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Methods of Accelerating Re-Vegetation at Bay of Fundy Salt Marsh Restoration Sites: A 

Practical Comparison 

 

By: Tasha Rabinowitz 

Abstract 

Tidal wetlands provide important coastal protection, and interest in their restoration is 

growing in response to climate change. In Atlantic Canada, tidal wetland restoration has 

focused on restoring tidal flow, without planting vegetation. I evaluated five methods of 

planting eight native species at Bay of Fundy restoration sites by comparing growth and 

health of plants over two years. Planting potted seedlings facilitated the most growth of 

desired species and had 75% survival while plants transplanted from adjacent sites had 

higher mortality. Growth, health, and winter survival were all more strongly related to 

site than treatment. Important differences in elevation, inundation, salinity and soil 

nutrients may explain these differences in performance. 

 

These techniques show promise for accelerating re-vegetation at recovering sites, and my 

results highlight the need for an understanding of site conditions to inform planting 

schemes. Depending on budget, some combination of the tested planting techniques may 

be appropriate. 
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Chapter 1: General Introduction 

Canada has the world’s longest coastline (Lemmen & Warren, 2016), with 38% of 

the human population living within 20 km of the coast (Manson, 2005). Nova Scotia’s 

7,600 km of coastline (along the Atlantic Ocean) is home to over half of its population 

and infrastructure, and the entirety of the Province is no further than 67 km from the 

coast (Chesworth, 2016). Coastal areas are highly dynamic and climate change is altering 

many natural coastal processes (Lemmen & Warren, 2016). Erosion, storm surge and 

associated flooding, and sea-level-rise are some of the main processes with the potential 

to damage infrastructure and displace coastal residents. Current coastal management 

takes a “hard engineering” approach to coastlines where these issues are managed by 

building seawalls, dykes, breakwaters, and other structures unable to adapt in response to 

changing conditions. Coastal erosion on the East coast of Canada is projected to increase 

along with rising sea-levels, and increasing frequency and intensity of storm surge 

(Lemmen & Warren, 2016). These processes can cause structural damage to coastal 

roads, buildings and adjacent natural systems. These impacts are further exacerbated by 

hard engineered coastal structures that reflect wave energy, often simply deflecting 

erosional action (Bozek & Burdick, 2005; National Research Council, 2007), and prevent 

sediment supply to adjacent systems. Hard infrastructure also contributes to coastal 

squeeze, limiting the ability of natural systems to adapt to changing conditions. 

Salt marshes (a type of tidal wetland) are an important part of the coastal 

landscape that have experienced great historical loss as a result of human engineered 

barriers to tidal flow. In contrast to hard engineered structures, these ecosystems are 

naturally adapted to dynamic coastal processes and are known to provide excellent 
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coastal protection (Gittman et al., 2014; Narayan et al., 2017; Shepard et al., 2011) as 

well as other beneficial services which will be discussed further in the following 

literature review. As such, the restoration of these systems is gaining popularity as a 

component of climate change adaptation strategies on the coast. 

In Atlantic Canada, it is estimated that these ecosystems have experienced a loss 

of roughly 75-90 % of their historical extent (Tiner, 2013), particularly concentrated 

around the Bay of Fundy in Nova Scotia and New Brunswick where 85% has been lost 

(Hanson & Calkins, 1996). The Bay of Fundy is a unique system subject to the stresses of 

the highest tidal range in the world (an average range of 12 m, and occasionally 

exceeding 16 m at the head of the Bay), and ice scour along the coastline because of its 

northern latitude (Desplanque & Mossman, 2004). Bay of Fundy marshes are distinct 

from other temperate coastal marshes based upon their vegetation patterns, as some 

plants are frequently flooded by deep ocean water (Pratolongo et al., 2019). Most of the 

salt marsh restoration to date in Nova Scotia has been concentrated in this area.  

In the Bay of Fundy region there are many constructed tidal barriers including 

causeways, improperly sized or placed culverts and bridges, and dykes. Dykes are 

earthen berms with one-way gates preventing tidal inundation yet allowing freshwater 

drainage which are constructed to convert large swaths of salt marsh to agricultural fields 

through cutting off their natural hydrological regime. These dykes were initially built 

beginning in the 1600s by Acadian farmers but have since been updated by Nova Scotia 

Department of Agriculture (NSDA) (Milligan, 1987). In these dyked systems there is a 

unique opportunity to remove or “realign” dykes (managed realignment – when dykes are 

stepped back), and this type of project can include some component of salt marsh 
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restoration. With increasing frequency over the last 20 years, salt marsh restoration and 

managed realignment has been occurring in Nova Scotia (e.g., Van Proosdij et al., 2010; 

Virgin et al., 2020) mainly as an alternative to fixing failing dykes, and because marsh 

restoration can act as compensation for wetland or fish habitat loss elsewhere in the 

province. When managed realignment projects include salt marsh restoration, there are 

added benefits of re-instating some of the ecosystem services that salt marshes can 

provide and creating a more resilient coastline in the face of climate change. 

Restoring a site’s natural hydrological regime typically produces a more natural 

ecological state; however, longstanding deficits in vegetation diversity have been noted 

both locally and globally. The flora in salt marsh systems naturally form distinct zonation 

patterns as a result of abiotic stressors, physical factors (e.g., tidal inundation, salinity, 

topography, soil nutrients), and competition (Pennings & Bertness, 2001). However, the 

full diversity of plants that would be expected in natural marshes is not always seen at 

restoration sites. Particularly, restoration sites will often remain dominated by pioneer 

communities with low abundances of upper marsh species (Bowron et al., 2011b; Byers 

& Chmura, 2007). Many of the services provided by salt marshes are specifically 

mediated by the presence of healthy vegetation communities (Shepard et al., 2011), and 

these deficits in diversity may influence the quality of services and overall health of 

restored sites. Altered physical characteristics at restoration sites may partially explain 

deficits in vegetative recovery and in these cases, it may be necessary to take a more 

active approach to re-establishing proper vegetative diversity. 

Some form of adding plants is commonly undertaken in salt marsh restoration 

projects in other parts of the world (e.g., Broome et al., 1988; O’Brien & Zedler, 2006) to 
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accelerate re-vegetation and to promote sustainability of restored sites. There have, 

however, been no planting components to salt marsh restoration projects in the Bay of 

Fundy region to date, and very few in Atlantic Canada at all (e.g., Wrathall, 2016). My 

study represents the first attempt at active planting in the context of salt marsh restoration 

in the Bay of Fundy region where extreme tidal conditions and winter ice activity may 

uniquely influence plant re-establishment. Further, comparisons of methodological 

approaches to planting vegetation are usually made between sites, and vegetation is 

typically planted in grid-style formations. This study takes a smaller-scale approach 

where treatments are replicated in clusters across sites because of new evidence 

suggesting that planting in tight clusters may maximize facilitation, whereby interactions 

of individuals benefit one-another, and increase survival and growth of plantings 

(Silliman et al., 2015). Planting small clusters across a site also allows performance of 

planting techniques to be examined in relation to within-site variability in abiotic 

conditions. The investigation of these approaches to re-vegetation is important to provide 

the foundation for management of these systems. 

My thesis will focus on two recovering restoration sites where tidal flow was 

restored within one year of starting the project (project began in 2019) and will compare 

methods of accelerating re-vegetation. The main objective of this study was to establish 

whether active re-vegetation efforts will accelerate plant re-establishment and enhance 

vegetative diversity in recovering salt marshes where tidal flow has been returned. 

Specifically, this study evaluated different methods of re-introducing plants to restoration 

sites in the Bay of Fundy. Main research questions were: 1) Does planting vegetation 

accelerate vegetation recovery? 2) Do certain treatments, or species, have higher plant 
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performance (e.g., survival, growth)? 3) Is performance associated with abiotic 

conditions? 

The following literature review gives more details about concepts introduced here 

and provides an overview of salt marsh restoration with respect to vegetation recovery. 

First, I outline the importance of salt marshes by way of the services that these 

ecosystems provide humans and the crucial role vegetation plays in providing those 

services. Then, I discuss the historical and political context into which salt marsh 

restoration fits in Atlantic Canada. Lastly, I review the information relevant to the design 

of active planting schemes in salt marsh restoration. 

Chapter 2: Literature Review 

2.1 Ecosystem Services and the Role of Vegetation 

Intact salt marshes provide a range of functions that are beneficial to humans, 

called ecosystem services. Ecosystem services fit into four broad categories: provisioning 

(e.g., food), regulating (e.g., climate), cultural (e.g., recreation), and supporting (e.g., 

biodiversity) (Millennium Ecosystem Assessment, 2005). These services can be a result 

of underlying processes, or components of the ecosystem (Rendón et al., 2019). 

Vegetation is an ecosystem component that mediates many of the key processes in salt 

marshes without which ecosystem services in all categories may be degraded or lost. In 

restoration, vegetation recovery alone may not completely restore ecosystem services 

(Brisson et al., 2014); however, it is a crucial component to providing these services. Salt 

marsh services in which vegetation plays a critical role are discussed in this section, with 

details on how vegetation provides or enhances those services. 
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One of the most important services directly impacting coastal communities and 

infrastructure is wave and floodwater attenuation. This is a regulating service well-

documented from salt marshes (Shepard et al., 2011). Whereas hard infrastructure simply 

reflects wave energy, salt marshes slow the flow, reducing or preventing flooding and 

damage from high-impact waves. Vegetation is a critical part of this process since it 

reduces flow rates (Möller et al., 2014) and vegetation characteristics such as density and 

height have been cited as the most important factors determining wave attenuation 

capacity (Shepard et al., 2011). This capacity for marshes to dissipate wave energy has 

been confirmed even in storm surge conditions (Barbier et al., 2013; Knutson et al., 1982; 

Möller et al., 2014). This service is very important to mitigate coastal flood risks and risk 

of damage from storm surge. 

While hard infrastructure exacerbates erosional processes, salt marshes are 

created through depositional processes. Accretion describes the process by which 

sediment deposited in salt marshes is buried over time, allowing the marsh soils to grow 

both horizontally and vertically. It is worth noting that marshes can grow when sediment 

supply or belowground production exceeds erosion and there is no development that 

presents a barrier to landward migration of the upper marsh edge. Vegetation mediates 

accretion and shoreline stabilization in a number of ways: roots bind the soil and increase 

stability (Van Eerdt, 1985), plants contribute organic matter to soil (Feagin et al., 2009), 

and stems increase sedimentation both through particle capture (deposited onto plant 

surface) and as a result of increased particle settling due to decreased flow velocity 

through the plant canopy (Mudd et al., 2010). Marshes with vegetation in comparison to 

unvegetated coastal areas have an increased capacity for accretion (Shepard et al., 2011) 
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and accretion has been shown to increase with increasing stem density (Duggan-Edwards 

et al., 2020; Peng et al., 1979). A key implication of these processes is that healthy 

marshes can adapt to sea-level-rise and combat erosion induced by hard engineering, 

making them a resilient long-term climate change adaptation strategy (Erwin, 2009; 

Singh et al., 2007). 

The high productivity and relatively low decomposition rates in salt marshes 

make them particularly effective at sequestering carbon (Brevik & Homburg, 2004; 

McLeod et al., 2011; Taillardat et al., 2018). Carbon captured by coastal systems – 

termed ‘blue carbon’ – represents a very large global store of carbon despite being 

significantly smaller by area than other ecosystems (McLeod et al., 2011). Carbon 

sequestration is an important climate regulatory service that has potential to be part of 

climate change mitigation strategies. Sources of blue carbon in the marsh can be both 

external and internal: carbon can be trapped through burial of sediment (external source) 

which is enhanced by vegetation as per above, and through burial of organic matter 

(internal source) where carbon is captured locally through photosynthesis. Evidence is 

growing that restored salt marshes can sequester large amounts of carbon and therefore 

represent a sink in the global carbon budget (Andrews et al., 2006; Santini et al., 2019; 

Wollenberg et al., 2018). While one study in the UK indicated that carbon stores at a salt 

marsh restoration site were not equivalent to a natural site after 15 years (Burden et al., 

2013), another study in the Bay of Fundy indicated that 6 years after restoration the salt 

marsh was sequestering carbon at a rate five times that of a nearby reference salt marsh 

that would be subjected to the same conditions (Wollenberg et al., 2018). It is possible 

that the discrepancy between the UK and Bay of Fundy sites may be due to the extremely 
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high sediment concentrations in the Bay of Fundy and may indicate that restored marshes 

in the Fundy region have a higher potential for carbon storage than marshes elsewhere. 

This ability to act as a long-term carbon sink makes salt marshes an important component 

of climate change mitigation measures. 

Salt marshes are also high-quality habitat for many species (some rare and 

endangered) of fish, birds, invertebrates, mammals and amphibians. As an ecosystem 

service, this is considered a supporting service. Species of shorebirds and waterfowl are 

known to use salt marshes throughout their life cycles (Hicklin, 1987; McAloney, 1981; 

Roberts & Robertson, 1986; Tiner, 2013). Fish, including a large proportion of the 

world’s economically important fishery species, also rely on salt marshes for food, as 

nursery and for refuge from predators (Boesch & Turner, 2006; Jänes et al., 2020; Tiner, 

2013; Whitfield, 2017). Vegetation plays a critical role in the quality of fish habitat 

through providing refuge and food for fishes. The restoration of salt marsh structural 

components can cause fish to return in similar density and richness to natural marshes 

(Burdick et al., 1997; Dionne et al., 1999; Minello & Webb, 1997). Use of restored 

marshes by fish and other fauna, such as birds and benthic invertebrates, has been seen to 

the rapidly return upon restoration (Able et al., 2008; Atkinson et al., 2004; Bowron et 

al., 2015; Dionne et al., 1999; Roman et al., 2002). 

The services described here are just some of the reasons why salt marsh 

restoration is beneficial and current motivation for salt marsh restoration includes the 

enhancement or re-instatement of the services discussed here. Vegetation plays a crucial 

role in salt marsh health, and specifically mediates many of these beneficial functions of 
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salt marshes. The geographical and political context into which this project fits will be 

discussed further in the next section. 

 

2.2 Salt Marsh Restoration: Political Motivation in Nova Scotia 

In Atlantic Canada, salt marshes have been manipulated by humans to create, 

protect, and connect farmland and settlements for hundreds of years (Milligan, 1987). 

There are three main ways through which salt marshes have been lost in Atlantic Canada 

that present an opportunity for restoration: through dyking, through the construction of 

road infrastructure (e.g,. improperly sized culverts, causeways), and through coastal 

development. A dyke is an earthen berm with a one-way gate, called an aboiteau, which 

prevents tidal inundation while allowing outgoing freshwater to drain. These structures 

eliminate the natural hydrological regime of tidal wetlands, and prevent sedimentation, 

ultimately creating terrestrial habitat. Milligan (1987) describes that starting in the 1600s, 

the Acadians built dykes throughout the Maritimes to expose highly fertile agricultural 

land. Since about 1970 the Nova Scotia Department of Agriculture (NSDA) has been 

charged with dyke creation and maintenance in the province (Milligan, 1987). Since the 

oversight of the dykes was transferred to NSDA, all of the dykes in the province have 

been updated and some newly built. Today, roughly 75-90 % of the historical wetlands in 

Atlantic Canada have been lost as a result of this dyking process (Tiner, 2013) with over 

half of the salt marsh in Nova Scotia being dyked (Tiner, 2013). The restoration of dyked 

sites are the focus of this thesis. 

Salt marsh restoration projects (in any case where tidal flow has been restricted or 

stopped) and managed realignment projects (whereby a dyke is moved back, sometimes 
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restoring salt marsh) have been occurring with increasing frequency over the past 20 

years in this region (e.g., Bowron et al., 2011b, 2012; Sherren et al., 2019; Van Proosdij 

et al., 2010) mainly as a result of legislative compliance (Bowron et al., 2012). These 

restoration projects have been mostly concentrated in the Bay of Fundy region (Bowron 

et al., 2012). Legislative requirements for wetland compensation at the provincial level, 

and fish habitat compensation at the federal level have been the motivation for Nova 

Scotia Department of Transport and Infrastructure Renewal (NSTIR) to fund many of 

these projects to date. In addition to legislative compliance, these projects present an 

opportunity for NSDA to reduce the amount of dyke infrastructure they have to manage 

(which can cut costs e.g., Sherren et al., 2019). The 241 kilometers of dykes and 252 

aboiteaux in the province are costly to maintain, especially as rising sea levels increase 

the risk of failure and the need for creating solutions for long term sustainability of the 

province’s dykeland systems. In situations where dykes are failing or the protected land 

(dykeland) is no longer in use, managed realignment and salt marsh restoration can help 

cut costs while restoring the ecosystem services salt marshes have to offer. 

