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Abstract

Enhancing Satellite Trail Detection in Night Sky Imagery with Automatic Salience

Thresholding

By Nikolaus Kollo

This study proposes a novel automatic thresholding method called Automatic

Salience Thresholding (AST) for creating binary masks for detecting satellite streaks

in night sky imagery. The approach utilizes a combination of Gaussian filtering, a

salience-based thresholding technique, shape-based morphological filtering and line

detection using Probabilistic Hough Transformations to identify the satellite trail in

the image. We evaluated our method on diverse datasets of night sky images

containing satellite trails in varying lighting conditions. The results show that AST

outperforms the compared methods when tested with several performance metrics.

The proposed AST method was also used to generate annotated binary masks for

Hubble Space Telescope (HST) image data with promising results.

September 1, 2023.
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Chapter 1

Introduction

Satellite trail detection is an important task in the fields of astronomy, satellite track-

ing, and remote sensing, facilitating the identification and characterization of satellites

orbiting our planet. Binary threshold masks are an intermediate step in the detection

process and are essential for successful detection. However, this process poses numer-

ous challenges, including varying lighting conditions, noise, and uneven backgrounds,

which can adversely affect the performance of existing thresholding techniques. This

thesis presents a comprehensive study on automatic thresholding for satellite trail de-

tection, focusing on developing a novel algorithm called Automatic Salience Thresh-

olding (AST). This research aims to address the limitations of current methods and

provide a robust solution that results in the accurate and efficient detection of satellite

trails in diverse image scenarios. This chapter motivates the detection task, states the

key contributions of the study, and outlines the remaining chapters in the thesis.

1.1 Lights in the Sky

The explosion of growth in the commercial space sector has caused the night sky to

transform as more satellites accumulate in Earth’s orbit. The rapid increase coincides

with progress in mankind’s ability to transact and communicate globally instanta-

neously. This progress, however, does not come without a price, and its effects are
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1.1. Lights in the Sky

being felt by those who study distant stars to understand our universe. The clusters

of artificial satellites that circle our planet work in communication networks called

mega-constellations [1].

Satellites are strategically placed in Low Earth Orbit (LEO) owing to their short

orbital periods and low transmission latency, enabling efficient data transmission and

response times. However, the close proximity of LEO satellites has an unintended

consequence during twilight hours when the sun’s rays reflect off the satellite’s body

and solar arrays. This phenomenon causes the satellites to become as visible as the

stars in the sky. In long-exposure imaging, these fast-moving faint objects create

extended trails that mar the images and lead to the loss of valuable observational

data in affected regions. Attempts have been made to reduce the impact of Starlink

satellite trails by installing sun visors and using lower albedo construction materials,

but neither approach has successfully eliminated the problem [2].

Satellites are not a new issue for those who perform night sky imaging, and contami-

nated exposures are usually left out of the final image stack. Manual image masking

for individual exposures can be labour-intensive at scale, and automatic interventions

are usually preferred. The historic growth of satellites/active payloads (see Figure 1.1

[3]) suggests that the preference for automation will likely continue. It’s not only

the increase in the number of satellites that causes concern but also that larger and,

therefore, more visible satellites are being deployed in LEO. Figure 1.2 [3] shows a

sharp increase in 2017 that coincides with the commercialization of the space launch

industry. This will mean that more exposures will be excluded from the final image

stack, resulting in an overall loss of observational efficiency.

While wide-field and long medium-field images would only notice a small increase of

activity during twilight, ultra-wide-field imaging will likely suffer [1]. A recent study

exploring the impact of satellite trails on the Zwicky Transient Facility (ZTF) found

that the number of affected images increased from 0.5% to 18% between late 2019

and 2021 [5]. The negative effects are not limited to only ground-based telescopes;

the Hubble Space Telescope (HST) has also been impacted. A study that quantified

the fraction of HST exposures containing at least one satellite trail over twenty years

2



1.1. Lights in the Sky

Figure 1.1: The rapidly growing number of active satellites in orbit over the last 60 years.
Reproduced with permission from Springer Nature [4].

found that the occurrence has more than doubled from 2% to 5% [6].

The impact on Space-borne telescopes is not only limited to their observational effi-

ciency. Satellites acquire their positions and orientations without prior knowledge of

position by solving the “lost in space” problem. The problem is split into two parts:

acquisition and tracking. During acquisition, the satellite utilizes the stars to deter-

mine its orientation by identifying star patterns and inferring attitude information.

After identifying a star pattern, the star tracker switches to a recursive tracking mode

that maintains a frame of reference based on the visible stars in the field of view. Star

identification algorithms use pattern matching or angular distance calculations to de-

termine the stars in the field of view. Both algorithms generally become less accurate

3



1.1. Lights in the Sky

Figure 1.2: Objects in LEO classified by size showing the explosive growth of both large and
small satellites [3].

when the image contains false or missing stars [7].

Ultra-wide-field ground-based imaging is the most vulnerable to satellite trail con-

tamination. Modelling of the impact of the 12,000 proposed Starlink satellites to the

Vera C. Rubin Observatory in Chile found that 30% to 40% of the images at twi-

light would contain at least one satellite trail [2]. A similar study confirmed these

results and added 17 proposed mega-constellations totalling 26 thousand modelled

satellites [1]. The study found that the larger Starlink satellites that occupied LEO’s

lower region were the greatest contributing factor for satellite trails in ultra-wide-field

imaging.

SpaceX can deploy 60 Starlink satellites in a single launch and will conduct 32 launches

in 2022. A major milestone was achieved in May 2023, when the four thousandth Star-

link satellite was launched into orbit. At the time of writing, Starlink has requested

regulatory approval from the Federal Communications Commission (FCC) to launch

nearly thirty thousand satellites for the Starlink mega-constellation [5].

Smaller satellites like the ultra-compact low-cost CubeSats have also contributed to

the number of satellites orbiting in LEO. Figure 1.1 shows a growing number of rocket

stages, dead payloads, debris, and inert parts that increase the risk of collision. These

defunct objects renew early fears of the formation of impassable debris belts created

4



1.2. Space Domain Surveillence

by chain reaction collisions of artificial satellites orbiting the Earth [8]. The growing

number of satellites and the catastrophic scenarios like the chain reactions of the

Kessler syndrome provide a clear motivation for satellite trail detection for future

skies.

(a) Original (b) Otsu (c) Canny

(d) Original (e) Triangle (f) Moments

Figure 1.3: A comparison of automatic threshold mask generation shows data loss during binary
thresholding. Figures (a) and (d) are ground-based images from the NASA Streak Watcher
dataset [9]. Figures (b) and (c) show examples of over-thresholding and under-thresholding,
respectively. The uneven background in Figure (d) results in over-thresholding in Figures (e)
and (f).

1.2 Space Domain Surveillence

Satellites do not report their positions in real-time to a central organization in a

standardized and universal manner. Satellites’ positions are typically tracked and

monitored by ground-based tracking systems, such as the U.S. Space Surveillance

Network (SSN), which utilize radar, optical telescopes, and other tracking technologies

to determine their positions, trajectories, and orbits, including satellites, space debris,

and other man-made objects [10]. The project aims to obtain the most up-to-date

information on all the objects orbiting Earth to achieve space situational awareness

(SSA). This ground-based sky surveillance is performed to avoid collisions and monitor

5



1.2. Space Domain Surveillence

suspicious activity. With the rapid growth of orbital objects to track, having the most

up-to-date information about space activity is becoming more essential daily.

Much of the difficulty of detecting satellite trails is associated with the low signal-to-

noise ratio common in night sky imaging. The image exposure responsible for creating

the trail also results in additional noise that can cause false or missed detections.

The amount of generated noise can vary from one exposure to another depending

on environmental factors such as temperature and light conditions. Some of these

challenges can be overcome with a great deal of pre-processing that comes at the

expense of speed.

It is often necessary to binarize the input to reduce the computational complexity

before detection. Using a fixed intensity value for the binary threshold would not

tolerate much input variability. Automatic global binary thresholding algorithms use

calculated metrics to determine a single threshold value for the entire image. An

advantage of automatic global thresholding methods is that they are computationally

efficient and do not require kernel tuning. A disadvantage of automatic global thresh-

olding is that noise and uneven backgrounds can influence the calculated metrics, as

seen in Figures 1.3(b,c,e,f). In these scenarios, the satellite trail is destroyed before

the detection stage in the pipeline.

Over the years, satellites were primarily viewed as contaminants, and their detection

only gained significance with the commercialization of space launches. Consequently,

there has been a scarcity of publicly available satellite trail data suitable for training

machine-learning models. As a solution, researchers turned to synthetic data gener-

ation methods to augment their training datasets. While recent times have seen a

rise in available data, a considerable challenge remains in the form of unannotated

datasets, necessitating a substantial effort to complete the pixel-level annotation pro-

cess effectively.

6



1.3. Contributions

1.3 Contributions

In this study, we present several significant contributions to the field of satellite trail

detection and image processing:

1. We propose a novel automatic global thresholding algorithm designed specifi-

cally for efficiently binarizing night sky images with sparse bi-modal histograms.

By mitigating the influence of image noise and uneven backgrounds, our method

enhances the accuracy and robustness of satellite trail detection.

2. A novel detection pipeline is introduced, capable of detecting satellite trails in

RGB images without relying on prior scene information. The pipeline’s flexi-

bility allows for the processing of various image sizes and fields of view, while

a shape filter effectively removes stars and other irrelevant objects, enabling

detection in images with arbitrary sizes.

3. To ensure an accurate evaluation, we curate a ground truth dataset by collabo-

rating with citizen scientists through a dedicated website [11]. This annotated

dataset serves as a reliable reference for assessing the performance of our gen-

erated detection masks.

4. To facilitate further research and the development of machine-learning models

for satellite trail detection, we make our annotated dataset publicly available.

By providing access to real-world satellite trail images, we aim to accelerate

advancements in automatic detection methods.

These contributions collectively advance the state-of-the-art in satellite trail detection

and hold the potential to enhance space situational awareness, contributing to the

safety and sustainability of space operations.

1.4 Outline

The study is divided into five parts, and relevant sections, tables, and figures can be

directly referenced from the table of contents found on page iii. of this study. The first

7



1.4. Outline

chapter provides a description of the problem and the challenges that are frequently

encountered with satellite trail detection. The section also provides a clear motivation

as to the importance of this type of research to ground and space astronomy, as well

as SSA.

The second chapter provides the reader with information on the various methods

used for satellite trail detection in recent literature. This study relied on the pre-

sented works to help synthesize a pipeline structure that could achieve our detection

objectives.

The third chapter describes the operation of the proposed Automatic Salience Thresh-

olding algorithm and detection pipeline in detail. Information on the shape filter and

line detection stages will also be described in detail.

The fourth chapter will contain information about the datasets, the citizen science

website, and the experiments performed to evaluate our proposed methods.

The fifth chapter will provide a discussion and conclusion for the study and outline

possible future studies that this work could benefit.

8



Chapter 2

Literature Review

The surveilling of artificial satellites is a critical aspect of achieving a high level of

SSA and ensuring the safety and security of objects in space. The SSN is vital in

tracking, identifying, and cataloging all artificial objects in space, utilizing ground-

based optical and radar imaging systems. However, one of the significant challenges in

satellite surveillance lies in detecting faint satellite trails in astronomical images with

low signal-to-noise ratios. To address this challenge, researchers have utilized various

detection methods reviewed in this chapter. The methods that will be discussed

include streak filter/kernel detection, Radon transform detection, clustering detection,

Hough line detection, and machine learning detection. Each approach has its strengths

and limitations, making it imperative to conduct a review and evaluation for optimal

performance.

This chapter reviews the literature and existing research on satellite trail detection

methods, star removal techniques, and automatic thresholding algorithms. By analyz-

ing the strengths and limitations of each approach, the groundwork is laid for devel-

oping an efficient and accurate automatic global thresholding algorithm for satellite

trail detection. The insights gained from this review will pave the way for the integra-

tion of the proposed algorithm into a state-of-the-art detection pipeline, ultimately

contributing to the advancement of space surveillance and SSA efforts.

9



2.1. The Surveilling of Artificial Satellites

2.1 The Surveilling of Artificial Satellites

The SSN describes four categories of space object identification (SOI): wideband,

narrowband, photometric, and optical imaging. Wideband SOI provides a detailed

radar picture of the satellite. Narrow-band SOI provides a two-dimensional depiction

of the radar energy charted on a graph as amplitude versus time. Photometric SOI

is the analysis of the intensity, luminance, and illuminance. Finally, optical imaging

SOI refers to object identification obtained using optical telescopes. These space

sensors collate position information into a single domain to achieve space situational

awareness. High-power sensors like the Air Force Space Surveillance System (AFSSS),

also called the Fence, use three transmitters and six receivers to illuminate objects

that pass through the observation area and then detect them using a triangulation of

the reflected signal. The system covers 10 percent of the Earth’s circumference and

extends 15,000 miles into space [10]. The two disadvantages of a phased array radar

are its high cost and complex maintenance. Smaller, less powerful arrays have been

constructed using a single Yagi-Uda antenna to detect, track and catalogue objects

in LEO. The array has a limited range compared to the AFSSS, but these smaller

arrays can be built for a fraction of the cost [12].

The Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) System uti-

lizes a global network of optical detection systems integral to the SSN. To maintain

the stars’ positions within the field of view, the telescopes move in synchrony with

the motion of the stars across the sky. This enables the GEODSS cameras to cap-

ture electronic snapshots of the field of view swiftly. The images are subsequently

stacked and processed so that the movements of manmade space objects become vis-

ible streaks across the image plane. The streaks are measured for calculating object

positions, such as satellites positioned between 5,000 to 35,000 kilometres in orbit.

This information is transmitted from the sites to the Joint Space Operations Center,

facilitating the constant update of the orbiting objects list. The GEODSS system can

remarkably track objects as small as a basketball, even at distances exceeding 32,000

kilometres in space [10]. The following sections will review the literature related to

the stages of satellite trail detection identified in Figure 2.1. The remaining sections

10



2.1. The Surveilling of Artificial Satellites

Figure 2.1: This system diagram illustrates the design and implementation of an optical astro-
nomical satellite tracking system. The system comprises several key stages, including processing
(blue region), star removal (green region), trail detection (red region), satellite identification and
cataloguing (yellow region) [13].

in this chapter will discuss the stages of the satellite detection process, excluding

the satellite identification/cataloguing stage (yellow), as it is not a core process for

extracting the visual signal of a satellite trail. To highlight the input preconditions re-

quired by each stage, the processing stages will be discussed in reverse order, starting

from the detection stage (red).

11



2.2. Satellite Trail Detection Stage

2.2 Satellite Trail Detection Stage

This section covers the different types of satellite trail detection algorithms used in

recent literature. The information from this section was important for selecting the

most effective detection method for the proposed pipeline in Section 3.3. Given the

sharp increase of artificial objects in Earth’s orbit, detecting satellite trails in astro-

nomical images has become an important part of achieving a high level of SSA. The

image-processing pipeline shown in Figure 2.1 provides a high-level overview of how

this is accomplished in practice. In the blue area, the input undergoes a series of

processing steps to manipulate the image before detection. The green area contains

steps to remove stars and other artifacts to improve detection outcomes further. The

red region is where the spatial position of the satellite trail is detected and is critical

to all preceding and forthcoming steps. The yellow area contains steps for identifying,

cross-referencing, and cataloguing detected satellites. To best understand the algo-

rithms that support detection, it is fundamental that the different types of detection

are well understood.

2.2.1 Streak Filter/Kernel Detection

A Defence Research and Development Canada (DRDC) study [14] explains detecting

satellite trails using a double-gated filter. Every detected star is tested using the

filter seen in Figure 2.2, and objects that spill into the outer regions of the kernel

are flagged as possible satellite trails. The study concedes that very bright stars

can deceive the filter; the detection method remains sensitive to dim, faint streaks

without identifying the stars in the frame. While certain circumstances can cause

false positives, forgoing the star identification step eliminates a substantial amount of

pre-processing overhead.

An optical detection system was proposed by Samadzadegan et al.[13] that is con-

figured similarly to GEODSS. The system was designed and implemented to track,

detect and catalogue satellites using an image-processing pipeline that repackages

the double-gated filter to detect stars and reject trails. A functional diagram of the
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Figure 2.2: The double-gated filter used for detecting expected satellite streaks in astronomical
images. The filter is designed to identify potential satellite trails by analyzing the intensity levels
of detected stars in the image. Objects that extend beyond the outer regions of the filter are
flagged as possible streaks caused by satellites transiting through the field of view [14].

pipeline proposed in the study is shown in Figure 2.1. The diagram shows how the

stages of the detection process interact and represent computational overhead for

satellite trail detection. In the star identification stage, the visible stars are analyzed

and identified to establish a reference grid before removing them to improve satellite

trail detection. The detection step abandons the double-gated filter as a satellite trail

detection method and uses a Fast Fourier Transform and a Radon Transform to detect

the satellite’s orientation.

2.2.2 Radon Transform Detection

A 2018 study by Nir et al.[15] used a similar method to Samadzadegan et al.[13]

for detecting satellite trails in astronomical images. The authors used a filter with a

dynamic width that can adjust to the image point spread function (PSF) for improved

dim star detection. The Radon Transform [16] is again used for line detection, this

time on a variance map calculated in an earlier processing step. The method is a

mathematical technique to detect lines or line-like structures in an image. It represents

an image in a transformed domain called the Radon space (see Figure 2.3). The

transformation only provides a set of points in the Radon space, each corresponding

to a line passing through the detected areas in the input image. The Radon Transform
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Figure 2.3: The left figure illustrates the Radon Transform’s outcomes applied to the input image
for line detection. The detections are represented in the Radon space shown on the right, each
point corresponds to a detected line in the original image, characterized by its polar coordinates
(p, θ) [17].

cannot precisely identify the full extent of long and curved lines, as it represents them

using points in the Radon space. The study also experimented with a fast Radon

transform detection method that improves detection from O(N3) to O(N2 ∗P ) for an

N ×N image, where P is the number of projection angles. The algorithm was tested

using real and simulated images and is capable of short and long-trail detection with

a low false alarm rate given a 2048× 2048 input.

A 2022 Space Telescope Science Institute report presented a Mean Radon transform-

based detection method for identifying satellite trails in Advanced Camera for Surveys

(ACS) Wide Field Channel (WFC) data from the Hubble Space Telescope [17]. The

method increases the time complexity of the original Radon transform algorithm in

exchange for increased dim trail detection sensitivity and robustness against bright

sources. The study identified that the method was prone to false detections in ap-

proximately 10% of images. Images with densely populated star fields or when trails

appear in the image corners were the cases most prone to false detections [17].

2.2.3 Clustering Detection

A real-time satellite trail detection system was proposed in 2017 that utilizes a

lightweight image processing pipeline with a clustering trail detection stage [18].

Notably, the processing pipeline does not utilize star identification, favouring scale-
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invariant feature transform (SIFT) [19]. The study compares k means [20], particle

swarm optimization [21], genetic algorithm [22], and Gaussian mixture model to de-

termine the optimal algorithm for satellite trail detection.

The genetic algorithm detection method had the highest accuracy, and all detection

methods could detect the satellite trails in the test set. A genetic algorithm (GA)

comprises multiple stages; identifying unknown variables is initially determined based

on the specific data and problem. Subsequently, these variables are encoded and rep-

resented as chromosomes in a suitable format. A fitness function is then defined for

the chromosomes, considering the cost function. The initial population is randomly

selected, and the fitness value for each chromosome is computed. Subsequently, sub-

sequent steps are carried out sequentially, following the process outlined in Figure 2.4.

A particularly interesting feature of the pipeline described is that image segmenta-

tion occurs after removing the visible stars. The reason for this was likely to take

advantage of SIFT for star feature extraction rather than relying on a fixed detection

kernel.

2.2.4 Hough Line Detection

The Hough transform [23] stands as a fundamental technique within the realms of

computer vision and image processing, excelling at the detection of shapes like lines

and circles. In this transformative approach, the shapes present in the input im-

age are transposed into curves within a parameter space, as vividly illustrated in

Figure 2.5. This unique perspective enables the identification of shapes, even when

they’re fragmented, distorted, or concealed. The classic formulation of the Hough

transform involves discretizing the parameter space. Traditionally, its time complex-

ity is estimated as O(N2M), wherein N signifies the number of data points or image

pixels, and M denotes the count of bins or cells within the parameter space.

In contrast, the Probabilistic Hough Transform leverages a more strategic sampling

approach, which proves particularly advantageous. Due to the markedly smaller num-

ber of sampled points than the overall data points, this variant’s time complexity

becomes linear—amounting to O(N). This scalability grants the Probabilistic Hough
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Figure 2.4: A detection pipeline that uses image processing techniques to detect and remove
stars so that clustering algorithms can detect satellite trails in the denoised and filtered images
[18].

Transform a commendable performance boost, rendering it especially well-suited for

scenarios where efficiency is paramount. Furthermore, the Probabilistic Hough Trans-

form maintains the distinctive ability to decipher shapes amidst partial, distorted, or

obscured information, enhancing its utility across various image analysis tasks.

The SatDet satellite detection software suite was introduced in 2016 as a part of the

ACSTools package [25]. The detection software demonstrated good performance in

detecting satellite trails in HST ACS/WCF image data. The method was tested on

the Hubble Frontier Fields (HFF) data, and a manual review showed a low false-

positive rate. The SatDet software does not use a filter for detecting stars or any

star identification techniques. Instead, it uses the Canny edge detection algorithm
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Figure 2.5: The left figure displays the results of satellite trail detection using the Probabilistic
Hough transform. The algorithm localizes the satellite trails in the input image, represented as
red streaks against a dark background. In the right figure, the detections from the Probabilistic
Hough transform are visualized in Hough line space (r, θ) [24].

to segment the image and a size filter to remove regions smaller than 75 pixels. The

probabilistic Hough transform detector then processes the remaining objects.

A 2019 study by Privett et al.[26] investigated the practicality of readily deployable

equipment that can autonomously detect satellite trails in wide-angle optical sys-

tems. The authors use a static global thresholding algorithm with the classic Hough

transform for satellite trail detection. The method is computationally lightweight but

sensitive to noise and image artifacts. Danarianto et al.[27] also proposed a simi-

lar idea, showing that the method can be used on amateur and professional-grade

telescopes.

In 2022, a study by Rood et al.[24] sought to decrease the processing speed and in-

crease the detection performance by making the imaging device stationary rather than

tracking the sky. This reduces the over-exposure of the visible stars while also de-

tecting geosynchronous satellite orbits. Individual exposures are aligned and stacked

before detection. The completed coadd is then windsorized, and the standard devia-

tion and mean of the image are calculated to determine a threshold value of the mean

plus three times the standard deviation. The stars are removed by subtracting a mask

that accumulates point sources that maintain a fixed relative pattern. The identified
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limitations of the method include dim stars evading the star filter and satellite trails

being mistakenly filtered out [24].

2.2.5 Machine Learning Detection Methods

A Hough transform-based detection method was used by Rachith et al.[28] to train

a Lookup-based Convolutional Neural Network (LCNN) to detect satellite trails with

a subset of VLT Survey Telescope (VST) images. The pre-trained network weights

were originally used to detect lines in urban environments and utilize a trainable

Hough transform block. The network was trained using 244 mosaics corresponding to

7168 individual images, which allowed the network to learn the features for detecting

trails in VST images. No image augmentation was described for the training images

in the study, which may have contributed to the final performance outcomes. The

authors also created a classic Hough transform trail detection pipeline with similar

characteristics to the SatDet method, which was used to compare the performance

of the LCNN. The described detection results for the LCNN were reported as dis-

appointing, according to the qualitative analysis conducted by the authors. It was

found that while the model can detect satellite trails in many of the input images, it

also generates many false positives at the edges of the image. The explanation for the

excess false positive detections was related to the original algorithm being optimized

to detect many lines in a given image rather than just a few. The classical detection

pipeline, on the other hand, demonstrated comparable results to many of the afore-

mentioned studies. The limitations observed by the authors for the classical pipeline

were a failure to detect shorter trails due to a hardcoded binary threshold value and

size filter.

Paillassa et al.[29] proposed using machine learning to detect satellite trails and other

contaminations in astronomical images in a 2020 study. The study introduces two

convolutional neural network (CNN) classifiers designed for detecting contaminants

in astronomical images. The first classifier, MaxiMask, performs semantic segmen-

tation and generates bad pixel maps for different types of contaminants, including

cosmic rays, hot and bad pixels, persistence effects, satellite or plane trails, residual
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fringe patterns, nebulous features, saturated pixels, diffraction spikes, and tracking

errors. The second classifier, MaxiTrack, assesses the probability of tracking errors

affecting the entire images and mosaics. The researchers collected training and testing

data from real observations and augmented them with image simulations to develop

and evaluate the performance of both classifiers. The study demonstrates that Max-

iMask identifies satellite trails and cosmic rays well in ZTF and HST data. The

authors attribute the performance outcomes to the availability of several optical in-

struments in the private COSMIC DANCE archive [30]. The authors added synthetic

contaminations for the training data to overcome the enormous annotation burden.

The training set used also does not include images from space-borne telescopes, and

the study identifies that HST data pushes the detection limits of both classifiers.

2.3 Object Filtering for Improved Trail Detection

This section covers the different types of star and small object filtering used in recent

literature in the context of satellite trail detection. The information from this section

was important for selecting the most effective star removal method for the proposed

pipeline in Section 3.2. The green area in Figure 2.1 contains steps for removing stars

and other small objects from the image before the satellite trail detection stage. The

following section will discuss the methodologies used in the aforementioned studies for

star object detection/removal and discuss the strengths and weaknesses of each.

