origin for the Gmcupin gene in each group

except subgroup I. Surprisingly, 12 Gmcupin genes (80%) on

chromosome 19 were classified into subgroup I with five genes

(Gmcupin19.2, Gmcupin19.3, Gmcupin19.4, Gmcupin19.5 and

Gmcupin19.6) showed the same base composition. Phylogenetic

Figure 2. Phylogenetic relationships and gene structure of Gmcupin genes. The phylogenetic tree of Gmcupin proteins constructed from a
complete alignment of 69 Gmcupin proteins using MEGA 5.0 by the neighbor-joining method. The bootstrap consensus tree inferred from 1000
replicates is taken to represent the evolutionary history of the taxa analyzed. Percentage bootstrap scores of.50% are indicated on the nodes. Ten
major phylogenetic subgroups (designated as I to X) are indicated. Exons of Gmcupin genes are represented by green boxes and introns and
untranslated region (UTR) by black and blue lines. The sizes of exons and introns can be estimated using the scale below.
doi:10.1371/journal.pone.0110092.g002
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tree topology revealed that 22 Gmcupin pairs located at the

terminal nodes shared high similarities. Thus, they were assigned

as paralogous pairs (homologous genes that diverged by gene

duplication, Figure 2). These paralogous pairs of Gmcupin genes,

accounted for more than 63% of the entire Gmcupin family, and

showed a sequence similarity of 77.2%,100% (Table S1). This

implied that these genes may evolve from a recent soybean

genome duplication event [45].

As gene structural diversity is a possible explanation to the

evolution of multigene families, the exon/intron organization in

the coding sequences of each Gmcupin gene was compared.

According to their predicted structures, extremely similar gene

structures were observed in most of the closely related Gmcupin
members within the same. In addition, the position and length of

intron were almost completely conserved (Fig. 2A). For instance,

most of the Gmcupin genes in subgroup I, II and III contained one

intron respectively, except Gmcupin 19.4, Gmcupin 10.2,

Gmcupin 10.6 in subgroup I and Gmcupin 19.14 in subgroup

III. Meanwhile, no introns were identified in 23 of the Gmcupin
genes (23/30) in subgroup IV, V, VI, VII, VIII and IV,

respectively. In contrast, the gene structures in Gmcupin subfamily

X appeared to be more variable and displayed the largest number

of exon/intron structure variants compared with the other

Gmcupin genes. The dissimilarity of intron phases between

subfamilies and the conservation within Gmcupin subfamilies

may reciprocally support to the results of phylogenetic analysis and

genome duplication.

Chromosomal location and duplication of soybean Cupin
genes

As revealed in Figure 3, Gmcupin genes were non-randomly

distributed on 17 of the 20 chromosomes. Fifteen Cupin genes

were localized on chromosome 19, while eleveen genes were

localized on chromosome 16. In contrast, no more than two

Gmcupins genes were localized on eleven chromsomes. What’s

more, no Cupin genes were distributed on chromosome 11, 14 and

18, respectively. Most Gmcupins presented substantial clustering

on several chromosomes especially on those with high densities of

the genes. To be exact, 10 Gmcupin genes on chromosome 16

were arranged in four clusters, with each in less than 9-kb

(Gmcupin16.1, Gmcupin16.2, and Gmcupin16.3 located within

8.5-kb; Gmcupin16.4, Gmcupin16.5 and Gmcupin16.6 located

within 8.8-kb; Gmcupin16.7 and Gmcupin16.8 located within 5.3-

kb; Gmcupin16.9 and Gmcupin16.10 located within 5-kb), the

other Gmcupin gene Gmcupin16.11 is also close to its neighbor

Gmcupin16.10 within a 1.7-kb segment. Similarly, Gmcupin19.7
and Gmcupin19.8 located within a 4.5-kb segment, while

Gmcupin19.10 and Gmcupin19.11 located within a 19-kb

segment on the same chromosome.