 

2.3 Research Problem 

The most critical component of salt marsh restoration is the return of a more 

natural hydrological regime. Sediment inputs, soil biogeochemistry, and flora and fauna 

communities are all intrinsically linked to tidal flooding and are altered when tidal 

flooding is restricted (Burdick et al., 1997). Restoration projects to date in the Fundy 

region have been focused solely on removing barriers to tidal flow and allowing natural 

processes to drive plant re-establishment (Bowron et al., 2012). The restoration trajectory 
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typically begins with a die-back of freshwater and terrestrial species and an influx of 

sediment, followed by the recolonization of halophytic species  (Bowron et al., 2011b; 

Burdick et al., 1997; Lemieux, 2012; Van Proosdij et al., 2010; Virgin et al., 2020). 

While this typically produces a more natural ecosystem, longstanding deficits in 

vegetation recovery have been noted both locally and globally (e.g., Bowron et al., 2011; 

Brooks et al., 2014; Burdick et al., 1997; Byers & Chmura, 2007; Chang et al., 2016). 

Restoration sites may have persistent freshwater and upland species (Bowron et al., 2013) 

or remain dominated by pioneer communities with low abundances of upper marsh 

species (discussed further below) for anywhere from 7 to 55+ years (Bowron et al., 

2011b; Brooks et al., 2014; Burdick et al., 1997; Byers & Chmura, 2007; Chang et al., 

2016). 

Restored marshes at managed realignment sites have been seen to have lower 

creek density, lower rugosity, and more concave features when compared to natural salt 

marsh reference sites (Lawrence et al., 2018). This issue is highly persistent over time 

(Brooks et al., 2014; Lawrence et al., 2018), and this altered topography has been found 

to lead to poorly vegetated areas (Brooks et al., 2014; Haltiner et al., 1997). Factors such 

as distance to creek have been shown to be important determinants of the development of 

upper marsh vegetation communities (Chang et al., 2016). These altered physical 

characteristics at restored marshes may partially explain deficits in vegetative diversity at 

restoration sites and in these cases it may be necessary to take a more active approach to 

re-establishing proper vegetative diversity and abundance. 

 



12 

 

2.4 Plant Zonation: Choosing Appropriate Locations and Species 

Salt marshes are a highly dynamic environment, influenced by a wide range of 

abiotic factors (Table 1). As a result of these physical stresses and the tolerance and 

competitive ability of vegetation species, the flora form distinct zonation patterns created 

by a predictable strata of plant associations (Anastasiou & Brooks, 2003; Batzer & 

Baldwin, 2012; Bertness, 1991; Pennings et al., 2005; Pennings & Callaway, 1992; Porter 

et al., 2015; Stalter & Batson, 1969; Wilson et al., 2015). Elevation mediates most of the 

conditions leading to these patterns – flooding and salinity in particular – and zonation 

patterns are well-known to follow elevational gradients in the salt marsh (Broome, 1989; 

Broome et al., 1988; Konisky & Burdick, 2004; Seneca et al., 1985). Species are 

excluded from lower elevations by unsuitable conditions and excluded from higher 

elevations due to relative lack of competitive ability against species adapted to less saline 

conditions (Bertness, 1991; Pennings et al., 2005; Pennings & Callaway, 1992). 

Flooding, salinity, and elevation are often taken as the three main abiotic variables 

determining salt marsh zonation and are discussed further in this section in relation to 

zonation patterns seen in Nova Scotia. Understanding these patterns and the conditions 

that underlie them can inform the appropriate species and locations for planting in 

restoration projects. 

In Nova Scotia, there are seven distinct plant associations found in natural 

marshes across a range of tidal magnitudes and salinity ranges (depending on distance 

from the ocean). These are described by Porter et al. (2015), and will be discussed in 

depth in this section. This study included mainly Fundy sites, with two sites in other parts 

of the province. Similar zonation patterns have been well described by other researchers 
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in Nova Scotia, and elsewhere in the world with some variation in specific species 

(Adams, 1963; Bertness, 1991; Bertness & Ellison, 1987; Pennings & Bertness, 2001; 

Pielou & Routledge, 1976). The zones described here are named after the dominant 

graminoid species, or according to the relative elevation (i.e. low- mid- high-). 

The Spartina alterniflora (note: the Spartina spp. discussed in this thesis have 

recently been reclassified to the Sporobolous genus; however, for the purposes of this 

thesis I have retained the name Spartina) association in the low marsh zone is 

characterized by high salinity, low elevation, and long inundation periods. Dominated 

almost entirely by S. alterniflora, Spartina patens is the only other species occasionally 

present in low abundance in this zone (Porter et al., 2015). S. alterniflora is known to be 

a stress tolerant, poor competitor and is therefore refined mostly to high-stress 

environments where other species are unable to survive (Bertness, 1991; Pennings et al., 

2005). S. alterniflora is a poor seed producer but is generally viewed as an ecosystem 

engineer (Bruno, 2000) and is commonly one of the first species to recolonize the marsh. 

There is evidence that S. alterniflora may be able to outcompete S. patens in high nutrient 

environments (Levine et al., 1998; Muench & Elsey-Quirk, 2019), indicating that 

nutrients may be an important limiting factor in these systems, and competitive dynamics 

may be altered in early successional systems. 

The S. patens association in the mid marsh zone was characterized by high 

salinity, intermediate elevation, and intermediate inundation. This zone had slightly 

higher diversity and was dominated by S. patens, with small amounts of S. alterniflora, 

Atriplex glabriuscula, Limonium carolinianum, and Salicornia maritima (Porter et al., 

2015).  
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Table 1. Main physical stressors acting on plant zonation in salt marshes. 

Abiotic Stress Effect on Vegetation Reference 

Tidal Hydrology Saturation & Drying Lyon & Lyon, 2011 

Tiner, 2005 

Wave Energy Bergen et al., 2000 

Anoxic Soils Anastasiou & Brooks, 2003 

Lyon & Lyon, 2011 

Tiner, 2005 

  
Salinity Toxicity 

Decreased water 

availability 

Pennings et al., 2005 

Shumway & Bertness, 1992 

Bertness et al., 1992 

  
Wrack Deposition Smothering Bertness & Ellison, 1987 

Hartman et al., 1983  

Minchinton, 2006 

Valiela & Rietsma, 1995  
Seed Source Glogowski, 2013 

Minchinton, 2006 

  
Edaphic Factors Nutrient Dynamics Broome et al., 1988 

Levine et al., 1998 

  
Ice (at Northern 

latitudes) 

Smothering & Scouring Desplanque & Mossman, 2004 

Ewanchuk & Bertness, 2003 

Pennings & Bertness, 2001  
Propagule Source Greene, 2009 

  
Topography Tidal Creeks (flooding) Chang et al., 2016 

 

There were two different associations found in the high marsh zone: Juncus 

gerardii and Distichlis spicata both growing in environments characterized by high 

salinity, high elevation and short inundation durations. The J. gerardii zone had low 

abundances of Solidago sempervirens and A. glabriuscula. The D. spicata zone had S. 

patens, and S. alterniflora also present in low abundance (Porter et al., 2015).  

At sites slightly higher in the tidal frame (farther from the ocean), or with a higher 

freshwater influence and therefore lower salinity, three distinct zones were found: Carex 

paleacea (intermediate salinity, low elevation, intermediate inundation), Spartina 
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pectinata (intermediate salinity, intermediate elevation, short inundation), and Juncus 

balticus – Festuca rubra (intermediate salinity, high elevation, and intermediate 

inundation). The C. paleacea association commonly had Agrostis stolonifera, F. rubra, S. 

patens, J. gerardii, and Argentina anserina also growing, as well as S. alterniflora, and S. 

sempervirens occasionally. The S. pectinata association commonly included C. paleacea, 

Symphiotrichum novi-belgii, A. stolonifera, and S. sempervirens. The J. balticus – F. 

rubra association had a relatively high species richness and within this association C. 

paleacea was the only species found in relatively high abundance (Porter et al., 2015). 

No research has been completed examining the competitive dynamics in these lower 

salinity tidal marshes. 

As the trajectory of a restoration site is difficult to determine, species that survive 

in a range of conditions should be chosen. While the literature usually emphasizes that 

projects are not “one-size-fits-all”, graminoids are typically targeted for planting efforts, 

especially S. alterniflora and S. patens (e.g., Adnitt et al., 2007; GBF, 2014; MDE, 2008). 

There has been very little research regarding planting salt marsh forbs, but one study 

found that planting assemblages with higher species richness contributed to higher 

biomass and plant tissue nitrogen accumulation (Callaway et al., 2003). These findings 

indicate that species-rich plantings may increase plant growth in a restoration context. 

Since the mid- and high- marsh communities with higher forb abundance and diversity 

typically take longer to come back than the low marsh, my study will use a mixture of 

species from different zones in high-richness assemblages. Of the species described here, 

many are found at the paired reference sites for this project. Species targeted for planting 

in my project are: S. alterniflora, S. patens, S. pectinata, L. carolinianum, S. 
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sempervirens, Poa palustris, Plantago maritima and C. paleacea. The two target species 

not described in a natural zone by Porter et al. (2015), P. palustris and P. maritima, are 

also native species found in salt marshes in Nova Scotia and due to their availability, they 

were chosen as target species. 

 

2.5 Methods of Restoring Vegetation: Considerations and Efficacy 

Salt marsh restoration is a relatively common practise worldwide. There is 

agreement throughout the literature that the most critical component of restoring a salt 

marsh is restoring proper hydrology. This has been shown to return the site to a more 

natural ecological state (Burdick et al., 1997). Since vegetation does not always return to 

natural conditions, as outlined above, adding vegetative material can be a beneficial next 

step to accelerate the return of the proper vegetation. 

There are a variety of methods that can be used to add vegetative material or 

otherwise accelerate re-vegetation, each with its own set of considerations surrounding 

logistics, efficacy and costs. Depending on the goals and budget of a restoration project, 

it may be necessary to use a method on its own, or in combination with one or more of 

the other methods. Planting schemes carried out by restoration practitioners are not 

typically well documented in the literature; however, there is a small group of researchers 

that has produced documents comparing methods utilized at different sites and across 

time scales (e.g., Broome et al., 1988). While these comparisons are useful, there have 

been no practical comparisons of the range of methods represented in this study. The 

following section reviews literature relating to five methods of plant re-establishment 

used in my project: three commonly used methods and two methods that are novel for 
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establishing plants in salt marsh restoration in Nova Scotia. These methods fall into three 

broad categories: adding plants, adding a propagule source, and manipulating rugosity 

(tilling). 

 

2.5.1 Adding Plants 

 Planting plants – seedlings grown in a greenhouse (potted seedlings) or 

transplants dug up from the restoration, or a nearby, site (field transplants) – are the most 

common ways to actively establish vegetation in restoration projects. These methods are 

attractive because using plants provides immediate erosion control and allows plants with 

a well-formed root mass to quickly colonize the site through rhizomal spread or seed 

production. Plantings can be successful under a wide range of conditions given that 

appropriate species are used; however, these methods can have high costs associated with 

sourcing plants, plant transport and labour. Fertilization, plant spacing, timing of 

planting, and herbivory are all logistical considerations that mediate the efficacy of any 

method of adding plants. 

Salt marshes have been shown to be nitrogen and phosphorus-limited (Broome et 

al., 1983; Kiehl et al., 1997); however, no research has been conducted investigating 

nutrient limitations in Fundy systems. In managed realignment projects, past land use is 

often agricultural, and in these cases legacy nutrient or pesticide pollution may require 

consideration. Where systems are nutrient-limited, fertilization has been seen to increase 

growth and establishment of vegetation (Bergen et al., 2000; Broome et al., 1983, 1988; 

Covin & Zedler, 1988; Darby & Turner, 2008; Kiehl et al., 1997; Langley et al., 2013; 

O’Brien & Zedler, 2006) making it useful for vegetation restoration. While increased 
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growth is desirable, broadcast fertilizer application represents a source of pollution and 

may alter the vegetation community of a site (Covin & Zedler, 1988; Kiehl et al., 1997; 

Langley et al., 2013; Levine et al., 1998), cause eutrophication, or decrease soil strength 

through lowering relative root biomass (Turner, 2011). Since the unintended 

consequences of using fertilizer pose an environmental risk, plants in this project were 

not fertilized but soil nutrient concentrations and variations were tested at each site. 

Vegetation is often added in a grid-style formation, and recommendations for 

ideal plant spacing range from 30 - 90 cm (Broome et al., 1986; de Blasio & Silver, n.d.; 

GBF, 2014), depending on wave energy and plant availability. New evidence, however, 

suggests that planting in tight clusters may be an effective alternative to grid-style 

plantations, with an emphasis on maximizing facilitation instead of minimizing 

competition. Silliman et al. (2015) found that survival and growth of S. alterniflora (in 

Florida, USA) and Spartina angelica (in Baarland, the Netherlands) outplantings were 

higher when planted individuals were touching as opposed to 50 cm apart. O’Brien and 

Zedler (2006) also found that tighter spacing (10 cm compared to 90 cm) of potted 

seedlings of five salt marsh species (all non-graminoid) increased survivorship; however, 

this clumping did not affect growth. 

  Aside from fertilization and plant spacing, a few other considerations are 

important for insuring planting success. Planting as early as possible in the year is 

recommended to allow plants to become established before the winter, and to avoid 

transplant shock from higher water temperatures in the summer (Broome, 1989; de Blasio 

& Silver, n.d.; GBF, 2014), but exact dates depend on climate. Plantings may be 

vulnerable to herbivory by wildlife and fencing may be necessary. Bergen et al. (2000) 



19 

 

found that consumption by Canada Goose (Branta canadensis) was a major factor 

controlling the success of S. alterniflora plantings at a salt marsh restoration site in New 

York. These considerations will affect the potential for planting success using either 

potted seedlings or field transplants. Additional considerations unique to each method 

and evidence pertaining to relative success of each method are outlined below. 

 

2.5.1.1 Potted Seedlings 

 This method has been successful in many cases (Anastasiou & Brooks, 2003; 

Bergen et al., 2000; Broome et al., 1988; O’Brien & Zedler, 2006), typically using 

graminoid species. It has been found that potted seedlings can initiate marsh revegetation 

as well as or better than field transplants (Broome et al., 1988) and using potted seedlings 

has the added benefit that they can be used when there are no available plants in the field. 

Broome et al. (1988) suggest that potted seedlings are particularly useful at drier sites 

since the potting medium can retain water. The success of this method may be variable 

depending on the implementation of the planting scheme with respect to the factors 

outlined above. 

When using plants grown in the greenhouse, pre-treatment to harden the plants to 

salinity, less water, and outdoor conditions may increase chances of survival; however, 

there is limited literature supporting this theory. While hardening plants to outdoor 

conditions and less water are simple, low-cost pre-treatments that are used frequently by 

gardeners and in plant nurseries, salinity pre-treatments may have little effect on plant 

performance (Brancaleoni et al., 2018) and are higher-cost. Pre-treatment necessity may 
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depend on the conditions of the site (i.e. position in tidal frame and therefore salinity 

levels). 

Practitioners using this method can partner with local nurseries or grow plants 

themselves; however, this process is time consuming, expensive and requires facilities. 

Since these native species are not typically cultivated, information regarding their 

cultivation is limited and cultivation may be unsuccessful. Plants grown in the 

greenhouse can be planted at a range of ages with success but there is little literature 

pointing to the age at which it is most appropriate to transplant. Older and larger plants 

may establish more quickly; however, there is a trade-off in cost and time for 

propagation. An additional cost consideration is plant transport to the site. 

This method represents a high-efficacy, high-cost methodology for accelerating 

re-vegetation at restoration sites. Further research is required directly comparing its 

efficacy to the other methods of re-vegetation outlined in this section and using a wider 

range of species. Additionally, pre-treatments and age of planting are variables that may 

affect success but have been seldom investigated. 