2.3.1 Filter-based Star Detection

Detecting stars in images using a kernel/filter is a common technique in astronomical

image processing. The process involves convolving the image with a specific kernel

or filter to enhance the star-like features and suppress the background noise. The

kernel typically has a shape that matches the expected profile of a star. Often, a star

is likely to have a Gaussian distribution due to the effects of PSF, which increases

the apparent size of the point source. By convolving the image with this kernel, the

intensity of the star-like features is enhanced while the background noise is smoothed

out. The convolved image is then thresholded to identify regions that exceed a certain
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intensity threshold, indicating the presence of stars. Additional post-processing steps

may be applied to refine the detected star positions and remove false detections.

This approach allows astronomers to automatically detect and locate stars in images,

enabling various astronomical analyses and measurements. The 2013 Iranian study

by Samadzadegan et al.[13] adopted this optimization to reduce the processing time

of their proposed detection pipeline. The 2009 study by Lavesque [14] also suggests

that brighter stars and stars with diffraction spikes could be misidentified and could

ultimately cause errors in the star removal and satellite detection stages.

2.3.2 Star Identification

Another method for removing stars from astronomical images is to utilize star iden-

tification algorithms commonly used in satellite navigation to solve the lost space

problem. The process extracts a subset of the brightest visible stars and uses the pat-

tern recognition pyramid algorithm due to its speed and robustness to false stars. A

star catalogue is used to identify stars by matching scale-invariant partial or complete

patterns and using an error threshold to calculate the level of uncertainty about the

prediction. The method is considered fast and efficient compared to other pattern

and angular methods but is generally used in conjunction with space-borne images

[31].

Eliminating stars and other diminutive entities from an image results in a reduction of

data points taken into account during the satellite trail detection stage. Nonetheless,

identifying visible stars is optional for satellite trail detection, as showcased by a

recent satellite trail detection pipeline [24] that showed that detecting and removing

stars is satisfactory for satellite trail detection. The feature extraction phase within

star identification pipelines exhibits numerous commonalities with filter-based and

size-based star detection techniques.

2.3.3 Satellite Detection without Star Identification

Recent satellite trail detection pipelines [24, 25, 27] have moved away from star iden-

tification as a method for removing stars from image backgrounds in favour of image
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processing techniques. Stars are point source objects but are often subject to the ef-

fects of PSF due to imperfections in the optics or atmospheric conditions. This results

in point source objects appearing larger and dimmer, producing a distinct grouping

of pixels that can be detected through various methods, such as image analysis algo-

rithms or by known properties of the imaging system [32].

Analyzing the size of detected objects in the image makes distinguishing stars from

other larger objects or artifacts possible. Once the stars are identified based on size,

they can be selectively removed or masked in the image to mitigate their impact on

subsequent detection tasks. The primary limitation of using size thresholds for remov-

ing stars from astronomical images is that bright stars and diffraction spikes may evade

detection. Other issues concerning this filtering technique relate to requiring prior

knowledge of specific input image sizes to set the size threshold appropriately.

2.4 Automatic Thresholding for Image

Binarization

This section covers the different automatic thresholding methods used in recent lit-

erature that can be used to reduce the complexity of the input. The blue area in

Figure 2.1 contains steps for removing the noise and the background from the image

before the star removal process. This step allows the star identification step to act

on binary information, which is ideal for determining the centroid of a star so that it

can be removed. The information from this section was important for selecting the

most effective preprocessing method for the proposed pipeline in Section 3.1.

Automatic thresholding methods can be divided into local and global thresholding,

where each has distinct advantages and disadvantages depending on the input. Local

thresholding involves selecting localized threshold values based on neighbourhoods of

pixels. The effectiveness of local thresholding methods for dim object detection can

vary depending on noise and object size. For example, suppose the objects of interest

are small and surrounded by much noise. In that case, local thresholding methods

may not be effective because the local neighbourhood around the object may also con-
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tain noise. This will result in a more restrictive threshold value for the region. These

methods are more computationally complex than global methods and require select-

ing an appropriate kernel size for the best performance. Global binary thresholding

involves selecting a single threshold value applied to the entire image. All pixels in

the image with an intensity value above the threshold are assigned to the foreground,

while the rest are assigned to the background. Global thresholding is a simple and

computationally efficient technique that works well when the foreground and back-

ground pixels have distinct intensity values (bimodal) and the lighting conditions are

relatively uniform across the image.

The selection criteria for determining the threshold value can be found in various

ways. The classical types of automatic global thresholding algorithms can be divided

into three classes: histogram-based, entropy-based and edge detection methods.

2.4.1 Histogram Thresholding

The histogram-based algorithms are a family of image thresholding methods that

automatically use the image’s intensity histogram to determine the threshold value.

One of the most commonly used histogram-based thresholding methods is Otsu’s

method [33], also known as the maximum variance thresholding method. This method

calculates the threshold value that maximizes the variance between the two classes of

pixels, which is equivalent to minimizing the intra-class variance.

Another common histogram-based thresholding method is the Triangle algorithm [34],

which assumes that the image’s histogram is unimodal and determines the threshold

value by constructing a triangle using the peak modal. A line segment is drawn from

the peak of the histogram to the last non-zero bin in the histogram. Because the

triangle method assumes a uni-modal histogram, it is designed to choose a threshold

value near the base of the primary histogram mound.

Some other histogram-based thresholding methods included in this study are the Mo-

ments method [35], the Mean method [36], and the Minimum Error thresholding

method [37], which determine the threshold value based on different statistical mea-
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sures of the image histogram. The advantage of histogram-based automatic thresh-

olding algorithms is that they are simple and computationally efficient.

2.4.2 Entropy Thresholding

Entropy-based thresholding methods are a category of image segmentation techniques

that leverage the concept of entropy to determine the most suitable threshold value for

binarizing an image. Entropy is a measure of the information content or uncertainty

in an image, and it quantifies the level of disorder or randomness in the pixel intensi-

ties. In entropy-based thresholding, the image’s histogram estimates the probability

distribution of pixel intensities. The entropy of this distribution is then computed as

a measure of the information content in the image.

The objective of entropy-based thresholding is to find a threshold value that max-

imizes the entropy of the foreground and background regions, thus creating a clear

separation between them. A high entropy value indicates a higher level of informa-

tion or diversity in the pixel intensities, generally corresponding to regions with mixed

foreground and background elements. Conversely, low entropy suggests a relatively

uniform distribution of pixel intensities, typically corresponding to either foreground

or background regions. Unlike histogram-based thresholding methods, which often

rely on specific statistical properties of the histogram (e.g., variance or bimodality),

entropy-based thresholding approaches do not make any assumptions about the dis-

tribution of pixel intensities.

One popular entropy-based thresholding method is the Max-Entropy thresholding al-

gorithm [38], also known as Kapur’s method. This method calculates the entropy of

the foreground and background pixel intensities, and the threshold value is chosen to

maximize the sum of the two entropies. Entropy-based thresholding methods have

the advantage of being able to handle images with uneven lighting, as they can ad-

just the threshold value to different illumination conditions. However, they can be

computationally expensive, especially for large images. They can also be sensitive to

the choice of the entropy measure, and different entropy measures may work better

for different types of images than others.
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2.4.3 Thresholding with Edge Detection

Edge detection is a technique to identify boundaries between objects in an image.

Edge detection methods can also be used for image thresholding by identifying the

edges of objects and then applying a threshold to the image to separate the foreground

and background. One common method for edge detection is the Canny edge detection

algorithm [39]. This works by computing the gradient magnitude of the image and

then applying non-maximum suppression to thin the edges to single-pixel widths.

The remaining edges are then thresholded to obtain a binary image. However, edge

detection may not be effective for images where the objects do not have well-defined

edges or boundaries. Edge detection-based thresholding methods can be sensitive to

noise, as the noise can cause false edges to be detected. Pre-processing techniques,

such as morphology filtering, may be necessary before performing edge detection.

The HST image processing suite ACSTools [40] uses a combination of pre-processing

techniques and Canny edge detection with Hough transformations [23] in the SatDet

[25] tool for detecting satellite trails.
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Chapter 3

The Automatic Salience

Thresholding Pipeline

In Chapter 2, the common functions of satellite trail detection pipelines were identi-

fied and how each stage contributes to the overall task. While successes have been

achieved by Paillassa et al.[29] using synthetic images to train the convolutional neural

networks MaxiTrack and MaxiMask, the literature showed that satellite trail image

detection research overwhelmingly favoured image processing techniques. Because of a

lack of heterogeneity in the available data, the most straightforward approach was de-

veloping a classic detection pipeline using image processing techniques to accomplish

the detection task. The studies reviewed revealed that trail detection unfolds in se-

quential stages, and the effectiveness of each subsequent stage critically hinges on the

outcomes of its preceding stages. This chapter explores utilizing the lessons learned

from the reviewed literature to construct a pipeline that can perform efficient auto-

mated detections on various optical systems. A consolidated detection pipeline will

be proposed, and each stage will be described in the order in which it executes.

The stages in the pipeline shown in Figure 2.1 have been grouped together into

coloured blocks that are further described in Section 2.2. The groupings provide

useful context for the combined efforts that the individual stages are working to

achieve. The first three stages are grouped together to represent their combined ef-
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fort toward noise suppression and background/foreground segmentation. This task is

divided into several steps in the optical system proposed by Samadzadegan et al.[13]

that include background and noise removal. The study uses a computational method

to remove instrument artifacts that could improve the overall image quality. This

technique utilizes an image acquired by a sensor with the same temperature and ex-

posure time but without a signal to generate a dark frame [14]. The dark frame is

then subtracted from the input to reduce image noise and improve signal fidelity.

When considered in an automated application, the computational method becomes

an appropriate methodology for image noise suppression.

Farzaneh et al.[18] eliminated the background estimation and removal steps entirely

and used a Gaussian filter [41] to reduce image noise before detection. In contrast,

Samadzadegan et al. use a statistical measure to identify and remove spike noise

by eliminating pixels with intensity values greater than three times the standard

deviation of a normal distribution [13]. The additional computation for calculating

the input mean and standard deviation is required to reduce the number of false star

detections in the star identification steps. A 2019 study [42] comparing star tracker

performance shows that only as few as thirty false stars result in 25% fewer successful

detections in state-of-the-art methods.

Danarianto et al.[27] use a median convolution kernel to reduce the impact of noise on

detection. The authors replaced the background estimation and removal steps with

a predefined global thresholding stage with a static threshold value. The pipeline

relied heavily on reconstructive techniques before the detection stage, increasing com-

putational overhead. To achieve a fast, flexible automatic detection pipeline that can

be used on arbitrary optical equipment, an automatic global thresholding algorithm

that is not influenced by noise and other interference should be used. The detection

speed and accuracy can be used as important evaluation metrics to achieve detection

outcomes in real time. To produce real-time performance, the entire detection process

must produce a result in less time than the imaging exposure time.
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(a) An image taken by the Hubble Space
Telescope containing a satellite trail lo-
cated in the upper right quadrant.

(b) The sparse bimodal image histogram for
Figure 3.1(a) and the resulting histogram af-
ter applying a Gaussian function.

Figure 3.1: The effect of a Gaussian function being applied to an image with a class imbalanced
sparse bimodal histogram.

3.1 Automatic Salience Thresholding

Automatic salience thresholding (AST) is a novel histogram-based algorithm opti-

mized for analyzing sparse class-imbalanced bimodal images, including those com-

monly encountered in the analysis of night sky imagery. An example of an image

with a bimodal histogram can be seen in Figure 3.1 Specifically, AST is designed to

identify a global threshold value that is not biased by class imbalance and is permis-

sive to dim foreground objects while still being resilient to noise. This is achieved

by interpolating between two histogram bins by locating two salient features in the

image histogram using pixel intensity probabilities. Like the Triangle method [34],

AST selects the threshold value relative to the peak intensity. Unlike the Triangle

method, AST does not assume an unimodal histogram, which makes it more flexible

and versatile when considering the balance between sensitivity and selectivity for the

subsequent detection task.

AST leverages a common feature found in many astronomical and night sky images.
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The sparse bimodal class-imbalanced image histograms refer to a specific type of

histogram distribution commonly encountered in outdoor nighttime images. In such

histograms, the pixel intensity values typically exhibit two distinct peaks, hence the

term ”bimodal.” These peaks represent two major groups of pixel intensities, often

corresponding to the foreground (object of interest) and background regions of the

image.

The term “sparse” indicates that these peaks contain significantly different pixel in-

tensities, leading to a large gap between the two modes. The class imbalance implies

that one class dominates the other regarding the number of pixels it contains. For

instance, in the case of satellite trail detection, most pixels may belong to the back-

ground (sky) class, while a smaller number of pixels represent the satellite trails and

stars (foreground).