Figure 3. Chromosomal locations and predicted clusters for Gmcupin genes. The schematic diagram of genome-wide chromosome
organization and segmental duplication arising from the genome duplication event in soybean was derived from the CViT genome search and
synteny viewer at the Legume Information System (http://comparative-legumes.org). The chromosomal positions of all Gmcupin genes were mapped
on each chromosome. Colored blocks to the left of each chromosome show duplications with chromosomes of the same color. The chromosome
numbers are indicated at the top of each bar and sizes of chromosomes are represented by the vertical scale. The locations of centromeric repeats are
shown as black rectangles over the chromosomes.
doi:10.1371/journal.pone.0110092.g003
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Soybean genome is speculated to undergo at least two rounds of

genome-wide duplication followed by multiple segmental duplica-

tion, tandem duplication, transposition events (e.g. retroposition

and replicative transposition) [45]. A tandem duplication event

was confirmed by the presence of two or more genes on the same

chromosome, while a segmental duplication event was defined as

gene duplication on different chromosomes [46]. To our

knowledge, the major causes for gene-family expansion were

segmental duplication, tandem duplication, and transposition

events. To reveal the potential relationship between putative

paralogous pairs of Gmcupin gens and segmental duplications,

CViT genome search and synteny viewer (http://comparative-

legumes.org/) were used to map the Gmcupin genes [33]. The

distributions of Gmcupin genes relative to the corresponding

duplicate blocks were illustrated in Figure 3. Within the identified

duplicated blocks associated with a duplication event, about 18

(81.8%) of Gmcupins were preferentially retained duplicates that

located in duplicated regions, with 13 putative paralogous pairs

located in a segmental duplication of a long fragment (.1 Mb)

and 4 located in a segmental duplication of a short fragment (,

1 Mb, Table 2). Meanwhile, another putative paralogous pairs

(Gmcupin10.3/Gmcupin10.4) were formed, which was supposed

to be possibly due to tandem duplication in the same orientation.

Taken together, we implied that long segmental duplication was

predominant for evolution of Gmcupin genes, which may be

associated with tandem duplication.

To investigate whether Darwinian positive selection is involved

in the divergence of Gmcupin genes after duplication and trace the

dates of the duplication blocks, the substitution rate ratios (Ka/Ks)

of 18 paralogous pairs are calculated using DnaSP program. Ks

was used to calculate the approximate dates of duplication events.

The segmental duplications of the Gmcupin genes in soybean was

supposed to originate from 7.45 Mya (million years ago,

Ks = 0.0909) to 28.66 Mya (Ks = 0.3497), with a mean value of

13.78 Mya (Ks = 0.1682, Table 2). Meanwhile, the Ks of tandem

duplication of Gmcupin10.3 and Gmcupin10.4 was 0.0909, dating

the duplication event at 7.45 Mya. Considering the fact that the

soybean genome underwent two polyploidy events at 13 and

58 Mya, all the segmental duplications of the Gmcupin genes

occurred around 13 Mya when Glycine-specific duplication

occurred in the soybean genome [26].

Generally, a Ka/Ks of less than 1 demonstrates a functional

constraint with purifying or negative selection of the genes. In this

study, The Ka/Ks ratios of 8 segmental duplication pairs were less

than 0.3, while the ratios of the other 9 segmental duplication pairs

and one tandem duplication pair were more than 0.3, which

demonstrated a possibility of significant functional divergence of

some Gmcupin genes after the duplication events. The Ka/Ks

ratios of another two paralogous gene pair (Gmcupin16.8/19.12
and Gmcupin13.1/17.1) were slightly larger than 0.5 (Table 2).

This suggests that they experience relatively rapid evolution

following duplication. On this basis, we concluded that Gmcupin
gene family experienced strong purifying selection pressure with

limited functional divergence after segmental duplications.

Figure 4. Expression profile of Gmcupin genes in different tissues. The numbers in the expression profile are normalized data, which were
calculated as reads/kilobase/million normalization of the raw data. All data were downloaded from the SoyBase.
doi:10.1371/journal.pone.0110092.g004

Figure 5. Expression profiles of 35 expressed Gmcupin genes in different tissues. a. Heatmap showing hierarchical clustering of 35
expressed Gmcupin genes among various tissues analyzed. b. Heatmap showing hierarchical clustering of 35 expressed Gmcupin genes during the
development of soybean seeds.
doi:10.1371/journal.pone.0110092.g005
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Differential expression profile of Gmcupin genes
To highlight the expression profiles of Gmcupin genes, we then

analyzed the previously publicly-available RNA-Seq data regard-

ing seven soybean tissues, three pod development stages and seven

seed developmental stages. Thirty-five Gmcupin genes had

sequence reads in at least one tissue, and most of them showed

a distinct tissue-specific expression pattern (Figure 4). For exam-

ple, two genes (Gmcupin17.1 and Gmcupin15.3) had a signifi-

cantly higher transcript accumulation in the young leaf of soybean.