 

2.5.1.2 Field Transplants 

Transplants of various sizes can be dug up from the field, either single shoots or 

larger turfs, and transplanted soon after digging. Both options have been used in the past 

with success (Bergen et al., 2000; Broome et al., 1988; Konisky & Burdick, 2004); 

however, S. alterniflora and L. carolinianum transplants have had high mortality upon 

planting (Stalter & Batson, 1969). This discrepancy may be a result of techniques used, 

or site conditions. In a restoration project that used both field transplants and potted 



21 

 

seedlings, after rapid initial growth of the potted seedlings, field transplants were taller 

and produced more flowers consistently over the course of 4 years (Bergen et al., 2000), 

which may indicate pre-acclimatization to site conditions that may enhance growth, for 

example through mycorrhizal associations (d’Entremont et al., 2018). 

As a lower-cost alternative to potted seedlings, transplantation is attractive. 

Transplanting vegetation from on-site can cut costs associated with transporting plants 

and can easily incorporate species that may not have grown well in the greenhouse. 

Despite these benefits, its use is limited when field transplants are not available and can 

have high associated labour costs (labour will vary by species and depending on the 

sediment type (i.e. easier in sandy soils)). This method also causes direct damage to 

existing marshes. Since most salt marsh species are hardy, they may be able to withstand 

this disturbance but there is no literature examining the impact of digging transplants 

from the salt marsh. This type of transplanting is typically limited to graminoid species 

and additional research is required to examine the survival of a wider range of species 

using this method of transplanting. 

 

2.5.2 Adding a Propagule Source 

Adding propagules, such as seed or rhizome, to a site is another way of 

establishing plant cover. Two potential methods of adding propagules to the site will be 

outlined here: directly sowing seed of native species and using wrack as a propagule 

source. Wrack refers to mats of dead vegetation that are washed onto salt marshes with 

the tide. These mats can contain a variety of species and promote diversity in marshes 

through shading out patches beneath them and starting new successional trajectories 
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(Hartman et al., 1983; Tolley & Christian, 1999; Valiela & Rietsma, 1995). Wrack 

contains viable seeds and rhizomes (Glogowski, 2013; Minchinton, 2006) and therefore 

may be useful as a propagule source for restoration. These methods represent relatively 

low-cost alternatives to planting plants whose potential for success is relatively unknown. 

Direct seeding has been used with limited success to establish salt marsh vegetation in the 

past (Broome et al., 1988), but this method has associated challenges. Wrack has been 

used only once in this region in an attempt to establish plants in salt marshes but with no 

success (Wrathall, 2016). Additional considerations for these methods are outlined 

below. 

 

2.5.2.1 Sowing Seed 

Sowing a native seed mix on the site is a method that is commonly outlined in salt 

marsh restoration guides. Seeding may be most successful in sheltered sites with low 

wave energy to avoid the loss of seeds with flooding or in storms (Broome, 1989; 

Broome et al., 1988) and this method eliminates risk of transplant shock or under-

acclimation. Broome et al. (1988) successfully planted S. alterniflora seed in spring or 

early summer 2 to 3 cm deep at a rate of 100 seed/m2. Seeding in this manner in the upper 

marsh produced comparable biomass to field transplants by the second growing season. 

On the Atlantic coast of Nova Scotia, S. patens seeds had high germination at one site 

with low wave energy, but no germination at another site where seeds were scoured 

within a day (Wrathall, 2016). At a managed realignment site in the United Kingdom, 

seed of 6 salt marsh forb species were planted at two densities (500 seeds/m2, and 5000 
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seeds/m2) with no germination success (Garbutt et al., 2005). These results suggest that 

seed germination may be highly variable depending on species and site conditions. 

Seeding as a method of re-vegetation is a much lower-cost alternative to planting 

plants as costs associated with transport and propagation are eliminated. Specific storage 

requirements for seed of these species (i.e. dormancy periods, wet vs. dry storage) (Heim 

et al., 2018) may complicate this method; however, these considerations are not unique if 

practitioners collect and propagate their own seeds for transplanting. Broome (1989) 

suggests that if seed supply is limited, growing them for potted seedlings may be the best 

use of resources. Because of the low reliability with this method, seeding may perhaps be 

best used in conjunction with some other method. 

 

2.5.2.2 Wrack as a Seed Source 

A potentially overlooked application of wrack material in salt marsh restoration is 

its use as a source of seed. One attempt to use wrack as a seed source on the Atlantic 

Coast of Nova Scotia saw no germination (Wrathall, 2016); however, this was likely due 

to the 30 cm depth of burial and the small quantities added. Using larger quantities and 

burying wrack a similar depth as that recommended for seed (5 cm) may prove more 

successful. Thin wrack mats have also been shown to increase biomass in the high marsh, 

potentially through decreasing soil salinity (Pennings & Richards, 1998) which may be 

an added benefit to using wrack in a restoration context. 

This treatment method is contingent on wrack availability at time of planting, and 

success may be variable due to seasonal differences in wrack contents. One study in the 

Fundy region found that wrack collected in the spring from several sites contained mostly 
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high marsh seeds (Glogowski, 2013); however, there have been no other similar studies 

in this region. Variation in wrack viability and contents may influence seed germination 

potential. Further research on using wrack in this way may point to a viable low-cost 

method for establishing plant cover at restored marshes. 

 

2.5.3 Manipulating Rugosity 

 Increasing topographic heterogeneity on a large scale (e.g., adding creeks) can 

provide a variety of benefits as discussed above; however, manipulating topography at a 

smaller scale may be a promising method for increasing natural colonization of plants on 

the salt marsh. This method has been shown to successfully increase seedling recruitment 

in salt marsh systems (Wang et al., 2018), and to increase species richness and diversity 

in a coastal plain swamp (Vivian-smith, 1997). As an extension of microtopography, 

increasing soil rugosity, or roughness, by tilling the soil may increase seed trapping, and 

increase micro-diversity in abiotic variables. Success of this method may be mediated by 

wave energy and topographic variables at the large scale as built structures may be 

compacted or otherwise manipulated by waves. Increasing soil rugosity without adding 

any plants will help to disentangle the effects of increasing soil rugosity and any 

facilitative effects that plants may have on seed trapping or otherwise facilitating plant 

recruitment. 

 

2.6 Synthesis and Objectives 

This literature review has provided the necessary context and identified gaps in 

the research pertaining to active re-vegetation in salt marsh restoration. Salt marsh 
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restoration projects are occurring with increasing frequency following from motivations 

including legislative compliance, and motivation to reinstate beneficial ecosystem 

services. In Atlantic Canada, and especially around the Bay of Fundy in Nova Scotia the 

historic loss of salt marsh due to dyking provides opportunity to execute managed 

realignment and salt marsh restoration projects. Until now, salt marsh restoration in 

Atlantic Canada has largely been focused on reinstating tidal flow, and there have been 

very few active planting components to restoration and none in the Fundy region. 

Vegetation cover at managed realignment sites in this region will return rapidly; 

however, community structure does not always reflect natural conditions. The main 

objective of my study was to establish whether active re-vegetation efforts will accelerate 

plant re-establishment and enhance vegetative diversity in two recovering salt marshes 

where tidal flow has been returned. Specifically, this study will evaluate different 

methods of re-introducing plants to restoration sites in the Bay of Fundy. Main research 

questions were: 1) Does planting vegetation accelerate vegetation recovery? 2) Do certain 

treatments, or species, have higher plant performance (e.g., survival, growth)? 3) Is 

performance associated with abiotic conditions? Through comparing a range of practical 

planting methods with a variety of native salt marsh plant species, this project will help to 

inform restoration best practices in Atlantic Canada. 

 

Chapter 3: Methods 

3.1 Study Sites 

Treatment techniques were tested at two salt marshes in the Bay of Fundy region 

where tidal flow had been restored within one year of beginning this project (project 
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began in 2019). The Bay of Fundy is an extension of the Gulf of Maine and it is bordered 

by both Nova Scotia and New Brunswick in eastern Canada. It is a macro-tidal estuary 

with semidiurnal tides with an average tidal range of 5 m at the mouth of the Bay and an 

average of 12 m at the head of the Bay (Desplanque & Mossman, 2004). There are high 

suspended sediment concentrations in the Bay that have been measured at < 100 g L-1 in 

the upper Bay (van Proosdij et al., 2006a) with large variation both spatially and 

temporally (van Proosdij et al., 2006b). These high concentrations of suspended sediment 

contribute to the minerogenic nature of the marshes in the region, particularly in the 

upper Bay, whose soils are built mainly through high rates of deposition of inorganic 

material (Graham et al., 2020; van Proosdij et al., 2006a, 2006b). The marshes in this 

region are also influenced by ice in the winter. 

The first restoration site, Belcher, is located approximately 15 km downstream 

from Kentville, NS along the Jijuktu'kwejk (Cornwallis) River (45.073237 ˚N, -

64.474148 ˚E). The second site, Converse, is located near Amherst, NS on the Chignecto 

Isthmus (part of the Tantramar marsh system) at the mouth of the Missaguash River 

(45.843420 ˚N, -64.268710 ˚E) (Figure 1). These are both sites where dykes were 

realigned (managed realignment) because the existing dyke was failing and there were 

few engineering options to repair them. By realigning the dykes at these dykes, NSDA 

was able to reduce the amount of at-risk infrastructure and improve the protection of 

remaining dykeland. These sites are part of the “Making Room for Wetlands” project 

spearheaded by TransCoastal Adaptations: Center for Nature-Based Solutions 

(www.transcoastaladaptations.com) (a center for research and outreach related to nature-

based solutions to climate change adaptation) and funded in part by the Department of 

http://www.transcoastaladaptations.com/
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Fisheries and Oceans’ Coastal Restoration Fund. Making Room for Wetlands is focused 

on implementation and research related to the “managed realignment” of dykes in Nova 

Scotia and the restoration of tidal wetlands as approaches to climate change adaptation. 

There is a suite of ongoing long-term monitoring and research occurring at these sites 

related to the recovery of these wetlands. 

 

 

Figure 1. Location of study sites within Nova Scotia, Canada. The southerly site is 

Belcher, and the northerly is Converse. 

 

The restoration area at Belcher is approximately 9.7 ha. The old dyke was 

decommissioned by pushing the material from the entire length of the dyke into the 

interior of the site and levelling it to the elevation of the foreshore marsh. This process 

was completed in May 2018, before which construction of the new dyke had been 
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completed (Figure 2). Most of the land was fallow agricultural land pre-restoration, with 

a small portion having been actively farmed. Following the return of tidal flooding, much 

of the upland plant cover died. Only 3 halophytic species (J. gerardii, S. sempervirens, 

and S. pectinata) were present on-site pre-breach (Ellis et al., 2018a) and little re-

vegetation occurred over the first growing season (summer 2018). Considerable 

sedimentation occurred during 2018 and the entire site was bare mud at the beginning of 

summer 2019. During the summer of 2019 green-up was observed over much of the site 

mainly including annuals such as Chenopodium spp., Atriplex spp., Suaeda spp., and 

Spergularia spp.. The three halophytic species that were present pre-breach were still 

present on the site after tidal restoration, either having survived salt water intrusion or 

newly colonizing. There was also new colonization of other perennial halophytes 

including S. alterniflora. Belcher is higher in the tidal frame than Converse and has a 

strong freshwater influence. The marsh starts to flood at the mean high tide elevation, and 

the entire site is only flooded on higher spring tides. The center of the western portion of 

the site is flooded on 75 % of the high tides (see Graham et al., 2020 for flood maps). 

Due to low elevations and a lack of drainage channels in this half of the site, drainage is 

slow and inundation times are long (Graham et al., 2020). In the eastern portion of the 

site the dyke was straightened to restore three river meanders, these areas flood with >25 

% of the high tides (Graham et al., 2020). 
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Figure 2. Map of Belcher showing the restoration area where upland vegetation has died 

back between the locations of old and new dykes. The upland edge of the marsh is 

delineated by the treeline. 

 

The restoration area at Converse is 15.4 ha. The old dyke was breached in 

December 2018 after the new dyke was built (Figure 3). Portions of the dyke were 

removed at this site. Historically, this marsh was used for hay farming and pasture land 

(Ellis et al., 2018b). Halophytic species richness was low pre-breach (Ellis et al., 2018b). 

Localized patches of S. pectinata, C. paleacea, and Suaeda spp. were observed over the 

course of the first growing season (summer 2019), potentially survival from pre-breach or 

new colonization. Aside from these patches, the site remained mostly bare. Half of the 

site was mainly covered with dead grass and half was wet with a shallow layer of mud 
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covering dead tufts of sedge. Converse is more exposed to waves and wind then Belcher 

and has considerably higher tidal velocity as tidal waters enter through a single breach 

location (site of removed aboiteau) with minimal overbank flow from the adjacent tidal 

river. The marsh starts to flood at a level slightly above mean high tide and a large 

portion of the site is flooded with 75% of the high tides (see Bowron et al., 2020 for flood 

map). Drainage is faster on the eastern portion of the site because of well-developed 

drainage ditches, whereas drainage is slower on the western side since the area drains 

from a single point (Bowron et al., 2020). 

 

Figure 3. Map of Converse showing the restoration area in which upland vegetation has 

died back between the locations of old and new dykes. 
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3.2 Weather 

Climate normal data (1981-2010) was obtained from Environment and Climate 

Change Canada’s (ECCC) website for the weather station nearest each site (Belcher: 

Kentville CDA station, ID: 8202800; Converse: Nappan CDA station, ID: 8203700). 

Conditions over the first growing season were compared to climate normals to identify 

any seasonal anomalies. 

During the first growing season (2019), daily average temperatures and average 

maximum temperatures were on par with climate normals at both sites. Monthly total 

rainfall in June and August at both sites were approximately twice as much as climate 

normal. This was mainly due to heavy rainfall events (>70 mm) that occurred on June 21, 

August 7, and August 29. Total rainfall in July at Kentville was approximately half of the 

climate normal, while Converse was on par. Immediately following planting at Belcher 

(June 2019), there were 4 days of rain with no extreme temperatures. Following planting 

at Converse (June 2019), there was about 2 weeks of rain with no extreme temperatures. 

Leading up to taking final measurements at Belcher (August 2019) was a two-week 

period with no rain; however, there was some rain during the sampling period. At 

Converse (August 2019), there were consistent small rainfall events leading up to the 

final sample period. 

 

3.3 Seed Collection 

Seeds were collected from two salt marsh sites: Lawrencetown (Atlantic Coast, 20 

km East of Halifax) and Truro (Fundy Coast, 80 km Northeast of Halifax at the head of 

the Bay of Fundy). All seedstock that was used in this project was from Truro except L. 
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carolinianum in order to match provenance as closely as possible (Table 2). Seeds from 

the most common native species found at each collection site were collected by hand in 

the Fall of 2018 on three dates from September 23 through October 22. Seed heads were 

either placed entire in plastic bags, or seeds were stripped from the seed heads. Spatially, 

seeds were collected randomly from clusters of plants across each site and placed in 

labelled Ziploc bags for transport. In the lab, seeds were stored with tap water in a 

refrigerator (4ºC) in accordance with the findings of Heim et al. (2018) until cleaning and 

propagation (2-3 months post-collection). This storage time was consistent with the 

stratification time required for S. alterniflora (Biber, n.d.).  

 

Table 2. Matrix of species planted in each treatment and site. BEL represents Belcher 

and CON represents Converse. 

  Potted Seedlings Field Transplants Seed 

Species BEL CON BEL CON BEL CON 

Carex paleacea   x x   

Juncus gerardii x x   x x 

Limonium carolinianum     x x 

Plantago maritima x x  x x x 

Poa palustris x x   x x 

Solidago sempervirens x x x x x x 

Spartina alterniflora   x x x x 

Spartina pectinata x x x x x x 

 

 

3.4 Experimental Design 

Five treatment methods were tested in this project: planting potted seedlings, field 

transplants, sowing seed, adding wrack (dead vegetative material), and manipulating soil 

rugosity (tilling). These methods were compared with passive restoration reference plots. 

Planting potted seedlings, field transplants and sowing seed are methods that are 



33 

 

commonly used in restoration projects with varying degrees of success, as discussed in 

the introduction. These have not been tested in the Fundy region. Adding wrack and 

manipulating soil rugosity are both less frequently used restoration methods that have had 

little-to-no testing in the Fundy region. Further information and justification for these 

methods can be found in the introduction. 