Sparse bimodal class-imbalanced image histograms pose unique challenges in image

segmentation and thresholding algorithms. Traditional thresholding techniques that

assume balanced histograms may not perform optimally in these scenarios, as they

may be biased towards the dominant class and fail to identify the minority class

accurately. Consequently, there is a need for specialized and adaptive thresholding

methods that can effectively handle such imbalances and accurately separate the

foreground from the background.

The AST algorithm accepts a grayscale input and consists of five steps: pre-processing,

histogram generation, peak finding, foreground detection, and interpolation. In the

pre-processing step, a Gaussian blur is applied to the grayscale input image using

a 3x3 kernel to remove high-frequency noise. The distribution of pixel intensities

of the image histogram changes due to a narrowing of the background mode and

a spreading of the foreground mode that can be seen in Figure 3.1. A histogram

of normalized intensity values is then generated in the second step. The bin with

the peak intensity value is identified as the first salient feature in the third step.

The fourth step involves finding the foreground class, achieved by identifying the

histogram intensity bin containing a low pixel probability. If no appropriate point is

found, the last histogram bin is used as the second salient position. Finally, the fifth
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step calculates the threshold value by determining the bins between the two salient

features and interpolating a new position sensitive and robust to image noise.

3.1.1 Preprocessing and Normalization

Applying the Gaussian function [43] to the grayscale input image before histogram

generation is a common preprocessing step in image thresholding methods for re-

ducing image noise. In addition to noise suppression, the 3x3 Gaussian kernel will

cause the background mode to narrow and the foreground mode to spread, as seen

in Figure 3.1(b). As a result, some of the histogram bins that didn’t contain pixels

will now have a small number associated with them. The Gaussian function removes

small, high-frequency noise, resulting in a smoother, more continuous histogram. This

improves the accuracy of the threshold determination, particularly for dim object de-

tection and detecting satellite trails in night sky imagery where low contrast and high

noise levels can make accurate detection challenging. The method for calculating the

accuracy evaluation metric is explained in detail in Section 4.3.

A normalized histogram is used to represent the distribution of data in a way that

accounts for differences in the total number of data points between different data

sets. Normalizing the histogram allows the AST algorithm to utilize proportions

rather than explicit intensities to determine the threshold value.

3.1.2 Peak Determination and Foreground Segmentation

The histogram’s bin containing the largest proportion pixel value determines the

first salient point. In equation 3.1, the argmax function is used to determine the

maximum value in the normalized histogram, where hi represents the frequency (or

count) of pixels with intensity i in the image histogram. T is a normalization factor.

It represents the total number of pixels in the image. Dividing hi by T gives us the

proportion of a pixel having the intensity i in the image. Applying the argmax to

the largest i produces the peak bin value.
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Figure 3.2: The first stage of the AST algorithm is determining the salience region with the
maximum pixel probability value and a low probability pixel value as its endpoints.

peak = arg
255
max
i=0

hi

T
(3.1)

term = min

{
i | i > arg

255
max
i=0

hi

T
, hi > 0,

hi

T
< 0.001

}
(3.2)

The terminating bin is found by iteratively checking the remaining bins for a non-zero,

low-probability pixel value. The Gaussian function caused the foreground histogram

pixels to spread into the neighbouring bins, which still contain enough pixels to be

differentiable from the image noise in the salience region in Figure 3.2. Eighteen

images from the NASA Streak Watcher dataset [9] were used to test the change of

accuracy when the term value was varied. More information about the dataset can

be found in Section 4.1.1. A starting value of 0.003 was found by comparing the

proportion of pixels that moved to histogram bins that formally contained zero pixels

before applying a Gaussian blur using the test images. Increasing this value causes the

algorithm to become more restrictive and results in fewer detections while reducing it

has the opposite effect. Figure 3.3 demonstrates the term value of 0.001 maximizes

accuracy by comparing mean accuracy scores for different values of term. If no bin
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Figure 3.3: The detection accuracy scores from a basic detection pipeline were used to determine
the optimal term value for the AST algorithm.

meets this criterion, the bin value 255 is selected as the second salient feature. This

condition was included as a catch-all condition but was not triggered while testing

the test images, further supporting the choice of the selected term value. The term

value can be calculated using Equation 3.2 where the first value for i that is greater

than the peak, has a pixel count hi greater than 0 and has a normalized hi value less

than 0.001.

3.1.3 Threshold Interpolation

The interpolation step allows the algorithm to position the global threshold toward

the foreground within the salience region. Equation 3.3 shows the interpolation step,

where the final threshold value is determined using the bin positions of the identified

salient histogram features pk and term. The number of bins between the two features

is then interpolated by a value of 0.9 to select a threshold value from the sparse
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3.1. Automatic Salience Thresholding

Figure 3.4: The salience region (red) determined the salience bin (yellow), which was interpolated
(green) to obtain a foreground-biased global threshold value.

region. The value is rounded to the nearest integer and is represented by the right

side endpoint in Figure 3.4

The same eighteen images used to find the optimal term value were again used to

experiment to find the interpolation factor that will result in the best detection out-

comes. This was done using the Mean Square Error (MSE) rather than the Accuracy

metric as it provides a more sensitive dissimilarity measure. The method for comput-

ing the MSE evaluation metric is described in detail in Section 4.3. The interpolation

factor values between 0.75 and 1.0 were calculated on the test set, and the result that

produced the lowest MSE score was used to determine the final threshold value. This

value chosen successfully biases the threshold toward the foreground and reduces false

positives caused by image noise. The average MSE results for the group of images

were plotted while varying the interpolation value, and the results can be seen in

Figure 3.5.

The AST value is calculated using Equation 3.4, which is the sum of the peak and

interp values and is used to segment the image by pixel intensity. A binary image

thresholding that uses the calculated threshold value creates an AST binary mask

used in subsequent pipeline stages.

32



3.2. Morphology Filtering

Figure 3.5: The detection MSE scores from a basic detection pipeline were used to determine
the optimal interpolation value for the AST algorithm.

interp = ⌊0.9× [term− peak]⌉ (3.3)

AST = peak + interp (3.4)

3.2 Morphology Filtering

The morphology filtering stage is a critical component in the trail detection pipeline,

aimed at reducing spurious detections that could lead to false positives. Its primary

goal is to remove smaller pixel groups representing stars, noise, or other non-satellite

trail objects from the binary mask generated in the previous stage. In Chapter 2,

various methods for removing stars from the background were explored, including

size thresholds and star identification. However, the proposed approach adopts a

connectivity-based method using connected-component analysis (CCA) [44] with pixel
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3.2. Morphology Filtering

neighbourhood labelling to group objects in the binary image generated by AST. The

CCA examines each pixel in the image and labels the foreground pixels belonging to

the same connected region with the same label. Pixels with a value of 0 (background)

are ignored. As CCA processes each pixel, it identifies groups of connected foreground

pixels and assigns them the same label. This process continues until all foreground

pixels in the image have been labelled. The output of CCA is a labelled binary image,

where each connected component is assigned a unique label. These labels can then

be measured, and filtering logic can be applied based on a computed metric for each

region.

Table 3.1: Binary Mask Similarity Scores Compared to Image Ground Truth

Threshold Type Mean IoU Mean Accuracy Mean MSE

AST 0.226559 0.955596 1077.99

Table 3.1 contains the mean baseline detection scores of the AST pipeline using the

test images described in this chapter without any morphology filtering. The AST

masks were passed directly to a Hough line detector, forming a two-stage pipeline.

The performance metrics were calculated by comparing each pixel from the pipeline

output to the hand-annotated ground truth mask. The baseline scores show a high

mean accuracy score likely biased by the substantial class imbalance between the

foreground and background. To provide a more sensitive measure, the MSE and the

Intersection over Union (IoU) metric were used to form a baseline for the pipeline

performance. The IoU is a metric that measures the overlap between two regions,

often used to assess the similarity between a detected object and its corresponding

ground truth. The method for computing the IoU evaluation metric is detailed in

Section 4.3.

3.2.1 Neighbourhood Connectivity

The connectivity of pixels determines which neighbouring pixels are considered part of

the same component. Figure 3.6 shows the 4-connectivity or 8-connectivity schemes
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3.2. Morphology Filtering

Figure 3.6: When using a connected component analysis, each pixel is labelled based on the
pixels in its neighbourhood. The two region selection schemes that use a 4 and 8 Connected
Component Analysis are shown above.

that are typically used. In a 4-connectivity, two pixels are considered connected if

they share a common edge, while in an 8-connectivity, they are connected if they

share a common edge or a corner. To determine which connectivity type would

best suit the pipeline, a simple size filtering metric is used to test the effect that

changing the connectivity has on detection outcomes. Using the SatDet [25] size

filter settings as a starting point, a filter size of 75 pixels was selected as a baseline

value. Table 3.2 shows the results of varying the neighbourhood connectivity values

and applying a size filter to remove objects smaller than 75 pixels. By comparing

the results to Table 3.1 it can be seen that the accuracy score alone is not sensitive

enough to identify any performance differences between the pipeline configurations.

The IoU and MSE provide a more sensitive measure of how well the output detections

match the ground truth. This comparison shows that better detection outcomes are

achievable when using a CCA with an 8-connectivity scheme.

Table 3.2: Evaluation Metrics and Time for Different Connection Types

Connection Type Mean IoU Mean Accuracy Mean MSE Mean Filter Time

8-Connected 0.279715 0.959356 848.2581 0.680974 sec

4-Connected 0.22876 0.959222 879.8409 0.763812 sec

The 8-Connected method is sensitive to diagonal pixels, which is ideal for satellite trail

detection. This is reflected in the improvements in the mean IoU and MSE scores
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3.2. Morphology Filtering

Figure 3.7: A qualitative comparison of morphology masks with AST masks shows improved
size filtering using an 8-connected scheme. Left: The AST mask. Middle: 4-Connected CCA
detection mask. Right: 8-Connected CCA detection mask.

compared to the baseline. The mean processing time for the size filter was calculated,

and the 8-Connected CCA resulted in a quicker runtime than the 4-Connected variant.

The larger processing time was attributed to more regions being detected during the

4-Connected type, resulting in additional object area calculations compared to the

8-Connected method.

The binary threshold/morphology mask comparison in Figure 3.7 shows that using a

4-connectivity metric for region extraction can inadvertently reduce the length of the

detected trails in cases where the trails traverse in a diagonal orientation relative to

the frame. A combination of fragmenting the satellite trail and a size filter causes this

loss of fidelity, which occurs less when using the 8-connected labelling scheme. Based

on these results, the 8-connected scheme was incorporated into the morphology filter

of the proposed pipeline.

3.2.2 Size Filtering

Taking inspiration from Farzaneh et al.[18], the proposed pipeline also rejects star

identification for satellite trail detection in favour of direct detection. For the mor-

phology filter to be most effective, the regions that do not match the characteristics

of a satellite trail are not added to the morphology mask. This can be achieved by di-

rectly targeting the shape characteristics of satellite trails and rejecting non-trail-like

objects.

The ideal filtering strategy will be achieved by selecting the most suitable metric that
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preserves the full satellite trail in the morphology mask. The first approach would

first filter out regions by size, rejecting small objects while permitting larger regions

in the morphology mask. Choosing an appropriate size threshold for an input with an

unknown field of view, resolution or image size would result in a loss of sensitivity in

certain cases. Varying the minimum allowable area for each region shows that a value

of 83 pixels delivers the best results in Table 3.3. The value represents the maximum

and minimum values for the average IoU and MSE for the eighteen images in the test

group.

Table 3.3: Area Threshold Pipeline Detection Performance Results

Area Mean IoU Mean Accuracy Mean MSE Mean Filter Time

50 pixels 0.278645 0.958859 876.4641 0.719936

70 pixels 0.279001 0.959162 859.5817 0.694171

75 pixels 0.279715 0.959356 848.2581 0.691148

80 pixels 0.27971 0.959474 840.2291 0.625231

82 pixels 0.28182 0.959507 839.1506 0.686727

83 pixels 0.282397 0.959534 837.3539 0.689233

84 pixels 0.281662 0.959532 838.1433 0.691334

85 pixels 0.281338 0.959528 838.4116 0.690035

90 pixels 0.281245 0.959591 835.8018 0.684056

100 pixels 0.280817 0.959768 824.9602 0.680968

The perimeter region property is also a useful metric for filtering small objects from

the threshold masks. A comparison of average detection scores in Table 3.4 demon-

strates the best perimeter threshold value that was identified for the test group images

showed agreement with the value used in the SatDet [25] software and result in an

8% improvement over filtering by the area over the test group. The mean accuracy

and MSE scores both improved using a perimeter-based filtering method.

The analysis shows that a perimeter-based method can better remove stars and other

small objects than an area-based size filter on the test data. This metric is still

spatially linked to the input image size and must be optimized for the expected input
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size and field of view. For this reason, a shape-based method would likely produce

better detection outcomes. The object measurement must first be normalized or

described as a ratio to make the input size an arbitrary factor.