Gmcupin16.8 was mainly expressed during pod development,

while Gmcupin16.5, Gmcupin03.2 and Gmcupin20.4 were

specifically expressed in soybean root. Besides, three genes

(Gmcupin03.1, Gmcupin13.2 and Gmcupin19.13) of subfamily

X were highly expressed at the later stage of seed development.

Most Gmcupin genes showed a relative low expression level in

soybean nodule (Figure 4). These genes were clustered into five

groups (A–E) and four groups (I–IV) based on their expression

patterns in soybean tissues (excet seeds) and the expression profiles

during seven soybean seed development stages (Figure 5). The

genes in clusters A–E were mainly expressed in flower/root, root,

pod/root, young leaf and pod, respectively. Six genes in cluster I

mainly expressed during the early stage of soybean seed

development, while seven genes in cluster II and III mainly

expressed during the later stage of soybean seed development. In

addition, three genes in cluster III having a much higher and

specific expression level during soybean seed development from 25

days after flower (DAF) to 42DAF. Further, genes of cluster IV

were expressed in most stages of soybean seed development.

The evolutionary fates of duplicate genes may be classified into

subfunctionalization (partition of original functions), neofunctio-

nalization (acquisition of novel functions), or nonfunctionaliza-

tion(loss of original functions) [47]. In this study, we investigated

the functional redundancy of Gmcupin genes with high propora-

tion of segmental/tandem duplications. Six paralogous pairs

(Gmcupin03.1/19.13, Gmcupin07.1/16.1, Gmcupin10.1/13.3,

Gmcupin01.1/02.2, Gmcupin16.8/19.12 and Gmcupin10.7/
20.3) derived from segmental duplications and one paralogous

pair (Gmcupin10.3/10.4) derived from tandem duplication shared

almost identical expression patterns. In contrast, the expression

patterns of another seven paralogous pairs (Gmcupin17.1/13.1,

Gmcupin08.2/15.4, Gmcupin04.1/06.1, Gmcupin12.4/20.2,

Gmcupin10.5/20.1, Gmcupin10.6/20.4 and Gmcupin3.2/19.5)

diversified significantly. These findings indicated that expression

profiles of Gmcupins have diverged substantially after segmental/

tandem duplications. Therefore, we speculate that Gmcupins have

been retained by substantial subfunctionalization during soybean

evolutionary processes.

Artificial selection analysis for Gmcupins during soybean
domestication

Thirty-five Gmcupin genes were analyzed for the selection

effects during soybean domestication based on the sequence

diversity analysis between seventeen wild soybean and fourteen

cultivars. The reverse distribution of SNPs in different evolution-

ary type of soybeans was defined as strong selected sites, and then

Cupin genes with one or more type of reverse distribution were

assumed to undergo an artificial selection during soybean

domestication. Sixteen Gmcupins have selected site(s), among

which more than one selected sites were determined in 8 Gmcypins
and one selected sites in 8 genes (Table 3). Additionally, all SNP

sites were selected in Gmcupin10.3 and Gmcupin07.2 genes,

which implied these genes may have undergone strong selection

effects during soybean domestication. Interestingly, selected sites

were identified in Gmcupin03.1 (7 sites), Gmcupin13.2 (1 site) and

Gmcupin19.13 (1 site) that were highly expressed at the later

stages of soybean seed. The genetic diversity of most Gmcupins
was declined sharply in cultivars compared with that of wild

soybeans. However, Gmcupin10.7 gene that specifically expressed

in soybean root showed three types of haplotype in wild soybeans,

while four types of haplotype were identified in cultivars. Further,

a new type of haplotype in Gmcupin10.7 appeared during soybean

domestication under the pressure of artificial selection, which

would endow it with new functions. These selected genes reflected

the important roles of Gmcupins on soybean domestication and

contribute to the cultivation of soybeans in order to meet the

demands of human beings.
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