Treatments were established in June 2019. In the field, fifteen clusters of six 1 m2 

plots were established (see Figure 4 for example configuration) at each site. Plots were 

measured using a 1m2 quadrat flipped horizontally and vertically into configuration. Plots 

were marked out using bamboo or metal flags. Configurations were adjusted slightly 

among clusters to attempt to keep all plots in similar conditions. Clusters ranged across 

abiotic conditions (i.e. varied distance from river and elevations) within each site 

(Belcher: Figure 5, Converse: Figure 6) (total n = 30 clusters). One of each treatment 

method was established, in a randomized configuration, per cluster. 

 

 

Figure 4. Example arrangement of a plot cluster. Arrangement of treatments types was 

randomized across the sites. 
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Figure 5. Field layout of plot clusters at Belcher. Each point represents a cluster. 

 
Figure 6. Field layout of plot clusters at Converse. Each point represents a cluster. 
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3.4.1 Potted Seedlings 

Seeds (see Table 2 for species) were cleaned prior to germination by stripping 

seed heads by hand and rinsing with tap water on an appropriately sized sieve. Plant 

growing trays were filled with soil (Pro-mix BX Mycorrhizae Growing Medium) and 

approximately 2000 seeds of a single species were sowed in each tray in January 2019. 

Trays were then covered with a clear dome, stored at room temperature (20˚C) and kept 

moist with freshwater until germination (Biber, n.d.; Heim et al., 2018; Walker, 2015). 

Soils enriched with arbuscular mycorrhizae (AM) were used since some study species are 

known to associate with AM (Burcham et al., 2012; Koske & Walker, 1984; Rozema et 

al., 1986). Seeds not used to grow plugs remained in Ziploc bags with ~10 mL of 

freshwater and stored in a fridge. 

Trays were kept at room temperature under full spectrum growth lights (Heim et 

al., 2018) to germinate at an 18:6 hour light/dark cycle. Once root networks had been 

sufficiently established for transplanting and/or at least one set of true leaves had 

matured, seedlings were transplanted into 2.5” pots, each containing one seedling. 

Seedlings were kept in the greenhouse at Saint Mary’s University under full spectrum 

growth lights (16:8 hour light/dark cycle and 25:18 ˚C day/night temperature) and 

irrigated with tap water two to three times per week. Beginning April 24, 2019, seedlings 

were set outside for increasing lengths of time to harden them to the elements when 

temperatures were above 5°C. In early May, many of the plugs were potted into 4” pots. 

At the time of planting, potted seedlings were approximately 5 months old. 

In the field (June 2019), each plot was cleared of existing live biomass using 

scissors, tilled, and plants were added in uniform rows, for example in 5-6 rows with 5-7 
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plants each. Plants were added to each plot (n ≈ 33 per plot; Figure 7, Table A 1) at 

relatively constant species ratios (Table A 2). 

 

 

 

Figure 7. Photo of a freshly planted potted seedling plot (~1m2) at Converse. Taken June 

17, 2019. 

 

3.4.2 Field Transplants 

Transplants were dug from the existing vegetation in the fringe, or foreshore, 

marsh on each site in June 2019 (see Table 2 for species). Plants were separated into 

clumps containing approximately one plant and kept only if some fine and some coarse 

roots were still attached to the plant. Transplants were stored in garbage bags over-night 

in the shade until planting the next day (min air temp Belcher: ~6.0˚C, Converse: 
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~7.0˚C). At Belcher, transplants were planted using a trowel, without tilling the entire 

plot. At Converse, the entire plot was tilled to plant into – this was only the case for this 

treatment as a result of experimenter error. Plants were added to each plot (n ≈ 27 per 

plot; Table A 1) at relatively constant species ratios (Table A 2). 

 

 

Figure 8. Photo of dug field transplants. Clockwise from top left: Solidago sempervirens, 

Spartina alterniflora, Carex paleacea, and Plantago maritima. Plants are ~ 5-15 cm 

wide. 

 

3.4.3 Seed 

Seed mixtures were weighed and stored as above. Seeds were mixed in fixed 

species ratios (≈ 320 seeds per species, except ≈ 40 seeds for P. maritima – see Table 2 
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for species included) and applied at a rate of approximately 2000 seeds per plot. In the 

field, each plot was cleared of existing live biomass and tilled. At Belcher seeds were 

planted approximately 10 cm deep. At Converse seeds were planted about 5 cm deep, this 

was due to a miscommunication during planting. 

 

3.4.4 Wrack 

Wrack was harvested from the high tide line at each site immediately prior to 

planting (June 2019). Wrack appeared to contain mostly S. alterniflora stems at Belcher, 

and a mixture of graminoid species at Converse. Plots were tilled and a single layer of 

wrack was buried 5-10 cm deep. 

 

3.4.5 Manipulating Rugosity (Tilling) 

Plots were cleared of existing biomass and tilled by digging with a shovel to a 

depth of ~ 20 cm. Where necessary, clumps were broken down by hand and at plots 

covered with dead grass, root mass was removed when it was in a solid layer. The size to 

which we were able to till depended heavily on the condition of the sediments, 

particularly the amount of moisture and the amount of root matter. No additional plant 

material was added to these treatments. This treatment acted as both a methodological 

control, and a potential treatment to facilitate seed trapping. 

 

3.5.6 Passive Control 

Passive plots were marked in configuration and no manipulation occurred in these 

plots. 
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3.5 Monitoring 

Upon planting (June 2019), locations of planted individuals (potted seedlings and 

field transplants) were recorded and maximum height of plant (cm), maximum width of 

plant (cm) and health score (visual assessment of health from 0-4, see Table 3 for details) 

measurements were taken for each plant. Near the end of the growing season (mid- to 

late- August 2019, 3 months after planting), a second vegetation survey was completed 

where size and health (this health measurement is referred to as final health hereafter) 

measurements were taken at every treatment. In August 2019, plant community data were 

also collected for all treatments following the point-intercept method where a 1m2 

quadrat (same size as planted plots) is divided into 25 squares (Figure 9) and a wooden 

dowel is dropped vertically at each intercept point (25 total points). Any species that is 

touching the dowel at each point is recorded as a hit (Bowron et al., 2011a). 

Chenopodium spp., Atriplex spp., and Suaeda spp. were identified only to genus level. 

Point-intercept surveys were also carried out in August 2020. Photographs were taken of 

every plot at each time of data collection. 

Point-intercept surveys are a more objective alternative to visual plant cover 

estimates. They provide an estimate of relative cover of species in points which are 

related to the true percent cover. Any species that were present but were not hit were 

counted as a single hit in statistical analysis to represent their presence. This ensured that 

species richness numbers were correct but provided a slight overestimation of abundance. 

In July 2020 the over-winter survival of plantings was assessed (presence/absence of 

living above-ground biomass). 
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Table 3. Health index criteria. Modified from Anastasiou & Brooks, 2003. 

Health 

Index 
Category 

Green 

stems 
Growth Wilting 

0 Dead 0% None Brown and dry 

1 Severely 

Stressed 

<25% No new growth or 

continued growth of 

existing stems 

Mostly wilted 

2 Moderately 

stressed 

25-50% Few new stems, 

little to no continued 

growth  

Significant wilting 

3 Slightly 

Stressed 

50-75% New stems present, 

some continued 

growth of existing 

stems 

Some wilting 

4 Healthy >75% New and continued 

stem growth 

Little to no evidence of 

wilting 

 

 

Figure 9. Photo of point-intercept procedure on a potted seedling plot (1m2) at Belcher. 

Taken August 8, 2019. 
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3.6 Abiotic Variables 

Once during the first growing season (2019), pore water salinity at each cluster 

(within 1 m of passive plot) was measured at 15 cm and 45 cm depths using a Spectrum 

450 Series Conductivity/TDS/Salinity Handheld meter. Composite soil samples at each 

cluster were taken from the top 10-15 cm of soil in July 2019 for soil nutrient analysis 

(Total Nitrogen, pH, Organic Matter, P2O5, K2O, Ca, Mg, Na, S, Al, B, Cu, Fe, Mn, Zn, 

CEC). Samples were analyzed at the Nova Scotia Analytical Lab in Truro, NS. Elevation 

was measured at each plot at the end of each season using a Leica GS14 Antenna RTK 

(Horizontal datum: NAD83 (CSRS) UTM Zone 20N, mean measurement accuracy = 7 

mm; vertical datum: CGVD2013, mean measurement accuracy = 11 mm). Four 

hydrological variables were calculated in Excel using measured tidal elevations and 

surveyed plot elevations. Tidal elevations were measured using HOBO Level Loggers at 

both sites deployed in the river collecting data at five-minute intervals. At Belcher, data 

were collected from April 26, 2019 through August 12, 2019. At Converse, collected data 

from 2017 (September 7, 2017 – October 12, 2017) were used because loggers deployed 

in 2019 failed. Hydroperiod (%) was calculated as the total percentage of time that the 

tidal elevation was greater than or equal to the plot elevation. Inundation frequency (%) 

was calculated as the total number of high tides that flooded the plot. Inundation time 

(minutes) was calculated as the mean number of minutes the plot was flooded per high 

tide. 
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3.7 Statistical Analysis 

All statistical analyses were conducted in R 3.6.1 (R Core Team, 2019) following 

a model selection procedure using Akaike Information Criteria (AIC) to select the most 

parsimonious models and to understand the importance of each predictor (Zuur et al., 

2009). The AIC provides an estimate of out-of-sample model performance while 

penalizing models for adding parameters and can be used to compare the performance of 

models with different sets of predictor parameters on the same set of predicted data 

(Burnham & Anderson, 2002). This procedure can provide insight into which parameters 

are most important to explain trends in the data and which model is best suited for 

inference. Model selection was run using the dredge function in the “MuMIn” package, 

and the small-sample size adjusted AICc (Barton, 2019). 

The American Statistical Association (ASA) advises cautious use of p-values and 

against the use of the words “statistically significant” due to problems with 

reproducibility, and widespread misinterpretation of these values (Halsey et al., 2015; 

Wasserstein & Lazar, 2016). A variety of alternatives have been suggested to quantify 

random variability in data and to present statistical results (Wasserstein et al., 2019): 

these range from not using p-values at all, to reporting all p-values from tests. In this 

thesis, I have mainly omitted p-values, save for the visualizations of statistical modelling 

outputs of post-hoc comparisons in the Appendix where they are helpful to visualize 

uncertainty of estimates and the magnitude of differences among groups. I have opted to 

make inference on “statistical importance” based upon a range of information including: 

consideration of various model specifications (the AIC selection procedure), p-values, 

estimates of effect size (least squares means) and magnitude (confidence intervals), and 
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in some cases confirmation of results through different statistical methods as suggested in 

Wasserstein et al. (2019). I have reported on or visualized all findings, including those 

that are statistically unclear or small. Note that figures throughout the main text of this 

thesis show raw data while displays of statistical model outputs can be found in Appendix 

A. 

 

3.7.1 Abundance 

To understand the differences in plant abundance between treatments and sites, a 

series of generalized linear models (GLM) (analogous to ANCOVAs) were run using the 

“stats” package (R Core Team, 2019) with treatment, site and their interaction as 

predictors, and either target species abundance per plot or total abundance per plot as the 

response. Each year of data was run separately. Target species abundance was calculated 

as the total hits of perennial halophyte species – planted or not – (S. sempervirens, S. 

alterniflora, S. pectinata, S. patens, P. maritima, P. palustris, L. carolinianum, J. 

gerardii, Agrostis stolonifera, C. paleacea, Carex rostrata, Bolboschoenus maritimus, 

and Distichlis spicata) per plot from the point-intercept survey, while total plant 

abundance was calculated as the sum of hits (all species) per plot. A negative binomial 

distribution was used for modelling as all response variables were count data and the 

distributions were right skewed. Normality of residuals and homogeneity of variance for 

each model were visually inspected using diagnostic plots to confirm model assumptions 

were met. Wrack abundance was omitted from the 2019 target species models to meet the 

assumption of homogeneity of variance since wrack plots at Converse had no 

germination. Post-hoc pairwise comparisons were made by plotting least squares means 
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with p-values (shown at α = 0.05 for reference) from a Tukey’s post-hoc test for each 

group extracted with the “emmeans” package (Lenth, 2019).  

 

3.7.2 Species Richness 

A series of GLMs were performed using species richness (number of unique 

species) per plot as the response variable, and site, treatment and the interaction between 

them as the explanatory variables. Models were run for both target species (richness of 

perennial halophyte species as outlined above), or total species richness. These models 

were run using a Poisson distribution and model assumptions were assessed visually. 

Post-hoc pairwise comparisons were made as above. Since only potted seedling and field 

transplant treatments were successful at establishing a higher abundance of target species 

than the passive control and increasing species richness, further plant performance 

analysis was restricted to these treatments. 

 

3.7.3 Plant Performance 

Plant performance was evaluated using a series of models with plant survival 

(presence/absence of living above-ground biomass in August 2019), relative growth rate 

as defined below, and final health (health score at the end of 2019) as predicted variables 

and treatment, site, and species as fixed effects and cluster (i.e. location across the site) as 

a random effect. Mixed effects models were run using the “lme4” package (Bates et al., 

2015), and fixed effects models were run using the “stats” package. Where necessary, 

diagnostic plots were visually inspected to confirm model assumptions were met. Post-

hoc pairwise comparisons were made by plotting least squares means with p-values 
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(shown at α = 0.05 for reference) from a Tukey’s post-hoc test for each group extracted 

with the “emmeans” package (Lenth, 2019). Missing initial size and health measurements 

(n = 6) were replaced with measurements taken on the same plants on July 3, 2019 where 

possible (n = 2) or omitted from further analysis. 

Plant survival was regressed using a binomial distribution for the predicted data 

(logistic regression) and a logit link function. The “cluster” random term was included in 

the full model with all data (using treatment and site as predictors) because its variance 

was greater than zero; however, it was removed from subsequent models using subsets of 

the data due to convergence difficulties. Removing the random term from some models 

was necessary throughout the analysis. The cluster random term accounts for spatial 

autocorrelation in the data where results may be more similar when plots are closer 

together. Removing this term from the models increases the chances of a Type II error 

where statistical tests do not pick up a true difference between groups because variability 

in the data due to spatial autocorrelation is unaccounted for in the model. All further plant 

performance analysis was only evaluated for plants with surviving above-ground biomass 

at the end of the 2019 season (Table 4). 

A proxy of plant size was calculated by multiplying the measured dimensions 

(max height of plant * max width of plant) for both initial measurements (June 2019) and 

final measurements (August 2019). These measurements were used to calculate relative 

growth rate (RGR) using the formula (Hunt, 1982): 

ln 𝑆2 −  ln 𝑆1

∆𝑡
 

where S2 = Final Size (cm2), S1 = Initial Size (cm2) and Δt = difference in time (one 

growing season of ~ 3 months). RGR is useful to correct for the trend where larger plants 
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grow more (logarithmic growth) and to control for the initial size of the plant, allowing 

comparisons between plants of different sizes and with different growth forms. RGR is 

expressed as the rate of growth (cm2) per unit of plant area (cm2) over a period of time (in 

this case, 3 months). RGR was regressed using treatment, site, and species as fixed 

effects and cluster as a random effect. A normal distribution was used for the response 

variable. The variance of the “cluster” random term was greater than zero for all RGR 

models and was thus included in each model. 

 

Table 4. Sample sizes for each group used in analysis: n planted June 2019 (n survived to 

August 2019) n survived over-winter to July 2020. Total n = 1804 (1068) 1076. Eight 

plants (2 P. palustris, 3 C. paleacea, 1 S. pectinata, 2 S. alterniflora) that survived over 

the winter had only living below-ground biomass at the end of 2019 and were not 

included in the survival data. 