Table 3.4: Perimeter Threshold Pipeline Detection Performance Results

Perimeter (pixels) Mean IoU Mean Accuracy Mean MSE Mean Filter Time

65 0.290341 0.96057 766.4925 0.671831

70 0.290146 0.96063 762.1503 0.676214

75 0.292541 0.960728 756.8078 0.688515

80 0.290191 0.960758 757.8619 0.677749

82 0.291131 0.960786 756.3889 0.686727

83 0.290591 0.960788 755.3749 0.682464

84 0.290359 0.960776 756.5375 0.677319

85 0.291946 0.960783 755.9893 0.6819

86 0.291946 0.960783 755.9893 0.680468

87 0.29134 0.960779 756.6499 0.688297

90 0.290738 0.960843 751.6883 0.670056

95 0.290307 0.960868 750.7544 0.671594

3.2.3 Shape Filtering

The morphology filter employed in the proposed satellite trail detection pipeline takes

advantage of the eccentricity and extent properties derived from the CCA of the binary

image produced by the AST algorithm. Instead of relying on specific hard-coded size

thresholds, the filter calculates the eccentricity and/or extent of each labelled region

obtained from CCA, offering a relative measure of elongation. The eccentricity of a

region is computed by fitting an ellipse with the same second moments as the shape

to the region and then determining the distance ratio between the ellipse’s two foci to

the length of its major axis. This yields a value between 0 and 1, where an eccentricity

of 1 represents an infinitely elongated shape, while values closer to 0 indicate more

circular or compact shapes. Figure 3.8a shows how the eccentricity property provides
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(a) The shape is fitted with an ellipse and the major
and minor axis measured to produce a measure of
elongation.

(b) The ratio of the area of the con-
nected region and its bounding box
are used to produce a measure of
compactness called the extent.

Figure 3.8: A visualization of the extent and eccentricity shape metrics.

a measure of elongation useful for detecting satellite trails.

The extent property is calculated by dividing the region’s area by the area of its

bounding box. Figure 3.8b shows a visual example of how the extent property provides

a measure of compactness. The property calculates the ratio of how much of the

bounding box is occupied by the region. A higher extent value indicates that the

region occupies a larger portion of its bounding box, indicating a more compact and

filled shape, while a lower extent value suggests a more elongated or sparse shape.

This property is useful for filtering hot columns and pixels caused by cosmic rays,

which can often produce false negatives in other detectors [25].

By utilizing the eccentricity filter, regions with high eccentricity values (closer to 1) are

considered, indicating elongated and linear structures that align with the characteris-

tics of satellite trails. As a result, smaller detected areas, often representing stars and

noise, are accurately removed from further consideration during the detection phase.

Table 3.5 demonstrates the effectiveness of this approach. When focusing solely on
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elongated regions, the detection pipeline eliminates spurious detections, significantly

reducing the false positives caused by irrelevant compact objects. This shape-based

filtering ensures that the pipeline prioritizes regions with trail-like characteristics,

enhancing the accuracy and reliability of satellite trail detection while efficiently dis-

carding non-relevant regions. By avoiding rigid size thresholds and instead capitalizing

on eccentricity as a shape-based metric, the morphology filter provides a more robust

and adaptable solution, making it well-suited for satellite trail detection in diverse

and challenging image scenarios.

Table 3.5: Eccentricity Threshold Pipeline Detection Performance Results

Eccentricity Mean IoU Mean Accuracy Mean MSE Mean Filter Time

0.90 0.3161 0.962044 644.6783 1.314329

0.95 0.331936 0.962964 583.2133 1.248986

0.97 0.333166 0.963278 566.378 1.230459

0.98 0.340622 0.963547 547.8724 1.198448

0.99 0.323458 0.963602 552.2453 1.172987

The eccentricity property produced the lowest average MSE score and the highest IoU

scores when comparing the results in Tables 3.3, 3.4 and 3.5. Figure 3.9 shows that

many small objects populate the morphology masks. Although the Mean IoU and

MSE scores improved while using the eccentricity shape metric, the mean filter pro-

cessing time increased by nearly 100%. Ideally, the proposed pipeline should improve

detection outcomes without substantially increasing processing time, and perhaps the

extent property could produce better results.

Using the extent property to filter the connected regions produced performance on

par with the perimeter metric results in Table 3.4. The extent results in Table 3.6

show that the property produced a less accurate outcome on average but achieved

similar MSE scores to eccentricity. Figure 3.10 shows that while the extent property

achieved lower scores than the eccentricity property, the extent property removed

more small objects, which resulted in a faster processing time. The mean filter time

was not nearly as large as the mean filter time achieved by the eccentricity property.
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3.2. Morphology Filtering

Figure 3.9: Morphology filter masks using the eccentricity value of 0.98 as a shape threshold
value.

Figure 3.10: Morphology filter masks generated with the optimal extent value of 0.24.

This suggests that perhaps no single metric will effectively meet the performance

criteria being sought. Combining these two properties in a single morphology filter

was explored to reduce the processing time of the eccentricity. When combining the

eccentricity and extent metrics, the extent value needed to be increased to produce

productive results and resulted in improved mean IoU and MSE scores, which can be

seen in Table 3.7.

The speed boost realized when extent is paired with eccentricity is due to the eccen-

tricity calculation being performed less, as the extent metric overrides the conditional

check. This is accomplished by requiring that each detected region conforms to the
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Table 3.6: Extent Threshold Pipeline Detection Performance Results

Extent Mean IoU Mean Accuracy Mean MSE Mean Filter Time

0.15 0.2636 0.838141 608.6356 0.668582

0.2 0.302995 0.900778 587.0016 0.67842

0.22 0.304174 0.900789 583.144 0.679256

0.23 0.304027 0.900782 582.7165 0.677467

0.24 0.306824 0.900864 574.3378 0.679609

0.25 0.305918 0.900807 578.5485 0.681388

0.26 0.308085 0.900809 576.5182 0.675952

0.3 0.303638 0.900544 591.7463 0.692615

0.4 0.301882 0.900459 591.3907 0.698437

0.45 0.298201 0.900243 606.2672 0.723822

0.47 0.297657 0.962623 612.3187 0.734399

0.5 0.294702 0.962302 633.8768 0.796467

0.6 0.272593 0.959041 843.4391 0.844511

minimum extent and the eccentricity values using a logical AND operator. All regions

that are not compact and sufficiently elongated are then added to the morphology

mask. The inclusion of extent filtering reduces the false positive detections of hot

pixels and diffraction spikes in the final detection stage. The filter became much too

restrictive when the extent metric threshold was set below 0.67 as detection failed to

locate any satellite trails in one of the test images. This value produced the best mean

IoU, Accuracy and MSE scores on the test group of eighteen images in quantitative

and qualitative comparisons.

Figure 3.11 shows the morphology masks for the combined eccentricity/extent shape

filter. When comparing the qualitative results, it can be seen that the combination

of eccentricity and extent filtering improves the detection scores and reduces spurious

detections. It is not, however, required that the morphology filter remove all small

objects as the Probabilistic Hough transform stage can tolerate some image clutter.

Both the qualitative and quantitative results support the inclusion of a combined
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Figure 3.11: Morphology filter masks generated with the optimal eccentricity/extent value of
0.67.

shape filter in the morphology stage of the proposed pipeline.

Table 3.7: Varying Extents with Eccentricity Threshold Pipeline Detection Performance Results

Eccentricity Mean Extent Mean IoU Mean Accuracy Mean MSE Mean Time

0.98 0.24 0.306013 0.901066 566.1102 0.689602

0.98 0.5 0.315012 0.901154 546.9486 0.711089

0.98 0.6 0.317101 0.901176 541.1558 0.723023

0.98 0.65 0.315036 0.901165 542.087 0.724902

0.98 0.67 0.353648 0.963623 543.6464 0.727304

0.98 0.68 0.353648 0.963623 543.6464 0.733846

0.98 0.69 0.35341 0.963616 544.1315 0.727129

0.98 0.7 0.353416 0.963618 543.9904 0.732558

0.98 0.75 0.353405 0.963611 544.3667 0.742882

0.98 0.8 0.353368 0.963604 544.7579 0.73615
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3.3. Probabilistic Hough Transformation Line Detection

3.3 Probabilistic Hough Transformation Line

Detection

The final stage in our lightweight pipeline is a line detection algorithm that constructs

the output detection mask. In Section 2.2.4, it was demonstrated that the Hough

transformation method for line detection is widely used to locate satellite trails in

astronomical imaging. The method is flexible and can detect lines with gaps and

partial occlusion accurately and quickly. The Probabilistic Hough transform method

was selected because it directly reveals the feature’s location on the image plane. In

contrast, other methods like the Radon Transform and the regular Hough transform

yield linear features in (r, θ) coordinates or line space. While this representation

describes a line on the image plane, it lacks information about the feature’s position

along that line. In cases where a short feature is detected, an additional iteration is

required to extract the image plane coordinates from the (r, θ) representation. Rather

than exhaustively searching the parameter space, the probabilistic Hough transform

uses random sampling of edge points and iteratively fitting line segments. This sig-

nificantly reduces the computation time and makes it more efficient, particularly for

real-time applications.

The Probabilistic Hough transform algorithm accepts parameters to specify minimum

line length and maximum line gap thresholds for line detection. These values were set

to be proportional to the input image by passing the value of the longest dimension.

Initially, the shortest satellite trail the proposed pipeline could detect is 10%, and the

line gap threshold produced the most efficient detections when set to 1%. These values

were set as the baseline and remained unchanged throughout the testing conducted

in Chapter 3. Experimentation results shown in Figure 3.12 reveal that manually

changing the values did not produce any further performance benefits, so the values

were returned to their original values and left unchanged. Any minor variation in

the results was attributed to the computational optimizations from the probabilistic

Hough transform.
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3.3. Probabilistic Hough Transformation Line Detection

Figure 3.12: The maximum gap width and minimum line length parameters for the probabilistic
Hough detector were varied to observe the impact on the IoU, Accuracy & MSE scores. No
meaningful impact resulted from varying the line detector parameters in the given ranges because
the satellite trails in the test images exceeded the tested thresholds.
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Chapter 4

Experiments

Generally, satellite detection pipelines are tuned to suit the specific optical equipment

and imaging sensors responsible for generating the input images. This customization

poses a challenge when directly comparing different satellite trail detection methods.

Poor data heterogeneity adds to the complexity of such comparisons as the purpose-

built pipelines are configured to expect an input with multiple known parameters.

Consequently, a limited number of public datasets containing images of satellite trails

were available for this study.

To overcome this obstacle, an experiment was devised to assess the effectiveness of

the proposed automatic thresholding algorithm and detection pipeline in segmenting

satellite trails in night sky imagery. The pipeline was modified to allow for different

thresholding methods to be used in the preprocessing stage. The morphological filter

and detection stage parameters were fixed, and only the automatic thresholding sub-

stage could vary. The pipeline structure shown in Figure 4.1 enables the generated

output to be scored against the ground truth using the metrics listed in the scoring

stage.

The choice of an appropriate threshold is critical as it directly affects the accuracy

of the detection results. However, image noise can pose challenges in determining an

optimal threshold. The presence of noise can lead to inconsistencies in pixel intensity,
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Figure 4.1: The 3 stage detection pipeline with the evaluation metrics stage that was used to
evaluate detection performance against a ground truth. The threshold sub-stage allows for the
automatic thresholding algorithm to vary, while the other stages/sub-stages are fixed so that
the automatic thresholding algorithms can be compared using the generated output detection
masks

making it difficult to find a threshold that effectively separates the foreground and

background regions. This is seen in Figure 1.3, where uneven lighting and sensor noise

caused data loss during thresholding. To understand and quantify if AST can improve

detection outcomes, it is necessary to perform a comparison. The Canny edge detec-

tion [39] method has been used in the SatDet [25] software for image binarization.

The medical imaging community employs various automatic binary image algorithms

to perform image segmentation tasks. The Fiji [45] imaging software suite was used to

implement many of the selected methods used in this study (Yen [46], Renyi Entropy
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[47], MaxEntropy [38], Shanbhag [48], Moments [35], Triangle [34], Otsu [33], Huang

[49], Intermodes [50], Li [51], Mean [36]). By substituting these automatic threshold-

ing methods into the detection pipeline and comparing the generated masks to the

ground truth, we can evaluate the performance of each thresholding method.

4.1 Evaluation Data

This section will discuss the datasets used to evaluate the satellite trail detection

pipeline. Traditionally, optical satellite trail detection systems have commonly uti-

lized astronomy-grade FITS (Flexible Image Transport System) files. However, for

practical reasons and broader accessibility of data, the selected datasets in this study

deviate from this standard and comprise images in the widely used JPG format. Nev-

ertheless, it is important to highlight that the pipeline can be extended to incorporate

FITS files using the Astropy library [52], which provides tools for reading, writing, and

manipulating astronomical data in FITS format. By leveraging the Astropy library,

researchers can integrate FITS images into the pipeline alongside JPG images using

Astropy to extract the image data for trail detection. The consideration of public

satellite trail data availability drove the decision to opt for JPG files for this specific

evaluation. This approach allows for the utilization of publicly available JPG datasets,

further enhancing the accessibility and reproducibility of the study’s results.

4.1.1 NASA Streak Watcher Dataset

This study utilized a dataset from the NASA Satellite Streak Watcher citizen science

project [9], providing 233 ground-based images of the night sky containing satellite

streaks. The dataset consists of images taken by participants from the Internet,

showcasing satellite streaks across various locations and timeframes. The project

focuses on photographically tracking satellite streaks across the night sky, providing

valuable insights into the extent of sky pollution caused by satellites. This dataset is

part of a long-term project aimed at monitoring the population growth of satellites

and studying their impact on ground-based astronomy.
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The images were captured under different lighting conditions, with varying exposures,

cameras, and settings. Amateur skywatchers captured the images, so not all images

were usable for this study. Some of the images in the dataset contained/used con-

vex camera lenses, urban skylines and human subjects. Any duplicate images were

removed and only images that were free of the aforementioned conditions were used

in this study. As a result of these constraints, 57 images were selected and hand-

annotated ground-truth masks were created by the author to test the performance of

the proposed algorithm.

4.1.2 Asteroid Hunters Dataset

The Asteroid Hunters dataset [6] is the largest collection of publicly available images of

satellite trails to date. The dataset contains 114,607 images taken by the Hubble Space

Telescope (HST) over 19 years and was classified using online crowdsourcing to provide

labels that describe the image contents. These images have been processed to combine

individual exposures, resulting in composite images without geometric corrections or

filling the gap between detectors. The dataset provides classifications for 3,072 images

containing satellite trails, carefully reviewed and validated by the authors. It includes

observation IDs, instrument information, exposure details, celestial coordinates, and

image URLs. The satellite classifications were conducted through a combination of

citizen science contributions and machine learning.

The entire dataset was processed using only the AST detection pipeline and was visu-

ally sorted into two groups afterwards. The first group (1276 images) contained detec-

tion masks containing isolated satellite trails with little to no star/noise residue. The

second group (1796) contained the remaining images comprised of noisy/partial/missed

detections.

4.2 Data Treatment

The satellite trails in the datasets were hand-annotated to establish a ground truth for

evaluating and comparing the performance of the AST method with other thresholding
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techniques. This process involved manually identifying and marking the satellite trails

within each image. An annotation tool, such as a polygon tool, was utilized to outline

the paths of the satellite trails accurately. This allowed for precise delineation of the

regions corresponding to the trails in the images.

During the hand annotation process, several factors were taken into consideration.

One important aspect was the identification of the satellite trail itself. Each image

was carefully examined to locate the distinct streak or path created by the satellite’s

movement across the night sky. This involved differentiating the trail from other

image features, such as stars, noise, or asteroids. Additionally, the presence of diffuse

lighting from some satellite trails posed a challenge during the annotation process. In

these cases, it was not always clear where the satellite trail’s edge was. It was crucial to

capture the entire satellite trail, so masks were made larger to accommodate both the

edge and the residual glow. An example of this can be seen in Figure 4.2, where space

was left to either side of the visible trail. By carefully examining the characteristics of

the satellite trail and considering the overall lighting conditions, annotators produced

a reliable ground truth dataset that accurately captured the presence and location

of the satellite trails. Increasing the width of the annotated area to include the

diffused light caused by the trail will also help future machine-learning models learn

the features necessary for successful detection.

The hand annotation of satellite trails in the datasets serves as a crucial reference

for evaluating the performance of the AST method and comparing it with alternative

thresholding methods. This ground truth data provides a reliable basis for assess-

ing the accuracy and effectiveness of the thresholding algorithms in detecting and

segmenting satellite trails. Selecting and annotating the 57 images from the NASA

Streak Watcher dataset required much effort, and the Asteroid Hunters dataset would

require considerably more. A citizen science data annotation project [11] was created

to help reduce the burden of labelling the Asteroid Hunters dataset. Participants are

asked to download polygon labelling software and a dataset segment and are provided

instructions. Their task is to carefully examine each image and annotate the satellite

trails they encounter. Each participant annotated 10 datapacks, or approximately
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Figure 4.2: A closeup view of a satellite trail from the Asteroid Hunters Dataset that has been
annotated as a part of citizen science labelling project that produced ground truth data for this
study.

400 images. Once the annotation task was completed, participants uploaded their

results, creating a comprehensive annotated image dataset. Engaging citizen scien-

tists in this collaborative effort expanded our study to include a quantitative analysis

of space-borne imagery for AST. The data annotation process for our citizen science

project involved four main steps.

Step 1: Downloading the Data Pack

The participants downloaded the “datapackDownloader” script, which provided ac-
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cess to one of the 43 Hubble Space Telescope image data packs. Each data pack

contained a unique set of images that required annotations. After obtaining the

script, volunteers extracted the contents of the downloaded zip file to a folder they

chose on their computer. To ensure efficient collaboration and avoid duplicate efforts,

volunteers were encouraged to check the comments section below the download link

to see if the data pack they intended to work on had already been annotated by other

participants.

Step 2: Running the Annotation Script

Once the data pack was successfully extracted, volunteers extracted the files to a lo-

cation on their computer. To initiate the data annotation procedure, they opened the

terminal or command line within the script folder and executed the command:

python3 getDB.py sets/hubbleSatellites_X.csv

Here, X represented a number between 1 and 43, corresponding to the specific data

pack they were annotating. It is important to note that the data pack size was

approximately 250 MB and contained approximately 43 images.

Step 3: Utilizing Labelme for Data Annotation

To facilitate the data annotation process, volunteers were recommended to download

the latest release of “labelme” [53], a user-friendly image annotation tool which can

be seen in Figure 4.3. Once installed, volunteers launched the application and navi-

gated to the ”HSTData” folder, which was located within the script directory. This

folder contained the Hubble Space Telescope images that needed annotations. Using

“labelme”, volunteers could easily mark regions of interest directly on the HST images

to annotate satellite trails. Upon completing the annotation for a given image, vol-

unteers were encouraged to save their annotations to the ”annotations” folder inside

the ”HSTData” directory.

Step 4: Collaborative Comments and Data Submission

To foster collaboration and coordination among volunteers, a comments section was

available on the website. Volunteers were encouraged to leave comments indicating
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4.2. Data Treatment

Figure 4.3: The labelMe image annotation software being used to create pixel-level annotations
of satellite trails in HST images.

which data pack they were working on and sharing progress updates. By doing so,

participants could easily identify data packs already annotated by others and avoid

duplication. Once the data annotation task for a specific data pack was completed,

volunteers were requested to zip the ”annotations” folder containing the annotated

images and submit it through the designated submission process.

Through these four steps, the citizen science website enabled volunteers to contribute

to the data annotation process effectively, ensuring the successful implementation of

the satellite trail detection pipeline.
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4.3 Evaluation Metrics

By systematically varying the automatic thresholding algorithm of the pipeline, the

experiment aimed to determine the extent to which the proposed automatic threshold-

ing algorithm enhances the pipeline’s performance. This variation in the thresholding

stage allowed for a comprehensive assessment of the algorithm’s contribution to ac-

curately segmenting satellite trails in the captured night sky imagery. Through this

approach, the experiment aimed to provide insights into the efficacy of the automatic

thresholding algorithm within the context of the specific detection pipeline, shedding

light on its ability to improve the overall performance of satellite trail segmenta-

tion.

This section will describe the process of comparing the proposed method to other au-

tomatic global thresholding algorithms. Descriptions of the satellite trail datasets and

details about the data annotation methods used for the study will also be provided.

Information about the metrics used to compare the output detection masks and the

comparison results will also be discussed in detail.

To quantitatively assess the performance of our proposed method, we compared the

outputs of the detection pipeline to the ground truth for our data. In addition to the

following metrics, we use the processing time, precision, and recall to compare AST

to the other automatic binary thresholding methods.

Accuracy: The accuracy measures the proportion of pixels correctly classified as

foreground or background in both the ground truth and test images. It is calculated

using Equation 4.1 where TP (True Positive) is the number of pixels that are cor-

rectly classified as foreground in both the ground truth and the test image, TN (True

Negative) is the number of pixels that are correctly classified as background in both

images, FP (False Positive) is the number of pixels that are classified as foreground in

the test image but not in the ground truth, and FN (False Negative) is the number of

pixels that are classified as background in the test image but not in the ground truth.

In scenarios where the number of background pixels greatly outweighs the number of

object pixels, a high accuracy score can be achieved by simply classifying all pixels
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as background. This is because the classifier will be correct for the majority class

(background) but fail to identify the minority class (object of interest) correctly. As

a result, the accuracy score may appear deceptively high, even though the pipeline

fails to detect the satellite trails accurately.

The accuracy score, by itself, cannot reliably assess the performance of the pipeline

when class imbalance is present. Instead, it is crucial to consider additional evaluation

metrics that take into account false positives and false negatives.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

Area Under the Receiver Operating Characteristic (ROC-AUC): The ROC-

AUC is a metric commonly used to evaluate the performance of binary classifiers,

including those used for comparing binary masks. The ROC curve is a graphical

representation of the classifier’s performance at various threshold levels, plotting the

True Positive Rate (TPR) against the False Positive Rate (FPR). The ROC-AUC

quantifies the classifier’s ability to distinguish between positive and negative instances.

It ranges from 0 to 1, where a higher AUC value indicates better discrimination and

performance. An AUC of 0.5 signifies random guessing, while an AUC closer to 1

indicates better classifier performance. The ROC-AUC is particularly useful when

dealing with class imbalance, as it takes into account true positive rates and false

positive rates, providing a more reliable evaluation of the classifier’s ability to handle

unbalanced classes.

The ROC-AUC can be calculated using various methods, and one commonly used ap-

proach is the trapezoidal rule to approximate the area under the ROC curve. Given

the True Positive Rate (TPR) and False Positive Rate (FPR) at different thresh-

old levels, the ROC-AUC was computed using Equation 4.2 where the TPR(FPR)

represents the True Positive Rate at a specific False Positive Rate, and the integral

approximates the area under the ROC curve.

55



4.3. Evaluation Metrics

ROCAUC =

∫ 1

0

TPR(FPR), dFPR (4.2)

Mean Square Error (MSE): This measures the average squared difference between

the pixel values in the ground truth image and the test image. It is calculated using 4.3

where I is the ground truth image, J is the test image, N is the total number of pixels,

and Ii and Ji are the pixel values at location i in the two images. By squaring the pixel-

wise differences and taking the average, MSE amplifies the effect of larger differences

between the two images. This is particularly useful when dealing with binary masks,

as it emphasizes areas of significant disagreement, making it sensitive to both false

positives and false negatives.

A lower MSE value indicates a closer match between the ground truth and the test

image, implying a higher level of accuracy in detecting the satellite trails. Conversely,

a higher MSE value suggests greater dissimilarity and lower accuracy in the test

image’s identification of satellite trails.

MSE =
1

N

N∑
i=1

(Ii − Ji)
2 (4.3)

Intersection over Union (IoU): The Intersection over Union (IoU), also known as

the Jaccard Index, is a metric that quantifies the similarity between the foreground

regions in the ground truth image and the test image. It measures the overlapping

area between the two regions relative to their total combined area.

The IoU is calculated using Equation 4.4 where TP (True Positive) represents the

number of pixels that are correctly classified as foreground in both the ground truth

and the test image. FP (False Positive) is the number of pixels that are classified as

foreground in the test image but not in the ground truth, and FN (False Negative)

is the number of pixels that are classified as background in the test image but not in

the ground truth.

IoU values range from 0 to 1, where 0 indicates no overlap (complete dissimilarity)
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between the two regions, and 1 represents a perfect match (complete similarity).

Higher IoU scores indicate a better alignment between the predicted and ground

truth regions, reflecting a higher level of accuracy in detecting the satellite trails.

Conversely, lower IoU values suggest less overlap and lower accuracy in the test image’s

identification of satellite trails.

IoU =
TP

TP + FP + FN
(4.4)

Hausdorff Distance: The Hausdorff Distance is a metric that quantifies the maxi-

mum distance between the closest points of two sets. In the context of image segmen-

tation, it measures the boundary dissimilarity between the ground truth boundary

and the predicted mask’s boundary. The calculation of Hausdorff Distance is based

on Equation 4.5, where A and B represent two sets, and d(a, b) denotes the Euclidean

distance between points a and b. The Hausdorff Distance considers the greatest lower

bound (infimum) and the least upper bound (supremum) to ensure a robust measure-

ment that accounts for the extreme distances between the two sets.

In the context of image segmentation evaluation, a lower Hausdorff Distance indicates

a closer alignment between the boundaries of the predicted mask and the ground truth.