  Potted Seedlings Field Transplants 

Species BEL CON BEL CON 

Carex paleacea 
  52 (24) 23 100 (12) 2 

Juncus gerardii 14 (13) 10 15 (3) 2   

Limonium carolinianum 
    

Plantago maritima 110 (95) 79 115 (90) 60  28 (16) 9 

Poa palustris 141 (66) 51 150 (107) 73   

Solidago sempervirens 89 (83) 81 90 (69) 34 34 (31) 24 53 (33) 5 

Spartina alterniflora 
  140 (11) 4 140 (83) 66 

Spartina patens 
    

Spartina pectinata 134 (130) 122 134 (85) 28 157 (76) 76 108 (41) 20 

 

Final health (health score in August 2019) data were analysed in a variety of 

ways. Ordinal data of this type are typically modelled using a proportional odds logistic 

regression model, which assumes that the effect of 𝑋 is similar across each threshold 𝜃, 

where 𝜃 represents the threshold separating 𝑌 ≤ 𝑗 and 𝑌 ≥ 𝑗 (𝑗 represents a health 

category in this case). I found that the data did not meet this assumption. This assumption 

is often violated but proportional odds models can still be useful in inference (Harrell, Jr., 
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2015), so I chose to use this type of model and also model the data in a variety of other 

ways including: linear models assuming a continuous variable underlying the ordinal 

variable (Agresti, 2001), and partial proportional odds models. Results were confirmed 

by all models, and so I have chosen to present results from linear regressions since they 

are easiest to work with and interpret. Proportional odds and partial proportional odds 

models were run using the clm function in the “ordinal” package and a logit link 

(Christensen, 2019a, 2019b), while linear models were run using the “stats” package (R 

Core Team, 2019). Predictor variables were treatment, site, and species. Initial health 

(health score in June 2019) was found to have an important effect on final health score 

(lower categories had higher probabilities of staying in lower categories and vice versa), 

and so was included in all models of final health as a control. No random effects were 

included in these models.  

 

3.7.4 Over-winter Survival 

Over-winter survival was assessed using logistic regression with a logit link. This 

analysis excluded plants that died in the first growing season (Table 4). The “cluster” 

random term was included in the full model with all data (using treatment and site as 

predictors) because its variance was greater than zero; however, it was removed from 

subsequent models using subsets of the data due to convergence difficulties. 

 

3.7.5 Abiotic Conditions 

To understand the relationships between abiotic variables and how they differ 

spatially across sites, a Principal Components Analysis (PCA) was conducted. Where 
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more than one measurement was taken per cluster (elevation and inundation variables), 

data for the passive plot was used, as there was low variance within the clusters. The 

number of input variables was reduced to meet the assumption of sample adequacy using 

a Pearson’s correlation matrix to remove variables that had correlation coefficients ≥|0.7|, 

while maintaining ecologically important variables. Variables included in the PCA were 

the primary (N, P, K) and secondary nutrients (Ca, Mg, S), along with the ecologically 

important elevation, salinity and mean inundation time. For the PCA and the following 

analyses I opted to use soil Na (kg/ha) as opposed to pore water salinity measurements as 

the salinity variable because pore water salinity measurements from the probe were 

highly unstable in the field with large fluctuations among replicates at a single point. The 

PCA was performed using the prcomp function in the “stats” package (R Core Team, 

2019) and input variables were scaled and centered to unit variance. Outputs were 

visualized using the “factoextra” package (Kassambara & Mundt, 2019). 

Further analysis was completed to understand the effects of abiotic variables on 

plant performance (RGR, survival, over winter survival, final health). Since only one 

measurement of each abiotic variable was taken per cluster, these values were repeated 

for each plant in the cluster for these analyses. Data from potted seedling and field 

transplants were pooled for analyses, except in the survival model where treatment was 

included as a predictor because it was previously found to be important to survival. Sites 

were modelled separately for each response variable. The same input variables as above 

were used as predictors in this modelling process except inundation time (N, P, K, Ca, 

Mg, S, elevation and salinity). Inundation time was highly inversely correlated with 

elevation at each site; however, in the pooled site data used above there was no 
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correlation. For this reason, it was removed from further analysis. Species was included 

as a control variable in all models, and initial health was included in the final health 

model. Input variables were mean-centered and scaled to unit variance (z-scores) to make 

meaningful comparisons of regression coefficients (Schielzeth, 2010). Variance inflation 

factors were calculated using the “car” package (Fox & Weisberg, 2019) using a 

threshold of 5 to identify and remove collinear variables (Zuur et al., 2010). In the 

Converse models, sodium (negatively correlated with elevation, Pearson’s r = -0.69 and 

positively correlated with K2O, Pearson’s r = 0.95) and magnesium (positively correlated 

with K2O, Pearson’s r = 0.96) were removed. In Belcher models, magnesium (positively 

correlated with Sodium, Pearson’s r = 0.87) and sulfur (positively correlated with 

Calcium, Pearson’s r = 0.78) were removed. Subsequently, model selection was 

performed and models were averaged using a threshold of Δ AICc < 5 since there were no 

clear ‘best’ models (Dormann et al., 2018; Grueber et al., 2011). This procedure provides 

more stable estimates of effect sizes. Models were averaged using both the subset-

averaged (parameters are averaged over models only where they are present) and the full-

averaged (zeros are substituted into models where a parameter is absent) methods. This is 

an ongoing area of research and there are conflicting viewpoints over which method is 

more appropriate for different types of research questions (absolute vs. relative 

importance of parameters) (Galipaud et al., 2017; Grueber et al., 2011), so both are 

presented here. 
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Chapter 4: Results 

4.1 Community Composition 

4.1.1 Target Species Abundance 

Potted seedling and field transplant treatments were the most successful at 

establishing a higher abundance of target species. Target species (perennial halophytes) 

abundance in potted seedling and field transplant treatments was higher than all other 

treatments at both sites after the first growing season (2019). Differences between the less 

successful treatments – passive, tilling, and seed – were statistically unclear (Figure 11, 

Figure A 1) and therefore unsuccessful over the first year. During the second growing 

season (2020), potted seedlings continued to have the highest abundance of target species 

at both sites (Figure 11, Figure A 2). At Belcher, the remaining treatments had relatively 

high abundance of target species due to natural colonization (where plants establish from 

an outside source) and, by the end of the season, had similar target species abundance to 

the field transplant plots. At Converse, where natural colonization was consistently lower 

than Belcher, the potted seedling and field transplant treatments continued to have the 

highest abundance of target species (Figure 10), followed by seed, then the rest of the 

treatments having similar abundance (Figure 11, Figure A 2). The model selection 

procedure revealed that the preferred model in all cases included both site and treatment 

as lower order terms, and an interaction between them (Table A 3), indicating that 

treatment performance did not follow the same trend at both sites. This interaction was 

mainly due to minor differences in the performance of the less successful treatments 

between sites. 
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Figure 10. Photograph taken at Converse on August 25, 2020 showing contrast in 

vegetation abundance between planted plot (potted seedling in foreground and field 

transplant at center-right) and the unplanted marsh surface. Quadrat is 1m2. 
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Figure 11. Perennial halophyte abundance (number of hits) per plot over two years in 

each treatment and site. Vegetation surveys were carried out in August of the respective 

year. The median is shown within the box, the boxes represent the range between the first 

and third quartile of the data, whiskers represent the min and max measurements no 

farther than 1.5 * Inter-Quartile Range, and outliers are represented by single points. 

 

4.1.2 Target Species Richness 

Target species richness (number of perennial halophyte species) in potted seedling 

and field transplant treatments was higher than all other treatments at both sites in 2019. 

Differences between the less successful treatments – passive, tilling, and seed – were 

statistically unclear at Belcher, but at Converse seed had higher richness than passive and 

tilling (Figure 12, Figure A 3). The model selection procedure revealed that the preferred 

model included both site and treatment as lower order terms, and an interaction between 

them (Table A 3), indicating that treatment performance did not follow the same trend at 
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both sites. This interaction was mainly due to minor differences in the performance of 

seed and field transplant treatments between sites. Treatment alone was the next best 

predictor of these results. 

In 2020, potted seedlings had higher species richness than all other treatments. At 

Belcher, the differences between the rest of the treatments were statistically unclear, 

where at Converse both seed and field transplants had higher species richness than all 

other treatments (Figure 12, Figure A 4). The model selection procedure indicated that 

both site and treatment were important indicators of species richness (Table A 3). 

 

Figure 12. Perennial halophyte species richness per plot over both years in each 

treatment and site. Vegetation surveys were carried out in August of the respective year. 
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4.1.3 Total Abundance 

At Belcher in 2019, total plant abundance was highest in potted seedling, field 

transplant and the passive control treatments while seed (no germination), wrack and 

tilling treatments had lower abundance (Figure 13, Figure A 5). The slight decrease in 

abundance in wrack, tilling and seed treatments from the passive treatment can be 

attributed to the tilling of these plots in the early spring which removed any would-be 

natural colonizers. In 2020, the total abundance of these less successful treatments had 

caught up to the total abundance in planted plots (Figure 13, Figure A 6). Much of the 

natural colonization at this site consisted of weedy annuals including Chenopodium spp. 

and Atriplex spp.. Total abundance in the transplant treatment was highest because these 

plots were not fully tilled (all other plots were) at the beginning of the season and so 

cover in the plots included both planted species and natural colonizers of Chenopodium 

spp. and Atriplex spp.. 

At Converse, potted seedling and field transplant treatments had higher 

abundance than all other treatments both years, with a larger gap between these 

treatments and the rest than at Belcher (Figure 13). Passive and seed plots had higher 

abundance than wrack and tilling treatments in 2019 because there was some germination 

from seeds (Figure 13, Figure A 5), these relationships were not as clear in 2020; 

however, there is an indication that seed plots had slightly higher abundance than the 

passive plot (Figure A 6). The preferred model for all the data included both site and 

treatment at main effects, as well as the interaction between them (Table A 3), indicating 

that the relative trend among treatments was different at each site. 
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Figure 13. Total vegetative abundance (number of hits from all species) per plot over two 

years in each treatment and site. Vegetation surveys carried out in August of the 

respective year. 

 

4.1.4 Total Species Richness 

Total species richness in 2019 followed a similar trend to abundance, where 

potted seedling and field transplants had the highest richness (Figure 14, Figure A 7). At 

Belcher, this was followed by the passive plot (many natural colonizers), and the last 

three treatments not having clear differences. In 2020, the passive plot and the rest of the 

treatments had enough colonization that species richness was similar to potted seedling 

and field transplant plots (Figure A 8). At Converse over both years, the top two 

treatments were followed by seed with only a slightly higher richness than the last three 
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treatments. The preferred model for these analyses included treatment and site as 

interactive predictors (Table A 3). 

 

 

Figure 14. Total species richness per plot over both years in each treatment and site. 

Vegetation surveys carried out in August of the respective year. 

 

 

4.1.5 Seed Germination 

There was minimal germination of seeds at Converse and none at Belcher and it 

was not successful at producing higher plant abundance than the passive plots therefore 

making it an unsuccessful treatment. Seeds were only sown in 2019 but seedlings were 

seen germinating in these plots both years of this study in densities that were observed to 
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be higher than the surrounding areas. Of the species seeded, L. carolinianum had the 

highest number of germinated seedlings each year (Table 5). There was also some 

germination from P. palustris (both years) and S. alterniflora (only the first year) seeds 

(Table 5).  

 

Table 5. Total number of seedlings in seed plots in 2019 and 2020 at each site. 

  Belcher Converse 

Species 2019 2020 2019 2020 

Limonium carolinianum 0 0 40 11 

Poa palustris 0 0 16 10 

Solidago sempervirens 0 0 1 0 

Spartina alterniflora 0 0 21 0 

Spartina pectinata 0 0 5 3 

Unknown grass 0 0 2 0 

 

 

4.2 Plant Performance 

4.2.1 Survival 

Overall, potted seedlings had a higher likelihood of survival than field transplants 

at both sites (Figure 15, Figure A 9). Modelling was first conducted on all data using site 

and treatment as predictors. The preferred model included site and treatment along with 

an interaction term between the two and the cluster random term (Table A 3), indicating 

that both site and treatment were important variables to explain trends in survival. The 

interaction between site and treatment was a result of potted seedlings having higher 

survival at Belcher than Converse while field transplants had similar survival at the two 

sites. 
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Figure 15. Proportion of individual plants surviving to the end of 2019 in each treatment 

and site (BEL is Belcher, CON is Converse) with associated total sample sizes for 

surviving and dead plants in each group. Data are pooled for all species. 

 

Only S. pectinata and S. sempervirens were present in both treatments at both 

sites and P. maritima in both treatments at Converse, so the data for these species were 

used to examine species-specific differences in survival between the treatments. The 

model selection procedure provided strong evidence that all three predictor variables 

were important to predicting survival, and the preferred model included a three-way 

interaction term between them (Table A 3), indicating that there were differences in 

survival among species as well as among treatments and sites. Probability of survival of 

S. pectinata (at both sites) and P. maritima (at Converse) potted seedlings was higher 

than field transplants (Figure 16, Figure A 10), supporting the findings of the pooled 

species data above. Survival of S. sempervirens was similar between the treatments at 
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both sites. S. sempervirens had higher survival than S. pectinata in all group-wise 

comparisons except Potted Seedling*Belcher, indicating that survival success may differ 

among species. 

 

 

Figure 16. Proportion of individuals surviving to the end of 2019 for the two species that 

were present at both sites (BEL is Belcher, CON is Converse) in each treatment with 

associated total sample sizes for surviving and dead plants in each group. P. maritima 

was not present in the field transplant treatment at Belcher. 

 

To compare survival among species, a model was run on treatments separately, 

using site and species as predictors. P. maritima was omitted from the field transplant 

model because it was only planted in this treatment at one site. The preferred model for 

both sets of data included both predictors, and an interaction term (Table A 3). Trends 
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were different between sites with C. paleacea, P. palustris, and S. alterniflora having 

survival lower than 50% at Belcher, and C. paleacea and J. gerardii having survival 

lower than 50% at Converse. (Figure 17, Figure A 11, Figure A 12). 

 

 

Figure 17. Proportion of individuals surviving to the end of 2019 for all species at each 

site (BEL is Belcher, CON is Converse) with associated total sample sizes for surviving 

and dead plants in each group. Data are pooled over treatments. 

 

4.2.2 Relative Growth Rate 

Since not all species were found in all treatments, the data were first modelled 

using only site and treatment as predictors. Site was found to be the strongest predictor of 
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RGR (Table A 3), which was 1.7x higher at Belcher than Converse (Figure 18, Figure A 

13). To examine differences between treatments, a model using treatment and site as 

additive predictors was used. Treatments did not differ in RGR. Similar RGR between 

the two treatments may be a result of the pooled of species data, as discussed below. 

 

 

Figure 18. Relative growth rate (RGR) of all individuals in each treatment and site over 

summer 2019. RGR is presented as ln(cm2/cm2)·3 months-1. An RGR of 0 indicates that a 

plant has not increased in size over the course of the growing season. Data are pooled 

over species. 

 

While the pooled data for all species showed no difference between RGR in each 

treatment, making species-specific comparisons revealed a different picture. Only three 

species (S. sempervirens, P. maritima and S. pectinata) were used in both treatments, two 

of which were used at both sites. Further models were run for these data to investigate 
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whether species, site, and treatment influenced the RGR of these species. This data were 

best described using a three-way interaction term between the predictor variables (Table 

A 3). Potted seedlings of S. sempervirens (at each site) and P. maritima (Converse only) 

had higher RGR than field transplants, indicating that potted seedlings may have higher 

growth potential than field transplants for some species. S. pectinata showed a different 

pattern where potted seedlings and field transplants performed similarly at Belcher, but 

potted seedlings performed worse than transplants at Converse (Figure 19, Figure A 14). 

 

Figure 19. Relative growth rate (RGR) of species used in both treatments. RGR is 

presented as ln(cm2/cm2)·3 months-1. An RGR of 0 indicates that a plant has not 

increased in size over the course of the growing season. P. maritima was not planted in 

the field transplant treatment in Belcher. 
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To identify high and low performing species, the data were modelled using site 

and species as predictors since the overall data showed no difference between treatments. 

The preferred model included an interaction term between site and species (Table A 3), 

indicating inconsistent trends among species growth between sites. All species had a 

higher RGR at Belcher, but there were no clear trends in species performance. S. 

pectinata was the top performer at Belcher however grew considerably worse at 

Converse because of poor plug performance as discussed above. Elsewise, S. alterniflora 

may have had a higher RGR than some of the other species, while C. paleacea seemed to 

grow poorly (Figure 20, Figure A 15). Most of the results were statistically unclear, 

which is likely due to low statistical power because of small sample sizes in many groups 

(particularly J. gerardii, C. paleacea, and S. alterniflora). While patterns in RGR (growth 

per unit biomass over time) were unclear among species, it is important to note that this 

means that in terms of absolute growth, larger plants grew more since RGR is relative to 

the size of the plant. As a result of differences in the RGR among species, pooled 

estimates of RGR may not reflect the true difference between treatments since the same 

species were not used in both treatments. 
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Figure 20. Relative growth rate (RGR) of species at each site (BEL = Belcher, CON = 

Converse). RGR is presented as ln(cm2/cm2)·3 months-1. An RGR of 0 indicates that a 

plant has not increased in size over the course of the growing season. Data are pooled 

over treatments. 

 

4.2.3 Final Health 

Plants at Belcher were healthier than those at Converse at the end of the season in 

both treatments. At Belcher, plants were most likely to be in excellent health (category 4) 

while plants at Converse were most likely to be in good health (category 3) (Figure 21, 

Figure A 16). Field transplants at Becher had the highest final health score, possibly due 

to the high performance of S. pectinata field transplants which made up a large 

proportion of that group. There was little difference between the treatments at Converse. 

The preferred model for this analysis included site, treatment, and the interaction between 

them as predictors, and initial health as a control. Results of model selection indicated 
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that both site and treatment were important to explaining variation in final health scores, 

with site being a better predictor overall (Table A 3). 

 

Figure 21. Proportion of individuals in each health category in August 2019 in each 

treatment at both sites (BEL is Belcher, CON is Converse). Total sample size for 

individuals in all health categories in each group is included. Health scores were 

assessed visually between 1 (worst health) and 4 (best health). Data are pooled over 

species. 

 

 Using species that were present in both treatments at both sites (S. pectinata, S. 

sempervirens and P. maritima), species-specific differences in final health between the 

treatments was examined. The preferred model included an interaction between site and 

species, with treatment and initial health as additive predictors (Table A 3). The findings 

from this model confirm that plants at Belcher were in better health than those at 

Converse for all three species, and that S. pectinata and S. sempervirens field transplants 
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were in better health than potted seedlings (Figure 22, Figure A 17). Average health score 

was similar between treatments for P. maritima. 

 

Figure 22. Proportion of individuals in each health category at the end of the season in 

each treatment at both sites (BEL is Belcher, CON is Converse). Total sample size for 

individuals in all health categories in each group is included. Health scores were 

assessed visually between 1 (worst health) and 4 (best health). P. maritima was not 

planted in the field transplant treatment in Belcher. 
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Figure 23. Proportion of individuals of a species in each health category at the end of the 

season in each treatment at both sites (BEL is Belcher, CON is Converse). Total sample 

size for individuals in all health categories in each group is included. Health scores were 

assessed visually between 1 (worst health) and 4 (best health). There were no plants in 

categories with no data. 

 

 To identify high and low performing species overall, data were then modelled 

using site and species as predictors. Since both treatment and site were found to be 

important predictors of final health score, data for each treatment was modelled 

separately. P. maritima was omitted from the field transplant model because it was only 

planted in this treatment at one site. The preferred model for potted seedlings included 

site, species and their interaction as predictors, as well as initial health as a control. The 

preferred model for field transplants included site and species as additive predictors, with 

initial health as a control (Table A 3). There were no consistent trends among potted 
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seedling species however health scores at Belcher were more variable than at Converse. 

At Belcher P. maritima and S. pectinata had the highest health scores followed by S. 

sempervirens, and P. palustris had particularly low health scores. At Converse, S. 

pectinata had the lowest health score, while S. sempervirens, P. palustris, and P. 

maritima had similar scores (Figure 23, Figure A 18). In the field transplant treatment at 

both sites, S. pectinata, S. alterniflora, and S. sempervirens all had similar average health 

score while C. paleacea had a lower score (Figure 23, Figure A 19). Estimates for J. 

gerardii were highly uncertain due to small sample sizes. 

 

4.3 Over-Winter Survival 

Site was the strongest predictor of over-winter survival (Table A 3), while 

treatments did not differ. Over-winter survival was higher at Belcher (88 %) than at 

Converse (55 %) (Figure 24, Figure A 20). Though treatment was not an important 

predictor of over-winter survival overall, a model comparing outcomes of species that 

were present in both treatments at both sites indicated that S. sempervirens potted 

seedlings had slightly higher survival than field transplants at both sites, while S. 

pectinata had slightly higher survival of field transplants than potted seedlings at both 

sites (Figure A 21). All species had higher survival at Belcher than Converse except S. 

alterniflora. S. pectinata, S. sempervirens, and C. paleacea had the highest over-winter 

survival at Belcher, and the lowest at Converse (Figure 25, Figure A 22), potentially 

explained by differences in site condition preferences of these species. All other species 

performed similarly. 
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Figure 24. Proportion of surviving plants in 2019 that returned in July 2020 in each 

treatment and site (BEL is Belcher, CON is Converse). Total sample size for individuals 

that died and survived in each group is included. Data are pooled over species. 
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Figure 25. Proportion of surviving plants in 2019 that returned in July 2020 of each 

species at each site (BEL is Belcher, CON is Converse). Total sample size for individuals 

that died and survived in each group is included. Data are pooled over treatments. 

 

4.4 Abiotic Conditions 

The first three principal components of the PCA had Eigenvalues greater than 

one, indicating that they explained more variance than any of the individual variables. 

The first two principal components of the PCA explain 67.3 % of the variance in the data, 

with the third explaining an additional 11.7 %. The first axis reveals a gradient from plots 

at a low elevation (and consequently more frequent flooding) with high salinity and rich 
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in potassium and magnesium, to plots at high elevations with low salinity, and low 

potassium and magnesium (Figure 26). The second axis shows a gradient from soils with 

high levels of calcium and phosphorus and long mean inundation times to plots with low 

levels of both nutrients and shorter inundation times. The third axis is characterized by a 

gradient in nitrogen concentration. Sulfur was a poor predictor of the variability across 

the sites. Interestingly, important soil nutrients did not follow consistent patterns across 

the sites. 

Abiotic conditions at Converse covered a wider range than at Belcher, although 

Belcher was predominantly characterized by higher elevations, longer mean inundation 

times, lower salinity, nitrogen, potassium, magnesium and sulfur but higher calcium and 

phosphorus (see Table A 4 for summary statistics on all collected variables). There was 

an overall inverse relationship between elevation and soil salinity (Na kg/ha), and 

between elevation and inundation frequency. Inundation time was highly inversely 

correlated with elevation at each site, however in the pooled site data used above there 

was no correlation. 
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Figure 26. PCA Biplot displaying differences in abiotic conditions at each site (BEL = 

Belcher, CON = Converse) on the first two principal component axes. Each point 

represents a cluster, the large point represents the mean for each site. 

 

Elevation had a moderately positive relationship with RGR and final health score 

at Converse, but had a moderate negative relationship on the same variables at Belcher 

(Figure 27, Figure 30). There was no relationship between elevation and survival or over-

winter survival. Potassium had a consistently negative relationship with all response 

variables at Converse (RGR – moderate, final health – moderate, survival – strong, over-

winter survival – strong), and the data suggested a positive relationship with RGR and 

final health at Belcher, although estimates were uncertain (Figures 27 - 30). Calcium had 

a strong positive relationship with RGR, survival and final health at Converse, but a 

slightly negative relationship with only survival and over-winter survival at Belcher 
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(Figures 27 - 30). Phosphorus showed a very slightly positive relationship with survival 

and a near-zero relationship with other all response variables at Converse. At Belcher, 

phosphorus had a positive relationship with survival and over-winter survival but a 

negative relationship with final health at Belcher (Figures 27 - 30). The data suggests 

positive relationships between nitrogen and RGR and survival and a negative relationship 

with final health at Belcher, although these estimates are unstable due to variability in the 

data (Figures 27 - 30). Nitrogen had no effect or extremely weak positive effects on all 

response variables at Converse (Figures 27 - 30). Sodium had a positive effect on final 

health and over-winter survival but a negative effect on other response variables 

(modelled at Belcher only), however there was a high degree of uncertainty in these 

estimates (Figures 27 - 30). Sulfur effects (modelled at Converse only) were relatively 

neutral (RGR, over-winter survival), slightly positive (survival), and slightly negative 

(final health) however there was some uncertainty around these effects as well. Each of 

these models performed better with species included as a fixed effect, indicating that the 

relationships with these variables may differ between species.  
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Figure 27. Standardized regression coefficient estimates from generalized linear model 

averaging procedure with relative growth rate ( ln(cm2/cm2)·3 months-1) from June -

August 2019 as the predicted variable and 95% confidence intervals. Full coefficients 

(pink) are averaged over all possible models with Δ AICc < 5 (zeros are substituted if a 

parameter is not present in a model), subset coefficients (blue) are averaged over only 

models that include that parameter. 
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Figure 28. Standardized regression coefficient estimates from generalized linear model 

averaging procedure with survival to August 2019 as the predicted variable and 95% 

confidence intervals. Full coefficients (pink) are averaged over all possible models with Δ 

AICc < 5 (zeros are substituted if a parameter is not present in a model), subset 

coefficients (blue) are averaged over only models that include that parameter. 
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Figure 29. Standardized regression coefficient estimates from generalized linear model 

averaging procedure with over-winter survival (plants that came back in July 2020) as 

the predicted variable and 95% confidence intervals. Full coefficients (pink) are 

averaged over all possible models with Δ AICc < 5 (zeros are substituted if a parameter 

is not present in a model), subset coefficients (blue) are averaged over only models that 

include that parameter. 
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Figure 30. Standardized regression coefficient estimates from generalized linear model 

averaging procedure with health in August 2019 as the predicted variable and 95% 

confidence intervals. Full coefficients (pink) are averaged over all possible models with Δ 

AICc < 5 (zeros are substituted if a parameter is not present in a model), subset 

coefficients (blue) are averaged over only models that include that parameter. 

 

Chapter 5: Discussion 

The main objective of this research was to determine whether active re-vegetation 

accelerated the recovery of plant communities at two new salt marsh restoration sites. I 

tested the efficacy of five methods of planting a range of species at two recently restored 

sites in the Bay of Fundy over two years. Of the tested methods, only planting potted 

seedlings and field transplants were successful methods of establishing higher abundance 
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and species richness of target (perennial halophyte) species compared with a passive 

control where no manipulation or addition of plant material occurred. Of these, potted 

seedlings had higher survival, while all other indices of plant performance were more 

affected by site differences in abiotic conditions. 

 

5.1 Planting Live Plants Accelerated Re-Vegetation and Enhanced Species Richness 

Planting a mixture of species as potted seedlings and field transplants increased 

the abundance and species richness of perennial halophytes over the course of two years 

as compared to the passive “do nothing” approach (Figure 11, Figure 12). Of these 

treatments, potted seedlings tended to have higher abundance than field transplants, 

especially after the second growing season, although the difference between the 

treatments was not statistically significant due to large variability across the sites. There 

was some survival of every species planted in the study, and many of the species were 

observed going to seed and spreading by rhizome over both growing seasons. The 

success of these treatments and species indicates that these are viable methods for quickly 

increasing the abundance of desired species at salt marsh restoration sites in the Bay of 

Fundy, providing immediate benefits to the restoration site. 

Plant re-colonization on salt marsh restoration sites is correlated with species 

abundances in nearby vegetation (Rand, 2000; Wolters et al., 2005). On managed 

realignment sites, the nearest vegetation is typically in the fringe marsh outside the 

footprint of the old dyke. Halophytic vegetation present on a managed realignment site 

pre-breach, particularly S. pectinata, has been seen to survive salt water intrusion post-

breach (Virgin et al., 2020) and these patches are another potential source of vegetative 
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spread. Generally, low diversity and large extents of bare ground at recently breached 

sites may be a limitation to the rapid and long-term development of a healthy vegetation 

community. Dense, species-rich “islands”, like the ones established in my study act as a 

source of vegetative spread beyond what is possible without planting. Establishing a 

range of species early in the restoration trajectory increases the pool of potential 

candidate species for establishment throughout the site, ultimately decreasing the chance 

that sites will remain dominated by pioneer communities, as has been seen in passive 

restoration and managed realignment projects in the past (Bowron et al., 2011b; Brooks 

et al., 2014; Burdick et al., 1997; Byers & Chmura, 2007; Chang et al., 2016). 

While planting a range of species successfully increased the diversity and 

abundance of target species, it is interesting to note that, at Belcher, total abundance was 

similar between the passive treatment and both potted seedling and field transplants 

during the first growing season, and during the second growing season most of the plots 

had similar total abundance (Figure 13). This was the result of natural colonization by 

opportunistic annuals (mainly Chenopodium spp. and Atriplex spp.). This type of 

colonization after managed realignment has been seen at other sites in Nova Scotia 

(Bowron et al., 2011a), and elsewhere in the world (Hughes et al., 2009; Mossman et al., 

2012); however, the function of these annuals in the restoration trajectory is largely 

unknown. Salt marshes are thought to develop through facilitative succession, where 

early colonizing plants facilitate further colonization through a variety of means 

including facilitating accretion of marsh soils (Davy et al., 2000). It is possible that these 

early colonizers provide some facilitative benefit by way of temperature changes, 

shading, or modifications to the soil. However, at two managed realignment sites in 
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England these annual species did not provide any facilitative benefit by way of 

facilitating accretion for subsequent colonization and Hughes et al., (2009) hypothesized 

that these species are early colonizers solely as a result of their tolerance of early marsh 

conditions. It is also likely that these plants do not stabilize the marsh surface to any 

significant degree since annual roots are usually shallow. The characteristics of these 

plants indicate that, regardless of whether there is an initial influx of halophytic annuals 

at a site, the establishment of target species is important to promote facilitative succession 

and the return of ecosystem services. 

Adding a propagule source (sowing seed and planting wrack) and encouraging 

seed deposition (tilling) did not increase the abundance or richness of target species 

(Figure 11, Figure 12). Unfortunately, in this study seeds were planted deeper than 

planned in the field due to miscommunication, which may have contributed to very low 

germination rates, particularly at Belcher where seeds were planted 10 cm deep. There 

are also problems with seeding at sites with strong tidal force, as is the case at Bay of 

Fundy marshes, or at sites with low elevation, where seeds may be scoured and washed 

away easily (Broome et al., 1988; Garbutt et al., 2005; Wrathall, 2016). Despite the low 

germination found in the study, previous studies have shown that sowing seed can 

successfully improve plant cover in salt marsh contexts (Broome et al., 1988). Seeding 

may still be an attractive method of re-vegetation since associated costs are very low and 

with some methodological development there may be some success of seed. There was 

some germination of seeds at Converse over both years, of which one species was L. 

carolinianum. This species was difficult to grow in the greenhouse, indicating that 

seeding may boost site diversity in similar situations. I suggest that seeding may be most 
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beneficial in conjunction with some other method of planting. Adding plants and sowing 

seed together, for example, may prevent seed scouring through slowing of wave energy 

through stems or provide some other facilitative benefit to seeds in the rooting zone (i.e. 

increased oxygen (Renzi et al., 2019) or decreased soil salinities (Bertness et al., 1992). 

This option may offset some of the unpredictability associated with seed germination and 

be a good strategy to “hedge-bets” for diversity and for quickly establishing cover.  

Wrack and tilling treatments were both wholly unsuccessful in this study for 

establishing vegetation. Planting wrack has been unsuccessful in the past (Wrathall, 

2016) and I suggest that wrack may not be useful for establishing vegetation. The high 

variability of wrack composition makes it an inconsistent seed source for this application. 

However, wrack may be useful when partnered with another method of planting or 

seeding to act as a readily available mulch, to secure seeds in place and to protecting 

plantings. Similarly, adding microtopographic features was unsuccessful for establishing 

vegetation though it has been shown to increase seed trapping in other studies (Wang et 

al., 2018). In some cases, particularly at Converse, any increased rugosity was negated by 

ongoing sedimentation and repeated tidal flooding. This method would need considerable 

reimagining if used again and it is likely that introducing larger topographic features such 

as creeks or concave and convex features on a larger scale (e.g., 1 m2 mounds) may be 

more effective than these small-scale features.  

 

5.2 Potted Seedlings Twice as Likely to Survive 

Potted seedlings and field transplants, the two successful treatments at 

establishing higher target species abundance than that of the passive approach, performed 
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similarly in most plant performance measures, with the marked difference of survival 

through the first growing season. Potted seedlings on average were approximately twice 

as likely to survive through the first season (survival ≈ 75%) as field transplants (survival 

≈ 40%) at both sites (Figure 15). These results were supported by data directly comparing 

species planted in both treatments, though differences between treatments was not as 

pronounced (Figure 16). This is unsurprising since field transplants underwent 

considerably more trauma to their roots through the transplant process. Since many of the 

transplanted species grow in dense clonal mats with deep, interconnected root systems, it 

was difficult to dig up and separate plants. As a result, potted seedlings were planted with 

more intact root systems. 