A smaller Hausdorff Distance value signifies a higher level of accuracy in identifying

the satellite trails’ boundaries. The Hausdorff Distance metric is particularly useful

for evaluating segmentation models when dealing with binary masks and unbalanced

classes. It considers the maximum boundary discrepancy between the ground truth

and predicted masks, providing a comprehensive evaluation of how well the pipeline

captures the satellite trails’ intricate boundaries. It is a powerful tool for assessing

segmentation performance, especially when precise boundary localization is essential

for accurate analysis and detection tasks.

H(A,B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
(4.5)

Precision: Precision is a metric that assesses the accuracy of positive predictions
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made by the model. It quantifies the proportion of true positive predictions out

of all positive predictions, indicating how well the model correctly identifies positive

instances. Precision is calculated using Equation 4.6, where TP represents the number

of pixels correctly classified as foreground in both the ground truth and the test image,

and FP represents the number of pixels classified as foreground in the test image but

not in the ground truth.

In the context of image segmentation evaluation with binary masks, a higher Precision

score indicates a higher accuracy in identifying the satellite trails or positive instances.

It reflects the pipeline’s ability to minimize false positives, which are instances falsely

classified as positive (foreground) but are actually negative (background). In tasks

where false positives have significant consequences or implications, a high Precision

score is important to ensure that the identified positive instances are more likely to

be true positives. By considering the correct positive predictions relative to the total

predicted positive instances, Precision provides a focused assessment of the pipeline’s

ability to detect the satellite trails accurately.

Precision =
TP

TP + FP
(4.6)

Recall: Recall, also known as sensitivity or true positive rate, measures the ability of

the model to identify all positive instances correctly. It quantifies the proportion of

true positive predictions from all actual positive instances in the ground truth. The

recall is calculated using Equation 4.7 where TP is the number of pixels correctly

classified as foreground in both the ground truth and the test image, and FN is the

number of pixels classified as background in the test image but not in the ground

truth. The recall is valuable in scenarios where missing positive instances is critical,

as it provides an indication of the model’s ability to capture all relevant positive

examples.

Recall =
TP

TP + FN
(4.7)

F1 Score: The F1 score measures the accuracy of the pipeline that balances both

precision and recall, providing a single metric that combines the two. The F1 score
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considers false positives and false negatives and is calculated using Equation 4.8. The

F1 score ranges from 0 to 1, where a higher value indicates better performance in

terms of both precision and recall. It is commonly used as a single evaluation metric

when precision and recall are equally important or when there is a need to balance the

trade-off between the two. The F1 score is particularly useful when a class imbalance

exists in the dataset, as it considers both false positives and false negatives in its

calculation.

F1 = 2× Precision×Recall

Precision+Recall
(4.8)

4.4 Experiment Results

A total of thirteen existing automatic thresholding algorithms were compared us-

ing the NASA Streak Watcher data. The quantitative results can be found in Ta-

bles 4.1, 4.2, and 4.3. The scores for each metric are shown in descending order,

and our proposed method is highlighted for convenience. In addition to the previ-

ously described metrics, box plots and other charts have been included to provide the

reader with additional context for the calculated scores. The bar chart in Figure 4.7a

presents the total average pipeline processing time for each thresholding method. The

pie chart in Figure 4.7 visualizes the detected satellite trails based on a qualitative

review. Figure 4.11 presents several HST images and the detection masks produced

by the proposed pipeline with AST. The odd columns contain original HST images,

while the even columns contain the corresponding detection mask.

4.4.1 Entropy-Based Results

Entropy-based thresholding methods, including Yen [46], Renyi Entropy [47], Max-

Entropy [38], and Shanbhag [48], leverage entropy measures to determine the optimal

threshold.

Yen’s Thresholding: Yen’s method maximizes the sum of the entropies of the

foreground and background regions, offering a balanced threshold selection. However,

it demonstrated lower accuracy, IoU, and F1 scores, indicating challenges in effectively
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Table 4.1: Evaluation Metrics for Different Entropy-Based Methods

Method IOU Precision Recall Accuracy F1 ROC AUC

MaxEntropy 0.129 0.143 0.431 0.620 0.225 0.615

RenyiEntropy 0.128 0.142 0.433 0.603 0.214 0.622

Yen 0.119 0.130 0.435 0.673 0.200 0.601

Shanbhag 0.032 0.047 0.173 0.327 0.074 0.528

MaxEntropy Shanbhag RenyiEntropy Yen
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Figure 4.4: Hausdorff and MSE Scores for Entropy Thresholding Methods

separating foreground and background regions in complex images.

Renyi Entropy Thresholding: Renyi Entropy minimizes the Renyi entropy to

determine the optimal threshold, providing a flexible approach with control over global

and local thresholds. While this method showcased moderate performance, it faced

limitations in accurately identifying satellite trails in certain images, resulting in lower

IoU and F1 scores.

MaxEntropy Thresholding: MaxEntropy, also known as the maximum entropy

method, maximizes the entropy between foreground and background, ensuring max-

imum information gain. However, it exhibited lower accuracy, IoU, and F1 scores,

indicating challenges in effectively capturing the satellite trails’ boundaries.

60



4.4. Experiment Results

Shanbhag Thresholding: Shanbhag’s method minimizes the weighted variances of

the foreground and background regions based on histogram entropy. This approach

aims to achieve a threshold that optimizes the separation of the two regions. While

it performed reasonably well, Shanbhag’s method faced challenges in accurately seg-

menting complex image scenarios, resulting in lower accuracy and IoU scores.

4.4.2 Histogram-Based Results

Histogram-based thresholding methods were evaluated in this study to determine the

optimal threshold for satellite trail detection automatically. Among the techniques

tested were Moments, Triangle, Intermodes, Otsu, Li, Huang, Mean, MinError, and

IsoData.

Table 4.2: Evaluation Metrics for Histogram Thresholding Methods

Method IOU Precision Recall Accuracy F1 ROC AUC

Triangle 0.182 0.214 0.454 0.725 0.290 0.652

Otsu 0.109 0.142 0.343 0.637 0.200 0.618

Li 0.107 0.140 0.317 0.637 0.194 0.625

IsoData 0.098 0.123 0.315 0.602 0.177 0.615

Intermodes 0.073 0.080 0.307 0.516 0.127 0.566

Mean 0.067 0.116 0.201 0.686 0.147 0.583

MinError(I) 0.050 0.087 0.149 0.530 0.110 0.545

Huang 0.043 0.076 0.149 0.548 0.096 0.561

Moments Thresholding: Moments thresholding method relies on statistical mo-

ments of the image histogram to calculate the threshold. It aims to minimize spatial

variance within segmented regions. While Moments achieved moderate accuracy and

IoU scores, it struggled to perform optimally in complex image scenarios, particularly

those affected by noise.

Triangle Thresholding: The Triangle method determines the threshold by max-

imizing the perpendicular distance from the peak histogram value to the last non-

61



4.4. Experiment Results
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(a) Hausdorff and MSE Scores for Methods: Triangle, Otsu, Li, and IsoData.
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(b) Hausdorff and MSE Scores for Methods: Intermodes, Mean, MinError(I), and Huang.

Figure 4.5: Comparison of Hausdorff and MSE Scores for Intermodes, Mean, MinError and
Huang.

zero histogram bin, forming a triangle. It achieved high IoU scores but exhibited

lower accuracy due to its sensitivity to noise, impacting its performance in certain

images.

Intermodes Thresholding: The Intermodes method identifies the threshold as the

value between the modes of the image histogram. This method effectively segments

foreground and background regions with distinct intensity peaks. However, it faced
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challenges in dealing with non-uniform illumination and images with multiple modes,

leading to lower IoU and accuracy scores in such cases.

Otsu Thresholding: Otsu’s method, known as maximum between-class variance,

maximizes the between-class variance to determine the threshold. It is well-suited for

bimodal and multi-modal images with distinct intensity peaks. While Otsu achieved

moderate accuracy and IoU scores, its effectiveness heavily relies on the presence of

distinct histogram peaks, which may limit its performance in certain scenarios.

Li Thresholding: Li’s method calculates the threshold by considering the his-

togram’s slope, representing the transition between foreground and background in-

tensities. It adapts to different image conditions and effectively handles images with

non-uniform illumination. However, it exhibited lower precision and recall, indicating

challenges in minimizing false positives and false negatives.

Huang Thresholding: Huang’s method calculates the threshold by minimizing the

sum of variances between the thresholded regions and the overall image. It demon-

strated robustness against uneven illumination and noise. However, it suffered from

lower accuracy and IoU scores, affecting its overall performance.

Mean Thresholding: Mean thresholding computes the threshold as the average

of the image’s minimum and maximum intensity values. While straightforward, this

method may not be effective for images with uneven illumination or complex intensity

distributions. It faced challenges in achieving high accuracy and IoU scores.

MinError Thresholding: MinError aims to minimize the classification error be-

tween the thresholded and original images using statistical measures such as the

Bhattacharyya distance. Although it performed reasonably well, it lacked sensitivity

and misidentified many foreground pixels as background pixels, leading to challenges

in minimizing false positives.

IsoData Thresholding: IsoData calculates the threshold by iteratively estimating

the threshold value until the segmented regions stabilize. It adapts to changing image

conditions and uneven illumination. However, it faced limitations in accurately seg-

menting complex image scenarios and exhibited lower IoU and accuracy scores.
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4.4.3 AST & Canny Edge Detection Results

Canny edge detection [39] is primarily used for detecting edges in images rather than

image binarization. However, it is possible to utilize the Canny edge detection al-

gorithm to generate a binary mask. After obtaining the edge map from the edge

detection step, it can be further processed to generate a binary image. A common

approach is to apply a threshold to the edge map, converting all edge pixels above

the threshold to white and the rest to black. The Canny method achieved the highest

IoU and ROC-AUC scores of the methods being compared to AST. IoU score, it faced

challenges in achieving high accuracy due to its susceptibility to noise and complex

image scenarios. Additionally, the processing time for Canny edge detection, was

faster than the histogram and entropy-based methods.

Table 4.3: Evaluation Metrics for Canny and AST Methods

Method IOU Precision Recall Accuracy F1 ROC AUC

AST 0.385 0.465 0.616 0.795 0.530 0.779

Canny 0.256 0.410 0.394 0.689 0.402 0.735
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Figure 4.6: Hausdorff and MSE Scores for Canny and AST Methods
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(a) Mean Total Pipeline Processing Times for
Detection Mask Generation

(b) Qualitative detection results that show the propor-
tion of complete trail detections, compared to partial
and failed detection results.

Figure 4.7: A Comparison of Mean Pipeline Processing Times (a) and Qualitative Detection
Results (b) for the NASA Sky Watcher Dataset

The results for each thresholding type are combined into a table in Tables 4.4 and 4.5

where AST is highlighted for convenience.

4.4.4 Overall Performance Comparison

This section analyzes the performance of four key methods used for satellite trail

detection: AST, Canny, Triangle, and MaxEntropy. In this section, we aim to gain

deeper insights into the effectiveness of these methods. The top-performing methods

were used for a Monte Carlo performance test, where five random images were sampled

from the NASA Streak Watcher dataset 100 times. This process generates a second

round of performance metrics for each method, as shown in Figures 4.8 and 4.9. The

mean average scores for the thresholding methods can be seen in Table 4.6.

4.4.5 Qualitative Results for the Asteroid Hunters Dataset

A qualitative analysis was performed using the Asteroid Hunters dataset to test the

performance of the AST detection pipeline. A sample of images from the analysis

can be seen in Figure 4.11. The top three rows show examples of images where full
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Table 4.4: Combined performance metrics table for detection results on the NASA Streak
Watcher Dataset.

Method IOU Precision Recall Accuracy F1 ROC AUC

AST 0.3849 0.4652 0.6160 0.7947 0.6160 0.7789

Canny 0.2557 0.4097 0.3939 0.6893 0.3939 0.7346

Huang 0.0431 0.0763 0.1488 0.5475 0.1488 0.5606

Intermodes 0.0735 0.0799 0.3069 0.5164 0.3069 0.5665

IsoData 0.0978 0.1228 0.3148 0.6016 0.3148 0.6148

Li 0.1070 0.1404 0.3173 0.6367 0.3173 0.6251

MaxEntropy 0.1288 0.1428 0.4306 0.6203 0.4306 0.6147

Mean 0.0670 0.1159 0.2009 0.6860 0.2009 0.5829

MinError(I) 0.0496 0.0869 0.1492 0.5303 0.1492 0.5452

Otsu 0.1091 0.1420 0.3431 0.6372 0.3431 0.6183

RenyiEntropy 0.1280 0.1418 0.4331 0.6029 0.4331 0.6217

Shanbhag 0.0316 0.0473 0.1727 0.3266 0.1727 0.5275

Triangle 0.1821 0.2141 0.4540 0.7247 0.4540 0.6521

Yen 0.1194 0.1301 0.4345 0.6728 0.4345 0.6006

(a) Boxplots for the Canny detection masks (b) Boxplots for the AST detection masks

Figure 4.8: The boxplots for Canny and AST results for the NASA Streak Watcher dataset when
compared to the hand-annotated ground truth.
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Table 4.5: Combined performance metrics table for detection results on the NASA Streak
Watcher Dataset - Continued.