Damage to the roots of field transplants varied among species, with gramminoids 

being most difficult to dig, particularly C. paleacea. This is reflected in low survival at 

both sites for this species (~47 % at Belcher and ~15 % at Converse). S. alterniflora 

transplants also had very low survival at Belcher (~10 %) but considerably higher at 

Converse (~60 %). Past research has found that transplanted S. alterniflora can have 

survival rates anywhere between 0 and 100 % (Bergen et al., 2000; Stalter & Batson, 

1969). Variability in this species’ hardiness to transplanting may be due to its tolerance to 

abiotic conditions at the particular location of planting (Stalter & Batson, 1969), or to 

differences between planting techniques. One potential area for improvement of this 

technique would be to plant transplants immediately upon digging. As transplants were 

stored in bags for at least one day before planting in my study, it is possible that this 

caused unnecessary stress to the plants. While there may be some room for improvement 

of techniques, transplants were generally treated with greater care before planting at 
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Converse than Belcher (as a result of the order that sites were planted in and resultant 

experience handling the plants) and there was no indication that their treatment increased 

survival on a species-by-species basis. 

Another potential strategy for increasing survival of field transplants may be to 

plant in larger clumps which, by decreasing the ratio of damaged edge roots to inner 

roots, may decrease the trauma to roots and provide a better chance of survival for the 

inner portions of the plant. These clumps may be particularly beneficial in higher stress 

areas where larger root systems and more stems can facilitate shared oxygen, among 

other benefits (Renzi et al., 2019). Despite the field transplants having lower survival, no 

species-groups at either site died out completely, and the plants that did survive still grew 

well, were healthy, and survived the winter. For this reason, using field transplants may 

still be useful in restoration schemes, for example if specific species are difficult to grow 

in the greenhouse, or due to time or budget constraints. In a restoration project if there is 

a desired amount of cover it may be necessary to combine field transplants with some 

other method, or to increase the number of transplants in expectation that survival will be 

low.  

 

5.3 Abiotic Conditions Trump Planting Treatment for Survival 

In all other measures of plant performance examined here, site was a more 

important determinant of performance than treatment. RGR (Figure 18), health scores 

(Figure 21), over-winter survival (Figure 24), and plant abundances overall (Figure 13) 

were higher at Belcher. This agrees with past research which found that planting 

outcomes were driven primarily by site, as opposed to method of establishment (Greet et 
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al., 2020). Analysis of collected data on abiotic conditions at each site revealed that 

Belcher was predominantly characterized by higher elevations (and consequently less 

frequent flooding), longer mean inundation times, lower salinity, nitrogen, potassium, 

magnesium and sulfur but higher calcium and phosphorus (Figure 26) therefore making it 

a less stressful site overall. These, among other site differences may be accounting for the 

differences in plant performance observed in my study.  

The differing conditions between sites were associated with very different 

relationships between plant performance variables and each of the abiotic variables. In 

some cases, an abiotic variable had the opposite relationship with plant performance at 

each site. Overall, growth rates and survival were associated with similar abiotic 

properties, while final health scores and over-winter survival were associated with similar 

abiotic properties.  

Elevation mediates salinity and flooding (both inversely related to elevation) on 

salt marshes. Together, these are frequently cited as the main abiotic stresses that govern 

plant community organization in coastal marshes (Broome, 1989; Broome et al., 1988). 

Higher elevations on the marsh surface typically have less saline, less frequently flooded 

soils and are therefore more hospitable environments for plants. I found that elevation 

was positively related to RGR and final health scores at Converse (Figure 27, Figure 30), 

supported by past modelling showing elevation to be positively correlated with primary 

production in salt marshes (Miller et al., 2019). At Belcher however, I found a negative 

relationship between the same response variables and elevation (Figure 27, Figure 30). 

These results may be indicative of drought effects since elevations at Belcher were on 
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average 54 cm higher than Converse and many of the planting locations flooded with less 

than 25 % of high tides, particularly in the eastern portion of the site. 

Saline soils at low elevations can cause a decrease in water availability to plants 

through increased osmotic potential, can cause nutrient imbalances and can have a toxic 

effect directly on plants (Schulze et al., 2019). At Belcher, estimates of the effect of soil 

Na concentrations on plant performance were unstable; however, models suggested 

negative relationships with RGR and survival (Figure 27, Figure 28). These results are in 

line with the hypothesis that more saline soils have a negative impact on plant 

performance. At Converse, K2O was highly positively correlated with Na (Na was not 

included in the model at this site) and I found a negative effect of K2O for all response 

variables (Figures 27 - 30). It is likely that the relationship between K2O and Na was the 

underlying reason for this relationship, supporting the hypothesis that higher soil 

salinities are a considerable stress on plants through all stages of growth. 

Analysis of survival data indicated that phosphorus concentrations had a weak 

positive relationship with probability of survival across both sites, and a weak positive 

relationship with probability of over-winter survival at Belcher only (Figure 28, Figure 

29). Phosphorus is a primary nutrient that is important for root development and growth 

of new tissue in plants (Schulze et al., 2019) and it is possible that root development may 

be a critical factor contributing to plant survival in the marsh. Plants with healthier root 

systems are able to respond more effectively to stressful events (such as prolonged 

flooding or drought), and having well-established roots is critical over-winter when plants 

die back and regrow from the roots in the spring. Phosphorus is a limiting nutrient in salt 

marsh systems (Broome et al., 1983; Delaune & Pezeshki, 1988), and although I did not 
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find a relationship between phosphorus and plant growth, the positive relationship 

between summer- and winter-survival and phosphorus concentrations indicate that 

phosphorus may limit plant survival in Fundy systems. 

The positive relationship between calcium concentration and plant performance 

variables at Converse is an interesting result as calcium is not typically a limiting nutrient 

in salt marshes (Broome et al., 2019). Calcium was positively correlated with survival, 

RGR, and over-winter survival at Converse (Figures 27 - 30), but slightly negatively 

related to survival and over-winter survival at Belcher (Figure 28, Figure 29). Converse 

had lower concentrations of calcium than Belcher overall (Figure 26), so this result may 

indicate that plants at Converse were limited by calcium. However, this result may also 

be because of an underlying relationship between calcium and other soil parameters. 

Typically, frequently flooded soils present a high stress environment because they have 

low redox potentials, which causes the creation of compounds that are toxic to plants 

including H2S (Schulze et al., 2019), particularly in areas with poor drainage (Skinner, 

2016). Fe and Mn can act as a buffer in low redox conditions (Reddy et al., 2000; 

Schoepfer et al., 2014), reducing the production of toxic compounds. At Converse, 

calcium concentrations were positively correlated with Fe (Pearson’s r = 0.74) and Mn 

(Pearson’s r = 0.93) and it is possible that this buffering capacity provided an important 

benefit for plantings since plots were flooded more frequently than at Belcher. 

A notable characteristic not measured here but observed as starkly different 

between the two sites was the condition of the soil upon planting. Belcher had a strong 

influx of fresh sediment over the first year post-breach and we planted into a deep, fresh 

layer of sediment. In contrast, Converse had considerably less sedimentation and plants 
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were planted into dry, compacted agricultural soils with a mat of dead vegetation on top. 

Fundy restoration sites with high sedimentation rates have been seen to be rapidly 

colonized by halophytic vegetation in the past (Lemieux, 2012; Virgin et al., 2020), 

indicating that the fresh sedimentation may provide a sort of “clean slate” for plant 

growth. Typically, fresh sediments are associated with an influx of nutrients which can 

promote higher plant performance (Broome et al., 2019); however, the present study did 

not find strong evidence to suggest nutrient limitations at either of these marshes. Fresh 

Fundy sediments may trap and hold seed more effectively due to increased “stickiness” 

as compared to older, dry agricultural soils. The compacted soils at Converse may have 

also presented issues with decreased oxygenation in the rooting zone or poor site 

drainage. Artificially aerated salt marsh soils have been shown in the past to increase 

stem density, height and above- and below-ground biomass of S. alterniflora (Linthurst & 

Seneca, 1981). The compacted soils at Converse may limit the oxygen entering the root-

zone in already oxygen-depleted soils, and these effects may have been compounded by 

the layer of decomposing vegetation depleting oxygen, contributing to high reducing 

conditions thereby limiting plant growth. 

 

5.4 Conclusions and Future Research 

The research in the present thesis has shown that there is merit to active planting 

in Bay of Fundy restoration projects. Planting live plants grown in the greenhouse and 

directly from the field both yielded healthy plants that may kick-start plant colonization 

on site. Potted seedlings had the highest survival and there was some indication that 

potted seedlings may have had slightly higher growth rates in species-by-species 
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comparisons. Growing these plants required considerable time and effort and is a costly 

option for restoration projects. The potted seedlings used in my study were approximately 

5 months old upon planting, and over the growing period they required regular care 

approximately 3 times per week. Seedlings of most species became rootbound in 3-inch 

pots quickly and needed repotting within 2 months. Growth-time could be cut down; 

however, planting younger plants may result in decreased performance. Total costs for 

this method included labour (seed collection, potting, watering, planting), greenhouse 

space, materials (including soil, pots and trays) and transport costs. I was unsuccessful at 

growing all desired species, some of which (including S. alterniflora) required more 

specific environmental requirements and consistent care than I could provide. Growing 

potted seedlings would take one dedicated grower over the course of at least 3 months, 

and at a similar site size and planting density as this project would require approximately 

6 people for 1 day to plant. When comparing methods of planting for vegetation 

restoration, these costs are an important consideration. 

Field transplants are also a viable option for planting; however, planting high 

numbers of field transplants may be required to achieve the same vegetation density goals 

as potted seedlings due to decreased survival. Planting field transplants at a similar 

density and site size as this project would take around 6 people over 2 days to plant. Field 

transplants have the additional consideration of environmental damage, and it may be 

prudent not to dig from small patches of plants. 

All species used in these treatments showed some survival and growth, indicating 

that species from all zones can be planted across the marsh in early-succession restoration 

projects. This provides ample opportunities for a diverse range of species to colonize the 
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site and for competitive forces and stress-tolerance levels of each individual species to 

inform its survival and role in the successional trajectory. Long-term monitoring of high 

diversity plantings may provide insight into whether planting these species does indeed 

benefit salt marsh diversity over time, and monitoring spread may provide insight into 

ideal planting densities across sites. 

Site conditions are also a critical component to understanding how to design 

planting schemes. My results indicate that relationships between plant performance and 

abiotic conditions can be highly site specific, suggesting that baseline monitoring and 

modelling of restoration outcomes may greatly improve the ability to forecast planting 

outcomes. A range of abiotic factors, including the classic elevation, inundation 

frequency and salinity, but extending to soil nutrients such as phosphorus, potassium and 

calcium were all found to impact plantings at different stages of their development. 

Complex interactions of these abiotic variables with the physical characteristics of a site 

may cause plants to respond differently to the same abiotic conditions at different sites, as 

appeared to be the case with flooding frequency. By gaining an understanding of abiotic 

conditions at prospective sites it may be possible to improve planting success through 

manipulation of site conditions, for example, through fertilization or soil aeration. 

This research raised some interesting questions about the relationships between 

abiotic variables and planting success. Both physical and edaphic factors seem to play an 

important role in plant success but there is not one clear answer as to which factors are 

most important, particularly considering differences in site conditions. An interesting 

avenue for future research would be to investigate the relationships between 

sedimentation rates, sediment characteristics (such as compaction and bulk density) and 
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vegetation colonization and growth in Bay of Fundy marshes. Fresh sediment seems to 

provide a “fresh start” for plantings and being able to mimic or promote these conditions 

would be beneficial. Another area for more research is to investigate soil redox potentials 

at early restoration sites and do in depth chemical analysis of proportions of toxic 

chemical forms to non-harmful forms and measure soil oxygen levels, in relation to site 

characteristics. This analysis would help to understand whether reducing conditions are a 

limitation to planting at Bay of Fundy sites and whether further measures need to be 

taken to abate these conditions in early restoration.  

The results of my study are key to informing future planting projects in Bay of 

Fundy salt marsh restoration sites, and to identifying factors that influence planting 

success in these systems. Along with future research, this study can provide a strong base 

for ensuring future planting projects are successful. 
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Appendix A. Visualization of Statistical Outputs and Raw Data 

 

Table A 1. Summary statistics for the number of plants added per plot. 

Treatment Site Median Min Max 

Potted Seedlings Belcher 32 31 34 

Potted Seedlings Converse 34 32 34 

Field Transplants Belcher 25 24 29 

Field Transplants Converse 28 22 33 

 

Table A 2. Summary statistics for the number of each species planted per plot. Data are 

pooled across sites as numbers were similar. 

  Potted Seedlings Field Transplants 

Species Median Min Max Median Min Max 

Carex paleacea    5 2 9 

Juncus gerardii 1 1 1    

Plantago maritima 8 6 8 2 1 3 

Poa palustris 10 7 11    

Solidago sempervirens 6 5 6 3 2 4 

Spartina alterniflora    9 5 12 

Spartina patens       

Spartina pectinata 9 8 10 10 3 13 

 

Table A 3. Model selection statistics. AICc is the computed small-sample size adjusted 

AIC for a given model, Δ AICc is the deviance of a model from the preferred model, and 

weight is a value that ranges from 0 to 1 indicating the amount of support for the model. 

Note that all models that include interactions also include all lower order terms. Terms 

in brackets indicate a random intercept term. 

 

    Random Term 

Model AICc Δ AIC Weight Var STDEV 

Target Species Abundance - 2019      

Site x Treatment 660.2 0 0.804   

Site + Treatment 663.0 2.8 0.195   

Treatment 674.4 14.3 0.001   

Site 828.6 168.4 0.000   

Intercept 840.5 180.4 0.000   
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Target Species Abundance - 2020      

Site x Treatment 1058.3 0.0 1.000   

Site + Treatment 1092.2 33.9 0.000   

Treatment 1188.9 130.6 0.000   

Site 1216.3 157.9 0.000   

Intercept 1267.0 208.7 0.000   

      

Target Species Richness - 2019      

Site x Treatment 397.8 0.0 0.931   

Treatment 403.6 5.8 0.051   

Site + Treatment 405.6 7.9 0.018   

Intercept 591.4 193.7 0.000   

Site 593.3 195.6 0.000   

      

Target Species Richness - 2020      

Site x Treatment 435.5 0.0 0.936   

Site + Treatment 440.8 5.4 0.064   

Treatment 460.7 25.2 0.000   

Site 511.6 76.1 0.000   

Intercept 531.5 96.1 0.000   

      

Total Abundance - 2019      

Site x Treatment 1038.5 0 0.994   

Site + Treatment 1048.8 10.2 0.006   

Site 1138.7 100.1 0.000   

Treatment 1155.4 116.9 0.000   

Intercept 1223.9 185.3 0.000   

      

Total Abundance - 2020      

Site x Treatment 1257.5 0.0 1.000   

Site + Treatment 1283.5 26.0 0.000   

Site 1334.4 76.9 0.000   

Treatment 1418.0 160.6 0.000   

Intercept 1429.5 172.0 0.000   

      

Total Species Richness - 2019      

Site x Treatment 615.1 0.0 1.000   

Site + Treatment 640.1 25.0 0.000   

Treatment 684.2 69.2 0.000   

Site 803.7 188.6 0.000   

Intercept 848.0 232.9 0.000   
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Total Species Richness - 2020      

Site x Treatment 643.5 0.0 1.000   

Site + Treatment 666.4 22.9 0.000   

Site 710.8 67.3 0.000   

Treatment 814.5 171.0 0.000   

Intercept 859.0 215.5 0.000   

      

Survival: All plants      

Site x Treatment + (Cluster) 2139.0 0 0.944 0.35 0.59 

Treatment + (Cluster) 2145.4 6.3 0.040   

Site + Treatment + (Cluster) 2147.2 8.2 0.016   

Intercept + (Cluster) 2377.6 238.6 0.000   

Site + (Cluster) 2379.3 240.3 0.000   

      
Survival: Comparable Species 

(Note: Only models weighted 

above 0 included)      

Site x Species x Treatment 820.3 0 0.866   
Site x Treatment + Species x 

Treatment 824.8 4.5 0.091   

Site x Species + Site x Treatment + 

Species x Treatment 826.8 6.5 0.034   

Site x Treatment + Species 830.1 9.8 0.006   

Site x Species + Site x Treatment 831.2 10.9 0.004   

      

Survival: Potted Seedling Species      

Site x Species 980.3 0 1.000   

Site + Species 1064.4 84.1 0.000   

Species 1073.4 93.1 0.000   

Site 1119.8 139.5 0.000   

Intercept 1128.5 148.2 0.000   

      
Survival: Field Transplant 

Species      

Site x Species 878.1 0 1.000   

Site + Species 994.7 116.6 0.000   

Species 995.6 117.5 0.000   

Intercept 1054.3 176.2 0.000   

Site 1054.4 176.3 0.000   
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RGR: All plants      

Site + (Cluster) 3712.4 0 0.595 0.10 0.32 

Site + Treatment + (Cluster) 3714.4 2.0 0.217 0.12 0.34 

Site x Treatment + (Cluster) 3714.7 2.3 0.188   

Intercept + (Cluster) 3763.0 50.6 0.000   

Treatment + (Cluster) 3765.0 52.6 0.000   

      
RGR: Comparable Species 

(Note: Only models weighted 

above 0 included)      
Site x Species x Treatment + 

(Cluster) 1856.4 0 0.875 0.29 0.53 

Site x Species + Species x 

Treatment + (Cluster) 1861.3 4.8 0.078   

Site x Species + Site x Treatment + 

Species x Treatment + (Cluster) 1862.2 5.8 0.048   

      

RGR: Species      

Site x Species + (Cluster) 3550.4 0 1.000 0.12 0.35 

Site + Species + (Cluster) 3629.8 79.3 0.000   

Species + (Cluster) 3684.4 134.0 0.000   

Site + (Cluster) 3712.4 162.0 0.000   

Intercept + (Cluster) 3763.0 212.6 0.000   

      

Final Health: All plants      

Site x Treatment + Initial Health 2884.8 0 0.905   

Site + Treatment + Initial Health 2889.3 4.5 0.094   

Site + Initial Health 2899.8 15.0 0.000   

Site x Treatment 2904.4 19.7 0.000   

Site + Treatment 2906.4 21.7 0.000   

Site 2907.4 22.7 0.000   

Treatment + Initial Health 2965.8 81.1 0.000   

Initial Health 2973.5 88.8 0.000   

Intercept 2987.2 102.4 0.000   

Treatment 2988.3 103.5 0.000   

      
Final Health: Comparable 

Species (Note: only models 

weighted above 0 included)      
Site x Species + Treatment + Initial 

Health 1285.8 0 0.439   
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Site x Species + Site x Treatment + 

Initial Health 1287.2 1.4 0.214   

Site x Species + Species x 

Treatment + Initial Health 1287.8 2.0 0.159   
Site x Species x Treatment + Initial 

Health 1288.6 2.8 0.109   
Site x Species + Site x Treatment + 

Species x Treatment + Initial 

Health 1289.2 3.4 0.079   

      
Final Health: Potted Seedling 

Species      

Site x Species + Initial Health 1809.4 0 0.862   

Site x Species 1813.0 3.7 0.138   

Site + Species + Initial Health 1975.2 165.8 0.000   

Site + Species 1981.3 172.0 0.000   

Species + Initial Health 2001.8 192.5 0.000   

Species 2012.9 203.5 0.000   

Site + Initial Health 2021.7 212.3 0.000   

Site 2030.2 220.8 0.000   

Initial Health 2056.8 247.4 0.000   

Intercept 2070.9 261.6 0.000   

      
Final Health: Field Transplant 

Species      

Site + Species + Initial Health 780.0 0 0.872   

Site x Species + Initial Health 783.8 3.8 0.128   

Site x Species 797.0 17.0 0.000   

Site + Species 800.5 20.5 0.000   

Site + Initial Health 817.4 37.4 0.000   

Site 829.7 49.7 0.000   

Species + Initial Health 839.3 59.4 0.000   

Species 853.9 74.0 0.000   

Initial Health 868.3 88.3 0.000   

Intercept 870.3 90.4 0.000   

      

Over-Winter Survival: All Plants      

Site + (Cluster) 1114.5 0.0 0.652 0.36 0.60 

Site + Treatment + (Cluster) 1116.4 1.9 0.254   

Site x Treatment + (Cluster) 1118.4 3.9 0.094   
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Intercept + (Cluster) 1144.4 29.9 0.000   

Treatment + (Cluster) 1146.2 31.7 0.000   

      

Over-Winter Survival: Species      

Site x Species 1057.6 0.0 1.000   

Site + Species 1131.7 74.0 0.000   

Site 1141.1 83.5 0.000   

Intercept 1288.7 231.0 0.000   

Species 1295.8 238.1 0.000   

      

Over-Winter Survival: 

Comparable Species      

Site + Species x Treatment 422.8 0.0 0.497   
Site x Species + Species x 

Treatment 424.6 1.8 0.200   
Site x Treatment + Species x 

Treatment 424.8 2.0 0.179   

Site x Treatment + Species x 

Treatment + Site x Species 426.7 3.9 0.072   

Site x Treatment x Species 427.3 4.5 0.053     
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Table A 4. Mean and standard deviation for each measured abiotic variable (n=30). 
 

Nitrogen (%) pH Organic Matter (%) P2O5 (kg/ha) K2O (kg/ha) 

Site Mean SD Mean SD Mean SD Mean SD Mean SD 

Belcher 0.13 0.02 7.19 0.57 2.18 0.21 167.00 33.45 972.67 138.94 

Converse 0.18 0.07 6.65 1.09 3.17 1.12 128.80 33.37 1,236.73 553.17 

            
Calcium (kg/ha) Magnesium (kg/ha) Sodium (kg/ha) Sulfur (kg/ha) Aluminum (ppm) 

Site Mean SD Mean SD Mean SD Mean SD Mean SD 

Belcher 3,916.60 1,906.10 1,804.93 326.57 3,716.60 1,362.04 647.73 362.84 522.87 77.49 

Converse 1,733.00 1,010.31 2,152.80 932.78 11,261.47 6,349.94 987.13 592.89 528.80 204.84 

            
Boron (ppm) Copper (ppm) Iron (ppm) Manganese (ppm) Zinc (ppm) 

Site Mean SD Mean SD Mean SD Mean SD Mean SD 

Belcher 4.41 1.55 1.68 0.64 537.87 75.17 190.13 93.00 2.47 0.26 

Converse 6.12 3.03 0.83 0.54 642.33 345.48 131.20 116.56 2.58 0.69 

           

 

Elevation (m) Hydroperiod (min) Hydroperiod (%) Inundation 

Frequency (%) 

Mean Inundation 

time (min) 

Site Mean SD Mean SD Mean SD Mean SD Mean SD 

Belcher 6.57 0.21 1,719.61 1,224.70 1.13 0.81 14.13 7.48 56.25 10.95 

Converse 6.03 0.33 888.94 703.28 1.69 1.34 22.12 14.77 46.33 15.74 
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Figure A 1. Results from GLM on target species abundance (number of hits from 

perennial halophyte species) per plot in August 2019 among treatments and site (BEL = 

Belcher, CON = Converse) with raw data overlaid from 15 replicates. Data are shown as 

natural logarithms. Points are predicted least squares means (predicted estimate of 

response in a group), blue boxes are 95% confidence intervals, and red arrows are 

Tukey's p-values. Overlapping red arrows indicate statistically unclear differences 

among groups at the α=0.05 level. Wrack was removed from the 2019 model as there 

was no germination in these plots. 
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Figure A 2. Results from GLM on target species abundance per plot in August 2020 

among treatments and site (BEL = Belcher, CON = Converse) with raw data overlaid 

from 15 replicates. Data are shown as natural logarithms. Points are predicted least 

squares means (predicted estimate of response in a group), blue boxes are 95% 

confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping red 

arrows indicate statistically unclear differences among groups at the α=0.05 level.  
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Figure A 3. Results from GLM on target species richness (number of perennial halophyte 

species) per plot in August 2019 among treatments and site (BEL = Belcher, CON = 

Converse) with raw data overlaid from 15 replicates. Data are shown as natural 

logarithms. Points are predicted least squares means (predicted estimate of response in a 

group), blue boxes are 95% confidence intervals, and red arrows are Tukey's adjusted p-

values. Overlapping red arrows indicate statistically unclear differences among groups 

at the α=0.05 level. 
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Figure A 4. Results from GLM on target species richness per plot in August 2020 among 

treatments and site (BEL = Belcher, CON = Converse) with raw data overlaid from 15 

replicates. Data are shown as natural logarithms. Points are predicted least squares 

means (predicted estimate of response in a group), blue boxes are 95% confidence 

intervals, and red arrows are Tukey's adjusted p-values. Overlapping red arrows indicate 

statistically unclear differences among groups at the α=0.05 level. 
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Figure A 5. Results from GLM on total abundance (number of hits from all species) per 

plot in August 2019 among treatments and site (BEL = Belcher, CON = Converse) with 

raw data overlaid from 15 replicates. Data are shown as natural logarithms. Points are 

predicted least squares means (predicted estimate of response in a group), blue boxes are 

95% confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping 

red arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 6. Results from GLM on total abundance per plot in August 2020 among 

treatments and site (BEL = Belcher, CON = Converse) with raw data overlaid from 15 

replicates. Data are shown as natural logarithms. Points are predicted least squares 

means (predicted estimate of response in a group), blue boxes are 95% confidence 

intervals, and red arrows are Tukey's adjusted p-values. Overlapping red arrows indicate 

statistically unclear differences among groups at the α=0.05 level. 
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Figure A 7. Results from GLM on total species richness (total number of all species) per 

plot in August 2019 among treatments and site (BEL = Belcher, CON = Converse) with 

raw data overlaid from 15 replicates. Data are shown as natural logarithms. Points are 

predicted least squares means (predicted estimate of response in a group), blue boxes are 

95% confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping 

red arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 8. Results from GLM on total species richness per plot in August 2020 among 

treatments and site (BEL = Belcher, CON = Converse) with raw data overlaid from 15 

replicates. Data are shown as natural logarithms. Points are predicted least squares 

means (predicted estimate of response in a group), blue boxes are 95% confidence 

intervals, and red arrows are Tukey's adjusted p-values. Overlapping red arrows indicate 

statistically unclear differences among groups at the α=0.05 level.  
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Figure A 9. Results of logistic regression on survival to August 2019 among treatments 

and sites (BEL = Belcher, CON = Converse). Data are pooled over species. Points are 

predicted least squares means (predicted estimate of response in a group), blue boxes are 

95% confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping 

red arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 10. Results of logistic regression on survival to August 2019 of species present 

in both treatments at both sites (BEL = Belcher, CON = Converse). Points are predicted 

least squares means (predicted estimate of response in a group), blue boxes are 95% 

confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping red 

arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 11. Results of logistic regression on survival to August 2019 of species in potted 

seedlings among sites (BEL = Belcher, CON = Converse). Points are predicted least 

squares means (predicted estimate of response in a group), blue boxes are 95% 

confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping red 

arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 12. Results of logistic regression on survival to August 2019 of species in field 

transplants among sites (BEL = Belcher, CON = Converse). Points are predicted least 

squares means (predicted estimate of response in a group), blue boxes are 95% 

confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping red 

arrows indicate statistically unclear differences among groups at the α=0.05 level. P. 

maritima was removed as there was only data at one site for this species. 
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Figure A 13. Results of regression on relative growth rate (RGR – a measure of growth 

per unit of size over a period of time) between sites (BEL = Belcher, CON = Converse) 

with raw data from individual plants overlaid. RGR is presented as ln(cm2/cm2)·3 months-

1. Data are pooled over species and treatments. Points are predicted least squares means 

(predicted estimate of response in a group), blue boxes are 95% confidence intervals, 

and red arrows are Tukey's adjusted p-values. Overlapping red arrows indicate 

statistically unclear differences among groups at the α=0.05 level. 
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Figure A 14. Results of regression on relative growth rate (RGR– a measure of growth 

per unit of size over a period of time) among species present in both treatments and sites 

(BEL = Belcher, CON = Converse) with raw data for individual plants overlaid. RGR is 

presented as ln(cm2/cm2)·3 months-1. Points are predicted least squares means (predicted 

estimate of response in a group), blue boxes are 95% confidence intervals, and red 

arrows are Tukey's adjusted p-values. Overlapping red arrows indicate statistically 

unclear differences among groups at the α=0.05 level. 
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Figure A 15. Results of regression on relative growth rate (RGR – a measure of growth 

per unit of size over a period of time) among species and sites (BEL = Belcher, CON = 

Converse) with raw data for individual plants overlaid. Data are pooled over treatments. 

RGR is presented as ln(cm2/cm2)·3 months-1. Points are predicted least squares means 

(predicted estimate of response in a group), blue boxes are 95% confidence intervals, 

and red arrows are Tukey's adjusted p-values. Overlapping red arrows indicate 

statistically unclear differences among groups at the α=0.05 level. 
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Figure A 16. Results of linear regression on health score in August 2019 (final health) 

data of potted seedlings and field transplants at both sites (BEL = Belcher, CON = 

Converse). Data are pooled over species. Raw data are overlaid (triangles) as the 

frequency of occurrences of a health score for an individual plant in a group. Health 

scores were assessed visually between 1 (worst health) and 4 (best health). Points are 

predicted least squares means (predicted estimate of response in a group), blue boxes are 

95% confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping 

red arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 17. Results of linear regression on health score in August 2019 (final health) 

data of species found in both treatments at both sites (BEL = Belcher, CON = Converse). 

Raw data are overlaid (triangles) as the frequency of occurrences of a health score for 

an individual plant in a group. Health scores were assessed visually between 1 (worst 

health) and 4 (best health). Points are predicted least squares means (predicted estimate 

of response in a group), blue boxes are 95% confidence intervals, and red arrows are 

Tukey's adjusted p-values. Overlapping red arrows indicate statistically unclear 

differences among groups at the α=0.05 level. 
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Figure A 18. Results of linear regression on health score in August 2019 (final health) 

data of species in potted seedling treatment among sites (BEL = Belcher, CON = 

Converse). Raw data are overlaid (triangles) as the frequency of occurrences of a health 

score for an individual plant in a group. Health scores were assessed visually between 1 

(worst health) and 4 (best health). Points are predicted least squares means (predicted 

estimate of response in a group), blue boxes are 95% confidence intervals, and red 

arrows are Tukey's adjusted p-values. Overlapping red arrows indicate statistically 

unclear differences among groups at the α=0.05 level. 
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Figure A 19. Results of linear regression on health score in August 2019 (final health) 

data of species in field transplant treatment among sites (BEL = Belcher, CON = 

Converse). Raw data are overlaid (triangles) as the frequency of occurrences of a health 

score for an individual plant in a group. Health scores were assessed visually between 1 

(worst health) and 4 (best health). Points are predicted least squares means (predicted 

estimate of response in a group), blue boxes are 95% confidence intervals, and red 

arrows are Tukey's adjusted p-values. Overlapping red arrows indicate statistically 

unclear differences among groups at the α=0.05 level. 

 



131 

 

 

Figure A 20. Results of logistic regression on over-winter survival to July 2020 of species 

in both treatments among sites (BEL = Belcher, CON = Converse). Data are pooled over 

species and treatments. Points are predicted least squares means (predicted estimate of 

response in a group), blue boxes are 95% confidence intervals, and red arrows are 

Tukey's adjusted p-values. Overlapping red arrows indicate statistically unclear 

differences among groups at the α=0.05 level. 
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Figure A 21. Results of logistic regression on over-winter survival to July 2020 of species 

found in both treatments at both sites (BEL = Belcher, CON = Converse). Points are 

predicted least squares means (predicted estimate of response in a group), blue boxes are 

95% confidence intervals, and red arrows are Tukey's adjusted p-values. Overlapping 

red arrows indicate statistically unclear differences among groups at the α=0.05 level. 
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Figure A 22. Results of logistic regression on over-winter survival to July 2020 of all 

species at each site (BEL = Belcher, CON = Converse). Data are pooled over treatments. 

Points are predicted least squares means (predicted estimate of response in a group), 

blue boxes are 95% confidence intervals, and red arrows are Tukey's adjusted p-values. 

Overlapping red arrows indicate statistically unclear differences among groups at the 

α=0.05 level. 

 