Method MSE Hausdorff Morph Filter Time

AST 659.6938 747.2596 0.9763

Canny 926.1197 1067.1047 6.1189

Huang 1277.1212 1507.5085 61.0165

Intermodes 1198.7416 1323.1594 6.3944

IsoData 1089.3049 1375.5149 22.9175

Li 1015.2250 1398.5775 39.5106

MaxEntropy 986.5552 1224.4359 7.9260

Mean 1101.2507 1359.1609 63.7269

MinError(I) 1363.9829 1500.7077 41.1090

Otsu 980.3519 1342.5372 14.4877

RenyiEntropy 1013.8749 1203.1673 8.4766

Shanbhag 1589.9256 1705.6501 9.2487

Triangle 797.9232 1101.5745 17.2928

Yen 889.1839 1232.3058 7.0894

(a) Boxplots for the Triangle detection masks (b) Boxplots for the MaxEntropy detection masks

Figure 4.9: The boxplots for Triangle and MaxEntropy results for the NASA Streak Watcher
dataset when compared to the hand-annotated ground truth
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Table 4.6: Performance Metrics for Different Methods

Method IOU Precision Recall Accuracy F1 ROC AUC Morph Time (s)

AST 0.403 0.487 0.650 0.829 0.465 0.763 0.984

Canny 0.267 0.419 0.414 0.711 0.365 0.737 5.544

Triangle 0.182 0.212 0.457 0.728 0.263 0.644 15.084

MaxEntropy 0.130 0.146 0.426 0.623 0.175 0.593 7.866
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Figure 4.10: MSE and Hausdorff Scores for the top 4 automatic threshold methods for the
Monte Carlo experiments.

trail detection was achieved. Based on a qualitative review of the 3073 images in the

dataset, the AST detection pipeline was able to detect satellite trails in 1275 images

fully. The detection mask had to be free of small objects and capture more than half

the trail length to be considered a full detection. The remaining images contained

partial or failed detections as shown in row D of Figure 4.11.

4.5 Discussion

Comparing the results, we find that AST consistently outperformed the other auto-

matic thresholding methods. The AST algorithm achieved the highest Mean IoU,
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A
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Figure 4.11: A qualitative comparison of automatic threshold masks from the Asteroid Hunters
dataset. Row D shows rejected images and masks, and Rows A, B, and C show successfully
masked images. Columns 1, 3, and 5 contain original HST data, and columns 2, 4, and 6 contain
the AST detection masks.

indicating better overlap between the detection masks and the ground truth. The

Triangle and Canny methods achieved high IoU scores but lower accuracy scores be-

cause of greater susceptibility to noise, which results in greater processing time, which

can be seen in Figure 4.7a. The Mean Accuracy score demonstrated AST’s ability to

classify pixels as foreground or background correctly. Additionally, AST yielded the

lowest Mean MSE and Mean Hausdorff Distance, indicating closer alignment with the

ground truth and more accurate boundary detection.

The AST algorithm showed superior performance in terms of Mean Precision, Mean

Recall, and Mean F1 score. These metrics provide insights into the algorithm’s abil-

ity to accurately identify positive instances (satellite trails) while minimizing false

positives and negatives. AST achieved high precision, indicating a low rate of false

positives and moderate recall, suggesting effective identification of positive instances.
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Table 4.6 shows that AST achieved an ROC-AUC score of 0.763, which indicates good

performance on this binary classification task. The proposed method outperformed

the other methods in the Monte Carlo tests in all measured categories. Compar-

ing AST to the other automatic thresholding methods, it is evident that AST offers

distinct advantages. While the entropy-based methods (Yen, Renyi Entropy, Max-

Entropy, Shanbhag) and histogram-based methods (Moments, Triangle, Intermodes,

Otsu, Li, Huang, Mean, MinError) utilize different strategies to determine the opti-

mal threshold, they often struggle with varying lighting conditions, noise, and complex

image scenarios (see Figure 1.3. AST, on the other hand, leverages adaptive tech-

niques to dynamically determine the threshold, leading to improved performance and

robustness across different image characteristics.

The processing time comparison also revealed that AST offers a competitive advan-

tage. The average pipeline processing time for AST was lower than most other thresh-

olding methods, suggesting its efficiency in real-time applications or processing large

datasets. The morphological filtering stage represents most of the processing time

during pipeline execution and is related to the number of detected regions during the

CCA. The Mean thresholding technique had the fourth-highest mean accuracy score

but lacked sensitivity and misidentified many foreground pixels as background pixels.

This shows that the accuracy score has been biased by the class imbalance caused by

the background.

However, it is important to consider the limitations and challenges encountered dur-

ing the evaluation. The datasets used in this study, while representative of ground-

based and space-borne images, may not capture the full range of image variations

encountered in satellite trail detection. Many of the parameter values used in the

configuration of the pipeline are experimental in nature and might not be optimal in

all cases. The selection and annotation of images also relied on human judgement,

introducing a potential for subjectivity.
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Chapter 5

General Conclusions

In this thesis, we discuss the challenges in satellite trail detection by focusing on

the development and evaluation of the Automatic Thresholding (AST) algorithm and

detection pipeline. By addressing the limitations of existing methods, AST offers a

promising solution for quickly and accurately segmenting satellite trails in night sky

imagery. In this concluding chapter, we summarize the key findings, contributions,

and future directions of this research.

5.1 Summary of Findings

Chapter 1 introduced the growing number of satellites in LEO and the importance of

SSA for safety and security. The chapter discusses optical satellite detection of the

challenges in satellite trails in night sky imagery, including issues related to threshold-

ing, data availability, and comparison of detection pipelines. We identified the need

for an automatic thresholding algorithm to improve detection accuracy, adapt to dif-

ferent imaging systems, and enhance processing efficiency. The subsequent chapters

discussed the related approaches, identified challenges and demonstrated the perfor-

mance of the AST algorithm.

Chapter 2 describes the literature that compared and evaluated various satellite trail

detection pipelines and automatic thresholding techniques that have been studied
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recently. The detection steps were broken down into high-level functions, which al-

lowed the reviewed detection pipelines to be better compared. The chapter provides

a detailed description of the operation of a satellite trail detection pipeline by com-

paring the detection stages used in the literature. Special attention was paid to the

pre-processing and star removal stages of the reviewed detection pipelines, as these

were identified as possible areas that could be improved. Finally, the types of au-

tomatic thresholding algorithms were explained, and their strengths and weaknesses

were compared.

Chapter 3 presented the development and implementation of the AST algorithm. By

leveraging adaptive techniques and statistical measures, AST was able to dynami-

cally determine the threshold, which resulted in improved accuracy and reduced false

positives and false negatives. The algorithm’s flexibility allows for integration into

existing detection pipelines by allowing for a greater range of input image sizes with

no prior scene knowledge required. The chapter continued by describing the proposed

morphology stage that includes two shape-based filters to remove compact objects

using extent and eccentricity properties.

Chapter 4 described the experimental evaluation of AST using datasets from the

NASA Streak Watcher project and the Asteroid Hunters dataset. The results demon-

strated the superior performance of AST compared to other automatic thresholding

methods. AST consistently achieved higher accuracy, precision, recall, and F1 scores,

indicating its effectiveness in accurately segmenting satellite trails.

5.2 Contributions

This research makes several contributions to the field of satellite trail detection:

1. Development of the AST Algorithm: This study provides insights into the chal-

lenges associated with satellite trail detection and proposes AST as a solution.

The proposed AST algorithm introduces a novel approach to automatic thresh-

olding, improving the accuracy and efficiency of satellite trail segmentation. By

dynamically adjusting the threshold based on the assumption of a sparse bi-
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(a) Original (b) Otsu (c) Canny (d) AST

(e) Original (f) Triangle (g) Moments (h) AST

Figure 5.1: A comparison of automatic threshold mask generation using the proposed detection
pipeline with different automatic thresholding algorithms used for image binarization. The results
for AST in subfigures (d) and (h) show that the proposed algorithm can produce a binary mask
without over/under thresholding the input image.

modal histogram, AST outperforms traditional methods and provides reliable

detection results by not over/under thresholding the image during binarization

(see Figure 5.1.)

2. Morphological Detection Pipeline: To further enhance satellite trail detection,

a novel star/small object filter based on extent and eccentricity was proposed

to improve efficiency in the detection stage. The shape-based filter results in

more robust detection than size-based methods and enables detection pipelines

to allow for inputs of arbitrary size. By combining eccentricity and extent

properties together, the morphological filter enhances satellite trail detection by

reducing detection clutter more effectively than perimeter/area-based methods.

3. Pixel-level Annotated Satellite Trail Data: To evaluate our proposed method, a

large amount of annotated data was required. To achieve this, a citizen science

website was constructed to facilitate the distributed labelling of the Hubble As-

teroid Hunters satellite trail data. The dataset provides ground truth pixel-level

annotations for 3073 HST images, which can be used to train future segmen-
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tation models. The resulting annotated dataset has been made available for

public use to study satellite trail detection further.

5.3 Future Directions

While this research has achieved significant advancements in satellite trail detection

using the AST algorithm and detection pipeline, there are several avenues for future

exploration:

1. Pipeline Integration: The AST algorithm can be easily implemented in other

satellite detection pipelines and most often be used in cases where manual global

thresholding is employed. A FITS interface would be useful for making AST

more accessible for use with astronomical imagery. Further testing on other

optical imaging platforms would support automatic thresholding in satellite de-

tection tasks. It also strengthens the argument that AST can be used effectively

using various imaging configurations, enabling a higher level of SSA in the fu-

ture.

2. Develop AST Adaptability: Continued research can focus on adapting AST for

specific image detection tasks where sparse, unbalanced bimodal histograms can

be leveraged. Examples of such applications where AST could prove beneficial

include the low-light detection of power lines and underwater cables/pipes (see

Figure 5.2). The AST algorithm can be reconfigured to work backward in sit-

uations where the background pixels have a higher intensity than those of the

detected object. This could allow AST to be utilized in daytime applications

like aircraft contrail or horizon detection tasks.

3. Improve Pipeline Capabilities: The proposed detection pipeline shows robust

detection results in both ground-based and space-borne telescopes based on the

available data. The evaluated datasets also reveal the shortcomings in our pro-

posed detection pipeline that are likely present in the literature discussed in

Chapter 2. The proposed morphology filter results in an improvement of the

detection efficiency in the Probabilistic Hough detection stage. This perfor-
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(a) The input image used to generate the de-
tection mask in the accompanying figure.

(b) Output detection mask from the AST de-
tection pipeline.

Figure 5.2: The AST algorithm was applied to an image of illuminated powerlines at night. The
detection pipeline was used without morphological filtering as the extent/eccentricity removes
too many foreground objects.

mance optimization comes at the price of missed detections due to the CCA

merging intersecting trails. This leads to the satellite trails being grouped as

a single object and ultimately removed by the shape filter as an object with

insufficient eccentricity. This problem can be solved by performing the CCA

on zones or binned regions rather than the entire image. Therefore, the detec-

tion pipeline results could be improved if the CCA stage can be more robust to

non-parallel/intersecting satellite trails.

4. Machine Learning Models: The stages of the AST algorithm and the proposed

detection pipeline are functions that can be taught to a machine learning al-

gorithm. The data collected for this study with the AST and hand-annotated

ground truths can be used to train a deep-learning model to generate detec-

tion masks in real-world images using data augmentation. The orientation-free

images from the Asteroid Hunters dataset would allow for substantial augmen-

tation, which would greatly improve data availability for training satellite trail

detection models. An auto-encoder segmentation model could be used to learn

the features of satellite trails from the annotated, possibly resulting in improved

detection outcomes.
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5.4 Conclusion

In conclusion, this thesis has addressed the challenges in satellite trail detection and

proposed the AST algorithm as a promising solution. The experimental evaluation

has demonstrated the superiority of AST in accurately segmenting satellite trails com-

pared to traditional thresholding methods. The contributions made in this research

pave the way for future advancements in satellite trail detection and image segmen-

tation tasks.

By improving accuracy, offering flexibility, and ensuring efficient processing, AST

opens up new possibilities in satellite trail detection, benefiting various applications

in astronomy, environmental monitoring, and space exploration. With further re-

search and collaboration, the AST algorithm can be refined, integrated into detection

pipelines, and extended to other image segmentation tasks, advancing the field and

enabling new insights and applications.

Overall, this research serves as a significant contribution to satellite trail detection

and sets the stage for further developments in this rapidly evolving field. We hope

the findings and insights presented in this thesis will inspire and guide future research

in pursuing accurate and efficient satellite trail detection methods.
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